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Scope We explore the diversity of P-acquisition 
strategies, highlighting one that has received little 
attention: acquisition of P following fires that tem-
porarily enrich soil with P. This strategy is expressed 
by fire ephemerals as well as fast-resprouting peren-
nial shrubs. A plant’s leaf manganese concentration 
([Mn]) provides significant clues on P-acquisition 
strategies. High leaf [Mn] indicates carboxylate-
releasing P-acquisition strategies, but other exudates 
may play the same role as carboxylates in P acquisi-
tion. Intermediate leaf [Mn] suggests facilitation of 
P acquisition by P-mobilising neighbours, through 
release of carboxylates or functionally similar com-
pounds. Very low leaf [Mn] indicates that carboxy-
lates play no immediate role in P acquisition. Release 
of phosphatases also represents a P-mining strategy, 
mobilising organic P. Some species may express mul-
tiple strategies, depending on time since germina-
tion or since fire, or on position in the landscape. In 
severely P-impoverished landscapes, photosynthetic 
P-use efficiency converges among species. Efficient 
species exhibit rapid rates of photosynthesis at low 
leaf P concentrations. A high P-remobilisation effi-
ciency from senescing organs is another way to use 
P efficiently, as is extended longevity of plant organs.
Conclusions Many P-acquisition strategies coexist 
in P-impoverished landscapes, but P-use strategies 
tend to converge. Common strategies of which we 
know little are those expressed by ephemeral or per-
ennial species that are the first to respond after a fire. 
We surmise that carboxylate-releasing P-mobilising 

Abstract 
Background Unveiling the diversity of plant strate-
gies to acquire and use phosphorus (P) is crucial to 
understand factors promoting their coexistence in 
hyperdiverse P-impoverished communities within 
fire-prone landscapes such as in cerrado (South 
America), fynbos (South Africa) and kwongan 
(Australia).
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strategies are far more widespread than envisaged 
so far, and likely expressed by species that accumu-
late metals, exemplified by Mn, metalloids, such as 
selenium, fluorine, in the form of fluoroacetate, or 
silicon. Some carboxylate-releasing strategies are 
likely important to consider when restoring sites in 
biodiverse regions as well as in cropping systems on 
P-impoverished or strongly P-sorbing soils, because 
some species may only be able to establish them-
selves next to neighbours that mobilise P.

Keywords Carboxylates · Cluster roots · Dauciform 
roots · Facilitation · Fire · Hyperdiverse ecosystems · 
Mycorrhizas · Non-mycorrhizal plants · Phosphorus · 
Phosphorus-acquisition efficiency · Phosphorus-use 
efficiency · Sand-binding roots

Introduction

Many global biodiversity hotspots for conservation 
priorities (sensu Myers et  al. 2000) are located in 
nutrient-impoverished climatically-buffered fire-
prone regions, including fynbos in South Africa 
(Allsopp et al. 2014; Cowling et al. 1996), kwongan 
in Australia (Hopper 2009; Lambers 2014) and cam-
pos rupestres, which is part of the cerrado in Brazil 
(Oliveira et al. 2015; Silveira et al. 2016; Villarroel 
Segarra and Wood 2011). Fire is a key component of 
all these ecosystems, and some species have evolved 
strategies to acquire nutrients that are released 
in ash during a fire (Orians and Milewski 2007). 

Phosphorus (P) is a key nutrient that limits pri-
mary productivity in all these environments, mainly 
because of their age, allowing extensive erosion and 
leaching over time, and lack of major rejuvenating 
processes (Hopper 2009; Hopper et  al. 2021). The 
availability of soil P declines steadily with increas-
ing soil age (Walker and Syers 1976), with further 
losses of P in fire-prone environments on long time 
scales due to convection losses and volatilisation 
during hot fire events (> 500˚C) (Butler et al. 2018; 
Giardina et  al. 2000; Leitch et  al. 1983; Raison 
et  al. 1985). In addition, the low P content of par-
ent material plays a role (Porder and Ramachandran 
2013). Here, we explore some of the diversity in 
P-acquisition and P-use strategies that contribute to 
the hyperdiversity in these landscapes. We highlight 
the coexistence of, and interactions among, species 
expressing different strategies and explore how this 
knowledge may be applied in restoration of dis-
turbed landscapes and in intercropping agroecosys-
tems (Homulle et al. 2022).

We acknowledge that there are more P-acquisition 
strategies in P-impoverished landscapes than dis-
cussed in this review, especially carnivory, which is 
very common in P-impoverished habitats, coprophagy 
and parasitism, which is relatively uncommon in these 
habitats if they are seasonally dry. Since these strate-
gies have been discussed in detail before (Cramer 
et al. 2014; Lambers et al. 2014; Oliveira et al. 2016), 
we do not deal with them in this review. Table 1 sum-
marises the P-acquisition strategies we discuss in this 
review. Note that some species may express multiple 

Table 1   A summary of phosphorus (P)-acquisition strategies discussed in this review

Some species may express multiple strategies, depending on time since germination or since fire, or on position in the landscape

Strategy Key plant trait

Fire ephemeral phosphophile Germination stimulated after a fire (e.g., in response to smoke or heat); 
rapid growth and P acquisition following a fire event, with a relatively 
short life cycle

Resprouting within days to weeks after a fire Rapid growth, dependent on stored reserves and P acquisition following a 
fire event, followed by slow growth and efficient recycling of P

Mycorrhizal scavenging Access P that is beyond the zone available for roots and root hairs, thus 
enhancing the soil volume that is available for P uptake

Phosphorus-mining based on exudation of P-mobilising 
low-molecular weight compounds

Exudation of low-molecular weight compounds; these are often carboxy-
lates, but in Poaceae they may also be phytosiderophores

Phosphorus-mining based on the release of phosphatases Exudation of enzymes that hydrolyse organic P; access to phytate requires 
exudation of phytases

Facilitation by P-mobilising neighbours Phosphorus acquisition is enhanced by neighbours that mobilise P through 
their own P-mining strategy
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strategies, depending on time since germination or 
since fire, or on position in the landscape.

Phosphophiles as post-fire ephemerals

When soils are relatively fertile, non-mycorrhizal 
plants such as most Amaranthaceae, Brassicaceae, 
Caryophyllaceae, Chenopodiaceae, Polygonaceae and 
Urticaceae are common (Brundrett 2009; Brundrett 
and Tedersoo 2018). Some of these non-mycorrhizal 
species produce abundant long root hairs, e.g., Bras-
sica oleracea (Dechassa et  al. 2003) and Spinacia 
oleracea (Föhse et  al. 1991). For these plants, only 
P that is close to the surface of roots or root hairs is 
available (Lambers et  al. 2008). These plants typi-
cally occur in nutrient-rich habitats with a high P 
concentration in the soil solution; they are commonly 
referred to as nitrophiles (Braun-Blanquet 1949), but 
in the present context, the term ‘phosphophiles’ is 
more appropriate (Lambers 2022).

In nutrient-poor, fire-prone environments, phos-
phophiles are common in the early stages of post-fire 
succession, during which a temporary (4–6 months) 
flush in soil P availability occurs (Brown and Mitchell 
1986; Hester and Hobbs 1992). Although some P is 
volatilised during hot fires (> 500˚C) (Giardina et al. 
2000; Raison et  al. 1985), the burning of vegetation 
can increase plant-available P relative to pre-fire lev-
els; burning to black carbon increases plant-availa-
ble P c. 10-fold and burning to ash c. 2- to 7.5-fold 
(Schaller et  al. 2015). Phosphophiles in these envi-
ronments often represent a significant fraction of the 
flora (Cowling et  al. 1997), with examples typically 
monocarpic and fast-growing fire ephemerals, such 
as Stipa elegantissima (Poaceae), and Macarthu-
ria apetala (formerly Aizoaceae, but now Macar-
thuriaceae) in kwongan (Pate et  al. 1985); and Ita-
sina filifolia (Apiaceae) in fynbos (Rutherford et  al. 
2011). While many of these species complete their 
lifecycle within the first year post-fire, other species 
such as those in the genera Aspalathus (Fabaceae) 
(Cocks 1994), Kennedia (Fabaceae) and Comesperma 
(Polygalaceae) (Miller and Dixon 2014) tend to live 
up to five years post-fire and are referred to as multi-
year fire ephemerals.

