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Abstract
Amongst omics technologies, metabolomics should have particular value in regulatory toxicology as the measurement of 
the molecular phenotype is the closest to traditional apical endpoints, whilst offering mechanistic insights into the biological 
perturbations. Despite this, the application of untargeted metabolomics for point-of-departure (POD) derivation via bench-
mark concentration (BMC) modelling is still a relatively unexplored area. In this study, a high-throughput workflow was 
applied to derive PODs associated with a chemical exposure by measuring the intracellular metabolome of the HepaRG cell 
line following treatment with one of four chemicals (aflatoxin B1, benzo[a]pyrene, cyclosporin A, or rotenone), each at seven 
concentrations (aflatoxin B1, benzo[a]pyrene, cyclosporin A: from 0.2048 μM to 50 μM; rotenone: from 0.04096 to 10 μM) 
and five sampling time points (2, 6, 12, 24 and 48 h). The study explored three approaches to derive PODs using benchmark 
concentration modelling applied to single features in the metabolomics datasets or annotated metabolites or lipids: (1) the 
1st rank-ordered unannotated feature, (2) the 1st rank-ordered putatively annotated feature (using a recently developed 
HepaRG-specific library of polar metabolites and lipids), and (3) 25th rank-ordered feature, demonstrating that for three out 
of four chemical datasets all of these approaches led to relatively consistent BMC values, varying less than tenfold across 
the methods. In addition, using the 1st rank-ordered unannotated feature it was possible to investigate temporal trends in 
the datasets, which were shown to be chemical specific. Furthermore, a possible integration of metabolomics-driven POD 
derivation with the liver steatosis adverse outcome pathway (AOP) was demonstrated. The study highlights that advances in 
technologies enable application of in vitro metabolomics at scale; however, greater confidence in metabolite identification 
is required to ensure PODs are mechanistically anchored.

Keywords  In vitro metabolomics · HepaRG · Direct infusion mass spectrometry · Benchmark concentration analysis · 
Point-of-departure · Chemical risk assessment

Introduction

New Approach Methodologies (NAMs) are increasingly rec-
ognised as important tools in chemical safety assessment for 
advancing the paradigm shift in toxicity testing without the 
use of vertebrate animals. Amongst them, omics technolo-
gies offer the possibility of comprehensively measuring gene 
expression (transcriptomics), protein abundance (proteom-
ics) or metabolite levels (metabolomics) in a biological sys-
tem exposed to a chemical. Metabolomics studies—measur-
ing biochemicals with molecular weight < 1.5 kDa—allow 
the downstream metabolic phenotype of cells, tissues, or 
whole organisms to be established, which is arguably the 
closest phenotype provided by all omics technologies to 
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traditional apical endpoints used in toxicology. In recent 
years, numerous applications of metabolomics to chemical 
safety assessment have been proposed (e.g., mode-of-action 
(MoA) discovery as well as chemical grouping and read-
across), although regulatory acceptance of metabolomics 
studies has yet to be achieved (van Ravenzwaay et al. 2012, 
2016; Van den Eede et al. 2015; Cuykx et al. 2018; Dubuis 
et al. 2018; Ramirez et al. 2018; Zampieri et al. 2018). 
Indeed, this topic has previously been addressed by numer-
ous review papers, workshops, and working groups (Buesen 
et al. 2017; Sauer et al. 2017; Viant et al. 2019; Harrill et al. 
2021; Olesti et al. 2021).

In classical toxicology, point-of-departure (POD) deriva-
tion is employed alongside assessment factors for in vivo 
hazard characterisation to determine reference values, i.e., 
the maximum dose or concentration of a chemical within 
a defined exposure time frame without a significant risk 
to an individual (More et al. 2021). Calculating POD val-
ues from in vitro experiments is an attractive option to 
increase throughput of toxicological experiments at lower 
cost, and without the need for vertebrate testing. However, 
this approach additionally requires extrapolation of in vitro 
concentrations to corresponding in vivo doses (Sand et al. 
2017). Whilst there have been many reports of successfully 
applying transcriptomics for POD derivation, similar studies 
applying metabolomics are scarce. van Ravenzwaay et al. 
compared no observed adverse effect level (NOAEL) values 
between data obtained using classical toxicology and metab-
olomics in rats exposed to a range of chemicals (van Raven-
zwaay et al. 2014). The authors concluded that sensitivity of 
metabolomics (i.e., a lack of a previously established change 
in metabolite levels associated with the adverse effect) was 
comparable to classical toxicology in 75% of the investi-
gated cases, providing further evidence for the potential of 
metabolomics in deriving PODs.

Benchmark concentration (BMC) modelling offers sev-
eral advantages over the traditional NOAEL approach: (1) 
it is not limited to chemical concentrations used in the labo-
ratory study, and (2) does not depend on the sample size, 
whilst (3) accounting for the variability of the data. None-
theless, the BMC approach is computationally intensive 
and requires careful consideration of a benchmark response 
(BMR), i.e., the concentration or dose that results in a pre-
defined change (e.g., 10% change in the response) thus 
producing the POD (benchmark concentration in vitro, or 
dose in vivo (BMC or BMD, respectively)) (US EPA 2012; 
Haber et al. 2018; Crizer et al. 2021). Most recently, BMC 
modelling was applied by Crizer et al. (2021) for metabolic 
footprinting of the HepaRG cell line exposed to liver and 
non-liver toxicants, in addition to transcriptomics analysis. 
In this case, the authors applied a BMR of one standard 
deviation, relative to the vehicle control samples. The study 
highlighted the value of applying untargeted metabolomics 

for this purpose, although the challenge of metabolite iden-
tification hindered data interpretation.

