
Regularization in nonperturbative extensions of effective field theory

Curtis D. Abell ,1,* Derek B. Leinweber ,1 Anthony W. Thomas ,1 and Jia-Jun Wu 2

1Special Research Centre for the Subatomic Structure of Matter (CSSM), Department of Physics,
University of Adelaide, Adelaide, South Australia 5005, Australia

2School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

(Received 11 November 2021; accepted 28 July 2022; published 12 August 2022)

The process of renormalization in nonperturbative Hamiltonian effective field theory (HEFT) is
examined in the Δ-resonance scattering channel. As an extension of effective field theory incorporating the
Lüscher formalism, HEFT provides a bridge between the infinite-volume scattering data of experiment and
the finite-volume spectrum of energy eigenstates in lattice QCD. HEFT also provides phenomenological
insight into the basis-state composition of the finite-volume eigenstates via the state eigenvectors. The
Hamiltonian matrix is made finite through the introduction of finite-range regularization. The extent to
which the established features of this regularization scheme survive in HEFT is examined. In a single-
channel πN analysis, fits to experimental phase shifts withstand large variations in the regularization
parameter Λ, providing an opportunity to explore the sensitivity of the finite-volume spectrum and state
composition on the regulator. While the Lüscher formalism ensures the eigenvalues are insensitive to Λ
variation in the single-channel case, the eigenstate composition varies with Λ; the admission of short-
distance interactions diminishes single-particle contributions to the states. In the two-channel πN, πΔ
analysis, Λ is restricted to a small range by the experimental data. Here the inelasticity is particularly
sensitive to variations in Λ and its associated parameter set. This sensitivity is also manifest in the finite-
volume spectrum for states near the opening of the πΔ scattering channel. Future high-quality lattice QCD
results will be able to discriminate Λ, describe the inelasticity, and constrain a description of the basis-state
composition of the energy eigenstates. Finally, HEFT has the unique ability to describe the quark-mass
dependence of the finite-volume eigenstates. The robust nature of this capability is presented and used to
confront current state-of-the-art lattice QCD calculations.
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I. INTRODUCTION

The calculation of scattering observables from first
principles in lattice QCD simulations is facilitated by an
understanding of the impact of the lattice finite volume on
the spectrum of observed states. The most prominent
method for converting quantities obtained through lattice
QCD into physical scattering observables is that deve-
loped by Lüscher [1–3]. With only a single open scattering
channel, Lüscher’s method can be used to calculate a
scattering phase shift from a single eigenstate generated on
a finite volume through a relatively straightforward process.
While this process has been generalized to cases such as

multiple scattering channels [4–10] and three-body systems

[11–13], it requires a parametrization of the scattering
observables and becomes significantly more complicated.
Through increases in computational power and algorithmic
advances, lattice QCD is now able to consider physical
quark masses, yielding, for example, results for the lowest-
lying resonance, the Δð1232Þ [14–17].
Hamiltonian effective field theory (HEFT) also allows

for the conversion between lattice QCD quantities and
physical quantities and may have advantages for systems
involving multiple scattering channels. These advantages
have been seen to manifest in studies of resonances such
as the Roper [18] and the Λð1405Þ [19]. Here the para-
metrization is performed in constructing the Hamiltonian
describing the scattering process. Single and noninteracting
multiparticle basis states are then mixed in solving the
Hamiltonian system and insight into the composition of
the states is contained in the energy eigenvectors of the
Hamiltonian. On multiple occasions [20,21], it has been
shown that, by isolating the pole term in the eigenvalue
equation for the Hamiltonian of HEFT, one can obtain
an identical expression to the Lüscher quantization up
to exponentially suppressed terms in the lattice size L.
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However, insights into the composition of the states
through analysis of the eigenvectors is unique to HEFT.
In chiral perturbation theory (χPT), working within the

power-counting regime (PCR), where higher-order terms
of the chiral expansion make a negligible contribution,
the independence of results on the regularization method
is well understood. Consider the finite-range regulari-
zation (FRR) formalism where a momentum regulator,
governed by Λ, is introduced into loop integrals to sup-
press the effective field contributions at large momenta.
Each Λ-dependent term in the PCR is accompanied by a
(Λ-dependent) counterterm constrained by phenomenol-
ogy. In this way, the regulator cannot have any impact,
provided one works within the PCR [22–24].
In a nonperturbative extension of effective field theory

(EFT), the process of renormalization has a significant
impact. The couplings between the basis states are signifi-
cantly renormalized, introducing a newdegree of influence in
the calculations. As the regulator changes, the couplings are
renormalized as they maintain fits to experimental data. This
is different from chiral perturbation theory where the
couplings are defined and fixed in the chiral limit. The idea
of a power-counting regime is lost as theHamiltonianmodels
the experimental data. We will illustrate how the role of a
single-particle basis state can be exchanged for two-particle
states within the Hamiltonian, provided the regulator allows
strong short-distance attractive interactions.
However, model independence is not completely lost.

The Lüscher formalism embedded within HEFT brings
model independence by linking the scattering data to the
finite-volume energy levels. We will explore how this
relationship is independent of the manner in which the
data are modeled via the intermediate Hamiltonian.
Upon examining the quark-mass dependence of non-

perturbative HEFT, one finds a useful degree of model
independence for the finite-volume eigenvalues across the
range of regulator parameters considered. Without contri-
butions from a bare state, however, the correct mass
extrapolation cannot be obtained purely through the inter-
action of two-particle states.
In this work, we take the Δð1232Þ as a case study to

explore the process of regularization of the nonperturbative
extension of effective field theory, HEFT. As the energy
eigenvectors describing the composition of the states are
renormalization dependent, our aim is to understand the
extent to which one can obtain insight into the structure of a
resonance through the application of HEFT.
We commence our report with a brief review of the FRR

formalism in perturbation theory in Sec. II. Our aim here
is to present the residual series expansion and connect
its role to HEFT. In Sec. III, we present the details of
the nonperturbative HEFT approach. This is followed in
Sec. IV by an analysis of renormalization in the single
πN-channel calculation of the πN phase shifts and the
corresponding finite-volume lattice energy levels. It is here
that the model independence provided by the Lüscher
formalism is manifest. While the Hamiltonian and its

associated eigenvectors are Λ dependent, the finite-volume
energy eigenvalues are constrained by experimental data. In
Sec. V, the analysis is extended to the two-channel case,
where the πΔ coupled channel is included, giving access to
somewhat higher energies and allowing for a comparison
with contemporary lattice QCD results. In this case, the
inelasticity constrains the regulator parameter and a unique
description of the eigenstate composition emerges. We
finish with an outline of the conclusions in Sec. VI.

II. FINITE-RANGE REGULARIZATION
IN PERTURBATION THEORY

The Δ resonance has the formal quark-mass expansion
(mq ∝ m2

π [25])

MΔ ¼ faΛ0 þ aΛ2m
2
π þ aΛ4m

4
π þ � � �g

þ ΣπΔðm2
π;ΛÞ þ ΣπNðm2

π;ΛÞ þ ΣtΔðm2
π;ΛÞ: ð1Þ

The leading terms in f� � �g are referred to as the residual
series expansion and it plays a central role in the process of
renormalization. This is indicated by the appearance of the
regulator parameter Λ as a superscript on the coefficients of
the expansion. The quantities Σðm2

π;ΛÞ contain pion loop
integrals for the Δ resonance with intermediate states as
described by the subscripts, where a subscript t denotes a
tadpole term. The loop integrals are regulated by the
parameter Λ, which can appear in a dipole or exponential
regulator or as a momentum cutoff in a theta function, etc.
These loop integrals generate the leading and next-to-leading
nonanalytic quark-mass terms for the Δ self-energy; they
have model-independent coefficients with known values.
The full FRR expansion of Eq. (1) includes an ultraviolet

(UV) completion of the chiral expansion, which ensures
the loop integrals tend to zero for large pion masses. The
UV summation depends on both the form of the regulari-
zation function and the regularization parameter Λ. As
such, FRR provides a model for higher-order terms of the
chiral expansion, beyond the leading nonanalytic terms.
The integrals can be evaluated analytically. For example,

explicit forms for a sharp cutoff regulator are reported in
Ref. [26]. To proceed with the process of renormalization,
one then expands the integral results about the chiral limit
[27]. One works within the PCR, where the leading terms
dominate and higher-order terms are suppressed by powers
of mπ=Λ.
Working in the heavy-baryon limit for simplicity of

presentation, one observes a polynomial analytic in m2
π and

nonanalytic terms

ΣπΔ ¼ bΔ0Λ3 þ bΔ2Λm2
π þ χπΔm3

π þ bΔ4
m4

π

Λ
þ � � � ; ð2Þ

ΣπN ¼ bN0 Λ3 þ bN2 Λm2
π þ χπN

m4
π

δM
logmπ þ bN4

m4
π

Λ
þ � � � ; ð3Þ

ABELL, LEINWEBER, THOMAS, and WU PHYS. REV. D 106, 034506 (2022)

