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Abstract: Heatwaves are associated with increased mortality and are exacerbated by the urban heat
island (UHI) effect. Thus, to inform climate change mitigation and adaptation, we quantified the
mortality burden of historical heatwave days in Sydney, Australia, assessed the contribution of
the UHI effect and used climate change projection data to estimate future health impacts. We also
assessed the potential for tree cover to mitigate against the UHI effect. Mortality (2006–2018) records
were linked with census population data, weather observations (1997–2016) and climate change
projections to 2100. Heatwave-attributable excess deaths were calculated based on risk estimates from
a published heatwave study of Sydney. High resolution satellite observations of UHI air temperature
excesses and green cover were used to determine associated effects on heat-related mortality. These
data show that >90% of heatwave days would not breach heatwave thresholds in Sydney if there were
no UHI effect and that numbers of heatwave days could increase fourfold under the most extreme
climate change scenario. We found that tree canopy reduces urban heat, and that widespread tree
planting could offset the increases in heat-attributable deaths as climate warming progresses.

Keywords: global heating; death; extreme heat; urbanization; greenspace

1. Introduction

Both hot and cold temperature extremes pose risks to human health, and the temperature–
health risk association follows a U-shaped curve, with increasing risks below and above
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hot and cold thresholds. These thresholds differ between locations and climates, reflecting
the human capacity for thermal adaptation [1–4], but also conditions of habitation [5,6].

Previous Australian time-series studies define heatwaves as two or more consecutive
days in which ambient temperatures exceed historical thresholds [7,8]. Although heatwave
declarations and associated health messaging have been developed based on morbidities [9],
more heat warning systems are based on associations between mortality counts and means
of the minimum temperature of the day and the maximum temperature from the previous
day [10–12]. In a study of Sydney, Australia, Wang et al. [8] demonstrated that 24 h mean
temperatures are the most sensitive predictor of heat-related mortality, and they established
mortality risk estimates for percentile thresholds of temperatures.

Recent modelling indicates the potential to prevent heat deaths in Australian cities
by mitigating urban heat [13]. Excess urban heating relates to the prevalence of low
albedo surfaces, the density of human heat-producing activities and accumulation of
heat in buildings, roads and structures [14]. Recently, the urban heat island (UHI) effect
was measured at a high spatial resolution in the Sydney Greater Metropolitan Region
(GMR) [15] using land surface temperatures (LST), which are available for the entire globe
and are based on satellite infrared images. UHI temperature excesses of around 10 ◦C
have been recorded in numerous cities globally [14]. Other studies demonstrate links
between the UHI effect and land cover patterns [16] and quantitatively show impacts of
various contributing elements, such as cool roofs [17], heat infiltration into buildings and
anthropogenic heat [18].

Recognising the health risks of urban heat and the driving forces and pressures of
global warming, human physiological and behavioural adaptations to heat may be over-
whelmed in the coming decade [5,19]. Widespread tree planting may protect health in cities
because vegetation influences the impact and magnitude of the UHI. However, whereas all
vegetation types reduce urban heat by photosynthesizing, transpiring and shading [20],
trees and shrubs are demonstrably more effective at reducing soil temperatures than herba-
ceous ground cover, such as grass [21]. The UHI effect also has multiple other influences,
warranting the present assessment of tree cover, urban heat and climate change.

This study addresses current and future avoidable excessive heat exposures in Aus-
tralia’s most populous city by comparing human health risks under various scenarios
relating to climate change, urban heat and urban vegetation. Specifically, we statistically
related temperature increases with attributable deaths using health impact assessment
methods [22–24] and compared the mortality burden of heatwaves during the period of
2006–2018 with that under a counterfactual scenario of no UHI-driven heat excesses. Cli-
mate change projections were then used to estimate heat-attributable deaths for the future
periods 2030–2049 and 2080–2099 under the high greenhouse gas emission representative
concentration pathway (RCP) scenario (RCP8.5) [19]. We aimed to capture the range of
uncertainty in climate change models by dynamically downscaling three global climate
models (GCMs) with the regional weather research and forecasting (WRF) model under
two combinations of physical parameterisations. The resulting six datasets of projected
temperatures formed the basis for estimates of current and future heat-attributable deaths
and the UHI-mitigating effect of increasing tree cover in urban areas.

