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Abstract

Compared with the conventional approach of controlling autonomous systems indi-

vidually, building up a cooperative multi-agent structure is more robust and efficient

for both research and industrial purposes. Among the many subbranches of multi-

agent systems, formation control has been a popular research direction due to its close

connection with complex missions such as spacecraft clustering and intelligent trans-

portation. Hence, this thesis focuses on providing new robust formation control algo-

rithms for first-order, second-order and mixed-order nonlinear multi-agent systems to

construct and maintain stable system structure in practical scenarios.

System uncertainties and external disturbances are commonly seen factors that could

negatively affect the formation tracking precision. Among the many popular tools of

uncertainty estimation, the implementation of approaches including neural network

adaptive estimation and observer-based approximation are discussed in this thesis.

Regarding the neural-based approximation process, different neural network struc-

tures including Chebyshev neural network, radial basis function neural network, two-

layer artificial neural network and three-layer artificial neural network are tested and

implemented. The merits and drawbacks of each network design in the field of control

is then analysed. Apart from that, this thesis also offers detailed comparison between

the cooperative tuning approach and the observer-based tuning approach regarding

the neural network structure to find their corresponding applicable scenarios.

To ensure the safety of the formation control algorithms, the issues of obstacle avoid-

ance and inter-agent collision avoidance are both considered. Although the method of

constructing artificial potential fields is a popular approach in both the field of path

planning and motion control, few have discussed the effect of the inter-agent commu-

nication on the collision avoidance scheme.

For the obstacle avoiding scenarios, the passive correcting behaviour of individual

agent is defined and investigated. A new algorithm is then introduced to modify

the reference of individual agents to act as the mitigation. The issue of insufficient

information accessibility is then discussed for multi-agent systems with a static and

uncompleted communication topology. A distance-based communication topology
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Abstract

is proposed to create necessary information exchange channel for unconnected agent

pairs that are close enough.

The actuator saturation issue is also considered for both first-order multi-agent systems

and second-order multi-agent systems to increase the practicality of the formation con-

trol schemes. Apart from restricting the amplitudes of the control input, the effect of

the input coupling phenomenon is investigated. The oscillation of states brought by

the coupled and saturated control input is then summarised as the reverse effect. To

attenuate the state oscillation, the methods of developing control input regulation al-

gorithms and employing auxiliary compensator are discussed and validated.

The last technical problem to discuss is the hierarchical control scheme. The issue of

how to decouple the inter-agent communication and the motion dynamics is discussed

for both unified-order and mixed-order multi-agent systems. By using a hierarchi-

cal formation control structure, the inter-agent communication process is considered

based on a group of virtual agents with ideal characteristics, which can significantly

reduce the complexity of the system design. Adaptive hierarchical control schemes are

then proposed and validated for both unified-order and mixed-order multi-agent sys-

tems through the examples of a multi-drone system and a multiple omni-directional

robot system, respectively.
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Chapter 1

Introduction

CONSTRUCTING a multi-agent structure to form the collaboration

among a cluster of intelligent robots is a promising choice to increase

the capability and impact of each agent. It is undeniable that the robot clus-

ter needs to move around in certain formation while carrying out different

tasks. Hence, it is necessary to develop adaptive formation control algo-

rithms to enhance the robustness of the multi-agent structure while moving.

This chapter briefly introduces the research background, literature review,

research questions in the field of formation control and the thesis outline.
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Chapter 1 Introduction

1.1 Research background

Compared with the conventional approach of controlling autonomous systems indi-

vidually, building up a cooperative multi-agent structure (Peydayesh and Arefi 2021,

Shi and Yan 2020, Sun et al. 2021b, Yang et al. 2022) is more robust and efficient for

both research (Olfati-Saber and Murray 2004) and industrial (Sharma et al. 2021) pur-

poses. To illustrate the concept of multi-agent systems (MASs), it is necessary to first

understand the concept of an agent.

In the field of artificial intelligence and electrical engineering (Wooldridge 2009), an

agent is defined to have three important features, which are the ability to sense, decide

and actuate:

1. Sense: An agent should be able to sense its local surroundings and localise itself.

2. Decide: An agent should be able to make self decisions and control its motion.

3. Actuate: An agent should be equipped with actuators that can allow itself to

move around or interact with the local surroundings.

Decades ago, the concept of the multi-agent structure was developed based on the ob-

servations on the animal behaviours (Reynolds 1987). Animals usually choose to form

up a team to conquer tasks far beyond their individual capabilities. Such observations

then offer inspiration to the area of robotics and control engineering and further lead

to the development of MAS.

Around the year of 2000, the concept of MAS and networked systems was introduced

into the control society for their huge potential in the development of robotics (Olfati-

Saber 2006, Anderson et al. 2008), micro-grids and traffic control (Choy et al. 2003).

After many years of research, applying MASs is found to have the following merits

over implementing single agents:

1. MASs have the ability of completing complex tasks such as building construc-

tions (Lindsey et al. 2012) and have less time consumption.

2. Maintaining a MAS structure has lower energy cost for dynamic tasks such as

cargo transportation (Chen and Cheng 2010), leading to higher efficiency.
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3. MASs hold higher system redundancy, meaning that the multi-agent structure

has higher chances of maintaining robustness and tolerating system faults.

The main focus of this thesis lies in the development of robust control techniques for

MASs, which belongs to a subbranch of the ability to “decide”. In general, there are

two control structures for a MAS: centralised control and distributed control. The cen-

tralised approaches usually require the implementation of one control centre such as a

central computer. The centre node is responsible for connecting individual agents and

generating control commands. Although this structure is easy to employ in practice,

such method is in fact fragile because of its over-dependence on the control centre.

On the contrary, there is no master that controls the entire system in a distributed struc-

ture. Each individual agent is offered the ability to make its own decisions, which re-

markably increases the robustness of the system. Currently, there are four main control

issues in the field of MASs:

1. Consensus control (Olfati-Saber and Murray 2004, Olfati-Saber et al. 2007, Gam-

buzza and Frasca 2020) that focuses on regulating the states of each individual

agent to one or several unified values.

2. Formation control (Dong et al. 2016, Wang et al. 2019) that concentrates on the de-

velopment of control schemes that can let MASs form up certain physical shapes

such as circles and rectangles.

3. Containment control (Li et al. 2013) that investigates how to restrict the states of

each agent within certain range that is correlated with one or several leaders.

4. Flocking and swarming (Olfati-Saber 2006, Kushleyev et al. 2013) that discusses

the algorithms that can ensure static or dynamic gathering of a large number of

agents.

Apart from the above four parts, there are also derivatives such as scaled consensus

control (Roy 2015) and formation-containment control (Dong et al. 2018). In specific,

The topic of cooperative formation control is chosen as the main concern of this the-

sis because of its close connection with practical applications including cooperative

satellite clusters (Kang and Yeh 2002), intelligent transportation systems (Chen and

Cheng 2010), and surveillance (Zhang et al. 2019).
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1.2 Literature review

To dig out the potential issues to solve in the area of cooperative formation control, it is

essential to review some past results. In this section, a brief overview of the consensus

control problem is first given to offer fundamental knowledge for the formation control

design. Some achievements and critical issues in the formation control society are

then presented. After that, the basics of the sliding mode control (SMC) technique, the

observer-based scheme and the neural-based adaptive control scheme are introduced.

1.2.1 Consensus control of multi-agent systems

Consensus is the most basic problem in the field of MAS because it is necessary to

first let each individual agent agree on the mutual goal of the system so that they can

cooperative with each other. As previously mentioned, the final goal of consensus

control is to achieve the agreement of certain states for each agent (Ren and Beard

2005). Olfati-Saber first found that the states of a cluster of networked first-order agents

will converge to a common value if the Laplacian matrix is applied in the control law

design (Olfati-Saber and Murray 2004). The above work of Olfati-Saber’s also pointed

out two important factors in the control problem of networked MAS: communication

topology and time delay.

