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We study the effect of insoluble surfactants on the spatio-temporal evolution of
turbulent jets. We use three-dimensional numerical simulations and employ an
interface-tracking/level-set method that accounts for surfactant-induced Marangoni
stresses. The present study builds on our previous work (Constante-Amores et al., J. Fluid
Mech., vol. 922, 2021, A6) in which we examined in detail the vortex–surface interaction in
the absence of surfactants. Numerical solutions are obtained for a wide range of Weber and
elasticity numbers in which vorticity production is generated by surface deformation and
surfactant-induced Marangoni stresses. The present work demonstrates, for the first time,
the crucial role of Marangoni stresses, brought about by surfactant concentration gradients,
in the formation of coherent, hairpin-like vortex structures. These structures have a
profound influence on the development of the three-dimensional interfacial dynamics.
We also present theoretical expressions for the mechanisms that influence the rate of
production of circulation in the presence of surfactants for a general, three-dimensional,
two-phase flow, and highlight the dominant contribution of surfactant-induced Marangoni
stresses.
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1. Introduction

The atomisation of a liquid jet has driven interest in the fluid mechanics community
because of its occurrence in both natural and industrial applications (e.g. propellant
combustion, pharmaceutical sprays). The process results in a ‘cascade mechanism’
for fluid fragmentation (Plateau 1873; Eggers 1997; Marmottant & Villermaux 2004;
Constante-Amores et al. 2020a): from the growth of linear modes through a
Kelvin–Helmholtz instability to the development of nonlinearities leading to capillary
breakup events via long-filament pinch-off that can be modulated by a Rayleigh–Plateau
instability or controlled by an ‘end-pinching’ mechanism. Understanding the interfacial
dynamics relies on the characterisation of the vortex–interface interactions. For
instance, Jarrahbashi et al. (2016), Zandian, Sirignano & Hussain (2018, 2019) and
Constante-Amores et al. (2021b) reported that their interplay determines the interfacial
dynamics for turbulent jets; Hoepffner & Paré (2013) showed that vorticity production
results in a change in the capillary retraction of a liquid thread. Theoretically,
Longuet-Higgins (1992), Wu (1995) and Lundgren & Koumoutsakos (1999) demonstrated
that vorticity production depends on the velocity field and the interfacial curvature for
the condition of zero shear stress at a free surface. Additionally, Brøns et al. (2014) and
Terrington, Hourigan & Thompson (2020, 2021) extended the previous results to show
that interfacial curvature effects, viscosity and density difference across the interface are
the only mechanisms driving vorticity production. Recently, Fuster & Rossi (2021) also
demonstrated the role of interfacial curvature and density differences across the interface
with identical dynamical viscosity via two-dimensional, non-axisymmetric numerical
studies.

We note that the studies mentioned in the foregoing involve a constant surface
tension and therefore do not support the formation of Marangoni gradients. Liquid
streams, however, are invariably contaminated with surface-active agents (surfactants),
deliberately placed or naturally occurring, which give rise to surface tension gradients,
and subsequently Marangoni-induced flow (Manikantan & Squires 2020). While the
atomisation of uncontaminated liquid jets has received significant attention in the literature
(Desjardins & Pitsch 2010; Herrmann 2010; Jarrahbashi & Sirignano 2014; Jarrahbashi
et al. 2016; Zandian et al. 2018, 2019; Constante-Amores et al. 2020b, 2021b), the
effect of surfactant on their dynamics remains far less studied.The multi-scale nature
of the flow, and the complex coupling between the surfactant concentration fields and
interfacial topology, complicate its experimental scrutiny. This can be alleviated via the
use of high-fidelity simulations that can unravel the delicate interplay among the different
physical mechanisms across the relevant scales.

Through the use of state-of-the-art imaging techniques, Kooij et al. (2018), Sijs, Kooij
& Bonn (2021) and Sijs et al. (2021) showed that the presence of surfactants influences
the interfacial fragmentation during atomisation and decreases the mean droplet size in
agreement with Butler Ellis, Tuck & Miller (2001) and Ariyapadi, Balachandar & Berruti
(2004). All the previous studies, however, have not reported the role of Marangoni stresses,
which the present paper will address for the case of an insoluble surfactant. Although the
presence of surfactants can also induce both shear and dilatational surface rheological
effects (discussed below), these effects will not be considered in this study. Nonetheless,
we will use transient numerical simulations to demonstrate that the Marangoni stresses
influence the production of vorticity near the interface, and modify the interface–vortex
interactions and the three-dimensional destabilisation of the jet. In order to focus on the
role of Marangoni stresses in the jet dynamics, we will study the case of a jet of one fluid
issuing into another characterised by equal densities and viscosities.
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Turbulent surfactant-laden jets

There has been significant scientific interest in studying the role of surfactants in the
destabilisation and fragmentation of non-turbulent liquid jets of pure Newtonian fluids;
see, for example, Eggers (1993), Lister & Stone (1998), Craster, Matar & Papageorgiou
(2002); Craster, Matar & Papageoriou (2009) and Liao et al. (2004). Those authors have
shown the existence of multiple intermediate or transient scaling regimes that are not
altered by the presence of surfactants as they are convected away from the pinch-off
region. However, McGough & Basaran (2006) and Kamat et al. (2018) showed the
formation of micro-threads, which connect drops during the surfactant-induced thinning.
Additionally, the presence of surfactants not only gives rise to gradients in surface tension
and hence tangential interfacial stresses, but also induces both shear and dilatational
surface rheological effects. Recently, works by Wee et al. (2021) and Martínez-Calvo
& Sevilla (2020) have analysed theoretically the influence of surface viscosities on the
pinch-off dynamics of a jet of an incompressible Newtonian liquid that is surrounded by a
passive gas.

The rest of this paper is structured as follows. In § 2, the problem formulation, governing
dimensionless parameters and numerical method are introduced. Section 3 provides a
discussion of the results, and concluding remarks are given in § 4.

2. Problem formulation and theoretical considerations

Since the aim here is to shed light on the different mechanisms that influence the
production of vorticity near the interface in the presence of surfactants, we present a
general theoretical description of vorticity and circulation in a three-dimensional (3-D)
control volume enclosing an interface using Lighthill’s and Lyman’s flux definitions
(Terrington et al. 2021). We also provide a brief description of the numerical technique
that is used to carry out the computations. Finally, we provide motivation for the choice of
physical and physico-chemical parameters made in the present work.

2.1. Formulation and numerical method
Figure 1 shows a representation of the flow configuration considered in this study in
a 3-D Cartesian domain x = (x, y, z): a liquid segment is initialised as a cylinder of
diameter D, with a finite length, i.e. 5D, in the positive x (streamwise) direction. Such
an approach has been used by Desjardins & Pitsch (2010), Jarrahbashi et al. (2016) and
Zandian et al. (2018) for planar and cylindrical jets. Appendix A shows the effect of
varying the domain size. We will focus on the case of insoluble surfactants, which enables
us to isolate the surfactant-induced Marangoni dynamics during the atomisation of the
jet. We acknowledge, however, that experimental studies feature soluble surfactants that
are dissolved in the liquid that issues from a nozzle to form the jet, and that the sorption
kinetics controls the surfactant interfacial concentration, adding extra layers of complexity.