2. Materials and Methods
2.1. Study Area

We divided the Sydney GMR into climate zones using a dataset created by Khalaj
et al. [25]. Six regions: Sydney East, Sydney West, Gosford, Wyong, Newcastle and
Wollongong (based on the classification defined in Khalaj et al. [25]) were distinguished
from each other using a variance partitioning model for data from Sydney weather stations
over the period 1998–2006 and are shown in Figure 1. The authors defined temperature
regions by maximising the ratio of between-group to within-group temperature variance.
Significant climate differences were identified between these regions [25] and we assumed
that these would also be true of the present study periods.
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Figure 1. The location and Climate Zone partitions of the study region of Sydney, NSW, Australia
(longitude 151.21◦ E, latitude 33.87◦ S).

Statistical area level 2 (SA2) areas from the Australian Bureau of Statistics (ABS) geo-
graphical boundary system were retrieved from the 2016 census and were then assigned to
the regions. Australian census boundaries are adjusted periodically so that SA2 areas on av-
erage contain about 10,000 people (3000–25,000; https://www.abs.gov.au/ausstats/abs@.nsf/
lookup/by%20subject/1270.0.55.001~july%202016~main%20features~statistical%20area%20
level%202%20(sa2)~10014; accessed on 25 April 2022). Analyses of exposure to ambient
air temperature were initially performed at the SA2 level to capture spatial variance in
heat exposures and population demographics. To ensure that heatwave exposures were
counted only from populated areas, time-series of daily air temperatures were calculated
as population-weighted averages for each climate zone.

2.2. Heatwave Exposure Data

In line with the study by Wang et al. [8], heatwave days are defined by 24 h tempera-
tures exceeding 90th, 95th, 98th and 99th percentile thresholds for two or more consecutive
days. Thresholds were calculated for heatwave events from the period 1997–2016 with
a grid resolution of 0.05 × 0.05 decimal degrees (approximately 5 × 5 km). These data
originated from the Australian Water Availability Project (AWAP) temperature product [26]
and were retrieved from the Centre for Air pollution, energy and health Research (CAR)
data platform (http://cardat.github.io, accessed on 25 April 2022). Grid percentile temper-
ature thresholds were calculated from average SA2 temperatures across climate zones. This
two-decade baseline period can be considered climatically representative and the decades
were specifically chosen to marginally precede the historical study period 2006–2018.

We computed 24 h temperatures for each SA2 in the study region. Daily temperature
grids were then averaged within climate zones, and percentile thresholds were calculated
from 48 h mean temperatures. As described above, heatwave days were defined as those
exceeding the percentile thresholds for two or more days and were flagged for every year
of the study period 2006–2018 and for temperature projections from the NSW and ACT
Regional Climate Modelling (NARCLiM) RCP8.5 ensemble for the time periods 2006–2018,
2030–2049 and 2080–2099. By definition, 3.65 days could be expected to exceed the 99th
percentile, on average, if no climate warming had occurred since the baseline period
(1997–2016).

https://www.abs.gov.au/ausstats/abs@.nsf/lookup/by%20subject/1270.0.55.001~july%202016~main%20features~statistical%20area%20level%202%20(sa2)~10014
https://www.abs.gov.au/ausstats/abs@.nsf/lookup/by%20subject/1270.0.55.001~july%202016~main%20features~statistical%20area%20level%202%20(sa2)~10014
https://www.abs.gov.au/ausstats/abs@.nsf/lookup/by%20subject/1270.0.55.001~july%202016~main%20features~statistical%20area%20level%202%20(sa2)~10014
http://cardat.github.io
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2.3. Health Impact Functions

To determine the mortality burden of current and future heatwave exposures, we used
relative risk (RR) estimates for heatwaves based on the 24 h mean temperature thresholds as
defined for Sydney populations under and over 75 years of age (Table 1) by Wang et al. [8].
That study was a daily time-series analysis using a Poisson generalised additive model of
heatwaves coded as a binary variable (1 for heatwave day, 0 for nonheatwave day). The
model was adjusted for confounders including day of week, humidity and seasonal trends
in mortality. This approach is supported by evidence of the heat–mortality relationship in a
multi-country study [4].