Unlike longer-lived late post-fire succession spe-
cies (e.g., Cyperaceae, Proteaceae, Restionaceae), 
phosphophiles do not need to acquire P from poorly 
soluble sources that dominate in such environments 

(McArthur 1991; Witkowski and Mitchell 1987). 
Species adapted to such conditions often rely upon 
root specialisations such as cluster roots in Pro-
teaceae and some Fabaceae or dauciform roots in 
many Cyperaceae to ‘mine’ poorly soluble P (Lam-
bers et al. 2008). Although not commonly reported 
for fire ephemerals, cluster roots do occur in sev-
eral legume genera, for example, Aspalathus in 
fynbos (MacAlister et al. 2018; Power et al. 2010), 
and Daviesia, Kennedia and Viminaria in kwon-
gan (Adams et  al. 2002; Lamont 1972; Nge et  al. 
2020); Power et al. (2010), however, found that for 
fynbos species, these cluster roots are relatively 
rudimentary. They release smaller amounts and 
have lower rhizosphere concentrations of carboxy-
lates compared with most Proteaceae, resulting in 
a low capacity to mobilise P from sparingly solu-
ble sources. This restriction may explain why these 
fire ephemerals are limited to the immediate post-
fire environment where sufficient P is available to 
support fast growth; beyond the early stage after a 
fire, a capacity to fix  N2 in the case of leguminous 
fire ephemerals offers little competitive advantage 
(Power et al. 2011).

The recent observation that fynbos plants belong 
to the world’s thinnest-rooted plant community (Lu 
et al. 2022) may be highly relevant for fire ephemer-
als in that system. These thin roots possibly func-
tion like the roots of phosphophiles such as Bras-
sica oleracea (Dechassa et  al. 2003) and Spinacia 
oleracea (Föhse et al. 1991), as discussed above. It 
is highly unlikely that these very thin roots function 
as scavengers long after a fire, because, as we dis-
cuss below, even mycorrhizal hyphae are ineffective 
at extremely low P availability. If these hyphae are 
ineffective, it is hard to imagine how roots that are 
much thicker than fungal hyphae, even the thinnest 
roots in the world, could be effective at acquiring 
P from severely P-impoverished soils (Raven et  al. 
2018).

Post-fire P acquisition in resprouting perennial 
species

In addition to the classical mycorrhizal and non-
mycorrhizal P-acquisition strategies discussed 
below, some species appear not to strongly depend 
on these strategies but acquire P when it is relatively 
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available following a fire (Giardina et  al. 2000). 
This strategy is expressed in both non-mycorrhizal 
[e.g., Stirlingia latifolia (Proteaceae) (Bowen and 
Pate 2004), Adenanthos barbiger (Proteaceae) (Q. 
Shen & H. Lambers, pers. obs.)] and mycorrhizal 
[e.g., Macrozamia riedlei (Zamiaceae) (Grove et al. 
1980), Xanthorrhoea preissii (Xanthorrhoeaceae) 
(Korczynskyj and Lamont 2005)] pyrophilous spe-
cies. While possibly not essential, mycorrhizas 
might play a role in P acquisition immediately after 
a wildfire.

Fire is a key determinant of P cycling in P-impov-
erished fire-prone ecosystems, because it enhances 
nutrient cycling and the soil P to carbon ratio (Brown 
and Mitchell 1986; Giardina et  al. 2000; Kutiel and 
Shaviv 1989). A temporary increase of the total P 
concentration in the top soil post-fire (Brown and 
Mitchell 1986) likely benefits specific species (i.e. 
phosphophiles) that can take up P rapidly. Brown and 
Mitchell (1986) showed a 26% increase of the total 
P concentration and the resin-extractable P concentra-
tion increased more than five-fold. These concentra-
tions returned to pre-fire levels within four months. 
The strategy to quickly acquire P immediately after a 
fire may be exhibited in all fire-prone ecosystems but 
might be successful only in P-impoverished habitats, 
since it requires considerable plasticity in growth, 
as exhibited by S. latifolia (Bowen and Pate 1993). 
The remarkable ‘bubble roots’ exhibited by this spe-
cies likely contribute to its plasticity (Fig. 1). These 
structures not only store starch (Bowen and Pate 
1993), but also P, albeit at similar concentration as in 
non-bubble roots (Fig. 1). These plants only increase 
their biomass when nutrient (especially P) availabil-
ity increases, and thus do not need a scavenging or 
mining strategy, because P is abundant in a short win-
dow of time (van Blerk et  al. 2021). Non-mycorrhi-
zal S. latifolia does not produce cluster roots when 
mature (Lambers et  al. 2021), but quickly resprouts 
after a fire (Fig. 1a, b) and rapidly accumulates bio-
mass, but then stops increasing in size (Bowen and 
Pate 1993). Leaf [Mn] in mature S. latifolia plants 
is low, presumably due to low carboxylate concen-
trations in the rhizosheath (Lambers et  al. 2021). In 
contrast to mature plants, seedlings of S. latifolia do 
produce cluster roots (Fig.  2). Similarly, based on a 
comparison of leaf [Mn] of Stirlingia anethifolia with 
that of co-occurring Synaphea oligantha (Proteaceae) 
(Fig.  3), we surmise that this Stirlingia species 

functions in a similar manner to S. latifolia. The leaf 
[Mn] of Xanthorrhoea preissii (Zhong et al. 2021), a 
mycorrhizal species (Brundrett and Abbott 1991) that 
rapidly resprouts after a wildfire (Fig.  4), suggests 
it functions in a very similar manner as non-mycor-
rhizal Stirlingia species. The same likely pertains 
to mycorrhizal Kingia australis (Dasypogonaceae), 
Macrozamia riedlei and Xanthorrhoea gracilis which 
also exhibit low mature leaf [Mn] (X.M. Zhou, K. 
Ranathunge & H. Lambers, pers. obs.). They are 
among the first to resprout and grow fast after a 
wildfire (Fig.  5), and then their growth declines to 
very slow rates (Grove et al. 1980; Korczynskyj and 
Lamont 2005; Lamont and Downes 1979).

In the cerrado of eastern Bolivia, the newly 
described Plantago pyrophila (Plantaginaceae), also 
resprouts and flowers quickly after a fire (Villarroel 
Segarra and Wood 2011). The same pattern is found 
in Byrsonima verbascifolia (Malpighiaceae), a com-
mon shrub in the cerrado biome of Brazil that exhib-
its low leaf [Mn] (Lambers et al. 2015b) and resprouts 
as quickly as six days after fire (Fig.  6). In campos 
rupestres, many Velloziaceae species (Conceição 
et al. 2013) and lineages of Fabaceae and Melastoma-
taceae (Simon et al. 2009) rapidly resprout and flower 
after a fire, and this trait is also expressed in Cyper-
aceae, for example, Bulbostylis paradoxa in campos 
rupestres (Fidelis and Zirondi 2021); Oliveira et  al. 
(1996) found that 44 orchid species in campos rup-
estres flower just two weeks after fire events. Indeed, 
several reviews conclude that a high diversity of spe-
cies exhibit post-fire flowering in cerrado (Fidelis 
and Zirondi 2021), kwongan and fynbos (Lamont 
and Downes 2011), indicating that fire is an impor-
tant factor influencing flowering in these fire-prone 
regions. Although the links between post-fire flower-
ing, resprouting and P-acquisition strategies are yet to 
be fully explored in these communities, the combi-
nation of defoliation and fertilisation, mimicking the 
effects of fire, significantly increases flowering (e.g., 
in the geophytic fynbos grass Erharta capensis; Ver-
boom et al. 2002).