To date, there is no literature addressing the effect of 
sampling time on derivation of PODs when using untar-
geted metabolomics data. The overarching aim of this study 
was to evaluate how the sampling time affects the BMC 
values obtained from a high-throughput in vitro metabo-
lomics study using nanoelectrospray direct infusion mass 
spectrometry (nESI-DIMS). To address this aim, it was first 
necessary to build the HepaRG-specific library of polar 
metabolites and lipids to maximise the confidence of anno-
tating the nESI-DIMS data. The library was prepared by 
analysing cell extracts by ultra-high-performance liquid 
chromatography–mass spectrometry (UHPLC–MS/MS) 
using an Orbitrap ID-X Tribrid mass spectrometer with an 
AcquireX intelligent data acquisition workflow (Thermo 
Fisher Scientific). Next, HepaRG cells (5 × 104 hepatocytes 
per well of a 96-well microplate) were individually exposed 
to four toxicants (aflatoxin B1, benzo[a]pyrene, cyclosporin 
A, or rotenone) across seven concentrations of each chemical 
and five sampling time points. To investigate the effects of 
sampling time, three methods were applied to determine the 
BMC values of the most sensitive features associated with 
the chemical exposure: (1) the 1st rank-ordered unannotated 
feature (i.e., the feature with the lowest BMC value), (2) 
the 1st rank-ordered putatively annotated feature with the 
use of a HepaRG-specific library of polar metabolites and 
lipids, and (3) the 25th rank-ordered feature, a method previ-
ously proposed for derivation of PODs using transcriptomics 
datasets (Reardon et al. 2021). Each method was applied to 
a dataset corresponding to a 24-h exposure period to allow 
sufficient time for development of a perturbation to the Hep-
aRG cell line. Upon identifying a reliable method, the effect 
of sampling time on POD derivation was investigated.

Materials and methods

Cell culture and exposure

Undifferentiated HepaRG cells (HPR101, Biopredic Inter-
national, Rennes, France, batches HPR-101056 and HPR-
10101067) were cultured and exposed to chemicals accord-
ing to the protocol described previously (Joossens et al. 
2019). The preparation of the HepaRG-specific library of 
metabolites and lipids involved culturing hepatocytes of 
HepaRG incubated in 0.1% dimethyl sulfoxide (DMSO) 
for 24 h. For the toxicometabolomics study, hepatocytes of 
HepaRG were treated with one of four chemicals: aflatoxin 
B1 (purity ≥ 98.0%, Sigma), benzo[a]pyrene (purity ≥ 96.0%, 
Sigma), cyclosporine A (purity > 97.0%, Tokyo Chemical 
Industry) or rotenone (purity > 95.0%, Tokyo Chemical 
Industry), and subsequently sampled for metabolomics 



Archives of Toxicology	

1 3

analyses across five time points following the onset of 
exposure (2, 6, 12, 24, and 48 h). Chemical stocks were 
prepared in DMSO (Sigma) and diluted in cell media using 
Hamilton Star and Starlet robotic platforms (Hamilton Ita-
lia Srl, Agrate, Brianza, Italy). The concentration range of 
aflatoxin B1, benzo[a]pyrene, and cyclosporine A was from 
50 to 0.2048 μM (following 2.5 × dilution), whilst the con-
centration range of rotenone was from 10 to 0.04096 μM 
(also following 2.5 × dilution). After the exposure period has 
passed, cell media were removed and the cells were washed 
with ice-cold sodium chloride [2 × 180 μL (w/v; Fresenius 
Kabi, Isola della Scala, Italy)] and water [1 × 200 μL (sterile-
filtered, BioReagent, Sigma or LC–MS grade, LiChrosolv, 
Sigma)] using ELx405 microplate washers (BioTek Instru-
ments, Winooski, VT, USA), as previously proposed by 
Deng et al. (2018). This was followed by sealing the micro-
plates using an X-Seal Manual Variable Temperature Ther-
mal Sealer (Biorad foil, 180 °C, 5 s) and placing them on 
dry ice. Once frozen, the microplates were stored at − 80 °C 
until shipment from Italy to the United Kingdom.

The toxicometabolomics study included three technical 
(i.e., samples on the same 96-well microplate corresponding 
to the same biological replicate) and three biological (i.e., 
samples on different 96-well microplates which were split 
during the culturing process) replicates for treated cells per 
time point, comprising nine samples in total per chemical 
and time point. There were also nine technical and three 
biological replicates for negative control samples per time 
point (twenty-seven samples in total per time point), cor-
responding to cells incubated in media with 0.1% DMSO. 
In addition, three wells on each microplate corresponded to 
hepatocytes exposed to rotenone at 4 μM. Intrastudy qual-
ity control (QC) samples were comprised of hepatocytes 
cultured and treated the same way as the study samples cor-
responding to 2 and 48 h time points and three biological 
replicates. The extraction blanks were prepared in the same 
manner but did not contain biological material. A subset 
of the data from this study, corresponding to negative con-
trol samples at 24 h, was analysed and published previously 
alongside the methods applied (Malinowska et al. 2022a).

Metabolite extraction

Metabolite extraction was conducted with the use of 
Biomek i7 Hybrid Workstation (Beckman Coulter) as 
described previously (Malinowska et al. 2022a, b). The 
deck included automated labware positions pre-cooled to 
− 15 °C for metabolite extraction or 4 °C for sample resus-
pension prior mass spectrometry analysis. Polar metabo-
lites were extracted with the use of pre-cooled 4:1 (v/v) 
methanol:water containing 1.5 μM tryptophan-d5 (isotopic 
purity of 97 atom % deuterated, Sigma) with samples in 

two 96-well microplates prepared in parallel. Methanol 
(LC–MS grade) and water (LC–MS grade) were purchased 
from Honeywell (Charlotte, NC, USA) and Merck (Darm-
stadt, Germany), respectively. In brief, 60 μL of the extrac-
tion solvent was added to each well of a 96-well microplate 
containing washed and frozen cells, followed by mixing 
well contents and transfer of 40 μL aliquots per well to a 
new 96-well microplate (a collection microplate, Eppen-
dorf, Hamburg, Germany). Next, 60 μL per well was added 
to the first 96-well microplate and the same volume was 
transferred to the collection microplate. The steps were 
then repeated for the extraction of metabolites from the 
second 96-well microplate with washed and frozen cells. 
Next, the samples were shaken (200 rpm, 2 min, room 
temperature) and centrifuged (3622g, 3 min, 4 °C, Sigma 
6-16KL) with 80 μL of supernatant per well transferred 
for drying with the use of a SPD111V230 concentrator 
(Thermo Scientific Savant) for 2 h at 35 °C. Dried samples 
were sealed with an ALPS 50 V-manual heat sealer from 
Thermo Scientific (165 °C, 1.5 s) and stored at − 80 °C 
until mass spectrometry analysis.