The communication topology, which acts as the medium of the information exchange

among agents, can be either static or time-varying depending on the specific applica-

tion scenario. Hence, the consensus control problem is widely investigated for systems

with both static communication topology (Ren et al. 2007) and switching communica-

tion topology (Ren and Beard 2005) . In recent years, the consensus issue is further

extended to the scenario where the communication graph is partially unknown.

Time delay is also an important issue when communication exists. In the perspective

of MASs, time delays exist in two formats: state delay and input delay (Richard 2003).

Memoryless control schemes (Liang et al. 2014) are found effective for MAS with state

delays, while constructing predictors is a more popular way for MAS with input delay

(Wang et al. 2018a).
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1.2.2 Formation control of multi-agent systems

The concept of formation control (Chen and Wang 2005) is also developed on the ba-

sis of the consensus theory. In general, there are four main approaches to investigate

the formation control problem: the behaviour-based strategy (Balch and Arkin 1998),

the virtual-structure-based scheme (Wiech et al. 2018), the leader-follower approach

(Dong et al. 2016) and the distributed approach (Dong et al. 2018).

The behaviour-based strategy aims to define a finite set of possible behaviours for

robots in advance, such as “avoid static obstacle”, “avoid robot”, “move to goal” and

“maintain formation” (Balch and Arkin 1998), then each robot will calculate the control

input for the actuators according to the combined results of the above behaviours.

Compared with the other methods, the virtual-structure-based strategy (Balch and

Arkin 1998) is more intuitive. Virtual structures such as springs and dampers are

placed between each pair of agent to maintain the desired relative distance. However,

such method is not widely used because of its low robustness.

In the leader-follower structure, all agents are classified into two kinds: leaders and

followers. The leaders are set with some predefined control scheme to act as the refer-

ence sources of the system formation status. Only a part of the followers can access the

reference information from the leaders, and all followers use their local information

to conduct formation tracking. In terms of the leader selection, both virtual leaders

(Dong et al. 2016) and physical leaders (Yan et al. 2021) are applicable. Regarding the

number of leaders, there are also available choices of having a single-leader structure

(Dong et al. 2016) or constructing a multi-leader structure (Han et al. 2017). To ensure

that the information of the leader can be obtained by each follower directly or through

the communication with other followers, the communication topology is usually re-

quired to include at least a spanning tree from the cluster leader(s).

Compared with the leader-follower structure, all agents share the same role in the dis-

tributed structure (Fei et al. 2021a), meaning that each agent knows the exact desired

position for itself to construct the system formation. In general, there are three ways to

carry out a distributed formation tracking process (Oh et al. 2015):

1. Position-based control: Agents only make decisions according to the difference

between their own positions and the corresponding references. This structure
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requires no communication ability but lose the basic concept of having agents

work cooperatively.

2. Displacement-based control: Agents make decisions based on the combination

of both their own reference tracking errors and the ones from their neighbours

(Fei et al. 2021b). This structure requires both distributed communication net-

work and global sensing capabilities.

3. Distance-based control: Agents make decisions based on the relative distance and

orientation between themselves and their current neighbours. This structure no

longer requires the implementation of global sensing technologies but is heavily

dependent on the communication technology. The communication graph needs

to be rigid to ensure the successful construction of system formation (Sun et al.

2017).

This thesis focus on the development of robust displacement-based formation control

algorithms, which currently contains three main directions (Hou and Wang 2013):

1. Model-based control: The dynamics of the MAS is perfectly known. Hence, sim-

ple structures such as the proportional controller or the proportional-derivative

controller is sufficient (Dong et al. 2016, Dong et al. 2018).

2. Adaptive control and robust control: Part of the system dynamics (for example,

the system order) is known during the controller design procedure and the uncer-

tain terms are whether passively rejected (Yang et al. 2012) or actively estimated

and compensated (Yu et al. 2018, Fei et al. 2020).

3. Model-less control: System dynamics is hard to develop or unavailable, indi-

cating that the only possible way is to adjust the control input according to the

available output data (Xiong and Hou 2021).

As mentioned, this thesis concentrates on the analysis and design of adaptive forma-

tion controller and robust formation controller, which include the designs based on

the SMC technique, the observer-based control scheme and the neural-based adaptive

control scheme.
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1.2.3 Sliding mode control

The sliding mode technique (Shtessel et al. 2014) was brought up for the robust con-

troller design of second-order and higher-order systems. To give direct illustration of

this method, suppose there is a continuous-time second-order system as follows:ẋ = v

v̇ = u + w

where x ∈ Rn is the position state, v ∈ Rn is the velocity information, u ∈ Rn is the

control input and w ∈ Rn is the system uncertainty.

If the reference state for the above system is given as xd ∈ Rn, then the following

sliding variable is constructed to consider position tracking error and velocity tracking

error simultaneously:

s = v− ẋd + λ(x− xd)

where ẋd ∈ Rn is the velocity reference and λ represents the slope of the sliding surface.

In such way, the system error will converge exponentially in the following fashion if

∥s∥ = 0:

v− ẋd = ẋ− ẋd = −λ(x− xd)

Therefore, the goal of sliding mode controller design is summarised as ensuring the

convergence or boundedness of the sliding variable s. With the model being partially

known, the time derivative of the sliding surface is given as

ṡ = u + w− ẍd + λ(v− ẋd)

To ensure the boundedness of s, the sign function sign(·) is employed (Liu and Wang

2012) to reject the uncertain factor and formulate the classic controller design as

u = ẍd − λ(v− ẋd)− wMsign(s)

where wM ∈ R+ is the boundary of the uncertain term.

Based on the above design, many modified versions of the sliding surface is developed

to achieve different goals:
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1. Integral sliding surface (Ma et al. 2017): The integration of the position error is

included in the sliding surface design to compensate for the uncertain term to

avoid the chattering phenomenon led by the switching function.

2. Terminal sliding surface (Zou et al. 2011): Terms with fractional order (less than 1)

are introduced to increase the convergence speed around the equilibrium point.

3. Dynamic sliding surface (Liu and Wang 2012): An auxiliary variable is intro-

duced to increase the order of the sliding surface to increase the robustness of the

controller design.

Although many existed research work have introduced the sliding mode technique

into the field of MAS, there are some potential gaps:

1. Certain sliding mode techniques have not yet been tested in the multi-agent co-

operative control scenario (for example, the dynamic sliding mode technique).

2. Although the switching function can reject the effect of uncertain terms, it does

introduce extra chattering phenomenon into the control input. Hence, it is neces-

sary to find suitable substitutions for the switching function to maintain robust-

ness with smooth control input.

1.2.4 Neural networks and observers

Other than disturbance rejection, another popular approach for robustness mainte-

nance is to estimate the uncertain terms and make compensations when necessary.

Currently, there are two commonly seen approaches for uncertainty approximation:

observer estimation and neural-based estimation.

The core idea of the observer design is to build up a virtual system that share the same

structure as the investigated system, then applying adaptive laws within the virtual

structure to minimise the difference between the states of the virtual system and the

corresponding ones of the actual system.

The concept of SMC is employed to construct finite-time disturbance observer (FTDO)

that can estimate both matched and mismatched uncertainties simultaneously within

Page 9



1.2.4 Neural networks and observers

finite time if the uncertain terms’ Lipschitz constants are known in advance (Levant

2003, Chalanga et al. 2016).

