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ABSTRACT 

Developmental and epileptic encephalopathies (DEE) are characterized by pharmacoresistant 

seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures 

(EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including 

gain-of-function variants in KCNT1, have been found to play a major role in the etiology of 

EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using 

a gene silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying 

the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the 

frequent, debilitating seizures and developmental compromise that are seen in patients. After a 

single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at 

postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, 

and overall survival was extended compared to mice treated with a control ASO (non-hybridizing 

sequence). ASO administration at neonatal age was also well-tolerated and effective in controlling 

seizures and extending the lifespan of treated animals. The data presented here provide proof of 

concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated 

epilepsies.  
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INTRODUCTION 

Epilepsy of infancy with migrating focal seizures (EIMFS) (previously known as malignant 

migrating partial seizures of infancy) is one of the most severe developmental and epileptic 

encephalopathy (DEE) syndromes (1). Pharmacoresistant, nearly continuous multifocal seizures 

begin to occur during the first six months of life and are accompanied by a marked developmental 

regression or stagnation (1, 2). In addition, major axial hypotonia, as well as pyramidal and 

extrapyramidal signs become more apparent with the progressive development of athetotic 

movements and other movement disorders (2–4). Many of these patients also display microcephaly 

and strabismus (2–4). The prognosis of this condition is very poor with most patients being non-

verbal and non-ambulatory (2, 4, 5). Importantly, this syndrome is associated with a high mortality 

rate (ranging from 17% to 33%) (1, 2, 5), that can occur as a consequence of prolonged status 

epilepticus and respiratory failure (2). 

Pathogenic gene variants have been identified in KCNT1 and account for up to 50% of the etiology 

of EIMFS (1, 3, 6–10). KCNT1 encodes the sodium activated potassium channel protein KNa1.1 

which mediates an outward rectifying K+ current related to the slow hyperpolarization that follows 

repetitive action potential firing (11–16). Functional studies have shown that KCNT1 pathogenic 

variants associated with epilepsy result in an overall gain of function effect on the channel activity, 

increasing the current up to 22- fold compared to the wild-type channel (6, 11, 17). For a subset of 

these pathogenic variants, changes in voltage dependence or Na+ sensitivity contribute to the 

increase in current (18, 19). Gain of function variants in KCNT1 have also been found in patients 

with other epileptic syndromes including Autosomal Dominant Nocturnal Frontal Lobe Epilepsy, 

Ohtahara syndrome, and Lennox-Gastaut syndrome (3, 5, 7, 8, 20, 21). The antiarrhythmic drug 

quinidine has been shown to reduce the pathogenic currents produced by some of the mutant 
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KCNT1 channels in vitro (11, 17, 22–25) but has had a limited clinical translation due to unwanted 

side effects (QTc prolongation and increased risk for arrhythmia) thereby resulting in a limited 

therapeutic window (25–37). To date, there is no effective therapy to treat KCNT1 associated 

epilepsies.  

RNA-targeted therapies have recently received significant attention for the recurrent examples of 

preclinical and clinical success, as well as fast-tracked development (38, 39). Some of these 

approaches are proving to be disease-modifying in the treatment of progressive neurological 

conditions (40, 41). Of the RNA-targeted therapies, which include antisense oligonucleotides 

(ASOs), short interfering RNA (siRNA), antagomirs, microRNA mimetics, and DNAzymes, 

ASOs have provided the most impactful clinical benefit (38, 41, 42). ASOs have emerged as a 

therapeutic option for orphan pediatric neurogenetic conditions including spinal muscular atrophy 

(43) and Duchenne’s muscular dystrophy (44). ASOs are synthetic, single-stranded nucleic acids 

typically of 10 to 30 nucleotides in length that bind to a specific complementary mRNA target 

sequence and modulate the expression of a specific gene at the RNA level (42). This control is 

achieved by different molecular mechanisms, from the steric block of ribosomal activity to 

regulation of RNA splicing (39, 42). ASOs that harness endogenous RNase H1 mechanisms are 

commonly used to specifically reduce the expression of mRNAs. These ASOs are referred to as 

gapmer ASOs because they contain central block of deoxynucleotide monomers needed to induce 

the cleavage of target mRNA (39, 42). The major advantage of ASOs as a therapeutic approach is 

that the interaction with the target is considerably more specific than traditional small-molecule 

based therapeutics (42). 

To investigate the therapeutic potential of reducing KCNT1 expression we evaluated the efficacy 

of a Kcnt1 gapmer ASO in a homozygous mouse model of a KCNT1-DEE pathogenic variant. 
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Mice homozygous for the Kcnt1 variant p.P905L (L/L) display spontaneous seizures, abundant 

interictal activity in the electrocorticogram (ECoG), behavioral abnormalities, and early death. 

After a single intracerebroventricular (i.c.v.) bolus injection of Kcnt1 gapmer ASO at postnatal 

day 40, L/L mice showed a marked knockdown of Kcnt1 mRNA, resulting in an almost complete 

abolition of seizures, prolonged survival, and improved performance in behavioral tests. A dose of 

gapmer ASO that produced >90% Kcnt1 mRNA knockdown to mimic exaggerated pharmacology 

in wild-type mice was well tolerated suggesting minimal on-target liability. The preclinical 

evidence presented here provides proof of concept for ASO based gene silencing as a therapeutic 

approach in KCNT1 gain of function epilepsies. 

RESULTS 

The Kcnt1 L/L model of KCNT1 encephalopathy 

Kcnt1 p.P905L heterozygous mice (L/+) showed no evident epileptic or behavioral phenotype 

(Figures 1 and 2) and no increased susceptibility to chemical or thermally induced seizures 

(Supplemental Figure 1, A-D). In contrast, homozygous mice (L/L) were smaller in size (Figure 

1 A and B) and had a markedly reduced lifespan compared to their littermates (median survival of 

43 days) (Figure 1C). In addition, the yield of L/L mice, born from L/+ breeders, was not 

consistent with the predicted Mendelian ratio of 1:2:1 (+/+: L/+: L/L) with only 8.8% of pups born 

found to be L/L by age P8-12 (age at which mice were sampled for genotyping) (Supplemental 

Figure 1E). Spontaneous tonic-clonic seizures were observed as early as P18. Video monitoring 

and handling showed diverse seizure phenotypes, with milder seizures lasting approximately 1 to 

2 minutes and involving clonic movements of the forelimbs, neck and head while in a seated 

posture (Video 1), which were consistent with a Racine seizure intensity stage of 3 to 4 (45). More 

severe seizures including generalized tonic-clonic episodes with Straub tail, wild running and 
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jumping, loss of postural tone and tonic hindlimb extension (Racine 5 and 6). Isolated atonic 

seizures (pure postural tone loss) were also observed. Milder seizures, in general, were not 

followed by an evident postictal state, and the mice quickly recovered (Video 2-4). Longer and 

generalized seizures were followed by a short period of complete immobility and rapid breathing 

with later episodes of reduced mobility lasting up to 10 minutes. Status epilepticus (a seizure 

lasting > 5 minutes) was also observed and in most cases resulted in death. The frequency of tonic-

clonic seizures was variable between mice (Figure 1F). ECoG recordings revealed the presence 

of frequent high amplitude interictal acute spikes in the L/L mice, (Figure 1D) this signal was 

absent in L/+ and +/+ (Figure 1E) and did not correlate with changes in behavior. Convulsive 

seizures were associated with ictal ECoG signals characterized by clusters of high-amplitude sharp 

wave activity followed by electrical suppression at the end of the seizure (Figure 1D, Video 5). 