Table 1. Stratified relative risks (RRs) of heat deaths in Sydney.

Under 75 Years Over 75 Years

24 h temperature percentile 90th 95th 98th 99th 90th 95th 98th 99th
RR estimate 1.03 1.02 1.03 1.12 1.03 1.04 1.08 1.12
RR lower confidence interval 1.01 1.00 0.97 1.02 1.01 1.02 1.03 1.04
RR upper confidence interval 1.05 1.05 1.08 1.23 1.04 1.07 1.12 1.21

2.4. Baseline Daily Mortality Rates

Winter mortality exceeds summer mortality in Australia, in part due to increased infec-
tions during winter. However, the ratio of summer to winter deaths may be changing [27].
Thus, to estimate heat-attributable numbers (AN) of deaths on heatwave days during the
present study period, we first estimated expected numbers of deaths on all days of the
study years in each climate zone. To this end, we used monthly, statewide, age-stratified
mortality rates from the Australian Institute of Health and Welfare (AIHW) and fitted a
sinusoidal curve based on a daily continuous variable over time. Then, we estimated the
fraction (F) of annual deaths in age group k (over and under 75 years) expected to fall on
day i based on day i’s ordinal position within the year (Fik). Subsequently, to adjust this
daily fraction to accommodate differences between locations, we collected annual deaths
data from the Australian Bureau of Statistics deaths data for SA2s between 2006–2018 (ABS
Cat. no. 3302.0; https://www.abs.gov.au/ausstats/abs@.nsf/mf/3302.0, accessed on 25
April 2022) and estimated daily expected mortality counts Eijk for each day i, climate zone j
and age k as follows:

Eijk = Oijk × Fik,

where Oijk is the annual number of observed deaths in climate zone j for the year in which
day i falls. Fik is the expected fraction of deaths per day defined above and was determined
separately for each age group and for leap years.

2.5. Mortality Burden Assessment

AN of all deaths were calculated for each location j∈J, each day i∈I and age group,
according to the population attributable fraction (PAF) equation:

ANijk = Eijk × [(RRik − 1)/RRik],

where j is each climate zone from the Sydney GMR. i is the set of all days during the period
2006–2018 inclusive. RRik is the relative risk of all-cause mortality due to heatwaves on
day i in age group k. This approach made use of RR estimates for age groups younger and
older than 75 years and for four heatwave percentile cut-off intensities, as described by [8]
and above. An RR of 1 was used on all nonheatwave days indicating no additional deaths
from heatwave.

2.6. Climate Change Projections

We used data from the NARCliM Project, which is a research partnership between the
NSW and ACT governments and the Climate Change Research Centre at the University of

https://www.abs.gov.au/ausstats/abs@.nsf/mf/3302.0
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New South Wales [28]. NARCliM1.5 was the second iteration of NARCliM [29]. The fifth
coupled model intercomparison project (CMIP5) is a collection of state-of-the-art GCMs,
which underpinned the Intergovernmental Panel on Climate Change (IPCC) fifth assess-
ment report (AR5). Each participating CMIP5 model generates simulations of historical
and future climate under prescribed conditions, resulting in a range of projections that
sample physical and structural uncertainty. Ensemble means are therefore traditionally
used to predict future heatwave durations, intensities and frequencies with clear indication
of uncertainty.

As part of NARCliM, three GCMs (ACCESS1-0, ACCESS1-3 and CanESM2) were
selected from the CMIP5 ensemble to be dynamically downscaled with WRF regional
climate models at 10 km for southeast Australia and 50 km for the Australian continent
from 1950 to 2100. NARCliM1.5 is available for two future emission scenarios, RCP4.5 and
RCP8.5 [30]. NARCliM1.5 simulations were performed at the same resolution and domain
as the original NARCliM1.0 model, thus producing an expanded and complementary
dataset for regional climate change. Daily mean temperatures were provided at 10 km
resolution for southeast Australia from NARCliM1.5 simulations. In the present study,
an ensemble approach was used to sample uncertainty of model-specific estimates for
the RCP8.5 scenario. To ensure optimal spatial coverage, we used nonbias-corrected
temperature data and calculated heatwave thresholds from nonbias-corrected NARCliM1.5
re-analyses of the baseline years.