034506-2



ΣtΔ ¼ bt2Λ2m2
π þ c2χtΔm4

π logmπ þ bt4m
4
π þ � � � : ð4Þ

Here δM is the Δ-N mass splitting in the chiral limit, χπΔ,
χπN , and χtΔ denote the model independent chiral coef-
ficients of the terms that are nonanalytic in the quark mass,
and c2 is a renormalized low-energy coefficient, discussed
in the following. The regulator dependence of the terms
polynomial in m2

π is explicit.
The process of renormalization in FRR χEFT proceeds

by combining the renormalization-scheme-dependent coef-
ficients to provide the physical low-energy coefficients,
denoted as ci. The Δ energy expansion has the form [27]

MΔ ¼ c0 þ c2m2
π þ χπΔm3

π þ c4m4
π

þ
�
χπN
δM

þ c2χtΔ

�
m4

π logmπ þ � � � ; ð5Þ

with the coefficients ci given by

c0 ¼ aΛ0 þ bΔ0Λ3 þ bN0 Λ3; ð6aÞ

c2 ¼ aΛ2 þ bΔ2Λþ bN2 Λþ bt2Λ2; ð6bÞ

c4 ¼ aΛ4 þ bΔ4
Λ

þ bN4
Λ

þ bt4; etc: ð6cÞ

Strategies for implementing these formal relations in
practice are presented in Ref. [27].
In this way, the FRR expansion reproduces chiral

perturbation theory in the PCR. Any dependence on the
regulator is absorbed by the residual series coefficients aΛi .
In this way, the coefficients ci are scheme-independent
quantities.
Of course, the advantage of the FRR approach becomes

apparent as one approaches the extent of the PCR. FRR
provides a model for the small contributions from higher-
order terms that are otherwise absent in common massless
renormalization schemes.
The value of c0 describes the Δ resonance in the chiral

limit, and c2 is related to the sigma term of explicit
chiral symmetry breaking. The nonanalytic terms m3

π and
m4

π logmπ have known, model-independent coefficients
denoted by χπN, χπΔ, and χtΔ. In practice, the coefficients
aΛi are determined by fitting to lattice QCD results.
We note that the leading nonanalytic tadpole contribu-

tion, c2χtΔm4
π logmπ, contains the renormalized coefficient

c2. This reflects the origin of the tadpole contribution in a
term of the chiral Lagrangian proportional to the quark
mass. As c2m2

π governs the leading quark-mass dependence
of the chiral expansion, c2m2

π appears as a coefficient of the
tadpole term, with the remaining factor ofm2

π logmπ arising
in the loop integral.
The value of Λ determines the origin of the physics

contributing to the renormalized coefficients ci. For small

Λ ∼ 1 GeV, the regulated loop integrals do not contain
significant short-distance physics and can be associated with
pion-cloud contributions.Bypreventing largemomenta from
flowing through the effective field propagators, one avoids
large errors that need to be rectified in the residual series.
The residual series coefficients are short-distance-related

quantities directly tied to the cutoff as illustrated in Eqs. (6).
The contributions are associated with a bare-baryon core
contribution. A phenomenologically motivated value for Λ
will leave only small corrections to be contained within the
residual series expansion.
Studies of renormalization in FRR chiral effective field

theory have shown the functional form of the cutoff to
be unimportant [22–24]. By observing the flow of low-
energy coefficients as a function of the regulator parameter
Λ [27–30], the scale of the dipole regulator parameter was
determined, Λ ∼ 1 GeV. The phenomenologically moti-
vated value of 0.8 GeV is associated with the induced
pseudoscalar form factor of the nucleon [31], the source of
the pion cloud. Values varying by �0.2 GeV are typically
considered to explore alternative resummations of the
expansion and inform estimates of the systematic error.
The key advantage of FRR for the extrapolation of lattice

QCD results is that it provides a mechanism to exactly
preserve the leading nonanalytic terms of chiral perturba-
tion theory, including the values of the model-independent
coefficients of the leading nonanalytic terms, while addres-
sing quark masses beyond the PCR. This contrasts other
popular approaches that draw on the nonanalytic terms of
the expansion, but relegate the model-independent coef-
ficients of these terms to fit parameters. In the absence of
FRR, the fit parameters of the nonanalytic terms may differ
significantly from the known results of chiral perturbation
theory and the extrapolation does not correctly incorporate
the known leading nonanalytic behavior. In contrast, while
FRR develops some degree of model dependence in how
the loop-integral contributions to the chiral expansion sum
to zero asmπ → ∞, it does preserve the correct leading and
next-to-leading nonanalytic behavior of QCD.
In returning our attention to HEFT, it is important to

consider where the physics lies in the calculation. If one
makes a poor choice for the regulator, short-distance physics
will not be correctly suppressed in the loop integrals, and the
coefficients aΛi will need to be large in magnitude to correct
and ensure the renormalized coefficients take their scheme-
independent physical values. In this case, one would need to
acknowledge that there is a significant role for the bare-
baryon core contribution.Moreover, onemight be concerned
that the Hamiltonian theory ismissing important physics that
is put in by hand via the residual series coefficients. In this
case, intuition obtained from the Hamiltonian theory may
have relatively poor value.
On the other hand, a good choice for the regulator can

allow the residual series coefficients to become small at
higher orders, presenting the possibility that the first two or
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three terms of the residual series are sufficient to describe
the results from lattice QCD. Moreover, the Hamiltonian
itself contains the correct physics such that insight into the
structure of the states obtained from the energy eigenvec-
tors of the theory is more robust.
As one moves from a perturbative EFT to a nonpertur-

bative extension of EFT incorporating the Lüscher formal-
ism, the Hamiltonian will take on a model dependence as it
is constrained to fit experimental data. As the regularization
is changed, the coupling parameters are renormalized and
optimized to describe the scattering data. Model independ-
ence will not be through the consideration of a PCR, but
rather through the Lüscher formalism linking scattering
data to finite-volume energy levels. Here the Hamiltonian
serves to mediate between the infinite- and finite-volume
worlds. The eigenvectors of the Hamiltonian are model
dependent and will evolve with the regularization param-
eter. It will be interesting to learn the way in which the
composition of the finite-volume energy eigenstates
evolves. Finally, the Lüscher formalism only provides
model independence at the physical point. As HEFT
provides a formalism to link different quark masses, it
will be paramount to learn the extent of model dependence
in the quark-mass evolution of the finite-volume energy
levels.
Finally, we note that when working at a fixed pion mass

such as the physical pion mass, the residual series of Eq. (1)
sums to a single coefficient. Wewill refer to this as the bare-

baryon mass mð0Þ
Δ and associate it with the bare-baryon

basis state.

III. HAMILTONIAN FRAMEWORK

A. Hamiltonian model

In the rest frame, the Hamiltonian for an interacting
system can be represented by the form

H ¼ H0 þHI; ð7Þ

whereH0 is the free, noninteracting Hamiltonian, andHI is
the interaction Hamiltonian. In the HEFT formalism, we
allow for a single-particle bare-baryon basis state jB0i,
which may be thought of as a quark model state (a state in
the P space in the notation of Ref. [32]). With coupled two-
particle channels jαi, such as πN and πΔ, H0 can be
expressed as

H0 ¼ jB0imB0
hB0j þ

X
α

Z
d3k

× jαðkÞi
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
αB þ k2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

αM þ k2
q i

hαðkÞj; ð8Þ

where mαB and mαM are the baryon and meson masses,
respectively, in channel α, and mB0

is the mass of the bare
basis state. In general, HI is governed by two types of

interactions, examples of which are given in Fig. 1. The
first, which is denoted by g, represents the vertex interac-
tion between the bare state B0 and the two-particle basis
states α,

g ¼
X
α

Z
d3kfjB0iGB0

α ðkÞhαðkÞj þ jαðkÞiGB0
α

†ðkÞhB0jg;

