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ABSTRACT 

This thesis advances knowledge of biodiversity monitoring using citizen science and 

demonstrates the potential of innovative tools and technology to improve the data 

generated by citizen science to inform species conservation and ecosystem management. 

Biodiversity around the world is in crisis and there are many challenges. Australian 

biodiversity is declining rapidly, with the worst mammal extinction rate in the world.  

Climate change, pollution, land clearing and other anthropogenic pressures are increasing 

and exacerbating pressures on ecosystems and wildlife. Biodiversity monitoring is crucial 

to inform us as to the current state and trends of ecosystems. Resources are limited for 

traditional scientific monitoring, thus other efficient and effective methods are being 

sought to augment biodiversity conservation research and management. Effective 

management solutions require stakeholder engagement, so community participation is one 

key part of solving this crisis. Citizen science is seen as part of the solution by engaging 

citizens in local actions that contribute to local and global improved outcomes. However, 

data contributed by citizen scientists are often seen as biased in space and time, and 

lacking in essential metadata, such as accurate effort data.  

The aim of this thesis was to investigate and develop methods to enhance data 

collected by citizen scientists to improve wildlife monitoring. The objectives were to: 1. 

assess the potential of automatic collection of key monitoring metadata, such as species 

location and observer search paths, to enable more accurate assessments of observer effort 

and species absence; 2. increase knowledge on population distribution and abundance of an 

iconic Australian mammal species using citizen science and compare spatial coverage of 

this monitoring to traditional observations, using protected areas and geographic 

remoteness indicators; 3. assess how CS monitoring performed compared to other forms of 

monitoring when faced with major disruptions to community activities and movements 

caused by a global pandemic.  

These objectives were addressed through three component studies. Firstly, a mobile 

app was developed which automatically recorded accurate metadata for each observation. 

Extra information about participants' search effort, including time taken and search path 

followed, was also automatically recorded. This app was used for a citizen science event to 

gather information about koala (Phascolarctos cinereus) populations and their habitats in 

South Australia. Results showed that recording of observations, search effort and search 



  xii 

path data was accurate and useful for both species population assessment and management 

of citizen science monitoring. 

For objective two, a mobile app was developed to enable citizen scientists across 

Australia to record observational data and improve knowledge on the iconic short-beaked 

echidna (Tachyglossus aculeatus). Widespread participation over three years more than 

doubled observation counts across the continent compared to contemporary scientific 

observations from national and state repositories, while geographic coverage was similar, 

except for in some highly protected areas and very remote areas. 

Finally, citizen science observational data for short-beaked echidna were compared 

to data from three biodiversity data repositories and demonstrated that citizen science 

monitoring was resilient to the effects of restrictions on community activities while other 

forms of monitoring were significantly reduced under harsh restrictions and more 

concentrated in highly protected areas than usual. 

This thesis contributes towards efforts to understand and improve citizen science 

data for monitoring wildlife and biodiversity by enhancing data collection methods. The 

automatic collection of citizen scientist search paths and effort provides key information 

about where monitoring has occurred, even without observations being recorded. This is 

vital information for both modelling species populations and distribution and also for 

improved management of citizen science monitoring. Baseline echidna population 

distribution and abundance information has been improved across Australia and will help 

determine future population trends. This also contributes to our understanding of spatial 

biases of citizen science and scientific monitoring. Demonstrating the robustness of citizen 

science monitoring to disruptions caused by restrictions to community activity provides 

further important knowledge for assessing effective monitoring methods, particularly in 

light of the current pandemic and ongoing climate change effects. This knowledge will 

inform management of both CS and scientific biodiversity monitoring and further improve 

methods for biodiversity conservation in Australia and around the world. 
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Biodiversity around the world is in crisis with losses increasing (Butchart et al., 2010; 

Davis et al., 2018; Koh et al., 2004; Pimm and Raven, 2000). Habitat clearance and 

degradation from human activities combined with exotic pest species, both flora and fauna, 

have changed and continue to change our landscapes. More frequent and increasingly 

severe weather events such as droughts and floods, combined with long-term climatic 

changes, exacerbate the problems caused by landscape changes and result in increased 

pressures on remaining species (Bradshaw, 2012; Urban, 2015; Woinarski et al., 2019). 

Current rates of species' extinction are about 1000 times the background extinction rate and 

likely still underestimated as most species are probably still undescribed (Pimm et al., 

2014). In Australia, at least 100 plant and animal species have become extinct since 1788 

(Woinarski et al., 2019, 2015) and 580 extant plant and animal species are now classified 

as endangered or critically endangered (IUCN, 2020). Populations of many species are in 

decline while the status of many others remains unknown (IUCN, 2020). The need to 

reduce damage to global ecosystems and biodiversity has been recognised internationally 

by the Convention on Biological Diversity's Aichi Biodiversity Targets (Convention on 

Biological Diversity, 2020) and the United Nations' 2030 Agenda for Sustainable 

Development Goals SDG 14 and SDG 15 (United Nations, 2015). 

Biodiversity and wildlife monitoring is crucial to inform us of the current state of 

ecosystems and how they are changing over time. Monitoring enables the evaluation of 

ecosystem responses to both external disturbances, such as invasive species, and to 

management actions taken to protect and restore biodiversity (Lindenmayer et al., 2012a). 

Longer-term studies are required to detect changes and determine trends (Lindenmayer et 

al., 2012b; Lindenmayer and Likens, 2010). Monitoring data may influence government 

policy and investments both directly, by providing evidence required for national and 

international agreements, and indirectly, by raising public awareness of important 

environmental issues (Possingham et al., 2012).  

Monitoring of wildlife takes many forms, with traditional field monitoring often 

being highly structured in time and space, using varying methods suited to the target 

species and habitats. Structured monitoring aims to provide reliable data in forms that can 

be used for answering research questions of interest. Desirable monitoring characteristics 

include detailed descriptions of study sites, field protocols with standardised and calibrated 

methods, inclusion of appropriate reference sites and appropriate spatial and temporal 

scales (Lindenmayer and Likens, 2010). Conventional biodiversity field monitoring 

methods, particularly at large spatial and temporal scales, require significant resources and 
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are still generally limited in extent, representativeness and frequency (Amano et al., 2016; 

Crawford et al., 2020; Neate-Clegg et al., 2020; Wal et al., 2015). In Australia, well-

designed and long-term monitoring studies are lacking (Lindenmayer, 2012) which leads 

to an inability to reliably report on biodiversity trends (Cresswell and Murphy, 2017; 

Zichy-Woinarski, 2012). Few species have data at the spatial and temporal resolution 

necessary to provide confident determinations of current status and trends, while many 

species have little to no data recorded or are still undescribed or remain undiscovered 

(Cresswell and Murphy, 2017). 

Monitoring data often suffer from multiple weaknesses, including limited taxonomic, 

temporal and spatial coverage, errors and inconsistencies including lack of standardisation 

in data formats, gaps in time series, and inaccurate or missing essential metadata such as 

survey method, search timing and effort (Bayraktarov et al., 2019; Boakes et al., 2010; 

Hughes et al., 2021; Meyer et al., 2016; Titley et al., 2017; Troudet et al., 2017). 

Additionally, many ecological datasets have been stored in data siloes and not widely 

shared, thus decreasing their utility as they cannot be easily combined and analysed with 

other datasets in a timely way (Boakes et al., 2010).  

Consequently, new methods with improved efficiency are being sought to enhance 

biodiversity research and management. Improving the efficiency of reliable monitoring 

data collection may enable increased spatial and temporal replication, higher accuracy and 

faster progress from data collection to analysis, subsequently contributing to better 

conservation management outcomes (Zerger and McDonald, 2012). Achieving this may be 

possible by using appropriate technologies and methods together with greater community 

participation to provide data at the required temporal, spatial and taxonomic resolutions 

and representations.  

1.1. CITIZEN SCIENCE 

Public participation in scientific research is often called community-based science or 

citizen science (CS). It usually involves science-driven research with varying levels of 

public participation under three main categories – contributory projects, collaborative 

projects or co-created projects (Bonney et al., 2009). The participants are often volunteers 

with diverse ranges of experience and expertise whose contributions may range from the 

occasional and opportunistic recording of species observations to analysing and 

interpreting the resulting data, through to design or co-design of scientific research 

programs. 
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CS biodiversity monitoring has an extensive history (Miller-Rushing et al., 2012). 

Environmental monitoring has long been carried out by amateur natural historians 

interested in particular aspects of the natural world, often in their own locality, as local 

issues provided relevance and context. For example, in Kyoto, Japan, the annual cherry 

blossom appearance has great cultural importance and has been recorded for over 1200 

years (Primack et al., 2009). This has enabled current scientists to use this phenological 

time series to better understand both regional climatic warming and urban heat island 

effects on biodiversity (Aono and Kazui, 2008). Historic phenological records from the 

1850s onwards were combined with modern observations to study changes in flora and 

fauna species distribution, abundance, composition and movement (Primack and Miller-

Rushing, 2012). Another long-term study is the annual Christmas Bird Count in the USA 

which has taken place since 1900 and informs strategies for protecting birds and their 

habitats, as well as identifying potential environmental issues (Audubon Society, 2021). 

More recently, worldwide interest and participation in CS have greatly increased 

(Bonney et al., 2014; Pocock et al., 2018, 2017). Although concerns about human effects 

on the environment have been documented for centuries (Grove, 2002), wider community 

engagement in environmental issues increased with greater awareness of environmental 

problems around the world as anthropogenic effects on biodiversity were brought to public 

attention in the 1960s, helping to spur interest and concern for the environment (Dunn, 

2012). The term "Citizen Science" first appeared in 1989 (Haklay et al., 2021) and then 

gained traction in the mid-1990s (Bonney, 1996; Irwin, 1995), coinciding with the 

development and rapid adoption of the World Wide Web (CERN, n.d.) which provided 

accessible, easy-to-use interfaces for entering and disseminating data and enabled further 

expansion of community-based projects. Improvements in electronic field data acquisition 

have been assisted by the subsequent development and rapid increase in availability of 

mobile devices, which now integrate multiple sensors for recording a variety of data, 

including images, audio, location and movement data.  

While most CS projects begin through local, regional or national initiatives, some 

have increased their scope and now operate globally. As of August 2021, over four million 

citizen scientists from around the world have contributed more than 87 million 

observations of almost 170 thousand species to iNaturalist 

(https://www.inaturalist.org/stats). Interestingly, the primary goal of iNaturalist is to be a 

network for connecting people with nature, with the secondary goal of generating 

scientifically valuable biodiversity data (iNaturalist.org, 2021). One of the reasons for 
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iNaturalist's popularity and success is its easy-to-use app which enables participants to 

quickly record and submit observations to the web portal, where they can be curated by 

other expert participants and shared. It also has a web portal providing an easy-to-use 

interface for all users to access the data and share results. eBird (https://ebird.org) is 

another globally popular citizen science program providing a mobile app and website with 

easy-to-use functionality. Over one billion bird observations of more than ten thousand 

species have been submitted by more than 700,000 participants since 2002. In 2021 alone, 

over 100 peer-reviewed publications have utilised data from eBird, with over 400 

publications since 2010 answering questions ranging from bird distribution (Fink et al., 

2010), to climate change effects on birds (Hurlbert and Liang, 2012), to global population 

estimates of 9,700 bird species (Callaghan et al., 2021). eBird's large dataset also 

contributes to a range of conservation outcomes including threatened species assessments, 

conservation planning, site and habitat management and protection, species management 

and policy development (Sullivan et al., 2017). These and other CS projects from around 

the world provide large amounts of data to the Global Biodiversity Information Facility 

(GBIF https://www.gbif.org/) which currently stores 1.8 billion species occurrence records. 

These data have been used by researchers worldwide in over 6100 peer-reviewed journal 

articles.  

In Australia, CS provides an increasingly popular means of collecting and processing 

wildlife observational data and contributes to improving understanding of biodiversity 

status and trends (Cresswell and Murphy, 2017). Successful national CS programs include 

FrogId (https://www.frogid.net.au/), which provides a mobile app allowing the public to 

record and submit frog calls, enabling researchers to document species diversity and 

distributions with higher spatial and temporal coverage than previously possible. Over 

400,000 frogs from 204 species have so far been identified (Australian Museum, 2020). 

Birdlife Australia (Birdlife Australia, 2021) runs multiple targeted programs with a large 

network of volunteers and partnerships with many governmental and non-governmental 

organisations. Their shorebird monitoring program 

(https://birdlife.org.au/projects/shorebirds) database goes back to 1981 for some areas and 

is the most complete shorebird count data in Australia. Volunteer contributions are highly 

significant, with up to ten times the support compared to governmental contributions 

(Garnett, 2012). Questagame (https://questagame.com) provides a gamified observational 

platform employing a variety of mechanisms, such as teams and competitions (or 

BioQuests), to motivate participants to submit sightings of biodiversity. Almost one 
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million sightings have been submitted to date, with verified data contributing to regional, 

national and international biodiversity repositories.  

For CS projects to deliver broad benefits, they need wide community participation 

and an effective means of sharing data with a diversity of end-users. In Australia, the Atlas 

of Living Australia (ALA - https://www.ala.org.au) provides an integrated platform for 

storing, finding, sharing and analysing biodiversity observations and contains over 100 

million species occurrence records. It also provides a set of integrated tools, including the 

Australian Citizen Science Project Finder (https://biocollect.ala.org.au/acsa) which lists CS 

projects from around Australia as well as some international projects; BioCollect 

(https://www.ala.org.au/biocollect/) which enables organisations to establish their own 

biodiversity data collection projects such as CS monitoring; and the Spatial portal 

(https://spatial.ala.org.au) which provides easy access to mapping, visualisation and 

analysis of species occurrence and their environments. Over 50 peer-reviewed publications 

used ALA data or platforms in 2020 alone, illustrating the value of a national platform for 

biodiversity monitoring data. As the ALA provides good functionality in an integrated 

manner and is built on open-source software, it has been adopted internationally by GBIF 

as the Living Atlases platform (https://living-atlases.gbif.org/) and is currently being used 

in about 25 countries (Belbin et al., 2021). 

Governments and organisations around the world view community participation in 

environmental monitoring as important, with many benefits of widespread inclusion and 

participation, such as accessing local knowledge (Alessa et al., 2015; Camino et al., 2020; 

Danielsen et al., 2021; Smith et al., 2018), increasing environmental awareness (Haywood 

et al., 2016; Johnson et al., 2014), educating and taking action on local and global issues 

(Danielsen et al., 2021, 2009; Haywood et al., 2016; Roetman et al., 2018). Australia's 

Strategy for Nature 2019-2030 (Commonwealth of Australia, 2019) includes CS 

contributions in two out of three goals. Progress measures for the first goal, "Connect all 

Australians with nature" include the number of contributions to CS programs. The third 

goal, "Share and build knowledge", also identifies the provision of robust data on 

Australia's nature to public information sets by CS programs as a progress indicator. 

Providing broad participation in CS biodiversity monitoring programs and ensuring the 

resulting data is robust is essential. 

CS biodiversity monitoring surveys use a variety of methods and result in diverse 

forms of data. Some monitoring is highly structured and requires significant participant 

training to ensure data is collected at sufficient quality, such as the Breeding Bird Survey 
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(British Trust for Ornithology, 2018) and the Reef Life Survey (Edgar et al., 2020). 

Another method is to use temporally intensive biodiversity surveys – bioblitzes – which 

aim to intensively survey species and/or locations for a short time but at high intensity 

using multiple participants. Often these intend to repeat the process at regular intervals in 

order to collect more meaningful and useful data for research and may require expert 

participants to identify sightings or ensure protocols are followed. Other CS programs, 

such as iNaturalist, provide the opportunity for anyone to record opportunistic sightings of 

any species whenever they choose. While these opportunistic observations are often seen 

as being of lesser value, they can be useful for tracking the spread of invasive species, the 

presence of threatened species and for phenological studies, particularly for species that 

can be photographed (Di Cecco et al., 2021). Most programs are somewhere in between 

these examples and are designed to answer specific research questions. They are usually 

restricted to a small set of specific species or a particular region and collect a variety of 

information in addition to core species occurrence data such as location and date.  

Desirable characteristics of the data collected by CS projects for biodiversity and 

wildlife monitoring include accuracy, completeness, timeliness, consistency and 

accessibility, and there are multiple other dimensions (Wang and Strong, 1996). Assessing 

data quality can be difficult, with one definition of data quality for CS being data of 

comparable accuracy to that produced by professionals (Bonney et al., 2014; Cooper et al., 

2014; Kosmala et al., 2016; Theobald et al., 2015). Some report that CS data quality is 

already comparable to traditional monitoring (Kosmala et al., 2016). Evaluating data 

quality is also dependent on intended purpose – data of insufficient quality for one purpose 

may be usable for other purposes – thus fitness-for-use is a common method of assessment 

(Chapman et al., 2020; Kosmala et al., 2016; Wang and Strong, 1996) 

A lack of standardisation can impact data usability in multiple ways. Paper-based 

form-filling is still often used in both traditional fieldwork and for CS observations. It is an 

error-prone and slow method for submitting data, as understanding text written by others 

can be difficult and lead to data entry errors and delays before data is available for use. 

Technology-based forms may avoid the requirement for transcription but can also lead to 

difficulties in using the data, as entries may require transformation from free-form text into 

formats usable for analysis. Standardised entries, using selection from a list of values, 

provide a much easier to use and efficient way of collecting data which avoids many of the 

problems inherent with free-text entries. Manual entry of location and date can also be 

problematic, for example, when users must select locations from a map, as this can lead to 
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a lack of accuracy and precision. Manually entering latitude and longitude can lead to 

errors due to mistyping or lack of understanding of coordinate systems. Accuracy of 

observation date and time can also be problematic if manually entered. 

Additionally, many biodiversity monitoring programs collect their data in isolation 

and are slow to share. This can lead to data siloes, which decrease the usage and value of 

data by limiting access to it. Using the Darwin Core Standard (Wieczorek et al., 2012) – an 

evolving biodiversity standard framework – may enable easier sharing, integration and 

understanding of some biodiversity and ecological data. Such mechanisms can help ensure 

community-run and public-funded projects follow the FAIR principles – that is, the 

resulting data are Findable, Accessible, Interoperable and Reusable (Wilkinson et al., 

2016). This may ensure that CS project contributions are maximising their value as they 

are then rapidly available to the community and other researchers and can be more easily 

integrated with other datasets. 

Data collected during environmental monitoring must be usable for the immediate 

research questions (Lindenmayer and Likens, 2010). However, possible future uses are not 

always clear (Possingham et al., 2012), so it is essential to also record key metadata. 

Information such as survey methods used should be included in overall project metadata, 

but there are also important metadata about each monitoring survey, such as search effort, 

and about each observation, such as location accuracy and precision (Bayraktarov et al., 

2019). Search effort is usually not recorded at all or else is imprecise and recorded post-

survey (Meyer et al., 2016). Observer search paths are rarely recorded or defined, except 

for highly structured CS projects that can require significant user training to ensure that the 

correct protocols are followed (Edgar et al., 2016). Such metadata are important when 

evaluating data for inclusion in other research (Kelling et al., 2019). 

CS programs covering large temporal and spatial scales, with many thousands of 

participants, typically require substantial resources to ensure data is of sufficient quality for 

the required purposes. In some projects, such as eBird, automated data quality checks and 

filtering systems enable questionable data to be flagged and then checked by expert 

reviewers, who may also be volunteers (August et al., 2015; Sullivan et al., 2014). 

Photographs of sightings, when possible, enable easier validation in many projects and can 

help to prevent species misidentifications (Crall et al., 2011; Kosmala et al., 2016). User 

training can be an important tool in improving data quality, particularly for projects with 

special or complex requirements, such as when following strict monitoring protocols 

(Cooper et al., 2012; Lewandowski and Specht, 2015; Ratnieks et al., 2016). User-friendly 
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software apps on mobile phones can provide automated validity checks to ensure that all 

required data has been supplied, as well as providing guidance on methodology and other 

contextual checks, if required, at the time of entry (Budde et al., 2017; van Berkel et al., 

2018). 

Despite these checks on data quality, there are particular errors and biases that may 

be present in CS monitoring (Boakes et al., 2010; Isaac and Pocock, 2015), though many 

of these biases and errors also occur with scientific monitoring (Boakes et al., 2010; Meyer 

et al., 2016; Titley et al., 2017; Troudet et al., 2017). Common concerns about CS 

monitoring data involve differences in observer skill levels and effort, uneven sampling in 

time and space and other issues that lead to bias and variability (Boakes et al., 2010; 

Cooper et al., 2012; Isaac and Pocock, 2015; Kosmala et al., 2016). Examples of spatial 

biases occur when CS participants survey known and favourite locations (Boakes et al., 

2016), for example when they know that species of interest occur there. There can also be 

a bias towards observations close to roads or paths (Dissanayake et al., 2019; Geldmann et 

al., 2016) and towards populated areas, though this is also apparent with traditional 

monitoring (Pautasso and McKinney, 2007). Temporal biases may occur as people sample 

at preferred periods, such as weekends, school holidays or during fine weather (Courter et 

al., 2013). Taxonomic biases, such as personally favoured species, can also affect sampling 

(Huang et al., 2020; Hughes et al., 2021; Troudet et al., 2017), as does the skill level of the 

participant (Kelling et al., 2019), which can affect correct identification of species, 

individual and species counts, as well as the issue of only reporting species presence with 

no record of species absence (Cooper et al., 2012). Species detectability is also dependent 

on participant skill level (see Dickinson et al. (2010) for multiple examples from the 

literature). For example, many species are easily detectable by sound alone but only if the 

listener has the necessary expertise to recognise the call. Similarly, many plant and animal 

species can be visually recognised at the genus level, with individual species identification 

being more challenging. Skill levels usually improve with further experience and training 

(Dickinson et al., 2010) but can also deteriorate (Farmer et al., 2014). 

Much research has been conducted aiming to reduce these sources of error, 

variability and bias during data collection, and also to reduce their effects, including 

enhanced statistical modelling techniques (Bird et al., 2014; Cunningham and Olsen, 2009; 

Isaac et al., 2014), CS project design methods (Cooper et al., 2012; Kelling et al., 2019; 

Sturm et al., 2017; Sullivan et al., 2014) and improved participant training and evaluation 

(Johnston et al., 2018; Kosmala et al., 2016). Improving the technology used in the field 
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can also aid in reducing errors and bias. In-field guidance through the use of intelligent 

keys to aid species identification (Farnsworth et al., 2013) can help reduce taxonomic 

errors. Artificial intelligence/machine learning (AI/ML) is increasingly used to identify 

species using audio and/or visual samples, combined with important contextual ecological 

metainformation about location, date and time (Bonnet et al., 2018; Wäldchen and Mäder, 

2018). Providing extra motivation to participants through gamification and other 

techniques is often used to increase engagement (Bowser et al., 2013; Deterding et al., 

2011; Van Berkel et al., 2017), while supplying extra meta-information, such as asking if a 

complete list of species has been recorded, can aid later analysis (Cooper et al., 2012). 

Improving the software used for CS wildlife and biodiversity monitoring on mobile 

devices has the potential to increase data quality in many ways (Newman et al., 2012; van 

Berkel et al., 2018). Software ease-of-use is important for ensuring user satisfaction and 

continued usage, which is important for increasing participation and thereby improving 

spatial and temporal coverage and intensity. Well-designed and easy-to-use mobile 

software can help ensure data collected is of sufficient quality, which requires that survey 

data is collected accurately with the necessary precision, and that survey and observational 

metadata are automatically collected, where possible. Fast sharing of survey data, to 

support timely analysis and increased data usability, can be enabled by direct integration 

with back-end regional or national biodiversity repositories. 

Effective wildlife monitoring using CS is currently hampered by a lack of 

information regarding species absence and sampling effort in time and space (Cooper et 

al., 2012; Crall et al., 2011; Dickinson et al., 2010). There is a lack of understanding of the 

potential value of the automatic collection of CS monitoring metadata, such as search 

effort and path. Recording more accurate search metadata to improve the collection of 

species absence data has been suggested (Kelling et al., 2019; Sequeira et al., 2014), with 

other benefits of accurate search effort including improved understanding of sampling 

intensity and species detection probability leading to more robust inferences from 

modelling (Geldmann et al., 2016; Isaac et al., 2014). To confirm the significance of this, 

the eBird app recently included similar functionality to record observer search paths, to 

complement the use of complete lists and other techniques to assist in determining search 

effort, species detectability and observer skill levels (Cornell Lab of Ornithology, 2017). 