For the case where only part of the system’s state information is accessible, an auxiliary

state (Yu et al. 2019) is defined to act as the estimation of the derivative of the uncertain

term to construct extended state observers (ESOs). However, two of the following

conditions must be satisfied to ensure the boundedness of the estimation error: (1) The

uncertain term is energy bounded. (2) The value of the error amplifier in the last layer

is chosen as infinity.

On the other hand, the neural-based estimation process is based on the concept of lin-

earisation. According to the universal approximation rule (Liu et al. 2013), an m (m ≥
2) layered neural network (NN) is able to estimate any function with bounded approx-

imation error if the input vector of the NN is restricted to a certain compact set.

Different from deep NNs that are implemented in the field of image processing, two-

layer NNs (Lewis et al. 2013) and three-layer NNs (Liu et al. 2013) are more common

in control engineering (see Figure 1.1). In Figure 1.1, x is the input of NNs, φ(·) is

the activation function in the first layer, Ŵ2 is the weight in the hidden layer, σ[·] is

the activation function in the second layer, Ŵ1 is the weight for NN output and d̂ is

the NN output. Note that the input layer is separated into two individual layers on

purpose because different activation functions lead to different NN names in control.

If the φ(x) is chosen as a set of Chebyshev polynomials (Zou et al. 2013), then the

corresponding two-layer NN is called Chebyshev neural network (CNN). Likewise, a

two-layer NN is called radial basis function NN if φ(·) is chosen as the radial basis

function (Zheng et al. 2021), and a two-layer NN is classified as fuzzy NN if φ(·) is a

fuzzification function (Tsai et al. 2017).

Regarding the tuning approach of NNs, the cooperative tuning laws (Zou et al. 2013,

Lewis et al. 2013) that are based on each agent’s local information are widely studied.

Other than that, there are also research works that discuss how to embed NNs into

observers (Liu et al. 2013), leading to a new set of tuning laws that is independent from

the reference tracking process.

The merits and drawbacks of the above three methods are summarised in Table 1.1.

Based on the above discussions, there are several questions that are worthy of investi-

gation in the field of adaptive estimation:
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Figure 1.1. Illustration of NN Structures. (a) Two-layer NN (b) Three-layer NN

Table 1.1. Comparisons of two estimation approaches.

Criterias FTDO ESO NNs

Estimate system states No Yes No

Estimate matched uncertainties Yes Yes Yes

Estimate mismatched uncertainties Yes No No

Requirements for uncertainties Yes (Lipschitz constants) Yes (Energy bounded) No

System states are required Yes No Yes

1. Is the cooperative tuning approach (Lewis et al. 2013) the optimal method for all

MASs?

2. Is it possible to achieve finite-time estimation in the neural-based observer struc-

ture (Liu et al. 2013)?

3. Is it possible to combine the sliding mode technique (Chalanga et al. 2016) and

the NN-based estimation to find a fast NN tuning approach?

To give intuitive explanation of the literature review process, the overall mind map is

given in Figure 1.2, where the topics discussed in this thesis are highlighted in pink.

1.3 Research questions

Motivated by the above discussions, this thesis provides answers to the following

question:
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Leader-follower
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Neural networks
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Figure 1.2. Mind map of the literature review.

How to ensure the safety and maintain the robust tracking behaviour of heteroge-

neous nonlinear MASs affected by factors including uncertainties, external distur-

bances and actuator saturation in time-varying formation tracking scenarios?

In specific, this thesis provides insights for the following research questions:

1. Regarding second-order nonlinear MASs with matched uncertainties and hys-

teresis phenomenon, how to design a robust and smooth formation controller to

ensure the boundedness of the formation tracking error?

2. Regarding second-order nonlinear MASs with both matched and mismatched

uncertainties, how to design a robust formation controller that can perform ob-

stacle avoidance and attenuate the passive correction led by the cooperative

information sharing?

3. Regarding second-order nonlinear MASs with limited system knowledge and

matched uncertainties, how to estimate the unknown system information and

further design a robust and collision-free formation controller?

4. Regarding first-order nonlinear MASs with actuator saturation and system un-

certainties, how to find a finite-time tuning approach for three-layer NNs and

attenuate the reverse effect caused by input coupling and input saturation.
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5. Regarding second-order nonlinear MASs with actuator saturation and matched

uncertainties, how to achieve finite-time NN-based estimation via sliding mode

technique and further construct a robust formation controller that can attenuate

the state overshoot and oscillation.

6. Regarding unfied-order MASs and heterogeneous mixed-order MASs, how to

design hierarchical formation control schemes to avoid the negative effects of

dynamics coupling and dynamics mismatch.

1.4 Thesis structure

To discuss the aforementioned questions, this thesis contains eight chapters.

In Chapter 1, the background introduction of the formation control problem of MASs,

literature review, potential gaps and the outline of the thesis are provided.

In Chapter 2, the formation control problem for second-order nonlinear MASs with

matched uncertainties and hysteresis phenomenon is discussed. The basics of the

dynamic SMC technique is first introduced to offer a new perspective for the robust

controller design. Both the FTDO-based and the CNN-based estimation methods are

presented to estimate the matched uncertainties and their derivatives. To ensure the

smoothness of the control input, the hysteresis inverse model is implemented to offer

a robust way to design the time derivative of the control input.

In Chapter 3, the problem of obstacle avoidance is considered for a class of second-

order nonlinear MASs with both matched and mismatched uncertainties. FTDOs are

employed to estimate the system uncertainties within finite time. The APF technique

is implemented to offer high potential energy to static obstacles so that the agents will

be driven away from the virtual repulsive force to avoid collisions. The passive cor-

recting behaviour caused by the cooperative information sharing is also studied and

discussed. A new reference correction algorithm is developed to attenuate the corre-

sponding passive corrections.

In Chapter 4, the robust formation control problem is extended for uncertain second-

order MASs without velocity measurement. A new finite-time neural-based observer is

developed to approximate the unknown velocity and the matched uncertainties simul-

taneously. To reduce the state oscillation in the NN output, a new fractional sensitivity
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parameter design is proposed. The essential issue of avoiding inter-agent collision is

also considered, where both the APF technique and a distance-based communication

topology is implemented to ensure the boundedness of the relative distance between

an arbitrary pair of agents.

In Chapter 5, the actuator saturation phenomenon is included in the system modelling

to enhance the practicality of the control scheme. The research focus of this chapter

lies in the development of the adaptive three-layer NN tuning laws and the robust for-

mation controller for uncertain first-order MASs. To avoid the potential divergence of

the NN weights, a set of fully local-error-related tuning laws are developed for the co-

operative tuning process. To ensure the finite-time convergence of the NN estimation

error, a finite-time NN-based observer is then proposed for the uncertainty estimation.

A new scheme is then provided to analyse the combined effect of input coupling and

input saturation, then the corresponding issue is defined as the reverse effect. To at-

tenuate the state oscillation led by the reverse effect, a new control input distribution

algorithm is presented.

In Chapter 6, the input saturation phenomenon is discussed for second-order MASs

in the formation control scenario. Virtual systems with dynamics identical to the ac-

tual agents are defined to share the concept of switching the estimation problem into

a control problem. The new idea of employing the control input of the imaginary sys-

tem as the final estimation result is developed to increase the estimation precision. To

ensure the finite-time characteristics of the NN-based estimation process, the sliding

mode technique is further embedded into the NN-based observer structure to shorten

the error converging time. A new linear-programming-based control input regulation

algorithm is then proposed to attenuate the state oscillation caused by the reverse ef-

fect.