To compute heatwave-relevant percentile thresholds as described using observed data
from AWAP, we combined daily temperature data from the historical NARCliM modelled
datasets (1997–2005) and the future model NARCliM datasets (2006–2016).

2.7. Assessment of Heatwave Days with and without the UHI Effect

We obtained data for UHI-related temperature excesses that were generated using
satellite land surface temperature (LST) measurements over the Sydney GMR and sur-
rounding wooded park lands during the summer of 2015–2016. To calculate temperature
excesses related to urbanisation, LSTs in urban areas were compared with those at selected
forested areas and national parks with representative elevation, distance from the coast,
proximity to Sydney and vegetation characteristics. LSTs were up to 12.7 ◦C higher in
mesh blocks (MB) of the Sydney GMR than in areas where no UHI effect could be present
(Figure 2A). LST images were subjected to first order correction to remove broad linear tem-
perature trends, such as those due to cooling with increased latitude, increased elevation
and proximity to the coast. Maximum LST and maximum air temperatures (Tmax) differ
in urbanised areas, primarily because in full sun many urban land surfaces, due to their
physical, thermal and reflective properties, are heated more than the air. Herein, we made
adjustments for the relationship between these measures according to vegetation cover, as
described below.

After analysis of thermal and infrared data from the Landsat satellite, the dataset
was combined with the Australian Bureau of Statistics (ABS) MB polygon dataset to
provide mean UHI temperatures and to enable multiscale spatial analysis of the relationship
between heat and green cover (Dataset: https://datasets.seed.nsw.gov.au/dataset/nsw-
urban-heat-island-to-modified-mesh-block-2016, accessed on 25 April 2022).

For all summer days, we subtracted UHI thermal excesses from observed temperatures
and derived a counterfactual temperature time-series dataset that represented what would
have occurred in Sydney had the UHI not been present.

https://datasets.seed.nsw.gov.au/dataset/nsw-urban-heat-island-to-modified-mesh-block-2016
https://datasets.seed.nsw.gov.au/dataset/nsw-urban-heat-island-to-modified-mesh-block-2016
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2.8. Assessment of Tree Cover Association with the UHI Effect

We used the Greater Sydney Region Urban Vegetation Cover to Modified Mesh Block
2016 data (Figure 2B) to calculate percentage vegetation and tree cover in city blocks and in-
frastructure corridors in the Greater Sydney Region as of 2016. (Dataset: https://datasets.seed.
nsw.gov.au/dataset/greater-sydney-region-urban-vegetation-cover-to-modified-mesh-block,
accessed 27 April 2022).

In a published spatiotemporal analysis of the relationship between air temperatures
at 2 metres height (T2m) and LST [31], the two measures were highly correlated (r > 0.9),
although LST in urban areas with low vegetation cover were considerably higher than
air temperatures. In their correlations of all temperature measurement pairs globally
(~4 × 104), Tmax and LST day at elevation 0–499 m were related with a slope of 0.8 and an
intercept 0.5 ◦C (r = 0.975; taken from a graph). However, with greater than 80% vegetation
cover, the relationship between Tmax and LST day had a slope of 1 and an intercept
of 0, indicating a linear relationship between the two measures. Hence, LST and T2m
temperature estimates converge with increasing fractional vegetation cover (FVC), and
this relationship was quantitated [31] with a slope of −1.06 ◦C/10% increase in vegetation
cover and an intercept of 7.47 ◦C (at 0% vegetation cover). We used the following equation
to calculate T2m UHI anomaly (∆T2mUHI) from LST UHI anomaly (∆LSTUHI):

∆T2mUHI = ∆LSTUHI − [7.47 − (1.06 × FVC × 10)] × ∆LSTUHI/∆LSTmax,

https://datasets.seed.nsw.gov.au/dataset/greater-sydney-region-urban-vegetation-cover-to-modified-mesh-block
https://datasets.seed.nsw.gov.au/dataset/greater-sydney-region-urban-vegetation-cover-to-modified-mesh-block
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where ∆T2mUHI is the UHI air temperature anomaly. ∆LSTUHI is the UHI land surface
temperature anomaly. FVC is fraction of the unit area covered by vegetation (0–1). ∆LSTmax
is the maximum land surface temperature anomaly.