There have been few studies in Australia that compare biases of CS and traditional 

observational data at continental scale and at high temporal and spatial intensity. Much of 

Australia is sparsely populated and inaccessible, so understanding similarities and 
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differences of spatial aspects of CS and traditionally recorded observations is important to 

inform effective conservation management. A recent review of spatial bias in 646 studies 

of terrestrial reptile research in Australia (Piccolo et al., 2020), found that research effort 

was driven by accessibility, specifically proximity to universities. Lloyd et al. (2020) 

evaluated CS biodiversity project coverage in Australia against threatened species ranges 

to assess geographic and taxonomic coverage and found potential coverage of citizen 

science aligned relatively well with threatened species richness in terrestrial systems. A 

global study comparing CS bird observations to traditional monitoring found that CS data 

were not sufficient for monitoring most of the world's bird populations and even less in 

developing countries (Neate-Clegg et al., 2020). In the UK, CS monitoring data were less 

spatially biased than long-term scientific data but did display bias towards urban areas 

(Sumner et al., 2019). In addition, in just two weeks, CS provided comparable coverage to 

more than four decades of expert monitoring. A better understanding of biases in CS and 

traditional monitoring datasets can provide evidence for improving both.  

Additionally, increasing our understanding of how resilient CS and conventional 

wildlife monitoring are to changed patterns of community activity is important to guide 

conservation management decision-making as societal disruptions continue to increase. 

Recent research overseas has provided conflicting evidence regarding changes to CS 

monitoring patterns during restrictions caused by the COVID-19 pandemic (Basile et al., 

2021; Kishimoto and Kobori, 2021; Miller-Rushing et al., 2021; Rose et al., 2020). In 

Australia, biodiversity-related studies on pandemic effects relate to changes in species 

distribution and abundance (Gilby et al., 2021a) and human use of urban green space 

(Berdejo-Espinola et al., 2021) with no studies of changes to CS or traditional wildlife 

monitoring until now. Understanding these changes is important information as any data 

gaps or changes to sampling patterns in long-term monitoring datasets can affect future 

analyses. This knowledge may also allow better conservation management planning when 

faced with future disruptions. 

1.2. RESEARCH AIMS AND OBJECTIVES 

The overall aim of this thesis is to investigate and develop methods to enhance data 

collected by citizen scientists to improve wildlife monitoring. This aim is addressed 

through two sub-themes. The first is the development and trialling of improved mobile 

apps to improve CS wildlife monitoring data through two case studies of iconic Australian 

mammal species. The second is to explore aspects of data biases by comparing the CS data 
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to data from official data sources, under normal conditions and also under exceptional 

circumstances. The objectives are thus:  

1. to develop mobile applications for CS-based wildlife monitoring which enable: a. 

improved data collection through automatic recording of key metadata, including accurate 

observer effort data; and b. accurate, large-scale CS monitoring to improve species 

baseline knowledge through higher resolution spatial and temporal coverage than 

previously possible;  

2. to compare spatial aspects of Australian CS wildlife monitoring data to traditional 

sources and assess possible biases of each;  

3. to assess the resilience of CS data collection compared to traditional data sources 

when faced with disruptions caused by restrictions on community activities. 

1.3. THESIS STRUCTURE 

The remaining chapters of this thesis are presented as standalone papers which have been 

published or submitted for publication. Chapters two and three present two case studies 

that describe the development and application of novel mobile apps to citizen science 

projects for wildlife monitoring and how these may lead to improved results through the 

automatic collection of metadata to better understand biases around search effort and 

location. Chapters three and four compare data from one of these studies with data in 

official biodiversity repositories to provide insight into spatial biases of CS observations 

compared to data collected using traditional methods. Chapter four also compares how 

observations from CS and traditional sources are affected during periods of restrictions to 

community activity caused by a global pandemic. Chapter five summarises and discusses 

the overall research and presents conclusions that highlight key research contributions and 

opportunities for further research. The following presents a summary of the contents of 

each chapter. 

Chapter two presents a new mobile app and analyses its use in a citizen science 

bioblitz-style project to collect koala population data for informing koala conservation and 

management in South Australia. The app uses mobile phone sensors to transparently and 

automatically record metadata such as species observation location and time, the search 

path the user takes, the time taken while searching and GPS location precision. Potential 

improvements to further increase the quality of collected data are suggested, along with 

recommendations for app development and the recording of important contextual metadata 

for CS projects. This chapter has been published as: 
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Stenhouse, A., Roetman, P., Lewis, M., Koh, L.P., 2020. Koala Counter: Recording 

Citizen Scientists’ search paths to improve data quality. Global Ecology and Conservation 

24, e01376. 

Chapter three presents a custom mobile app and results from using it in a CS 

opportunistic monitoring program to improve baseline knowledge about short-beaked 

echidna population abundance and distribution across Australia. The data collected over 

three years were compared with existing traditional data sources in relation to coverage in 

protected areas and to geographic distribution using an index of accessibility and 

remoteness. This chapter has been published as: 

Stenhouse, A., Perry, T., Grützner, F., Lewis, M., Koh, L.P., 2021. EchidnaCSI – 

Improving monitoring of a cryptic species at continental scale using Citizen Science. 

Global Ecology and Conservation 28, e01626. 

Chapter four evaluates the effect of disruptions to wildlife monitoring caused by 

varying restrictions imposed on people's movement and compares these effects between 

CS and traditional sources. This chapter highlights the complementary nature of CS to 

scientific monitoring and the potential value of CS monitoring during times of social 

disruption. This chapter has been published as: 

Stenhouse, A., Perry, T., Grützner, F., Rismiller, P., Koh, L.P., Lewis, M., 2022. COVID 

restrictions impact wildlife monitoring in Australia. Biological Conservation 267, 109470. 

https://doi.org/10.1016/j.biocon.2022.109470. 

Chapter five highlights the key findings from these studies, outlines key 

contributions this work has made to improving the use of citizen science for wildlife 

monitoring and provides recommendations for future research and development. 
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ABSTRACT 

1. Biodiversity monitoring is key for developing informed solutions to the threats facing 

our environment, including habitat loss, increasing pollution, wildlife trafficking and 

climate change. Citizen science is increasingly used for collecting species 

observational data at wide spatial and temporal scales that are difficult and expensive 

to achieve using traditional means. Current apps used for citizen science biodiversity 

monitoring provide methods to record observational data on species’ presence, 

including photos, location, date, time and an assortment of other data. However, data 

about species absences as well as automatically generated and accurate data on both 

search effort and search locations have been lacking. 

2. Koala Counter is a free, cross-platform (Android & iOS), open-source app that was 

developed for a citizen science project to collect koala population data to inform koala 

conservation and management in South Australia. The app uses mobile phone sensors 

to transparently and automatically record metadata such as species observation location 

and time, the search path the user takes, the time taken while searching and GPS 

location precision. We tested this in the Citizen Science event “The Great Koala Count 

2” in South Australia during November 2016. 

3. Observations, paths and search effort data were accurate overall. Location accuracy 

was good, with some exceptions. Use of the app indicated a number of potential 

improvements that would further increase data quality. 

4. Recording search paths offers a potentially valuable method of recording spatial and 

temporal components of search effort, improving on simple records of species 

observations and time taken, especially when no observations are made. These data 

may enable better ecological modelling by supplying accurate search effort data as well 

as enabling improved inference of species absence. Search paths also show locations 

that have not been searched, which is valuable information in management of citizen 

science monitoring programs. 
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2.1. INTRODUCTION 

Citizen Science (CS) is increasingly used to assist with biodiversity monitoring, analysis 

and restorative services (Chandler et al., 2017; Edwards et al., 2018; Hesley et al., 2017). 

CS can often provide wider spatial and temporal coverage than is usually possible with 

traditional scientific projects (Dickinson et al., 2010; Hurlbert and Liang, 2012). Multiple 

sensors contained in mobile phones, combined with easy-to-use software apps and 

widespread internet accessibility (Bonney et al., 2014; Pimm et al., 2015) have been the 

primary enabling technologies behind the huge increase in numbers of CS projects. It is 

now easy to record observational data including photographs, video and audio as well as 

automatically recording other contextual information such as location, date and time. It is 

also easy to share this information by uploading data directly to national and international 

project data repositories.  

There are multiple examples of CS biodiversity observational projects operating at 

local, national and global scales. iNaturalist had more than 13 million observations of 

almost 170 thousand species submitted in 2019 alone 

(https://www.inaturalist.org/stats/2019). By the end of 2019, over 737 million bird 

observation records had been submitted to eBird, a global citizen science program, from 

more than 500,000 participants over the previous 17 years (https://ebird.org/news/ebird-

2019-year-in-review). Over 220 peer-reviewed publications (Wiggins et al., 2018) have 

utilised data from eBird to answer questions related to topics such as bird distribution 

(Fink et al., 2010) and climate change effects on birds (Hurlbert and Liang, 2012), 

contributing to a range of conservation outcomes including threatened species assessments, 

conservation planning, site and habitat management and protection, species management 

and policy development (Sullivan et al., 2017). CS also provides large amounts of data to 

the Global Biodiversity Information Facility (GBIF https://www.gbif.org/) which gathers 

and stores hundreds of millions of species occurrence records. These data have been used 

by researchers worldwide in over 1700 peer-reviewed journal articles (Chandler et al., 

2017).  CS data are contributing to monitoring progress on the United Nations Sustainable 

Development Goals (UN SDGs) and can complement official data sets by providing 

varying temporal and spatial data resolutions (Fritz et al., 2019). 

However, with the increasing popularity of CS, there are concerns about the quality 

of data collected (Burgess et al., 2017; Lukyanenko et al., 2016). While some CS projects 

follow strict protocols requiring much user training (Edgar and Stuart-Smith, 2014), many 
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projects collecting species observational data do not, particularly when aimed at the 

broader community, and often result in data with some form of bias – spatial, temporal and 

others (Boakes et al., 2010; Dickinson et al., 2010; Hugo and Altwegg, 2017; Isaac and 

Pocock, 2015). Spatial biases occur as observers follow known tracks or roads and ignore 

habitats which are harder to access or are further away, or when known areas of species 

occurrence are sampled rather than areas where the target species are less common. 

Temporal biases may occur as citizens prefer to record observations at times suitable to 

themselves, such as early morning or evening, or in the weekends. Often no accurate effort 

(time and distance) data is recorded and spatial coordinates can be inaccurate or lacking 

(Bayraktarov et al., 2019).  

In current CS projects recording biodiversity observations, it is common to include 

photos of the target species which allow experts or data curators to confirm the 

observation, if necessary (Crall et al., 2011; Kosmala et al., 2016; Wiggins et al., 2011). 

When taking a photo, location is automatically recorded using the location services 

capabilities of mobile phones (utilising GPS, Wi-Fi and other subsystems as needed), thus 

accurately recording the location where species sightings have occurred. However, species 

absence data, which is important for species distribution modelling (Koshkina et al., 2017; 

Lobo et al., 2010; Václavík and Meentemeyer, 2009), is usually not recorded but often 

accounted for by ecologists by using environmental conditions to aid selection of random 

pseudo-absences (Barbet‐Massin et al., 2012; Stokland et al., 2011; VanDerWal et al., 

2009). Search effort and location are also important aspects of biodiversity monitoring 

(Crawford et al., 2020) and are often estimated by the observer after the fact, if at all, 

resulting in both imprecise effort data, as well as missing the possibility to discover where 

a species was not observed. Additional metadata about location – such as measures of how 

accurate the location data are – are not usually recorded and result in extra uncertainty 

when evaluating data quality (Meyer et al., 2016). 

In the app presented here, we address these issues by gathering additional data 

transparently using the sensors that already exist on mobile phones. This may improve the 

accuracy of observer effort recordings, both spatially and temporally, by using the inbuilt 

sensors to automatically record search path and time. This may also improve the usability 

of the mobile app by eliminating the need to explicitly set location or calculate time taken. 

This could enable more accurate inference of species absence and thus improve the 

outcomes of CS-assisted biodiversity monitoring by improving contributions to species 

distribution and population abundance modelling (Dissanayake et al., 2019; Kelling et al., 
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2018; Pocock et al., 2018; Steen et al., 2019). Prior research suggested that the recording 

of accurate survey effort and search locations may enable better species absence data as 

well as improving detection probability (Sequeira et al., 2014). By actually recording the 

distribution of survey effort, it is possible to better identify sampling bias, which can 

improve species distribution modelling through more reliable selection of background 

environmental data used as pseudo-absences (Gomes et al., 2018; Guillera‐Arroita et al., 

2015; Phillips et al., 2009). 

This paper describes an open-source, cross-platform mobile application we 

developed to record CS observations of an Australian native animal and its habitat, and 

also presents the results from use of the app in a weekend-long CS event. The app aimed to 

improve ecological data collected by Citizen Scientists by accurately and transparently 

recording search paths and effort as well as location metadata such as measures of 

horizontal accuracy. These data may be used to more accurately assess search effort as 

well as infer species absences as we can better determine the distribution and duration of 

searches.  While developed specifically for this project, the app could be modified for use 

with other CS projects as the core functionalities of recording locations and species 

observations would remain the same, with project-specific questions and screens being 

added or adapted as desired. 

2.2. MATERIALS AND METHODS 

2.2.1. App Design & Implementation 

The aim of the project was to gather information about koala (Phascolarctos cinereus) 

populations and their habitats in South Australia in order to guide their conservation and 

management and to assist development and understanding of monitoring protocols. More 

specifically, the project sought to gather new data about koala distribution, abundance and 

breeding, their habitat preferences and impacts on tree condition. We developed the Koala 

Counter app as an integral part of the project, with the specific information gathered 

designed by a collaborative team of CS practitioners and faunal ecologists. 

The Koala Counter app was developed using LiveCode (version 6.7, 

www.livecode.org and www.livecode.com) – an open-source, multi-platform development 

environment enabling rapid application development using one source code base for 

multiple target devices. The app was compiled for both iOS and Android platforms in 

order to make it available to a wide user base. The app ran on both mobile devices which 
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could provide location information, had a camera and had an Operating System (OS) that 

was compatible (Android version 2.3.3 and iOS 5.1.1 or later). 

User registration requirements were kept to a minimum as they were regarded as a 

barrier to use (Jay et al., 2016; Martin et al., 2016). As the project was a short, intensive 

survey conducted over one weekend we wanted to enable anyone to take part without 

privacy concerns, particularly as their search paths were going to be recorded. Only an 

email address entry was required with few checks on validity – merely that the entry had 

the form of an email address – so that feedback to participants was possible. Each user was 

assigned a Unique User ID (UUID) that identified their uploaded data without any other 

link to their personal information. Data about the user’s mobile device was also recorded to 

inform about possible device differences relating to data quality e.g. location accuracy 

(Kosmala et al., 2016; Wiggins and He, 2016). 

 

Figure 2-1  Screen flow of Koala Counter app. Location is recorded every 5 seconds while in the middle screens 

The app screen flow is illustrated in Figure 2-1. In order to accurately record search 

effort and a user’s search path, there were “Start” and “Finish” screens. Starting a search 

started recording the user’s location every 5 seconds – resulting in the search path being 

recorded. In addition to the location (latitude, longitude and altitude), speed, compass 

heading, accuracy of horizontal and vertical locations and the GPS timestamp were also 
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recorded, when available. The date and time from the mobile device clock were also 

recorded at the start and finish, as well as for each observation, as a check on the 

functioning of the device’s Location Services subsystem. 

To record an observation, the “Record a koala sighting” button was touched. This 

started the camera view, which enabled a photo to be taken immediately, while the subject 

was visible. Once the photo was taken, reviewed and accepted by the user, the participant 

answered a series of questions (Table S2-1) to gather ecological data related to koala 

population, breeding, habitat and tree condition. 

Questions 1-3 were single-choice and must be answered before continuing to the 

next question. Question 4 was a free-form text entry answer enabling the user to provide 

any more details that they considered relevant. Question 5 was a simple branching question 

that enabled the user to make multiple observations from one location, in case there were 

multiple koalas visible. If “Yes” was selected then the app automatically returned to the 

camera, allowing the user to take a photo and then record details using Questions 1-5. If 

“No” was selected they returned to the “Record a koala sighting” screen and continued 

searching. 

Multiple observations could be made from one location, using the steps above. 

Multiple observations could also be made during one search. Multiple searches were also 

possible – i.e. a user could start and stop a search in one area and then travel to another 

location and start another search – on the same day or another day. 

On completion of a search, a participant could upload their data immediately or wait 

until later (when connected to Wi-Fi for example). It was not necessary to be connected to 

a mobile phone network to use the app, as all data were stored locally until they were 

uploaded. Data were uploaded to an intermediate server and from there processed 

periodically to upload observations to the project repository on BioCollect 

(https://www.ala.org.au/biocollect/), part of Australia’s national biodiversity repository – 

the Atlas of Living Australia (ALA – https://www.ala.org.au/). Search path data were 

processed separately as it was not possible at the time of this project to store them on the 

ALA. Each participant’s observations were identified only by their UUID to ensure 

privacy. 

Data were recorded to a tab-delimited key-value pair text file with path locations 

interspersed with observations – one per line (Table S2-2). Location records were recorded 

by the app automatically every five seconds, starting when the participant initiated the 
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search. Each path was started with a “Start” Event record and ended with a “Finished” 

Event record. Observation records were stored in sequence with the path. 

The app “Koala Counter” was first released for Android 

(https://play.google.com/store/apps/details?id=com.scruffmonkey.koalacounter) and for 

iOS (https://itunes.apple.com/app/koala-counter/id1148857677) on October 13, 2016, with 

revision 1.09 released on November 21, 2016 on both platforms. This was used in the CS 

project “The Great Koala Count 2” in South Australia and we present results from this 

event to demonstrate the potential value of accurately recording Citizen Scientist search 

paths, species observations and effort. 

2.2.2. App in Use - The Great Koala Count 2 

The second South Australian Great Koala Count (GKC2) was held on Saturday 26th and 

Sunday 27th of November, 2016. This CS project followed the first South Australian Great 

Koala Count held during one weekend in November 2012 (Sequeira et al., 2014). A central 

project page on the University of South Australia’s Discovery Circle website provided a 

central go-to point for project information including app download links and an 

instructional video on how to use the app (https://vimeo.com/192054563). Community 

participation was encouraged through the media, including social media, and the 

communication networks of the project partners (see Acknowledgements for details). The 

project repository on the ALA provided a web-based form interface to enter observations 

for participants without a mobile phone. We requested that volunteers download the app 

and then go outside and search safely for koala anywhere in South Australia during 

daylight hours.  

2.2.3. Data Summary and Analysis 

For this study we have selected all observation and path data submitted using the app 

during the weekend of the GKC2 and analysed it using RStudio version 1.2.5019 (R Core 

Team, 2019), R version 3.6.1 and the following packages: data cleaning and preparation 

for analysis with tidyverse (Wickham et al., 2019), graphs with ggplot2 (Wickham, 2016) 

and maps with ggmap3 (Kahle and Wickham, 2013) and QGIS 3.14 (QGIS Development 

Team, 2020). 

To reduce their impact on effort and location accuracies, the following paths were 

removed: a) five long paths which occurred due to error or incorrect usage (such as not 

stopping the search and driving elsewhere); b) paths that contained only 2 rows, indicating 
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an error or user test; c) paths with mean speed > 2 ms-1, as determined from all location 

records for each path, as these indicated incorrect usage such as travelling to or from 

search areas by car or bicycle and this speed cut off is above normal walking speed while 

allowing some flexibility; d) paths with a duration < 1 minute, except those containing at 

least one observation. We calculated path duration from the start and finish times for each 

path. Durations for paths that were finished without an end time were derived from the 

number of location records multiplied by the recording frequency (5s). We calculated 

mean horizontal accuracy of locations for each path and provide summaries for overall 

horizontal accuracy by path and by participant. We calculated total observations by path 

and participant. We split observations into those with location data and those without and 

then calculated mean horizontal accuracy by path and participant. All observations were 

used for analyses. 

2.3. RESULTS 

2.3.1. Participants 

Six hundred and twenty people downloaded the app (iOS: 387, Android: 233), of whom 

549 registered it (Table S2-3). On the study weekend, 281 of these used the app and 

recorded at least one search path, while 232 participants made at least one observation and 

49 recorded search paths with no observations. Forty-six participants recorded paths with 

observations but with no location data.  
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(a)  (b)  

Figure 2-2 (a) Example observation photo of koala (from UUID 8d1ef5f6-c7ee-4ccf-8c12-ab715b293acb) and (b) Example 

path and observations for one participant, who followed established tracks between 11:00 am and 2:00 pm, with 22 koala 

observations recorded. Base map data: Google. 

Figure 2-2(a) shows a sample koala observation photo taken during the study 

weekend and Figure 2-2(b) shows one participant’s search path and observations as an 

example of the data collected using the app. The majority of searches and koala 

observations were in the conservation parks (Table S2-4) in the Adelaide Hills and Mount 

Lofty Ranges on the outskirts of Adelaide as shown on Figure 2-3(a), with three 

observations in Flinders Chase National Park on Kangaroo Island and others scattered 

within a 50km radius of Adelaide. 

Observations and searches were concentrated around easily accessible roads and 

tracks, as illustrated in Figure 2-3(a). Figure 2-3(b) shows Cleland Conservation Park 

where most observations were on paths in the north of the park and some, mostly 

unsuccessful, searching in the South, with no searching in the middle. 
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Figure 2-3 Maps showing search paths in grey and koala observations coloured according to habitat type. (a) Overview 

map for the Adelaide Hills and Mount Lofty Ranges on the outskirts of Adelaide in South Australia. (b) Search paths and 

observations in Cleland Conservation Park. Base map data: Google. 
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2.3.2. Search Paths 

There were 774 paths recorded with a total time of 350.5 hours. The most paths completed 

by a single participant was 89. The mean number of paths per participant was 2.75 and the 

median was two. There were 692 paths (89.4%) with location data while 82 paths were 

recorded without. The maximum total search duration for one participant was 9.96 hours. 

See Table S2-5 for further details. The mean total search duration per participant was 

74.85 minutes and the median per participant duration was 52.88 minutes. Twenty-five 

participants recorded no GPS locations during their searches which resulted in 82 paths 

without location data. The mean horizontal accuracy of locations per participant was 

104.8 m, while the median was 12.2 m (Table S2-5). 

The mean duration per search path was 27.17 minutes and the median duration was 

9.85 minutes. The maximum total search duration for one path was 4.35 hours. The mean 

horizontal accuracy of locations per path was 111.5 m, while the median was 8.4 m (Figure 

2-4). The maximum number of koala observations on one path was 36 (Table S2-6).  

 

Figure 2-4 Distribution of paths mean horizontal accuracy, restricted to paths with mean horizontal accuracy <50m 

2.3.3. Koala Observations 

A total of 232 participants recorded 1604 observations of koala, 181 of which were 

described as “Attached young” including 3 sets of twins, resulting in 184 young and 1788 

koala. Of these, 1394 observations were recorded with location data while 210 were 

recorded without location data (Table S2-7).  
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The mean observations per participant was 6.9, skewed particularly by one 

participant who made 124 observations; the median number of observations per participant 

was 3. One participant recorded 12 koala with attached young. The mean horizontal 

accuracy per user when recording observations was 80.84 m while the median was 6 m 

(Table S2-8). The mean number of observations per path was 2.85, with the maximum 

number for one path of 36 and the median observations per path was 1. The mean 

horizontal accuracy per path when recording observations was 58.95 m while the median 

was 5 m (Table S2-9). 

(a) 

 

(b) 

 

 
Figure 2-5 Temporal distribution of location fixes (a) and koala observations (b). 

The temporal distribution of location fixes in Figure 2-5(a) is generally similar to the 

temporal distribution of observations in Figure 2-5(b). Most searches took place in the 

middle of the day with a smaller peak on late afternoon Sunday. It is noteworthy that there 

were more koala observations relative to the number of location fixes late in the day on 
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26th November, whereas the frequency of observations on 27th November more closely 

followed the timing of searches. 

2.4. DISCUSSION 

Using the app for this study provided a number of benefits which could aid other CS 

projects. The app provided accurate spatiotemporal observation data together with 

measures of location accuracy, and consistent and standardised observer responses. Effort 

data were also accurately recorded through the use of start and finish times for searches 

and a standardised location polling frequency. The path data that were recorded were 

generally very spatially accurate, with few exceptions, and show potential value for 

enabling inference of species absence. Trial of the app revealed some limitations which 

can be used to provide guidance for improving data gathered in future projects. 