Lipids were extracted by adding 60 μL of pre-cooled 
methanol containing 1.25 μM dodecylphosphorylcholine-
d38 (isotopic purity of 98 atom % deuterated, Sigma) per 
well followed by mixing well contents and transfer of 40 
μL aliquots per well to a collection microplate (Eppendorf, 
Hamburg, Germany). Forty μL aliquots of methanol con-
taining the deuterated internal standard were then added 
again to the original microplate and the same volume was 
transferred to the collection microplate followed by an 
addition of 40 μL of chloroform (HPLC-grade, ≥ 99.8% 
stabilised with 2-methyl-2-butene, VWR Chemicals). 
The steps were then repeated for lipid extraction from the 
second 96-well microplate with washed and frozen cells. 
Shaking and centrifugation were conducted as described 
above for polar metabolites. Following centrifugation, 
96 μL of supernatant per well was transferred for dry-
ing with the use of nitrogen blowdown (Techne Dri-
Block DB100/3 sample concentrator) for approximately 
15–20 min at 35 °C. Subsequent sealing of dried samples 
and their storage was conducted as described for polar 
metabolites.

For the preparation of the HepaRG-specific library of 
polar metabolites and lipids, metabolite extracts from 
individual wells of 96-well microplates were pooled into 
a polypropylene reservoir (Beckman Coulter, maximum 
capacity 38 mL). The pool was mixed and aliquots of 1600 
μL (polar metabolites) or 1632 μL (lipids) were transferred 
to Eppendorf tubes for polar metabolites or 1.75 mL glass 
vials for lipids (glass screw neck specimen vials, Fisher-
brand) followed by drying as described above (with the 
exception of drying time due to a larger sample volume).
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Metabolomics data acquisition

HepaRG‑specific library of polar metabolites and lipids

Polar metabolite and lipid extracts were thawed on wet 
ice for 15 min (n = 3 for each UHPLC–MS/MS assay and 
ionisation mode) and resuspended in ice-cold 100 μL of 
1.5:1.5:1 (v/v/v) acetonitrile:methanol:water or 100 μL of 
3:1 (v/v) propan-2-ol:water, respectively. The extracts were 
vortexed for 2 min and sonicated for 10 s, a process that 
was repeated three times in total. The resuspended samples 
were then centrifuged: 20,000g, 20 min, 4 °C (centrifuge 
model 5920 R, Eppendorf) for polar metabolites or 2500g, 
10 min, 4 °C (model Primo R Centrifuge, Thermo Scien-
tific) for lipids. The supernatants (80 μL) were transferred 
to UHPLC–MS/MS vials for a given assay and ionisation 
mode and maintained at 4 °C throughout the analytical run. 
The metabolome of the HepaRG cell line was analysed using 
UHPLC–MS/MS by applying hydrophilic interaction liquid 
chromatography (HILIC) and reversed-phase chromatogra-
phy (RP) C30 methods published previously (D’Elia et al. 
2019; Southam et al. 2020, 2021; Jankevics et al. 2021). 
Data collection was conducted using Vanquish UHPLC and 
Orbitrap ID-X Tribrid mass spectrometer with an AcquireX 
intelligent data acquisition workflow (Thermo Fisher Scien-
tific). The Vanquish UHPLC was equipped with a column 
compartment (VH-C10-A), split sampler FT (VF-A10-A), 
and binary pump H (VH-P10-A). HILIC analyses employed 
an Accucore 150 Amide HILIC column (2.1 × 100 mm, par-
ticle size 2.6 μm, Thermo Fisher Scientific) with a column 
guard Accucore 150 Amide HILIC (2.1 × 10 mm, parti-
cle size 2.6 μm, Thermo Fisher Scientific) maintained at 
35 °C in positive and negative ionisation modes. RP C30 
analyses were conducted using an Accucore C30 column 
(2.1 × 150 mm, particle size 2.6 μm, Thermo Scientific) 
maintained at 55 °C in positive and negative ionisation 
modes. Mass spectrometry data was collected over an m/z 
range of 70–1050 (HILIC) or 150–2000 (RP C30). Detailed 
description of UHPLC–MS/MS methodology is provided 
in Supplementary Information (including Fig. S1 and S2).

Toxicometabolomics study

The method of data acquisition employing nESI-DIMS 
(termed “internal scan replication”) was a modification 
of the approach proposed by Southam et al. (2007, 2017) 
that was optimised for small biomass samples and further 
improved for high-throughput analyses (Malinowska et al. 
2022a, b). The dataset for each nESI-DIMS assay was 
acquired using a TriVersa NanoMate coupled to an Orbit-
rap Elite mass spectrometer over five analytical batches with 
each sequence being composed of study samples, intrastudy 

QC samples, extraction blanks, and a synthetic mixture of 
metabolite standards of known composition.

Given the high-throughput capability of our metabo-
lomics workflow, three study microplates and one microplate 
containing intrastudy QC samples and extraction blanks 
were resuspended for mass spectrometry analysis at a given 
time. Polar metabolites for nESI-DIMS analysis in posi-
tive ionisation mode were resuspended in 30 μL per well of 
pre-cooled 4:1 (v/v) methanol:water containing 0.25% (v/v) 
formic acid (~ 98%, Honeywell), whilst polar metabolites 
for nESI-DIMS analysis in negative ionisation were resus-
pended in 30 μL of pre-cooled 4:1 (v/v) methanol:25 mM 
aqueous ammonium acetate (≥ 99.9% trace metal basis, 
Honeywell). Lipids for nESI-DIMS analysis in positive ioni-
sation mode were resuspended in 40 μL of pre-cooled 2:1 
(v/v) 7.5 mM methanolic ammonium acetate:chloroform. 
The resuspended extracts were centrifuged (3622g, 3 min, 
4 °C, Sigma 6-16KL) with the supernatant (20 μL per well) 
transferred to a 384-well microplate. The samples were cen-
trifuged again in the 384-well microplate prior nESI-DIMS 
analysis (2000g, 10 min, 4 °C, Sigma 6-16KL). The three 
assays are referred to later in the manuscript as polar posi-
tive, polar negative and lipid positive nESI-DIMS assays, 
respectively.