No differences in seizure frequency or survival were observed based on sex (data not shown). 

Behavioral abnormalities were also found in the L/L mice. Nest building ability, an identified 

measure of the general wellbeing in mice (46, 47), has shown to be sensitive to brain lesions, the 

application of pharmacological agents, and the effects of genetic variants (48). In mouse models, 

instinctual nest-building performance is used to simultaneously assess general social behavior, 

cognitive, and motor performance (49). At P40, the nesting behavior in the L/L mice was markedly 

impaired compared to their +/+ and L/+ littermates (Figure 2, A and B).  

Gross motor malfunction and exploratory behaviors were tested on the locomotor cell test and 

revealed a tendency towards hyperactivity, especially within the first 20 minutes of testing. The 

light/dark box test showed L/L mice are prone to anxiety-like traits based on the limited time spent 

on the light chamber (Figure 2D). The elevated plus maze (EPM) was used to further explore 

anxiety-like traits. Interestingly, the L/L mice showed a marked preference for the open arms 
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compared to their littermates (Figure 2E), suggesting a reduced fear for open and elevated spaces. 

Lastly, alterations in social behavior and cognition were tested in L/L mice using the three-

chamber social interaction test and Y-maze test, respectively, but showed no significant difference 

compared to +/+ mice (Supplemental Figure 1, F-G). 

ASO-mediated Kcnt1 reduction rescues the seizure phenotype in L/L mice and improves 

overall behavior and survival. 

To determine if the levels of Kcnt1 mRNA could be reduced in a dose-dependent fashion we tested 

a mouse-specific Kcnt1 ASO in adult +/+ mice. At P40, Kcnt1 ASO was delivered by i.c.v. 

injection with a range of doses (10, 30, 100, 300 and, 500 μg) and vehicle (PBS)-treated animals 

received an injection of 10 μl of sterile Ca2+ and Mg2+ free PBS. Two weeks after treatment, the 

level of Kcnt1 mRNA was determined using quantitative reverse transcription PCR (RT-qPCR) 

and compared to that of vehicle (PBS)-treated mice. The administration of Kcnt1 ASO produced 

a dose-dependent knockdown of Kcnt1 mRNA in the cortex and the spinal cord (Figure 3, A and 

B). We then determined the specificity of the Kcnt1-targetted knockdown by evaluating the 

expression of the highly homologous gene Kcnt2 in +/+ mice treated with a bolus i.c.v. injection 

of 250 μg Kcnt1 ASO and control ASO (non-hybridizing sequence). Kcnt1 ASO produced a robust 

knockdown of Kcnt1 mRNA in the cortex compared to untreated mice (Figure 3C) but did not 

affect the expression of Kcnt2 mRNA (Figure 3D). No significant differences in Kcnt1 gene 

expression were found between control ASO treated and untreated mice, confirming that the 

knockdown observed in Kcnt1 ASO treated mice resulted from on-target hybridization. A 

consistent reduction of the protein was observed 2 weeks after injection with ED50, ED80 and 500 

μg of Kcnt1 ASO (Figure 3, E-F). Using a pan-ASO antibody, which recognizes the 
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phosphorothioate (PS) backbone of the ASO (50), we confirmed broad ASO distribution in the 

mouse brain after a single bolus injection of 75 μg of Kcnt1 ASO (Figures 3G). 

ASO mediated Kcnt1 mRNA reduction rescues the seizure phenotype in L/L mice and 

improves overall behavior and survival 

Survival, seizure frequency, and behavioral markers (nesting, exploratory behavior, anxiety like 

[light/dark box test, and EPM]) were examined to determine the efficacy of Kcnt1 knockdown. 

Adult L/L mice were treated with a single bolus of Kcnt1 ASO at either ED50 (35μg), ED80 

(75μg), or 500 μg. The control group received a dose of 500 μg of control ASO.  Treating adult 

symptomatic L/L mice with a single dose of Kcnt1 ASO resulted in an increase in survival. This 

effect was dose-dependent and statistically significant across all the tested doses (median survival 

of 209 days for ED50, 256 for ED80 and >300 days for 500 μg Kcnt1 ASO) (Figure 4B). In 

contrast, the animals treated with control ASO displayed a survival consistent with that of 

untreated L/L mice (median survival of 73 days for control ASO and 65 days for untreated mice). 

Mortality was often related to seizure and presented as status epilepticus. 

L/L mice treated with a dose of ED80 and 500 μg of Kcnt1 ASO had a significant reduction in the 

total seizure frequency; while the difference in the ED50 group was not statistically significant, a 

trend towards reduction was observed. In the group that received the control ASO, a significant 

increase in seizure frequency was seen (Figure 4D). Further, the presence of acute spikes was also 

reduced in Kcnt1 ASO treated animals three weeks after treatment (Figure 4C). Age-matched 

untreated L/L mice were used as controls for ECoG, as the severity of the Kcnt1 phenotype 

prohibited meaningful electrical recordings to be made in mice treated with control ASOs. During  

ECoG recording, none of the ASO treated mice presented seizures, while there were 5 seizures 

recorded in the untreated group (representative traces of ECoG signal in treated and untreated 
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animals are presented in Supplemental Figure 3). Altogether, these data indicate that the selective 

knockdown of Kcnt1 mRNA has an anticonvulsant effect in our mouse model. In addition, mice 

treated with the Kcnt1 ASO became less likely to exhibit seizures during routine handling, with no 

mice presenting seizures during the period of behavioral testing. In contrast, control ASO-treated 

mice continued to present seizures during routine handling. 

Nesting behavior was evaluated 10-13 days after i.c.v. injection. 48-hour after receiving new 

nesting material, an improvement in nesting behavior was noticed in all animals treated with Kcnt1 

ASO, independent of the dose received (Figure 4, E-F). Control treated mice displayed poor 

nesting behavior, similar to what we observed in untreated L/L mice. 

L/L mice treated with Kcnt1 ASO ED50 and ED80 showed an exploratory behavior similar to that 

of +/+, while mice that received 500 μg showed a markedly reduced exploratory behavior (Figure 

5A). In the light/dark box test, we found no difference in the time spent in the light compartment 

between mice treated with Kcnt1 ASO and control ASO, showing an increase in this parameter for 

all mice that received an i.c.v. injection (Figure 5B). The EPM test showed that independent of 

the dose received, all Kcnt1 ASO treated mice spent less time in the open arms of the maze 

compared to control ASO treated mice (Figure 5C). These data indicate that the ASO silencing of 

Kcnt1 not only reduces seizure burden but also normalizes behavioral markers of disease. 

Treatment with Kcnt1 ASO did not alter the behavior of the L/L mice in the Y-maze compared to 

untreated mice (Figure 5D). 

ASO-mediated Kcnt1 reduction improves general health and allows mating behavior, 

pregnancy and parental behavior of L/L mice 

 Due to the severity of the L/L mice phenotype, early mortality and behavioral abnormalities 

impaired normal mating behavior. To test if mating behavior could be restored, L/L mice received 
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a single dose of 250 μg of Kcnt1 ASO at P40. Two weeks after injection, male and female mice 

were set up as breeding pairs or trios. ASO treated dams gave birth to litters of 5 to 8 homozygous 

pups. Although the first litter was often neglected, both male and female mice displayed effective 

parental behavior after the second pregnancy. The resulting L/L offspring displayed a phenotype 

as severe as the homozygous mice obtained from heterozygous breeding if left untreated. 