In Chapter 7, instead of consider the multi-agent cooperation behaviour in the mo-

tion control layer, the inter-agent information exchange is embedded within the path

planning section. The example of a cluster of uncrewed aerial vehicles (UAVs) is first

used to represent MASs with strong dynamics coupling. A fully error-related tuning

approach is proposed for NN-based sliding mode observer to estimate the unknown

factors in the UAV dynamics. The sliding mode technique is then applied in both

the path planning layer and the motion control layer to ensure the boundedness of

the reference tracking error. Afterwards, the formation control issue is extended to a

more complex situation where agents share different dynamics order. The correlated
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dynamics mismatch issue is analysed and defined for the conventional single-layer for-

mation control scheme. To avoid the negative effect brought by dynamics mismatch, a

NN-based hierarchical robust formation control scheme is then developed.

In Chapter 8, the work of this thesis is summarised and the final conclusions are drawn.

Some open problems that are worthy of future discussion are also discussed.

To give direct illustration of the thesis structure, the relationships among chapters are

briefly presented in Figure 1.3. The inherited methods or issues are given in purple,

while the inspirations and the further discussed issues are illustrated in red.

Chapter 2 Chapter 3
FTDO

Obstacle 
Avoidance

Chapter 4
APF

NN-based 
Observer

Chapter 7 Chapter 6 Chapter 5

NN-based 
Observer

Actuator
SaturationCooperative

NN Tuning
Hierarchical

Structure

Hierarchical
Structure

NN-based
Sliding mode Observer

Sliding mode
NN-based 
Observer

Reverse
Effect

Figure 1.3. Correlations among chapters.

1.5 Chapter summary

The research background, recent literature, research questions and the structure of the

thesis are given in this chapter.

In the next chapter, the basis of the dynamic sliding mode (DSM) control scheme is

first explained to offer fundamental knowledge for its application under the topic of

formation control. Both FTDOs and NNs are further introduced to act as the adaptive

uncertainty estimator. Two DSM formation controllers are then developed for FTDOs

with matched uncertainties.
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Chapter 2

Formation Control via
Dynamic Sliding Mode

Scheme

ALTHOUGH sliding mode algorithms are famous for their high robust-

ness, the classic switching-based design has received quite a few crit-

icism for its impracticality for non-ideal actuators. In this chapter, two

adaptive dynamic sliding mode formation control schemes are proposed

for a class of second-order multi-agent systems with actuator hysteresis

to achieve the boundedness of the tracking errors. First, a brief introduc-

tion of the dynamic sliding mode controller design is presented. To relieve

the dependency of using fast switching function for uncertainties rejection,

an observer-based approach is proposed for second-order multi-agent sys-

tems with ideal controllers. Furthermore, an adaptive method that is based

on the application of Chebyshev neural network is further presented for a

class of second-order multi-agent systems with actuator hysteresis. Simula-

tions based on a group of omni-directional robots are given to illustrate the

effectiveness of the proposed designs.
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

2.1 Introduction

The formation control problem is a topic worthy of investigation to apply cooperative

MASs in practical scenarios like search and rescue (Meng et al. 2014), real-time surveil-

lance and intelligent transportation (Chen and Cheng 2010).

The time-varying formation control problem was first discussed for a class of linear

time-invariant MASs and the solution of an Riccati equation is employed to set up the

formation controller (Dong et al. 2016, Dong et al. 2018). Although the stability of the

above approach is validated by the Lyapunov stability theory, the corresponding re-

sults were obtained based on the assumption that all agents are ideally linear and free

of unknown factors. Motivated by this gap, many researchers switch their focus to

the robust controller design for MASs affected by dynamics uncertainties or external

disturbances. Among the many robust control schemes, the sliding mode technique

(Meng et al. 2014) is a popular choice due to its high robustness. However, the classic

way of adopting switching functions in the control law will also introduce extensive

chattering into the control input, making this approach less feasible for practical appli-

cations.

To ensure the smoothness of the control input, a high-order SMC algorithm with the

name of DSM is proposed (Liu and Wang 2012). Instead of designing the value of

control input directly, DSM offers us an alternative approach, which is designing the

changing rate of the control input. Although the DSM approach is found to have higher

robustness than the conventional sliding mode controllers, more assumptions regard-

ing the system uncertainty’s boundedness is required, which increases the design’s

conservatory. Hence, it is necessary to investigate how to integrate some popular un-

certainty estimation methods such as observers (Shtessel et al. 2007) and NNs (Zou

and Kumar 2012, Zou et al. 2013, Tsai et al. 2017) with the DSM technique to ensure

adaptiveness and robustness simultaneously.

Meanwhile, the actuators in practical scenarios are usually not ideal. Nonlinear phe-

nomenons including actuator hysteresis (Liu et al. 2015, Chen et al. 2016) are commonly

seen for actuators that includes gears or similar structures. Over the different ways of

describing the hysteresis effect, the Bouc-Wen model (Zhou et al. 2012) is found to have

higher generality. Hence, it is necessary to find the mitigation to reduce the negative

effect of the Bouc-Wen hysteresis phenomenon.
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2.2 System modelling and problem formulation

The following issues are addressed in this chapter:

1. How to integrate the uncertainty estimation methods (FTDO and CNN) with the

DSM controller?

2. How to mitigate the negative effect of actuator hysteresis phenomenon in a DSM

control scheme?

3. How to ensure the boundedness of each agent’s local formation tracking error to

achieve time-varying formation?

The contents in this chapter are organised as follows. The system modelling of a class

of nonlinear MASs with hysteresis and the problem formulation are given Section 2.2.

A brief introduction of the graph theory, the matrix theory, and the DSM technique

is given in Section 2.3. A preliminary FTDO-based scheme is presented in Section

2.4 for uncertain MASs with ideal actuators. Modifications are then made to bring

out the CNN-based formation controller Section 2.5 for uncertain MASs with actuator

hysteresis. Simulations are conducted for both controller designs in their individual

sections and the final conclusions are drawn in Section 2.6.

2.2 System modelling and problem formulation

In this chapter, consider a group of second-order nonlinear agents affected by the ac-

tuator hysteresis phenomenon, where the system dynamics of the ith agent isẋi = vi

v̇i = fi(xi, vi) + hi(ui) + w̄i, i = 1, 2, . . . , N
(2.1)

where xi ∈ Rn and vi ∈ Rn are the position and velocity information of the ith agent,

respectively, fi(xi, vi) ∈ Rn is the unknown continuous system dynamics, ui ∈ Rn

is the control input, w̄i ∈ Rn is the external disturbance, hi(ui) ∈ Rn is the actuator

hysteresis phenomenon (such as the ferromagnetic effect that exists in motor drive).

The Bouc-Wen hysteresis model (Zhou et al. 2012) is employed to describe the hystere-

sis phenomenon:

hi(ui) = µiui + µ̄iζi (2.2)
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

where µi ∈ R and µ̄i ∈ R are positive constants related to the stiffness and pseudonat-

ural frequency of the hysteresis, respectively, and ζi ∈ R is an auxiliary vector whose

jth element is written as

ζ̇i,j = u̇i,j − χ̄i|u̇i,j||ζi,j|mi−1ζi,j − χiu̇i,j|ζi,j|mi , ζi,j(t0) = 0 (2.3)

where j = 1, . . . , n, mi ≥ 1 is the smoothness of the initial slope, χ̄i and χi are the pa-

rameters related to the shape and amplitude of the hysteresis phenomenon that satisfy

χ̄i > |χi|.

To show that (2.2) and (2.3) are able to model hysteresis, consider a one dimensional

control input u, and choose the hysteresis parameters as µi = 1.5, µ̄i = 3, χ̄i = 1,

χi = 0.5 and mi = 2. Then the projection u → h(u) is illustrated as the curve in Figure

2.1.

Figure 2.1. Illustration of the actuator hysteresis phenomenon.