Data processing and analysis

HepaRG‑specific library of polar metabolites and lipids

The data processing steps of samples were conducted 
using either Compound Discover (Thermo Scientific, ver-
sion 3.2.0.421) for HILIC UHPLC–MS/MS analyses or 
LipidSearch (Thermo Scientific, version 4.2.29) for RP C30 
UHPLC–MS/MS analyses. The preparation of the library 
involved spectral fragmentation matches (experimental MS2 
and/or MS3) with the mzCloud library (polar metabolites) 
and LipidSearch (lipids). Detailed UHPLC–MS/MS meth-
ods for data processing and analysis are provided in Sup-
plementary Information.

Toxicometabolomics study

Data processing consisted of peak picking (known as “pro-
cess scans”) followed by correcting the drift in mass accu-
racy of the dataset. This drift was observed for the internal 
standard (putatively annotated) within each biological sam-
ple and confirmed by the analysis of a system suitability QC 
sample containing a mixture of metabolite standards (span-
ning a wide m/z range) that had been measured at the begin-
ning and end of each analytical batch. The observed drift 
in mass accuracy was modelled and corrected by applying 
a 1-D smoothing spline and leave-one-out cross-validation 
for the putatively annotated feature of the internal standard 
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(either [M + H]+ or [M − H]−). This step was followed by 
aligning features across all samples, and the removal of out-
lying samples identified by their intensity of the internal 
standard exceeding 3 × median absolute deviation away from 
the median. The removal of outliers was conducted sepa-
rately for study samples and intrastudy QCs as described 
previously (Malinowska et al. 2022a). The data processing 
was rerun without the outliers followed by subtracting fea-
tures present in extraction blanks and retaining only fea-
tures present across 50% of the dataset for a given assay. 
Then, samples were removed which had a high percentage 
of missing values (≥ 40% for polar positive assay or ≥ 50% 
for polar negative and lipid positive assays) followed by the 
removal of features which were not present in at least 70% 
of intrastudy QCs. Next, signal drift and batch effect cor-
rection, probabilistic quotient normalisation, and removal 
of variable features with intensity RSDs > 30% in intras-
tudy QCs were performed. For principal component analy-
sis (PCA), missing values were imputed using the k-nearest 
neighbour algorithm (k = 5) followed by a generalised log 
transformation and mean centring. The PCA was used to 
evaluate general trends in data and to identify any outliers. 
The outliers were removed using a 95% confidence interval, 
followed by re-processing the dataset without these outliers. 
Initial data evaluation of the whole dataset revealed that all 
the samples from a microplate corresponding to biologi-
cal replicate one at 48 h were outliers (consistently for all 
the three assays). Thus, these samples were removed and 
the data reprocessed as aforementioned. All data process-
ing were conducted using DIMSpy tools within the Galaxy 
workflow management system and R/Bioconductor struct-
Toolbox (version 1.4.2) (Southam et al. 2017; Lloyd et al. 
2020; Weber and Zhou 2020).

For benchmark concentration analysis, the dataset was 
sub-grouped, retaining only samples corresponding to a 
single chemical exposure (in addition to unexposed control 
samples), time point and nESI-DIMS assay. Next, only fea-
tures present in at least four or five samples in each con-
centration group were retained. This value (i.e., n = 4 or 
n = 5) was dependent on whether the maximum percentage 
of missing values exceeded 50%, i.e., if the filter specifying 
that a feature must be present in at least four samples in 
each concentration group resulted in the percentage of miss-
ing values above 50%, the value for that filter was adjusted 
from 4 to 5. This procedure was necessary as the model-
ling required imputation of missing values using k-nearest 
neighbour algorithm, allowing a maximum of 50% of miss-
ing values per feature or sample. These steps were con-
ducted using R/Bioconductor structToolbox (version 1.6.0) 
(Lloyd et al. 2020). Table S1 in Supplementary Informa-
tion contains the maximum percentage of missing values 
per feature, sample and feature count for datasets with sam-
ples exposed to a given chemical (and respective negative 

control samples) at a selected time point and measured by 
one of three nESI-DIMS assays. Benchmark concentration 
modelling was applied to scaled data using BMDExpress 
[version 2.30.050 (Phillips et al. 2019)] implemented via 
Birmingham Environment for Academic Research (Blue-
BEAR, Linux High Performance Computing environment), 
and CaStLeS (Compute and storage for the Life Sciences) 
(Thompson et al. 2019). Benchmark concentration model-
ling was conducted twice: first, the BMR was set to three 
standard deviations (SD) which served as a filter to retain 
only features demonstrating some degree of a concentra-
tion–response relationship. The features were fit to the fol-
lowing models: Exponential (2nd to 5th order), Linear, Hill 
and Power. The confidence level was 0.95, constant vari-
ance was on, power restricted (≥ 1), and maximum iterations 
were set to 250. Model selection had the following criteria: 
benchmark model concentration at lower confidence limit 
(BMCL) and upper bound (BMCU) were computed ignor-
ing non-convergence. Best poly model test was based on the 
lowest Akaike information criterion, whilst p-value thresh-
old was set to 0.05. Hill model with ‘k’ parameter below 1/3 
of lowest positive dose was flagged and excluded from best 
models. This process was repeated with identical settings 
aside from a BMR value that was changed from 3 to 1 SD. 
Only features passing selected criteria for both analyses at 
3 and 1 SD were retained. These criteria were as follows: 
BMC values had to be smaller than the highest concentra-
tion of a chemical in the given dataset, best model p value 
had to be greater than 0.0001 and BMC/BMCL value had 
to be less than 20.

Metabolite annotation

Metabolite annotation was conducted using the Python pack-
age BEAMSpy (Birmingham mEtabolite Annotation for 
Mass Spectrometry, https://​github.​com/​compu​tatio​nal-​metab​
olomi​cs/​beams​py, version 1.1.0). The database employed for 
putative metabolite annotation was an in-house HepaRG-
specific library of metabolites and lipids prepared using 
spectral fragmentation matches (experimental MS2 and/or 
MS3) with the mzCloud library (polar metabolites) or Lipid-
Search (lipids), where the experimental data were derived 
from UHPLC–MS/MS analyses of the HepaRG cell line 
using a Vanquish UHPLC and Orbitrap ID-X Tribrid mass 
spectrometer with an AcquireX intelligent data acquisition 
workflow (Thermo Fisher Scientific). The list of metabo-
lites and lipids used for putative annotations of datasets is 
included in the Supplementary Table S2 A–C. The mass 
error employed for putative annotation was ± 5 ppm, and 
the adduct list included [M + H]+, [M + Na]+, [M + NH4]+ 
for positive ionisation mode, and [M − H]−, [M + Cl]−, 
[M + Hac − H]− for negative ionisation mode. The putatively 
annotated spectral features with concentration–response 

https://github.com/computational-metabolomics/beamspy
https://github.com/computational-metabolomics/beamspy
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behaviour identified by benchmark concentration modelling 
are included in Supplementary Tables S3–S6.