In summary, acquiring P after its availability is 
temporarily increased is a common strategy in fire-
prone P-impoverished ecosystems. We know next to 
nothing about what traits are required to ensure rapid 
uptake of P during a short window of enhanced P 
availability (Box  1). We envisage that the very thin 
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roots observed in fynbos (Lu et  al. 2022) may well 
play a role.

Interestingly, Dasypogon bromeliifolius (Dasy-
pogonaceae), another species in the same family as 
Kingia australis that is among the first to resprout and 
flower after a fire (Rudall and Conran 2012), exhib-
its a relatively high leaf [Mn], similar to co-occurring 
Banksia species, and therefore likely releases carbox-
ylates to access P in the time between fires (Fig. 6). 
Cyperaceae, like Proteaceae, are typically non-myc-
orrhizal (Brundrett 2009; Wang and Qiu 2006) and 
release carboxylates, with or without producing dau-
ciform roots (Güsewell and Schroth 2017; Masuda 
et al. 2021). As a result, they tend to exhibit high leaf 
[Mn] (Hayes et  al. 2014). However, there are clear 
exceptions (Hayes et al. 2014), and some of them may 
show a similar strategy as Proteaceae that resprout 
vigorously after disturbance by fire, without depend-
ing on carboxylates, e.g., Lepidosperma tetraquetrum 
(Cyperaceae) (X.M. Zhou, K. Ranathunge & H. Lam-
bers, pers. obs.). In campos rupestres, Bulbostylis 
paradoxa (Cyperaceae) flowers three days after a fire 

Fig. 1  Stirlingia latifolia 
(blueboy). (a) Habitat near 
Yanchep, south-western 
Australia, a few months 
after a wildfire showing 
vigorously resprouting 
plants (arrows). (b) Flower-
ing, triggered by a fire. (c) 
Bubble roots. (d) Phos-
phorus (P) concentrations 
([P]) expressed per unit dry 
weight (DW) in bubbles 
and non-bubble parts of the 
roots at both an unburned 
and a burned site. Different 
letters indicate significantly 
different means determined 
by ANOVA (p < 0.05). Pho-
tos: Hans Lambers (a) and 
Kosala Ranathunge (b, c)

Fig. 2  Seedling of Stirlingia latifolia (blueboy) excavated 
from a natural habitat in Alison Baird Reserve, City of Gos-
nells in south-western Australia (Tauss et  al. 2019), showing 
many cluster roots; arrowhead points towards a developing 
cluster and the arrow points towards a senesced cluster; scale 
bar = 20 mm. Photo: Kosala Ranathunge
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event (Fig. 5a), with inflorescences already starting to 
emerge within 24 h after the passage of fire (Fidelis 
et al. 2019). It would be worthwhile to further study 
Cyperaceae with low leaf [Mn] in low-P environ-
ments (Hayes et al. 2014; X.M. Zhou, K. Ranathunge 
& H. Lambers, pers. obs.) to determine how they 
acquire P.

The strategy to capitalise on nutrients released 
during a fire is likely confounded by other mecha-
nisms that act together in this event. For instance, we 
are dealing only with resprouter species and not fire 
ephemerals, whose germination is triggered by kar-
rikins in smoke (Flematti et  al. 2004, 2015) or heat 
(Cocks and Stock 1997); we discussed these when 
covering phosphophile species. Resprouter spe-
cies usually rely on non-structural carbohydrates 
to build new organs rapidly (Bowen and Pate 1993; 
Hansen et al. 1991; Pate et al. 1990, 1991); however, 
concurrent P acquisition is also essential, since P is 
part of the tissues. In Brazilian savannahs, fire stimu-
lates absorptive root biomass, correlated with shoot 
regrowth (Oliveras et  al. 2013). Variation in mor-
phological root parameters reflect differences in soil 
chemistry, especially soil P and graminoid biomass 
changes (Le Stradic et  al. 2021). To acquire P from 
ash, the P in the soil must be in solution. This may 
be the case when fire events are followed by rain, 
which is likely, because wildfires are usually started 
by lighting. Alternatively, hydraulic lift is a mecha-
nism to bring P in solution (Pang et  al. 2013) by 
bringing up water from deeper in the profile where 

plant-available P concentrations are very low (Turner 
et  al. 2018) to shallow layers, where most of the P 
is located (Turner et al. 2018), especially after a fire 
(Giardina et al. 2000; Resende et al. 2011). Hydraulic 
lift is exhibited by a wide range of species (Belovitch 
et al. 2022). Indeed, Byrsonima verbascifolia, which 
resprouts very quickly after a fire exhibits hydraulic 
lift (Oliveira 2004). Once P is in solution and in the 
rhizosphere of these species, they likely take it up 
rapidly, but some may be sorbed onto soil particles. 
We have no information on the dynamics of the vari-
ous fates of P in ash.

In summary, the remarkable strategy of post-fire 
active functional types is to switch from a typi-
cal nutrient-stress-tolerating (Grime 1977) or a K 
strategy (McArthur and Wilson 1967; Parry 1981) 
between fires, to an opportunistic ruderal (Grime 
1977) or r strategy (McArthur and Wilson 1967; 
Parry 1981) immediately after a fire, nomenclature 
depending on which ecological theory is adopted. 
We are aware of minor shifts in strategy during 
plant ontogeny (Dayrell et al. 2018), but know vir-
tually nothing about what underpins major shifts in 
strategy following a wildfire.

Mycorrhizas: P-scavenging strategies

The vast majority of terrestrial plant species can 
establish a symbiotic association with mycorrhizal 
fungi (Smith and Read 2008). Mycorrhizal associa-
tions can enhance plant P acquisition in moderately 

Fig. 3  Stirlingia anethifolia (Proteaceae). (a) Plant growing in 
its natural habitat in close proximity of (b) Synaphea oligan-
tha (Proteaceae) near Hopetoun, south-western Australia. (c) 
Leaf manganese concentrations ([Mn]) expressed per unit dry 
weight (DW) of S. anethifolia growing in its natural habitat, 

shared with S. oligantha, used as a positive reference. Positive 
references comprise co-occurring species that are known to 
release abundant amounts of carboxylates (Zhong et al. 2021; 
Zhou et  al. 2020). *** indicates significantly different means 
(p < 0.001). Photos: Hongtao Zhong
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infertile soils (0.5-2 µM P in the soil solution), but 
when soils are severely P-impoverished (< 0.5 µM P 
in solution), mycorrhizas are less effective (Lambers 
et al. 2015a; Parfitt 1979) and tend to be suppressed 
(Abbott et  al. 1984; Chu et  al. 2013; Treseder and 
Allen 2002). The soil solutions presented by Parfitt 
(1979) cannot be converted into mg P  kg− 1 soil, but 
we can compare these soil solution concentrations 
with those in a range of agricultural soils, repre-
senting a wide range in texture and organic mat-
ter content. The average inorganic P concentration 
([Pi]) in the soil solution is 3 µM (range: 0.6 to 11 

µM) (Lambers 2022). That range equates to concen-
trations of readily available P (i.e. resin-P, Bray-P 
or Colwell-P) of approximately 5 to 13 mg P  kg− 1 
in agricultural soils (Sandral et  al. 2019; Waddell 
et  al. 2016). Concentrations of readily available P 
in old kwongan soils are 0.2 to 0.6  mg P  kg− 1 on 
low-rainfall sites (Gao et  al. 2020; Laliberté et  al. 
2012), with rare values of about 5  mg P  kg− 1 soil 
at high-rainfall sites (Turner et al. 2018). In fynbos, 
which predominantly occupies sandstone-derived 
soils, a similar range of 0.4 to 2.7 mg P  kg− 1 occurs 
(Witkowski and Mitchell 1987). For a range of 

Fig. 4  Photos of plant spe-
cies that are among the first 
to resprout and flower after 
a wildfire. (a) Xanthorrhoea 
preissii (balga or grasstree) 
(Xanthorrhoeaceae); (b, c) 
Kingia australis (kingia) 
(Dasypogonaceae); photos 
a-c were taken in Mount 
Lindesay National Park, 
south-western Australia; 
(d) Macrozamia riedlei in 
Lesueur National Park in 
south-western Australia, 
10 months after a fire when 
its entire canopy of about 
40 fronds had grown back. 
Photos: Hans Lambers