The dimensional governing equations, which can be found in the work of Shin et al.
(2018), are rendered dimensionless using the following scalings:

x̃ = x
D

, t̃ = t
tr

, ũ = u
U

, p̃ = p
ρU2 , σ̃ = σ

σs
, Γ̃ = Γ

Γ∞
, (2.1a–f )

where t, u and p stand for time, velocity and pressure, respectively; here, the dimensionless
variables are designated using tildes. The physical parameters correspond to the liquid
density ρ, viscosity μ, surface tension σ , surfactant-free surface tension σs, initial jet
diameter D, and injection velocity U. Hence the characteristic time scale based on the
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(b)

0
y

z
x

1
ux

(a)

Figure 1. (a) Initial interfacial shape, highlighting the computational domain of size (5D)3 in a 3-D Cartesian
space x = (x, y, z). (b) Schematic representation of the problem in the x–y plane (z = 2.5D) showing the initial
(t = 0) streamwise velocity profile ux, and a representation of a monolayer of an insoluble surfactant.

injection velocity is tr = D/U. The interfacial surfactant concentration Γ is scaled with
the saturation interfacial concentration Γ∞.

Using the relations in (2.1a–f ), the dimensionless forms of the continuity and
momentum equations are respectively expressed as

∇ · ũ = 0, (2.2)

ρ̃

(
∂ũ
∂ t̃

+ ũ · ∇ũ
)

= −∇p̃ + 1
Re

∇ · [
μ̃(∇ũ + ∇ũT)

]
+ 1

We

∫
Ã(t̃)

(
σ̃ κ̃ ŝ + ∇sσ̃

)
δ(x̃ − x̃f ) dÃ, (2.3)

where κ̃ represents the interface curvature, ∇s is the surface gradient operator, and ŝ is
the outward-pointing unit normal to the interface. Here, x̃f is the parametrization of the
time-dependent interface area Ã(t̃), where δ(x̃ − x̃f ) is the 3-D Dirac delta function. The
density ρ̃ and viscosity μ̃ are given by the expressions

ρ̃(x̃, t̃) = ρg

ρl
+

(
1 − ρg

ρl

)
H(x̃, t̃), μ̃(x̃, t̃) = μg

μl
+

(
1 − μg

μl

)
H(x̃, t̃), (2.4a,b)

where H(x̃, t̃) represents a smoothed Heaviside function, which is zero in the gas phase
and unity in the liquid phase, while the subscripts l and g designate the individual liquid
and gas phases, respectively.

The dimensionless surfactant transport is given by

∂Γ̃

∂ t̃
+ ∇s ·

(
Γ̃ ũt

)
= 1

Pes
∇2

s Γ̃, (2.5)

where ũt = (ũs · t)t is the tangential velocity vector in which ũs is the surface velocity
and t is the unit tangent to the interface. The scaling results in the following dimensionless
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Turbulent surfactant-laden jets

groups:

Re = ρUD
μ

, We = ρU2D
σs

, Pes = UD
Ds

, βs = � TΓ∞
σs

, (2.6a–d)

where Re, We and Pes denote the Reynolds, Weber and (interfacial) Péclet numbers,
respectively, while βs is a surfactant elasticity number that represents a measure of the
sensitivity of σ to Γ ; here, � is the ideal gas constant value 8.314 J K−1 mol−1, T denotes
temperature, and Ds refers to the diffusion coefficient.

To describe the relation between σ̃ and Γ̃ , we use the nonlinear Langmuir equation:

σ̃ = 1 + βs ln(1 − Γ̃ ). (2.7)

Surface tension gradients are expressed as a function of Γ̃ as

∇sσ̃/We = −Ma/(1 − Γ̃ )∇sΓ̃, (2.8)

where Ma = βs/We = � TΓ∞/ρU2D is a Marangoni parameter.
The 3-D numerical simulations were performed by solving the two-phase Navier–Stokes

equations in the Cartesian domain x = (x, y, z). A hybrid front-tracking/level-set method
was used to treat the interface where surfactant transport was resolved in the plane of the
interface (Shin et al. 2018). The simulations are initialised with a turbulent velocity profile
in the liquid jet segment (i.e. u(r) = 15/14U(1 − (r/(D/2))28) (Constante-Amores et al.
2021b). Solutions are sought subject to Neumann boundary conditions on all variables at
the lateral boundaries, and periodic boundary conditions in the x (streamwise) direction.
The computational domain is a cube with dimensions (5D)3 resolved globally by a uniform
grid of (786)3 cells; see appendix of Constante-Amores et al. (2021b) for details of
mesh-refinement studies and validation of the numerical method. This method has also
been widely tested for surfactant-laden flows (Shin et al. 2018; Constante-Amores et al.
2020a, 2021a, 2022; Batchvarov et al. 2021), and the numerical simulations in this study
conserve fluid volume and surfactant mass with a relative error of less than 10−3 %.

Next, we motivate the values of material properties by looking into the sources for
vorticity production at an interface in a 3-D framework. These sources are due to
differences in density (i.e. baroclinic effect) and viscosity, surface tension forces (due to
gradients of curvature along the interface) and Marangoni stresses. Thus to unravel the
importance of the surfactant-induced Marangoni stresses on the vortex–surface–surfactant
interactions, we focus on situations in which surface tension forces and Marangoni stresses
are the only physical mechanisms responsible for vorticity production at the interface,
i.e. the jump in material properties across the interface is zero (Fuster & Rossi 2021).
This is a realistic assumption for immiscible liquid–liquid systems exemplified by the
silicone oil–water pairing used by Ibarra (2017) and Ibarra, Shaffer & Savaş (2020) in
their two-phase, stratified pipe flow experiments.

The values of the dimensionless quantities are consistent with experimentally
realisable systems and are chosen to ensure a full coupling between surfactant-induced
Marangoni stresses and interfacial diffusion, and inertia. We set Re = 5000 to
ensure a rich dynamics (Constante-Amores et al. 2021b), and focus on the
range 50 < We < 1000 to account for realistic values of σs, i.e. O(10−3) < σs <

O(10−1) N m−1. The parameter βs is related to Γ∞ and therefore to the critical
micelle concentration (CMC), i.e. Γ∞ ∼ O(10−6) mol m−2 for NBD-PC (1-palmitoyl-
2-12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl-sn-glycero-3-phosphocholine)
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(Strickland, Shearer & Daniels 2015); thus we have explored the range 0.1 < βs <

0.9, which corresponds to CMC in the range O(10−7) < CMC < O(10−6) mol m−2, for
typical values of σs. We have set Pes = 102 following Batchvarov et al. (2020) and
Constante-Amores et al. (2020a), who showed that the interfacial dynamics are weakly
dependent on Pes beyond this value.

2.2. Vorticity and circulation
This subsection aims to present a general description of vorticity generation in a 3-D
framework. We present a theoretical formulation that builds upon the inviscid theory
presented by Morton (1984) for near-interface vorticity generation in three dimensions.
For inviscid fluids, the rate of generation of vorticity is a result of the relative tangential
acceleration of fluid on each side of the interface, which is caused by tangential pressure
gradients or body forces. The present theoretical formulation is expressed as a conservation
law for circulation in a control volume that includes a general surface. The total circulation
is expressed as the vorticity from the fluids from both sides of the interface as well as
circulation contained in the interface.