Results and discussion

HepaRG‑specific library of polar metabolites 
and lipids

To maximise the confidence of annotating HepaRG toxico-
metabolomics datasets, it was first necessary to characterise 
the detectable metabolome and lipidome of this cell line. 
The curated and filtered list, forming the HepaRG-specific 
library of polar metabolites and lipids, is applicable to the 
current and future metabolomics studies, in particular for 
DIMS experiments where metabolite annotation is par-
ticularly challenging given the lack of chromatographic 
separation.

Following spectral matching, 54 polar metabolites were 
annotated in positive ionisation mode with MS2 mass 
spectra, of which 33 polar metabolites also yielded MS3 
fragments (the quality of MS3 fragments was evaluated 
manually) (Table 1). It should be noted that version 3.2 of 
Compound Discoverer only provides spectral matches using 
MS2 (not MS3) data. Fourteen polar metabolites were anno-
tated in negative ionisation mode with MS2 mass spectra, 
with 2 of these metabolites producing MS3 fragments. In 
total, 10 metabolites were annotated in both positive and 
negative ionisation. The measurements described here meet 
the criteria for Metabolomics Standards Initiative (MSI) 
level 2 annotations, which entails a match using physico-
chemical properties and/or a match to a spectral library 
(Sumner et al. 2007, 2014). It should be noted, however, 
that for some m/z features more than one spectral match 
was reported by Compound Discoverer and the mzCloud 
library, which limits the confidence of that annotation. For 

example, the same m/z features were putatively annotated as 
l-leucine, l-isoleucine and l-norleucine, making assignment 
of the level of metabolite annotation proposed by Sumner 
et al. (2007, 2014) somewhat challenging.

Metabolites present in the HepaRG-specific library 
were searched against the MTox700+ biomarker list 
(Sostare et  al. 2022), which contains toxicologically 
relevant polar metabolic and lipid biomarkers obtained 
through interrogation of existing literature, databases, 
and analytical assays. These biomarkers should in prin-
ciple be equivalent to panels of genes used in transcrip-
tomics studies such as the S1500+ panel developed by the 
US National Toxicology Program (Mav et al. 2018). In 
Table 1, worst- and best-case scenarios are shown, where 
a metabolite is excluded or included from the count if 
it has multiple annotations, respectively, e.g., a puta-
tive annotation of adenosine 3’-monophosphate (absent 
from the MTox700+ panel) represents the ‘worst case’ 
scenario, whilst adenosine 5’-monophosphate (present in 
the MTox700+ panel) represents the ‘best case’ scenario. 
The majority of metabolites detected in polar extracts of 
the HepaRG cell line are present in the MTox700+ list, 
highlighting the toxicological-relevance of the HILIC 
UHPLC–MS/MS data. The polar metabolites measured 
in HepaRG were assigned a subclass based on the infor-
mation retrieved from the Human Metabolome Database 
(HMDB), version 4.0 (Wishart et al. 2018) as shown in 
Fig. S3. For metabolites measured in positive ionisation 
mode, amino acids, peptides and analogues were the most 
abundant (22 out of 54 metabolites were assigned this 
subclass), as anticipated when using HILIC UHPLC–MS/
MS, which separates small hydrophilic metabolites (Greco 
and Letzel 2013). Reduced and oxidised glutathione are 
examples of biomarkers present in this subclass: a ratio 
of reduced to oxidised glutathione is an important bio-
marker of oxidative stress (Vairetti et al. 2021). Carnitine 

Table 1   Summary of polar metabolites and lipids measured in the extracts of the HepaRG cell line using HILIC and RP C30 UHPLC–MS/MS 
assays in positive and negative ionisation modes

Range refers to the worst- and best-case scenarios of a metabolite being present in the MTox700+ biomarker list (Sostare et al. 2022), where a 
metabolite is excluded or included from the count if it has multiple annotations, respectively

Dataset (assay and ionisation mode) Number of metabolites

Based on MS2 fragmentation data Based on MS2 and MS3 fragmentation data Present in 
MTox700+ 

HILIC positive 54 33 37–41
HILIC negative 14 2 11

Dataset (assay and ionisation mode) Number of lipids

Grade ‘BB-’ or higher With unique molecular formulae Present in 
MTox700 + 

RP C30 positive 246 194 6–24
RP C30 negative 107 84 2–7
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(belonging to a subclass of quaternary ammonium salts) 
also has important biological functions, such as participa-
tion in β-oxidation of long-chain fatty acids (Li and Zhao 
2021).

To maximise the confidence of lipid annotations in the 
HepaRG cell line, only lipids of grade ‘BB- ‘ (or higher) 
across 3 technical replicates were retained, as shown in 
Table 1 (comparable to a lipid being present in at least 2 
out of 3 replicates). The grades assigned by LipidSearch 
reflect the quality of the annotation, i.e., grade B denotes a 
lipid molecule with an assigned class and some fatty acid 
chains (Kiyonami et al. 2016). There were 246 and 107 lipid 
molecules found in positive and negative ionisation modes, 
respectively, with an annotation quality grade of ‘BB-’ or 
higher (Table 1). It should be noted that lipid molecules were 
not assigned the following information: (1) stereochemical 
number (sn-position for derivatives of glycerol), (2) double-
bound location, and (3) stereochemistry. If the sn-position 
is not assigned, the name of the lipid molecule contains an 
underscore, e.g., PC 16:0_18:1 (Valenzuela and Valenzuela 
2013; Peake et al. 2019). This makes the assignment of MSI 
levels to the lipids challenging. Next, the number of lipids 
with unique molecular formulae was determined, yielding 
194 lipids in positive ionisation mode, and 84 lipids in nega-
tive ionisation mode. In UHPLC–MS/MS experiments, lipid 
molecules that share the same molecular formula may be 
chromatographically separated and fragmented; however, 
this is not the case when conducting high-throughput DIMS 
experiments since these compounds cannot be differentiated 
using only accurate mass from MS1 experiments.