2.4.1. Benefits of this data 

2.4.1.1 Accurate observation data 

Recording location automatically when making observations resulted in accurate locations 

generally, with a few exceptions. Recording the extra location metadata, especially 

horizontal accuracy, enabled us to better evaluate the quality of these data and to identify 

outliers. The median horizontal accuracy for observations of 6 m and third quartile of 10 m 

indicates the good accuracy of the majority of observations, while some participants’ 

observations were inaccurate, probably due to the location settings on their device. This 

extra metadata was essential for determining the level of error in these particular 

observations.  

The difference between location and observation intensity on Saturday afternoon 

may be that the koala were more active on Saturday afternoon. Another possible reason 

may be incorrect usage of the app – it appears that some users started to initiate searches 

only after spotting a koala, which would lead to this discrepancy – possibly to prolong 

battery life of their device.  

2.4.1.2 Accurate effort data 

Effort data were generally accurate. By recording explicit start and finish events using the 

mobile device clock we could ensure a consistent and accurate measurement of search 

duration. By additionally recording the GPS timestamp and using a standard location 

polling frequency we could both cross-check this accuracy as well as calculate duration in 
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case of error, for example when the user quit the app without explicitly finishing the 

search. 

2.4.1.3 Assessing species presence and absence 

Automatically recording participants’ search paths offers some benefits. By documenting 

where searches have occurred, it may be possible to more accurately assess species 

absence. Without this search data, i.e. with only observation data, we would not know if an 

area had been searched and no koala were observed or if that area had not been searched at 

all. This could thus provide data about species absence as well as presence. In Figure 3(b) 

we can see areas such as the southern part of the park which have been searched with few 

observations.  

2.4.1.4 Assessing monitoring coverage and spatial bias 

We can also determine the spatial distribution and intensity of searching, both on an 

aggregate and individual level. This enables us to identify areas that have been adequately 

monitored and also where monitoring coverage is lacking as shown in Figure 2-3(b). Most 

participants followed easily accessible and established paths while searching. This spatial 

bias is often assumed for CS projects but the track data provided by our app can provide an 

objective basis to explicitly assess this bias. Search path data could also enable us to better 

target inadequately searched areas where additional monitoring should take place by 

identifying areas that have not been searched, such as the middle of Cleland Conservation 

Park in Figure 3(b), for example. 

2.4.2. App Limitations 

2.4.2.1 Location recording 

Technical problems and incorrect usage led to some problems with recording location data. 

While most devices provided accurate readings, there were a few that had consistently 

poor accuracy, probably due to the location settings on their device or device hardware 

limitations. Some participants performed searches and made observations without location 

services being enabled on their phone or with inaccurate location services such as Wi-Fi 

only, despite being prompted on starting the app to ensure these were enabled. One 

solution to ensure this doesn’t occur would be to disable access to the functionality of the 

app until location services are enabled. 
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To save battery life, we started the location tracking system only when beginning a 

search. As the location subsystem for a device takes some time to initialise, we usually did 

not get accurate location data at the start of a search. While this was not critical, a change 

to start the location services system on starting the app is desirable. We did record the start 

date and time from the device clock on starting a search, so this information was not lost, 

though a comparison of the device clock with the GPS timestamp is necessary when 

analysing the data. 

2.4.2.2 Enhancing user feedback 

Some participants proceeded without location services being activated on their device and 

some indicated they were uncomfortable with the idea of their mobile phone being used to 

track their location and thus always kept their location services turned off. This suggests 

that we could have provided better guidance to indicate the importance of location 

information being available and how it was being used. Another problem that occurred was 

that some users searched while travelling in a car or on a bicycle and only on sighting a 

koala would they stop and record their observation. This would also have been resolved 

with more training or preliminary information. A possible solution for this issue could be 

to provide in-app guidance so that if a certain threshold speed is exceeded then warnings or 

other action could occur. This could be another use for the automatically recorded 

metadata, as the current speed is one of the data items recorded. 

Our original intention was to display the participant’s path and observations on a 

map on the device. This would provide immediate feedback in an attractive way by 

showing their progress, as well as provide a history of their activity. This wasn’t possible 

because of time constraints during development prior to the Great Koala Count weekend, 

but was subsequently added and would be beneficial in further projects using this app. All 

path and observational data were added as Javascript data to a template HTML file. 

Markers and paths were then displayed on a Google map in order to provide immediate 

feedback and visibility of observations and search paths in context. Each observation 

marker is selectable to display an information window showing observation details, 

including the photo that was taken. To display the map successfully does, however, require 

an internet connection, which may not always be available in the field. 
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2.4.2.3 Other variables 

Species detectability and observer skill levels (Johnston et al., 2018) are important 

variables that are not addressed by this study but our data may assist in evaluating these. 

Repeated sampling may enable comparison between observers and evaluation of skill level 

changes over time. At the same time, this could assist with determining species 

detectability, which is particularly relevant when assessing species under decline (Burns et 

al., 2019). 

2.4.3. Future App Development 

Possible future enhancements to the app could include the following items. 

2.4.3.1 Increased metadata usage 

It may be beneficial to increase the amount of automatically recorded metadata using other 

sensors on mobile devices, such as the compass and accelerometer. Recording the compass 

heading at the time of taking an observation photo, might better enable us to determine 

possible duplicate animal observations or to clarify the status of apparent duplicate 

observations. For example, currently an observation records a point in space and time, but 

adding compass heading would allow us to differentiate between two observations from 

the same location but looking in different directions.  

2.4.3.2 User ID integration 

Data were uploaded to the ALA under a generic project identifier and a user’s 

contributions can be identified by the user’s UUID – a unique string. However, this means 

that the user cannot easily find the data they have contributed to the national database. A 

way to enable the user to easily register themselves on the ALA using the app would be 

desirable so that their contributions can be found as well as acknowledged, if they choose 

to do so. This can be important for participant motivation on a longer-term project (Preece, 

2016). 

2.4.3.3 Guided paths 

A system to provide “guided paths” – structured or semi-structured surveys (Kelling et al., 

2019) – to participants could be valuable. This might involve pre-recording a number of 

paths in different areas where monitoring is desired and then allowing participants to select 

paths of interest. The app would then assist the participant to follow the selected path while 

making observations as required. It would also be possible to provide further user guidance 
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to indicate where, how and when to make observations and what to observe, so that more 

optimised CS sampling may be applied (Callaghan et al., 2019). This might significantly 

improve the usability of CS project data for conservation management. 

2.4.4. Recommendations 

From our experience in development of the Koala Counter app and its implementation in a 

CS project, we make the following recommendations in relation to app development for 

CS projects and to improve the data collected from these apps for ecological questions. 

2.4.4.1 App development  

• Ensure the app is dual platform to ensure the majority of participants can use it. We 

used LiveCode to save time and effort, but there are many possible options. 

• Provide guidance inside the app on how to use it effectively. Supplement this by 

attempting to ensure that participants use the app correctly. For example, recognise 

if location services are not available and notify the user to correct the problem. If 

the speed while searching is too high, check with the user to see if they are actually 

still searching and guide them to the correct use. 

• Ensure that the development platform supports the required sensor integrations. 

Can you take a photo and store it? Can you access location data including accuracy 

measures? What about other sensors like the compass and accelerometer? 

• Don’t require participant registration but do enable registration to take place. A 

UUID should be used to uniquely (and anonymously) identify each participant. 

Allow the participants to decide if they want their name associated with their 

observations (to gain recognition, for example) and also allow them to edit their 

registration details. 

• If possible, use an already existing system – though there are some advantages to 

having your own. If a project has a long timeframe then the costs of keeping 

software up-to-date may be significant, so cooperation with and support of existing 

systems, such as iNaturalist, may be a more sustainable project path. 

2.4.4.2 Data and metadata 

• Record the device timestamp with every location/observation to ensure accuracy of 

recording in case there are location issues and to check for any mismatch between 

device date and time compared to the location system reference timestamps. 
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• Record location changes as they occur. We recorded GPS data every n (5) seconds 

to try to reduce energy consumption. This is probably unnecessary in most cases, so 

relying on the device to provide location updates and recording them as provided 

may provide better information. It might also be useful to record a periodic time 

check (e.g. every minute) from the device itself, as a double-check on proper 

system function and with low energy requirement. 

• Ensure a participant’s own observations and paths are viewable on their own 

device. Ideally allow them to view where others have searched and made 

observations, though this may not be possible while in the field. This may allow 

them to better select routes that have not yet been searched. 

• It may be useful to record device metadata (device type, OS version, etc.) with each 

observation. Participants often upgrade devices and OS versions change rapidly – 

some have more issues than others and it may be useful in future analyses if these 

metadata are available. 

• Search path and effort data are valuable and can be automatically recorded. 

Recording metadata about locations, especially horizontal accuracy, is also 

valuable as it enables better quality assessment. 

• Observation locations can be accurately and transparently recorded and observation 

metadata is also important for assessing data quality, particularly when Citizen 

Scientists use a wide range of devices with varying capabilities. Additional 

metadata such as compass heading may also prove useful in the future. 

2.5. CONCLUSIONS 

The Koala Counter app accurately recorded Citizen Scientists’ search paths, search effort 

and species observations. It provided accurate spatiotemporal observation data together 

with a measure of location accuracy as well as consistent and standardised question 

responses. Effort data were also accurately measured through the use of start and finish 

times for searches as well as using a standardised location polling frequency. The path data 

that were recorded were generally very spatially accurate, with some exceptions, and show 

value for enabling inference of species absence. Recording species observations and time 

taken alone does not accurately reflect the spatial aspect of effort, especially when no 

observations are made. In addition to search paths and time, metadata such as location 

accuracy details and speed can also be automatically recorded and may prove useful for 

evaluating data quality, for on-the-fly user feedback and assistance, as well as in analysing 
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user and device performance in context. In the future, as we accurately record citizen 

scientist search paths and effort, management of citizen science programs could be further 

enhanced by actively targeting locations where coverage has been lacking. Lastly, fast and 

easy uploading of data to national biodiversity repositories ensures that more timely and 

usable data is provided to global researchers. 

In summary, the innovations implemented in this app provide a range of benefits 

which may enhance the quality of citizen science data by providing more information on 

the location and duration of searches. By recording metadata such as horizontal and 

vertical accuracy and speed, we provide more contextual information which may enable 

conservation practitioners to better understand the accuracy and limitations of the data. 

These methods may be used in other applications to improve the data used for conservation 

management and other ecological applications. 
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2.7. SUPPORTING INFORMATION 

Table S2-1 Core observation questions and answer options in the app 

1. How many attached young does this koala have? 
0 
1 
2 - Twins are rare, please be sure 

2. What best describes the koala’s surroundings? 
Conservation Park 
Roadside 
On road 
Private garden 
Small suburban park 
Paddock tree 
Rural 
Golf course 
School 
Waterway 
Unsure 

3. Do you think the koala is in a healthy tree? 
Yes, the tree has lots of leaves 
Yes, but the leaves are sparse 
No, there are only tufts of leaves at the end of branches 
No, the tree is dead 
It’s not in a tree 
I’m not sure 

4. Any other comments? e.g. koala health, behaviour or location. 

5. Any other koalas in sight? (not including attached young on koalas you have 

already recorded.) 

2.7.1. Data file format 

Each line is preceded by a type identifier: “L” for “Location”, “O” for “Observation”. 

There is also an identifier for the Start and Finish points for a search path, these are 

preceded by “E” for “Event” followed by a colon and then the type of Event - “Start” or 

“Finished”. Each data value is preceded by its data identifier followed by a colon e.g. 

“latitude: -35.018088”. Data items (identifier: value pairs) are separated from each other 

by tab characters (ASCII character 09). 

Table S2-2 Data file format 

Line Type Identifier Data item identifier 

Observation O  

  Latitude 

  Longitude 

  Altitude 

  Course 

  Speed 
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  Horizontal Accuracy 

  Vertical Accuracy 

  GPS Timestamp 

  Device Date_Time 

  Health 

  Habitat 

  Young 

  Pic 

  Notes 

Location L  

  Latitude 

  Longitude 

  Altitude 

  Course 

  Speed 

  Horizontal Accuracy 

  Vertical Accuracy 

  GPS Timestamp 

Event E:Start  

  Latitude 

  Longitude 

  Altitude 

  Course 

  Speed 

  Horizontal Accuracy 

  Vertical Accuracy 

  Device Date Time 

  GPS Timestamp 

 E:Finished (as above for E:Start) 

Table S2-3 Overview of records collected over the study weekend using the Koala Counter app. i = iOS, A = Android 

Downloaded 620 (387i, 233A) 

Registered 549 (341i, 208A) 

Participants 281 (172i, 109A) 

- with observations 232 (140i, 92A) 

- without observations 49 

- with observations but without 
location data 

46 

Total search paths 774 (556i, 218A) 

Total observations 1604 (976i, 628A)  

Table S2-4 Types of habitat in answer to the question “What best describes the koala’s surroundings?” 

Habitat All With Location No Location With Young 

Conservation Park 1109 985 124 120 

Roadside 158 117 41 17 

Private garden 141 122 19 22 

Rural 73 65 8 7 

Small suburban park 43 39 4 5 

Paddock tree 34 20 14 4 

Waterway 23 23 0 2 

School 11 11 0 2 

On road 5 5 0 0 
Unsure 5 5 0 2 

Golf course 2 2 0 0 
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Table S2-5 Search Paths Summary per User 

 Min. Q1 Median Mean Q3 Max. NAs 

Paths per user 1 1 2 2.75 3 89   

Mean Horizontal Accuracy [m] 1.9 7 12 105 44 1605 25 

Koalas Observed 0 1 2 5.7 6 124  

Duration [s]  66  749 3173 4491 6784 35866   

Table S2-6 Search Paths Summary per Path 

 Min. Q1 Median Mean Q3 Max. NAs 

Mean Horizontal Accuracy [m] 1.7 5.3 8.4 111.5 27.6 4989.6 82 

Koalas Observed 0 0 1 2 2 36   

Duration [s] 10 161 591 1630 2039 15672  

Table S2-7 Koala Observations Summary 

 Adults Young Total Notes 

Observations with location data 1394 164 1558 3 sets of twins 

Observations with no location data 210 20 230 No twins 

TOTAL 1604 184 1788  

Table S2-8 Koala Observations per Participant 

 Min. Q1 Median Mean Q3 Max. NAs 

Observations per Participant 1 1 3 6.9 7.3 124   

Mean Horizontal Accuracy [m] 1.6 5.0 6.0 80.8 10.0 2700.0 24 

Mean speed [m/s] 0 0 0.07 0.16 0.18 2.80 42  

Young 0 0.0 0.0 0.8 1.0  12  

Table S2-9 Koala Observations per Path 

 Min. Q1 Median Mean Q3 Max. NAs 

Observations per path 1 1.0 1.0 2.8 3.0 36   

Mean Horizontal Accuracy [m] 1.6 5.0 5.0 58.9 9.1  2700.0 80 

Mean speed [m/s] 0 0.0 0.0 0.12 0.14 5.02 115  

Young 0 0.0 0.0 0.3 0.0  12  
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ABSTRACT 

1. Short-beaked echidna (Tachyglossus aculeatus) are a cryptic and iconic monotreme 

found throughout the continent of Australia. Despite observational records spanning 

many years aggregated in national and state biodiversity databases, the spatial and 

temporal intensity of sightings is limited. Although the species is of least conservation 

concern at the global level, a subspecies has been declared endangered on Kangaroo 

Island in South Australia. We need better population data over the whole continent to 

inform this species’ conservation management.  

2. To increase the temporal and spatial resolution of observations which may be used for 

more accurate population assessments, we developed a mobile app for citizen scientists 

to easily record echidna sightings and improve the quantity, quality and distribution of 

data collected for monitoring this species. EchidnaCSI is a free, cross-platform 

(Android & iOS), open-source app that we developed to collect echidna observational 

data around Australia. EchidnaCSI has been in use since September 2017 and uses 

mobile phone sensors to transparently and automatically record metadata, such as 

species observation location and time and GPS location precision.  

3. We examine differences in spatial coverage between these observations and those in 

existing data repositories in the Atlas of Living Australia and state biodiversity 

databases, especially in relation to observations in protected areas and to an index of 

remoteness and accessibility. 

4. EchidnaCSI has contributed over 8000 echidna observations from around Australia, 

more than recorded in all state systems combined, with similar spatial distribution. 

Although coverage was more limited in some protected areas than the reference data 

sources, numbers of observations in all remote areas were greater than the reference 

scientific data except for very remote regions. 

5. EchidnaCSI has improved the spatial and temporal intensity of observations for this 

iconic species and provides a complement to scientific surveys, which might usefully 

focus on highly protected areas and very remote regions. 
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3.1. INTRODUCTION 

Adequate assessment of the conservation status of many wildlife species in Australia and 

around the world is hampered by limited information on abundance and distribution (Joppa 

et al., 2011; Pimm et al., 2014; Woinarski et al., 2015). Biodiversity loss is increasing 

globally (Butchart et al., 2010) and on the Australian continent is likely worse than we 

currently realise (Wayne et al., 2017; Woinarski et al., 2019). Historical causal factors of 

decline such as habitat loss, introduced predators and a range of anthropogenic influences 

are now being exacerbated by changes to climate (Bradshaw, 2012; Urban, 2015; 

Woinarski et al., 2019). In Australia, there have been multiple species extinctions 

(Woinarski et al., 2019, 2015) and 580 extant plant and animal species are classified as 

endangered or critically endangered (IUCN, 2020). Many species' populations are in 

decline while the status of many others remains unknown (IUCN, 2020). 

Short-beaked echidnas (Tachyglossus aculeatus) are an iconic yet cryptic monotreme 

found throughout Australia in a wide variety of habitats, ranging from coastal to mountain 

to desert (Brice et al., 2002; Grigg et al., 1989), with abundant and spatially varying 

primary food sources of termites and ants (Abensperg‐Traun, 1994; Abensperg‐Traun and 

Steven, 1997). The International Union for Conservation of Nature (IUCN) Red List rates 

the echidna as "Least Concern" as it is widely distributed in a broad range of habitats, has 

few major threats and the population appears to be stable, although estimates range from 5 

to 50 million (Aplin et al., 2015). The IUCN status for widespread species is determined 

by historical trends in populations (IUCN, 2019), which for cryptic species can be difficult 

to determine, particularly when they are broadly distributed (Black, 2020).  

However, population trends are hard to determine without significant effort in 

collecting monitoring data. It is expensive and difficult to survey and monitor wildlife 

species at large spatial scale (Crawford et al., 2020; Neate-Clegg et al., 2020). Echidnas are 

particularly difficult to locate in the wild (Rismiller and McKelvey, 2003) and are not 

attracted by lures (Rismiller and Grutzner, 2019). Additionally, their activity levels are 

affected by temperature – though usually diurnal, they tend to avoid activity in extreme 

heat, so are often active at night in warmer climates and seasons (Brice et al., 2002; 

Clemente et al., 2016). 

Traditional wildlife surveys and monitoring have usually been carried out by national 

and state government agencies, research organisations, non-governmental organizations 

and community groups. Survey efforts often focus on particular species or groups of 
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species which may act as ecosystem proxies or on particular, and often threatened, species 

or habitats. Long-term monitoring does occur but usually at smaller spatial scale, as 

funding is limited and has competing priorities which change over time.  

There are few special efforts made to survey short-beaked echidna, and most 

observations are incidental, part of wider general surveys or as a by-product of other 

targeted species surveys, often consisting of signs of presence, such as tracks or scat, rather 

than actual species sightings. In addition, conducting formal surveys or obtaining sightings 

in remote areas is time-consuming and expensive. These factors lead to a patchwork of 

geographic coverage in monitoring as well as low temporal frequency, resulting in a lack 

of knowledge about current populations around Australia and thus difficulty in assessing 

how the population may be changing over time. 

On Kangaroo Island in South Australia, long-term studies of the local sub-species 

(Tachyglossus aculeatus multiaculeatus) have shown population declines (Rismiller and 

Grutzner, 2019), resulting in the recent listing of this sub-species as “Endangered” under 

national biodiversity conservation legislation (Department for Environment and Water, 

2017). The improved understanding of population status provided by more intensive 

studies raises questions about the IUCN classification of the species Australia-wide. 

Impacts from habitat modification, invasive species such as fox and cats, climate change 

and human population impacts combined with its low reproductive rate (Nicol and 

Andersen, 2007; Rismiller and McKelvey, 2000) may be contributing to more widespread 

decline. 

Citizen Science (CS) has been suggested as a practical way to determine broad-scale 

population trends (Devictor et al., 2010; Dickinson et al., 2010; Hochachka et al., 2012) 

and has been rapidly expanding globally (Bonney et al., 2014; Follett and Strezov, 2015). 

This has been enabled by technological advances such as mobile phones with integrated 

cameras, GPS and easy-to-use apps (Baker, 2016; Silvertown, 2009). These provide a 

platform for non-specialists to quickly and easily record incidental observations that 

provide accurate and timely data. It is envisaged that CS contributions to biodiversity 

monitoring in Australia will continue to increase, as community engagement is one of the 

three goals of Australia's Strategy for Nature from 2019-2030 (Commonwealth of 

Australia, 2019) aiming to fulfil Australia's international commitments under the 

Convention on Biological Diversity (CBD or Aichi Biodiversity Targets) and the 

Sustainable Development Goals (SDGs) (United Nations Development Program, 2018).  
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There have been two community-based CS echidna monitoring projects in Australia, 

both called echidnaWatch – one in Queensland (https://wildlife.org.au/echidnawatch/) and 

one in South Australia (http://www.echidna.edu.au/monotremes/echidna_watch.html). 

Both have used paper-based collection mechanisms supplemented by phoned-in and email 

reports. However, these sometimes contain key metadata quality shortcomings, such as 

spatial inaccuracy, which can reduce its usability (Bayraktarov et al., 2019). In 

Queensland, these reports have been collated and uploaded to the State biodiversity 

repository but with delays, as no new records have been uploaded since 2016. The South 

Australian echidnaWatch recorded sightings to its own database though updates have been 

delayed due to the obsolescence of the software used – and it has now been superseded by 

our Echidna Conservation Science Initiative (echidnaCSI) project. For this study, we 

developed a mobile app – echidnaCSI – to enable the public to easily submit incidental 

observations of this iconic species, with accurate, automatically recorded metadata, such as 

location and date and time, and some additional observational details, such as size and 

activity. 

One of the criticisms of CS data is that they are often biased (Mair et al., 2017; 

Silvertown et al., 2013), as citizen sightings and records do not follow structured surveys 

and that this introduces spatial and temporal biases, amongst others, into the data. While 

this may substantially affect the usability of CS data for some purposes, improved 

technology can enhance the quality of the data (Budde et al., 2017; Newman et al., 2012; 

Stenhouse et al., 2020). Scientific data can also be subject to biases, particularly when 

aggregated from different sources over broad temporal and geographic scales (Beck et al., 

2014; Boakes et al., 2010; Piccolo et al., 2020). In this paper, we investigate some aspects 

of spatial bias by comparing our CS data to traditional sources from Australian national 

and state biodiversity repositories.  

Our aims in this paper are to investigate specific questions about the abundance and 

distribution of our echidna CS records in relation to those from traditional sources stored in 

Australian national and state biodiversity repositories. 1: By using a mobile app, can CS 

using a dedicated mobile app intensify and expand spatial coverage of a cryptic, yet 

widespread, species? This could result in better baseline population information and enable 

improved assessment of population changes in the future. 2: Are there differences in 

coverage in protected areas (PA) and non-protected lands between our echidnaCSI 

observations and those from other data sources? PA are seen as a key solution for 

satisfying national and global commitments to conserve biodiversity (Buckley et al., 2008), 
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especially as climate refugia become even more vital for biodiversity protection (Graham 

et al., 2019). Formal scientific surveys tend to focus on high-quality habitats that are often 

conserved in PAs. In contrast, we expect to record more CS observations than scientific 

data sources in non-protected areas and from PA where the general public is encouraged to 

visit and fewer from PA where access is more restricted. 3: Does geographic remoteness 

and accessibility affect observation counts? As CS observations are often biased, we 

examine the geographic remoteness of echidna observational records across Australia to 

assess differences between echidnaCSI and other sources. We expect to record fewer 

observations from remote locations than traditional scientific data sources and more from 

locations with easier access. 