Plant Soil (2022) 476:133–160 139



1 3
Vol:. (1234567890)

campos rupestres sites, soil P is about 2.6  mg P 
 kg− 1 (Zemunik et al. 2018). That leads to the con-
clusion that in the range for agricultural soils (0.6 
to 11 µM or 5 to 13  mg P  kg− 1) mycorrhizas are 
expected to be effective at enhancing P acquisition. 
However, on the poorest sites in kwongan, fynbos 

and campos rupestres, mycorrhizas are likely inef-
fective, explaining a shift from mycorrhizal to non-
mycorrhizal carboxylate-releasing strategies on the 
poorest sites (Zemunik et  al. 2015, 2018). If myc-
orrhizal hyphae are ineffective at scavenging P at 
such a low P availability, the world’s thinnest roots 

Fig. 5  (a) Bulbostylis 
paradoxa (Cyperaceae) 
flowering three days after a 
wildfire. (b) Byrsonima ver-
bascifolia (Malpighiaceae) 
resprouting six days after a 
fire. Both plants were grow-
ing in their natural habitat 
in Chapada dos Veadeiros, 
Goiás, Brazil. Photos: 
Rafael S. Oliveira

Fig. 6  (a) Dasypogon bromeliifolius (pineapple bush), (b) 
Kingia australis (kingia) (both Dasypogonaceae, growing 
at Karrak Reserve in Rosa Brook, south-western Australia), 
and (c) leaf manganese concentrations ([Mn]) expressed per 
unit dry weight (DW) of both Dasypogonaceae and three co-
occurring Banksia species, which were used as positive refer-

ences; all leaf material was collected in natural habitats of the 
species. Positive references comprise co-occurring species that 
are known to release abundant amounts of carboxylates (Zhong 
et  al. 2021). Different letters indicate significantly different 
means determined by ANOVA (p < 0.05). Photos: Hans Lam-
bers
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found in fynbos (Lu et  al. 2022), which are much 
thicker and shorter than fungal hyphae (Raven et al. 
2018), cannot then be expected to be effective as 
scavengers.

An important point to make here is that the 
observation that a plant forms a mycorrhizal asso-
ciation does not provide evidence that it actually 
depends on mycorrhizas to acquire P (Albornoz 
et  al. 2021). In severely P-impoverished environ-
ments, the significance of mycorrhizal associations 
is likely that of protection against pathogens, rather 
than P acquisition (Albornoz et  al. 2017; Lambers 
et al. 2018).

Phosphorus-mining strategies based on release of 
low-molecular-weight exudates are associated with 
mobilisation of a range of other elements

Mycorrhizal symbioses are crucial to scavenge P 
when the soil P availability is relatively low (Smith 
and Read 2008). However, as discussed above, myc-
orrhizas are rather ineffective when soil P availabil-
ity is very low (Lambers et  al. 2015a; Parfitt 1979). 
Under such conditions, P-mining strategies are more 
effective; an aspect of these P-mining strategies 
involves the release of P-mobilising low-molecular 
weight carboxylates or molecules with similar effects 
(Lambers et al. 2018; Nagarajah et al. 1970). Here we 
discuss how P-mobilising exudates not only release P, 
but also a range of other elements. For Mn and silicon 
(Si), this has been explored before (de Tombeur et al. 
2021a; Lambers et  al. 2015b), but here we present 
evidence that it is likely equally relevant for a range 
of other elements.

Phosphorus-mining strategies include cluster roots 
in Proteaceae (Delgado et  al. 2014; Purnell 1960; 
Shane and Lambers 2005), Fabaceae (Allsop and 
Stock 1993; Brundrett and Abbott 1991; Gardner 
et  al. 1981; Lamont 1972) and a range of actinorhi-
zal families (Hurd and Schwintzer 1996; Louis et al. 
1990; Reddell et al. 1997), dauciform roots in many 
Cyperaceae (Güsewell 2017; Selivanov and Ute-
mova 1969; Shane et  al. 2006), capillaroid roots in 
Restionaceae and Anarthriaceae (Hayes et  al. 2014; 
Lambers et  al. 2019; Lamont 1982), sand-binding 
roots in Haemodoraceae and a range of other families 
(Abrahão et al. 2014; Hayes et al. 2014; Smith et al. 
2011), vellozioid roots in Velloziaceae (Abrahão et al. 
2020; Teodoro et al. 2019), and carboxylate-releasing 

roots without obvious specialised structures, e.g., in 
Cicer arietinum (Fabaceae) (Neumann and Röm-
held 1999; Pang et  al. 2018), Vicia faba (Fabaceae) 
(Li et  al. 2013; Wen et  al. 2019), Lotus cornicu-
latus (Fabaceae) (Kidd et  al. 2018) and Kennedia 
(Fabaceae) (Pang et al. 2010; Ryan et al. 2012), Arte-
misia (Asteraceae) and Potentilla (Rosaceae) species 
(Tian et  al. 2021). The discovery of cluster roots in 
species or genera previously unknown to produce 
these specialised structures continues, e.g., in the 
Daviesia group (Mirbelioids; Fabaceae) (Lambers 
et al. 2019; Nge et al. 2020). Likewise, functionally-
equivalent structures continue to be discovered, most 
recently in Cactaceae (Abrahão et al. 2014) and Vel-
loziaceae (Abrahão et al. 2020; Teodoro et al. 2019).

The recent observation that fynbos plants belong 
to the world’s thinnest-rooted plant community 
(Lu et  al. 2022) may be relevant in the context of a 
P-mining strategy as well. We have no information on 
ultrathin roots in campos rupestres, but we do know 
that Discocactus placentiformis (Cactaceae) is a non-
mycorrhizal species that produces abundant root hairs 
from roots with 200 μm diameter that are more than 
1  mm long (Abrahão et  al. 2014). These root hairs 
are thinner than ultrathin fynbos roots. Discocactus 
placentiformis exhibits a very high shoot [Mn] and 
plants grown in nutrient solution release carboxy-
lates; hence it exhibits a mining, rather than a scav-
enging strategy. Likewise, Persoonia (Proteaceae), 
a large genus of 101 species, lacks cluster roots, but 
Persoonia species in kwongan produce abundant long 
root hairs (P.E. Hayes, unpubl.) and show high leaf 
[Mn] (Lambers et  al. 2021). Again, these ultrathin 
structures convey a mining strategy, rather than being 
important to a scavenging approach. Capillaroid roots 
in Restionaceae are also ultrathin and express a min-
ing strategy (Lambers et al. 2019).

In contrast to numerous angiosperms that release 
carboxylates either from specialised root structures or 
from non-specialised roots, as discussed above, Poaceae 
generally do not release large amounts of carboxylates 
(Lambers et  al. 2018). There are exceptions among 
Poaceae, e.g., Avena sativa (Wang et  al. 2016, 2018) 
and Sorghum bicolor (Leiser et  al. 2014; Magalhaes 
et al. 2007). Release of carboxylates in small quantities 
tends to be associated with aluminium (Al) resistance, 
e.g., malate release in Triticum aestivum (Poaceae) 
(Delhaize et al. 1993) and citrate and malate in a Euca-
lyptus (Myrtaceae) clone (Li et  al. 2021). However, 
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Poaceae, which exhibit Strategy II to acquire iron (Fe) 
(Lambers and Oliveira 2019), do release phytosidero-
phores, generally in response to a low availability of Fe 
or zinc (Zn) (Ma 2005; Römheld and Schaaf 2004), but 
they also mobilise Mn (Zhang 1993). Microlaena stip-
oides (Poaceae) is a perennial grass with high leaf [Mn] 
when grown in a low-P habitat (X.M. Zhou, K. Ranat-
hunge & H. Lambers, pers. obs.), but it does not release 
carboxylates in a low-P nutrient solution. Rather, this 
grass releases phytosiderophores when Fe sufficient, 
but P starved (X.M. Zhou, K. Ranathunge & H. Lam-
bers, pers. obs.), suggesting that phytosiderophores may 
play a role in P acquisition under low-P conditions. 
Since Fe-deficient Zea mays (Poaceae) plants accumu-
late more P in their roots and shoots than Fe-sufficient 
ones (Zanin et  al. 2017), phytosiderophores likely 
enhance P availability in soil. Because much inorganic 
P in soil is sorbed onto oxides and hydroxides of Fe in 
acid soils (Barrow et al. 2021), we may expect phyto-
siderophores to mobilise both Fe and P, as well as Mn, 
but this requires further investigation (Box 1).