Neonatal administration of Kcnt1 ASO is efficacious and well tolerated 

To determine if the levels of Kcnt1 mRNA could be reduced in a dose-dependent fashion at the 

neonatal period, we tested the Kcnt1 ASO in newborn +/+ mice. At P2, the Kcnt1 ASO was 

delivered by ICV injection with a range of doses (0.5, 1, 1.5, 3, 6 and 30 μg) and vehicle (PBS)-

treated animals received an injection of 2 μl of sterile Ca2+ and Mg2+ free PBS. Two weeks after 

treatment, the level of Kcnt1 mRNA was determined and compared to that of vehicle (PBS)-

injected mice. The early administration of Kcnt1 ASO produced a dose-dependent knockdown of 

Kcnt1 mRNA in the mouse cortex (Figure 6A).  

Then we examined whether the early administration of Kcnt1 ASO could prevent the development 

of a disease phenotype in the L/L model. At P2-P3, L/L mice received a single i.c.v. bolus injection 

of 3.4 μg (ED80), while control ASO mice received an injection of 50 μg. Kcnt1 ASO treated mice 

showed extended survival, with the first deaths being observed at P135 (Figure 6B) and displaying 

approximately 25% mortality by P150. Similarly, control ASO treated mice also showed a shorter 

yet significant improvement in survival (median survival of 63 days compared to 46.5 for untreated 

mice). Seizure frequency improved significantly in mice treated with Kcnt1 ASO (Figure 6E). 

Bodyweight was measured at P40 and was increased for Kcnt1 ASO L/L mice compared to that 

of controls but overall, body weight was still lower compared to +/+ mice (Figure 6C). Similar to 

adult treated L/L mice, behavioral markers including nesting and hyperactive exploratory activity 
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(locomotor cells) and EPM showed improvement compared to untreated mice (Figure 6, D, G, 

H).  

Considering the likelihood that an ASO therapy for KCNT1-DEE in patients would require chronic 

ASO administration, we tested if a second dose was tolerated. A small group of +/+ mice received 

a 3.4 μg dose of Kcnt1 ASO at P2 and a second injection of either Kcnt1 ASO (35 or 75 μg) or 

control ASO (500 μg) at P30. The procedure was tolerated in all treatment groups. By P42, the 

administration of a second dose of 75 μg Kcnt1 ASO showed a further reduction of Kcnt1 mRNA 

compared to mice receiving control ASO on the second injection (Figure 6I).  

In a small subset of L/L mice (n=4) treated at P2, we tested if a second dose of Kcnt1 ASO (75 μg) 

could be effective after the animals have become symptomatic (i.e. nesting behavior was deficient 

and seizures at handling were observed in 1 mouse). In these cases, a further extension in survival 

was observed (Figure 6J) and nesting behavior was rescued (Figure 6K). 

ASO-mediated Kcnt1 reduction in +/+ mice is well tolerated  

To evaluate the consequence of Kcnt1 reduction, we treated adult +/+ mice with 500 μg Kcnt1 

ASO and performed an array of behavior tests. ASO-mediated knockdown of Kcnt1 mRNA in +/+ 

mice did not affect their nesting behavior (Supplemental Figure 2A) and was consistent with a 

previously reported study on a Kcnt1 knockout (KO) mouse model. The exploratory behavior in 

the locomotor cell test was similar to that of control-ASO treated mice and although the total 

ambulatory distance explored displayed a tendency towards reduced activity, this difference did 

not reach statistical significance (Supplemental Figure 2B). Similarly, a tendency to spend less 

time in the light chamber was observed (Supplemental Figure 2C). 
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On the EPM, +/+ Kcnt1 ASO treated mice showed a behavior similar to that observed in L/L Kcnt1 

ASO treated mice, with a reduction in the time spent in the open arms (Supplemental Figure 2D).  

In the three-chamber social interaction test, no difference was found between control and Kcnt1 

ASO treated mice in the time spent with an intruder mouse (Supplemental Figure 2E). Finally, 

to further explore changes in memory, the mice were tested in the Y maze. A reduction in the 

median time spent in the novel arm was observed in Kcnt1 ASO treated mice compared to control 

(Supplemental Figure 2F). 
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DISCUSSION 

 

In this study we investigated the potential of an ASO-based gene silencing approach as a potential 

therapy for KCNT1-DEE. We have shown a gene-specific and dose-dependent knockdown of 

Kcnt1 mRNA achieved with the Kcnt1 ASO in L/L mice which significantly improved survival, 

epilepsy, behavioral comorbidities and complete rescue of mating.  

We first developed a rodent model and established disease biomarkers in homozygous animals 

that could be used for therapeutic screening. While heterozygosity for a gain of function variant in 

KCNT1 is sufficient to result in a disease state in patients with gain of function KCNT1 variants, 

this was not replicated in our mouse model. L/+ mice did not display an epileptic phenotype, 

increased susceptibility to seizures or pathologic behavioral changes. This is not completely 

unexpected for mouse models of genetic epilepsy demonstrate considerable phenotypic variability 

based on factors including strain (51) and sub- strain (52) used. In contrast, homozygous mice 

presented a robust epilepsy phenotype, behavioral deficits and a progressive deteriorating course 

resulting in reduced survival, thus presenting a valuable tool for drug screening. 

Recently, Shore et al reported on a gain of function rodent model of KCNT1 epilepsy.  This model 

was based on the KCNT1 p.Y796H variant, which has been identified as causing both inherited 

and de novo severe, early-onset Autosomal Dominant Nocturnal Frontal Lobe Epilepsy 

(ADNFLE) (25, 53). Patients with ADNFLE present with frequent, mostly nocturnal seizures and 

neuropsychiatric features (3, 7, 25, 27). Similar to our model, the Kcnt1 p.Y777H heterozygous 

mice did not exhibit spontaneous epileptiform activity while the homozygous mice showed 

generalized tonic-clonic seizures and tonic seizures. In vivo electrocorticography in pups localized 

these seizures to the somatosensory cortex and electrophysiology showed changes in membrane 

excitability with inhibitory-neuron-specific impairments inaction potential firing. Furthermore, the 
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Kcnt1 p.Y777H homozygous mice exhibited a hyperactivity phenotype in the open field and poor 

nesting behaviour, similar to what we observed in our model. Interestingly, the p.Y777H model 

did not show alterations on the elevated plus maze, opposite to what we observed with our 

homozygous model.  

Within 2 weeks of bolus administration, ED80 and 500 μg doses of Kcnt1 ASO produced a 

significant reversal of the epileptic phenotype. While dosing at ED50 showed only a trend towards 

seizure reduction, which could have been influenced by the sample size on this treatment group. 

A clear dose-dependent effect was observed for survival of adult L/L treated mice. Overall, the 

effectiveness of the ASO approach in controlling seizure activity confirms that brain 

hyperexcitability in this disease model is driven by Kcnt1 gain of function and therefore by 

reducing the excessive channel activity the seizure threshold can be modified.  

A critical concern shared among neurodevelopmental conditions and neurodegenerative disorders 

is whether disease progression can be stopped and the cognitive capacity preserved or improved 

once the pathological process has begun. Importantly, we have shown here that the downregulation 

of Kcnt1 can be safe and effective in both neonatal (pre-symptomatic) and adult (symptomatic) 

mice by not only in controlling spontaneous seizures but also providing disease modifying effects 

as indicated by improvements in cognition and behavior.  