3.2. MATERIALS AND METHODS 

3.2.1. App Development 

The echidnaCSI app was developed using LiveCode (starting with version 8.1.5, 

www.livecode.org and www.livecode.com) – an open-source, multi-platform development 

environment enabling rapid application development using one source code base for 

multiple target devices. The app was compiled for both iOS and Android platforms and 

runs on mobile devices that can provide location information, have a camera and a 

compatible Operating System (currently Android version 4.2 or later and iOS 10.0 or 

later).  
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Figure 3-1 Screen flow of the echidnaCSI app. Submissions take place in the bottom screens 

The app screen flow is illustrated in Figure 3-1. After the user arrives at the Home 

screen, they can submit data by navigating to the Submission screen and selecting one of 

three options: recording a current sighting, submitting a previously recorded photo and 

thirdly, collecting a physical specimen. 

To record a current sighting, the “Record an echidna sighting” button is touched. 

This starts the camera view, which enables a photo to be taken immediately, while the 

echidna is in view. Once the photo has been taken, reviewed and accepted by the user, the 

participant answers a series of questions using a series of dropdown fields to constrain and 

standardise the responses (Table S3-1). These questions relate to this echidna's size, status 

(alive/dead), activity and location. Location data and date and time are automatically saved 

along with some measures of location accuracy. On completing the Details screen 

questions, the Comments screen allows the participant to enter free-text commentary to 

provide any further information that they deem relevant. On completion, the data is 
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uploaded directly to the project data repository 

(https://biocollect.ala.org.au/acsa/project/index/8c3ae3b1-5342-40b4-9e72-e9820b7a9550) 

on the BioCollect portal at the Atlas of Living Australia (ALA). If network access is 

unavailable this may fail, but all data is stored in the app and the next upload attempt will 

include any data not previously successful. No network access is required to record an 

observation so remote use of the app is possible. 

Photos taken at prior times and locations may also be submitted, provided they have 

accompanying location metadata. The same process as above is followed once the photo 

has been accepted. Collection of physical specimens such as scats is also possible and the 

participant is guided through the actual collection process after taking a photo to record 

location, date and time details. Each participant’s observations are submitted to and 

identified in the ALA only by a Unique User ID (UUID) to ensure privacy. Data is 

recorded on the device to a tab-delimited key-value pair text file with one observation per 

line (Table S3-2).  

3.2.2. App in Use - echidnaCSI 

The echidnaCSI app was first released on 2 September 2017 and updated six times for iOS 

devices on the App Store and eight times for Android devices via the Google Play 

platform. The most recent release is version 1.4.0 which was released on August 11, 2019 

for iOS devices and for Android devices on August 12, 2019. A project website 

(https://grutznerlab.weebly.com/echidna-csi.html) provides a central go-to point for project 

information including app download links. The project repository on BioCollect at the 

ALA provides a web-based form interface to enter observations made without the app.  

Community participation has been continually encouraged through the media 

including national and regional TV, newspaper and radio stations, social media such as 

Facebook (EchidnaCSI) and Instagram (echidna_csi), email updates to registered 

participants and community outreach events (Perry et al., In review). 

3.2.3. Data Summary 

For this study, we have selected all echidna observations submitted to the echidnaCSI 

project between 01/09/2017 and 13/08/2020 using the echidnaCSI app or the project web 

interface on BioCollect. We also downloaded all other available echidna records from the 

ALA on 12/08/2020 (DOI: 10.26197/5f33a71948c4e) and all echidna records from the 

state governmental repositories for NSW (14/09/2020), Victoria (14/09/2020), South 



 

  70 

Australia (09/09/2020), Queensland (11/09/2020), Western Australia (15/09/2020), 

Tasmania (12/09/2020) and the Northern Territory (09/09/2020). We restricted the external 

datasets to records from 01/09/2017 onwards to better compare to the data gathered in our 

project. Despite the difference in download dates, there is only one extra record from the 

state systems in the period described. Some records were removed as a result of data 

cleaning.  

Some state systems share data with the ALA (and vice-versa) so these two data 

sources are not independent of each other, but the echidnaCSI data is independent of both, 

so we compare echidnaCSI data to ALA and then to state data separately. Further details 

on data sources and filtering of these records for use in this study are provided in 

Supplementary Information (S3.7.1 Methods). 

To analyse coverage within PA, we downloaded the Collaborative Australian 

Protected Areas Database (CAPAD) 2018 (Australian Government Department of 

Agriculture, Water and the Environment, 2019) which provides spatial and textual 

information about national, state and private PA for Australia. This version includes 

12,052 terrestrial PAs covering 151,787,501 ha (19.74 percent) of the Australian landmass 

(Department of Agriculture, Water and the Environment, 2019). For classification of PA, 

we used the IUCN categories (Table S3-3) which are an internationally recognised 

standard and classify PA according to their management objectives (Dudley et al., 2013).  

To analyse the geographic distributions of observation locations we used the 

Accessibility and Remoteness Index of Australia 2016 Plus (ARIA+) (Hugo Centre for 

Population and Housing, 2020). ARIA+ is a continuously varying index of relative 

remoteness for Australian locations with values ranging from 0 (high accessibility) to 15 

(high remoteness). A nationally recognised measure that has been used to derive the 

Australian Bureau of Statistics (ABS) Remoteness Area classification for Australia since 

2001 (Taylor and Lange, 2016), the 1km2 ARIA+ 2016 grid was used to assign ARIA+ 

scores to all of our observations. We subsequently classified our observation’s ARIA+ 

scores into the ABS Remoteness Area categories (Australian Bureau of Statistics, 2018), as 

indicated in Table 3-1. 
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Table 3-1 ARIA+ (2016) categorised values 

ARIA+ (2016) Category ARIA+ (2016) Values 

Highly Accessible 0 – 0.20 

Accessible > 0.20 – 2.40 

Moderately Accessible > 2.40 – 5.92 

Remote > 5.92 – 10.53 

Very Remote > 10.53 – 15.00 

3.2.4. Analysis 

We classified the origin of data from the ALA and state systems as Citizen Science or 

Science on the basis of several attributes (see Supplementary Info S3.7.1.1 for details). 

This resulted in five groups of data for analysis: echidnaCSI, which is all of CS origin; 

ALA-CS data; ALA-Science data; State-CS data and State-Science data. We analysed for 

differences between echidnaCSI and the other four groups in numbers of observations in 

PA and non-protected areas, and geographic distribution of observations, as measured by 

the ARIA+ remoteness/accessibility index. 

We used the QGIS vector analysis tools (QGIS Development Team, 2020) to 

determine if observations were contained in PA and summarised and analysed the data 

using R. To test if source and science category groups had an effect on observation counts 

in the PA IUCN categories, we used Pearson's chi-squared test with Cramer's V for effect 

size (Howell, 2011). We removed the IUCN PA category "Not Assigned" as it contained 

too few observations. We compared observation counts for echidnaCSI to those of ALA-

CS and ALA-Sci and then compared echidnaCSI to State-CS and State-Sci observations 

separately, as ALA and State observations are not completely independent – some data 

were shared between them. 

We used the ARIA+ index to assess possible differences in geographic distribution 

between observations from our echidnaCSI CS project and observations from the ALA and 

state systems, each split into CS and scientific data as above. We first used the Shapiro-

Wilk test of normality on each group. As all groups were not normally distributed, we used 

the non-parametric Kruskal-Wallis test (Dodge, Yadolah, 2008) and Dunn's pairwise post-

hoc test with the Benjamini-Hochberg adjustment method to assess differences in 

distributions between the five observation groups.  

Analyses were performed using RStudio version 1.2.5019 (R Core Team 2019) with 

R version 3.6.1 using the following packages: data cleaning and preparation for analysis 

with tidyverse (Wickham et al., 2019), statistical analysis and graphs with ggstatsplot 
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(Patil, 2018), graphs with ggplot2 (Wickham, 2016) and maps with ggmap3 (Kahle and 

Wickham, 2013). Final maps were prepared with QGIS 3.14 (QGIS Development Team, 

2020). 

3.3. RESULTS 

3.3.1. Data Sources 

3.3.1.1 EchidnaCSI 

Observations were submitted using both the echidnaCSI app and the project web interface 

on BioCollect at the ALA. A total of 8859 users registered the app, of which 2718 (app 

1943; web 775) have submitted a total of 7835 observations of echidna (app 6705; web 

1130). The overall mean echidna observations per participant was 2.88 (app 3.45; web 

1.46) and the median was 1 (app 2; web 1) (Table S3-4). The maximum total number of 

observations submitted by one participant over this study period was 115 using the app and 

107 using the web. 

There were 7538 observations of living echidnas (94%) and 297 of dead echidnas 

(4%). The majority were of medium (55%) to large (40%) size, with 130 (2%) young 

echidnas (puggles) recorded (Table S3-5). Most observations were made in bushland 

(34%), along the roadside (26%) or in farmland (23%), with 856 (11%) in urban/backyard 

areas and 242 (3%) in coastal areas or along waterways (Table S3-6). 83% (247 / 297) of 

dead echidna were recorded along the roadside. 54% were observed walking, 33% digging 

and only 0.5% (42) observations of echidnas mating (Table S3-7).  

Observations were recorded from every state and territory in Australia, with higher 

concentrations, as expected, around more densely populated areas in NSW, Victoria and 

South Australia and fewer observations in sparsely populated areas. 

3.3.1.2 ALA Data 

A total of 4116 echidna observations were recorded in the biodiversity repository at the 

ALA for our study period. Of these, 2663 were from Scientific sources and 1453 of CS 

origin (Table S3-8), with the main CS sources being iNaturalist (169), Questagame (351) 

and individual uploads to BioCollect on the ALA. Most observations (2972) were recorded 

in NSW (Table S3-10).  
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3.3.1.3 State Systems Data 

A total of 5476 echidna observations were contributed to the State biodiversity repositories 

during our study period, with NSW and Victoria providing the majority (see Table S3-10 

for details). Just over 50% (2786) were CS observations. Tasmania had a particularly high 

proportion of CS records (93% - 259/278), as numerous roadkills were reported as part of 

an existing CS project (Department of Primary Industries, Parks, Water and Environment, 

Tasmania, n.d.). A majority were also CS observations in NSW (66% - 2280/3438) where 

human-wildlife conflicts are recorded in the form of Wildlife rehabilitation records (New 

South Wales Department of Environment, Climate Change and Water, 2011). 

3.3.1.4 Data Summary 

Combining data from all three data sources resulted in a total of 17427 echidna 

observations (eCSI: 7835; ALA: 4116; state: 5476), with 12074 (69%) from CS and 5353 

(31%) from scientific sources (Table S3-8). There was much variation between States, 

both in numbers of observations and in contributions from CS and science sources. These 

included totals of 8645 (CS: 4924, 57%; Sci: 3721, 43%) in NSW, 4206 (CS: 3461, 82%; 

Sci: 745, 18%) in Victoria and 2352 (CS: 1757, 75%; Sci: 595, 25%) in South Australia 

(Table S3-9 and Table S3-10). See Figure 3-2 for overview maps of all observations (2a) 

with terrestrial protected areas (2b) and ARIA+ (2c) categorised regions. 
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b 
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Figure 3-2 a) Echidna observations from all data sources; b) Protected Areas according to IUCN categories; c) Distribution 

of ARIA+ (2016) accessibility/remoteness categories across Australia. 

3.3.2. Observations in Protected Areas 

There were 4162 observations (23.9%) recorded inside PAs, of which 1599 (38.4%) were 

from Citizen Science and 2563 (61.6%) from Scientific sources (Table 3-2). EchidnaCSI 

provided 24.6% of these, compared to 36.2% from the ALA and 39.2% from the state 

systems. Citizen Science contributions inside PAs from the ALA were 9.7% of the total 

and from state systems just 4.1% of the total PA observations. There were 13265 

observations (76.1% of all observations) recorded outside PAs, of which 10475 (79%) 

were from Citizen Science and 2790 (21%) from Scientific sources. Approximately 13% of 

echidnaCSI observations were made in PAs compared to over 36% of ALA and almost 

30% of state system observations. 

Table 3-2 Protected Area observations 

Category IUCN Description eCSI ALA State Total 

   CS Sci CS Sci  

IA Strict Nature Reserve 77 40 167 9 311 604 

IB Wilderness Area 10 7 33 0 54 104 
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II National Park 480 208 790 90 852 2420 

III Natural Monument or Feature 266 56 30 11 53 416 

IV Habitat/Species Management 
Area 

120 63 68 39 55 345 

V Protected Landscape/Seascape 20 11 2 7 9 49 

VI Protected area with sustainable 
use of natural resources 

51 19 12 15 124 221 

NAS Not Assigned 0 0 1 0 2 3 

 Total PA 1024 404 1103 171 1460 4162 

NA Not Protected 6811 1049 1560 2615 1230 13265 

 Total 8859 1857 3766 2957 4150 21589 

 

When considering PA observations by IUCN category, the majority of observations 

were in "National Parks", followed by "Strict Nature Reserves", "Natural Monument or 

Feature" and "Habitat/Species Management Area". Of particular note are the large 

numbers of observations from Scientific sources in the state and ALA systems in the 

categories of "National Park" and "Strict Nature Reserve". Also noteworthy is the 

contribution from echidnaCSI in the "Natural Monument or Feature" and "Habitat/Species 

Management Area" categories and relatively poor contribution in the "Strict Nature 

Reserve" and "Wilderness Area" categories. There was much variation in PA observations 

between States, with only two States having observations in “Wilderness Areas”, where 

echidnaCSI provides only 10 observations out of a total of 104 across the whole country. 

For a detailed breakdown of observations by IUCN category per state and data source see 

Table S3-12, and for observation counts by IUCN category, State and CS/Science 

contributions to each see Table S3-13. 

The results from testing the effect of data-source and science type on IUCN PA 

category using Pearson's chi-square test of independence and post-hoc test using Cramer's 

V are presented in Table 3-3. A statistically highly significant association with moderate 

effect is indicated overall for observation counts between echidnaCSI and ALA data 

sources (χ2 (14, N = 11950) = 1516.71, p < .001, Cramer's V = 0.25) and with moderate-

strong effect between echidnaCSI and state data sources (χ2 (14, N = 13309) = 3237.78, p 

< .001, Cramer's V = 0.35). 

Table 3-3 Pearson's chi-square test results for the independence of observation counts per PA category against data 

source 

Data sources DF Statistic p-value Cramer's V CI95% N 

eCSI, ALA-CS, ALA-Sci  14 1516.71 1.19 e-315 0.25 [0.23,0.26] 11950 

eCSI, State-CS, State-Sci  14 3237.78 0 0.35 [0.33,0.36] 13309 
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When comparing data sources within each PA category, a statistically highly 

significant difference with moderate effect on observation counts is seen across all PA 

categories except for category V (Protected Landscape/ Seascape) when comparing 

echidnaCSI to ALA observations (Table S3-14) and all PA categories when comparing 

echidnaCSI to state observations (Table S3-15). This suggests that the observation method 

and PA category are not independent and that the strength of this association varies across 

PA categories. EchidnaCSI has markedly more observations in IUCN category III and non-

protected areas, with noticeably fewer in IUCN category IA, IB and II, with smaller 

differences in the other categories. 

3.3.3. Geographic Distribution of Observations 

EchidnaCSI provided more observations in every ARIA+ category than both other data 

sources except for the “Very Remote” category, where state systems provided 167 

observations compared to 77 from echidnaCSI and 46 from the ALA. Further splitting the 

data sources into Citizen Science and Science categories shows the significant contribution 

eCSI makes in all categories of accessibility (Table 3-4). 

Table 3-4 Observation counts by ARIA+ (2016) Category, Source and Science category 

ARIA+ (2016) Categories eCSI 

CS 

ALA State Total 

CS Sci CS Sci  

Highly Accessible (0.00 – 0.20) 1232 417 554 982 186 3371 

Accessible (>0.20 – 2.40) 3656 483 931 1369 816 7255 

Moderately Accessible (>0.24 – 5.92) 2017 429 497 383 939 4265 

Remote (>5.92 – 10.53) 853 101 658 50 584 2246 

Very Remote (>10.53-15.00) 77 23 23 2 165 290 

Total 7835 1453 2663 2786 2690 17427 

 

The ARIA+ values from echidnaCSI have a higher mean (2.41 ±2.43) than the other 

two CS groups but lower than the Science groups. The State Science data are the most 

widely dispersed and with a higher ARIA+ mean of 4.23 ±3.55 compared to 1.14 ±1.48 for 

State CS data, while ALA Science data have a mean of 2.81 ±2.71 compared with 2.23 

±2.58 for ALA CS data, with echidnaCSI remaining at 2.41 (Table 3-5). All group 

distributions are skewed with numerous outliers and bimodal characteristics are indicated 

in some groups (Figure 3-3). 
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Figure 3-3 Distribution and summary statistics of ARIA+ (2016) index for observations for each data source and Citizen 

Science/Science category. 

Table 3-5 ARIA+ value statistics by data source and category 

Source Category Mean Median SD Max IQR Count 

eCSI Citizen Science 2.41 1.82 2.43 15.00 2.52 7835 

ALA Citizen Science 2.23 1.39 2.58 14.62 3.25 1453 

ALA Science 2.81 1.87 2.71 14.41 5.58 2663 

State Citizen Science 1.14 0.61 1.48 14.12 1.76 2786 

State Science 4.23 3.24 3.55 15.00 5.08 2690 

 

The data source group had a highly significant moderate effect on geographical 

distribution of observations as indicated by the Kruskal-Wallis test results (χ2
 (4, N = 

17427) = 1789.40, p = 0.0, ε2 = 0.10). There are highly significant differences in the 

geographic distribution of observations between echidnaCSI and the other four groups, 

except when comparing echidnaCSI to ALA-Sci (p = 0.03) as shown by the post-hoc Dunn 

test with Benjamini-Hochberg correction (Table 3-6).  

Table 3-6 Statistical results from pairwise comparison of ARIA+ data by data source groups using the Kruskal-Wallis test 

with Dunn post-hoc test 

Group 1 Group 2 Dunn Statistic pFDR-corrected Sig 

eCSI-Citizen Science  ALA-Citizen Science 6.04 1.68 e-9 *** 

eCSI-Citizen Science  ALA-Science 2.12 0.03 * 

eCSI-Citizen Science State-Citizen Science 27.38 2.54 e-164 *** 
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eCSI-Citizen Science State-Science 23.36 2.50 e-120 *** 

ALA-Citizen Science ALA-Science 6.75 1.80 e-11 *** 

ALA-Citizen Science State-Citizen Science 13.33 2.29 e-40 *** 

ALA-Citizen Science State-Science 21.34 9.94 e-101 *** 

ALA-Science State-Citizen Science 24.04 3.36 e-127 *** 

ALA-Science State-Science 17.36 2.96 e-67 *** 

State-Citizen Science State-Science 41.66 0 *** 

 

3.4. DISCUSSION 

3.4.1. Mobile App Use 

The echidnaCSI app has provided an easy-to-use tool for members of the public to quickly 

and easily record opportunistic sightings of echidna. A large number of participants have 

successfully submitted sightings, with some very enthusiastic participants using either the 

app or web interface regularly. This has resulted in almost doubling the number of echidna 

observations across Australia over the study period, which should considerably improve 

the accuracy of future population assessments by providing greater species presence data at 

wider spatial distribution than may be possible using traditional methods. The retention of 

regular participants should prove useful for providing improved longitudinal data, enabling 

better long-term analysis in certain areas. 

Most observations from echidnaCSI were contributed by participants in the states of 

Victoria, New South Wales and South Australia, which is different from the other two data 

sources which were dominated by contributions from New South Wales (Table S3-10). 

This is probably due to the publicity that was generated for the project through both 

traditional and social media channels, which provided a focal point for interest in this 

particular species, supported by the use of a dedicated app. This resulted in echidnaCSI 

providing two to three times more observations than the other data sources in many states, 

apart from New South Wales, which recorded a similar number of observations to 

echidnaCSI. Much higher observation numbers are particularly noticeable in South 

Australia where the echidnaCSI project is based and more local events provided avenues 

for community engagement and interest which supplemented the other engagement 

channels. 

Utilising the ALA as a biodiversity repository provides multiple benefits. It provides 

a stable, central portal for storage and access of observational data in standardised format 

which enables the wider use of these data for biodiversity research (Theobald et al., 2015). 



 

  80 

It also provides a web interface that enables participants to supply observations recorded 

using devices other than mobile phones. In contrast to the app, the web interface to the 

ALA requires users to register before allowing contributions, which may be a barrier to use 

(Jay et al., 2016; Martin et al., 2016). The web interface does not automatically record 

location, date and time as the app does, and thus may introduce some errors when these are 

entered manually. It does record these from the metadata of an uploaded photo, if 

available, however. Nonetheless, it provides another very useful capability with little effort 

for the project team and resulted in a significant contribution in numbers of users and 

observations. 

The app could be improved by better integration with the ALA. As participants using 

the app are assigned a Unique User Identifier (UUID) and are not automatically registered 

on the ALA, they cannot easily find their own observations on the ALA website. Ideally 

this should be improved so that the interface between systems is as seamless as possible, 

while preserving the low barrier-to-use of the app. Additionally, being able to see both 

their own and others' contributions from inside the app as well as online, and to be able to 

share these easily, would likely improve participants' engagement with the app and 

potentially increase the number of people using it. 

3.4.2. Protected Areas 

EchidnaCSI was successful in providing more observations in PA than from other CS 

sources as well as a large increase in observations in non-protected areas overall. There 

were significant differences in the number of observations in the varying PA IUCN 

categories. In "Strict Nature Reserves", human visitation, use and impacts are strictly 

controlled to ensure the protection of conservation values, so it is not surprising there were 

fewer CS observations in these PA. "Wilderness Areas" provide for restricted public access 

but aim to preserve the area's ecological integrity and should remain undisturbed by 

significant human activity, so CS observations in these areas are interesting, as visitor 

access is more limited and more likely to be confined to those with the skills and 

equipment to survive unaided (Dudley et al., 2013). PA where public access is encouraged, 

however, showed significantly higher numbers of observations from echidnaCSI, as might 

be expected. Contributing factors to this may include ease of access and the possibility that 

science-based studies prefer areas with less human disturbance. EchidnaCSI provided the 

majority of CS observations in all PA categories, which indicates how successful this 

project has been at attracting participation. 
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There was much variation in PA observations among States. For example, in the 

Northern Territory there were a total of 41 observations recorded in the State repository 

and these were all from camera traps. New South Wales had few PA observations provided 

by CS, whereas in Victoria and South Australia echidnaCSI provided almost as many 

sightings as were recorded by the State scientific sources, indicating the value of this 

project. This may be explained by the abundance of PA allowing public access, such as 

IUCN II-V, close to heavily populated areas of Adelaide in South Australia and Melbourne 

in Victoria. Population size probably also plays a role, which would also affect the 

numbers of governmental and other organisations monitoring biodiversity. 

There are many challenges associated with managing PA for effective biodiversity 

conservation, both in Australia (Buckley et al., 2008; Watson et al., 2011; Woinarski et al., 

2011) and worldwide (Cazalis et al., 2020; Gaston et al., 2006; Geldmann et al., 2019; 

Watson et al., 2014). Improving monitoring methods will surely involve utilising the 

public in recording incidental observations, as in echidnaCSI, complemented by using 

more structured methods performed by professionals and also by citizen scientists (Kelling 

et al., 2019; Pescott et al., 2015). Access to PA by the public can also be detrimental to 

biodiversity (Xavier da Silva et al., 2018) so care must be taken when assessing monitoring 

methods and conservation management. 

3.4.3. Geographic Distribution by Remoteness Areas 

EchidnaCSI provided more observations in all categories of remote areas of Australia than 

other sources except for Very Remote regions where State Scientific observations are most 

numerous. There are clear differences in remoteness between scientific and CS 

observations from State systems and this difference is less in ALA data. This smaller 

difference in ALA data may be due to possible misclassification of some data as CS, where 

it appears that data transfer between systems may have occurred without data sources 

being correctly recorded. The State systems included better indications of data sources 

enabling easier CS/Science classification which resulted in the clearer differences. 