The number of lipids present in the MTox700+ biomarker 
list was determined using worst- and best-case scenarios 
(Table 1). As anticipated, there were few lipid molecules 
detected that overlapped with MTox700+ , mostly because 
this biomarker list contains relatively few lipids. These 
low values are not surprising considering a) the diversity 
of lipidome and b) that not every putative annotation of a 
lipid molecule has a corresponding HMDB ID, which is the 
unique identifier used when searching the MTox700+ metab-
olite panel (Hu et al. 2019; Sostare et al. 2022). Next, the 
putatively annotated lipids were assigned lipid classes 
according to LipidSearch, as shown in Fig. S4. Phosphati-
dylethanolamines, triglycerides and phosphatidylcholines 
were the top three most abundant lipid classes found in 
positive ionisation mode. These findings are in agreement 
with existing literature, as phosphatidylcholines and phos-
phatidylethanolamines (commonly found in cell membranes) 
are the most abundant glycerophospholipids, and have been 
associated with non-alcoholic fatty liver disease (NAFLD), 
Alzheimer’s and Parkinson’s diseases (Fagone and Jack-
owski 2013; Calzada et  al. 2016). Triglycerides, which 
are stored in the liver, have also been linked to NAFLD 
(Alves-Bezerra and Cohen 2018). In negative ionisation 

mode, phosphatidylethanolamines, phosphatidylinositols, 
and phosphatidylserines were the top three most abundant 
classes of lipids detected, followed by phosphatidylglycerols 
and ceramides.

The use of the curated HepaRG-specific library in experi-
ments involving DIMS data is anticipated to be a valuable 
tool, providing researchers with greater confidence in the 
annotation of spectral features when using only MS1 accu-
rate mass measurements. Whilst a useful tool, it should be 
noted that the knowledge of the human metabolome is con-
tinuously developing as is its toxicological relevance, and 
therefore such curated lists cannot provide exhaustive anno-
tations and undoubtedly require periodic updates.

Toxicometabolomics study—assessment 
of methods for POD derivation

Prior to assessing methods for POD derivation, the data 
quality was evaluated by determining the feature count, 
variability of intrastudy QC sample (repeatedly measured 
throughout each assay), and variability of negative control 
samples at each sampling time point (Table S1). All three 
parameters assessed were highly satisfactory with median 
relative standard deviation (mRSD) below the threshold 
of 30% previously suggested by the community (Viant 
et al. 2019). To address the effect of sampling time points 
(i.e., exposure time) on BMC values obtained from high-
throughput in vitro metabolomics data, it was necessary to 
initially investigate approaches for selecting the most robust 
metabolic features for POD derivation. The transcriptomics 
community has explored this topic in depth by evaluating 
several approaches to select groups of genes and/or molecu-
lar pathways to derive PODs (Farmahin et al. 2017; Ramai-
ahgari et al. 2019; Reardon et al. 2021); however, some of 
these methods (e.g., pathway analysis) require robust anno-
tation and identification of the ‘features’ being measured 
(i.e., metabolites in this study), which remains a challenge 
for untargeted metabolomics workflows (Nash and Dunn 
2019). Given that the current dataset was obtained using 
nESI-DIMS (i.e., lacking chromatographic separation), only 
putative annotations of metabolites and lipids based upon 
accurate m/z of full scan data (MS1 data) were possible. 
Consequently, the three POD derivation methods applied in 
this study were focused on individual mass spectral features, 
metabolites and/or lipids, not on pathway-based approaches, 
with the focus on the most sensitive mass spectral features 
responding to chemical exposure. These approaches took 
into consideration both unannotated spectral features (with 
the lowest BMC values, but possibly lacking metabolite 
annotation) as well as putatively annotated spectral features 
(often providing higher BMC values in comparison to the 
former approach, but in principle placing the findings in a 
biological context), as discussed below.
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The three methods assessed here were (1) the 1st rank-
ordered unannotated feature (i.e., the feature with the lowest 
BMC value), (2) the 1st rank-ordered putatively annotated 
feature (with putative annotation conducted using the Hep-
aRG-specific library of polar metabolites and lipids), and 
(3) the 25th rank-ordered feature previously proposed for 
derivation of PODs using transcriptomics datasets (Rear-
don et al. 2021). These approaches were evaluated for the 
four chemicals to which the HepaRG cell line was exposed 
over 24 h, and are referred to in Fig. 1 as “Unannotated”, 
“Annotated”, and “25th feature”, respectively. As expected, 

the lowest BMC values were obtained using the 1st rank-
ordered unannotated feature. For aflatoxin B1, the most 
sensitive feature measured by polar nESI-DIMS assay in 
negative ionisation mode was also putatively annotated, 
however, that was the only chemical-assay combination for 
which the most sensitive feature could be named. Whilst the 
differences between BMC values obtained for each method 
were less than tenfold for the datasets corresponding to afla-
toxin B1 (Fig. 1a) and benzo[a]pyrene (Fig. 1b), the data-
set with samples exposed to cyclosporin A revealed more 
striking differences between these methods (Fig. 1c). For 

Fig. 1   Assessment of methods for POD derivation from BMC mod-
elling using high-throughput in  vitro metabolomics data. The Hep-
aRG cell line was exposed to a aflatoxin B1, b benzo[a]pyrene, c 
cyclosporin A, and d rotenone for 24 h. The three approaches evalu-
ated were (1) the 1st rank-ordered unannotated feature (i.e., the fea-
ture with the lowest BMC value) termed “Unannotated”, (2) the 1st 
rank-ordered putatively annotated feature (with putative annotations 
derived using the HepaRG-specific library of polar metabolites and 