We also asked if the down-regulatory ASOs had any harmful effects derived from excessive 

knockdown. Studies on Kcnt1 KO mice have reported some mild behavioral and cognitive 

alterations (54, 55). Here we show that the administration of a high dose of Kcnt1 ASO to adult 

(500 μg) and neonatal (30 μg) +/+ mice did not result in serious adverse events. Treated adult mice 

showed a nesting behavior similar to that of untreated mice, and consistent with the previously 

reported phenotype of Kcnt1 KO (55).  
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A reduced exploratory behavior in the open field was reported in the Kcnt1 KO model 

characterization published by Bausch et al (54). Interestingly, while the initial exploratory activity 

of wild-type mice treated with Kcnt1 ASO was similar to that of the control treated group, we 

identified a trend that suggests an overall reduced exploratory activity. Similarly, in L/L mice 

treated with 500 g of Kcnt1 ASO, we observed a significant reduction in locomotor activity when 

compared to +/+. This behavior completely contrasted the hyperactivity observed in the untreated 

L/L mice and further supports that Kcnt1 plays a role in the exploratory response to new 

environments. While seizures precluded us from testing the behavioral battery before and after 

treatment in our model, the overall improvement in survival and the observed improvement in 

behavior compared to untreated and ASO control treated mice are consistent with significant 

improvement in cognition.  

RNA-targeted ASO technology is an innovative therapeutic modality that has already achieved 

clinical success as an effective treatment for rare neurogenetic conditions like spinal muscular 

atrophy (43), Duchene’s muscular dystrophy (44) and hereditary transthyretin amyloidosis (56). 

The FDA approval of nusinersen marked an important milestone for ASO technology. Nusinersen 

has demonstrated the disease-modifying properties and fulfilled the promise of precision medicine, 

opening a path for the further development of other RNA based therapies for neurogenetic diseases 

(38). Although CNS targeting ASOs require direct intrathecal delivery to be effective, this invasive 

approach is compensated by the extended half-life in the target tissue, and the wide brain 

distribution and high cellular uptake (57–60) which allows for less frequent dosing. In addition, 

direct delivery to the CSF compartment precludes the ASO from being distributed to the rest of 

the body, limiting the occurrence of adverse effects (57). 
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There is growing evidence that supports the development of ASO as a therapy for DEE. Successful 

use of ASOs for severe epilepsies has been reported in preclinical models of SCN1A (61), SCN2A 

(62) and SCN8A encephalopathy (63). Targeted Augmentation of Nuclear Gene Output (TANGO) 

ASO targets naturally occurring, non-productive alternative splicing events to specifically reduce 

nonproductive mRNA and increase productive mRNA and protein of a target gene (64). Therefore, 

this approach can be used to address conditions with monogenic loss-of-function as a 

pathomechanism (64). Huat Lim showed that upregulation is not limited by the size of the gene 

and the effect is titratable. Further, Hu et al have shown that the TANGO ASO modality can be 

used to upregulate the WT allele and compensate for the defective allele in a model of Dravet 

Syndrome (SCN1A encephalopathy). A significant reduction of the incidence of seizures and 

mortality related to sudden unexpected death in epilepsy were observed after a single i.c.v. 

administration of a TANGO ASO at P2 and P14 in a mouse model of Dravet syndrome (61).  

Furthermore, Lenk et al have demonstrated the efficacy of a downregulating ASO targeting Scn8a 

in preclinical rodent models of both SCN8A and SCN1A DEE (63). Recently, Li et al tested a PS 

gapmer ASO targeting Scn2a mRNA in a mouse model of early onset SCN2A DEE. The Scn2a 

gapmer was shown to reduce spontaneous seizures, improve the behaviour (making it 

indistinguishable from wild-type animals) and significantly extend the lifespan of the treated mice, 

suggesting that ASO treatment can be effective and well tolerated (62). 

Genetic neurodevelopmental conditions, including DEE are devastating conditions that lack 

effective therapies. The unravelling of the genetic architecture of DEE has provided an exciting 

opportunity to develop precision medicines.   Therapeutics that use RNA targeting molecules are 

well positioned to directly address the underlying cause of DEE including seizures and comorbid 

pathologies. In this study, we demonstrated that ASO-mediated reduction of Kcnt1 is safe and has 
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a disease-modifying effect in a homozygous mouse model of a KCNT1-DEE pathogenic variant. 

These findings provide crucial evidence to support the development of ASO based therapies for 

refractory epilepsies and developmental disorders that can contribute to reducing the impact of 

neurogenetic disorders. 
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METHODS 

Kcnt1 knock-in mouse model 

Mice were housed in temperature-controlled rooms (≈22℃) on a 12 h dark/light cycle, weaned at 

≈ postnatal day 21 (P21), and maintained with rodent diet and water available ad libitum. Male 

and female mice were used for all experiments. Mice were housed in individually ventilated cages 

(IVC, Tecniplast, Sealsafe plus mouse IVC green line) in groups of up to five animals. Mice that 

underwent ECoG electrode implantation, seizure monitoring, and nesting behavior assessment 

were housed individually during recovery of surgical procedures and for the duration of the test. 

Mouse model generation 

The L/L knock-in mouse line was generated at the University of Adelaide using CRISPR/Cas9 to 

insert a single nucleotide variant at position c.2714, changing C>T. The Kcnt1 p.P905L variant is 

homologous to the KCNT1 p.P924L heterozygous pathogenic variant which has been found in two 

patients with EIMFS (65, 66). Kcnt1 p.P905L founders were generated as described previously 

(67). C57BL/6J zygotes were injected with 50 ng/μl of sgRNA 

(TGCATGAACCGCATGTTGGA), 100 ng/μl of Cas9 mRNA and 100 ng/μl of a single-stranded 

oligonucleotide repair template (Ultramer DNA from Integrated DNA Technologies). The 

oligonucleotide repair template sequence was:  

GTTTGGAAAGAGCCAGAGAGTAGCTGTCCTTGGCACGGAACTGCATGAACCGCATG

TTCGAAaGGTGTGTGAGCTCCGTGGTGATGCTGAGACTGGGGAAAAGCCTGAGGGA

GGATGATCG.  

Injected embryos were transferred to pseudopregnant females for further development. Pups were 

genotyped by PCR and the intended C>T variant was confirmed by Sanger sequencing. The colony 
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was maintained on the C57BL/6J background and initially backcrossed to wild-type (+/+) mice to 

expand the colony with subsequent heterozygous intercross carried out to obtain wild-type (+/+), 

heterozygous (L/+) and homozygous (L/L) mice. Where possible +/+ littermates were used as 

controls. When unavailable or as “intruders” for behavioral paradigms (specifically the three 

chamber social interaction test), C57BL/6J wild-type mice were purchased from the Animal 

Resources Centre (Canning Vale, WA, Australia). 

For experiments with neonatal mice: C57BL/6J wild-type pregnant mice were purchased from the 

Animal Resources Center (Canning Vale, WA, Australia). L/L litters were obtained from the 

crossing of Kcnt1 ASO-treated L/L breeders.  

Identification and genotyping 

Animals were toe-clipped at postnatal days 8 to 12 (P8 - P12) for identification and the tip of the 

tail was biopsied for genotyping. DNA extraction was performed using the REDExtract-N-Amp 

Tissue PCR Kit (Sigma, St Louis, MO, USA). 