It is well known that curvature induces the generation of vorticity as the normal
viscous stress at an interface is balanced by the capillary pressure. However, the
presence of surfactant leads to a reduction in surface tension, which influences this
mechanism. Furthermore, surfactant interfacial concentration variations induce surface
tension gradients, and, as we will show, lead to a new route for vorticity generation near
the interface. Once we have presented our theoretical expressions for a general 3-D surface,
we will simplify them for the limiting case in which the jumps in the tangential and normal
components of the velocity across the interface vanish; this is the case for identical material
properties such as density and viscosity. This assumption will help to shed some light on
the crucial role of the Marangoni-induced vorticity generation mentioned above. Future
studies should extend our work to situations featuring density and viscosity contrasts.

In order to examine the effect of the surfactant on the vorticity near the interface, we
consider a fixed 3-D control volume V bounded by a closed surface of area ∂V with
an outward-pointing unit normal n̂ (see figure 2). This volume encloses regions of the
incompressible fluids 1 and 2, of volumes V1 and V2, separated by an interfacial surface
I whose intersection with V defines the curve ∂I. The vector ŝ is the outward-pointing
unit normal to the surface I, while t̂ and b̂ are two orthogonal unit tangent vectors to the
interface. We proceed below using dimensional variables and then apply the scalings in
(2.1a–f ) to render the final equations dimensionless.

For fluid i, it is possible to write down expressions for ωb,i and ωt,i, which represent the
components of the vorticity ωi in the b̂ and t̂ directions, respectively:

ωb,i = (ŝ × t̂) · (∇ × ui), (2.9)

ωt,i = (ŝ × b̂) · (∇ × ui), (2.10)

where ui denotes the velocity fields. These expressions may be recast as

ωb,i = ŝ · ∇ui · t̂ − t̂ · ∇ui · ŝ, (2.11)

ωt,i = ŝ · ∇ui · b̂ − b̂ · ∇ui · ŝ (2.12)

(using (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c), valid for any vector a, b, c and
d).
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Turbulent surfactant-laden jets

V1

V2

I

∂I

∂V

Fluid 1

Fluid 2

Interface

n̂

t̂ ŝ

b̂

ŝ

Figure 2. Schematic showing a volume V with a surface ∂V that encloses two fluids separated by an interface
surface I. Here, the two smaller control volumes V1 and V2 refer to the control volume of each fluid. Local unit
vectors to the interface are b̂, ŝ and t̂; n̂ corresponds to the unit normal vector to the control volume ∂V; b̂ is a
vector tangent to I, but orthogonal to ∂I; and t̂ is the unit tangent vector to the boundary curve ∂I.

In the presence of interfacial stresses arising from gradients of surface tension σ due to
surfactant concentration gradients, the interfacial shear stress conditions are given by[[

t̂ · T · ŝ
]] = −t̂ · ∇σ, (2.13)[[

b̂ · T · ŝ
]] = −b̂ · ∇σ, (2.14)

where [[q]] = q2 − q1 represents the jump across the interface of a quantity q, T i = −pi +
μiDi is the total stress in fluid i in which pi is the pressure, Di = (∇ui + ∇uT

i )/2 is the
rate of deformation tensor, and μi denote the viscosities, whence[[

μ
(
t̂ · ∇u · ŝ + ŝ · ∇u · t̂

)]] = −2t̂ · ∇σ, (2.15)[[
μ

(
b̂ · ∇u · ŝ + ŝ · ∇u · b̂

)]] = −2b̂ · ∇σ. (2.16)

Substitution of these results into (2.11) and (2.12) yields[[
μ

(
ωb + 2t̂ · ∇u · ŝ

)]] = −2t̂ · ∇σ, (2.17)[[
μ

(
ωt + 2b̂ · ∇u · ŝ

)]] = −2b̂ · ∇σ. (2.18)

For the case [[μ]] = 0, which is the focus of this paper, we obtain

[[wb]] = − 2
μ

∇σ · t̂ − 2
[[

t̂ · ∇u · ŝ
]]

, (2.19)

[[wt]] = − 2
μ

∇σ · b̂ − 2
[[

b̂ · ∇u · ŝ
]]

, (2.20)

where μ2 = μ1 = μ. Noting that t̂ · ∇ = ∂/∂s and b̂ · ∇ = ∂/∂b, it can be shown that

[[ωb]] = − 2
μ

∂σ

∂s
− 2

[
∂

∂s

[[
u · ŝ

]] − κ1
[[

u · t̂
]]]

, (2.21)

[[ωt]] = − 2
μ

∂σ

∂b
− 2

[
∂

∂b

[[
u · ŝ

]] − κ2
[[

u · b̂
]]]

, (2.22)
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where the curvatures κ1 and κ2 are defined as

κ1 = t̂ · ∂ ŝ
∂s

, κ2 = b̂ · ∂ ŝ
∂b

. (2.23a,b)

From continuity of the normal and tangential components of the velocity at the interface,
i.e. [[u · ŝ]] = 0 and [[u · t̂]] = [[u · b̂]] = 0, respectively, it is seen that the interfacial
jumps in the vorticity components are directly related to the Marangoni stresses:

[[ωb]] = − 2
μ

∂σ

∂s
, (2.24)

[[ωt]] = − 2
μ

∂σ

∂b
. (2.25)

We now consider the circulation vector Ω for 3-D flows given by

Ω =
∫

V
ω dV, (2.26)

for the fixed 3-D control volume V shown in figure 2. The 3-D vorticity equation is given
by

∂ω

∂t
+ ∇ · (uω) = ∇ · (ωu) + ν ∇2ω, (2.27)

and the total rate of change of Ω is then expressed by

DΩ

Dt
=

∫
V

Dω

Dt
dV = D

Dt

∫
V

ω dV =
∫

V
∇ · (ωu + ν ∇ω) dV

=
∫

∂V
n̂ · (ωu) dS +

∫
∂V

n̂ · (ν ∇ω) dS. (2.28)

The first term on the right-hand side of (2.28) corresponds to vortex stretching/tilting and
is present only in three dimensions. We now write

D
Dt

∫
V1∪V2

ω dV =
∮

∂V1

n̂ · (ωu + ν ∇ω) dS +
∮

∂V2

n̂ · (ωu + ν ∇ω) dS

+
∮

∂V ′
1

n̂ · (ω1u1 + ν1 ∇ω1) dS +
∮

∂V ′
2

n̂ · (ω2u2 + ν2 ∇ω2) dS, (2.29)

and let V1 ∪ V2 → V , n̂ → ŝ from fluid 1, n̂ → −ŝ from fluid 2, and (∂V1, ∂V2) → I.
It follows that

D
Dt

∫
V

ω dV =
∮

∂V
n̂ · (ωu + ν ∇ω) dS −

[∮
I

[[ŝ · (ωu)]] dS +
∮

I
[[ν ŝ · ∇ω]] dS

]
.