To simplify the expression of the system dynamics, define wi = fi(xi, vi) + w̄i to rep-

resent the overall uncertainty for the ith agent, then the simplified agent dynamics is

obtained as ẋi = vi

v̇i = hi(ui) + wi, i = 1, 2, . . . , N
(2.4)

Define x = [xT
1 , xT

2 , . . . , xT
N]

T ∈ RnN×1 and v = [vT
1 , vT

2 , . . . , vT
N]

T ∈ RnN×1 as the posi-

tion vector and velocity vector of the investigated MAS, respectively, then the cluster

dynamics is obtained as follows: ẋ = v

v̇ = H + w
(2.5)
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2.3 Preliminaries

where H and w are given as

H = [hT
1 (u1), hT

2 (u2), . . . , hT
N(uN)]

T, w = [wT
1 , wT

2 , . . . , wT
N]

T

Definition 2.1. Consider a state vector X ∈ Rn, suppose there is a correlated continuous

Lyapunov function V(X). Then the vector X is said to be semi-globally uniformly ultimately

bounded (UUB) if V(X) satisfies V(X) = 0 only when ∥X∥ = 0, and there exists a positive

boundary bX and a time tX(X(t0), bX) such that ∥V(X)∥ ≤ bX for all t ≥ t0 + tX and

X(t0) ∈ ΩV
X, where t0 is the initial time, X(t0) is the initial value of X and ΩV

X is a compact

set of X.

Lemma 2.1. (Ge et al. 2013) Consider a vector X that satisfies X(t0) ∈ ΩV
X and its correlated

continuous Lyapunov function V(X), if V̇(X) < 0 when ∥X∥ > bX, then ∥X∥ is said to be

semi-globally UUB within the neighbourhood of [0, bX].

The desired position for the ith agent to achieve can be specified as xdi ∈ Rn (i =

1, 2, . . . , N), where xdi is continuous and differentiable. The main goal of the to be

proposed control schemes is to ensure the semi-global uniform ultimate boundedness

of the ith agent’s formation tracking error, which is specified as

lim
t→∞
||xi(t)− xdi(t)|| ≤ νs

δ, ∀xi(t0) ∈ Ωx, i = 1, 2, . . . , N (2.6)

where Ωx is a compact set of xi and νs
δ is a small positive constant.

The following assumptions are made regarding system (2.5):

Assumption 2.1. Both the reference vector xdi and its derivatives ẋdi, ẍdi,
...x di are bounded

and completely known.

Assumption 2.2. The Bouc-Wen model parameters µ̄i, µi, χ̄i, χi and mi are known and

bounded for each individual agent.

2.3 Preliminaries

Before offering the technical contents of this chapter, it is necessary to introduce some

preliminary results in the field of matrix theory, graph theory and DSM control that are

useful for the upcoming contents.
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

2.3.1 Matrix theory

Define matrices A = [aij] ∈ Rma×na and B ∈ Rmb×nb , where ma, mb, na and nb are

positive integers. Then the definition of the Kronecker product is given as

A⊗ B =


a11B a12B . . . a1na B

a21B a22B . . . a2na B
...

... . . . ...

ama1B ama2B . . . amana B

 ∈ Rmamb×nanb

For matrices A ∈ Rma×na , B ∈ Rmb×nb , C ∈ Rmc×nc and D ∈ Rmd×nd , where mc, md,

nc and nd are positive integers, then the following properties of the Kronecker product

are given (Horn et al. 1994):

1. A⊗ (B + C) = A⊗ B + A⊗ C if mb = mc and nb = nc.

2. (A⊗ B)(C⊗ D) = (AC)⊗ (BD) if na = mc and nb = md.

3. (A⊗ B)T = AT ⊗ BT.

4. (A⊗ B)−1 = A−1 ⊗ B−1 if A and B are both nonsingular square matrices.

To carry out further stability analysis, the definition of Hurwitz matrix is also provided:

Definition 2.2. For square matrix A, if all the eigenvalues of A have negative real parts, then

A is considered to be a Hurwitz matrix or stable matrix.

2.3.2 Graph theory

In this thesis, graphs are used to illustrate the information exchange among the agents

within the structure of MASs. In general, a graph is described as

G = {R(G), E(G),A(G)}

where R(G) = {r1, r2, . . . , rN} denotes the set of nodes, E(G) ⊆ R×R is the set of

edges, and A(G) = [aij] ∈ RN×N is the adjacency matrix with nonnegative elements.

An edge of the graph G is expressed as eij = (ri, rj). Furthermore, aji = 1 if and only if

eij ∈ E(G), and self loops are excluded by setting aii = 0.
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2.3.2 Graph theory

Define degin(ri) = ∑N
j=1 aij to be the in-degree of the node ri, and the degree matrix

of the graph is illustrated as D(G) = diag{degin(r1), degin(r2), . . . , degin(rN)}. The

Laplacian matrix of the graph is defined as L = D(G)−A(G).

The graph G is treated as an undirected graph if for any eij ∈ E(G), there is eji ∈ E(G)

(see subfigure (a) in Figure 2.2). Otherwise, when eij and eji do not exist simultaneously,

the graph G is considered to be a directed graph.

1

2

(a) (b)

4

3 1

2 4

3

Figure 2.2. Illustrations of two different graphs. (a) Undirected graph (b) Directed graph

For an undirected graph, if there always exists a path between an arbitrary pair of

nodes (ri, rj), then the graph is called a connected graph. Similarly, if there always

exists a directed path between any pair of nodes (ri, rj) for a directed graph, then the

graph is said to be strongly connected.

Define a positive scalar bi to represent the ith agent’s sensitivity to its own tracking

errors, then the local sensitivity matrix for the MAS is defined as a diagonal matrix

B = diag{b1, b2, . . . , bN}. The following lemmas are helpful for illustrating the stability

of the control schemes listed in the following chapters.

Lemma 2.2. (Zou et al. 2013) Given an undirected and connected graph G and its associated

Laplacian matrix L, the matrix L + B is symmetric and positive definite for any non-negative

diagonal matrix B with at least one positive element.

Lemma 2.3. (Qu 2009) Let the communication graph G be strongly connected and B be a

non-negative diagonal matrix with at least one positive element. Then the matrix (L + B) is

an irreducible nonsingular M-matrix. If define

q = [q1 q2 . . . qN]
T = (L + B)−11N×1

then P = diag{pi} = diag{1/qi} is a positive definite matrix. Then the matrix Q defined as

follows is symmetric and positive definite.

Q = P(L + B) + (L + B)TP
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

2.3.3 Dynamic sliding mode control scheme

Before introducing the DSM formation controller designs for MASs, it is essential to

first explain how DSM works in the perspective of one single agent. In this section, the

actuator hysteresis phenomenon is ignored temporarily, which leads to the following

system dynamics for the ith agent: ẋi = vi

v̇i = ui + wi

(2.7)

To achieve goal (2.6), define the position tracking error δxi and the velocity tracking

error δvi for the ith agent as follows:δxi = xi − xdi

δvi = vi − ẋdi

(2.8)

To facilitate the design of a DSM (Liu and Wang 2012) controller, define an auxiliary

variable ρi and the dynamic sliding variable ξi for the ith agent asρi = δvi + kiδxi

ξi = ρ̇i + λiρi

(2.9)

where both ki ∈ R and λi ∈ R are positive constants.