The following PCR primers were used to amplify exon 24 of Kcnt1: 

Forward: 5’-CCACCCAGTTATGACCACAG- 3’ 

Reverse: 5’-GCTGTAGGTATCTGTTAGCAG- 3’ 

PCR products were digested with the restriction enzyme BstBI (New England BiolLabs Inc, 

Ipswich, MA, USA) and the products were separated through electrophoresis on a 2% agarose gel 

stained with GelRed (Biotium, Fremont, CA, USA). The wild-type allele generated a single 

fragment of 460 bp and the mutant allele generated two fragments of 276 and 184 bp. 

Mouse model phenotypic validation 

Spontaneous behavioral seizures video recording 
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Mice older than P21 were housed individually in a 19.56 x 30.91 x 13.34 cm Thoren # 9 Small 

mouse II cage (Thoren Caging System, Hazleton, PA, USA) and monitored continuously for up to 

5 days. Video recording was done using the Vivotek video server (VS8102) connected to an 

infrared day and night digital color camera (EVO2; Pacific Communications). Following 

recording, the videos were played back on a computer at 8-13x speed using the VLC media player 

(Paris, France). Seizures that presented with any of the following behaviors were counted as an 

event: a) clonic seizure in a sitting position; b) clonic and/or tonic–clonic seizures while lying on 

the belly c) pure tonic seizures; d) clonic and/or tonic–clonic seizures while lying on the side and/or 

wild jumping. A tonic clonic seizure lasting more than 3 minutes was considered to be prolonged, 

and a seizure with a duration of more than 5 minutes was considered to be a status epilepticus. 

Susceptibility to induced seizures 

Thermogenic seizure assay: Mice between the ages of P18-P21 were placed in a container heated 

to constant 42°C for a maximum of 20 minutes. The latency to a first tonic-clonic seizure was 

recorded.  

Pentylenetetrazol induced seizures: Mice between the ages of P30-P40 were injected 

subcutaneously (s.c. injection) with the GABA antagonist pentylenetetrazol (PTZ; 80mg.kg−1; 

Sigma, St. Louis, MO, USA) dissolved in 0.9% sterile saline solution (Pfizer, NY, USA). The 

animals were then monitored for a maximum of 45 minutes and latencies to a minimal (first tonic-

clonic) and maximal (tonic hindlimb extension) seizures were recorded.  

Loxapine induced seizures: Mice between the ages of P30-P40 received a peritoneal injection (i.p. 

injection) with the antipsychotic drug Loxapine (LOX; 100mg.kg−1; Sigma, St. Louis, MO, USA) 

dissolved in 0.9% sterile saline solution (Pfizer, NY, USA) and 25% Dimethyl Sulfoxide (DMSO, 

Sigma, St. Louis, MO, USA). The animals were then monitored for a maximum of 1 hour and the 
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latency to a first tonic-clonic seizure was recorded.  

In the three assays, animals were euthanized at the end of the experiment. 

Behavioral profile 

Behavioral tests were conducted between 9:00 A.M. and 6:00 P.M., under similar lighting 

conditions for each task. The mice were transferred to the behavior testing room at least 30 min 

before the test. All mice were subjected to each behavioral test with a 5-7-day interval between 

each task. 

Nesting behavior: Two facial tissues (18 x 18,5 cm ;1.75-1.9 g) (Austwide Paper products, VIC, 

Australia) were provided as nesting material two hours prior to the onset of the dark phase (5-

6pm). The quality of the nest was assessed 48h after. A score from 0 to 5 was given by adapting 

the scoring system of Hess et al (46). 

Locomotor cells: Mice were placed in the center of a 27.31 x 27.31 x 20.32 cm covered chamber 

(Med Associates Cat# ENV-510S-A) for 30 min and their activity was monitored by a 48 channel 

infrared (IR) controller in 5 min bins and analyzed with the Activity Monitor Software Version 7 

(Med Associates, Fairfax, VT, USA). 

 Light/Dark Box: The light–dark apparatus consisted of a 27.31 x 27.31 x 20.32 cm chamber (Med 

Associates Cat# ENV-510S-A) divided into dark and light compartments of equal size by the 

insertion of a black Perspex box. The box contained a small opening in the middle allowing the 

mouse to move between the compartments. The light chamber was brightly illuminated to 750 Lux 

by LED light lamps. Each mouse was placed in the center of the dark compartment and allowed 

to freely explore the box for 10 minutes. The latency to move into the light compartment as well 

as the amount of time spent in each side were automatically recorded and analyzed with the 
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Activity Monitor software version 7 (Med Associates, Fairfax, VT, USA). 

Elevated plus maze (EPM): The elevated plus-maze apparatus was made of light-colored Perspex 

and consisted of two open arms (5 x 30 cm) and two enclosed arms (5 x 30 x 14 cm) extending 

from a central area (5 × 5 cm). A raised lip (2.5 mm high, 5 mm wide) around the open arms was 

placed to reduce the likelihood of mice falling off the maze. The maze was elevated 60 cm above 

the floor. Each mouse was placed in the central area, facing an open arm. Their activity in the maze 

was video recorded for 10 min. The time spent on each arm of the maze and in the center area was 

measured, and arm entries were counted using the TopScan software (CleverSys, Reston, VA, 

USA). 

Three chamber social interaction: The test was conducted in a box (43 x 39 x 11 cm) made of 

transparent plastic and divided into three chambers; the middle section was 8 x 39 cm and the two 

lateral sections were 16 x 39 cm each. The chambers were connected by rectangular openings in 

the middle. Metal mesh cages of 16 x 10 x 11 cm were placed in the two side chambers. The test 

consisted of two phases: habituation and trial phase. During the habituation period, the mouse was 

placed in the central chamber and allowed to explore freely all chambers for 10 min. After that, a 

preference for a chamber (left vs right) was assessed and an unfamiliar mouse of similar age and 

size was placed in the metal cage of the side chamber of least preference. For the trial period, the 

mouse was again allowed to explore all chambers for 10 min. The activity during both habituation 

and trial period was video-recorded and the amount of time spent in each chamber and near the 

cages was analyzed using TopScan software (CleverSys, Reston, VA, USA). 

Y-maze: The Y-maze was made of light-colored Perspex and consisted of three 7.5 x 30 x 14 cm 

arms separated by a 120° angle and containing a visual cue at the end. The test was performed in 

two phases: a training session and a trial session. During the training session the mouse was placed 
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in the far end of one arm (home arm), facing away from other arms, and was allowed to explore 

this and one other arm (familiar arm) for 10 min. During this period, the third arm (novel arm) was 

not accessible. After a 1-hour interval, the mouse was again placed in the home arm but allowed 

to explore all three arms for 5 min (trial session). The test was video recorded, and the amount of 

time spent in each arm was analyzed using TopScan software (CleverSys, Reston, VA). 

Surgical procedures 

ECoG Electrode implantation surgery: Mice were anaesthetized with 3-4 % Isoflurane (IsoFlo; 

Abbott Laboratories, Abbott Park, IL, USA) for induction and 2% for maintenance. A 

subcutaneous injection of meloxicam (1 mg/kg) dissolved in 0.9% saline was given prior surgery. 