(2.30)

It is important to establish a connection between
∮

I [[ν ŝ · ∇ω]] dS, which represents the
jump across the plane of the interface of the vorticity flux, and the momentum conservation
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Turbulent surfactant-laden jets

equation given by
Du
Dt

= −∇p
ρ

− ν ∇ × ω. (2.31)

In order to relate this term to the ν ∇ × ω term in (2.31), we first write down the general
result

−
∮

∂V
ŝ · ∇ω dS = −

∫
V

∇2ω dV = −
∫

V

(∇(∇ · ω) − ∇ × ∇ × ω
)

dV

=
∫

V
∇ × ∇ × ω dV = −

∮
∂V

(∇ × ω) × ŝ dS =
∮

∂V
ŝ × ∇ × ω dS. (2.32)

(We have used the vector identity
∫

V ∇ × A dV = − ∮
∂V A × dS = − ∮

∂V A × n dS = ∮
∂V

n × A dS, for any vector A and volume V enclosed by a surface ∂V with a unit normal n.)
Note that this relation links Lighthill’s vorticity flux to Lyman’s flux, the latter being
another form of the former (see Terrington et al. (2021) and references therein).

Inspired by the form of Lyman’s flux, the natural way to proceed is to take the
cross-product of ŝ = t̂ × b̂ with the left-hand side of (2.31) and its pressure gradient
term (where we have exploited the fact that t̂ × b̂ × c = b̂(t̂ · c) − c(t̂ · b̂) = b̂(t̂ · c) since
t̂ · b̂ = 0) and a cross-product of ŝ with its ν ∇ × ω term to arrive at

−ν ŝ × ∇ × ω = b̂t̂ · Du
Dt

− b̂t̂ · ∇
(

p
ρ

)

= b̂
[(

D
Dt

(u · t̂) − u · Dt̂
Dt

)
+ t̂ · ∇

(
p
ρ

)]
= ν ŝ · ∇ω; (2.33)

here, we note that the sources of vorticity are due to acceleration in the plane of the
interface, which we can think of as a vortex sheet, and interfacial pressure gradients.
Making use of this relation in (2.30), we arrive at

D
Dt

[∫
V

ω dV + b̂
∮

I
[[u · t̂]] dS

]
=

∮
∂V

n̂ · (ωu + ν ∇ω) dS

−
∮

I
[[ŝ · (ωu)]] dS +

∮
I

b̂
[[

u · Dt̂
Dt

]]
dS −

∮
I

b̂
∂

∂s

[[
p
ρ

]]
dS, (2.34)

where we have set t̂ · ∇( p/ρ) = ∂( p/ρ)/∂s. An expression for u · (Dt̂/Dt) can be
developed (the details are in Appendix B), given by

u · Dt̂
Dt

= 1
2

∂

∂s

[
(u · ŝ)2 + (u · b̂)2

]
+ 1

2
∂

∂b

[
(u · ŝ)2 + (u · b̂)2

]
− κ1(u · t̂)(u · ŝ).

(2.35)

Furthermore, for [[ρ]] = 0, the remaining term required to close (2.34) is one for [[p]] (the
details are in Appendix C):

[[ p]] = −σ(κ1 + κ2) − 2
[[

μ

(
∂

∂s

[
(u · t̂) + (u · b̂)

]
+ (κ1 + κ2)(u · ŝ)

)]]
. (2.36)

To collapse these equations to their two-dimensional (2-D) equivalents, we first note that
ŝ · ω = n̂ · ω = u · b̂ = 0 in two dimensions, and set ∂/∂b = 0; the latter leads to κ2 = 0.
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C.R. Constante-Amores and others

We then take a dot product of (2.34) with b̂ (and convert the volume and area integrals
to area and line integrals, respectively) to arrive at a 2-D analogue involving the vorticity
scalar ω. Moreover, in the case studied here, characterised by [[μ]] = 0, [[u · ŝ]] = 0,
[[u · t̂]] = 0 and [[u · b̂]] = 0, (2.34) reduces to

D
Dt

[∫
V

ω dV
]

=
∮

∂V
n̂ · (ωu + ν ∇ω) dS −

∮
I
[[ŝ · (ωu)]] dS + 1

ρ

∮
I

b̂
∂

∂s
(σ [κ1 + κ2]) dS.

(2.37)

We note that the term involving [[ŝ · (ωu)]] on the right-hand-side of this equation is
zero. To see this, we first note that [[ŝ · ωu]] can be re-expressed as

[[ŝ · ωu]] = (ŝ · ω2)u2 − (ŝ · ω1)u1

= (ŝ · ω2 − ŝ · ω1)u1

= (ŝ · ω2 − ŝ · ω1)u2

= [[ŝ · ω]]u1 = [[ŝ · ω]]u2, (2.38)

since [[u]] = 0. We also note that ŝ · ω = (b̂ × t̂) · (∇ × u), which can be rewritten as

ŝ · ω = b̂ · ∇u · t̂ − t̂ · ∇u · b̂

= b̂ · ∂u
∂s

− t̂ · ∂u
∂b

= ∂

∂s
(b̂ · u) − ∂

∂b
(t̂ · u), (2.39)

since b̂ /= b̂(s) and t̂ /= t̂(b). Thus we can write

[[ŝ · ω]] =
[[

∂

∂s
(b̂ · u)

]]
−

[[
∂

∂b
(t̂ · u)

]]

= ∂

∂s
[[b̂ · u]] − ∂

∂b
[[t̂ · u]] = 0, (2.40)

since [[b̂ · u]] = 0 and [[t̂ · u]] = 0, whence [[ŝ · ωu]] = 0. Inspection of the terms
remaining in (2.37) suggests that circulation is influenced by vorticity diffusion, vortex
tilting/stretching, and gradients of curvature and interfacial tension.

The dimensionless versions of (2.25) and (2.24) are then expressed by

[[
ω̃t

]] = −2 Re Ma
1

1 − Γ̃

∂Γ̃

∂b
, (2.41)

[[
ω̃b

]] = −2 Re Ma
1

1 − Γ̃

∂Γ̃

∂s
, (2.42)

and the dimensionless equation (2.37) reads

D
Dt̃

[∫
Ṽ

ω̃ dṼ
]

=
∮

∂Ṽ
n̂ ·

(
ω̃ũ + 1

Re
∇ω̃

)
dS̃ + 1

We

∮
I

b̂
∂

∂ s̃
(σ̃ [κ̃1 + κ̃2]) dS̃, (2.43)

and the tildes are dropped henceforth.
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Turbulent surfactant-laden jets

Note that in the case of non-isothermal systems, σ̃ has a linear dependence on the local
temperature T , and a linear equation of state describes σ̃ (T̃ ) (see, for example, Williams
et al. 2021). It is possible to relate the present, surfactant-laden case to that involving
thermal gradients by linearising our equation of state, σ = 1 + βs ln(1 − Γ ), for Γ 	 1
such that it reads σ = 1 − βsΓ . Although this analogy is useful, it is, however, incomplete
since the non-isothermal case does not involve a surface species whose concentration
evolves spatio-temporally for which a transport equation must be solved.