lipids) termed “Annotated”, and (3) the 25th rank-ordered feature 
termed “25th feature”. The colours and shapes used for plotting the 
data indicate nESI-DIMS assays used for measurement of metabolites 
and lipids. The red dashed line indicates the lower limit of extrapo-
lation as suggested by the National Toxicology Program (i.e., 1/3 of 
the lowest experimental concentration in the study) (Auerbach et al. 
2018)
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polar metabolites measured in positive and negative ionisa-
tion modes, the differences between the 1st rank-ordered 
unannotated feature, the 1st rank-ordered putatively anno-
tated feature, and 25th rank-ordered feature exceeded tenfold 
when comparing the BMC values. This larger difference may 
stem from the relatively small size of the HepaRG-specific 
library for the “annotated” approach, which was employed 
in this study to decrease the rate of false positive annota-
tions. The 25th rank-ordered feature also yielded higher 
BMC values than those derived using the 1st rank-ordered 
unannotated feature. In principle, this method offers more 
stable POD derivation; however, the choice of the 25th 
rank-ordered feature is somewhat arbitrary and unexplored 
for metabolomics. Lastly, the analysis of rotenone dataset 
revealed very low BMC values across all methods, all of 
which were within tenfold of each other. Thus, whilst for the 
majority of chemicals (aflatoxin B1, benzo[a]pyrene, rote-
none) the three POD derivation approaches generated BMC 
values differing by less than tenfold (per chemical), PODs 
corresponding to the dataset with cyclosporine A revealed 
much larger differences. Consequently, to study the effect 
of sampling time, the approach using the 1st rank-ordered 
unannotated feature was employed, which was not biased by 
the effectiveness of annotating features using the HepaRG-
specific metabolite library. The findings presented here are 
mostly in agreement with findings presented by Farmahin 
et al. (2017) who concluded that several approaches exam-
ined in that study were appropriate for POD derivation using 
transcriptomics, especially if working with datasets across 
multiple sampling time points. In addition, the BMD values 
from transcriptomics datasets were well aligned with apical 
PODs (less than tenfold of each other) further highlighting 
the value of omics studies in this area. On the other hand, 
Crizer et al. (2021) proposed the use of a metric termed “the 
lowest consistent response dose” (LCRD) to determine the 
most sensitive features that are likely to be toxicologically 
relevant. This approach also used unannotated mass spectral 
features with concentration–response behaviour rather than 
relying on putative metabolite annotations.

Toxicometabolomics study—investigation 
of sampling time points on POD values

The effect of time on the metabolome of HepaRG per-
turbed by aflatoxin B1 was studied at 2, 6, 12, 24 and 48 h. 
The use of accumulation plots allowed for visualisation of 
metabolic features with concentration–response behaviour 
ordered by increasing BMC values measured by polar posi-
tive (Fig. 2a), polar negative (Fig. 2b), and lipid positive 
(Fig. 2c) nESI-DIMS assays. The number of features with 
concentration–response behaviour increased over early 
time points from tens to hundreds (2, 6 and 12 h) followed 
by their decrease at 24 and 48 h for the case of the polar 

metabolome (in both ionisation modes), whilst this number 
of features increased over five sampling time points for fea-
tures detected by the lipid positive nESI-DIMS assay. The 
BMC values consistently decreased with longer exposure 
times across the three assays confirming the anticipated 
decrease in POD with increasing exposure time. This obser-
vation was confirmed when plotting the 1st rank-ordered 
unannotated feature for each sampling time point and assay 
(Fig. 3a). A time-dependent effect on BMC values was evi-
dent, which was consistently observed across the DIMS 
assays employed, with the values decreasing 25-, 38-, and 
28-fold for polar positive, polar negative, and lipid posi-
tive assays respectively, when comparing the earliest (2 h) 
and latest (48 h) sampling time points. To understand how 
exposure to aflatoxin B1 affects the metabolome of HepaRG, 
putative annotations of the spectral features were used. The 
analysis of features with concentration–response behaviour 
revealed that several triglycerides and ceramides increase 
their spectral intensities in response to increasing concentra-
tions of aflatoxin B1. This was observed for triglycerides and 
ceramides measured across multiple sampling time points 
and assays in the study, and it is a known marker of steatosis 
(Cuykx et al. 2018).

Exposure of the HepaRG cell line to cyclosporin A 
revealed that the latest time point (48 h) was associated with 
the highest number of features with concentration–response 
behaviour (Fig. 2d–f), however the effect of sampling time 
points on BMC values was less apparent in comparison to 
the dataset with aflatoxin B1. This could be further observed 
in Fig. 3b, where the 1st rank-ordered unannotated feature 
was plotted for every time point and assay. Whilst the BMC 
values decreased over time for features measured by the 
polar positive nESI-DIMS assay, the opposite was true for 
the lipid positive assay for time points 2, 6, 12 and 24 h, 
whilst the BMC values for features measured by the polar 
negative assay fluctuated over 48 h. It is noteworthy that 
measurement of the polar metabolome at 48 h using positive 
and negative ionisation modes demonstrated consistency in 
BMC values, which were within only 1.3-fold of each other 
(0.15 and 0.20 μM, respectively), whilst the BMC value for a 
lipid feature was higher (1.54 μM). Given existing literature 
describing the toxicity of cyclosporin A, which demonstrated 
that exposure to this substance could result in steatosis and 
cholestasis, it was possible to place the newly reported BMC 
values in a biological context by incorporating them within 
an adverse outcome pathway (AOP) for steatosis (Vinken 
et al. 2013; Joossens et al. 2015; Mellor et al. 2016; Vinken 
2016; Angrish et al. 2017). One of the molecular key events 
for steatosis is accumulation of triglycerides (TG), a class 
of lipids that was measured in this study by lipid positive 
nESI-DIMS (Fig. 4). One mass spectral feature exhibiting 
concentration–response behaviour was a triglyceride (m/z 
928.83266) putatively annotated as TG(18:0_18:1_20:3)/
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TG(20:1_18:1_18:2) with a mass error of 0.1 ppm and BMC 
value of 6.6 μM; this feature demonstrated its increase with 
an increasing concentration of cyclosporin A (Fig. 4). Whilst 
the BMC value of this triglyceride was 4.3-fold higher than 
that obtained using the 1st rank-ordered unannotated feature 
for the lipid positive assay at 48 h, its annotation enables a 
more mechanistically anchored interpretation of this POD 
based on an established AOP. Thus, this example highlights 
the importance of continued development of the AOPs, also 
for subsequent use in POD derivation.