Di- and tricarboxylates are effective at desorbing P 
sorbed onto oxides and hydroxides of Al and Fe, mobi-
lising Al and Fe at the same time (Earl et  al. 1979; 
Geelhoed et al. 1998; Lopez-Hernandez et al. 1979). 
It is therefore not surprising that there is a strong cor-
relation between leaf [P] and leaf [Al] in carboxylate-
releasing Banksia species (Proteaceae) grown in a 
range of soils collected in natural Banksia habitats 
(Fig.  7). The slope of the regression lines strongly 
depends on the species, because some Banksia spe-
cies, e.g., B. laricina, are clearly Al-accumulating spe-
cies, whereas others, e.g., B. chaemaephyton, exclude 
Al. For Fe, no such correlation is found, because Fe 
uptake in plants tends to be tightly regulated (Bax-
ter et al. 2008; Jeong and Guerinot 2009). This tight 
regulation thus avoids Fe toxicity (Fageria et al. 2008). 
Although Fe acquisition is also tightly controlled in 
Banksia species, unlike that in non-graminaceous 
plants (i.e. typical Strategy I species (Ma 2005)), this 
control in Banksia is not based on regulation of Fe 
reductase (Cawthray et  al. 2021). This finding chal-
lenges the model that is commonly accepted for spe-
cies that exhibit Strategy I to acquire Fe.

In cerrado, Miconia albicans (Melastomataceae) 
accumulates large amounts of Al in its fruits (Pasta 
et al. 2019). This plant likely exhibits a carboxylate-
releasing P-mobilising strategy, as do other Al-accu-
mulating species in cerrado (Amaury de Medeiros 

and Haridasan 1985; de Andrade et  al. 2011; Hari-
dasan and De Araújo 1988).

A carboxylate-releasing strategy may well play a 
role in other severely P-impoverished systems in the 
tropics, but we have very little hard evidence to draw a 
strong conclusion (Box 1). The recent observation that 
many species (51 species in 24 genera, belonging to 
12 families) in tropical forests on P-impoverished soils 
in Borneo hyperaccumulate Mn (van der Ent et  al. 
2019) suggests that these likely depend on carboxylate 
release to acquire P. One might also expect carboxy-
late-releasing strategies to be pervasive in Amazonia, 
but this has yet to be explored (Reichert et al. 2022).

We envisage that many species that accumulate Si, 
which is co-mobilised by P-mobilising carboxylates 
(de Tombeur et al. 2021a), will likely release carboxy-
lates, e.g., Equisetum species (Equisetaceae) (Hodson 
and Evans 1995; Husby 2013) and Phyllostachys het-
erocycla (Poaceae) (Lux et  al. 2003); alternatively, 
phytosiderophores may mobilise Si in Poaceae (Gat-
tullo et al. 2016). The acquisition of P from the C hori-
zon by Equisetum in an Alaskan shrub wetland brings 
it to the soil surface, increasing the amount of P in the 
O horizon (Marsh et al. 2000). This ability of Equise-
tum to act as a nutrient pump, and its accumulation of 
Si might be accounted for by carboxylate release.

Carboxylates may also be indirectly involved in 
mobilising non-essential elements. For example, spe-
cies that accumulate fluoroacetate may be expected 
to release P-mobilising carboxylates, because the 
fluoride (F) availability in the natural habitats of 
these species tends to be very low (Twigg and King 
1991; Vickery and Vickery 1972). Carboxylates may 
mobilise F from substrates that have low F availabil-
ity. Examples of genera that comprise such species 
include Gastrolobium (Fabaceae) in south-western 
Australia (Aplin 1969; Twigg 2014), Amorimia (Mal-
pighiaceae), Arrabidaea (Bignoniaceae) and Palicou-
rea (Rubiaceae) in Brazil (Cook et  al. 2014; Krebs 
et al. 1994; Lee et al. 2012) and Dichapetalum (Dicha-
petalaceae) in southern Africa (Peters et  al. 1960; 
Vickery and Vickery 1972). Palicourea rigida (Rubi-
aceae) is one of the species in its genus that does not 
accumulate fluoroacetate (Cook et  al. 2014). Its leaf 
[Mn] is low compared with that of other species in the 
same habitat (< 50 mg  kg− 1) (Lambers et al. 2015b), 
but it is the only Palicourea species for which leaf 
[Mn] is available. de Tombeur et al. (2021b) reported 
low leaf [Mn] for both Gastrolobium linearifolium and 
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G. nervosum, but for neither is toxicity due to fluoro-
acetate known (Chandler et al. 2002). The leaf [Mn] in 
the highly toxic G. bilobum (Chandler et al. 2002) is 
high (100 mg  kg− 1), compared with the negative ref-
erence but not as high (200  mg  kg− 1) as that of the 
cluster-rooted positive reference (Fig.  8). This indi-
cates that G. bilobum depends on a carboxylate-releas-
ing P-mobilising strategy. Further studies on leaf [Mn] 
and fluoroacetate accumulation in other Gastrolobium 
species as well as species in other fluoroacetate-bear-
ing genera are needed to test the hypothesis that car-
boxylates play a role in F mobilisation.

DeGroote et  al. (2018) suggested that hyperac-
cumulation of Mn in Phytolacca americana (Phy-
tolaccaceae) may be a side effect of a P-acquisition 
mechanism, rather than an adaptation in its own 
right. Likewise, Astragalus (Fabaceae) and Neptu-
nia (Fabaceae) species that hyperaccumulate sele-
nium (Se) (Pinto Irish et al. 2021; Sors et al. 2005), 
and Anacardium occidentale (Anacardiaceae) that is 

known for its high [Se] in both reproductive (edible) 
and vegetative parts (Lim 2012), might take up Se 
because they mobilise it as a result of the release of 
carboxylates under P deficiency (Lan et  al. 2012). 
Although Se is not an essential plant nutrient, it is 
sometimes considered a beneficial element (Silva 
et al. 2020). It may act as an antioxidant in plants at 
low concentrations (1 to 10  µg Se  g− 1 dry weight) 
because of its capacity to enhance the activity of 
radical-scavenging enzymes and the synthesis of non-
enzymatic antioxidant compounds (Chauhan et  al. 
2019). The possible role of carboxylates in mobilising 
Se also warrants further investigation.

We surmise that species that hyperaccumulate ele-
ments such as Al, nickel (Ni), Zn, cadmium (Cd), 
Mn, arsenic (As), Se or rare earth elements (Li et al. 
2018; Liu et al. 2021; Severne and Brooks 1972; Van 
der Ent et al. 2013, 2019; Webb 1954) do so because 
these elements are co-mobilised by carboxylates or 
functionally similar compounds that are released as a 

Fig. 7  Correlation between 
leaf phosphorus (P) and leaf 
aluminium (Al) concentra-
tions expressed on a dry 
weight basis for nine Bank-
sia species grown in soil 
collected from the natural 
habitats of the species. For 
further details, see Denton 
et al. (2007a, b)
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strategy to mobilise and acquire P. This is in line with 
results reviewed by de Tombeur et al. (2021a) on co-
mobilisation of Si and P. This is not to say that all spe-
cies that release carboxylates and co-mobilise metals 
and Si will accumulate these elements, because their 
uptake may involve transporters that are either not 
very specific (Baxter et  al. 2008) or require specific 
transporters that do not occur in all species, as for 
Si (Coskun et al. 2019). When these transporters are 
not specific, accumulation is expected; when specific 
transporters are required, we only expect accumula-
tion in species that express these specific transporters.