Except for Highly Accessible areas, the number of observations decreases with 

increased remoteness, both overall and for echidnaCSI. i.e. there are fewer observations in 

more remote areas. As Highly Accessible areas are very urbanised, it should not be too 

surprising that there are fewer observations in this category. The large increase in 

observations in Accessible areas may be explained by the availability of suitable habitat 

areas combined with their proximity to populated areas. Very large areas of Australia are 
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classified as Remote or Very Remote and there are few observations in these areas. There 

is a need for more data from these remote areas and though some exist, these are often in 

siloed repositories where the data are slow to be shared more widely, if at all.  

Small geographic clusters of scientific observations in Remote and Very Remote 

areas can be seen in NW, N and SE Australia (Figure 2a). These observations from the 

Western Australian, Northern Territory and Victorian state systems have observation type 

recorded and the majority of these are camera trap (CT) images. Automated recording 

technologies such as CT and audio recorders have great potential to increase species 

observations in remote areas. As they can operate throughout the day and night, they may 

increase the chances of recording echidna activity in warmer climates where echidna may 

be more active at night when other methods are less likely to detect them. This 

uninterrupted usage combined with their suitability for remote locations indicates CT to be 

a potentially complementary method to CS/echidnaCSI observations (Santangeli et al., 

2020). As the climate continues to change, this may become a bigger issue as both humans 

and species such as the echidna adapt their behaviours to avoid temperature extremes 

(Graham et al., 2019; Heller and Zavaleta, 2009; Mackey et al., 2008; Synes et al., 2020). 

EchidnaCSI has provided very good coverage of most regions apart from Very 

Remote areas. Given the lack of funding for environmental research in Australia and the 

expense of remote fieldwork, to increase coverage in these regions may require increased 

engagement with inhabitants of remoter regions, such as indigenous groups and others who 

temporarily visit these areas, such as mine workers and tourists. Payments for ecosystem 

services, which are increasingly used to reward landowners for preserving ecological-

beneficial habitats and features, could be extended to cover payments for biodiversity 

monitoring services here in Australia (Rawlins and Westby, 2013; Tuanmu et al., 2016), 

though this should be used cautiously (Sommerville et al., 2011; van Berkel et al., 2018) as 

participants' continued engagement often stems from intrinsic science- and conservation-

related motivations (Larson et al., 2020). The intensification of observations provided by 

echidnaCSI could also be used to stimulate CS activity in areas with fewer observations 

and would be made more useful by also recording CS search paths (Stenhouse et al., 

2020). Gaps in desired observational coverage can then be prioritised for professional 

surveying, if necessary (Tulloch et al., 2013). 

Disparate state data standards mean data usability is reduced. This could be 

overcome by ensuring data is uploaded to a national system that provides ease of use and 

access to consistent and standard format data for local and global researchers, enabling 
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more rapid evaluations of current biodiversity. In Australia, the ALA provides a national 

biodiversity repository but it appears that some state systems are slow to integrate with it 

and that this integration sometimes lacks in detail, leading to difficulties in determining 

data sources. Though funding is limited and policy conflicts may exist, it would be highly 

beneficial to more fully utilise the services that the ALA provides (Salle et al., 2016). Its 

value is being increasingly recognised around the world as the increasing uptake of the 

ALA software by other countries shows (https://living-atlases.gbif.org/). 

The integration of a variety of monitoring methods can lead to more effective 

monitoring with benefits for biodiversity and society. By utilising both scientific and 

community sources, program ownership and resilience may be broadened and societal 

benefits enhanced (Kühl et al., 2020). 

3.5. CONCLUSIONS 

The echidnaCSI app provided an easy-to-use system for citizen scientists to quickly 

provide accurate, vouchered data in a usable form to the project repository on the national 

biodiversity database. EchidnaCSI has substantially increased the spatial and temporal 

intensity of echidna observations around Australia since starting in September 2017. 

EchidnaCSI has provided comparable geographic distribution to other existing biodiversity 

surveys and databases at all levels of remoteness as measured by the ARIA+ index of 

accessibility, except for the Very Remote category. Some protected areas are also less 

covered by CS, indicating the value of professional surveys in these areas, particularly in 

PAs where public access is discouraged. While large gaps in geographic coverage for the 

Australian Short beaked echidna remain, this study indicates that CS programs can provide 

good observational data for a cryptic species at large scale and can highlight areas where 

scientific monitoring may provide even greater value. We plan to continue the refinement 

and promotion of the echidnaCSI project and app in order to increase the geographic and 

temporal extents of the data. This may enable further collaborative studies with ecologists 

and environmental scientists to address specific questions related to the ecology, 

distribution and conservation of this species and to detect the longer-term trends required 

to better evaluate the conservation status for this species on the Australian mainland. 
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EchidnaCSI is a free mobile app available for Android 

(https://play.google.com/store/apps/details?id=com.scruffmonkey.echidnaCSI) and on iOS 

(https://itunes.apple.com/au/app/echidnacsi/id1260820816). Data is available for download 

from the DOIs and websites listed in Supplementary Information 3.7.2. Application code is 

available on FigShare at DOI: 10.25909/14528367 and Github at 

https://github.com/alanstenhouse/echidnaCSI-app. 
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3.7. SUPPLEMENTARY INFORMATION 

3.7.1. Methods 

3.7.1.1 Data cleaning 

We restricted ALA data to those records whose basisOfRecord column is "Human 

Observation" (23808) or "Image" (50) or "NA" (995) and removed those classified as 

"PreservedSpecimen" (720), "MaterialSample" (201), "FossilSpecimen" (1) and 

"MachineObservation" (1). We also excluded records with missing location data. Some 

records contained ambiguous event dates in the form of date ranges, for these the first date 

in the range was selected as the observation event date. Records with no observation year 

were also excluded (186).  

To determine the source of ALA data and classify it as scientific or citizen science, 

we used a number of columns including "institutionCode", "provenance", "recordedBy" 

and "locality". This enabled us to more accurately determine which records were submitted 

by an official organisation – such as a government department or a scientific non-

governmental organisation – and which were submitted by individuals or other groups, 

such as iNaturalist or Questagame. 

Observations from camera traps in NSW were restricted to 1 observation per location 

per 30s as there were some sequences where each photo was recorded as an observation, 

some containing more than 10 per sequence. Other State data sources did not have this 

issue, though there were other issues such as temporal accuracy being only daily rather 

than including time, which limits the usability of the data for some purposes. 

The ALA and some State systems include records from a variety of sources 

including CS programs like iNaturalist and Questagame. There are also records from 

wildlife rehabilitation centres and roadkill reports which result from human-echidna 

interactions. These records have been classified as CS records in order to better compare 

the contributions from CS to observations from scientific sources in order to show how 

much of a contribution CS already makes. The remaining data were classified as from 

scientific sources. 

3.7.2. Data Sources 

Datasets used in this study can be downloaded at the following sources. 

Source URL or DOI 

echidnaCSI https://biocollect.ala.org.au/acsa/project/index/8c3ae3b1-5342-40b4-9e72-e9820b7a9550 
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ALA DOI: 10.26197/5f33a71948c4e 

NSW https://www.environment.nsw.gov.au/atlaspublicapp 

NT https://data.nt.gov.au/dataset/fauna-atlas-subset-mammals 

QLD https://apps.des.qld.gov.au/species-search/details/?id=838 

SA http://spatialwebapps.environment.sa.gov.au/naturemaps/?locale=en-

us&viewer=naturemaps 

TAS https://www.naturalvaluesatlas.tas.gov.au/#SpeciesSearchPage 

VIC http://maps.biodiversity.vic.gov.au/viewer/?viewer=NatureKit 

WA https://naturemap.dbca.wa.gov.au/ 

 

3.7.3. Supplementary Tables 

Table S3-1  Core observation questions and answer options in the app 

Question Possible Answers 

State of Animal? Alive 

Dead 

Size of Animal? Hold in one hand 

A small football 

A large basketball 

Unsure 

Area found? Roadside 

Urban / backyard 

Agricultural / farmland 

Bushland 

Coast / waterway 

Action? Walking 

Digging 

Mating 

Sleeping 

Any other comments? <free text entry> 

 

EchidnaCSI data file format 

Each line is preceded by a type identifier: “O” for “Observation”. Each data value is 

preceded by its data identifier followed by a colon e.g. “latitude: -35.018088”. Data items 

(identifier: value pairs) are separated from each other by tab characters (ASCII character 

09). 
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Table S3-2 EchidnaCSI data file format 

Line Type Identifier Data item identifier 

Observation O  

  Latitude 

  Longitude 

  Altitude 

  Course 

  Speed 

  Horizontal Accuracy 

  Vertical Accuracy 

  GPS Timestamp 

  Device Date_Time 

  State 

  Size 

  Area 

  Action 

  Pic 

  Notes 

Table S3-3 IUCN Protected Area Categories (Dudley et al., 2013) 

ID Category Description 

Ia Strict Nature 
Reserve 

Category Ia are strictly protected areas set aside to protect biodiversity and 

also possibly geological/geomorphical features, where human visitation, use 

and impacts are strictly controlled and limited to ensure protection of the 

conservation values. Such protected areas can serve as indispensable 

reference areas for scientific research and monitoring.  

Ib Wilderness Area Category Ib protected areas are usually large unmodified or slightly modified 

areas, retaining their natural character and influence without permanent or 

significant human habitation, which are protected and managed so as to 

preserve their natural condition. 

II National Park Category II protected areas are large natural or near natural areas set aside to 

protect large-scale ecological processes, along with the complement of species 

and ecosystems characteristic of the area, which also provide a foundation for 

environmentally and culturally compatible, spiritual, scientific, educational, 

recreational, and visitor opportunities. 

III Natural Monument 
or Feature 

Category III protected areas are set aside to protect a specific natural 

monument, which can be a landform, sea mount, submarine cavern, geological 

feature such as a cave or even a living feature such as an ancient grove. They 

are generally quite small protected areas and often have high visitor value. 

IV Habitat/Species 
Management Area 

Category IV protected areas aim to protect particular species or habitats and 

management reflects this priority. Many Category IV protected areas will need 
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regular, active interventions to address the requirements of particular species 

or to maintain habitats, but this is not a requirement of the category. 

V Protected 
Landscape/ 
Seascape 

A protected area where the interaction of people and nature over time has 

produced an area of distinct character with significant, ecological, biological, 

cultural and scenic value: and where safeguarding the integrity of this 

interaction is vital to protecting and sustaining the area and its associated 

nature conservation and other values. 

VI Protected area with 
sustainable use of 
natural resources 

Category VI protected areas conserve ecosystems and habitats together with 

associated cultural values and traditional natural resource management 

systems. They are generally large, with most of the area in a natural condition, 

where a proportion is under sustainable natural resource management and 

where low-level non-industrial use of natural resources compatible with nature 

conservation is seen as one of the main aims of the area. 

Table S3-4 EchidnaCSI Submissions by participant statistics 

Source Mean Median SD Max obs # Participants 

app 3.45 2 6.19 115 1943 

web 1.46 1 3.93 107 775 

All 2.88 1 5.71 115 2718 

Table S3-5 EchidnaCSI observations Size 

Size Count % 

Size of a small football 4377 54.6 

Size of a large basketball 3206 40.0 

Could hold in one hand 127 1.6 

Unsure 125 1.6 

Table S3-6 EchidnaCSI observations Area 

Area Alive Dead Total % 

Native vegetation / bushland 2684 15 2699 33.7 

Roadside 1837 247 2084 26.0 

Agricultural / farmland 1811 22 1833 22.9 

Urban / backyard 851 5 856 10.7 

Coast / waterway 240 2 242 3.0 

NA 115 6 121 1.5 

Table S3-7 EchidnaCSI observations Action 

Action Count % 

Walking 4328 54.0 

Digging 2628 32.8 

NA 568 7.1 

Sleeping 225 2.8 
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Inactive 44 0.5 

Mating 42 0.5 

Table S3-8 Observation counts and percentage by source for Citizen Science and Science categories 

Source Citizen Science Science Total CS % Sci % 

ALA 1453 2663 4116 35.3 64.7 

eCSI 7835 0 7835 100 0 

State 2786 2690 5476 50.9 49.1 

Total 12074 5353 17427 69.3 30.7 

Table S3-9 Observations by State for CS and Science 

State CS Science Total CS % Sci % 

Australian Capital Territory 160 0 160 100.0 0.0 

New South Wales 4924 3721 8645 57.0 43.0 

Northern Territory 10 84 94 10.6 89.4 

Other Territories 19 2 21 90.5 9.5 

Queensland 698 64 762 91.6 8.4 

South Australia 1757 595 2352 74.7 25.3 

Tasmania 830 19 849 97.8 2.2 

Victoria 3461 745 4206 82.3 17.7 

Western Australia 175 120 295 59.3 40.7 

NA 40 3 43 93.0 7.0 

Total 12074 5353 17427 69.3 30.7 

Table S3-10 All echidna observations by data source and State for CS and Science 

Source State Citizen 
Science 

Science Total CS % Sci % 

ALA Australian Capital Territory 55 0 55 100.0 0 

ALA New South Wales 408 2564 2972 13.7 86.3 

ALA Northern Territory 8 7 15 53.3 46.7 

ALA Other Territories 6 1 7 85.7 14.3 

ALA Queensland 161 0 161 100.0 0 

ALA South Australia 181 90 271 66.8 33.2 

ALA Tasmania 126 0 126 100.0 0 

ALA Victoria 430 0 430 100.0 0 

ALA Western Australia 49 0 49 100.0 0 

eCSI Australian Capital Territory 105 - 105 100.0 - 

eCSI New South Wales 2237 - 2237 100.0 - 

eCSI Northern Territory 2 - 2 100.0 - 

eCSI Other Territories 13 - 13 100.0 - 

eCSI Queensland 519 - 519 100.0 - 

eCSI South Australia 1576 - 1576 100.0 - 
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eCSI Tasmania 449 - 449 100.0 - 

eCSI Victoria 2804 - 2804 100.0 - 

eCSI Western Australia 126 - 126 100.0 - 

State New South Wales 2279 1157 3436 66.3 33.7 

State Northern Territory 0 77 77 0 100.0 

State Other Territories 0 1 1 0 100.0 

State Queensland 18 64 82 22.0 78.0 

State South Australia 0 505 505 0 100.0 

State Tasmania 255 19 274 93.1 6.9 

State Victoria 227 745 972 23.4 76.6 

State Western Australia 0 120 120 0 100.0 

Table S3-11 State observations from 2017-2020 from scientific and citizen science sources 

State Citizen Science Science Total 

NSW 2280 1158 3438 

NT 0 77 77 

QLD 18 66 84 

SA 0 505 505 

TAS 259 19 278 

VIC 229 745 974 

WA 0 120 120 

Total 2786 2690 5476 

Table S3-12 Protected Area observations by IUCN category, State and Source 

IUCN PA IUCN Category State ALA eCSI State Total 

IA Strict Nature Reserve New South Wales 177 20 117 314 

IA Strict Nature Reserve Queensland 2 0 0 2 

IA Strict Nature Reserve South Australia 4 7 13 24 

IA Strict Nature Reserve Victoria 14 47 171 232 

IA Strict Nature Reserve Western Australia 10 3 19 32 

IB Wilderness Area New South Wales 36 7 47 90 

IB Wilderness Area South Australia 4 3 7 14 

II National Park Australian Capital 
Territory 

2 2 0 4 

II National Park New South Wales 835 133 438 1406 

II National Park Northern Territory 0 0 33 33 

II National Park Other Territories 5 10 0 15 

II National Park Queensland 10 7 11 28 

II National Park South Australia 42 98 250 390 

II National Park Tasmania 35 56 36 127 

II National Park Victoria 65 165 161 391 

II National Park Western Australia 3 9 13 25 
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II National Park NA 1 0 0 1 

III Natural Monument or Feature New South Wales 8 1 2 11 

III Natural Monument or Feature Queensland 4 4 5 13 

III Natural Monument or Feature South Australia 59 201 46 306 

III Natural Monument or Feature Tasmania 2 12 3 17 

III Natural Monument or Feature Victoria 13 48 8 69 

IV Habitat/Species Management Area Australian Capital 
Territory 

29 58 0 87 

IV Habitat/Species Management Area New South Wales 72 17 51 140 

IV Habitat/Species Management Area Other Territories 1 1 0 2 

IV Habitat/Species Management Area Queensland 1 0 0 1 

IV Habitat/Species Management Area South Australia 4 4 6 14 

IV Habitat/Species Management Area Tasmania 1 2 5 8 

IV Habitat/Species Management Area Victoria 23 37 32 92 

IV Habitat/Species Management Area Western Australia 0 1 0 1 

NAS Not Assigned New South Wales 1 0 2 3 

V Protected Landscape/Seascape New South Wales 5 4 2 11 

V Protected Landscape/Seascape Northern Territory 0 0 7 7 

V Protected Landscape/Seascape Tasmania 8 8 5 21 

V Protected Landscape/Seascape Victoria 0 8 2 10 

VI Protected area with sustainable use 
of natural resources 

New South Wales 7 0 9 16 

VI Protected area with sustainable use 
of natural resources 

Northern Territory 0 0 1 1 

VI Protected area with sustainable use 
of natural resources 

Queensland 4 7 12 23 

VI Protected area with sustainable use 
of natural resources 

South Australia 11 21 72 104 

VI Protected area with sustainable use 
of natural resources 

Tasmania 8 14 17 39 

VI Protected area with sustainable use 
of natural resources 

Victoria 1 9 27 37 

VI Protected area with sustainable use 
of natural resources 

Western Australia 0 0 1 1 

Table S3-13 Protected Area observations by IUCN category, State and Citizen Science/Science 

IUCN PA IUCN Category State CS Science Total CS % Sci % 
IA Strict Nature Reserve New South Wales 33 281 314 10.5 89.5 

IA Strict Nature Reserve Queensland 2 0 2 100 0 

IA Strict Nature Reserve South Australia 10 14 24 41.7 58.3 

IA Strict Nature Reserve Victoria 68 164 232 29.3 70.7 

IA Strict Nature Reserve Western Australia 13 19 32 40.6 59.4 

IB Wilderness Area New South Wales 10 80 90 11.1 88.9 

IB Wilderness Area South Australia 7 7 14 50 50 

II National Park Australian Capital 
Territory 

4 0 4 100 0 

II National Park New South Wales 200 1206 1406 14.2 85.8 

II National Park Northern Territory 0 33 33 0 100 
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II National Park Other Territories 15 0 15 100 0 

II National Park Queensland 19 9 28 67.9 32.1 

II National Park South Australia 125 265 390 32.1 67.9 

II National Park Tasmania 126 1 127 99.2 0.8 

II National Park Victoria 276 115 391 70.6 29.4 

II National Park Western Australia 12 13 25 48 52 

II National Park NA 1 0 1 100 0 

III Natural Monument or Feature New South Wales 7 4 11 63.6 36.4 

III Natural Monument or Feature Queensland 8 5 13 61.5 38.5 

III Natural Monument or Feature South Australia 232 74 306 75.8 24.2 

III Natural Monument or Feature Tasmania 17 0 17 100 0 

III Natural Monument or Feature Victoria 69 0 69 100 0 

IV Habitat/Species Management Area Australian Capital 
Territory 

87 0 87 100 0 

IV Habitat/Species Management Area New South Wales 47 93 140 33.6 66.4 

IV Habitat/Species Management Area Other Territories 2 0 2 100 0 

IV Habitat/Species Management Area Queensland 1 0 1 100 0 

IV Habitat/Species Management Area South Australia 5 9 14 35.7 64.3 

IV Habitat/Species Management Area Tasmania 4 4 8 50 50 

IV Habitat/Species Management Area Victoria 75 17 92 81.5 18.5 

IV Habitat/Species Management Area Western Australia 1 0 1 100 0 

NAS Not Assigned New South Wales 0 3 3 0 100 

V Protected Landscape/Seascape New South Wales 7 4 11 63.6 36.4 

V Protected Landscape/Seascape Northern Territory 0 7 7 0 100 

V Protected Landscape/Seascape Tasmania 21 0 21 100 0 

V Protected Landscape/Seascape Victoria 10 0 10 100 0 

VI Protected area with sustainable use 
of natural resources 

New South Wales 0 16 16 0 100 

VI Protected area with sustainable use 
of natural resources 

Northern Territory 0 1 1 0 100 

VI Protected area with sustainable use 
of natural resources 

Queensland 11 12 23 47.8 52.2 

VI Protected area with sustainable use 
of natural resources 

South Australia 27 77 104 26 74 

VI Protected area with sustainable use 
of natural resources 

Tasmania 37 2 39 94.9 5.1 

VI Protected area with sustainable use 
of natural resources 

Victoria 10 27 37 27 73 

VI Protected area with sustainable use 
of natural resources 

Western Australia 0 1 1 0 100 
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Source v IUCN - eCSI, ALA-CS, ALA-Sci 

Pearsons 2 (14) = 1516.71, p = 1.19e-315, Cramer's V = 0.25, CI95%=[0.23,0.26] 

Table S3-14 Pearson 2 test results of Data source v PAs, for echidnaCSI and ALA data 

IUCN N % eCSI-CS ALA-CS ALA-Sci Statistic p sig 

IA 284 2.38 27.11 14.08 58.80 90.13 2.68 e-20 *** 

IB 50 0.42 20.00 14.00 66.00 24.28 5.34 e-6 *** 

II 1478 12.37 32.48 14.07 53.45 344.25 1.76 e-75 *** 

III 352 2.95 75.57 15.91 8.52 285.43 1.05 e-62 *** 

IV 251 2.10 47.81 25.10 27.09 23.82 6.73 e-6 *** 

V 33 0.28 60.61 33.33 6.06 14.73 6.34 e-4 *** 

VI 82 0.69 62.20 23.17 14.63 31.63 1.35 e-7 *** 

NotPA 9420 78.83 72.30 11.14 16.56 6479.27 0 *** 

 

Source v IUCN - eCSI, State-CS, State-Sci 

Pearsons 2 (14) = 3237.78, p = 0 e+00, Cramer's V = 0.35, CI95%=[0.33,0.36] 

Table S3-15 Pearson 2 test results of Data source v PAs, for echidnaCSI and state data 

IUCN N % eCSI-CS State-CS State-Sci Statistic p sig 

IA 397 2.98 19.40 2.27 78.34 379.30 4.32 e-83 *** 

IB 64 0.48 15.62 NA 84.38 77.38 1.58 e-17 *** 

II 1422 10.68 33.76 6.33 59.92 612.61 9.42 e-134 *** 

III 330 2.48 80.61 3.33 16.06 339.87 1.58 e-74 *** 

IV 214 1.61 56.07 18.22 25.70 51.60 6.25 e-12 *** 

V 36 0.27 55.56 19.44 25.00 8.17 0.017 * 

VI 190 1.43 26.84 7.89 65.26 97.4 7.08 e-22 *** 

NotPA 10656 80.07 63.92 24.54 11.54 4755.27 0 *** 
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ABSTRACT 

1. The global COVID-19 pandemic has imposed restrictions on people’s movement, work 

and access to places at multiple international, national and sub-national scales. We 

need a better understanding of how the varied restrictions have impacted wildlife 

monitoring as gaps in data continuity caused by these disruptions may limit future data 

use and analysis. 

2. To assess the effect of different levels of COVID-19 restrictions on both citizen science 

and traditional wildlife monitoring, we analyse observational records of a widespread 

and iconic monotreme, the Australian short-beaked echidna (Tachyglossus aculeatus), 

in three states of Australia. We compare citizen science to observations from 

biodiversity data repositories across the three states by analysing numbers of 

observations, coverage in protected areas, and geographic distribution using an index 

of remoteness and accessibility. We analyse the effect of restriction levels by 

comparing these data from each restriction level in 2020 with corresponding periods in 

2018-2019. 

3. Our results indicate that stricter and longer restrictions reduced numbers of scientific 

observations while citizen science showed few effects, though there is much variation 

due to differences in restriction levels in each state. Geographic distribution and 

coverage of protected and non-protected areas were also reduced for scientific 

monitoring while citizen science observations were little affected. 

4. This study shows that citizen science can continue to record accurate and widely 

distributed species observational data, despite pandemic restrictions, and thus 

demonstrates the potential value of citizen science to other researchers who require 

reliable data during periods of disruption. 
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4.1. INTRODUCTION 

The World Health Organization officially declared the novel coronavirus (2019-nCoV or 

COVID-19) a public health emergency of international concern on 30 January 2020 

(World Health Organization, 2020a) and then declared a pandemic on 11 March 2020 

(World Health Organization, 2020b). The impacts of the virus on global activity over the 

last year have been enormous and though the rapid development of vaccines have brought 

significant change and hope that it can be brought under control, the outlook for the future 

remains somewhat uncertain. Governmental policy responses around the world have varied 

greatly and change over time (Hale et al., 2021a) with accompanying variations in 

outcomes. Typical guidance for controlling the virus spread has included actions such as 

increased handwashing, personal distancing, tracking locations and contacts, wearing 

personal protective equipment, restricting personal movements and working from home. 