In this way, we assessed the impact that increasing vegetation cover might have for
mitigating the adverse health effects of the UHI, and as an action against future climate-
change-related heatwave impacts.

3. Results
3.1. Heatwaves and All-Cause Mortality in the Sydney GMR

Temperature thresholds were calculated for all climate zones of the Sydney GMR
using population-weighted means of SA2-level daily temperatures from 1997 to 2016. The
90th, 95th, 98th and 99th percentile thresholds differed slightly between climate zones (data
not shown) but averaged for the Sydney GMR were 23.5 ◦C, 24.7 ◦C, 26.1 ◦C and 27.1 ◦C,
respectively (Table 2). These thresholds were comparable to those in the study by Wang
et al. [8], differing slightly because our study area extends further from the city centre. In
that epidemiological study, age-stratified analyses of heatwave-related mortality rates were
performed to determine whether the risk of heat-death varies between age groups. In their
sensitivity analyses, model fit was best served by a single distinction between populations
under and over 75 years of age. Accordingly, we applied health impact functions that
were derived specifically for the population of Sydney NSW [8] and considered the known
heatwave-triggered deaths among people over 75 years of age. In the present calculations,
31% of heat-attributable deaths occurred in people aged under 75 years.

Table 2. Percentile temperature thresholds and numbers of heatwave days from observations and
NSW and ACT Regional Climate Modelling projections.

24 h Temperature Percentile 90th 95th 98th 99th

Observed AWAP temperature thresholds ◦C
1997–2016 23.5 ◦C 24.7 ◦C 26.1 ◦C 27.1 ◦C

Annual heatwave days (AWAP observations)
2006–2018 20.34 11.38 3.06 3.23

NARCliM ensemble mean thresholds ◦C
1997–2016 22.6 ◦C 24.0 ◦C 25.5 ◦C 26.6 ◦C

Annual heatwave days (NARCliM ensemble)
2006–2018 20.11 11.99 3.86 4.53

Annual heatwave days (NARCliM ensemble)
2030–2049 29.18 19.11 6.93 6.46

Annual heatwave days (NARCliM ensemble)
2080–2099 40.46 39.07 19.74 24.55

Figure 3A shows the total annual accumulation of deaths from heatwave days under
each of the four heatwave percentile definitions throughout the Sydney GMR. Our analyses
of the years 2006–2018 show fewer than 50 heat deaths during 2008 and 2012, but more
than 250 heat deaths during the sustained and intense heatwaves of 2017 (Figure 3A).

The marked reduction in the mortality burden of heatwaves under a counterfactual
scenario of no UHI effect (shown in red in Figure 3A) reflects a mean counterfactual air
temperature decrease of 4.6 ◦C. The boxplot in Figure 3B shows that in areas with high tree
cover, air temperature excesses due to the UHI effect are decreased on average. Scenarios
with greater tree cover would result in marked decreases in the numbers of days on which
temperatures exceed the health-relevant thresholds. In Table 3, we present numbers of
heatwave days with no UHI effect. Under this counterfactual scenario, no heatwaves of
two or more consecutive days would have breached the 99th percentile threshold and only
0.3 would have breached the 98th percentile threshold annually.
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Figure 3. (A) Time-series of heat-attributable numbers (AN) of deaths in Sydney GMR with (grey)
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Table 3. Average annual observed (Australian Water Availability Project) and projected (NSW and
ACT Regional Climate Modelling) heatwave (HW) days with no urban heat island (UHI) effect, and
numbers of heatwave-attributable deaths (AN) in Sydney Greater Metropolitan Region (GMR) with
and without the UHI effect.

Average
of Years

HW Days
90th—No UHI

HW Days
95th—No UHI

HW Days
98th—No UHI

HW Days
99th—No UHI ANheat/100k

ANheat/100k—
No
UHI

AN AN—No UHI

Observed
2006–2018 3.2 0.0 0.3 0.0 2.2 (0.7, 3.5) 0.2 (0.1, 0.2) 117.3 (37.2, 189.8) 9.3 (2.9, 13.7)

Modelled
2006–2018 3.9 2.2 0.8 0.5 2.4 (0.8, 3.9) 0.4 (0.1, 0.6) 141.2 (58.0, 229.6) 22.4 (7.0, 36.2)