3. Results

Figure 3 shows a flow regime map for Re = 5000 that depicts the interfacial morphology
associated with various regions of the βs–We parameter space generated by over 100
transient simulations performed in the ranges 100 < We < 1000 and 0.1 < βs < 0.9. We
have divided the map into two distinct regions depending on the morphology: for small We,
capillary forces control the interfacial dynamics preventing the development of lobes that
could result in the formation of large droplets; for large We, inertial forces dominate the
dynamics, triggering the formation of interfacial lobes whose thinning eventually results
in the generation of holes and eventually droplets. The resulting non-uniform surfactant
distribution generates gradients in surface tension affecting the local dynamics. Surfactant
accumulation takes places in high-curvature regions, giving rise to Marangoni stresses
that drive surfactant redistribution from high- to low-concentration regions. Marangoni
stresses, therefore, oppose the shear stresses produced by the flow field, the former exerting
a restoring effect and the latter a perturbing effect in the local surfactant concentration
field. The dimensionless Marangoni velocities induced by surface tension differences �σ

are of O(Re We−1(�σ/σs)). Similarly, the dimensionless Marangoni stresses τ are of
O(We−1 ∇̃σ̃ ), or, equivalently, O(βs We−1 ∇̃Γ̃ ), namely (2.8), while capillary forces and
shear stresses are of O(We−1) and O(Re−1), respectively. Furthermore, from (2.41) and
(2.42), it is clear that the Marangoni-induced vorticity jumps across the interface are of
O(Re βs We−1). Inspection of figure 3, which was generated for a fixed Re value, reveals
that the presence of Marangoni stresses counteracts the transition from the low- to high-We
regimes as the critical We value increases with βs with a quasi-linear dependence. The
latter is consistent with the scaling highlighted above, τ ∼ βs We−1, which demonstrates
that increasing βs and decreasing We serves to enhance the restoring influence of the
Marangoni stresses. The boundary demarcated in figure 3 was generated by examining the
temporal evolution of the interfacial area normalised by its initial value over a range of We
values and with βs varying parametrically and Re = 5000; this shows that the normalised
area is maximised for an intermediate value of We, for fixed βs (and Re), which heralds the
transition towards an inertia-dominated regime.

To assess the effect of Marangoni-induced flow, we have analysed the flow physics of the
surfactant-free and surfactant-laden flows characterised by Re = 5000 and We = 500. We
start with the surfactant-free case depicted in figure 4, which shows the spatio-temporal
interfacial dynamics for the surfactant-free case through the Q-criterion (e.g. a measure of
the dominance of vorticity ω over strain s, i.e. Q = (‖ω‖2 − ‖s‖2)/2 (Hunt, Wray & Moin
1988). At early times, we observe the formation of a periodic array of quasi-symmetric
Kelvin–Helmholtz (KH) driven vortex rings as a result of the difference in velocity in
the shear layer located under the interface (see figure 4a). With increasing time, the 3-D
instability starts with the deformation of the vortex rings, leading to a mutual induction
between two consecutive vortex rings, resulting in their ‘knitting’ (see figure 4b); similar
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Figure 3. Regime map of the interfacial morphology in the βs–We space for Re = 5000, Pes = 100 and
Γo = Γ∞/2. The capillary-dominated and inertia-dominated regimes, and their boundaries, are clearly
demarcated; the symbols represent simulations carried out at the transition lines separating these regimes.
Three-dimensional representations of the interface for both regimes are also shown.

vortex pairing has been reported by Broze & Hussain (1996) and da Silva & Métais (2002).
With increasing time, we observe the formation of inner and outer hairpin vortices whose
pairing brings about a region where both overlap. The cascade mechanism resulting in
the formation of hairpin vortices from KH rings is triggered by the magnitude of the
streamwise vorticity ωx, which becomes comparable to its azimuthal counterpart ωy, in
agreement with Jarrahbashi et al. (2016) and Constante-Amores et al. (2021b), as shown
in figure 4(b).

To provide more conclusive evidence of the existence of inner/outer hairpin vortices in
the jet dynamics, a careful study of the distribution of vortex signs shows the assembling
into counter-rotating vortex pairs (see ωx in the y–z plane for each sampled location in
figure 4). By analysing the distribution of streamwise vorticity between the ring and braid
regions of the jet core (see figure 4a), we observe that their distribution is π-out-of-phase.
The arrangement of the vorticity comes from vortex induction arguments, similar to those
explained by Jarrahbashi et al. (2016), Zandian et al. (2018) and Constante-Amores et al.
(2021b), i.e. the upstream hairpin vortex from the ring overtakes the upstream hairpin
vortex from the braid as the mutual induction takes place. Finally, the vortex–surface
interaction triggers the formation of the interfacial structure as the interface adopts the
shape of the vortex that is in its vicinity (see figures 4b–d)). The mutual induction between
outer and inner hairpin vortices eventually leads to the thinning of the lobes to ultimately
form inertia-induced holes whose capillary-driven expansion gives rise to the formation
of droplets (Jarrahbashi et al. 2016; Zandian et al. 2018; Constante-Amores et al. 2021b).

Next, we turn our attention to the effect of surfactants on the flow dynamics. Figure 5
shows the early interfacial surfactant concentration together with the 3-D coherent vortical
structures via the Q-criterion. Similarly to the surfactant-free case, we observe the
formation of a periodic array of quasi-axisymmetric KH vortex rings. These rings induce
the formation of interfacial waves that are characterised by regions of radially converging
and diverging motion that lead to higher and lower interfacial areas, and subsequently
to lower and higher surfactant concentration regions, respectively; accumulation of Γ is
observed in the vicinity of the KH rings (see figure 5a). Figure 5(c) presents the interfacial
concentration Γ and Marangoni stresses τ along an arc length s, corresponding to
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Turbulent surfactant-laden jets

Inner lobe
Outer lobes

HV

legs

HV

HV

(a)
(i) (i)

(ii) (ii)

(i) (i)

(ii) (ii)

(iii) (iii)

(b)

(c) (d )

ωx

5

–5

Figure 4. Spatio-temporal representations of the interfacial dynamics and the coherent vortical structures for
Re = 5000 and We = 500 at (a) t = 23.28, (b) t = 28.12, (c) t = 31.25, and (d) t = 31.50. (c (i), d (i)) The
3-D coherent structures with the location of the interface. (c (ii), d (ii)) The interface location. (c (iii), d (iii))
Two transversal cuts of the interface coloured by the magnitude of ωx (the white lines represent the interface
location). The 3-D coherent structures are visualised by the Q-criterion with values Q = 3, 220, 320, 320,
where the colour represents the streamwise vorticity field ωx. We also show ωx in the y–z plane for each
sampling location. Here, ‘HV’ stands for hairpin vortex.

t = 32.03. We observe that the non-uniform distribution of Γ gives rise to
Marangoni-induced flow, which drives fluid motion from ring 1, ‘VR1’ (τ > 0), to ring
2, ‘VR2’, and vice versa (i.e. flow from VR2 to VR1, τ < 0). This flow is therefore
accompanied by the retardation of the development of the interfacial waves and a
subsequent delay of the onset of the 3-D instability of the jet observed in the surfactant-free
case in figure 4.