Then, the mouse was placed in a stereotaxic apparatus (Kopf Instruments, Tujunga, CA, USA), 

after the scalp was shaved, sterilized with 80% ethanol and infiltrated with Lignocaine (1% 

ampules, Pfizer). A 1 cm long incision was made on the scalp and the skull was cleaned with 3% 

hydrogen peroxide solution (Sanofi). Four burr holes were drilled into the skull and three screws 

were placed into the holes and used as epidural electrodes (Cat #8403, Pinnacle Technology, 

Lawrence, KS, USA) (1 reference electrode and 2 recording electrodes). A ball of silver wire was 

used as ground electrode. All electrodes were connected to a headmount (Cat # 8201, Pinnacle 

Technology, Lawrence, KS, USA) and affixed to the skull with methyl methacrylate dental cement 

(Cat # 1255710; Henry Schein Inc, Indianapolis, IN; Lang Jet Denture Repair Acrylic). Then, mice 

recovered in a warming pad at 30 °C until fully awake. 

 ECoG recording and analysis: Mice were allowed to recover for 3-5 days before recording. The 

mice were connected while awake to a mouse pre amplifier (Cat # 8406-SE) and an amplifier (Cat 

#8204 and 8206, Pinnacle Technology, Lawrence, KS, USA). Brain cortical activity was sampled 

on Sirenia (Pinnacle Technology, Lawrence, KS, USA) at 250 Hz for 25 hours, signal was band-
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pass filtered at 0.5 to 40Hz. ECoG signal was analyzed post acquisition using ClampFit 10.7 

(Molecular Devices), a spike was identified when the amplitude was 2.5 times greater than the 

baseline activity and duration was shorter than 80 ms. An investigator blinded to the treatment 

groups/genotype reviewed and counted spike activity.  

 Intracerebroventricular (i.c.v.) injections 

Adult mice: P40-P45 mice, weighing at least 10g, were anesthetized using Isoflurane (IsoFlo; 

Abbott Laboratories, Abbott Park, IL, USA) at a concentration of 4-5% mixed in O2 (vol/vol) for 

induction, and 2% for maintenance. A subcutaneous injection of meloxicam (1 mg/kg) dissolved 

in 0.9% saline was given prior surgery. The mice were positioned in a stereotaxic apparatus 

(myNeuroLab, Leica, Germany) and the scalp was cleaned with 80% Ethanol. Then, the skin was 

infiltrated with Lignocaine (1% ampules, Pfizer) and a 1 cm incision was performed. The skull 

was cleaned with 3% hydrogen peroxide solution to expose the bone sutures and a burr hole was 

drilled at 0.8 mm lateral and 0.3 mm posterior to Bregma. The tip of a 33G internal infusion 

cannula (Plastics One Cat #C315I/SPC) was advanced to −3.0 mm from the skull surface to reach 

the right lateral ventricle. The cannula was connected to a 0.5 ml glass syringe (SDR, Sydney, 

Australia) and an infusion pump (legato 210/210p syringe pump, Kd Scientific, Holliston, MA, 

USA). A total volume of 10 µl of ASO or vehicle (sterile Ca2+ and Mg2+ free PBS) was delivered 

at a rate of 0.5 μl/s. One minute after completing the infusion, the cannula was withdrawn and the 

skin was closed with 4-0 polyglactin 910 absorbable suture (coated Vycryl, Ethicon Inc, Cornelia, 

GA, USA). Following surgery, the animals recovered on a Thermacage (Datesand, Ltd, 

Manchester, UK) until active and were then returned to their home cage. 

Neonatal mice: P2-P3 pups were cryo-anesthetized for 3 minutes. The scalp was cleaned with 80% 

ethanol and free hand injections were performed using a 32 G needle Hamilton syringe (10μl, 
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Hamilton, Reno, NV, USA). Using lambda and the right eye as anatomical references, the needle 

was inserted midway between these two points and advanced -2.0 mm ventral from the skin surface 

(technique adapted from Kim et al (68)). A total volume of 2 μl of ASO or vehicle (sterile Ca2+ 

and Mg2+ free PBS) was injected into the right lateral ventricle. Pups were gently warmed until 

skin color returned to pink and rolled over dirty bedding before being returned to their home cage. 

Maternal behavior was monitored for the following 10 minutes to ensure the pups were attended 

and returned to the nest.   

ASO synthesis  

The Kcnt1 ASO and control ASO (non-hybridizing sequence) were synthesized and screened in 

vitro by Ionis Pharmaceuticals (Carlsband, CA, USA) as previously described (69, 70). Both 

molecules are 20bp long and have the following structure: 5 modified nucleotides with 2’- MOE 

modifications at the 5’ and 3’ end, and a central gap (gapmer) of 10 unmodified 

oligodeoxynucleotides. A PS backbone was used to enhance nuclease resistance. Kcnt1 ASO 

targets the mRNA 3’ untranslated region at position corresponding to 3981-4000 in transcript 

variant 1 (NM_175462.4).  

The specific sequence for both ASOs is listed below: 

Kcnt1 ASO: 5’-GCTTCATGCCACTTTCCAGA-3’ 

Control ASO: 5’-CCTATAGGACTATCCAGGAA-3’ 

ASOs were solubilized in sterile Ca2+ and Mg2+ free Dulbecco’s Phosphate Buffered Saline (PBS) 

(Sigma, St Louis, MO, USA), centrifuged, and filtered through a 0.22 µm filter (Sigma, St Louis, 

MO, USA). A stock solution with a concentration of 50 mg/ml was stored at -20oC. Then, ASOs 

were further diluted to the desired concentration in sterile Ca2+ and Mg2+ free PBS (Sigma, St 
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Louis, MO, USA) immediately before injection.  

Quantification of mRNA levels 

Tissue harvest: Two weeks after ASO administration, mice were deeply anesthetized with 4-5% 

Isoflurane (IsoFlo; Abbott Laboratories, Abbott Park, IL, USA), before being decapitated. After 

the brain was removed from the skull, the cerebellum, right and left cortex were dissected. The 

spinal cord was harvested using hydraulic extrusion as previously described (71) and a 1 cm piece 

from the low thoracic/lumbar cord was extracted. All dissected tissue was snap frozen in liquid 

nitrogen, and stored at −80°C until RNA preparation. 

 Quantitative gene expression analysis: Total RNA was isolated from the mouse right cortex and 

spinal cord using TRIzol reagent (Cat #15596026, Thermofisher, Waltham, MA, USA) according 

to the manufacturer’s protocols. Contaminating genomic DNA was removed with rDNAse I 

treatment (DNA-free Reagents; Ambion/Life Technologies, Carlsband, CA, USA). RNA was 

assayed for quality and quantity using a NanoDrop 2000c Spectrophotometer (Thermo Scientific). 

For quantitative reverse transcription and polymerase chain reaction (RT-qPCR) presented in 

Figure 3 A-D, oligo deoxythymidylic acid (oligo-dT) primed cDNA was synthesized from 500 ng 

of total RNA using Murine Moloney Leukaemia Virus Reverse Transcriptase (Promega, Madison, 

WI, USA).  RT-qPCR was performed on the ViiA 7 Real-Time PCR System (Applied 

Biosystems/Thermofisher, Foster City, CA, USA) using SYBR green technology and GoTaq 

qPCR master mix (Promega) according to the manufacturer’s protocols. The primers used for 

detection were:  

Kcnt1 

Forward: 5’-TCTTCCCTTTCTCAGGTCCAGG-3’ 
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Reverse: 5’-AGGGAGAAGTTGAACAGCCG-3’ 

Kcnt2 

Forward: 5’-AAGGCTGAGCAGAAAAGGGC-3’ 

Reverse: 5’-TCATTTCATCGTAGCCCACCG-3’ 

Rpl32 

Forward: 5’-GAGGTGCTGCTGATGTGC-3’ 

Reverse: 5’-GGCGTTGGGATTGGTGACT-3’ 

Relative gene expression values were obtained by normalization to the reference gene Rpl32 using 

the −2ΔΔCt method, where −2ΔΔCt = ΔCt sample−ΔCt calibrator as previously described (72). 