ð9Þ

where GB0
α is the momentum-dependent strength of the

interaction between the bare state and each two-particle
state. The momentum dependence of these couplings is
selected to reproduce the established results of chiral
perturbation theory. The second type of interaction repre-
sents the coupling between two different two-particle basis
states α and β with momentum-dependent interaction
strength Vαβ and is given by

v ¼
X
αβ

Z
d3k

Z
d3k0jαðkÞiVαβðk;k0Þhβðk0Þj: ð10Þ

The interaction Hamiltonian is therefore given by

HI ¼ gþ v: ð11Þ

B. Finite-range regularization

In order to work within a finite Hilbert space, we
require a renormalization scheme. One such renormaliza-
tion scheme is FRR, which has been shown to reproduce
other schemes, such as dimensional regularization, while in
the PCR of χPT (mπ ∼mphys) [22].
Finite-range regularization introduces a regulator uðk;ΛÞ,

a function that cuts off the UV contributions at a rate
governed by the regulator parameter Λ. While, in principle,
regulators such as a sharp cutoff can be used, it is desirable to
have a smooth regulator that phenomenologically respects
the shape of the source. For this study, both a dipole regulator
of the form

uðk;ΛÞ ¼
�
1þ k2

Λ2

�−2
ð12Þ

FIG. 1. Self-energy (left) and two-particle interaction (right)
contributions to the Δ mass.
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and a Gaussian regulator of the form

uðk;ΛÞ ¼ exp

�
−
k2

Λ2

�
ð13Þ

are considered. As illustrated in Sec. II, the choice of
functional form between these or a sharp cutoff is irrelevant
in the power-counting regime of χPT.
The FRR expansion contains a resummation of higher-

order terms that come into play as one works beyond the
PCR, extending the range of utility [22–24]. The resum-
mation ensures the FRR loop-integral contributions are
smooth and approach zero for large pion masses, providing
a natural explanation for the slow variation with increasing
quark mass observed in lattice QCD results. FRR provides
a mechanism to exactly preserve the leading nonanalytic
terms of chiral perturbation theory, including the values
of the model-independent coefficients of the nonanalytic
terms, even when working beyond the PCR. As one
addresses larger quark masses, Λ can take on a physical
role modeling the physical size of the particles [23].

C. Renormalization of the coupling

Following the approach outlined in Ref. [33], for a
system with a single bare state such as that described in this
paper, the full propagator AðEÞ takes the form

AðEÞ ¼ 1

E −mB0
− ΣðEÞ ; ð14Þ

where ΣðEÞ is the compilation of all self-energy diagrams.
In particular, ΣðEÞ is taken such that AðEÞ should contain a
pole at the physical mass of the desired resonance. As we
are only interested in diagrams that yield dominant con-
tributions near the pole position, we need only consider the
region about the resonance, where m ¼ mB0

þ ΣðmÞ.
Therefore, AðEÞ can be rewritten as

AðEÞ−1 ¼ E −m − ðΣðEÞ − ΣðmÞÞ;

¼ ðE −mÞ
�
1 −

ΣðEÞ − ΣðmÞ
E −m

�
: ð15Þ

Expanding about the resonance position gives an expres-
sion of the form

AðEÞ−1 ¼ ðE −mÞ
�
1 − Σ0ðmÞ − ΣRðEÞ

E −m

�
;

¼ ðE −mÞð1 − Σ0ðmÞÞ − ΣRðEÞ; ð16Þ

where Σ0ðmÞ is the first derivative of ΣðEÞ evaluated
at the physical-mass expansion point m, and ΣRðEÞ is
defined to contain all higher-order terms in the self-energy.
Finally, defining the renormalized self-energy Σ̃ðEÞ ¼
f1 − Σ0ðmÞg−1ΣRðEÞ, the propagator may be expressed as

AðEÞ ¼ f1 − Σ0ðmÞg−1
E −m − Σ̃ðEÞ : ð17Þ

This form naturally reveals that the overall propagator
has been renormalized by a factor of f1 − Σ0ðmÞg−1, and
within the new self-energy the couplings will also be
renormalized by the same factor. In a nonperturbative
extension of EFT, this renormalization of the coupling
can become significant.

D. Infinite-volume scattering

In order to constrain bare-state masses and potential
coupling strengths, we can fit the scattering phase shifts
and inelasticities calculated via the T matrix. This can be
obtained by solving the coupled-channel integral equations,

Tαβðk; k0;EÞ ¼ Ṽαβðk; k0; EÞ

þ
X
γ

Z
dq q2

Ṽαγðk; q; EÞTγβðq; k0;EÞ
E − ωγðqÞ þ iϵ

;

ð18Þ

where ωγðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

γM

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

γB

q
. We have also

defined the coupled-channel potential Ṽαβ for some bare
state B0 as

Ṽαβðk; k0; EÞ ¼
GB0†

α ðkÞGB0

β ðk0Þ
E −mB0

þ Vαβðk; k0Þ: ð19Þ

The phase shifts and inelasticity, however, are extrac-
ted from the unitary S matrix, which is related to the T
matrix by

SαβðEÞ ¼ δαβ − 2iπ
ffiffiffiffiffiffiffiffiffi
ραρβ

p
Tαβðkon;α; kon;β;EÞ; ð20Þ

where kon;α is the on-shell momentum in channel α, and ρα
is defined as

ρα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2on;α þm2

αM

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2on;α þm2

αB

q
E

kon;α: ð21Þ

The inelasticity ηα and phase shift δα are then calculated
from

SααðEÞ ¼ ηα expð2iδαÞ: ð22Þ

Using this formalism, the position of any poles in the S
matrix can be found by solving for the complex energy E,
which satisfies Tðk; k0;EÞ−1 ¼ 0.

E. Finite-volume matrix method

On a three-dimensional, cubic lattice of volume L3, the
allowed momentum is discretized to
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kn ¼ 2π

L
n; n ¼ ðnx; ny; nzÞ; ð23Þ

where nx, ny, and nz can take any integer values. As a result
of this, the integrals over momentum in Eqs. (8)–(10)
undergo discretization of the form

Z
d3k →

X
n∈Z3

�
2π

L

�
3

: ð24Þ

For P-wave scattering, however, at a sufficiently large L,
we can approximate spherical symmetry and consider only
the degenerate momentum states. For a discussion on the
effects of this approximation and partial wave mixing, see
Ref. [34]. These degenerate momentum states are labeled
kn, where we have defined the integer n ¼ n2x þ n2y þ n2z.
We can represent the degeneracy of each kn by defining a
function C3ðnÞ, which counts the number of ways the
squared integers n2x; n2y, and n2z can sum to each n. Some
example values of this function are C3ð2Þ ¼ 12 and
C3ð7Þ ¼ 0, as there are no combinations of square integers
that sum to 7. Using this definition, the three-dimensional
finite sums undergo the transformation

X
n∈Z3

→
X
n∈Z

C3ðnÞ: ð25Þ

As our regulator parameter Λ provides a momentum
cutoff, the Hamiltonian matrix can have a finite size. We
define kmax as the maximummomentum to be considered in
the calculation. We seek a value sufficiently high compared
to the regulator mass such that variation of kmax does not
change the Hamiltonian solution. In doing this, we refer to
the magnitude of the regulator at kmax as umin. The value of
umin is chosen to minimize the size of the matrix to reduce
computational requirements while ensuring convergence in
the evaluation of the contributions from all significant basis
states.
A value of umin ¼ 10−2 is selected to balance these two

requirements. Reducing the minimum value of the regu-
lator any further significantly increases the size of the
Hamiltonian and therefore the computational requirements
without providing a notable change to the finite-volume
eigenvalues. The effect of varying umin on low-lying energy
eigenvalues for a one-channel analysis (described in
Sec. IV) is shown in Fig. 2.
Inserting umin into Eq. (12) and solving for the resulting

kmax gives a maximum momentum of

kmax ¼ Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u
−1
2

min − 1

q
: ð26Þ

This can then be used to solve for the size of the
Hamiltonian matrix from Eq. (23),

nmax ¼
�
kmaxL
2π

�
2

: ð27Þ

The same process can be repeated to calculate the size of
the Hamiltonian using the Gaussian regulator defined
in Eq. (13).
Finally, due to the discretization process, the potentials in

Eqs. (9) and (10) undergo a scaling due to finite-volume
factors. These finite-volume potentials are labeled as
ḠB0

α ðkÞ and V̄αβðk; k0Þ, and the relationship between the
finite- and infinite-volume potentials will be outlined in the
next section.

F. Finite-volume factors

In order to calculate the scaling factors due to the finite
volume, we consider the relationship between poles in the
S matrix and solutions to the eigenvalue equation of the
Hamiltonian. Consider a simple toy system, with a single
bare state and a single two-particle scattering state that
only couples to the bare state with strength GðkÞ. This
scenario is one typically considered in leading one-loop
χPT calculations. Using the notation defined in Sec. III E,
in finite-volume this interaction strength can be written as
ḠðkÞ. The Hamiltonian for such a system therefore takes
the form

H ¼

0
BBBBBB@

mB0
Ḡðk1Þ Ḡðk2Þ � � �

Ḡðk1Þ ωαðk1Þ 0 � � �

Ḡðk2Þ 0 ωαðk2Þ . .
.

..

. ..
. . .

. . .
.