Additionally, these Marangoni stresses promote jumps in the vorticity across the
interface that we can calculate using (2.24) and (2.25) in the location that coincides with
the formation of vortices SV1 and SV2 from figure 6 at t = 32.81. Figure 5(d) shows
a 3-D representation of the interface together with an x–z plane at y = 2.875 coloured
by the magnitude of vorticity |ω|. Figures 5(e, f ) show respectively the variation of the
interface location and the Γ profiles, and of the distribution of [[ωb]] and [[ωt]], along
the arc length s (not to be confused with ŝ, the unit vector in figure 2), in the plane
cutting the interface shown in figure 5(d). From figure 5(e), it is seen that the surfactant
accumulates in the down-sloping region immediately downstream of an interfacial wave
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Figure 5. Effect of surfactants on the early interfacial dynamics for Re = 5000, We = 500, βs = 0.5, Pes =
100 and Γo = Γ∞/2 at (a) t = 32.03, and (b) t = 32.81. (a (i), b (i)) Interface coloured by Γ , and (a (ii), b (ii))
coherent vortical structures visualised via the Q-criterion with Q = 10. (c) A 2-D representation of Γ and τ

with respect to the arc length s (see inset) at t = 32.03. (d) A 2-D representation of the magnitude of vorticity
|ω| in the x–z plane (y = 2.875) at t = 32.81. (e) Interface location and Γ , and ( f ) [[ωb]] and [[ωt]], versus
the arc length s (e.g. s corresponds to the x–z plane, y = 2.875, intersecting the interface). The centre of the jet
core corresponds to z = 2.5. We denote a vortex ring by ‘VR’.

955 A42-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1056


Turbulent surfactant-laden jets

0.2

–5 5

0.6

HV2HV1SV1 SV2

Legs
Head

Γ

ωx

(b)

(a)

(c) (d) (e)

(g)( f )

Figure 6. Surfactant-driven hairpin-vortical structures: temporal development of the HV1 and HV2
hairpin-like vortical structures via the Q-criterion with Q = 200 together with the interfacial location coloured
by Γ at times (a) t = 32.81, (b) t = 33.59, (c) t = 34.37, (d) t = 36.71, (e) t = 39.06. Panel (e) shows the
two transversal slices displayed in ( f,g), which depict the streamwise vorticity ωx through the legs and head of
HV1, respectively; arrows of in-plane velocity vectors have been added; the white lines represent the interface
location. The parameter values are the same as in figure 5.

peak; here, the gradients in Γ , and therefore in σ , are smallest, corresponding to the
weakest vorticity jumps, while the largest such jumps are in the wave peak and trough
regions where the Γ (and σ ) gradients are highest, as shown in figure 5( f ). Inspection of
figure 5( f ) also shows that [[ωb]] � [[ωt]], that is, near-interface vorticity production in
the azimuthal direction is dominant. This acts to disrupt the dynamics of vortex pairing
relative to the surfactant-free case as the ‘knitting process’ is promoted by streamwise
rather than azimuthal vorticity production and the vortex ring deformation is replaced by
vortex reconnection and merging in the azimuthal direction in the surfactant-laden case.

For increasing time, figure 6 shows the formation of surfactant-induced inner
hairpin-like vortical structures. The shear stress, which is generated to balance the
gradients in σ , gives rise to counter-rotating streamwise vortices of similar magnitude
to the KH rings (labelled ‘SV1’ and ‘SV2’ in figure 6b). These structures grow in the
x-direction into a combination of streamwise vortices close to the interface, i.e. legs, and
a hairpin-like head close to the centre-plane of the jet (see figure 6d). The hairpin legs
extend from the regions of high to low values of Γ on the surface, while the hairpin
head points down in the positive x-direction (labelled ‘HV1’ and ‘HV2’ in figure 6e). To
complete the presentation of these hairpin-like vortical structures, figures 6( f,g) show the
directions of flow rotation of the legs and head for HV1. For comparison, we have added
arrows to show velocity direction and to prove that this coherent vortical structure exhibits
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Figure 7. The location of the interface together with the surfactant concentration and the jumps of the vorticity
across the interface for (a,b) t = 36.81 and (c,d) t = 44.68. (e) A 3-D representation of the interface location
coloured by Γ at t = 44.68, and ( f ) vortex knitting visualised via the Q-criterion with value Q = 1600, where
the colour represents ωx. The arc length s corresponds to the x–z plane (y = 2.5) intersecting the interface. The
centre of the jet core corresponds to z = 2.5. The parameter values are the same as in figure 5.

the same qualitative behaviour as the hairpin vortices proposed by Theodorsen (1952) for
near-wall turbulence. To the best of our knowledge, the formation of hairpin-like vortical
structures induced by surfactant effects has not been reported yet. We have also observed
surfactant-driven outer hairpin-like vortical structures (not shown) whose heads are in the
negative x-direction (in the frame of reference of the legs).

At later times, figures 7(a–d) show the variation with arc length of the interfacial
location Γ , and [[ωt]] and [[ωb]] at t = 36.51 and t = 44.68; corresponding 3-D
representations of the interface are also shown in figures 7(e, f ) for t = 44.68, coloured by
the magnitude of Γ and the Q-criterion, respectively. The flow is accompanied by radially
converging and diverging motion due to vortex–surface interaction; interfacial convection
drives surfactant towards the inner lobes (interfacial contraction), and away from the
outer lobes (interfacial expansion). Vorticity jumps are highest in the interfacial regions
with the largest gradients in Γ . As time evolves, the ratio of these Marangoni-driven
[[ωt]] to [[ωb]] reduces, and this results in large coherent structures that merge to form
counter-rotating streamwise vortical rings that eventually ‘knit’ with the adjacent vortex
ring located in the x-direction (labelled VR1–VR4 in figure 7f ); this pairing is similar
to the surfactant-free case (in agreement with Urbin & Métais 1997; da Silva & Métais
2002).
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Figure 8. Total rate of change of circulation, Ω , according to (2.43): (a,b) DΩ/Dt, (c,d) vortex diffusion (Idiff ),
(e, f ) vortex tilting (Itilt), and (g,h) surface tension (Icurv); see (3.2a–c) for the definitions of Itilt, Idiff and Icurv .
(a,c,e,g) Surfactant-laden cases, and (b,d, f,h) surfactant-free cases. For (g), we represent the contributions
that arise from the gradients of curvature (solid lines) and the gradients of surface tension (dashed lines) to
underscore the relative importance of the Marangoni stresses. Red, blue and black coloured lines represent
components x, y and z of DΩ/Dt, Itilt, diff and Icurv . The parameters are Re = 5000, We = 500, and for the
surfactant-laden case, βs = 0.5, Pes = 100 and Γo = Γ∞/2.