Phosphorus-mining strategies based on the release of 
phosphatases

Some plants access organic P, following release of 
acid phosphatases, without concomitant release of car-
boxylates. This is particularly prominent in Fabaceae 
(Houlton et al. 2008; Olde Venterink 2011), including 
Fabaceae in severely P-impoverished habitats (Png et al. 

2017). This strategy is only effective when the organic 
P in soil is relatively mobile, e.g., breakdown prod-
ucts of phospholipids and nucleic acids (Doolette et al. 
2011; Zhong et al. 2021), and would not work to access 
phytate, which strongly sorbs to soil particles (Ander-
son et al. 1974; Turner 2007). For example, in P-impov-
erished soil, Adenanthos cygnorum (Proteaceae), which 
only produces short-lived tiny ineffective cluster roots, 
can hydrolyse organic P that is less tightly bound by 
releasing acid phosphatases without large amounts of 
carboxylates (Q. Shen & H. Lambers, pers. obs.). Inter-
estingly, this species exhibits an alternative P-acqui-
sition strategy in more severely P-impoverished soil. 
Rather than producing cluster roots, it is facilitated by 
neighbouring cluster-root producing Banksia attenuata 
to acquire P (Q. Shen & H. Lambers, pers. obs.).

Facilitation by P-mobilising neighbours

Facilitation occurs when one plant enhances the growth, 
survival and/or fitness of another plant (Callaway 1995; 

Fig. 8  Gastrolobium bilobum (heart-leaf poison; Fabaceae), 
which grows on soils with a low fluoride (F) availability and 
accumulates F as the highly toxic fluoroacetate (Chandler et al. 
2002; Twigg 2014). (a) A tree in its natural habitat in Roley 
Pool Reserve near Perth in south-western Australia; (b) flowers 
and (c) developing fruits of G. bilobum. (d) Leaf manganese 
concentrations ([Mn]) expressed per unit dry weight (DW) 
of G. bilobum and two references species, Hakea prostrata 

(Proteaceae) as positive and Xanthorrhoea preissii (Xanthor-
rhoeaceae) as negative reference. The positive reference is 
known to release abundant amounts of carboxylates (Shane 
et al. 2004a), whereas the negative reference is a species that 
releases very few carboxylates (Zhong et  al. 2021). Different 
letters indicate significantly different means determined by 
ANOVA (p < 0.05). Photos: Hans Lambers
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Fletcher et  al. 2016). Facilitation based on P mobilisa-
tion by carboxylates released by P-efficient neighbours 
is increasingly acknowledged as a strategy to acquire 
P by P-inefficient neighbours (Lambers et  al. 2018; Li 
et al. 2014; Yu et al. 2021). A promising way to explore 
this kind of facilitation is by comparing leaf [Mn] of tar-
geted plants with those of neighbouring reference species 
(Muler et al. 2014; Zhou et al. 2020). Reference species 
should include both a positive reference, known to release 
large amounts of carboxylates and to have high leaf [Mn], 
and a negative reference that releases virtually no carboxy-
lates and has low leaf [Mn] (Zhong et al. 2021; Zhou et al. 
2020). Based on this approach, it is likely that P uptake 
in Agonis flexuosa (Myrtaceae) in south-western Australia 
which does not release carboxylates when P availability is 
low (Huang et al. 2017), is facilitated, possibly by Anar-
thriaceae, Cyperaceae and Restionaceae in the understo-
rey (Fig. 9). Likewise, Bossiaea species (Fabaceae) that 
do not release carboxylates are likely facilitated in a simi-
lar manner, possibly by Proteaceae (Abrahão et al. 2018). 
Interestingly, Bossiaea aquifolium exhibits a high leaf 
[Mn], when compared with a positive reference (Banksia 
grandis) and a negative reference (Xanthorrhoea preissii) 
(X.M. Zhou, K. Ranathunge & H. Lambers, pers. obs.), 
so it likely releases P-mobilising carboxylates. Hibbertia 
hypericoides (Dilleniaceae) is also likely facilitated by 
Proteaceae (Zhong et al. 2021). When digging around its 
roots, it is common to find cluster roots of an adjacent Pro-
teaceae (Fig. 10). In overgrazed Inner Mongolian steppes, 
Cyperaceae function as facilitators of some grasses (Yu 
et al. 2020a, b). Likewise, when these systems are ferti-
lised with N, mimicking N deposition in acid rain, car-
boxylate release from Artemisia frigida (Asteraceae) will 
likely facilitate P uptake in some neighbouring grasses 
(Tian et al. 2021). Since not all grasses are facilitated in 
these systems, the facilitated species are also exhibiting 
a strategy; their traits must somehow match those of the 
facilitator. When roots of Cleistogenes squarrosa and 
Bromus inermis (both Poaceae) interact with a facilitat-
ing neighbour, they tend to show greater plasticity of 
root proliferation or rhizosheath acid phosphatase activ-
ity compared with other non-P-mobilising species (Yu 
et al. 2020a). Greater variation in these root traits strongly 
correlates with increased performance in the presence of 
a facilitator. In rhizobox experiments involving two spe-
cies, Hibbertia racemosa (Dilleniaceae) exhibits more 
root growth towards its carboxylate-releasing Banksia 
attenuata (Proteaceae) neighbour than towards another 
Hibbertia racemosa plant  (de Britto Costa et  al. 2021). 

The facilitated plants may be responding to highly mobile 
allelochemicals released from the facilitator (Delory et al. 
2016; Kong et al. 2018; Li et al. 2020) or microorganisms 
in its rhizosphere (Peñuelas et  al. 2014; van Dam and 
Bouwmeester 2016), but we do not know what these sig-
nals might be. Thus, we can consider plasticity in specific 
root traits or directing growth towards a facilitator as a 
strategy to acquire P mobilised by a P-efficient neighbour, 
rather than concluding that these species lack a strategy 
(Yu et al. 2021).

Facilitation of P acquisition by carboxylate-releas-
ing species may be indirect, as proposed for southern 
South American species on rich volcanic soils with low 
P availability (Lambers et  al. 2012a). This facilitation 
involves shedding P-rich litter, and neighbours access-
ing organic P mediated by exuded or microbial phos-
phatases. This strategy can be expected to work only if 
the organic P is not strongly sorbed onto litter or soil. 
To access compounds like phytate, which strongly sorbs 
onto soil (Anderson et  al. 1974; Turner et  al. 2002), 
release of phosphatases or phytases alone would not 
work (Giles et al. 2017). However, in highly-weathered 
soils, very little organic P occurs as phytate (Turner et al. 
2014; Zhong et al. 2021), and the organic P compounds 
that occur in these soils are more readily hydrolysed by 
rhizosheath phosphatases (Zhong et al. 2021).

Phosphorus-use efficiency: photosynthetic P-use 
efficiency

Whereas plants may express a range of divergent strate-
gies to acquire P in habitats with low P availability, they 
appear to converge when it comes to their photosynthetic 
P-use efficiency (Denton et al. 2007a; Guilherme Pereira 
et al. 2019; Lambers et al. 2012b; Sulpice et al. 2014) and 
P-remobilisation efficiency and proficiency (Denton et al. 
2007a; Guilherme Pereira et al. 2019; Hayes et al. 2014; 
Tsujii et  al. 2017b; Zhong et  al. 2021). Photosynthetic 
P-use efficiency (PPUE) is the rate of carbon-fixation per 
unit leaf P; a higher PPUE indicates a more efficient use 
of P for photosynthesis. Species from severely P-impov-
erished habitats tend to have a very low total leaf [P] 
(~ 0.3 mg  g− 1 in south-western Australia), yet maintain 
photosynthetic rates similar to many crop plants, thus 
achieving a high PPUE (Guilherme Pereira et al. 2019). 
Along the Jurien Bay chronosequence in south-western 
Australia, PPUE is much higher in species on the oldest 
most severely P-impoverished sites (~ 200 µmol  CO2  g− 1 
P  s− 1), compared with that in species on younger P-richer 
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sites (~ 90 µmol  CO2  g− 1 P  s− 1) (Guilherme Pereira 
et al. 2019). This is consistent across a range of species, 
indicating convergence in P-use efficiency. In contrast 
with the variation in P-acquisition strategies, conver-
gent P-use strategies have been identified across a range 
of P-efficient species, including low mature leaf lipid-P 
concentrations, achieved through lipid remodelling, low 
investment in ribosomal RNA (rRNA), low inorganic-P 
concentrations, and a preferential allocation of P to pho-
tosynthetically active mesophyll cells (Guilherme Pereira 
et  al. 2018; Hayes et  al. 2018; Lambers et  al. 2012b; 
Sulpice et al. 2014).