1
CCCCCCA
: ð28Þ

FIG. 2. Dependence of Hamiltonian energy eigenvalues for the
one-channel analysis of Sec. IVon umin, governing the maximum
momentum to be considered in constructing the finite-volume
Hamiltonian. Our selection of umin ¼ 10−2 ensures a robust
consideration of high-momentum basis states regulated by uðk2Þ.
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Because of the sparse nature of this matrix, an exact
expression can be written for solutions of the eigenvalue
equation jH − EIj ¼ 0, giving

E ¼ mB0
−
X
n

Ḡ2ðknÞ
ωðknÞ − E

: ð29Þ

It is worth noting that, upon replacing E on the rhs with the
renormalized mass mB, one can make contact with finite-
volume χPT, thus defining the relationship between GðkÞ
and ḠðkÞ.
To define this relationship, we return to infinite volume.

For the simple system defined in this section, the absence of
any interactions between different two-particle states means
that Eq. (19) reduces to

Ṽðk; k0;EÞ ¼ GðkÞGðk0Þ
E −mB0

: ð30Þ

For a separable potential such as this, the associated T
matrix is also separable and is able to be written as

Tðk; k0;EÞ ¼ GðkÞtðEÞGðk0Þ: ð31Þ

Substituting this into Eq. (18) therefore gives an expression
for tðEÞ in the form

tðEÞ ¼
�
mB0

− E −
Z

∞

0

dq q2
G2ðqÞ

E − ωðqÞ þ iϵ

�−1
: ð32Þ

As the Smatrix is proportional to tðEÞ, poles in the Smatrix
can be found by solving for t−1ðEÞ ¼ 0, giving

E ¼ mB0
−
Z

∞

0

dq q2
G2ðqÞ

E − ωðqÞ þ iϵ
: ð33Þ

Using the fact that, for a spherically symmetric momentum
space,

Z
dq q2 ¼

Z
dq q2

Z
dΩ
4π

¼
Z

d3q
4π

; ð34Þ

we can make use of Eqs. (24) and (25) to obtain an
expression for the finite-volume energies in terms of the
infinite-volume potentials,

E ¼ mB0
−
X
n

C3ðnÞ
4π

�
2π

L

�
3 G2ðknÞ
ωðknÞ − E

: ð35Þ

By comparing this expression to Eq. (29), it can be seen that
the finite- and infinite-volume potentials are related accord-
ing to

Ḡ2ðknÞ ¼
C3ðnÞ
4π

�
2π

L

�
3

G2ðknÞ: ð36Þ

Having found this relation, we can therefore return to the
general notation for interaction strengths defined in
Sec. III A, giving the finite-volume potentials

ḠB0
α ðknÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r �
2π

L

�3
2

GB0
α ðknÞ; ð37Þ

V̄αβðkn; kmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðmÞ
4π

r �
2π

L

�
3

Vα
βðkn; kmÞ: ð38Þ

IV. SINGLE-CHANNEL ANALYSIS

A. Fitting experimental data

In order to generate a finite-volume energy spectrum,
we can obtain values for the bare mass and potential
coupling strengths by fitting experimental phase shifts.
In the simplest case, we can consider the πN system to be
described by a single bare state and with only the πN
scattering channel contributing. In this case, we fit to
experimental data below the πΔ threshold at approximately
1350 MeV. For the interaction between the bare Δ and the
πN scattering state, the coupling from Eq. (9) is taken from
Ref. [20] and has the form

GΔ
πNðkÞ ¼

gΔπN
mphys

π

kffiffiffiffiffiffiffiffiffiffiffiffi
ωπðkÞ

p uðk;ΛÞ; ð39Þ

where ωπðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
, uðk;ΛÞ is the regulator defined

in Eq. (12), and the inclusion of mphys
π allows the coupling

gΔπN to be dimensionless.
For the πN-πN interaction of Eq. (10), the separable

potential from Ref. [35] is used, which takes the form

VπN;πNðk; k0Þ ¼
vπN;πN

ðmphys
π Þ2

k
ωπðkÞ

k0

ωπðk0Þ
uðk;ΛÞuðk0;ΛÞ:

ð40Þ
While, in principle, the regulator parameter in GΔ

πNðkÞ and
in VπN;πNðk; k0Þ can take different values, in this study they
will be fixed to the same value to simplify the analysis.
Inserting these into the relativized Lippmann-Schwinger

equation from Eq. (18), we can extract the πN phase shift
δπN . Using these phase shifts, and choosing Λ ¼ 0.8 GeV
for now, we can fit πN scattering data, such as that from
Refs. [36,37].
The parameter set for this fit can be seen in Table I where

a bare state is included, and the phase shifts corresponding
to this fit are illustrated in Fig. 3.
Visually, this produces a good fit, and as such it may be

surprising that the χ2 per degree of freedom (d.o.f.) is
18.22. The origin of the large χ2=d:o:f: value is in the
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extraordinary statistical precision of the πN scattering
data, obtained in a fixed-energy analysis. However, there
is additional systematic uncertainty that is not reflected in
the statistical error bars. The fixed-energy analysis encoun-
ters systematics that give rise to significant fluctuations in
the data as a function of energy on the scale of the statistical
errors themselves such that the data are incompatible with a
smooth curve.
While many authors do not report a χ2, we note Meissner

and co-workers [39] assigned a relative error of 3% to the
scattering data and quote χ2=d:o:f: values exceeding 0.77
for fits to 1.2 GeV. Similarly, in Ref. [40], a 5% error is
assigned and χ2=d:o:f: values exceeding 0.78 for fits to
1.3 GeV are reported. If we take a similar approach, the

introduction of 3% uncertainties provides a χ2=d:o:f: of
0.07 for fits to 1.35 GeV with 23 d.o.f. Similarly, 5%
uncertainties provide a χ2=d:o:f: of 0.02. In this light, our
fits are excellent. Indeed, the introduction of 1% uncer-
tainties is sufficient to reduce our χ2=d:o:f: ≲ 1.
Empirically, our fits also compare well with the P33

results of both Refs. [41,42].
In addition, other quantities, such as the pole position,

can be considered for comparison. As can be seen in
Table I, using the 0.8 GeV fit (fit I) we calculate a pole
position of 1.211 − 0.049i GeV. This is in excellent agree-
ment with the pole position of the Δ as quoted by the
Particle Data Group (PDG) [43], which takes the value of
approximately 1.210 − 0.050i GeV.

B. Finite-volume dependence

Using the parameters found by fitting the scattering data,
the matrix Hamiltonian can be constructed. For the single-
channel system, the free Hamiltonian from Eq. (8) can be
written as

H0 ¼ diagðmð0Þ
Δ ;ωπNðk1Þ;ωπNðk2Þ;…Þ; ð41Þ

where ωπNðkiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

N

p
. The interac-

tion Hamiltonian from Eq. (11) can be written in matrix
form as

HI ¼

0
BBBBB@

0 ḠΔ
πNðk1Þ ḠΔ

πNðk2Þ � � �
ḠΔ

πNðk1Þ V̄πN;πNðk1; k1Þ V̄πN;πNðk1; k2Þ � � �
ḠΔ

πNðk2Þ V̄πN;πNðk2; k1Þ V̄πN;πNðk2; k2Þ � � �
..
. ..

. . .
. ..

.

1
CCCCCA
;

ð42Þ

FIG. 3. P-wave πN phase shifts for a system with a bare state,
where the solid points are experimental data obtained from
Refs. [37,38], the solid line is the fit using HEFT to the data,
and the dashed line represents a phase shift of 90°. The parameter
set producing this curve is given by fit I of Table I and gives a
χ2=d:o:f: of 18.22.

TABLE I. Single-channel fit parameters constrained to the WI08 solution of the P33 πN scattering data [37,38].
Fits I–III contain a single-particle basis state jΔ0i, while fit IV does not.