For Figures 6A, 6H and supplemental figure 3B, RT-qPCR, 1µg of rDNase I treated purified RNA 

was analysed using a Taqman™ RNA to Ct kit process (Applied Biosystems) with a Taqman probe 

to Kcnt1 [probe ID # Mm00558471_m1 (FAM-MGB)] in duplex with the mouse endogenous gene 

Glucuronidase Beta (Gusb) [probe ID# Mm01197698_m1 (VIC-MGB)]. RT-qPCR was 

performed on the ViiA 7 Real-Time PCR System (Applied Biosystems) using cycling conditions 

specified by the manufacturer. All RT-qPCR reactions were performed in triplicate. Relative gene 

abundance values were calculated by normalization to Gusb and referenced to the control groups 

using the −2ΔΔCt method.  

Western Blot 

The quantification of Kcnt1 protein levels was performed by Western blotting. Total protein lysate 

was prepared from the mouse left hemisphere. The Poly (vinylidene fluoride) (PVDF) membrane 

was incubated with an antibody against Kcnt1 protein (Anti KCNT1 mse monoclonal [N3/26] 
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8ug/mL, NeuroMab CAT # 75-051), Anti β-actin (Mse IgG1 monoclonal dilute 1:10,000,_SIGMA 

CAT # A5441) as loading control and IRDye infrared secondary antibodies (IRDye 800CW [LI-

COR #926-32210]  and IRDye 680RD [LI-COR # 926-68070] ). 

Immunohistochemistry 

Tissue preparation: Two weeks after ASO administration, mice were anesthetized with sodium 

pentobarbitone (80 mg/kg, lethal dose, i.p. injection) (Ilium, Troy Laboratories, Smithfield, 

Australia) and transcardially perfused with 0.1 M phosphate buffer (PB) followed by a 4% 

paraformaldehyde solution (PFA; pH7.4). Brains were removed from the skull and stored in 20% 

sucrose solution overnight at 4ºC, and then frozen in isopentane cooled in liquid nitrogen before 

being sectioned coronally at 20 μm thickness with a cryostat (Leica Microsystems, Wetzlar, 

Germany). Sections were mounted on Superfrost plus slides (Thermofisher, Waltham, MA, USA) 

and stored at -20 ºC until used for immunostaining. 

Immunostaining: Sections were air-dried for 1 hour at room temperature and then blocked for 1 

hour in a humidified chamber, with a mixture of 10% normal goat serum, 0.3% Triton X-100 

(Sigma, St Louis, MO, USA) in PB. The blocked sections were incubated overnight with primary 

antibodies: polyclonal rabbit anti-ASO (against the phosphorothioate [PS] backbone) 1:7500 

(Ionis Pharmaceuticals); polyclonal guinea-pig anti-NeuN 1:500 (Millipore; Cat #ABN90-clone 

A60 [MAB377]); After washing in PB, the sections were incubated for 2 h with secondary 

antibodies: goat-anti-rabbit Alexa-647 1:500 (Thermo-fisher; Cat#A31573) and donkey-anti-

guinea pig Alexa 488 1:500 (Thermo-fisher; Cat# A-11073). To identify the nuclei, sections were 

then stained with DAPI (Sigma-Aldrich). All incubations were conducted at room temperature. 

Slides were covered with Prolong Gold Anti-fade (Invitrogen) and stored at -30 ºC. Confocal 

image stacks were acquired on a Zeiss LSM 780 microscope equipped with a 20 x/0.8 NA lens. Z-
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stack images were acquired within Nyquist sampling parameters and de-convolved using Huygens 

4.4.0 software (Scientific Software Imaging). 

Statistical analysis 

The latencies for the seizure susceptibility tests were plotted as Kaplan Meier survival curves and 

tested for significance using the Log rank (Mantel Cox) test. In all the survival plots, animals that 

did not reach the end point by 40 minutes (20 minutes for the thermogenic assay) were marked as 

censored. Dose-response curves were fitted with the Motulsky regression. For all other measures, 

Fischer test, Mann–Whitney U test, nonparametric one-way and two-way ANOVA with post hoc 

analysis were used accordingly. Statistics were computed using GraphPad Prism, San Diego, CA, 

USA. For all tests, statistical significance was set at a p < 0.05.  

Study approval 

All animal experiments were approved by the animal ethics committee of the Florey Institute of 

Neuroscience and Mental Health (protocols #14-026, 16-061, 16-062 and 17-014) and were 

performed in accordance with the guidelines of the National Health and Medical Research Council 

Code of Practice for the Care and Use of Animals for Experimental Purposes in Australia. 
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Figure 1. Phenotype of the Kcnt1 L/L mouse model. A. Difference in size at P21 of L/L mice 

(red arrow) compared to their L/+ and +/+ littermates. B. Body weight is significantly reduced in 

L/L mice compared to their +/+ littermates at weaning age (Kruskal-Wallis test, followed by 

Dunn’s post hoc analysis; +/+ n=15, L/+ n=21, L/L n=18), data is presented in a box and whiskers 

plot with maximal and minimal data points. C. Life span is shortened in L/L mice with a median 

survival of 43 days (Kaplan-Meier curve, Log-rank test p<0.0001; +/+ n=15, L/+ n=15 and L/L 

n=35). D. Representative ECoG trace of ictal activity and interictal spikes in the L/L mice. Top: 

Acute interictal spikes. Bottom: Seizures can be preceded by an increase in frequency of acute 

interictal spikes. Spontaneous tonic-clonic seizures correlated with fast, high amplitude signal, 

followed by electric suppression (black arrow). E. Acute high amplitude (>500 µV) spikes are 

present in the L/L mice, with a median of 1470 spikes in 24 hours (p=0.03, Kruskal-Wallis test, 

followed by Dunn’s post hoc analysis, n=3 for each genotype). F. Seizure frequency over 72 hrs 

(+/+ n=3, L/+ n=3, L/L n=6; median seizure frequency for L/L of 23 events. Kruskal-Wallis test, 

followed by Dunn’s post hoc analysis p=0.024). 
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Figure 2. Behavioral profile of the Kcnt1 L/L mouse model. A. Representative images of 

minimal and maximal scores of nesting behavior. The left image corresponds to a score of 5 (+/+ 

mouse), while the right image exemplifies a score of 1 (L/L mouse) B. Nesting behavior is 

impaired in L/L mice (+/+ n=7, L/+ n=7, L/L n=8, Kruskal Wallis test with Dunn’s post hoc 

analysis). C. Total ambulatory distance explored in the locomotor cells test. L/L mice are more 

active compared to L/+ and +/+ (+/+ n=12, L/+ n=20, L/L n=25, Kruskal-Wallis test with Dunn’s 

post hoc analysis). D. L/L mice spend less time in the light compartment during the light/dark box 

test (+/+ n=12, L/+ n=20, L/L n=17, Kruskal-Wallis test with Dunn’s post hoc analysis) E. L/L 

mice display a preference for the open arms of the elevated plus maze (+/+ n=10, L/+ n=11, L/L 

n=15, Kruskal-Wallis test with Dunn’s post hoc analysis). 
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Figure 3. Kcnt1 ASO produces a dose dependent knockdown of Kcnt1 mRNA in the mouse 

CNS. Dose response curves for Kcnt1 ASO in the brain cortex (A) and thoracic spinal cord (B) for 

+/+ mice injected at P40. The tissue was collected 2 weeks after injection and processed for mRNA 

quantification (n=3 for each dose and PBS control, curves were fitted with the Motulsky 

regression). C. Mouse cortex was collected 2 weeks after i.c.v. injection for mRNA quantification. 