We now examine the dynamics of the circulation Ω by considering (2.43), which we
express as

DΩ

Dt̃
= Itilt + Idiff + Icurv, (3.1)

955 A42-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1056


C.R. Constante-Amores and others

(e)

(b)(a) (c) (d )

(g) (h)( f )

Figure 9. Spatio-temporal evolution of the control volume V with a surface ∂V that encloses an interface
plane I used to calculate the rate of change of the circulation in figure 8. (a–d) Surfactant-laden cases,
at t = 25.20, 35.50, 40.37, 43.75, and (e–h) surfactant-free cases, at t = 27.12, 30.43, 34.37, 40.55. The
parameter values are the same as in figure 8.

where Itilt, Idiff and Icurv are defined as

Itilt ≡
∮

∂Ṽ
n̂ · ωu dS, Idiff ≡ 1

Re

∮
∂V

n̂ · ∇ω dS, Icurv ≡ 1
We

∮
I

b̂
∂

∂s
(σ [κ1 + κ2]) dS,

(3.2a–c)

which correspond to vortex tilting/stretching, diffusion of vorticity, and circulation
variation due to gradients in curvature and interfacial tension (in the case of
surfactant-laden systems). Figure 8 shows the temporal evolution of DΩ/Dt, Itilt, Idiff
and Icurv , which allows us to identify the dominant physical mechanisms that contribute
to the creation and dissipation of circulation. In figure 9, we also show snapshots
of the 3-D representation of the interface corresponding to the volume used to carry
out the computations necessary to calculate DΩ/Dt and its constituent terms for the
surfactant-laden and surfactant-free cases; this allows one to pinpoint the mechanisms
primarily responsible for the interfacial structures observed. It is seen clearly from figure 8
that during the early stages of the flow, Ω remains approximately constant. Inspection
of figures 8(c–h) shows clearly that the rate of change of circulation is dominated
by the mechanisms related to vortex diffusion Idiff and curvature Icurv , with vortex
tilting/shielding playing a relatively minor role. It is also clear that in the surfactant-laden
jet case, the Marangoni contribution to Icurv dominates that associated with curvature
derivatives. This observation further bolsters the claim that Marangoni stresses drive
vorticity generation in the jet dynamics.

The snapshots for the surfactant-laden (figures 9a–d) and surfactant-free (figures 9e–h)
cases have been chosen carefully so as to link the various stages of jet destabilisation to
the prominent changes in the temporal variation of Idiff , Itilt, Icurv and DΩ/Dt. Given
the dominance of Icurv over the time range considered (0 ≤ t ≤ 40), we focus on the
variations in this quantity and its signature effects on the interfacial shape. Inspection of
figures 8(g) and 9(a) reveals that the relatively gentle interfacial undulations are linked to
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Figure 10. Temporal evolution of (a) surface area A, (b) kinetic energy Ek = ρ
∫

V u2/2 dV , and (c) enstrophy
ε = ∫

V |ω2| dV , scaled by the initial interfacial area A0, kinetic energy Ek0, and enstrophy ε0, respectively. The
parameter values are the same as in figure 5.

variations of the Marangoni contribution to Icurv in the x–y plane. The development of the
more complex interfacial shapes, on the other hand, is accompanied by a concomitant
rise in three-dimensionality of Icurv (in addition to significant contributions from the
x-component of Icurv). In the surfactant-free case, inspection of figures 8(d,h) and
9(e–h) shows that the interfacial jet evolution is accompanied by large variations in the
x-component of Icurv , and vorticity diffusion characterised by Idiff .

Finally, we plot in figure 10 the effect of surfactants on the interfacial area, kinetic
energy (defined as Ek = ρ

∫
V(u2/2) dV) and enstrophy (ε = ∫

V |ω2| dV), normalised
by their initial values A0, Ek0 and ε0, respectively. After the onset of destabilisation
(defined when the interfacial surface has reached A = 1.025), we observe that the
surfactant-induced effects discussed above – which include the interfacial vorticity jumps
brought about by Marangoni stresses, and their effect on the production of circulation,
and jet destabilisation mechanisms associated with vortex formation and spanwise
reconnection – promote the delay in increase and subsequent reduction in interfacial area;
these effects also lead to a delay in the decay of the jet kinetic energy as well as its
enstrophy.

4. Concluding remarks

Three-dimensional numerical simulations of jet destabilisation and atomisation in the
presence of a monolayer of insoluble surfactants have been carried out for the first
time. A phase diagram in the space of dimensionless surfactant elasticity and Weber
number in the inertia-dominated region is presented in the limiting case where there is
no vorticity production associated with jumps in material properties such as fluid density
and viscosity; in the present work, surface tension forces and Marangoni stress give rise

955 A42-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1056


C.R. Constante-Amores and others

to variations in vorticity and circulation in addition to the vortex tilting/shielding and
diffusion mechanisms. We have also derived formulae for the vorticity jumps across the
interface due to Marangoni stresses, and equations that provide a breakdown of the rate of
production of circulation within the jet into constituent terms that we associate with vortex
tilting/shielding, diffusion, and gradients in interfacial curvature and surface tension. The
present theoretical formulation is expressed as a conservation law for circulation. We have
focused on the limiting case where there is no vorticity production associated with jumps
in material properties. Future studies should examine situations characterised by fluids
with different material properties.

Then we have analysed in detail the vortex–interface–surfactant interactions in the
flow dynamics. At early times, the presence of surfactants induces spanwise vortex
reconnections brought about by Marangoni-induced flow resulting in the delay of the
onset of destabilisation to the three-dimensional interfacial instabilities. We also show
that surfactant-induced Marangoni stresses trigger the formation of hairpin-like structures
whose head and legs extend in the streamwise direction. Finally, we have attempted to
link the changes in interfacial topology to the mechanisms that influence the production
of vorticity and circulation, demonstrating a balance between curvature gradients and
diffusion for surfactant-free jets, and the dominance of Marangoni stresses in the
surfactant-laden cases.

The present results have been obtained for insoluble surfactants, and we acknowledge
that experimental and numerical studies feature soluble surfactants that are dissolved in the
liquid that issues from a nozzle to form the jet (Constante-Amores 2021b; Sijs et al. 2021).
It is well known that the addition of surfactant solubility will lead to additional richness
and complexity. Although surfactant solubility does not affect the governing equations that
describe the bulk fluid, it will change the boundary conditions resulting in a change in the
flow dynamics. We can anticipate that a change of flow in the vicinity of the interface will
have a detrimental effect on the coherent structures that emerge, subsequently affecting
the close interplay between interface, vorticity and surfactant. These challenges will be
the subject of future work.
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Turbulent surfactant-laden jets

Appendix A. Effect of domain size

To provide conclusive evidence that the lateral size of the domain is sufficiently large to
avoid finite-size effects, we have performed additional simulations accounting for different
domain sizes, and measured the wavelength between the emergent crests. The selected
wavelength for panels for domain sizes (4D)3, (5D)3 and (6D)3 correspond to λ ∼ 1.52D,
1.55D and 1.60D, respectively. Thus the wavelength values are very weakly dependent
on the domain size, indicating the absence of finite-size effects. We also note that the
size of the computational domain is in agreement with previous studies (see, for example,
Jarrahbashi & Sirignano 2014; Jarrahbashi et al. 2016; Zandian, Sirignano & Hussain 2016;
Desjardins & Pitsch 2010), which have also used periodic boundary conditions for all three
components of velocity in the streamwise direction.