With jΔ0i No jΔ0i
Parameter Fit I Fit II Fit III Fit IV

mð0Þ
Δ =GeV 1.3589 1.4965 1.4700 � � �

gΔπN 0.1762 0.0818 0.0101 � � �
vπN;πN −0.0286 −0.0238 −0.0090 −0.0029
Λ=GeV 0.8000 1.6000 4.0000 8.0000

d.o.f. 13 13 13 15
χ2 236.81 230.85 194.68 24373.42
χ2=d:o:f: 18.22 17.76 14.98 1624.90

α2=GeV−1 1.092 0.655 0.370 � � �
α4=GeV−3 −0.832 −0.231 0.375 � � �
Pole=GeV 1.211 − 0.049i 1.210 − 0.049i 1.209 − 0.049i 1.205 − 0.045i
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and so the full Hamiltonian can be constructed as H ¼
H0 þHI . In the simplest possible case, where vπN;πN ¼ 0,
and therefore the only interaction present is the Δ0 → πN
vertex, the eigenvalues of the matrix Hamiltonian can
be solved exactly [20]. Solving the eigenvalue equation
jH − EIj ¼ 0, the eigenvalues are found as solutions of

E ¼ mð0Þ
Δ −

Xnmax

n¼1

ḠΔ
πNðknÞ2

ωπNðknÞ − E
: ð43Þ

We note that, by taking the limit for this equation where
L; nmax → ∞, and associating the energy E on the right-
hand side with the renormalized Δ mass mΔ, this expres-
sion for the eigenvalues is restored to the one-loop
correction to the Δ mass,

mΔ ¼ mð0Þ
Δ −

�
gΔπN
mphys

π

�
2
Z

∞

0

k04uðk0;ΛÞ2dk0
ωπðk0Þ½mΔ − ωπNðk0Þ þ iϵ� :

ð44Þ

We use a numerical routine to solve for the eigenmodes
of H. Varying the lattice volume L, we can generate the
finite-volume energy spectrum for this system, as seen
in Fig. 4. In order to observe the contributions from the
single-particle basis state jΔ0i to the energy eigenvalues, it
is convenient to highlight the states that have the largest
contribution from jΔ0i. This can be seen in Fig. 5, where
the three different highlighting methods show the states
with the first, second, and third highest probabilities for the
single-particle jΔ0i basis-state contribution.
In Sec. IV D, these states will be identified as eigenstates

having the largest overlap with lattice QCD eigenstates

excited by three-quark interpolating fields and therefore
can be considered the states that are first, second, and third
most likely to be observed in a lattice QCD calculation with
three-quark operators.

C. Dipole regulator dependence

The incorporation of the Lüscher formalism within
HEFT ensures the eigenvalues of the Hamiltonian in
HEFT will be Λ independent provided the experimental
data are described accurately by the Hamiltonian model.

FIG. 4. Lattice volume dependence of the energy eigenvalues of
the Hamiltonian. The solid lines represent the energy eigenvalues
following from fit I of Table I. The horizontal dot-dashed line is
the bare mass and the curved dashed lines are the noninteracting
πN basis states at k ¼ 2π=L; 2

ffiffiffi
2

p
π=L;….

FIG. 5. Lattice volume dependence of the energy eigenvalues of
the Hamiltonian from fit I of Table I. The solid (red), short-dashed
(blue), and long-dashed (green) highlights on the eigenvalues
correspond to the states with the largest, second-largest,
and third-largest contribution from the bare basis state jΔ0i,
respectively.

FIG. 6. P-wave πN phase shifts for a system with no single-
particle state, where the solid points are experimental data
obtained from Refs. [37,38], the solid line is the fit using HEFT
to the data, and the dashed line represents a phase shift of 90°. The
parameter set producing this curve is given by fit IV of Table I.
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To test this, we fit the scattering data for values ofΛ varying
from 0.6 to 8.0 GeV for a dipole form factor. The upper
limit selected here is interesting, as one can describe the
experimental data reasonably well in the vicinity of the
resonance region without a single-particle basis state as
illustrated in Fig. 6.
Using each fit to the experimental data forE≲ 1350MeV,

we can then solve for the eigenvalues of the finite-volume
Hamiltonian and plot the lowest-lying states to check for any
Λ dependence of these states.
Indeed, as we see in Fig. 7, the lowest-lying states on

both lattice volumes are Λ independent provided that these
eigenstates lie within E≲ 1350 MeV, where the theory is
constrained to fit the phase shift data.

While there is no observable Λ dependence for the
eigenvalues in the energy region where the HEFT has been
constrained by data, we are also interested in how the
regulator parameter could affect the physical interpretation
of the lattice QCD results.
In particular, it is of interest to see how the location of the

state dominated by the single-particle basis state jΔ0i is
affected by Λ. This can be investigated by illustrating the
values of the eigenvectors from the Hamiltonian matrix. As
the eigenvectors represent the contribution of each basis
state to the final eigenstate, we can plot these as a function
of Λ to observe how the jΔ0i contribution to each
eigenstate depends on the regulator parameter.
In Figs. 8 and 9, we show the Λ dependence of the two

lowest-lying eigenstates for two different lattice volumes. It
is clear that, unlike the eigenvalues, the eigenvectors have a
strong Λ dependence and, in fact, the position of the state
that is dominated by the bare Δ is not always Λ indepen-
dent. This is particularly clear at smaller lattice volumes,
where the bare contribution to the ground state decreases as
Λ increases. For the larger volume at L ¼ 5.0 fm, the first
excited state varies between being associated with the
single-particle contribution and the bare-state contribution
and is more stable to Λ variation.
Probing the Λ dependence of these eigenvectors also

shows how, asΛ increases, the contribution from the bareΔ
becomes distributed throughout the higher eigenstates,
rather than being concentrated in the ground state. As
can be seen in Table I, the strength of the coupling gΔπN
required to describe the scattering data at large values of Λ
significantly decreases, and indeed it seems as though a
bare Δ may not be required at all. In fact, with a very large
regulator parameter, the scattering data can be fit just as

FIG. 7. Dependence of the lowest-lying eigenvalues of the
finite-volume Hamiltonian on the regulator parameter Λ for two
different lattice sizes, where Λ is varying from 0.6 to 8.0 GeV.
The solid (black) lines are the eigenvalues, the horizontal dashed
(blue) lines are πN basis states, and the curved dot-dashed (blue)
line is the mass of the bare Δ. The Hamiltonian was constrained
to experimental data with E ≲ 1350 MeV.

FIG. 8. Dependence of the energy-eigenstate basis-state struc-
ture on the regulator parameter Λ, where Λ is varying from 0.6 to
8.0 GeV, for a lattice size of L ¼ 2.99 fm. Only the ground state
is shown, as all higher eigenstates lie above the fitting threshold
of E ¼ 1350 MeV and thus are not physically constrained.
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well with and without a bare state [44,45]. It was found that
Λ ¼ 8.0 GeV is the smallest value of Λ that gives a good
description of the data. This fit is labeled fit IV in Table I
and is illustrated in Fig. 6. Here we only have vπNπN as a
free parameter, the value of which can be found in Table I.
Comparing Figs. 3 and 6, both fits give a good

description of the data near the resonance position, though
the inclusion of a single-particle basis state improves the
description of the data at higher energies.
While these two scenarios can reproduce scattering data

at the physical pion mass, an important strength of HEFT
lies in its capacity to address and interpret lattice QCD
results in the region beyond the physical pion mass. By
observing the pion mass dependence of these states in
lattice QCD versus the predictions of HEFT for different
choices of interactions, one can obtain some insight into

which system of interactions, and hence which physical
picture, best describes the Δ.

D. Comparison with lattice QCD

To generalize these finite-volume energies to larger-than-
physical pion masses, we take the pion mass dependence of
the bare state to vary in the standard manner including
terms to order m4

π, taking the form

mð0Þ
Δ ¼ mð0Þ

Δ jphys þ α2ðm2
π −m2

πjphysÞ þ α4ðm4
π −m4

πjphysÞ:
ð45Þ

The values for the α2 and α4 are found by performing a two-
parameter fit to lattice QCD results for the ground stateΔ at
a lattice size of L ¼ 2.99 fm, as given by the PACS-CS
Collaboration [14]. At this volume, the ground state is
dominated by the three-quark-like bare state, as can be seen
in Fig. 5.
In considering pion masses away from the chiral limit,

we adopt the approach of χPT where couplings are fixed
and variation with pion mass is contained within the higher-
order terms of the expansion [46]. Chiral limit couplings
are approximated by our analysis of scattering data
necessarily at the physical point.
We begin by considering Λ ¼ 0.8 GeV and constraining

α2 and α4 by a fit to the lattice QCD results. The fit value is
reported in Table I and the fit is illustrated in the upper-left
panel of Fig. 10. This process is repeated for Λ ¼ 1.6 and
Λ ¼ 4.0. With the simple residual series of Eq. (45), the
lattice QCD data are described almost equally well with any
of the three regulator parameters selected.
In the bottom-right panel of Fig. 10, the Λ ¼ 8.0 GeV

case is demonstrated. As shown in Fig. 6, at 8 GeV a bare
state is no longer required to describe the experimental
scattering data. As a result, there is no opportunity for
residual series contributions, and the pion-mass extrapola-
tion is performed without a bare mass. As demonstrated
here, without a bare state the correct energy eigenvalue is
only obtained at the physical point, and a system without a
bare state is completely unsuitable for any extrapolations
from the physical point. This is in agreement with con-
clusions from other analyses such as Ref. [47], where as
shown in Fig. 2, the P33 scattering data are unable to be
reproduced without the introduction of an explicit degree of
freedom for the Δð1232Þ.
To further illustrate the robust nature of the pion-mass

extrapolations away from the physical point, we superpose
results for four different values of the regulator parameter in
Fig. 11. While Λ ¼ 4.0 GeV is not physically motivated,
the variation in the curves remains small.
In summary, a wide range of values for the regulator

parameter Λ are able to give the correct pion-mass
extrapolation in accordance with the lattice QCD data
from PACS-CS. As there is no preference between these

FIG. 9. Dependence of the energy-eigenstate basis-state struc-
ture on the regulator parameter Λ, where Λ is varying from 0.6 to
8.0 GeV, for a lattice size of L ¼ 5 fm. The two lowest-lying
energy eigenstates of the finite-volume Hamiltonian are inves-
tigated. The upper plot shows the eigenvectors for the ground
state, while the lower plot shows the first excited state.
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different values to be found in comparison with lattice
QCD, there is a freedom to choose a value for Λwhich suits
other requirements. A value of Λ ¼ 0.8 GeV is both in
accord with findings from other models, such as the cloudy
bag model [32,45], and is small enough such that computa-
tional requirements are minimized.