While these policies have been aimed primarily at human health, they have also affected 

our environment, biodiversity and conservation actions. 

In Australia, the pandemic response has involved both the federal and state 

governments, with the Australian government declaring a Human Biosecurity Emergency 

on 18 March 2020 (Commonwealth Parliament of Australia, 2020) and subsequently 

closing the international borders, while leaving the states responsible for most other 

aspects of the pandemic response. This resulted in significant variations in state actions 

with restrictions being applied of varying duration and severity. At state level, South 

Australia (SA) was the least affected, Victoria (Vic) had long periods of severe restrictions 

due to COVID outbreaks, while New South Wales (NSW) was less officially restricted but 

dealt with some COVID spread. 

The variations between states and over time resulted in varying degrees of travel and 

work limitations, with stay-at-home orders the highest degree of restriction. Non-essential 

travel and work were advised against and people were recommended to work or study 

from home, where possible. Many government departments, education and research 

organisations also restricted fieldwork and outreach activities and, as public safety could 

not be assured, parks and protected areas were often closed (Parliament of Australia, 

2020).  

These pandemic-related restrictions on people have produced the "anthropause" 

(Rutz et al., 2020), which has had a variety of impacts on biodiversity conservation 

research and practice. There have been positive impacts such as fewer disturbances to 
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fauna and flora (Montgomery et al., 2020), reductions in wildlife roadkill (Bíl et al., 2021; 

Driessen, 2021; Manenti et al., 2020), improved legislation against wildlife consumption 

and trade (Koh et al., 2021) and changed activity patterns for some species (China et al., 

2021; Manenti et al., 2020). Negative aspects include large increases in environmental 

pollution from personal protective equipment (PPE) such as masks and gloves (Hiemstra et 

al., 2021; Zhang et al., 2021), disruptions to field and lab work (Evans et al., 2020), 

reduced environmental monitoring and protection (Evans et al., 2020; IUCN, 2020b), 

interruptions to some management processes such as invasive species control programs 

(Manenti et al., 2020; Miller-Rushing et al., 2021), changes to distribution and abundance 

of some species (Gilby et al., 2021b), along with funding cuts curtailing existing projects 

(Rose et al., 2020).  

Corlett et al., (2020) recently posed the question: what consequences will restrictions 

on field and lab work during the pandemic have for the species and ecosystems we are 

studying, monitoring, and protecting? Disruptions to scientific wildlife surveys and 

research caused by these restrictions may result in data gaps or other changes to long-term 

data collections which could impact later scientific analysis and affect our understanding 

of wildlife populations and biodiversity dynamics (Basile et al., 2021; Evans et al., 2020). 

As any successful conservation project requires local community cooperation and 

involvement (Koh and Sodhi, 2010), we extend this question by examining how pandemic 

restrictions on the general public disrupt biodiversity observations recorded by citizen 

scientists and then compare these to how observational data from scientific sources have 

been affected. 

Citizen Science (CS) is increasingly used to augment scientific biodiversity 

monitoring by broadening the spatial and temporal coverage of species observations 

(Bonney et al., 2009b; Dickinson et al., 2010) and thereby enabling research that would be 

very difficult using formal scientific methods. In some parts of the world, CS projects have 

been severely impacted by COVID restrictions. Ad-hoc list submissions to the South 

African Bird Atlas project showed an approximate 50% decline during a strict lockdown in 

April 2020 while lists following a defined protocol declined 70% (Rose et al., 2020). In 

Japan, the CS-based City Nature Challenge recorded a greater than 60% decrease in 

participants and observations, also in April 2020 (Kishimoto and Kobori, 2021). There 

were mixed results in other projects, with CS bird observations from iNaturalist increasing 

in urban areas but decreasing in rural areas in Italy and Spain (Basile et al., 2021). 



 

  110 

Although CS is often seen as spatially biased (Mair and Ruete, 2016; Silvertown et 

al., 2013), with CS participants recording observations in known and local locations 

(Dickinson et al., 2010), could this be an advantage during periods of restricted 

movements, so that such monitoring can still occur while other scientific fieldwork is 

impossible or severely reduced? Do movement restrictions affect CS observation numbers 

or where they are made? For example, are there changes to monitoring in protected areas 

(PA), which are considered vital for biodiversity conservation (Brooks et al., 2004; 

Buckley et al., 2008; Worboys et al., 2015) and often dominate traditional conservation 

efforts (Joppa and Pfaff, 2011)? In some countries, reduced income and fluctuating 

visitation patterns, particularly in tourism-dependent economies, resulted in reduced 

management activities such as species monitoring and protection, along with a range of 

other impacts (Hockings et al., 2020; Miller-Rushing et al., 2021). Does reduced access to 

PA also affect CS observations? 

In this paper, we explore the effects of pandemic-related restrictions on wildlife 

monitoring by analysing observations of a widely distributed but cryptic monotreme in 

Australia, the short-beaked echidna (Tachyglossus aculeatus). This iconic species is found 

throughout Australia in a wide variety of habitats (Brice et al., 2002; Grigg et al., 1989; 

Rismiller, 1999) but is usually difficult to locate in the wild (Rismiller and McKelvey, 

2003). Echidnas are opportunistic foragers, feeding on a wide variety of invertebrates, 

including ants and termites (Abensperg‐Traun, 1994; Abensperg‐Traun and Steven, 1997; 

Sprent et al., 2016). Current population estimates range from 5 to 50 million, indicating the 

uncertainty around the abundance of this species (Aplin et al., 2015). 

Previous research (Stenhouse et al., 2021) showed that large numbers of observations 

of this species have been recorded through both CS and scientific sources, such as 

government departments and research organisations, and that these were well distributed 

geographically over long periods. There were some differences between CS and scientific 

observations (SO), especially related to relative contributions in PA and very remote areas, 

while CS has provided greater numbers of observations in recent years. 

A successful CS program gathering data on short-beaked echidna in Australia is the 

Echidna Conservation Science Initiative (echidnaCSI). This has collected over 10 000 

observations since September 2017 from around Australia using both a bespoke mobile 

app and a web portal (Perry et al., In review; Stenhouse et al., 2021). Using a mobile app 

provided several benefits including standardised responses and accurate data through 

utilising built-in sensors of mobile phones to automatically record location and time. The 
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app uses the national biodiversity repository at the Atlas of Living Australia 

(https://www.ala.org.au) as the data repository, which enabled rapid upload and sharing. 

This had additional benefits of making the project easily discoverable and providing 

interoperable and reusable data according to the FAIR principles (Wilkinson et al., 2016). 

Widespread participation from around Australia has provided a large source of CS 

observations of echidna for augmenting scientific data from traditional sources. 

We investigate how data from echidnaCSI compare to data recorded in three state-

based biodiversity repositories. We look at how pandemic-related restrictions vary by 

Australian state and explore the effects of these restrictions on spatial and temporal aspects 

of echidna observations. We analyse for differences in restriction level effects on the 

location of CS and SO by comparing observation locations in different classes of protected 

areas, reserves and parks, as well as an index of remoteness and accessibility. We 

hypothesise that: 1. CS observations were reduced by COVID-19 restrictions, especially in 

states where restrictions were harsher; 2. SO were also reduced by pandemic restrictions 

due to limitations on fieldwork activity; 3. Observations in PA were reduced by COVID-

19 restrictions, as many PA were closed; and 4. The geographic remoteness of 

observations was reduced by COVID-19 restrictions. 

4.2. MATERIALS AND METHODS 

4.2.1. Data Summary 

For this study, we have selected all echidna observations submitted to the echidnaCSI 

project between 01/01/2018 and 31/12/2020. These observations contain accurate location 

information (latitude and longitude), accurate date and time, a photo, along with 

standardised responses to a small range of questions. We also downloaded all echidna 

records from the state governmental biodiversity data repositories for NSW (01/03/2021), 

Victoria (01/03/2021) and South Australia (04/03/2021) (Table S4-1). We selected these 

three states for analysis as they contain large numbers of echidna observations and had 

substantial differences in state pandemic responses. We selected state data from 

01/01/2018 to 31/12/2020 to compare to the data gathered in the echidnaCSI project for the 

same period. Some records were removed as a result of data cleaning. Further details on 

data sources and filtering of these records for use in this study are provided in 

Supplementary Information (4.7.1.1 Data cleaning). For the purposes of this paper, the 
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remaining data were classified as scientific observations (SO) as they have been curated 

and assessed as acceptable for state repositories. 

COVID restrictions were collated from Australian federal and state government 

websites that provided official COVID-19 advice during 2020. From these announcements, 

information on restrictions was classified according to the criteria in Table 4-1. We 

included restrictions that were applied over large areas and not those that applied at fine 

geographic scale, such as suburb level. The resulting periods of restrictions for each state 

are in Table S4-2. 

Table 4-1 Criteria for determining Australian COVID-19 restriction level classifications used in this study. 

Level Criteria 

0 Effectively no or few restrictions - free to move and gather in larger groups. International and inter-

state travel restrictions may be in place. 

1 Some restrictions on gathering (< 500). Limits on some activities outside. Stay at home mostly 

guidance. Only essential work done outside home. Many public facilities closed. Schools open. 

2 Restrictions on movement to some areas, probably movement limited to < 25km from home. Non-

essential movement limited. Gathering limits at home < 10. Schools etc. closed. 

3 No non-essential movement outside home. Limit to distance from home e.g. < 5km. Tight limitations 

on gatherings in public and private. 

4 Very limited movement outside home allowed. Possible curfew. No gatherings in private or public. 

 

To analyse how coverage within PA was affected by COVID restrictions, we used 

the Collaborative Australian Protected Areas Database (CAPAD) 2018 (Australian 

Government Department of Agriculture, Water and the Environment, 2019) which 

provides spatial and textual information about national, state and private PA for Australia. 

This version includes 12,052 terrestrial PAs covering 151,787,501 ha (19.74 percent) of 

the Australian landmass (Department of Agriculture, Water and the Environment, 2019). 

For classification of PA, we used the IUCN categories (Table S4-3) which are an 

internationally recognised standard and classify PA according to their management 

objectives (Dudley et al., 2013). We used the QGIS vector analysis tools (QGIS 

Development Team, 2020) to determine if observations were contained in PA. 

To analyse how the geographic distributions of observation locations were affected 

by COVID restrictions, we used the Accessibility and Remoteness Index of Australia 2016 

Plus (ARIA+) (Hugo Centre, 2018a). ARIA+ is a continuously varying index of relative 

remoteness for Australian locations with values ranging from 0 (high accessibility) to 15 

(high remoteness). A nationally recognised measure that has been used to derive the 
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Australian Bureau of Statistics (ABS) Remoteness Area classification for Australia since 

2001 (Taylor and Lange, 2016), the 1km2 ARIA+ 2016 grid was used to assign ARIA+ 

scores to all of our observations. 

4.2.2. Analysis 

We classified the origin of data from the state systems as CS or SO based on several 

attributes (see Supplementary Information 4.7.1.1 for details). Each state records 

observations differently, as they originate from varying sources such as state government 

departments, non-governmental organisations and other groups and individuals. Apart 

from the filtering to remove records as described in S1.1, for the purposes of this analysis, 

we classify the remainder as scientific observations as they have been curated and accepted 

into the state repositories. This resulted in three groups of data for analysis: echidnaCSI 

(CS), which is all of CS origin; State-CS data and SO data. As there were only two records 

identified as State-CS data for 2020, this group was excluded from further analysis. Using 

the COVID restrictions data, we classified each observation into one of five levels 

according to state-level restrictions and the observation date. To determine if these 

restrictions resulted in differences between the COVID-affected 2020 and previous years, 

and to account for possible seasonal variations, we identified control periods for 

observations from 2018 and 2019 that corresponded to the restricted periods in 2020. To 

test if COVID restriction levels had an effect on observation counts between 2020 and 

prior years grouped by data source and state, we used Pearson's chi-squared test of 

independence with Cramer's V for effect size (Cohen, 1988; Howell, 2011). 

To test for possible effects of COVID restrictions on observations in PA categories, 

we used Pearson's chi-squared test of independence with Cramer's V for effect size to test 

if there were differences in observation counts in 2020 between restriction levels for each 

data source, including and excluding non-PA. We then compared observation counts in PA 

categories for 2020 to prior years and compared these counts grouped by data source and 

restriction level. 

We used the ARIA+ index to assess possible differences in geographic distribution 

between the CS and SO data sources and how they were affected by COVID restrictions. 

We first used the Shapiro-Wilk test of normality on each source. As all sources were not 

normally distributed, we used the non-parametric Kruskal-Wallis test (Dodge, Yadolah, 

2008) and Dunn's pairwise post-hoc test with the Benjamini-Hochberg adjustment method 

to test for mean differences in ARIA+ values between restriction levels for each data 
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source and then for each state. The effect size – rank Epsilon squared – is appropriate for 

non-parametric tests of differences between 2 or more samples. Values range from 0 to 1, 

with larger values indicating larger differences between groups.  

We used Mann-Whitney tests to evaluate restriction level effects on geographic 

distribution, as represented by ARIA+ remoteness values, between 2020 and prior years 

broken down by state and data source. To do this, we compared the ARIA+ distributions, 

for each set of COVID restriction level periods in 2020, against the ARIA+ distributions 

for the same periods in 2018 and 2019. We performed these analyses for all CS and SO 

and also for each state. 

Analyses were performed using RStudio version 1.4.1106 (RStudio Team, 2021) 

with R version 4.0.5 using the following packages: data cleaning and preparation for 

analysis with tidyverse (Wickham et al., 2019), statistical analysis and graphs with 

ggstatsplot (Patil, 2018) and statsExpressions (Patil, 2021), graphs with ggplot2 

(Wickham, 2016) and maps with ggmap3 (Kahle and Wickham, 2013). Final maps were 

prepared with QGIS 3.16 (QGIS Development Team, 2021). 

4.3. RESULTS 

4.3.1. Observations 

There were 12,164 short-beaked echidna observations in total from 2018 to 2020, spread 

over the three data groups and across three states - New South Wales (NSW) with 5280, 

South Australia (SA) with 2473 and Victoria (Vic) with 4411 (Table 4-2). There were 

differences in numbers recorded within states and within data groups, with a decline in 

2019 and 2020 for state CS observations in NSW and Vic and in 2020 for SO in Vic. There 

was a small decline in CS observations in Vic from 2018 to 2020. 
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Table 4-2 Short-beaked echidna observation totals by data source, year and state. 

Data source Year NSW SA Vic Total 

 

CS 

 

2018 899 838 1266 3003 

2019 774 515 1059 2348 

2020 780 527 991 2298 

 

State-CS 

2018 684 0 115 799 

2019 265 0 73 338 

2020 0 0 2 2 

 

SO 

 

2018 520 117 411 1048 

2019 778 293 415 1486 

2020 580 183 79 842 

Totals  5280 2473 4411 12164 

 

Observations during 2020 stratified by data source, state and COVID restriction level show 

large differences in mean daily observation rates between levels, especially for both CS 

and SO in Vic level 0 and the other levels of restrictions (Table S4-4). 

4.3.1.1 Temporal patterns 

Figure 4-1 shows the overall numbers of observations separated by data source and by 

state, and varying temporal patterns by state. COVID restrictions are coloured by severity 

level with initial restrictions starting around mid-March 2020 in all states. Restrictions in 

NSW covered 108 days, with level 3 restrictions lasting 44 days. Vic had the longest and 

severest restrictions totalling 288 days, with level 3 and 4 restrictions in place for 151 days. 

Restrictions in SA totalled 102 days with only three days of severe restrictions. The 

observations are separated into those in PA and those in non-PA, which shows the large 

contribution that non-PA observations make to CS and the high proportion of PA 

observations from SO. During the three years of this study, CS observation counts display 

clear seasonal peaks from around September to January (spring-summer) in NSW and Vic, 

while in SA there are dual shorter and smaller peaks around April/May and 

September/October. All states show a trough in observations around May and June. SO 

show less seasonality with no repeating peaks. There is a notable decline in SO in Vic 

during 2020. 



 

  116 

 

Figure 4-1 Weekly observation counts of short-beaked echidna in PA and non-PA from 2018-2020 with COVID-restriction 

level periods in 2020 shown, broken down by state and data source. Trend lines have been calculated using the loess 

method (Jacoby, 2000) and a smoothing window of approximately 9 months. 

4.3.1.2 Spatial patterns 

Figure 4-2 shows the spatial distribution of echidna observations, coloured by COVID 

restriction level, in southeastern Australia for 2020, with the base map showing 

ARIA+2016 categories of remoteness. There are many more CS observations (Figure 4-2a) 

than SO (Figure 4-2b), with similar geographic distributions. There is a sharp contrast in 

both the number and geographic distribution of observations in Vic during 2020. In Vic, 

CS provided 991 widespread observations in 2020 while there were just 79 SO, and in 

2019, for comparison, there were 415 SO (Table 4-2). 
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a 

 

b 

 

Figure 4-2 Distribution and number of 2020 short-beaked echidna observations coloured by lockdown level in south-east 

Australia, with ARIA+ (2016) remoteness categories (Hugo Centre, 2018b) indicated on the base map. 2a All CS 

observations; 2b All SO. 

4.3.2. Effects of COVID-19 restrictions on observations 

Observation counts for each restriction level, data source, State and period are detailed in 

Table 4-3. Note that the number of days varies between restriction level and State, which 
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affects between-State and between-level comparisons. However, the number of days 

remains the same between periods for each restriction level and State. 

Table 4-3 Short-beaked echidna observation counts per restriction level by data source, state and period. 

   Restriction Level 
Data source State Period 0 1 2 3 4 

CS 

NSW 2018-2019 1460 32 79 102 0 

NSW 2020 675 12 35 58 0 

SA 2018-2019 973 127 241 - 12 

SA 2020 354 79 90 - 4 

Vic 2018-2019 542 521 459 611 192 

Vic 2020 290 205 140 260 96 

SO 

NSW 2018-2019 904 71 123 200 0 

NSW 2020 317 31 87 145 0 

SA 2018-2019 266 66 76 - 2 

SA 2020 89 61 33 - 0 

Vic 2018-2019 93 150 215 283 85 

Vic 2020 37 13 19 6 4 

 

Numbers of CS observations were not affected by different COVID restriction levels. 

SA and Vic showed highly significant differences but with negligible effect and NSW 

showed no significant difference between restriction levels (Table S4-5). SO were affected 

by restriction levels. There were highly significant differences with small to moderate 

effects, with observation numbers in Vic being most affected by COVID restrictions (χ2 (4, 

N = 3316) = 81.82, p < 0.001, Cramer's V = 0.29) followed by SA (χ2 (3, N = 1880) = 

24.04, p < 0.001, Cramer's V = 0.19) and NSW (χ2 (3, N = 2452) = 44.88, p < 0.001, 

Cramer's V = 0.15). Interestingly, although SO in Vic decreased as restrictions were 

applied, in SA and NSW the results are more mixed, with some increases apparent in 

NSW. 

4.3.3. Effects of COVID-19 restrictions on observations in protected areas 

Observation counts for the periods of each level of restrictions by data source and PA 

status show clearly the differences between CS and SO in observations in PA and non-PA 

(Table S4-6). Observation counts by source, state, year and PA IUCN category also show 

large variations (Table S4-7), with an especially large reduction for SO in "Strict Nature 

Reserves" in Vic from 147 observations in 2018-2019 down to a single observation in this 

PA category in 2020. 
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CS observations in PA IUCN categories showed no significant differences in 2020 

compared to 2018-2019 overall. However, SO showed a significant association between 

period and PA category, with small effects, when including non-PA (χ2 (7, N = 3374) = 

159.39, p < 0.001, Cramer's V = 0.21) and also when excluding non-PA (χ2 (6, N = 2138) = 

70.59, p < 0.001, Cramer's V = 0.17) (Table 4-4). 

Table 4-4 Pearson's Chi-squared test results for comparing echidna observations in IUCN PA categories during COVID 

restrictions in 2020 with observations for the same periods during 2018–2019, separated by data source groups and 

including and excluding non-PA. 

 

Data source Statistic DF p-value 

Cramer's 

V (adj.) 95% CI Sig 

Including non-PA 
CS 7.82 7 0.35 0.01 0-0  

SO 159.39 7 <0.001 0.21 0.17-0.24 *** 

Excluding non-PA 
CS 6.13 6 0.41 0.01 0-0  

SO 70.59 6 <0.001 0.17 0.12-0.21 *** 

 

When comparing proportions of observations made in all PA IUCN categories and 

non-PA between COVID restriction levels in 2020 (Figure S4-2), CS observations were 

not significantly affected (χ2 (28, N = 2297) = 46.81, p = .014, Cramer's V = 0.05). SO 

were moderately affected by COVID restriction levels, showing a highly significant 

association (χ2 (24, N = 842) = 142.07, p < 0.001, Cramer's V = 0.19).  

When non-PA are excluded from the analysis, the distribution of CS observations 

across PA IUCN categories showed no significant difference between COVID restriction 

levels (χ2 (24, N = 324) = 28.32, p = .247, Cramer's V = 0.06). Distribution of SO in PA 

showed significant differences between levels, with moderate to strong effects (χ2 (15, N = 

642) = 112.41, p < 0.001, Cramer's V = 0.23).  

4.3.3.1 Comparing effects of COVID-19 restrictions to prior years 

No significant associations were found between COVID restriction levels and observations 

inside and outside PAs for CS observations. For SO, however, there were highly 

significant associations at each level of restriction, except for level 4, which had very few 

observations in 2020, all being in non-PA (Table 4-5 and Figure S4-3).  
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Table 4-5 Chi-square test results when comparing the effects of COVID restriction levels on observations in PA categories 

and non-PA during 2020 with observations during 2018–2019 for the same periods, separated into data source groups of 

CS and SO. 

Data 
Source 

Restriction 
Level Statistic DF 

p-
value 

Cramer's 
V (adj.) 95% CI Sig 

N 
2018-19 

N 
2020 

CS 

0 11.55 7 0.12 0.03 0-0.04  2975 1319 

1 11.2 6 0.08 0.07 0-0.11  680 296 

2 6.35 7 0.5 0 0-0  779 265 

3 6.49 7 0.48 0 0-0  713 318 

4 9.4 6 0.15 0.11 0-0.15  204 100 

SO 

0 79.12 7 <0.001 0.21 0.15-0.25 *** 1263 443 

1 59.19 6 <0.001 0.37 0.25-0.45 *** 287 105 

2 44.25 6 <0.001 0.26 0.16-0.33 *** 412 139 

3 90.53 6 <0.001 0.37 0.27-0.43 *** 483 151 

4 2.5 3 0.48 0 0-0  87 4 

 

4.3.4. Effects of COVID-19 restrictions on geographic distribution of observations 

COVID-19 restriction levels varied by location over time and we examined how these 

affected the geographic distribution of our observations. Aggregated overall, mean ARIA+ 

values ranged from 3.09 ±2.66 for level 0 observations to 1.76 ±1.75 for observations 

under level 4 restrictions (Table S4-8). A Kruskal-Wallis test showed highly significant but 

negligible effect of restriction level on mean remoteness values overall, as measured by 

ARIA+ (2016) (χ2
 (4, N = 3140) = 41.95, p < 0.001, ε2 = 0.01). A post-hoc pairwise 

comparison using Dunn's test with Benjamini-Hochberg correction showed significant 

differences between level 0 (no restrictions) and all other levels. There were also 

significant differences between levels 1 to 3 and level 4 (Table S4-9). 