Appendix B. Kinematics

We first develop an expression for Dt̂/Dt. We consider the motion of an infinitesimal fluid
parcel in the plane of the interface, which is treated as a material surface. The position
vector is x = x(s, b, t), where s and b represent arc length distances along the t̂ and b̂
directions, respectively. At time t + δt, to leading order in δt, we can write the following
expression for the tangent to the interface at the fluid parcel that at time t was located at
x(0, 0, t):

t̃(t + δt) = ∂x
∂s

(0, 0, t) + ∇u ·
(

∂x
∂s

+ ∂x
∂b

)
δt. (B1)

Noting that t̂ = ∂x/∂s, b = ∂x/∂b, t̂ · ∇u = ∂u/∂s and b̂ · ∇u = ∂u/∂b, this equation
can be re-expressed as

t̃(t + δt) = t̂ +
(

∂u
∂s

+ ∂u
∂b

)
δt. (B2)

The magnitude of t̃(t + δt) is given by

|t̃| = 1 + t̂ ·
(

∂u
∂s

+ ∂u
∂b

)
δt + O(δt)2, (B3)

and normalisation of t̃(t + δt) by this magnitude gives the following tangent unit vector
t̂(t + δt):

t̂(t + δt) =
t̂ +

(
∂u
∂s

+ ∂u
∂b

)
δt

|̃t̂(t + δt)|
=

t̂ +
(

∂u
∂s

+ ∂u
∂b

)
δt

1 + t̂ ·
(

∂u
∂s

+ ∂u
∂b

)
δt

=
(

t̂ +
(

∂u
∂s

+ ∂u
∂b

)
δt

) (
1 − t̂ ·

(
∂u
∂s

+ ∂u
∂b

)
δt + O(δt)2

)

= t̂ +
(

∂u
∂s

+ ∂u
∂b

− t̂
(

t̂ ·
(

∂u
∂s

+ ∂u
∂b

)))
δt + O(δt)2. (B4)

From this expression, we can arrive at an approximate formula for Dt̂/Dt:

Dt̂
Dt

∼ t̂(t + δt) − t̂(t)
δt

= ∂u
∂s

+ ∂u
∂b

− t̂
(

t̂ ·
(

∂u
∂s

+ ∂u
∂b

))
+ O(δt). (B5)
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We now insert the expression

u = (u · ŝ)ŝ + (u · t̂)t̂ + (u · b̂)b̂ (B6)

into u · Dt̂/Dt, which yields

u · Dt̂
Dt

= (u · ŝ)ŝ · Dt̂
Dt

+ (u · b̂)b̂ · Dt̂
Dt

. (B7)

Substitution of (B5) into ŝ · Dt̂/Dt and b̂ · Dt̂/Dt gives

ŝ · Dt̂
Dt

= ŝ ·
(

∂u
∂s

+ ∂u
∂b

)
, (B8)

b̂ · Dt̂
Dt

= b̂ ·
(

∂u
∂s

+ ∂u
∂b

)
, (B9)

where we have made use of ŝ · t̂ = 0 and b̂ · t̂ = 0. We can re-express the right-hand sides
of (B8) and (B9) as follows

ŝ · ∂u
∂s

= ∂

∂s
(ŝ · u) − u · ∂ ŝ

∂s
, (B10)

ŝ · ∂u
∂b

= ∂

∂b
(ŝ · u) − u · ∂ ŝ

∂b
, (B11)

b̂ · ∂u
∂s

= ∂

∂s
(b̂ · u) − u · ∂ b̂

∂s
, (B12)

b̂ · ∂u
∂b

= ∂

∂b
(b̂ · u) − u · ∂ b̂

∂b
. (B13)

Inserting (B6) into the second term on the right-hand sides of (B10)–(B13), we obtain

u · ∂ ŝ
∂s

= κ1(u · t̂), (B14)

u · ∂ ŝ
∂b

= κ2(u · b̂), (B15)

u · ∂ b̂
∂s

= 0, (B16)

u · ∂ b̂
∂b

= −κ2(u · ŝ), (B17)

where the curvatures κ1 and κ2 are defined as

κ1 = t̂ · ∂ ŝ
∂s

, κ2 = b̂ · ∂ ŝ
∂b

. (B18a,b)

In deriving (B14)–(B17), we have noted that t̂ /= t̂(b) and b̂ /= b̂(s). Substitution of
(B14)–(B17) into (B10)–(B13), and the resultant relations into (B8) and (B9), respectively,
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yields the expressions

ŝ · Dt̂
Dt

= ∂

∂s
(u · ŝ) + ∂

∂b
(u · ŝ) − κ1(u · t̂) − κ2(u · b̂), (B19)

b̂ · Dt̂
Dt

= ∂

∂s
(u · b̂) + ∂

∂b
(u · b̂) + κ2(u · ŝ). (B20)

Substitution of (B19) and (B20) into (B7), and rearranging, yields

u · Dt̂
Dt

= 1
2

∂

∂s

[
(u · ŝ)2 + (u · b̂)2

]
+ 1

2
∂

∂b

[
(u · ŝ)2 + (u · b̂)2

]
− κ1(u · t̂)(u · ŝ).

(B21)

Appendix C. Near-interface normal stress jump

In order to generate a 3-D version of the pressure gradient term in (2.34), we first consider
the jump in the normal stress across the plane of the interface:

p2 − p1 = −σ(κ1 + κ2) + [[μŝ · D · ŝ]], (C1)

where κ1 and κ2 are given by (B18a,b). Substitution of (B6) into ∇ · u = 0 yields

ŝ · ∇u · ŝ = −t̂ · ∇u · t̂ − b̂ · ∇u · b̂

= −t̂ · ∂u
∂s

− b̂ · ∂u
∂b

, (C2)

where we have set t̂ · ∇u = ∂u/∂s and b̂ · ∇u = ∂u/∂b. We can re-express t̂ · (∂u/∂s)
and b̂ · (∂u/∂b) as

t̂ · ∂u
∂s

= ∂

∂s
(u · t̂) − u · ∂ t̂

∂s
, (C3)

b̂ · ∂u
∂b

= ∂

∂b
(u · b̂) − u · ∂ b̂

∂b
. (C4)

Substitution of (B6) into u · (∂ t̂/∂s) and u · (∂ b̂/∂s) leads to

u · ∂ t̂
∂s

= −κ1(u · ŝ), (C5)

u · ∂ b̂
∂b

= −κ2(u · ŝ), (C6)

where, again, we have made use of the fact that t̂ /= t̂(b) and b̂ /= b̂(s). Substitution of (C5)
and (C6) into (C3) and (C4), and the resultant relations into (C2), gives

ŝ · ∇u · ŝ = − ∂

∂s
[(u · t̂) + (u · b̂)] − (κ1 + κ2)(u · ŝ). (C7)

Since ŝ · D · ŝ = 2ŝ · ∇u · ŝ, it follows that

ŝ · D · ŝ = −2
∂

∂s
[(u · t̂) + (u · b̂)] − 2(κ1 + κ2)(u · ŝ). (C8)
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Substitution of this equation into (C1) yields the following expression for the pressure
jump:

[[p]] = −σ(κ1 + κ2) − 2
[[

μ

(
∂

∂s
[(u · t̂) + (u · b̂)] + (κ1 + κ2)

(
u · ŝ

))]]
. (C9)
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