E. Gaussian regulator dependence

As a simple test of the model dependence of HEFT,
the analysis using a dipole regulator can be repeated in
part using a Gaussian regulator, as defined in Eq. (13).
Beginning with Λ ¼ 0.8 GeV, a similar quality description

of the experimental scattering data can be obtained, as seen
in Fig. 12, with a χ2=d:o:f: of 18.8.
Again, we note that, if we follow Refs. [39,40] and

assign a 3% or 5% uncertainty to the experimental
scattering data, our fit is shown to provide a superior
description of the experimental scattering data. Whereas
Refs. [39,40] report χ2=d:o:f: values exceeding 0.77, our fit
provides smaller values. The introduction of 3% uncer-
tainties provides a χ2=d:o:f: of 0.08 for fits to 1.35 GeV
with 23 d.o.f.. Similarly, 5% uncertainties provide a

χ2=d:o:f: of 0.03. Again, the introduction of 1% uncer-

tainties is sufficient to reduce our χ2=d:o:f: ≲ 1.

FIG. 10. Pion mass dependence of the finite-volume HEFT eigenvalues at L ¼ 2.99 fm for increasing values of the regulator
parameter Λ. No bare basis state is present for Λ ¼ 8.0 GeV. The parameters for these fits are given by their corresponding entries in
Table I. The solid black curves illustrate the finite-volume energy levels predicted by HEFT from fits to experimental phase shifts. These
lines are dressed by solid (red), short-dashed (blue), and long-dashed (green) highlights indicating states with the largest, second-largest,
and third-largest contribution from the bare basis state jΔ0i, respectively. Lattice QCD results for lowest-lying Δmasses, denoted by the
(black) points, are from the PACS-CS Collaboration [14]. The quoted χ2=d:o:f: for each plot are for the lowest-lying energy eigenvalue
with respect to the PACS-CS data points. As these lattice results follow from local three-quark operators, they are expected to lie on a
solid (red) energy eigenstate in the first case and perhaps on a short-dashed (blue) energy eigenstate when it is the lowest-lying state of
the spectrum. The vertical dashed (black) line illustrates the physical pion mass.
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As shown in Fig. 13, varying Λ over a modest range of
0.8–2.4 GeV, the ground-state energy is similarly invariant,
as demanded by the Lüscher formalism contained within
HEFT. By comparing with Fig. 7, it is clear that, within the
fitting region of E ≤ 1350 MeV, both Gaussian and dipole
functional forms are equivalent.
Finally, by extending to unphysical pion masses and

comparing with the PACS-CS data at L ¼ 2.99 fm, it can

be seen in Fig. 14 that a Gaussian form factor is able
to obtain a similarly good description of the lattice
QCD data, with χ2=d:o:f: ranging from 0.2 to 0.4. In
light of the model independence demonstrated, this
study will only utilize a dipole regulator for the forth-
coming analysis.

FIG. 11. Pion mass dependence of the lowest-lying finite-
volume HEFT eigenvalue at L ¼ 2.99 fm using a dipole regu-
lator, where the data points are the PACS-CS data. Several
parameter sets corresponding with each value of Λ are over-
lapped, each with a corresponding bare mass expansion fit to the
PACS-CS data.

FIG. 13. Dependence of the lowest-lying eigenvalues of the
finite-volume Hamiltonian on Λ for a Gaussian regulator at
L ¼ 2.99 fm. The solid (black) lines are the eigenvalues, the
horizontal dashed (blue) line is the πNðk ¼ 1Þ basis state, and
the curved dot-dashed (blue) line is the mass of the bare Δ.
The Hamiltonian was constrained to experimental data with
E≲ 1350 MeV.

FIG. 14. Pion mass dependence of the lowest-lying finite-
volume HEFT eigenvalue at L ¼ 2.99 fm using a Gaussian
regulator, where the data points are the PACS-CS data. Four
parameter sets corresponding to each value of Λ are overlapped,
each with a corresponding bare mass expansion fit to the PACS-
CS data.

FIG. 12. P-wave πN phase shifts for a Gaussian regulator,
where the solid points are experimental data obtained from
Refs. [37,38], the solid line is the fit using HEFT to the data,
and the dashed line represents a phase shift of 90°. A Gaussian
regulator with Λ ¼ 0.8 GeV gives a χ2=d:o:f: of 18.8.
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V. TWO-CHANNEL ANALYSIS

A. Fitting experimental data

The power of the constraints provided by experimental
scattering data on the predictions of HEFT via the Lüscher
formalism is manifest in Fig. 7. And while this model
independence applies only at the physical point, Figs. 11
and 14 illustrate only a subtle model dependence in
describing the quark-mass dependence of the finite-volume
energies. Thus, it is desirable to extend the energy range
considered beyond the πΔ threshold in an effort to describe
excitations of the Δ, in addition to the lowest-lying
resonance. To proceed, we will conduct a similar analysis
including higher energies by introducing a second scatter-
ing channel, a πΔ channel.
Previously, we were able to describe the scattering data

to 1350 MeV with a πN scattering channel. To describe the
data up to 1650 MeV, we require the next πΔ scattering
channel to account for inelasticity beyond the πΔ threshold.
To describe the interactions in the πΔ channel, we use the
same functional form as Eq. (39) to describe theΔð0Þ → πΔ
interaction and the same potential as Eq. (40) to describe
the πΔ → πΔ and πΔ → πN interactions. This introduces
three new fit parameters for the system: gΔπΔ, vπNπΔ,
and vπΔπΔ.
In fitting the experimental data, we must reproduce both

the πN phase shift δπN and the inelasticity η. Unlike the
single-channel case, the increased number of parameters
and the inclusion of the inelasticity make it difficult to
fit the data for larger values of Λ. Further difficulty is
introduced by the absence of phase shift data in the πΔ
channel. Variation in the parameters is more unstable, and
good fits to the scattering data above approximately Λ ¼
1.2 GeV are elusive.
For the SAID data up to 1650 MeV, we are able to obtain

fits between Λ ¼ 0.8 and Λ ¼ 1.2 GeV with a significantly
reduced χ2 compared to the single-channel case. The fit
parameters at these two limits for Λ are presented in
Table II.
Again, our fits provide an excellent description of the

experimental scattering data. Following Refs. [39,40] and
assigning a 3% or 5% uncertainty to the scattering data,
we find the introduction of 3% uncertainties provides a
χ2=d:o:f: of 0.26 for fits to 1.65 GeV with 50 d.o.f.
Similarly, 5% uncertainties provide a χ2=d:o:f: of 0.10.
This contrasts Refs. [39,40], where they report χ2=d:o:f:
values exceeding 0.77 for fits constrained within 1.3 GeV.
While both fits generate a pole at approximately the PDG

pole position of 1.210 − 0.050i GeV, they are not able to
describe the scattering data equally well. It is also worth
noting that a second pole was found for each of the two sets
of fit parameters, though with significantly different values
for the imaginary components of each pole. These values
are somewhat comparable to the PDG pole position for the
Δð1600Þ at ð1.510� 0.050Þ–ð0.135� 0.035Þi GeV [43],

though the imaginary component of the second pole for fit
VI is considerably smaller.
As illustrated in Fig. 15, both fits are able to describe the

scattering phase shifts up to 1650 MeV; however, only the
smaller value of Λ ¼ 0.8 GeV is able to give a good
description of the inelasticity.
In order to observe the effect these differing fits have on

the corresponding lattice energy levels, we explore the
lattice volume and Λ dependence of the finite-volume
eigenmodes in the next two sections.