4.3.4.1 By Data Source 

When we analyse observations in 2020 by data source, restriction level shows a significant 

weak-moderate effect on mean geographic remoteness, as measured by ARIA+ (2016), 

indicated by the Kruskal-Wallis test results for both CS observations (χ2
 (4, N = 2300) = 

61.2, p < 0.001, ε2 = 0.03) and SO (χ2
 (4, N = 842) = 42.8, p < 0.001, ε2 = 0.05) (Table 

S4-10). CS observations showed significant differences but with a small effect between 

groups at level 0 (no restrictions) and all restriction levels, as shown by the pairwise post-

hoc Dunn test with Benjamini-Hochberg correction. SO showed more variation between 

groups, with significant differences between levels 0 and 3, also between level 1 and all 

other levels, and lastly between levels 2 and 3 (Table S4-11). 
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4.3.4.2 Within States 

Restriction level shows little effect on the geographic distribution of observations within 

each state (Figure 4-3), though differences between states are clear. New South Wales 

shows a significant but weak effect between levels (χ2
 (3, N = 1360) = 27.9, p < 0.001, ε2 = 

0.02). There are negligible effects in both South Australia (χ2
 (3, N = 710) = 7.2, p = 0.06, 

ε2 = 0.01) and Victoria (χ2
 (4, N = 1072) = 10.1, p = 0.04, ε2 = 0.01) (Table S4-12). 

Pairwise comparisons between levels for each state showed small but significant 

differences between geographic distribution at level 0 (no restrictions) and all other 

restriction levels for NSW, with the median remoteness index surprisingly higher for all 

restriction levels than for level 0. This indicates that with no COVID-19 restrictions in 

place, more observations were made in accessible locations which is perhaps an indication 

of people being more active but still in proximity to populated or accessible areas. There 

were no significant differences between levels for SA or Vic (Figure 4-3 & Table S4-13). 

 

Figure 4-3 Comparison of COVID-19 restriction levels effect on ARIA+ 2016 remoteness values by state for observations 

in 2020. Boxplots for each state's restriction levels, showing median and inter-quartile range with outliers, are shown 

over observations coloured according to restriction level as in Figure 4-2. Note that New South Wales had no period of 

level 4 restrictions and South Australia no level 3 restricted period. 

4.3.4.3 Between periods 

Comparing ARIA+ values for remoteness between the same restriction periods in prior 

years to 2020 indicates no difference in geographic distributions for all restriction levels in 

CS observations (Figure 4-4a) except for level 2 which showed a small significant 

difference (Mann–Whitney U = 11.62, n1 = 779, n2 = 265, M1 = 1.32, M2 = 0.95, P < 

0.05 two-tailed). The geographic distribution of SO was more affected by restrictions. 

ARIA+ remoteness distribution for SO (Figure 4-4b) showed significant increases at 
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restriction levels 1, 2 and 3 in 2020 compared to the same periods in the previous two 

years (Table S4-14), while at level 4 there were very few SO. 

 

Figure 4-4 Effect of COVID-19 restrictions on ARIA+ (2016) remoteness index between COVID-affected 2020 and prior 

years (2018-2019). Boxplots show median and distribution of ARIA+ values plotted over observation points coloured by 

restriction levels as in Figure 4-2. Citizen science (CS) observations in the top row show a significant difference between 

periods in level 2 only, while scientific observations (SO) in the second row show significant differences between periods 

at restriction levels 1, 2 and 3. 

To better evaluate the varied effects of restriction levels on the geographic distribution of 

observations, we then split the data by state (Figure S4-4). For CS observations, there were 

significant differences in the geographic distribution in NSW under restriction level 3 and 

in SA under levels 2 and 4, with no significant differences in Vic (Table S4-15). This is 

interesting as Victoria had the severest and longest restrictions but it appears this did not 

impact the distribution of observations. For SO, however, there are highly significant 

differences in geographic distribution in NSW under restriction levels 2 and 3, in SA under 

levels 0 and 1 and in Vic under levels 1 and 2. For summary statistics of ARIA+ by year, 

data source, state and restriction level see Table S4-16. 

4.4. DISCUSSION 

This study evaluated the impacts of COVID-related restrictions on observations of short-

beaked echidna recorded using both CS and scientific methods in three states of Australia. 

There were many differences in COVID restrictions between states which led to variations 

in recording activity, though some interesting patterns are apparent. SO were most affected 

by restrictions, with significant reductions in Victoria where the restrictions were severest, 

while CS observations showed few impacts. 
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4.4.1. COVID-19 restrictions effects on observation counts 

Somewhat surprisingly, our results show that observation counts from CS were not 

affected by COVID restrictions. While we had expected that observations would decrease, 

this did not occur, even in Victoria where restrictions were long and severe. One reason for 

this could be that echidnaCSI relies on opportunistic observations rather than formal or 

group surveys, thus the work-from-home restrictions may have contributed to more 

observations, as people remained at home and consequently explored local green spaces. 

This may have offset other negative effects, such as from reduced travelling and tourism. 

In addition, many echidna observations are in peri-urban areas where there is still abundant 

habitat, so people remaining at home have more opportunities to observe activity in their 

backyard and neighbourhood. 

Numbers of SO were significantly affected by COVID restrictions, especially in 

Victoria, where there was a large decrease in SO overall, and the numbers of daily 

observations during each restriction level also decreased. This was expected due to the 

limitations on non-essential travel and fieldwork and in Victoria the restrictions were long 

and severe. In addition, it is possible that people contributing SO live in populated centres 

and were more affected by fieldwork restrictions. The other states had fewer restrictions 

and showed few effects. Of interest is the increase in observations per day in NSW under 

restriction levels two and three. It is unclear why this might be the case, but possibly due to 

later inclusion, after processing, of observations from camera traps, which continually 

record without human presence. 

The variations apparent in Figure 4-1 are likely due to citizen scientists being more 

active at certain times of the year or in good weather (August et al., 2020; Boakes et al., 

2010), as well as variable echidna activity. Echidnas are known for seasonal variations in 

activity which occur for several reasons, including breeding, weather patterns, particularly 

temperature, prey availability and periods of torpor and hibernation, all of which show 

regional variations (Abensperg‐Traun and Boer, 1992; Brice et al., 2002; Clemente et al., 

2016; Nicol and Andersen, 2007). Interestingly, CS observations in NSW and Vic show 

similar seasonal changes with large peaks corresponding to the warmer periods of the year 

while those in SA are flatter. These variations may be due to people being more active 

outside during summer months combined with longer daylight hours, or to seasonal 

changes in echidna activity, or, most likely, to a combination of these factors. The 

scientific data show more variations and again it is difficult to determine possible causes, 
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though it is likely also due to variations in scientific fieldwork intensity and echidna 

activity. 

4.4.2. COVID-19 restrictions effects on protected area observations 

Observations from scientific sources in protected areas (PA) were significantly affected by 

COVID-19 restrictions while CS observations were not. This is interesting as we expected 

that both restrictions on personal movement and PA closures would most constrain CS 

observations but this was not the case. SO in Vic showed the biggest impact, as might be 

expected from a state with the most severe and long restrictions. This points to the 

probable classification of monitoring work as non-essential during a time of crisis, despite 

some PA being critical for ecosystem health and biodiversity preservation. In contrast, it 

appears that many CS participants remained active during periods of extreme restrictions 

and were in sufficient proximity to PA that they could still record wildlife observations.  

SO in non-PA were significantly reduced for all periods of restriction in 2020, 

including under level 0, while CS showed a slight overall decline. This may be due to an 

increased focus on scientific monitoring and management in important conservation areas 

as a result of the varied restrictions placed on organisations due to the pandemic, while 

other non-essential work was postponed (Waithaka et al., 2021). This is reflected in the 

increased proportion of observations in highly protected IUCN PA categories "Strict 

Nature Reserve" and "Wilderness Area" in 2020 compared to prior years in NSW and SA. 

In Vic, however, observations in PA were severely reduced suggesting that even work in 

important conservation areas was restricted. 

4.4.3. COVID-19 restrictions effects on geographic distribution of observations 

With no restrictions (level 0), observations were more geographically remote overall than 

under all other restriction levels as was expected, as restrictions on movement impacted 

travel. When split by data source, this pattern was also apparent for CS observations but 

not for SO. When comparing remoteness values for 2020 against 2018 – 2019 for the same 

periods determined by restriction level (Figure 4-4), CS shows little difference between 

periods while SO are more impacted. This appears to be due to significant state variations 

in observations counts and remoteness values when we compare the same periods for each 

state (Figure S4-4). The higher population density of Vic than the other states, combined 

with few remote and no very remote regions, result in a reduced range of remoteness 

values for all echidna records in Vic compared to the other states. As SO in Vic were 
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markedly reduced during restrictions in 2020, while the other states were not, the effect on 

geographic distribution is skewed upwards when combining all states data and comparing 

2020 to 2018-2019, and thus shows an apparent increase in remoteness values in 2020 

under restriction levels one to three. 

Also interesting is the lack of significant difference in Vic CS observations between 

2018-2019 and 2020 restricted level periods. Vic had the longest and strictest restrictions 

and despite this, the CS remoteness index values did not significantly change, which was 

not expected. This may be related to the regional characteristics of Vic, with many 

participants taking advantage of abundant green spaces in peri-urban and rural areas, which 

coincide with the echidna's habitat and dietary requirements. It highlights a strength of this 

CS program that it was able to continue to provide similar geographic coverage during 

varying levels of restrictions as in normal, unrestricted periods. 

The major series of bushfires in 2019-2020 in Australia affected large areas within 

the study area and severely impacted the ecosystems and animals within them, the people 

who lived there and subsequently the conservation focus of many organisations. The 

impacts of the bushfires are many and varied (Khan, 2021; Wintle et al., 2020) and require 

a separate study, but a potential effect here is a decrease in monitoring activity in some 

areas during and after the fires, as activity by conservation and research organisations, 

other than wildlife emergency rescue and recovery, was often limited. At the same time, 

the general public was prohibited from these areas, which would have curtailed CS 

monitoring there. 

We expected that the restrictions which curtailed travelling and tourism would have 

resulted in fewer CS observations, though this does not appear to be the case. Perhaps this 

is an indication of the strong interest in, and knowledge of, local areas by the participants 

as well as increased local activity due to the various restrictions, which included bans on 

international travel but offset by support for inter- and intra-state tourism. To evaluate one 

effect of restrictions on travel, comparing the numbers and locations of echidnas killed on 

roads may provide insights. Reduced travelling by car probably results in fewer animals 

being hit by vehicles, as well as fewer roadside observations. Reductions in wildlife 

roadkill due to reduced travelling have been detailed elsewhere (Driessen, 2021; Shilling et 

al., 2021) and it would be valuable to document these to further inform conservation 

management and transport planning. 

This study has shown contrasting results to other international studies evaluating the 

effects of COVID-19 restrictions on biodiversity observations using CS. In 2020, our CS 
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observation numbers were not significantly affected by the varying restriction levels, even 

under the severest restrictions, while other international studies reported declines from CS 

projects of 50-70% (Kishimoto and Kobori, 2021; Rose et al., 2020). Similarly, the 

geographical distribution of our CS observations showed little variation compared to prior 

years, in contrast to the changes to CS-based urban/rural bird observations in Italy and 

Spain (Basile et al. 2021) and in the USA (Crimmins et al., 2021), which decreased in rural 

areas but increased in urban areas. Echidnas are not as mobile nor commonly found in 

urban areas compared to birds and are more likely to be found in the peri-urban, rural and 

wilderness areas of Australia, thus it might be expected that the geographic distribution of 

these observations shows little change. 

Our findings are influenced by the classification of levels of restriction on activity 

and movement of citizens and we acknowledge the reliance on human interpretation of 

government policy announcements to classify those restriction levels. A global database 

tracking COVID restrictions discusses some of the difficulties associated with classifying 

restrictions at varying scales (Hale et al., 2021b). Our interpretation and classification of 

the announcements might be done differently, though we believe the relative rankings of 

restriction severities would remain similar.  

A strength of the echidnaCSI program is that it directly uploads observations to a 

national biodiversity repository, hence there are no delays in collating this data and it is 

immediately available for use. Scientific biodiversity monitoring is often slower to process 

and share observational data and thus it is possible that the state datasets did not reflect 

what had been recorded, but only what had been processed so far. Directly uploading data 

to a national or central repository also enables other activities to take place, such as data 

curation or classification, which can be performed both by experts and the public via 

crowdsourcing platforms. Such activities showed benefits of stay-at-home COVID-19 

restrictions in some places (Crimmins et al., 2021) and illustrate another method where 

technology-supported CS can provide important contributions to biodiversity conservation 

research while fieldwork is disrupted. These tools will also be vital for scientific studies 

where disruptions to monitoring should be prevented, such as for threatened species. 

 We expect that traditional monitoring of other species will also have been affected 

and that it is important for researchers to be aware of the potential for temporal and spatial 

data gaps when analysing data from these timeframes in future. The distributed and 

consistent activities of the participants in the echidnaCSI project have demonstrated the 
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potential value of CS to biodiversity and wildlife monitoring even under restrictions 

caused by a global pandemic. 

4.5. CONCLUSIONS 

The COVID pandemic has affected wildlife monitoring in Australia in varying ways. In 

this paper, using the iconic but cryptic short-beaked echidna as a case study, SO were most 

affected by restriction levels but the effects varied between states. Perhaps surprisingly, 

CS, through the echidnaCSI program, continued to provide numerous and widespread 

observations even during periods with severe COVID-related restrictions, while scientific 

monitoring was greatly reduced under the same restrictions. This highlights the value of 

CS, as widespread participation appears to be less affected by movement restrictions than 

scientific monitoring, which often involves remote fieldwork and fewer people. However, 

differences between CS and scientific monitoring remain, such as the lack of coverage in 

very remote regions and PA by CS. Thus, further research on alternative monitoring and 

detection methods to better cover these areas in the face of restrictions is vital to avoid 

gaps in monitoring coverage. Finally, this study illustrates the potential value of a national 

CS project for continued wildlife monitoring, even in times of crisis when other 

approaches may be more severely impacted. 
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4.7. SUPPLEMENTARY INFORMATION 

4.7.1. Methods 

4.7.1.1 Data cleaning 

Records from state biodiversity data repositories and the echidnaCSI project were selected 

for dates between 01 January 2018 and 31 December 2020. Observations from the state 

repositories were filtered to include physical sightings, such as from camera traps, direct 

observations, traps, roadkill or other similar direct evidence. Observations recorded using 

signs of presence, such as scats, diggings or other indirect evidence were omitted. 

Observations from camera traps in the NSW state dataset were restricted to 1 observation 

per location per 120s as there were some sequences where each photo was recorded as an 

observation, some containing more than 30 per sequence.  

The state systems include records from a variety of sources including CS programs 

like iNaturalist and Questagame. There are also records from wildlife rehabilitation centres 

which result from human-echidna interactions. These records have been classified as state-

CS records to better compare the contributions from CS to observations from scientific 

sources. For the purposes of this paper, the remaining data were classified as scientific 

observations (SO) as they have already been curated and assessed as acceptable for state 

repositories. 

4.7.2. Data Sources 

Datasets used in this study can be downloaded from the following sources. 

Table S4-1 Echidna observations data sources 

Source URL or DOI 

echidnaCSI https://biocollect.ala.org.au/acsa/project/index/8c3ae3b1-5342-40b4-9e72-e9820b7a9550 

NSW https://www.environment.nsw.gov.au/atlaspublicapp 

SA http://spatialwebapps.environment.sa.gov.au/naturemaps/?locale=en-

us&viewer=naturemaps 

Vic https://vba.dse.vic.gov.au/vba/index.jsp 

 

4.7.3. Supplementary Tables 

Table S4-2 State COVID-19 restriction level periods as determined through evaluation of official government releases. 

Dates are shown in YYYY-MM-DD format. 

State Level Start End 

NSW 1 2020-03-15 2020-03-18 
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2 2020-03-18 2020-04-01 

3 2020-04-01 2020-05-15 

2 2020-05-15 2020-06-01 

1 2020-06-01 2020-07-01 

SA 

1 2020-03-24 2020-03-27 

2 2020-03-27 2020-05-15 

1 2020-05-15 2020-06-29 

2 2020-11-16 2020-11-18 

4 2020-11-18 2020-11-21 

Vic 

1 2020-03-16 2020-03-26 

2 2020-03-26 2020-03-30 

3 2020-03-30 2020-05-11 

2 2020-05-11 2020-05-26 

1 2020-05-26 2020-06-22 

2 2020-06-22 2020-07-09 

3 2020-07-09 2020-08-02 

4 2020-08-02 2020-09-13 

3 2020-09-13 2020-10-26 

2 2020-10-26 2020-11-22 

1 2020-11-22 2020-12-30 

Table S4-3  IUCN Protected Area Categories (Dudley et al., 2013). 

ID Category Description 

Ia Strict Nature 
Reserve 

Category Ia are strictly protected areas set aside to protect biodiversity and 

also possibly geological/geomorphical features, where human visitation, use 

and impacts are strictly controlled and limited to ensure protection of the 

conservation values. Such protected areas can serve as indispensable 

reference areas for scientific research and monitoring.  

Ib Wilderness Area Category Ib protected areas are usually large unmodified or slightly modified 

areas, retaining their natural character and influence without permanent or 

significant human habitation, which are protected and managed so as to 

preserve their natural condition. 

II National Park Category II protected areas are large natural or near natural areas set aside to 

protect large-scale ecological processes, along with the complement of species 

and ecosystems characteristic of the area, which also provide a foundation for 

environmentally and culturally compatible, spiritual, scientific, educational, 

recreational, and visitor opportunities. 

III Natural Monument 
or Feature 

Category III protected areas are set aside to protect a specific natural 

monument, which can be a landform, sea mount, submarine cavern, geological 

feature such as a cave or even a living feature such as an ancient grove. They 

are generally quite small protected areas and often have high visitor value. 
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IV Habitat/Species 
Management Area 

Category IV protected areas aim to protect particular species or habitats and 

management reflects this priority. Many Category IV protected areas will need 

regular, active interventions to address the requirements of particular species 

or to maintain habitats, but this is not a requirement of the category. 

V Protected 
Landscape/ 
Seascape 

A protected area where the interaction of people and nature over time has 

produced an area of distinct character with significant, ecological, biological, 

cultural and scenic value: and where safeguarding the integrity of this 

interaction is vital to protecting and sustaining the area and its associated 

nature conservation and other values. 

VI Protected area with 
sustainable use of 
natural resources 

Category VI protected areas conserve ecosystems and habitats together with 

associated cultural values and traditional natural resource management 

systems. They are generally large, with most of the area in a natural condition, 

where a proportion is under sustainable natural resource management and 

where low-level non-industrial use of natural resources compatible with nature 

conservation is seen as one of the main aims of the area. 

Table S4-4 Observation totals and average per day during 2020 and 2018-2019 by COVID-19 restriction levels, data source 

and State. 

   Observation Counts Mean Observations / Day 

   CS SO CS SO 

State Level Days 2018-19 2020 2018-19 2020 2018-19 2020 2018-19 2020 

NSW 

0 249 1460 654 904 315 2.93 2.71 1.82 1.27 

1 33 32 12 71 31 0.48 0.36 1.08 0.94 

2 40 79 56 123 89 0.99 0.88 1.54 2.17 

3 44 102 58 200 145 1.16 1.32 2.27 3.3 

SA 

0 264 973 354 266 89 1.84 1.34 0.50 0.34 

1 48 127 79 66 61 1.32 1.65 0.69 1.27 

2 51 241 90 76 33 2.36 1.76 0.75 0.65 

4 3 12 4 2 - 2 1.33 0.33 0 

Vic 

0 28 542 282 93 37 9.68 10.36 1.66 1.32 

1 93 521 198 150 13 2.8 2.2 0.81 0.14 

2 76 459 155 215 19 3.02 1.84 1.41 0.25 

3 127 611 260 283 6 2.41 2.05 1.11 0.05 

4 42 192 96 85 4 2.29 2.29 1.01 0.1 

Table S4-5 Pearson's Chi-squared test results for comparing echidna observations during COVID-19 restrictions in 2020 

with observations for the same periods of restrictions during 2018 and 2019, separated into State and data source of 

Citizen Science (CS) and Scientific Observations (SO). 

Data 
Source 

State Statistic DF p-value Cramer's V 
(adj.) 

95 % CI Sig 

CS 

NSW 1.97 3 0.58 0 0-0  

SA 12.27 3 0.01 0.07 0-0.11 ** 

Vic 24.51 4 < 0.001 0.08 0.04-0.11 *** 
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SO 

NSW 44.88 3 < 0.001 0.15 0.1-0.19 *** 

SA 24.04 3 < 0.001 0.19 0.1-0.26 *** 

Vic 81.82 4 < 0.001 0.29 0.22-0.35 *** 

Table S4-6 Observation counts in PA and non-PA for each restricted level period in 2020 and corresponding period totals 

for 2018-2019. 

  2018-2019 2020 

Source PA 0 1 2 3 4 0 1 2 3 4 

CS 
Not PA 2595 601 663 613 180 1152 242 227 276 76 

PA 380 79 116 100 24 167 54 38 42 24 

SO 
Not PA 429 143 184 227 53 122 26 30 18 4 

PA 834 144 230 256 34 321 79 109 133 0 

Table S4-7 Observations counts in protected and non-protected areas by data source, State and period. 

Source State Period IA IB II IV V III NAS VI Not PA 

CS 

NSW 
2018-2019 9 4 112 16 3 0 0 0 1529 

2020 2 6 45 8 2 2 1 0 714 

SA 
2018-2019 2 2 82 4 0 180 0 15 1068 

2020 5 0 35 1 0 66 0 8 412 

Vic 
2018-2019 38 0 146 35 7 39 0 5 2055 

2020 17 0 73 15 1 29 0 9 847 

SO 

NSW 
2018-2019 89 40 730 21 2 2 2 6 406 

2020 62 30 374 5 0 0 0 0 109 

SA 
2018-2019 7 1 219 6 0 39 0 53 85 

2020 84 0 5 0 0 54 0 11 29 

Vic 
2018-2019 147 0 71 52 0 4 0 7 545 

2020 1 0 9 7 0 0 0 0 62 

Table S4-8 ARIA+ statistics by COVID-19 restriction level for all observations from 2020. 

Level Mean Median SD Max IQR N 

0 3.09 2.5 2.66 13.92 3.7 1731 

1 2.93 1.92 2.78 7.17 5.95 394 

2 2.8 1.88 2.8 13.31 4.52 442 

3 2.35 2.02 1.98 8.51 2.43 469 

4 1.76 1.05 1.75 8.31 2.14 104 

Table S4-9 Statistical results from post-hoc pairwise comparison of ARIA+ data by COVID-19 restriction level for 2020 

using Dunn's all-pairs test with Benjamini-Hochberg correction. 

group1 

level 

group2 

level 

Dunn statistic p.value sig 

0 1 2.12 0.05 * 

0 2 3.38 0.003 *** 

0 3 4.34 < 0.001 *** 

0 4 4.71 < 0.001 *** 
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1 2 0.88 0.42  

1 3 1.58 0.14  

1 4 3.24 0.003 *** 

2 3 0.70 0.48  

2 4 2.71 0.01 ** 

3 4 2.30 0.04 * 

Table S4-10 Kruskal-Wallis rank sum test for ARIA+ distribution by data source with epsilon2 rank effect size and 95% 

confidence levels. 

Data Source Statistic DF p-value effect size 95 % CI 

CS 61.2 4 < 0.001 0.03 0.01 – 0.04 

SO 42.8 4 < 0.001 0.05 0.03 – 0.08 

Table S4-11 Statistical results from post-hoc pairwise comparison of ARIA+ data by data source and level using Dunn's all-

pairs test with Benjamini-Hochberg correction. 

Data Source Level A Level B Dunn 

Statistic 

p-value Sig 

CS 

0 1 4.37 < 0.001 *** 

0 2 5.40 < 0.001 *** 

0 3 5.63 < 0.001 *** 

0 4 2.98 0.01 ** 

1 2 0.74 0.76  

1 3 0.84 0.76  

1 4 0.22 0.92  

2 3 0.08 0.93  

2 4 0.31 0.92  

3 4 0.37 0.92  

SO 

0 1 4.38 < 0.001 *** 

0 2 0.85 0.40  

0 3 3.28 < 0.001 *** 

0 4 1.93 0.07  

1 2 3.05 < 0.001 *** 

1 3 6.18 < 0.001 *** 

1 4 2.83 0.01 ** 

2 3 3.35 < 0.001 *** 

2 4 2.07 0.05  

3 4 1.3 0.22  

Table S4-12 Kruskal-Wallis rank sum test for ARIA+ distribution by restriction level and State with epsilon2 rank effect size 

and 95% confidence levels. 

State Statistic DF p-value ε2 Effect 95% conf. 