Lipid remodelling is the substitution of phospho-
lipids with lipids that do not contain P (e.g., sulfolipids 
or galactolipids), thus reducing total leaf P (Tjellström 
et al. 2008). Phosphorus-efficient Proteaceae from south-
western Australia show high levels of lipid remodelling 
during leaf development, thus reducing their mature leaf 
[P] without compromising photosynthetic capacity (Kup-
pusamy et al. 2014; Lambers et al. 2012b). In rice (Oryza 
sativa (Poaceae)) plants grown under low-P conditions, 

a low investment in phospholipids is strongly associated 
with a high PPUE, again, with no reduction in photosyn-
thetic capacity (Hayes et al. 2022). We surmise that lipid 
remodelling has little impact on photosynthesis, because 
most phospholipids are found outside the chloroplasts 
and can be remodelled without impacting photosynthesis 
(Mamode Cassim et al. 2019; Nakamura 2017).

Nucleic acid P (predominantly rRNA) is generally 
the largest leaf fraction of organic P in plants grown at 
adequate P supply; 30% in Hordeum vulgare (barley; 
Poaceae) (Chapin and Bieleski 1982), 40% in Oryza 
sativa (Jeong et  al. 2017) and as high as 50% in rice 
grown under low-P conditions (Hayes et  al. 2022). The 
latter increase in relative allocation under low-P condi-
tions reflects a reduction in other P fractions (mainly lipid 
P and inorganic P), rather than an increase in nucleic acid 
P (Hayes et al. 2022; Jeong et al. 2017). Phosphorus-effi-
cient species allocate ~ 30–40% of total P to nucleic-acids, 
but this represents a very low concentration, < 0.1  mg 
 g− 1 (Melaleuca systena (Myrtaceae) and Hakea pros-
trata); thus investment in nucleic acid P (predominantly 

Fig. 9   A severely phos-
phorus (P)-impoverished 
habitat on a c. 2-million-
year-old dune along the 
Warren chronosequence 
near Pemberton in south-
western Australia (Turner 
et al. 2018). (a) Agonis 
flexuosa (Western Austral-
ian peppermint, yellow hor-
izontal arrow) (Myrtaceae) 
is a significant overstorey 
tree that is likely facilitated 
by species in the understo-
rey, for example Anar-
thriaceae, Cyperaceae or 
Restionaceae (white vertical 
arrows) (Huang et al. 2017). 
(b), (c), (d) Details of A. 
flexuosa. (e), (f) Female 
flowers of Anarthria scabra 
(Anarthriaceae), a sig-
nificant component of the 
understorey. Photos: a, c-f: 
Hans Lambers; b; Graham 
Zemunik
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rRNA) is very low in highly P-efficient species (Sulpice 
et al. 2014; Yan et al. 2019). A low investment in rRNA 
significantly reduces total leaf [P], but is not associated 
with slow rates of photosynthesis; however, it may result 
in slower rates of protein turnover, which may impact the 
plant’s ability to rapidly respond to environmental stresses 
(Lambers 2022). This needs further investigation.

Inorganic phosphate is often the largest P fraction 
when P supply is abundant. It closely reflects P supply in 
a range of crop and pasture plants such as Brassica napus 
(Brassicaceae), Cucurbita maxima (Cucurbitaceae) (Pant 
et al. 2008), Oryza sativa (Hayes et al. 2022; Jeong et al. 
2017), Medicago truncatula (Fabaceae) (Branscheid 
et  al. 2010), as well as plants such as Hakea prostrata 
and Melaleuca systena (Shane et  al. 2004b; Yan et  al. 

2019) that are native to south-western Australia. Rice 
plants grown under low-P conditions show a significant 
decrease in inorganic-P concentration, from 30 to 18% of 
total P (Hayes et al. 2022), and similar reductions occur 
in field-collected Melaleuca systena and Hakea pros-
trata, when compared across sites of decreasing soil P 
availability within their natural range (Yan et al. 2019).

In addition to efficient investment of P into chemical 
P fractions, it is also important to consider where within 
a leaf P is actually invested. Phosphorus is preferentially 
allocated to specific leaf cells (Conn and Gilliham 2010). 
Many dicots allocate leaf P preferentially to epidermal 
cells (Conn and Gilliham 2010), whereas eudicots from 
severely P-impoverished habitats (Guilherme Pereira et al. 
2018; Hawkins et al. 2008; Hayes et al. 2018; Shane et al. 
2004b) and monocots (Boursier and Läuchli 1989; Dietz 
et al. 1992; Karley et al. 2000) preferentially allocate P to 
mesophyll cells. By preferentially allocating P to where it 
is needed in the greatest amount, photosynthetically active 
mesophyll cells, rather than metabolically inactive epi-
dermal cells, these species are more P-efficient (Stitt et al. 
2010; Tsujii et al. 2017a). This efficient P allocation is not 
restricted to species from kwongan, cerrado and fynbos 
(Guilherme Pereira et al. 2018; Hayes et al. 2018; Lam-
bers et  al. 2015a), but has also been found in a tropical 
tree species from a P-impoverished site in Borneo (Tsujii 
et  al. 2017a). Proteaceae from severely P-impoverished 
south-western Australia (high PPUE) allocate P to meso-
phyll cells, whereas Proteaceae from P-richer regions in 
Chile (low PPUE) do not (Hayes et al. 2018), with similar 
observations made for other eudicot families (Guilherme 
Pereira et al. 2018). This P-use strategy therefore reflects 
the habitat in which species have evolved, rather than their 
phylogeny, and is an excellent example of a common P-use 
strategy in P-efficient species.

Phosphorus-use efficiency: P-remobilisation 
efficiency

A high remobilisation of P from senescing organs (mainly 
leaves) is important to reduce P loss, making that P avail-
able for growth elsewhere in the plant and preventing its 
loss to the environment, increasing overall P-use effi-
ciency. Leaf P-resorption efficiency is the proportion of 
P resorbed, while P-resorption proficiency is the final 
concentration to which P is reduced in senescing leaves 
(Aerts and Chapin 1999; Killingbeck 1996). High levels 
of P-resorption efficiency and proficiency are common 
among species from severely P-impoverished systems, 

Fig. 10  Hibbertia hypericoides (Dilleniaceae) surrounded by 
cluster roots (pointed at by arrows) produced by a Banksia spe-
cies (Proteaceae) in its natural habitat in Alison Baird Reserve 
in the City of Gosnells, south-western Australia (Tauss et  al. 
2019). Photo: Kosala Ranathunge
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with as much as 90% being resorbed from senescing leaves 
in highly P-efficient Proteaceae and a community average 
of 79% in the most P-limited stage of the Jurien Bay chron-
osequence (south-western Australia) (Denton et al. 2007a; 
Hayes et al. 2014). Furthermore, species that preferentially 
allocate P to mesophyll cells also tend to have a more effi-
cient P remobilisation, suggesting a possible link between 
these two strategies and emphasising the commonality of 
these traits among species from P-impoverished systems.