B. Finite-volume dependence

Adding an additional channel to the Hamiltonian matrix
only requires an additional row and column for each
channel at each momentum kn. Therefore, the free
Hamiltonian takes the form

H0 ¼ diagðmð0Þ
Δ ;ωπNðk1Þ;ωπΔðk1Þ;ωπNðk2Þ;ωπΔðk2Þ;…Þ:

ð46Þ
Similarly, we can write the interaction Hamiltonian as

HI ¼

0
BBBBB@

0 ḠΔ
πNðk1Þ ḠΔ

πΔðk1Þ � � �
ḠΔ

πNðk1Þ V̄πN;πNðk1; k1Þ V̄πN;πΔðk1; k1Þ � � �
ḠΔ

πΔðk1Þ V̄πΔ;πNðk1; k1Þ V̄πΔ;πΔðk1; k1Þ � � �
..
. ..

. . .
. ..

.

1
CCCCCA
:

ð47Þ

Taking the Hamiltonian and solving the eigenvalue equa-
tion for varying lattice lengths L, we can generate the finite-
volume spectra seen in Figs. 16 and 17 for Λ ¼ 0.8 GeV.

TABLE II. Two-channel fit parameters constrained to πN
scattering data up to 1650 MeV. Here, Λ is fixed for each of
the two fits, while all other parameters are allowed to vary.

Parameter Fit V Fit VI

mð0Þ
Δ =GeV 1.3837 1.4405

gΔπN 0.1286 0.1041
gΔπΔ 0.1324 0.0171
vπN;πN −0.0103 −0.0233
vπN;πΔ −0.0811 −0.0220
vπΔ;πΔ −0.0015 −0.0645
Λ=GeV 0.8000 1.2000

d.o.f. 27 27
χ2 304.29 377.67
χ2=d:o:f: 11.27 13.99

α2=GeV−1 0.893 0.636
α4=GeV−3 −0.481 −0.089

Pole 1=GeV 1.210 − 0.049i 1.211 − 0.049i
Pole 2=GeV 1.434 − 0.207i 1.449 − 0.053i
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Below the πΔ threshold of approximately 1350 MeV, the
two-channel finite-volume spectrum has the same form as
the single-channel spectrum, which is to be expected, as
both the single-channel fit and the two-channel fit perform
equally well below the πΔ threshold. Above this threshold,
however, mixing between πN and πΔ basis states results in
avoided level crossings. These are apparent in the energy
eigenvalues above the πΔ threshold of 1350 MeV. For the
smaller volumes, where the states are forced to interact in
the finite volume, the energy gaps are significant and can be
used to infer scattering observables from the finite-volume
spectrum.

C. Regulator parameter dependence

As in the single-channel analysis reported in Sec. IV C,
we proceed to understand how this finite-volume spectrum

depends on the choice of the regulator parameter Λ, albeit
over a smaller range of Λ. The range of Λ considered is not
a problem, however, as using our single-channel results to
guide us, we expect that optimal results will be obtained in
the physically motivated region around Λ ¼ 0.8 GeV for a
dipole form factor.
The results obtained by solving for the eigenvalues of

the Hamiltonian with Λ varying from 0.8 to 1.2 GeV
are presented in Fig. 18. Here, for both L ¼ 2.99 and
L ¼ 5.0 fm, we see that, unlike the single-channel case, we
observe a Λ dependence of the energy eigenvalues within
the range of energies considered in fitting the scattering
data, this time to 1650 MeV.
On the 3 fm lattice, the third state drops below

1650 MeV for large Λ. On the 5 fm lattice, both the fifth
and seventh states display a strong Λ dependence. Thus,
high-quality lattice QCD simulations covering several

FIG. 15. P-wave πN phase shifts and inelasticities. The solid points are experimental data obtained from Refs. [37,38]. The solid (red)
curve is the fit of HEFT to the scattering data. The horizontal dashed line highlights a phase shift of 90°, while the vertical dashed line
illustrates the position of the πΔ threshold. The upper plots illustrate the best fit when the regulator parameter Λ ¼ 0.8 GeV (fit V),
while the lower plots illustrate the best fit when the regulator parameter Λ ¼ 1.2 GeV (fit VI). Only phenomenologically motivated
values associated with the induced pseudoscalar form factor of a baryon are able to give a good description of the inelasticity.
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low-lying states hold the potential to constrain Λ and its
associated parameter set. Thus, it is possible, in principle,
to predict the inelasticity from lattice QCD simulations.
Indeed, it is the lack of a complete experimental dataset

that prevents HEFT from maintaining model independence
via the Lüscher formalism. The presence of multiple open,
coupled channels constrained by data from only one
scattering channel leaves the Hamiltonian model uncon-
strained. This time, variation inΛ leads to different roles for
the scattering channels in describing the πN scattering data.

As we will see, lattice QCD can provide the additional
information required to constrain the Hamiltonian.
As in the single-channel case, it is of interest to analyze

how the eigenvectors describing the composition of the
energy eigenstates vary with Λ. Although we have an
additional channel, the overall behavior of the eigenvec-
tors is similar to that observed in the single-channel case.
Figure 19 illustrates the Λ dependence of the composi-
tion. As Λ increases, enhanced short-distance mixing
between the basis states replaces contributions from the
bare state.
However, given that the experimental inelasticities can

only be described with Λ ∼ 0.8 GeV—in accord with
phenomenologically motivated values associated with the
induced pseudoscalar form factor of a baryon—we turn our
attention to variation of the composition over the range

FIG. 17. Two-channel lattice volume dependence of the energy
eigenvalues of the Hamiltonian for the fit to experimental data
with Λ ¼ 0.8 GeV. The solid (red), short-dashed (blue), and
long-dashed (green) highlights on the energy eigenvalues corre-
spond to the states with the largest, second-largest, and third-
largest contribution from the bare Δ basis state, respectively.

FIG. 16. Two-channel lattice volume dependence of the energy
eigenvalues of the Hamiltonian for the fit to experimental data
with Λ ¼ 0.8 GeV. The solid lines represent the energy eigen-
values. The horizontal dot-dashed line is the bare mass and the
curved dashed lines are the πN and πΔ scattering states
at k ¼ ðn2x þ n2y þ n2zÞ1=22π=L.

FIG. 18. Regulator parameter Λ dependence of the energy
eigenvalues of the two scattering-channel HEFT finite-volume
energy levels for the 2.99 fm lattice (top) and the 5.0 fm lattice
(bottom). The solid (black) lines illustrate the energy eigenvalues,
the thin horizontal dashed (blue) lines are the noninteracting
energy levels of the πN and πΔ basis states, and the thin dash-
dotted (blue) curve is the mass of the bare Δ basis state.
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0.6 ≤ Λ ≤ 1.0 GeV. Over this range, the composition of
the energy eigenstates shows very little dependence on the
regulator parameter. Thus, physical insight into the meson-
baryon rescattering contributions to the energy eigenstates
can be extracted.

D. Pion mass dependence of the
finite-volume spectrum

In the single-channel system, we were able to demon-
strate that for Λ≲ 4 GeV, where a bare basis state is
included, the reproduction of the lattice QCD results was
largely independent of the choice of Λ. In the two-channel
case, we have already found that increasing Λ to only
1.2 GeV results in a poorer description of the experimental
inelasticity. Still, it is desirable to explore how variation of
the regulator parameter and the ability to reproduce the

inelasticity manifests in the pion mass dependence of the
spectrum.
Results for two values of Λ are presented in Fig. 20. As

in the single-channel system, both values of Λ are able to
produce the correct pion-mass extrapolation for the lowest-
lying state, despite the difficulties in fitting the inelasticity.
Thus, to resolve a dependence relevant to the inelasticity,

one must look to higher states in the spectrum, more
sensitive to the opening of πΔ channel. The second excited
state shows a large degree of variance with respect to the
parameter set used. As the scattering phase shifts are well
reproduced for E ≤ 1650 MeV, this parameter dependence
is associated with the varying success in describing the
inelasticity as presented in Fig. 15. As such, the consid-
eration of the first three energy levels in lattice QCD for a
lattice size of ∼3 fm and a pion mass near the physical
regime should be sufficient to constrain the parameters to

FIG. 19. Regulator parameter Λ dependence of the eigenvectors describing the composition of the two lowest-lying energy eigenstates
in the two-channel case with πN and πΔ scattering channels. The top two plots present results for a lattice volume of 2.99 fm, whereas
the bottom two are for L ¼ 5.0 fm. The left plot shows the eigenvectors for the lowest-lying state, while the right plot shows the next
energy eigenstate. The bare basis states contribute most strongly to the lowest energy eigenstate at 2.99 fm. At 5 fm, the lowest state is
only just dominated by the bare basis state, with a strong contribution from many scattering states, while the first excited eigenstate is an
approximately equal mixing of the bare state and the πNðk ¼ 1Þ scattering state.
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predict both the πN phase shift and the inelasticity. On
larger volumes ∼5 fm, it was the fifth and seventh states
that showed a sensitivity to the inelasticity.
Figure 21 serves to demonstrate more generally the

spectral dependence arising from the choice of Λ and its
associated parameter set for a 3 fm lattice. With sufficient

high-quality lattice QCD results, the Λ variation will be
constrained such that there is a unique Hamiltonian and a
unique set of Hamiltonian eigenvectors describing the
eigenstate composition.