Then the time derivative of the dynamic sliding surface ξi is

ξ̇i = δ̈vi + (ki + λi)δ̇vi + λiδvi

= (v̈i −
...x di) + (ki + λi)(v̇i − ẍdi) + kiλi(v− ẋdi)

= u̇i + ẇi −
...x di + (ki + λi)(ui + wi − ẍdi) + kiλi(v− ẋdi)

If the overall uncertainty wi is bounded such that ∥wi∥ ≤ w1
M and ∥ẇi∥ ≤ w2

M are

satisfied simultaneously, then there is a new perspective of designing u̇i instead of the

conventional ui to increase the robustness of the controller:

u̇i = −w2
Msign(ξi) +

...x di + (ki + λi)(ẍdi − w1
Msign(ξi)− ui)− kiλiδvi (2.10)

Lemma 2.4. Consider a nominal second-order system (2.7), by the sliding variables (2.9) and

the nominal DSM controller (2.10), both the dynamic sliding variable ξi and the reference

tracking error δxi are UUB.
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2.4 Formation control via finite-time observers

2.4 Formation control via finite-time observers

Although the stability of the controller design (2.10) is validated by the Lyapunov sta-

bility theorem, this approach still has the following shortcomings:

1. Holding the assumptions of ∥wi∥ ≤ w1
M and ∥ẇi∥ ≤ w2

M are too conservative in

the practical aspect.

2. Implementing the switching function sign(·) in the control input will introduce

excessive chattering that is not suitable for practical systems.

Compared to the approach of passively reject the system uncertainty, estimating and

compensating for the uncertainty in the controller design is a better choice. Before

introducing the FTDO, it is necessary to have the following assumption:

Assumption 2.3. The system uncertainty wi is bounded and differentiable. Meanwhile, the

term ẇi has the Lipschitz constant βi,w, where βi,w is a positive constant.

2.4.1 Finite-time disturbance observers

Define sgnβ(α) = diag{sign(α)}|α|β, where α is an arbitrary vector and β is a positive

constant. Then the following FTDO (Shtessel et al. 2007) is constructed to observe wi:

γ̇i,1 = νi,1 + ui, γ̇i,2 = νi,2, γ̇i,3 = νi,3

νi,1 = −αi,1β
1
3
i,wsgn

2
3 (γi,1 − vi) + γi,2

νi,2 = −αi,2β
1
2
i,wsgn

1
2 (γi,2 − νi,1) + γi,3

νi,3 = −αi,3βi,wsgn(γi,3 − νi,2)

v̂i = γi,1, ŵi = γi,2, ̂̇wi = γi,3

(2.11)

The following lemma is useful for the stability analysis of FTDO-based control designs.

Lemma 2.5. (Shtessel et al. 2007) Regarding the FTDO (2.11), if the parameter values are

chosen reasonably, the observation error will converge to a very small value within a finite time

to. In other words, there are ∥γ̃2∥ = 0 and ∥γ̃3∥ = 0 when t ≥ to, where γ̃2 = [(w1 −
γ1,2)

T, (w2− γ2,2)
T, . . . , (wN − γN,2)

T]T and γ̃3 = [(ẇ1− γ1,3)
T, (ẇ2− γ2,3)

T, . . . , (ẇN −
γN,3)

T]T.
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

2.4.2 Robust formation control via finite-time disturbance observers

Regarding system (2.7), define exi ∈ Rn and evi ∈ Rn to be the local formation and

velocity tracking error as follows:
exi =

N

∑
j=1

aij(δxi − δxj) + biδxi =
N

∑
j=1

lijδxj + biδxi

evi =
N

∑
j=1

aij(δvi − δvj) + biδvi =
N

∑
j=1

lijδvj + biδvi

(2.12)

where lij is the element in the pre-defined Laplacian matrix and bi ∈ R+ is the ith diag-

onal element in matrix B that represents the ith agent’s sensitivity to its own reference

tracking error.

Define ex = [eT
x1, eT

x2, . . . , eT
xN ]

T and ev = [eT
v1, eT

v2, . . . , eT
vN]

T, then the cluster expression

is obtained as follows:ex = (L + B)⊗ In(x− xd) = (L + B)⊗ Inδx

ev = (L + B)⊗ In(v− ẋd) = (L + B)⊗ Inδv
(2.13)

where xd = [xT
d1, xT

d2, . . . , xT
dN]

T, δx = [δT
x1, δT

x2, . . . , δT
xN ]

T and δv = [δT
v1, δT

v2, . . . , δT
vN]

T.

If the hysteresis phenomenon in (2.2) is disregarded, then the cluster local error dy-

namics is given as ėx = ev

ėv = (L + B)⊗ In(−ẍd + u + w)

where u = [uT
1 , uT

2 , . . . , uT
N]

T.

Based on the discussion given in Section 2.3, the following auxiliary variable ρi and the

dynamic sliding variable ξi based on the local tracking errors are constructed:ρi = evi + kiexi

ξi = ρ̇i + λiρi, i = 1, 2, . . . , N
(2.14)

where both ki and λi are positive constants.

Define ξ = [ξT
1 , ξT

2 , . . . , ξT
N]

T, then the time derivative of ξ is illustrated as

ξ̇ = ëv + (K + Λ)⊗ In ėv + KΛ⊗ Inev

= (L + B)⊗ In[u̇ + ẇ− ...x d + (K + Λ)⊗ In(u + w− ẍd) + KΛ⊗ In(v− ẋd)]
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2.4.2 Robust formation control via finite-time disturbance observers

where K = diag{k1, k2, . . . , kN} and Λ = diag{λ1, λ2, . . . , λN}.

Accordingly, the following FTDO-based DSM controller is proposed:

u̇i = −γi,3 +
...x d − (ki + λi)(ui + γi,2 − ẍd) + kiλiδvi − ciξi (2.15)

where ci is a positive constant. The control diagram of the FTDO-based approach is

presented in Figure 2.3.

Formation
Reference

Communication
Local Tracking

Error (2.12)
Sliding 
Variable
(2.14)

Control Law
(2.15)

xdi
Error 

Calculations
(2.8)

xdi
. xdi

δxj δvj eviexi

Plant
(2.4)

xi vi
FTDO-Based Controller

δxi
δvi

δxi δvi xdi xdi
...

ui xi vixdi
... .. ..

FTDO
(2.11)

ui
γi,2

ξi

γi,3

hi(ui)=ui

Figure 2.3. FTDO-based dynamic sliding mode formation control scheme.

The main result of the FTDO-based design when the actuator hysteresis (2.2) is not

considered is given as the following theorem:

Theorem 2.1. Consider system (2.5) where the actuator hysteresis (2.2) is ignored (H = u),

suppose the communication topology L is an undirected graph and Assumptions 2.1-2.3 are

satisfied, by the FTDO (2.11), the dynamic sliding variable design (2.14) and the DSM con-

troller (2.15), the dynamic sliding variable ξ, local formation tracking error ex and the reference

tracking error δx are all semi-globally UUB.

Proof. By Lemma 2.2, construct the following Lyapunov candidate:

V1,1 =
1
2

ξT(L + B)−1 ⊗ Inξ

The derivative of V1,1 is given as

V̇1,1 = ξT(L + B)−1 ⊗ Inξ̇

= ξT[u̇ + ẇ− ...x d + (K + Λ)⊗ In(u + w− ẍd) + KΛ⊗ In(v− ẋd)]

= ξT[γ̃3 + (K + Λ)⊗ Inγ̃2 − C⊗ Inξ]
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

where C = diag{c1, c2, . . . , cN}.