NSW 27.9 3 < 0.001 0.02 0.01 – 0.04 

SA 7.2 3 0.06 0.01 0 – 0.03 

Vic 10.1 4 0.04 0.01 0 – 0.02 
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Table S4-13 Statistical results from post-hoc pairwise comparison of ARIA+ data by State and COVID-19 restriction level 

using Dunn's all-pairs test with FDR correction. 

State Level 1 Level 2 Dunn's Statistic p-value Sig. 

NSW 

0 1 3.31 < 0.001 *** 

0 2 2.68 0.01 ** 

0 3 3.90 < 0.001 *** 

1 2 1.60 0.17  

1 3 1.28 0.24  

2 3 0.57 0.57  

SA 

0 1 1.89 0.18  

0 2 0.79 0.43  

0 4 1.48 0.21  

1 2 2.14 0.18  

1 4 1.11 0.32  

2 4 1.63 0.21  

Vic 

0 1 1.08 0.38  

0 2 2.13 0.11  

0 3 0.38 0.70  

0 4 1.15 0.38  

1 2 1.03 0.38  

1 3 1.38 0.33  

1 4 1.87 0.15  

2 3 2.39 0.08  

2 4 2.65 0.08  

3 4 0.85 0.44  

Table S4-14 Mann–Whitney U test results from comparing ARIA+ remoteness values for citizen science (CS) and scientific 

observations (SO) between COVID-affected 2020 and prior years (2018 – 2019) with r (rank biserial) for effect size. 

Data 

source Level 

N (2018–

19) 

N 

(2020) 

Median 

2018-19 

Median 

2020 

loge U 

Statistic p-val sig 

r (rank 

biserial) 

95 % conf. 

levels 

CS 

0 2975 1319 1.86 1.98 14.46 0.19  -0.02 -0.06 – 0.01 

1 680 296 1.24 1.21 11.49 0.45  -0.03 -0.10 – 0.04 

2 779 265 1.32 0.95 11.62 0.04 * 0.08 0.00 – 0.15 

3 713 318 1.30 1.31 11.62 0.56  -0.02 -0.09 – 0.05 

4 204 100 1.70 1.03 9.29 0.42  0.06 -0.09 – 0.18 

SO 

0 1263 443 6.12 4.46 12.58 0.17  0.04 -0.018 – 0.12 

1 287 105 1.38 7.17 9.23 < 0.001 *** -0.32 -0.43 – -0.19 

2 414 139 2.00 5.28 9.92 < 0.001 *** -0.30 -0.40 – -0.21 

3 483 151 2.78 3.94 10.09 < 0.001 *** -0.34 -0.41 – -0.24 

4 87 4 2.15 2.11 5.15 0.98  -0.01 -0.44 – 0.58 
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Table S4-15 Mann–Whitney U test results from comparing ARIA+ remoteness values by State for citizen science (CS) and 

scientific observations (SO) between COVID-affected 2020 and prior years (2018 – 2019) with r (rank biserial) for effect 

size. 

State 

Data 

source Level 

N (2018 

- 19) 

N 

(2020) 

Median 

2018-19 

Median 

2020 

U 

Statistic p-val sig 

r (rank 

biserial) 

95 % conf. 

levels 

NSW 

CS 

0 1460 675 1.88 2.24 13 < 0.001 *** -0.11 -0.17 – -0.06 

1 32 12 2.61 3.65 4.87 0.1  -0.32 -0.69 – -0.03 

2 79 35 1.99 2.01 7.34 0.35  0.11 -0.12 – 0.34 

3 102 58 1.71 2.04 7.76 0.03 ** -0.21 -0.38 – -0.02 

SO 

0 904 317 4.82 4.24 11.9 0.52  0.02 -0.05 – 0.08 

1 71 31 6.10 3.78 7.08 0.51  0.08 -0.13 – 0.26 

2 123 87 2.97 4.73 8.3 < 0.001 *** -0.25 -0.38 – -0.06 

3 200 145 2.88 4.08 9.25 < 0.001 *** -0.28 -0.39 – -0.18 

SA 

 

CS 

0 973 354 4.31 5.16 12.05 0.89  -0 -0.06 – 0.07 

1 127 79 2.57 2.26 8.49 0.73  -0.03 -0.2 – 0.13 

2 241 90 2.30 1.15 9.42 0.05 * 0.14 0 – 0.25 

4 12 4 0.70 7.17 1.61 0.02 ** -0.79 -1 – -0.4 

SO 

0 266 89 9.51 7.17 9.78 < 0.001 *** 0.49 0.37 – 0.58 

1 66 61 9.78 7.17 8.12 < 0.001 *** 0.67 0.47 – 0.82 

2 76 33 8.42 7.17 7.27 0.23  0.14 -0.09 – 0.34 

Vic 

CS 

0 542 290 1.10 1.04 11.23 0.32  -0.04 -0.12 – 0.03 

1 521 205 1.15 1.00 10.91 0.57  0.03 -0.05 – 0.12 

2 459 140 1.15 0.73 10.47 0.08  0.1 0.01 – 0.2 

3 611 260 1.27 1.04 11.31 0.48  0.03 -0.05 – 0.11 

4 192 96 1.75 1.02 9.23 0.13  0.11 -0.03 – 0.25 

SO  

0 93 37 1.08 1.19 7.45 0.98  0 -0.22 – 0.24 

1 150 13 1.06 0.00 7.2 0.02 ** 0.37 0.11 – 0.65 

2 215 19 1.19 0.00 7.89 0.03 ** 0.3 -0.02 – 0.59 

3 283 6 2.78 0.81 7.05 0.13  0.36 -0.12 – 0.71 

4 85 4 1.90 2.11 5.1 0.92  -0.03 -0.48 – 0.46 
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Table S4-16 ARIA+ (2016) summary statistics by year, data source and State. 

Year Source State Level mean med sd max IQR n 

2018 

CS 

New South Wales 0 1.9 1.81 1.45 9.5 1.92 899 

South Australia 0 4.69 6.8 3.55 15 6.28 838 

Victoria 0 1.34 1.14 1.21 7.27 1.85 1266 

State-CS 
New South Wales 0 0.93 0.61 1.03 6.1 1.22 684 

Victoria 0 1.03 0.86 1.1 5.66 1.23 115 

SO 

New South Wales 0 3.13 2.92 2.13 13.49 2.89 520 

South Australia 0 7.86 9.78 4.1 12.98 4.11 117 

Victoria 0 1.71 1.13 1.72 6.85 2.21 411 

2019 

CS 

New South Wales 0 2.3 2.12 1.76 13.04 2.02 774 

South Australia 0 2.91 1.05 3.27 15 4.9 515 

Victoria 0 1.38 1.31 1.14 5.93 1.84 1059 

State-CS 
New South Wales 0 0.95 0.64 0.95 5.96 1.03 265 

Victoria 0 1.07 0.74 1.1 4.78 1.28 73 

SO 

New South Wales 0 4.7 6.4 2.52 11.82 4.07 778 

South Australia 0 7.98 9.35 3.55 14.63 1.83 293 

Victoria 0 2.05 1.35 1.83 6.81 2.24 415 

2020 

CS 

New South Wales 

0 2.35 2.26 1.74 8.92 2.25 654 

1 3.11 3.65 0.92 3.67 0.91 12 

2 2.28 1.84 2.34 13.09 2.09 56 

3 2.56 2.04 2.1 8.51 1.51 58 

South Australia 

0 4.18 5.16 3.54 13.2 6.86 354 

1 3.79 2.26 3.23 7.17 6.61 79 

2 2.99 1.15 2.95 8.58 6.78 90 

4 6.75 7.17 1.68 8.31 0.99 4 

Victoria 

0 1.29 1.03 1.12 7.21 1.56 282 

1 1.32 1 1.31 5.66 1.78 198 

2 1.13 0.78 1.11 5 1.72 155 

3 1.41 1.04 1.31 5.75 1.87 260 

4 1.54 1.02 1.44 5.98 2.21 96 

State-CS Victoria 0 0.06 0.06 0.08 0.11 0.06 2 

SO 

New South Wales 

0 4.31 4.22 2.31 13.92 3.93 315 

1 4.28 3.78 2.13 6.64 3.81 31 

2 4.45 4.79 2.33 13.31 3.85 89 

3 3.99 4.08 1.82 6.63 3.06 145 

South Australia 

0 6.34 7.17 2.59 11.44 0 89 

1 6.83 7.17 1.18 7.17 0 61 

2 7.17 7.17 2.63 12.72 0 33 

Victoria 

0 1.25 1.19 1.09 3.65 2.09 37 

1 0.56 0 1.27 4.34 0 13 

2 1.63 0 2.71 6.69 1.1 19 

3 1.43 0.81 2.12 5.6 1.19 6 

4 1.95 2.11 1.29 3.05 2.03 4 
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a 

 

b 

 

Figure S4-1 Protected areas distribution by IUCN category showing differences between 2020 and prior years, separated 

by data source. a. excluding non-protected areas and b. including non-protected areas. 

 

Figure S4-2 Protected areas observation counts distributions over COVID restriction level, compared by data source and 

IUCN PA category, including non-protected areas, for 2020 only. 

 

Figure S4-3 Comparing the distribution of observations between 2020 and 2018-2019 in protected and non-protected 

areas by IUCN category for each COVID-19 restriction level. Citizen Science (CS) observations are in the top row and 

scientific observations (SO) are in the bottom row. 

 



 

 145 

New South Wales 

 
South Australia 

 
Victoria 

 
Figure S4-4 Comparison of geographic distribution of observations (using the ARIA+ 2016 Accessibility Index) between 

2020 and 2018-2019 for each restriction level, broken down by State and data source. Boxplots show median and 

distribution of ARIA+ values plotted over observation points coloured by restriction levels (as in Figure 4-2). 
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Currently little is known about most of the world's biodiversity, yet this knowledge is key 

to understanding our environment and how it is changing over time (Wilson, 2000). 

Monitoring provides the data that allows us to gain this understanding by sampling the 

environment and recording physical and biological phenomena of interest, repeating this 

sampling at intervals in order to detect changes and patterns (Lindenmayer & Likens, 

2010). There are many challenges to performing this effectively (Lindenmayer et al., 

2012). Monitoring using traditional field methods is often resource-intensive and limited in 

geographic and temporal extent and frequency (Amano et al., 2016; Neate-Clegg et al., 

2020; Wal et al., 2015), thus other techniques are being sought to supplement these. 

Citizen science has been increasingly used to provide wider spatial and temporal scales for 

wildlife monitoring and has been used throughout the world for birds (Sullivan et al., 

2014), mammals (Parsons et al., 2018; Robbins et al., 2020), amphibians (Rowley et al., 

2019), insects (Domroese & Johnson, 2017; Palmer et al., 2017; Sumner et al., 2019) and 

marine life (Edgar et al., 2020; Fulton et al., 2018; Simoniello et al., 2019). However, some 

reticence about the quality of CS monitoring remains, and there is scope for it to be 

improved, as it can suffer from errors, biases and other data deficiencies (Boakes et al., 

2016; Isaac & Pocock, 2015). 

The main aim of this thesis was to investigate and develop methods to enhance data 

collected by citizen scientists to improve wildlife monitoring. I developed two new mobile 

phone software apps with enhanced functions that were used in two case studies to record 

observations of iconic Australian mammal species. I examined how these data compare to 

that from traditional wildlife monitoring stored in national and regional biodiversity 

repositories and how aspects of biases from CS and traditional monitoring compared, 

under both common and exceptional conditions.  

By automatically recording methodological and observational metadata, a better 

understanding of observer effort and observational precision can be obtained. Explicit and 

accurate observer effort can enhance species modelling, while recording metadata about 

observations allows for better evaluation of data quality when selecting records for 

proposed future uses. Improving our understanding of data biases and deficiencies in both 

CS and conventional monitoring can assist researchers in deciding which monitoring 

methods are suitable for their research and how these methods may be used to complement 

each other, where appropriate. 
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5.1. KEY FINDINGS AND OUTCOMES 

I investigated and demonstrated methods of improving data from CS monitoring through 

the automatic recording of methodological and observational metadata including species 

observation location and time, observer search effort and path, and observation location 

accuracy (Stenhouse et al., 2020). A custom mobile app was developed and tested in a case 

study recording CS observations of koala in South Australia. This was the first time that 

this set of metadata had been recorded for an Australian CS project and this study provided 

a number of important insights. It showed that accurate data on observer search effort and 

search path could be recorded easily and transparently. This is key data for species 

distribution and abundance modelling as it enables improved inference of species absence 

by recording the distribution and duration of searches more accurately. Additionally, 

recording search path may improve management of CS monitoring by enabling the 

assessment of sampling bias and monitoring coverage. Recording search path provides 

evidence of where searches have occurred, even when no observations are recorded. 

Recording a measure of observation location accuracy also proved valuable by enabling 

better assessment of data quality, which is beneficial when determining fitness-for-use in 

future analyses. 

Other CS projects have attempted to improve data quality by determining observer 

skill, species detectability and species' absence in different ways. A common approach for 

multi-species surveys is to check that a set of observations contains all species detected, so 

that absences can be inferred from a list of potential species possible in the same area 

(Sullivan et al., 2014; Szabo et al., 2010). It is also common, in addition, to specify a 

survey protocol, such as a specific area search, to assist with later definition of total search 

area (Birdlife Australia, 2021; British Trust for Ornithology, 2010). Adding the explicit 

and automatic recording of search path to this metadata can further improve data quality 

even for unskilled observers, as well as other uses as described above. The eBird mobile 

app has added this feature after the study in chapter two took place (Cornell Lab of 

Ornithology, 2017), confirming the value of this approach. 

I provided insights and recommendations for others who are considering developing 

custom software for CS biodiversity monitoring. Limitations of the koala app were 

discussed with suggestions for possible solutions. Improved location recording would be 

possible using built-in checks, improved user guidance, and a small change to the process 
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workflow which would be transparent to the participant. Enhanced user feedback which 

may reduce potential errors and improve participant motivation was also recommended.  

I developed a new, purpose-designed CS mobile app for recording accurate 

observational data on short-beaked echidna, including guidance for the collection of 

physical samples (Stenhouse, Perry, Grützner, Lewis, et al., 2021). Continued and ongoing 

use over four years from 2017 through 2021 has resulted in over ten thousand echidna 

sightings being submitted by more than three thousand participants. This approximately 

doubled the observations recorded over the same period in the Atlas of Living Australia, 

thus greatly increasing the spatial and temporal intensity of sighting records.  

Differences in spatial coverage were shown between these CS observations and those 

in existing data repositories in the Atlas of Living Australia and Australian state 

biodiversity databases, especially in relation to observations in protected areas and to an 

index of remoteness and accessibility. Coverage of CS records was more limited in some 

categories of protected areas than the other data sources. However, numbers of 

observations in all remote areas were greater than the reference scientific data, except for 

very remote regions. This provided insight into the spatial biases in these observation 

datasets and shows that CS provides good coverage in most areas. This is important 

information for Australian conservation management as previous studies demonstrate 

spatial biases according to human population density (Piccolo et al., 2020), but have not 

examined CS and traditional monitoring biases at continental scale in relation to categories 

of protected areas and non-protected areas, nor in relation to accessibility and remoteness. 

Comparing CS to traditional monitoring biases should assist conservation planning by 

demonstrating where each type of monitoring is most prevalent, thereby making more 

explicit where gaps in coverage occur. This information will allow more effective 

prioritisation of future CS and traditional surveying effort. 

Although not included in this thesis, guidance provided by the mobile app around the 

collection and submission of scat samples resulted in citizen scientists contributing 

physical samples from across Australia. One hundred and fifty nine of these scats, with 

metadata submitted using the echidnaCSI app, were combined with samples from captive 

programs to discover new insights about the diet and gut microbiome of this species using 

a number of genetic analysis techniques (Perry, West, et al., 2022). 

This thesis provided important information for conservation researchers and 

practitioners by demonstrating the resilience of CS monitoring to restrictions on 

community activities and movement caused by the COVID-19 pandemic (Stenhouse, 
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Perry, Grützner, Rismiller, et al., 2022). There were fewer impacts on CS wildlife 

observations compared to scientific observations. CS observation counts remained robust, 

even under strict restriction levels, while observations from traditional monitoring in state 

biodiversity repositories (SO) were significantly reduced. In protected and non-protected 

areas, CS observations were not impacted by restrictions but SO were significantly 

affected, especially under severe restrictions. SO were concentrated even more than usual 

in PA, and were severely reduced in non-PA. There were significant impacts on the 

geographic distribution of SO but with great variation between states. The geographic 

remoteness of CS observations did not change significantly even under severe restrictions 

as occurred in the state of Victoria. These findings contrast with some international studies 

where CS observations were significantly reduced by pandemic-related restrictions on 

community activity and geographical distribution changed. This is important information 

for other researchers, and leads to greater confidence that CS monitoring in Australia may 

reduce data continuity problems, even during periods of societal disruption which can 

disturb other approaches. 

5.2. SIGNIFICANCE OF THIS RESEARCH 

Findings from this thesis demonstrate a number of ways to improve CS wildlife 

monitoring, how some biases compare between CS and traditional monitoring and, lastly, 

how CS monitoring is more robust to some disruptions than traditional monitoring 

methods.  

Automatically recording CS search effort and search path in a CS program was a 

novel method and demonstrated the value of transparently recording metadata. Accurate 

observer effort is important for improved species population abundance and distribution 

modelling and recording observer search effort accurately was shown to be feasible and 

useful. Recording search paths offers a valuable method of recording spatial and temporal 

components of search effort, improving on simple records of species observations and time 

taken, especially when no observations are made. These metadata also increase the 

contextualisation of the observations (Brenton et al., 2018) and thus increase their value by 

allowing more informed evaluation of suitability for future analyses. 

CS search paths provide key data for new methods of managing CS monitoring by 

clearly indicating what locations have not yet been searched as well as which locations 

have been searched, both with and without observations being recorded. This would allow 

both guided and self-directed monitoring improvements. Guided improvements are those 
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provided by managers of CS monitoring efforts who may direct CS participants to areas 

where monitoring is desired, such as to repeat surveys in a previously surveyed area or to 

areas not yet surveyed. Self-directed monitoring improvements may occur when CS 

participants can select survey areas themselves using the extra information provided by 

prior CS search paths and times. Both successful and unsuccessful (i.e. those where no 

observations were recorded) searches provide important information to support these 

improvements. Additionally, fast access to this data is also required, highlighting the value 

of digital collection and direct uploading to a biodiversity repository. 

The development and use of an easy-to-use mobile app available on both major 

mobile platforms, integrated with the national biodiversity repository and combined with 

continued engagement through a variety of means, ensured elevated awareness and wide 

participation (Perry, Stenhouse, et al., 2022). This enabled the collection of numerous and 

widespread CS observations of an iconic Australian monotreme, the short-beaked echidna 

(Stenhouse, Perry, Grützner, Lewis, et al., 2021) and greatly increased the spatial and 

temporal intensity of observations for this species. When combined with existing 

observations in national and state biodiversity repositories, these provide an important 

baseline for future population abundance, distribution and trends analyses, with higher 

accuracy than previously available. As the current short-beaked echidna population 

estimate is very broad at between 5 – 50 million (Aplin et al., 2015), these data will 

provide important input into future assessments, at both national and regional levels. This 

data may also be useful for more precise estimates and understanding of environmental 

preferences, especially when combined with other information such as increased 

knowledge of diet variability (Perry, West, et al., In press). The geographic similarities and 

differences of these CS contributions to scientific monitoring was demonstrated. This is of 

value for conservation management by indicating areas where scientific monitoring could 

be best utilised, for example in less accessible regions and highly protected areas, and 

where CS monitoring is providing sufficient coverage. Broader coverage may also allow 

particular areas of interest to be identified. For example, if unusual patterns are evident 

then more structured, traditional monitoring could be used to better understand the 

underlying drivers. CS monitoring gaps could also potentially be filled by CS using other 

motivational techniques, such as gamification, by informing participants where gaps exist 

or by targeting participant recruitment in less-covered regions.  

This thesis also demonstrated that CS can continue to provide accurate and 

widespread contributions to biodiversity monitoring despite major community disruptions, 
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even as traditional monitoring methods are being curtailed. This is valuable knowledge for 

conservation management and planning, as continuity of monitoring is essential to avoid 

data gaps which may limit future data analyses and thus highlights another valuable 

contribution from CS. Also significant was how varying regional community movement 

restrictions changed where traditional monitoring occurred, which is essential information 

for future analyses. These results contrasted to similar international studies which showed 

both dramatic reductions in observation numbers (Kishimoto & Kobori, 2021; Rose et al., 

2020) and significant changes to geographic distributions (Basile et al., 2021; Crimmins et 

al., 2021). This highlights the regional differences in response to the pandemic and is 

critical to understand as communities respond to continued disruptions from the pandemic 

and increasing disturbances due to climate change, biodiversity loss and other major 

challenges. 

5.3. FUTURE RESEARCH AND RECOMMENDATIONS 

The following are areas of future research and recommendations for future development 

that emerge from the work presented in this thesis. 

Further enhancements to mobile apps have been identified that could improve CS 

monitoring. These include: 1. enhancing integration with backend biodiversity repositories 

to improve participant motivation; 2. improving in-app checks to ensure participants are 

following required protocols, even when requirements are few, e.g. ensuring location 

tracking is activated on the device if this is required would reduce data losses through lack 

of understanding of requirements; 3. increasing automatically recorded metadata using 

other sensors available on mobile phones. For example, recording the compass heading at 

the time of taking an observation photo might better flag possible duplicate sightings 

during bioblitz-style events. This data could be used in phenological studies by using novel 

software to guide participants to both the correct location for making an observation as 

well as ensuring the correct orientation of the device when recording a new observation. 

Combining this with scheduled and automated reminders would allow more structured 

phenological monitoring to take place by providing technological support for repeated 

monitoring at fixed locations. 

There is further potential for new tools to provide more rigour to the essentially 

unstructured and opportunistic methods that are often used to record species observations. 

Software tools to both define and follow guided monitoring paths at specified schedules 

would support more systematic CS monitoring. These require further investigation and 
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trialling to gain more understanding on how participants and practitioners use them and to 

assess the results. Structured and semi-structured transects for CS have also recently been 

proposed by others (Callaghan et al., 2019; Kelling et al., 2019; McDonough MacKenzie et 

al., 2019) with the objective of providing extra assistance and scientific structure to 

previously unstructured CS monitoring, thereby improving the usability of these data for 

scientific purposes.  

The lack of CS and traditional monitoring coverage in less accessible, remote and 

very remote areas of Australia remains problematic as these cover large portions of 

Australia. Finding effective means of monitoring these areas needs further investigation. 

Widening participation to include a variety of groups, especially local residents, would 

seem a priority, and this surely points to increased involvement of indigenous stakeholders. 

As discussed in Chapter three, scientific monitoring efforts could also usefully be 

concentrated in these remote regions, as well as in highly protected areas.  

I recommend the development of software to build customised front-ends for apps 

and website portals which interact directly with national and international biodiversity 

repositories, such as the ALA or iNaturalist. Customisation and improved interfaces to 

allow selection of survey types, selection of order and presentation style of data collection 

items and languages used, custom branding and identity – all these may strengthen user 

motivation and retention through better localisation. This would allow community groups 

to more easily satisfy their local requirements and increase participation through local 

branding, while leveraging national and international infrastructure such as the ALA or 

iNaturalist which already provide a large range of useful features such as automatic data 

quality checks and data sharing facilities. 

5.4. CONCLUSIONS 

This thesis shows improvements to data collected in CS wildlife monitoring made possible 

by more effective application of mobile technology and purpose designed, easy-to-use 

software. Accurate and transparent recording of data and metadata combined with fast 

uploading to the national repository, where it is immediately available for curation and use, 

maximises the value of CS contributions to biodiversity conservation. These data, 

combined with novel and accurate metadata such as observer effort and search paths, 

provide new insights and potentially new tools by allowing more efficient directed and/or 

self-guided monitoring, through showing where has already been searched. In addition, 
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these provide more comprehensive and representative data for better analyses for species 

monitoring and assessment. 

Widespread participation has provided significantly improved monitoring coverage 

of an iconic and cryptic species in many regions of Australia and demonstrates the 

complementary nature of CS to other more traditional sources of monitoring data. CS 

continued to provide consistent monitoring data despite the varied restrictions due to 

COVID-19 and shows that CS can be resilient in disrupted times, which will become even 

more important as climate change and other anthropogenic disturbances increase their 

effects on our natural environments. 
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