The i.c.v. administration of Kcnt1 ASO reduced the levels of Kcnt1 mRNA (Kruskal-Wallis test 

p=0.0027), without affecting the paralogous gene Kcnt2 (Kruskal-Wallis test p=0.4794); Data is 

presented as bar plots with mean and SEM, untreated n=4, Kcnt1 ASO n=5, Control ASO n=3. 

(D). Western blot showing a reduction of Kcnt1 protein in WT mice left hemisphere 2 weeks after 

i.c.v injection E. Average band signal for Kcnt1 protein. Data is presented as bar plots with mean 

and SD (n= 3 mice for each treatment condition, ns for all comparisons except PBS vs 500 ug, 

One way ANOVA with Dunnett’s multiple comparisons test).  F.  Distribution of the Kcnt1 ASO 

in the mouse brain. Coronal brain sections of +/+ mice treated with Kcnt1 ASO 75 μg. Tissue was 

collected 2 weeks after i.c.v. injection and stained with an ASO antibody (red), neuronal marker 

(NeuN; green) and counterstained with nuclear stain DAPI (blue). Kcnt1 ASO was found 

throughout the meninges, hippocampus and cortical layers (n=3 experiments). Scale bars represent 

500 μm. 
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Figure 4. ASO mediated knockdown of Kcnt1 at P40 markedly improves the disease 

phenotype of adult L/L mice. A. Experimental timeline for behavioral studies. B. Kaplan-Meier 

curves shows a dose dependent improvement in survival of adult L/L mice treated with Kcnt1 

ASO (p<0.0001 for Kcnt1 ASO ED50, ED80 and 500 μg, log-rank test), while mice treated with 

control ASO showed a survival similar to that of untreated animals (p=0.237, log-rank test, 

untreated n=16, control ASO n=16, Kcnt1 ASO ED50 n=13, ED80 n=11, 500 μg n=11). C. Acute 

spike frequency over 24 hrs (untreated n=4, Kcnt1 ASO ED50 n=6, ED80 n=7, 500 μg n=8; 

ANOVA F [3, 21] = 7.978, p=0.001). D. Seizure frequency was significantly reduced after 

treatment with Kcnt1 ASO ED80 and 500 μg. Although ED50 did not reach statistical significance, 

a trend towards reduction was observed. Treatment with control ASO did not reduce the 

occurrence of seizures (control ASO n=9; ED50 n=8; ED80 n=10, 500 μg n=9; seizure frequency 

was compared using the non-parametric Wilcoxon matched-pairs signed rank test, with Pratt’s 

method for identical rows). E. Representative images of nesting behavior of Kcnt1 ASO ED80 

(top) and control ASO treated (bottom) L/L mice. F. Nesting score of animals treated with Kcnt1 

ASO showed a significant improvement compared to control ASO treated animals (ED50 vs 

control p=0.0002; ED80 vs control p=0.0015; 500 μg vs control p<0.0001; untreated vs control 

p>0.9. Kruskal-Wallis test with Dunn’s post hoc analysis. Untreated n=8, control ASO n=12; 

ED50 n=13; ED80 n=10, 500 μg n=12).  
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Figure 5. ASO mediated knockdown of Kcnt1 at P40 improves the behavioral phenotype of 

adult L/L mice. A. Total ambulatory distance was reduced in mice treated with Kcnt1 ASO 500 

μg compared to control treated mice (p=0.0002), but not for mice treated with ED50 or ED80 

(p=0.775 and 0.839, respectively) (Kruskal-Wallis test, followed by Dunn’s multiple comparisons, 

+/+ n=12, untreated n=25, control ASO n=13; ED50 n=13; ED80 n=10, 500 μg n=11). B. Time 

spent in the light compartment during the light/dark box test (Kruskal-Wallis test, followed by 

Dunn’s multiple comparisons p=0.588; +/+ n=12, L/L n=17, control ASO n=11, ED50 n=13, 

ED80 n=10, 500 μg n=12). C. Time spent in the open arms of the elevated plus maze (Kruskal-

Wallis test, followed by Dunn’s post hoc analysis; +/+ n=10; untreated n=15; control ASO n=9; 

ED50 n=13; ED80 n=10, 500 μg n=12). D. Time spent in the novel arm of the Y-maze (Kruskal-

Wallis test, followed by Dunn’s post hoc analysis p=0.551; +/+ n=8; untreated n=10; ED50 n=12; 

ED80 n=10, 500 μg n=10). 
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Figure 6. Neonatal administration of Kcnt1 ASO is safe and effective in the L/L mouse model. 

A. Dose response curve for +/+ mice injected at P2and tested 2 weeks after injection (n=3-11 per 

dose, the curve fitted with the Motulsky regression). B. Kaplan-Meier curve for neonatal (P2-P3) 

administration of Kcnt1 ASO in L/L mice showing prolonged lifespan of Kcnt1 ASO compared to 

Control ASO treated (p<0.0001). 50 μg of control ASO produced a smaller improvement in 

survival (p=0.003, log-rank test) (untreated n= 36; control ASO n=23; Kcnt1 ASO 3.4 μg n=17). 

C. Weight at P40 of treated L/L mice improved (p=0.016, +/+ n=28, untreated n=17, control ASO 

50 μg n=14, Kcnt1 ASO 3.4 μg n=17). D. Nesting behavior improved in L/L mice treated with 

Kcnt1 ASO (p =0.0001, untreated n=8; control ASO 50 μg n=9; Kcnt1 ASO 3.4 μg n=15). E. 

Seizure frequency was reduced after neonatal administration of Kcnt1 ASO when compared to 

control treated (50 μg) mice (p<0.0001, control ASO 50 μg n=15, Kcnt1 ASO 3.4 μg n=17). F. 

Total ambulatory distance was reduced in mice treated with Kcnt1 ASO 3.4 μg compared to 

untreated mice (+/+ n=12, untreated n=25, Kcnt1 ASO 3.4 μg n=17). G. Time spent in the open 

arms of the elevated plus maze (+/+ n=10, untreated n=15, Kcnt1 ASO 3.4 μg n=17). Mann-

Whitney test (C-G). H. A second injection of Kcnt1 ASO at P30 was tolerated in +/+ mice with a 

further reduction of Kcnt1 mRNA compared to a single injection at P2. Cortical tissue was 
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collected at P42 [Kcnt1 ASO 3.4 μg n=3; Kcnt1 ASO 3.4 μg + Control ASO 500ug n=3; Kcnt1 

ASO 3.4 μg + Kcnt1 ASO 35 μg n=2; Kcnt1 ASO 3.4 μg + Kcnt1 ASO 75 μg n=3). I. Survival 

curve for L/L mice treated with a second dose of ED80 ASO at P167 (dotted line) (Untreated n=36; 

ED80 reinjected n=4). J. Nesting score of L/L mice reinjected with ED80 ASO. After the injection 

at P2, nesting behavior was present at P40 but had declined by P165. A second injection rescued 

the nesting behavior (n=4); Significant difference was found for P40 vs P165 (p<0.0001, One-way 

ANOVA with Dunnett’s multiple comparisons test). 