By Lemma 2.5, the simplified version of V̇1,1 is given as follows when t ≥ to:

V̇1,1 ≤ −σ(C)∥ξ∥2

Hence, the value of V̇1,1 will remain negative until the value of ∥ξ∥ is settled as ∥ξi∥ =
0. By Lemma 3.1, the uniform ultimate boundedness of ξ is achieved. By the expression

of ξi = ρ̇i +λiρi and the Laplace final value theorem, the following equation is obtained

after applying the Laplace transformation:

lim
t→∞
∥ρ(t)∥ ≤ lim

s→0

N

∑
i=1
|sL(ρi)| ≤ lim

s→0

N

∑
i=1

∣∣∣∣ s
s + λi

(L(ξi)− ρi(0))
∣∣∣∣ = 0

Similarly, we also have

lim
t→∞
∥ex(t)∥ ≤ lim

s→0

N

∑
i=1
|sL(exi)| ≤ lim

s→0

N

∑
i=1

∣∣∣∣ s
s + ki

(L(ρi)− exi(0))
∣∣∣∣ = 0

According to the definition of local error vectors, one has

lim
t→∞
∥δx(t)∥ ≤

∥ex∥
σ(L + B)

= 0

By Lemma 3.1, the error-related vectors ξ, ex and δx are all UUB. Hence, the proof is

completed.

Remark 2.1. The FTDO-based design is able to guarantee the global uniform ultimate bound-

edness of ∥δxi∥ because its implementation does not require that the initial value of the system

state is bounded within a compact set. If the state of an arbitrary system is UUB, it is semi-

globally UUB as well. Hence, the FTDO-based design will still achieve our goal in (2.6).

Remark 2.2. Although the value of ∥ξ∥, ∥ρ∥, ∥ex∥ and ∥δx∥ will achieve 0 ultimately in

theory, their values can not converge exactly to 0 in practice. Instead, the expected convergence

boundaries of the above vector norms should be a really small positive number.

Remark 2.3. Note that the separation principle is a very important concept in the development

of observer-based control schemes. In this thesis, the stability of the proposed observer designs

are not affected by the controller. Normally, analysis regarding the closed-loop that contains

both the observer and the controller is required to prove the stability of the entire system. Al-

though the corresponding descriptions have been omitted for some of the observer-based designs

in both this chapter and the upcoming technical chapters, the stability of the designs presented

in this thesis is still valid because of the boundedness of both the observation errors and the

tracking errors.
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2.4.3 Simulation results and discussion

To verify the effectiveness of the proposed observer-based DSM control scheme, simu-

lations based on a group of three-wheel omni-directional robots (ODRs) are conducted

(Fei et al. 2020).

First, it is necessary to analyse if the system dynamics of a three-wheel ODR matches

the nominal second-order model presented in (2.7). Define xi = [px
i , py

i , θi]
T and vi =

[vx
i , vy

i , ωi] to act as the position vector and the velocity vector of the ith robot, respec-

tively. Then the dynamics of the ith ODR subjected to external disturbances w̄i isẋi = vi

v̇i = MiTs(θi, Ri)Fm
i + w̄i

(2.16)

where Mi = diag{1/mi, 1/mi, 1/Ii}, mi is the mass of the ith robot, Ii is the inertia of

the ith robot, Ri is the radius of the ith robot, Fi = [F1
i , F2

i , F3
i ]

T and Ts(θi, Ri) is the

transformation matrix with the following expression:

Ts(θi, Ri) =


−sin(θi) −sin(π/3− θi) sin(π/3 + θi)

cos(θi) −cos(π/3− θi) −cos(π/3 + θi)

Ri Ri Ri


The structure of the ith ODR is given in Figure 2.4.

θi

X

Y
Fi

O

Ri

Pi
y

Pi
x

v1
m1

Fi
2

Fi
3

v2
m

v3
m

Figure 2.4. Physical structure of an ODR.

If each robot is equipped with direct current motors, then the force vector Fm
i has the

following expression (Dinh et al. 2012):

Fm
i = αiUi − βivw

i
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

Table 2.1. ODR parameter values.

Robot number mi(kg) Ri(m) Ii(kg ·m2) βi,j(N/v)

1 4.5 0.20 0.22 11.4

2 5.2 0.24 0.24 11.6

3 4.8 0.22 0.23 11.8

4 5.5 0.26 0.25 12.0

where αi ∈ R3×3 and βi ∈ R3×3 are the diagonal matrices that contain the characteristic

coefficients, Ui ∈ R3 is the voltage applied to the motors and vw
i ∈ R3 is the linear

speed of the wheels.

Based on Figure 2.4, the relationship between the linear speed of the wheels and the

speed of the robot is expressed as

vi = Tf (θi, Ri)vm
i

where Tf (θi, Ri) is the speed rotational matrix defined as

Tf (θi, Ri) =


−sin(θi) −sin(π/3− θi) sin(π/3 + θi)

cos(θi) −cos(π/3− θi) −cos(π/3 + θi)

1/Ri 1/Ri 1/Ri


Consequently, one hasẋi = vi

v̇i = −βi MiTs(θi, Ri)T−1
f (θi, Ri)vi + αi MiTs(θi, Ri)Ui + w̄i

(2.17)

where αi = diag{αi,1, αi,2, αi,3} and βi = diag{βi,1, βi,2, βi,3}. If applying wi = w̄i −
βi MiTs(θi, Ri)T−1

f (θi, Ri)vi and ui = αi MiTs(θi, Ri)Ui, then the simplified dynamics of

the ith ODR is obtained as ẋi = vi

v̇i = ui + wi

Hence, the model of ODR is suitable for the simulation of our proposed controllers.

Consider a system with four ODRs, whose parameters are given in Table 2.1.
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2.4.3 Simulation results and discussion

Table 2.2. Initial states of the ODRs for the FTDO-based controller.

Robot number px
i (m) py

i (m) θi(kg ·m2)

1 2.3 −0.5 π/4

2 −1.0 1.5 π/6

3 −3.4 1.5 −π/6

4 0.8 −3.3 −π/4

To validate the effectiveness of the FTDO-based approach, the initial states of the ODRs

are set as what’s given in Table 2.2. The initial states of FTDOs are set with the same

values as the actual states in Table 2.2.

The formation reference of the ith agent is given as

xdi =

[
3cos

(
t

10
+

i− 1
2

π

)
, 3sin

(
t

10
+

i− 1
2

π

)
, 0
]T

, i = 1, 2, 3, 4

Meanwhile, the external disturbance wi is chosen as

di(t) =
[

3
10

px
i sin

(
t +

iπ
3

)
+ 2,

1
5

py
i cos

(
2t +

iπ
3

)
+

3
2

,
1

10
θisin

(
4
5

t +
iπ
3

)
+ 1
]T

The undirected communication topology of the system is given in Figure 2.5.

2

14 3

Figure 2.5. Communication topology of 4 ODRs.

The parameters of the FTDO is chosen as αi,1 = 3, αi,2 = 6, αi,3 = 3 and βi,w = 10. The

parameters in the control law (2.15) are given as ki = 3, λi = 3 and ci = 3.

Accordingly, the propagation of each ODR’s ∥δxi∥ is presented in Figure 2.6, where the

uniform ultimate boundedness of δxi is validated for each agent. Similar results are also

obtained for the dynamic sliding variable ξi, whose curves are given in Figure 2.7. In

specific, the bounded region of ∥δxi∥ and ∥ξi∥ are 2.5× 10−3 and 9× 10−2, respectively.
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

Figure 2.6. ∥δxi∥ of individual ODRs (FTDO-based design).

Figure 2.7. ∥ξi∥ of individual ODRs (FTDO-based design).

To prove that the DSM design will reduce the chattering phenomenon in the control

input, the curves of ui are given in Figure 2.8. It is observed that the control input are

smooth, which illustrates the effectiveness of the FTDO-based design in (2.15).

Furthermore, the trajectories of each ODR throughout the formation tracking mission

are presented in Figure 2.9. We can see that all four ODRs are able to track their po-

sition reference smoothly to form a circular formation that is rotating anti-clockwise,

indicating the the validity of Theorem 2.1.

2.5 Formation control via Chebyshev neural networks

Although the controller design (2.15) can ensure the uniform ultimate boundedness of

error-related states, Assumption 2.3 is still quite conservative for practical scenarios.