E. Comparison with contemporary lattice QCD results

In recent years, advances in lattice QCD have allowed for
several new studies of the Δð1232Þ. Modern analyses

FIG. 20. Pion mass dependence of the finite-volume HEFT
energy eigenvalues for Λ ¼ 0.8 GeV (top) and Λ ¼ 1.2 GeV
(bottom) for the PACS-CS lattice length L ¼ 2.99 fm. The
vertical dashed (black) line denotes the physical pion mass.
The thin diagonal (blue) dashed lines show the two-particle
noninteracting energies and the thin more-horizontal (blue) dot-
dashed line illustrates the bare basis-state mass. The solid (black)
points are the lowest-lying Δ energies from lattice QCD [14]. The
solid black curves illustrate the finite-volume energy levels
predicted by HEFT from fits to experimental phase shifts and
inelasticities. These lines are dressed by solid (red), short-dashed
(blue), and long-dashed (green) highlights indicating states with
the largest, second-largest, and third-largest contribution from the
bare basis state jΔ0i, respectively. As the PACS-CS results follow
from local three-quark operators, they are expected to lie on a
solid (red) energy eigenstate. The quoted χ2=d:o:f: are for the
lowest-lying energy eigenvalue with respect to the PACS-CS data
points.

FIG. 21. Two-channel pion mass dependence of the three
lowest-lying finite-volume HEFT eigenvalues at L ¼ 2.99 fm
using a dipole regulator, where the data points are the PACS-CS
data. Four parameter sets corresponding to each value of Λ are
displayed, each with a corresponding bare mass expansion fit to
the PACS-CS data.

FIG. 22. Comparison between the energy eigenvalues calcu-
lated in HEFT constrained by scattering data and the PACS-CS
results for the quark-mass dependence (solid black lines) and
lattice QCD data from the CLS consortium (data points) for
ensembles D200 (left) [16] and N401 (right) [15]. The dashed
blue lines denote noninteracting basis states, while the dot-dashed
blue line is the mass of the bare basis state.
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include two-particle momentum-projected interpolating
fields designed to more directly access the two-particle
scattering states. Utilizing our two-channel fit with Λ ¼
0.8 GeV (fit V of Table II), comparison can be made
between the finite-volume energy eigenvalues calculated in
HEFT and contemporary lattice QCD results. Figure 22
provides a comparison of the HEFT predictions developed
herein with lattice QCD results from the CLS consor-
tium [15,16].
From the ensemble labeled D200, with mπ ¼ 0.2 GeV

and L ¼ 4.16 fm, points corresponding with the three
lowest-lying states are provided. HEFT is able to predict
them within 1 standard deviation. Moreover, HEFT cor-
rectly predicts the large increase in the scattering state
energy relative to the noninteracting state for the first
excitation. Considering the eigenvectors, the lowest-lying
state is dominated by the bare basis state, while the second
state is dominated by the πNðk ¼ 1Þ basis state with
smaller mixing of other nearby basis states. This compo-
sition agrees with the lattice QCD results, where the first
excitation couples strongly to momentum-projected two-
particle πN interpolators. We also note that only one of the
two states reported in Hg for the second excitation is
associated with J ¼ 3=2 [48]. The lowest-lying state from
HEFT also agrees with the one state available from the
N401 ensemble with mπ ¼ 0.28 GeV and L ¼ 3.7 fm.

VI. CONCLUSION

We have examined the process of renormalization in
nonperturbative Hamiltonian effective field theory. As a
nonperturbative extension of effective field theory incorpo-
rating the Lüscher formalism, HEFT provides a bridge
between the infinite-volume scattering data of experiment
and the finite-volume spectrum of energy eigenstates in
lattice QCD.
HEFT brings the insight of experimental data to the finite

volume of the lattice through the parametrization of a
Hamiltonian built on a basis of noninteracting multiparticle
states. Through a process of constraining Hamiltonian
parameters to scattering data, and then solving for the
eigenmodes of a finite-volume matrix Hamiltonian, one
obtains finite-volume energy eigenvalues and eigenvectors
describing the composition of the finite-volume states. A key
question is to ascertain the regularization-scheme depend-
ence of these eigenvectors.
Using the FRR scheme, an expression for the S matrix

was obtained by solving the coupled-channel, Bethe-
Salpeter equations, and the phase shifts and inelasticities
for the system were then extracted. These quantities were fit
to the SAID Partial-Wave Analysis Facility experimental
scattering data [37,38] by adjusting the parameters of the
Hamiltonian. These optimized parameters then serve as
inputs for a Hamiltonian matrix model. By solving the
eigenvalue equation for this Hamiltonian, the finite-volume

energy eigenvalues and eigenvectors describing the com-
position of the finite-volume states were resolved.
We considered the P-wave, IðJPÞ ¼ 3

2
ð3
2
þÞ Δ-resonance

channel. A simple description of the Δ is to consider only
the mixing of a bare Δ with a two-particle πN state.
Considering a basic system such as this allowed for the
development of intuition into the results of HEFT. By using
a dipole regulator and considering values for the regulator
parameter ranging from Λ ¼ 0.8 to Λ ¼ 8.0 GeV, we were
able to fit the scattering data with varying degrees of
success. These fits produced a pole in agreement with the
value listed by the Particle Data Group. By solving the
Hamiltonian matrix for this system at varying lattice sizes
L, a finite-volume energy spectrum was found.
We recall that the Lüscher method of relating phase shifts

to eigenvalues measured in lattice QCD is model indepen-
dent. Furthermore, it has been proven that the relationship
between phase shifts and energy levels produced by HEFT
and the Lüscher method are identical up to corrections of
order expð−mπLÞ. Thus, the energy levels produced by the
HEFT method are model independent within the energy
range over which the experimental phase shifts are repro-
duced. This has been demonstrated in the single-channel
analysis of Sec. IV.
While the eigenvalues of the single-channel matrix

Hamiltonian constrained to experimental scattering data
do not depend on the regulator parameterΛ, the eigenvectors
of the Hamiltonian do show a significant dependence on Λ.
As Λ increases and short-distance interactions are allowed
between the effective fields, the bare basis-state contribution
to low-lying finite-volume states decreases, implying that a
bare basis state may not be necessary for a description of the
Δ resonance. To resolve the validity of this conjecture, the
pion mass dependence of the HEFT was examined.
Extending HEFT beyond the physical pion mass allows

for a direct comparison to lattice QCD calculations avail-
able at many pion masses. In performing this comparison,
it was revealed that, by utilizing a quadratic form for the
bare mass extrapolation, any value of Λ≲ 4 GeV is able to
reproduce the lattice QCD data well. In addition, inde-
pendence on the choice between Gaussian and dipole
regulators is observed. However, without a bare state,
although the scattering data were able to be reproduced
in the resonance region, the lattice QCD data were not
reproduced away from the physical point.
Having gained intuition into the structure of the Δ in the

simple single-channel case, the more complicated two-
channel system was considered, allowing the scattering data
to be described at higher energies and introducing an
inelasticity for consideration. While the scattering phase
shifts could be described for various values ofΛ, an accurate
description of the inelasticity required a value ofΛ consistent
with phenomenologically motivated values associated with
the induced pseudoscalar form factor of a baryon.
Thus, consideration of the two-channel case has made it

clear that nonperturbative HEFT does not enjoy the same
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freedom in selecting a regulator as in χPT. Whereas any
value of Λ is admissible in the power-counting regime of
χPT (which is usually regarded to include the physical pion
mass), in the two-channel HEFT case the regulator and its
associated parameter set contain the physics necessary to
describe the inelasticity. Λ must take physically motivated
values to enable a description of the inelasticity.
By considering the pion mass dependence of the spectra

generated by different regulator parameters and comparing
them to lattice QCD results, it becomes clear that future
high-precision lattice QCD results for excited states near
the opening of the πΔ channel will be able to constrain the
Hamiltonian and make predictions for both the πN phase
shift and the inelasticity. Finally, comparison was made
with contemporary lattice QCD results from the CLS
consortium for the Δ spectrum. Agreement was observed
for all the eigenstates available.
Future work should consider the effects of moving

frames on the Δ system in HEFT [49] in order to compare
with a larger range of recent lattice QCD results [15,16].
Additionally, the understanding of the roles of the bare
mass and regulator parameters will prove useful for the
study of new areas of interest, such as the odd-parity
nucleon resonances, where recent research [50] has indi-
cated that two bare states may be required to adequately
describe the system.
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