Results on cerrado species indicate a highly effi-
cient P remobilisation, supporting the idea that cerrado 
plants, like those in fynbos and kwongan, are limited 
by P (Kozovits et  al. 2007). However, that does not 
mean that P addition can be expected to enhance the 
productivity of individual plants in this system, as Lu 
et al. (2022) hypothesised for fynbos plants. Rather, P 
addition shifts the ecosystem, replacing slow-growing 
highly P-efficient species by faster-growing less effi-
cient ones (Specht 1963). Heath species are excluded 
from more fertile soils by harmful effects on seedlings 
(P toxicity; Lambers et al. 2013; Nichols et al. 1979) 
and competition from more vigorous herbaceous plants 
in this environment (Heddle and Specht 1975).

In tropical tree species on Mount Kinabalu, Borneo, at 
severely P-impoverished sites, P-remobilisation efficiency 
was 93% in species from the most severely P-impover-
ished site (Tsujii et al. 2017b). Phosphorus remobilisation 

was greatest from the phospholipid and nucleic acid 
fractions, and least for the easily soluble fraction, pos-
sibly because breakdown of phospholipids and nucleic 
acids produces compounds captured in the easily soluble 
fraction. The residual fraction was also remobilised to a 
smaller extent. For species with higher P-remobilisation 
efficiency, resorption from the residual fraction was rela-
tively high and similar in magnitude to that of labile frac-
tions. This suggests that tree species inhabiting P-impov-
erished habitats increase their P-remobilisation efficiency 
by greater degradation of recalcitrant compounds, which 
are likely phosphorylated proteins (Tsujii et al. 2017b).

Phosphorus-use efficiency: leaf longevity

Whilst PPUE gives an indication of instantaneous P-use 
efficiency and P remobilisation provides insight into how 
much P is remobilised from senescing organs to be used 
elsewhere in the plant, as opposed to being lost in litter, 
neither provides information on the use of P over the life-
time of a leaf. To capture this, we need to know how long 
a leaf functions and uses the P invested in it. A low PPUE 
and P-remobilisation efficiency can be compensated by a 
long leaf longevity (Berendse and Aerts 1987). Leaf lon-
gevity varies substantially among species growing at the 
same site in kwongan. For a Banksia woodland with a 
kwongan understorey Veneklaas and Poot (2003) found 

Fig. 11  Phosphorus (P)-acquisition strategies as dependent on 
soil age and time since fire in ancient landscapes. The changes 
in soil P with soil age are based on Walker and Syers (1976) 
as modified by Turner and Condron (2013). The P-acquisition 
strategies and effects of fire on soil P are discussed in detail in 

this review. Note that some species may express multiple strat-
egies, for example, dependent on their developmental stage, 
time since a major disturbance such as fire, or location in the 
landscape, as discussed in this review

Plant Soil (2022) 476:133–160148



1 3
Vol.: (0123456789)

an average leaf longevity of 2.8 years for trees (deep-
rooted), 3.1 years for other deep-rooted species, and 1.7 
years for shallow-rooted species. The highest value was 
found for Macrozamia riedlei (Zamiaceae), 8.8 years, 
compensating for its low PPUE (57 µmol  CO2  g− 1 P  s− 1) 
because of its modest rates of photosynthesis (11.6 µmol 
 CO2  m− 2   s− 1) and relatively high leaf [P] (600 µg  g− 1 
DW) (P.E. Hayes and H. Lambers, unpubl.).

Perspectives and knowledge gaps

The diversity of P-acquisition and P-use strategies is one 
aspect contributing to the hyperdiversity in biodiversity 
hotspots. Many of these hyperdiverse systems are fire-
prone and some species express strategies to acquire P 
after a fire that temporarily increases the soil P availabil-
ity (Fig. 11). While fire is able to provide a temporary 
flush in soil P, we know very little about the dynamics 
of soil P in the first few months after a fire and what root 
traits allow rapid access to P in ash (Box 1; Fig. 12).

The P-acquisition strategies discussed in this 
review are equally relevant for ecosystems where P 
is increasingly becoming limiting for primary pro-
ductivity, because of either overgrazing (Yu et  al. 
2020a, b), atmospheric N deposition (Tian et  al. 
2021, 2022) or global warming (Zhou et al. 2021). 
Many highly P-efficient species are excluded from 
more fertile soils by harmful effects on seedling 
growth (Lambers et  al. 2013; Nichols et  al. 1979) 
and competition from more vigorous herbaceous 
plants in this environment (Heddle and Specht 
1975). A recent global meta-analysis revealed that 
P limitation of aboveground primary productivity in 
natural terrestrial ecosystems is far more common 
than widely acknowledged (Hou et al. 2020). There-
fore, P-acquisition mechanisms, including those that 
maximise benefits resulting from facilitation based 
on P-mobilisation by neighbours, are likely perva-
sive and worth further consideration. Facilitation of 
a plant’s P uptake by P-mobilising neighbours is a 

Box 1

1. What is the role of ‘ultrathin’ roots of fynbos plants (Lu et al. 2022), given 

low pre-fire values (Fig. 12; Brown and Mitchell 1986)?
2. What are the root traits that allow fast-growing fire ephemerals (Cowling 

et al. 1997; Pate et al. 1985) to rapidly acquire P that has become available 
 

3. What are the root traits that allow plants that are the first to resprout 

a role (Oliveira 2004)? 
4. How common are carboxylate-releasing P-mobilising strategies in other 

biodiverse P-impoverished regions such as Amazonia (Reichert et al. 2022) 
and Borneo (van der Ent et al. 2019)?

5. What are the root traits that favour being facilitated by carboxylate-
releasing P-mobilising species (Yu et al. 2021)?

6.

al. 2021)?
7. How widespread among Poaceae is the release of phytosiderophores in 

response to P deficiency (X.M. Zhou, K. Ranathunge & H. Lambers, pers. obs.)?
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P-acquisition strategy in itself, and we still under-
stand very little about the root traits that favour 
facilitation and what allows a plant to preferentially 
position its roots near those of a facilitating neigh-
bour (de Britto Costa et al. 2021) (Box 1).

Analyses of leaf [Mn] as a proxy for rhizosphere 
carboxylate concentrations or functionally similar 
compounds in combination with glasshouse stud-
ies on selected species to verify the proxy, provide 
a novel tool to explore belowground interactions 
(Lambers et al. 2021; Zhong et al. 2021; Zhou et al. 
2020). This has led to the conclusion that phytosi-
derophores, which are well known to be released by 
grass roots and to mobilise Fe, Zn and Mn, are also 
released in response to P deficiency in Microlaena 
stipoides (Poaceae) (X.M. Zhou, K. Ranathunge & 
H. Lambers, pers. obs.). We do not know how wide-
spread this strategy is among grasses and how it is 
controlled by P deficiency (Box 1).

The interactions we discussed when focusing on 
P-impoverished landscapes are also highly relevant 
in agroecosystems based on intercropping (Dowling 
et al. 2021; Homulle et al. 2022; Li et al. 2014). As we 
are beginning to understand the subtleties of below-
ground interactions involving P-acquisition strategies 

(Yu et  al. 2021), we can work towards optimisation 
of combinations of crop species and genotypes (Cong 
et  al. 2020; Dowling et  al. 2021). When aiming to 
restore disturbed sites in landscapes where P availabil-
ity is very low, for example after mining or farming, 
the mechanisms discussed in this review, especially 
those focusing on facilitation of P acquisition based 
on carboxylate release, are highly relevant. Without 
suitable facilitators, species that depend on facilitation 
may never make it and hence be lacking from restored 
sites. It will be a challenge to identify suitable combi-
nations of facilitators and facilitates species (Box 1).

In summary, in ancient landscapes there are a 
range of P-acquisition strategies that plants exhibit, 
some of which have been given little attention so 
far, especially those involving the use of P from ash 
(Box 1) and P released by facilitators (Box 1). Under-
standing this variation of strategies will inform man-
agement and restoration of hyperdiverse systems in 
P-impoverished fire-prone landscapes and contribute 
to greater P-use efficiency in managed landscapes.
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