Modelled
2030–2049 6.7 3.0 0.9 0.6 3.7 (1.1, 6.0) 0.6 (0.2, 0.9) 217.6 (88.9, 354.9) 33.1 (10.6, 53.0)

Modelled
2080–2099 19.8 11.0 3.7 3.4 9.3 (2.7, 15.3) 2.2 (0.7, 3.5) 543.1 (215.5, 898.4) 127.6 (39.9, 206.5)

During the 12-year historical study period, heatwave days were experienced on
an average of 3.23 days per year (Table 3). This value is slightly lower than the 3.65
mathematically expected 99th percentile days of the average baseline year (1997–2018),
reflecting the more stringent heatwave definition of two or more days, which excludes
single isolated days that exceed thresholds.

Because the heatwave thresholds were calculated from temperature observations in
urban environments exposed to the full UHI effect, these data suggest that substantial
health gains could be achieved if the UHI effect was reduced in the Sydney GMR. Annually,
the heatwave death rate was 2.2 (95% CI, 0.7–3.5) per 100,000 people (Table 3), culminating
in 117.3 heat deaths annually across the entire study area. If all residents of the study area
were relieved of the UHI effect, the heat death rate would be reduced to 0.2 (95% CI, 0.1–0.2)
per 100,000, or 9.3 (95% CI, 2.9–13.7) in total.

3.2. Mortality Burden of Future Heatwaves

Using the methods described above for historical observations, we flagged heatwave
days in physical climate change models of the NARCliM1.5 ensemble under the RCP8.5
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scenario (Figure 4). From the 20-year baseline temperature distribution (1997–2016), 90th,
95th, 98th and 99th 24 h temperature thresholds were 22.6 ◦C, 24.0 ◦C, 25.5 ◦C and 26.6 ◦C,
respectively (Table 2). In analyses of climate ensemble means for the period of 2006–2018,
annual numbers of days exceeding these thresholds for at least two consecutive days were
20.1, 12.0, 3.9 and 4.5. These numbers are slightly higher than those from observations over
the same period. This can be explained in part by the lower temperature thresholds from
the modelled baseline period.
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Figure 4. Future annual numbers of heatwave days exceeding the 99th percentile 24 h temperature
threshold for at least two consecutive days from the period 1986–2005; heatwave days were flagged
for the global climate model (GCM) ensembles CSIRO-BOM ACCESS1.0, CSIRO-BOM ACCESS1.3
and CanESM2 based on the physical configurations of the weather research and forecasting (WRF)
models R1 and R2. The ensemble mean is shown as a black line.

To enable counterfactual comparisons of mortality burden (Table 3) due to future
heatwaves (Figure 4), we assumed no future changes in demographic factors (fertility,
migration) and no physiological or societal adaptation to heat. A similar approach has been
promoted by Vicedo-Cabrera et al. [32]. This assumption is designed to avoid inherent
limitations of using uncertain future population assessments when considering demo-
graphic changes and adaptation measures that are very uncertain to model into the future.
Hence, we estimated changes that might occur if all other variables influencing deaths
were held constant. Comparison of data from the period of 2006–2018 with that projected
for 2080–2099 (Table 3) shows an almost fourfold increase in numbers of heatwave days
and heat deaths. During 2030–2049 and 2080–2099, 6.5 and 24.6 days can be expected
to exceed the 99th percentile threshold annually, respectively, under the RCP8.5 scenario
(Table 3). Our mortality burden calculations show a total of 2.4 (95% CI, 0.8–3.9) heatwave-
attributable deaths per 100,000 under the RCP8.5 scenario from ensemble averages for the
period of 2006–2018 (Table 3). In the future periods of 2030–2049 and 2080–2099, annual
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heatwave deaths per 100,000 people could increase to 3.7 (95% CI, 1.1–6.0) and 9.3 (95% CI,
2.7–15.3) per 100,000 people, respectively (Table 3), across the Sydney GMR.

3.3. The Effects of Tree Cover on Urban Heat Island Excesses

The effects of tree cover (Figure 2) on urban heat exposures have been quantified
previously, and risk estimates for mortality have been estimated based on spatial compar-
isons [33,34]. Their risk estimates for heat deaths could be used to model the health effect
modification by tree cover. However, the spatial comparisons on which they were derived
may not be generalisable to the Sydney GMR. Further studies will be required to determine
the independent health benefits of vegetation in Sydney.