The dataset corresponding to benzo[a]pyrene, a procar-
cinogen (Fig. S5a–c), demonstrated fewer features with 

concentration–response behaviours at earlier time points 
(2, 6 and 12 h) indicating the anticipated increased potency 
of this chemical with exposure time. Consequently, the 
comparison of BMC values at five time points was less 
informative, as the polar positive nESI-DIMS assay did not 
reveal any features with concentration–response behaviour 
at 2, 6 and 12 h, which was also observed for the lipid 
positive assay at 2 h (Fig. S6a). For polar negative and 
lipid-positive nESI-DIMS assays, the BMC value for the 
1st rank-ordered unannotated feature increased over 12 h, 
followed by its subsequent decrease. Later time points (24 
and 48 h) demonstrated consistency in the BMC values 

Fig. 2   Accumulation plots 
corresponding to the exposure 
of the HepaRG cell line to afla-
toxin B1 (a–c) and cyclosporin 
A (d–f) at five sampling time 
points. The metabolome was 
measured by polar positive (a, 
d), polar negative (b, e) and 
lipid positive (c, f) nESI-DIMS 
assays. The plots demonstrate 
accumulation of features 
with concentration–response 
behaviour ordered by the lowest 
BMC value. The red dashed 
line indicates the lower limit 
of extrapolation as suggested 
by the National Toxicology 
Program (i.e., 1/3 of the lowest 
experimental concentration 
in the study) (Auerbach et al. 
2018)



Archives of Toxicology	

1 3

obtained by three separate nESI-DIMS assays, being 
within 1.6-fold of each other. The putatively annotated fea-
ture with the second lowest BMC value of 0.93 μM corre-
sponded to l-kynurenine ([M + H]+, mass error: 0.5 ppm) 
measured by the polar positive assay at 24 h. For this 
spectral feature, it was observed that with an increasing 
concentration of benzo[a]pyrene, its intensity decreased at 
the 24-h sampling time point. l-kynurenine is a member of 
the kynurenine pathway, an important metabolic pathway 
in cancer studies, where l-tryptophan is catabolised. In 
addition, l-kynurenine is an agonist of aryl hydrocarbon 
receptors, which benzo[a]pyrene binds to (Shiizaki et al. 
2017; Krishnamurthy et al. 2021).

Lastly, rotenone (an inhibitor of mitochondrial com-
plex I, and a model toxicant in studies of oxidative stress) 
was shown to be highly potent leading to low BMC val-
ues (mostly below 1 μM), an effect that was consistently 
observed for all time points and assays (Fig. S5d-f) (Men-
necozzi et al. 2012; Gielisch and Meierhofer 2015). The 
effect of sampling time point was apparent in terms of the 
number of features with concentration–response behaviour 
for polar negative and lipid positive nESI-DIMS assays 
with the value following the increasing exposure time. Fig. 
S6b employing only the 1st rank-ordered unannotated fea-
ture for each assay and time point demonstrated an overall 
trend with the BMC values for these features increasing 
slightly from 2 to 24 h, followed by their decrease at 48 h. 
All of these values were below the lower limit of extrapo-
lation suggested by the National Toxicology Program (i.e., 

1/3 of the lowest experimental concentration in the study) 
(Auerbach et al. 2018).

Conclusions

Untargeted metabolomics is being recognised as a poten-
tial tool for use in supporting chemical safety assessment, 
including POD derivation through BMC modelling. This 
study demonstrated the value of high-throughput in vitro 
metabolomics, allowing investigation of three approaches 
to derive BMC values from chemical-exposed HepaRG 
cell line, and subsequently to apply BMC modelling to 
study the effect of exposure time on POD derivation. 
In particular, it was shown that for three out of the four 
chemicals studied, all approaches employed (the 1st rank-
ordered unannotated feature, the 1st rank-ordered puta-
tively annotated feature, and the 25th rank-ordered feature) 
led to relatively consistent BMC values that differed by 
less than tenfold (per chemical). Whilst the approach of 
using the 1st rank-ordered unannotated feature offers the 
most sensitive response to chemical exposure, the lack 
of annotation impedes the interpretation of the biologi-
cal findings (e.g., attempting to link it to a MoA). Simi-
larly, the 25th rank-ordered feature might suffer from a 
similar problem; however, it at least offers a more stable 
POD. It should be noted that the choice of the 25th rank-
ordered feature is subjective, and has previously only been 
explored in transcriptomics studies (Reardon et al. 2021). 

Fig. 3   Plots demonstrating the effect of exposure time on BMC val-
ues derived from the metabolic responses of the HepaRG cell line 
exposed to a aflatoxin B1, and b cyclosporin A, obtained by three 
nESI-DIMS assays measuring the polar metabolome and lipidome. 
The approach used to derive the BMC value for each time point and 

assay corresponds to the 1st rank-ordered unannotated feature. The 
red dashed line indicates the lower limit of extrapolation as suggested 
by the National Toxicology Program (i.e., 1/3 of the lowest experi-
mental concentration in the study) (Auerbach et al. 2018)
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Lastly, whilst the use of the 1st rank-ordered putatively 
annotated feature could provide biological insights (e.g., 
by linking it to a known MoA or AOP), the approach 
provides a less sensitive PODs due to the challenge of 
metabolite annotation in this study. To study the effect 
of sampling time points, the 1st rank-ordered unanno-
tated feature was employed, which demonstrated a clear 
temporal trend for the aflatoxin B1 dataset: BMC values 
consistently decreased as exposure time increased up to 
48 h, for all three nESI-DIMS assays measuring the polar 
metabolome and lipidome. However, this was not the case 
for HepaRG exposed to cyclosporin A, where the temporal 
trend was less apparent. For this dataset, it was possible to 
place a derived POD into an AOP framework for steatosis, 
as one of the putatively annotated features corresponded to 
a key event, the accumulation of triglycerides at 48 h. Such 
mechanistic anchoring highlights one of the applications 
of the AOP programme, although a metabolomics dataset 
must contain robust annotations in order for this approach 
to be reliable for regulatory purposes. As a result, the Hep-
aRG-specific library of polar metabolites and lipids was 

prepared to aid these efforts. In summary, technological 
advances now enable large-scale metabolomics case stud-
ies of BMC modelling, although further work is required 
to improve the identification of metabolites and lipids, as 
well as their roles as key events in AOPs, in order for this 
approach to demonstrate value to regulatory toxicology.
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