To determine the heat mitigating effects of tree cover in Sydney, we calculated
∆T2mUHI for all MBs and plotted these values against the percentage of tree canopy.
As shown in Figure 3B, the median UHI temperature excess in MBs with 0%–10% tree cover
was 3.9 ◦C, whereas that in MBs with greater than 90% tree cover was 1.82 ◦C. Hence, tree
cover reduces the UHI by a little over 50% on average. The remaining UHI effect is likely
due to human activities, low albedo surfaces and heat accumulation in buildings, together
overwhelming the heat-reducing properties of vegetation such as shade and evapotranspi-
rative cooling. UHI temperature excesses were significantly (p < 2.2 × 10−16) correlated
(r = −0.161) with MB area, which is an inverse proxy for population density. UHI tempera-
ture excesses were also highly correlated (r = 0.35; p < 2.2 × 10−16) with the percentage MB
area with no vegetation, representing paved areas and roofs, and with percent tree cover
(r = −0.36, p < 2.2 × 10−16). Other confounders of the association between tree cover and
the UHI effect include proximity of high-canopy MBs to low-canopy MBs, proximity to the
coast and elevation above sea level.

4. Discussion

We assessed heatwave exposures across the Sydney GMR and used baseline mortality
rates with locally derived heat-mortality risk estimates to calculate heat-attributable deaths
using the population attributable fraction (PAF) method [22–24]. We estimate that on
average, 117.3 deaths can be attributed to heat per year in Sydney, with a 95% confidence
interval (CI) of 37.2–189.8 deaths. After subtracting UHI-related temperature excesses from
observed temperatures, numbers of heatwave days were reduced to fewer than 10% of
the baseline, demonstrating the pronounced contribution of urban heat to health-relevant
heatwave exposures (Tables 2 and 3). Figure 2A,B clearly show heating and relative cooling
effects of urbanisation and greenspace, respectively.

The association between heatwaves and mortality is well described and is of increasing
concern as climate warming progresses [22]. The present data show that the future health
burden of heatwaves could be effectively diminished by interventions that limit excess heat
in urban environments. Among possible interventions, increased tree cover could reduce
the impact of low albedo surfaces, which contribute substantially to excess urban heat [20].
The data in Figure 3B indicate that median UHI temperature excesses are approximately
halved in areas with very high tree cover, warranting additional close consideration of
other sources of urban heat.

The implications of our assessment for urban policy makers are that whereas increasing
tree cover will mitigate the impact of urban heating, it will not be sufficient alone to
avoid adverse health consequences of global warming. Further adaptive strategies will
be required in urban areas, because anthropogenic heat, such as that from vehicles, air
conditioners, combustion and body heat, is likely responsible for much of the UHI effect.
Attempts to address these sources of heat will, in large part, contribute to reductions in
greenhouse gas emissions.

The strengths of this analysis include high-resolution climate and UHI data and the
fact that the health-impact function was derived from the same location/population as it
is being applied to. Limitations include the a priori heatwave definitions that include 1%,
2%, 5% and 10% of all days. Although these definitions were developed based on large
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cohort studies, various other heatwave definitions consider humidity, wind and human
physiological factors and could provide better models of heat-related mortality. This
study also operates on the ‘all else being equal’ assumption relating to population growth,
changes in population structures and changes in susceptibility due to chronic disease. This
static population approach avoids the uncertainties of demographic modelling. Finally,
further studies may improve the validity of the counterfactual no-UHI scenario using
direct measurements of air temperatures to confirm the present adjusted LST estimates of
UHI-related heat excesses.

In conclusion, this study shows the current mortality burden of heatwaves and projects
the future burden that could be expected under the most severe climate change scenario.
We focused on adaptations and interventions that could mitigate against the heat–health
burden in urban areas and showed that a reduction of the UHI effect will curb the adverse
health impact of heatwaves, and that widespread tree planting will deliver a part of
this benefit. Based on a high-range greenhouse-gas-emissions scenario, Sydney could
experience a fourfold increase in numbers of heatwave days and heatwave-attributable
deaths by 2100, warranting immediate interventions to reduce the UHI effect.
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