To remove this assumption, the CNN-based method is proposed.
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2.5.1 Chebyshev neural networks

Figure 2.8. Control input of individual ODRs (FTDO-based design).

2.5.1 Chebyshev neural networks

It is found that a general function can be estimated by a linear combination of a set of

its related variables’ Chebyshev polynomials (Lee and Jeng 1998) when the input of the

NN is restricted to a compact set. Therefore, the CNN was proposed for the purpose

of unknown function approximation (Zou et al. 2011, Zou and Kumar 2012). CNN

is usually designed to be a single layered functional link network with Chebyshev

polynomials as its input. Chebyshev polynomials are a set of orthogonal polynomials

that can be obtained by using the following recursive function:

Ti+1(y) = 2yTi(y)− Ti−1(y), T0(y) = 1

where y ∈ R and T1(y) can be defined as y, 2y, 2y − 1 or 2y + 1. In this chapter, set

T1(y) = y. For a given vector Y = [y1, y2, . . . , yq]T ∈ Rq, the Chebyshev-polynomial-

based activation function for the vector is defined as

φ(Y) = [1, T1(y1), . . . , T1(yq), . . . , TNc(y1), . . . , TNc(yq)]
T (2.18)

where Nc is the order of the Chebyshev polynomials, and Ti(yj) (i = 1, . . . , Nc, j =

1, . . . , q) represents the Chebyshev polynomial for variable yj with order i.
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Chapter 2 Formation Control via Dynamic Sliding Mode Scheme

Figure 2.9. Trajectories of individual ODRs (FTDO-based design).

As previously mentioned, the terms ẇi and (ki + λi)wi are both unknown. Because

both ẇi and wi can be seen as a function that uses xi and vi as its variables, it is reason-

able to combine these two terms as Ei = ẇi +(ki +λi)wi for the CNN-based estimation.

According to the universal approximation rule, an unknown function can be estimated

by an NN when the network compact set condition is satisfied such that the function

is bounded or the network input is restricted to its compact set. Hence, the unknown

nonlinear function Ei can be expressed as follows:

Ei = WT
i φ(Yi) + ϵi, i ∈ [1, N] (2.19)

where Wi ∈ R(2nNc+1)×n is the optimal weight matrix, Yi = [xi, vi]
T and ϵi ∈ Rn is the

bounded estimation error. Define Ŵi ∈ R(2nNc+1)×n to be the estimated weight matrix,
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2.5.2 Robust formation control via Chebyshev neural networks

then the following CNN-based approximation procedure is given as

Êi = ŴT
i φ(Yi) (2.20)

Define W̃i = Wi − Ŵi as the neural weight estimation error, then the CNN-based esti-

mation error is defined as

Ẽi = Ei − Êi = W̃T
i φ(Yi) + ϵi

Meanwhile, to ensure that all elements in the estimated weight matrix Ŵi are bounded

throughout the estimation process, a smooth projection law τi(Ŵi) = Ŵiτ (Zou and

Kumar 2012) as follows is applied to every weight matrix:

τi(Ŵi(j, k)) =



WM
i + ψW

[
1− exp

(
WM

i − Ŵi(j, k)
ψW

)]
, if Ŵi(j, k) > WM

i

Ŵi(j, k), if |Ŵi(j, k)| ≤WM
i

ψW

[
exp

(
Ŵi(j, k) + WM

i
ψW

)
− 1
]
−WM

i , if Ŵi(j, k) < −WM
i

(2.21)

where WM
i ∈ R+ is the expected bounded value of Ŵi(j, k), ψW is a very small positive

constant, Ŵi(j, k) is the element on the jth row and the kth column in matrix Ŵi and

τi(Ŵi(j, k)) is the element on the jth row and the kth column in matrix Ŵiτ. Accord-

ingly, the value of τi(Ŵi(j, k)) satisfies τi(Ŵi(j, k)) ∈ [−WM
i − ψW , WM

i + ψW ].

2.5.2 Robust formation control via Chebyshev neural networks

Consider the MAS (2.5) with actuator hysteresis (2.2), the updated version of ξ̇ is given

as

ξ̇ = (L + B)⊗ In[Ḣ + ẇ− ...x d + (K + Λ)⊗ In(H + w− ẍd) + KΛ⊗ In(v− ẋd)]

Regarding the actuator hysteresis phenomenon, the controller design in (2.15) is inad-

equate. Hence, the following modified formation controller design is proposed:

u̇i =
π̇i

µi + µ̄ig(ζ̄i,
π̇i
µi
)

(2.22)

where

π̇i = −ŴT
iτ φi(Yi) +

...x di + (ki + λi)ẍdi − (ki + λi)πi − kiλi(vi − ẋdi)− ciξi
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g
(

ζ̄i,
π̇i

µi

)
= 1− χ̄sign

(
π̇i

µi

)
|ζ̄i|mi−1ζ̄i − χi|ζ̄i|mi , ˙̄ζi =

π̇i

µi + µ̄ig(ζ̄i,
π̇i
µi
)

g
(

ζ̄i,
π̇i

µi

)
πi(t0) = 0n, π̇i(t0) = 0n, ζ̄i(t0) = 0n, ˙̄ζi(t0) = 0n, ui(t0) = 0n

The adaptive weight tuning law is chosen as

˙̂W i = η1φi(Yi)ξ
T
i (2.23)

Based on the above discussion, the control diagram of the CNN-based control ap-

proach is presented in Figure 2.10.

Formation
Reference

Communication Local Tracking
Error (2.12)

Sliding 
Variable
(2.14)

Control Law
(2.22)

xdi
Error 

Calculations
(2.8)

xdi
. xdi

δxj δvj eviexi

Plant
(2.4)

xi viCNN-Based Controller

δxi
δvi

δxi δvi xdi xdi
...

ui xi vixdi
... .. ..

ui

ξi

Weight 
Tuning
(2.23)

ξi

Wi

Estimation
(2.20)

Actuator
Hysteresis

(2.2)

Ei

hi(ui)

Figure 2.10. CNN-based dynamic sliding mode formation control scheme.

Before presenting the main results, let us recall the following results.

Lemma 2.6. (Zou and Kumar 2012) Define W̃iτ = Wi − Ŵiτ, then the following function

Vi
W =

2nNc+1

∑
j=1

n

∑
k=1

∫ W̃i(j,k)

0
(Wi(j, k)− τi(Wi(j, k)− υ)) dυ, i = 1, 2, . . . , N (2.24)

is positive definite.

Lemma 2.7. (Zhou et al. 2012) For variables ζi and ζ̄i that are defined in (2.3) and (2.22), if

the initial values of ζi and ζ̄i satisfies ζ̄i(t0) = ζi(t0) = 0, then the following equation is valid

for all t ≥ t0

1
2
(ζi(t)− ζ̄i(t))2 ≤ 1

2
(ζi(t0)− ζ̄i(t0))

2 = 0, i = 1, 2, . . . , N (2.25)
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2.5.2 Robust formation control via Chebyshev neural networks

Lemma 2.8. (Lee and Jeng 1998) For a continuous nonlinear function Ei, the NN esti-

mation error ϵi is bounded such that ∥ϵ∥ ≤ ϵM, where ϵM is a positive constant and ϵ =

[ϵT
1 , ϵT

2 , . . . , ϵT
N]

T.

The main result of the CNN-based controller design is presented as the following the-

orem:

Theorem 2.2. Consider the MAS (2.5) with known Bouc-Wen hysteresis nonlinearity (2.2),

where Assumptions 2.1-2.1 hold, by the DSM variable (2.14), the smooth projection function

(2.21), the CNN-based controller (2.22), and the adaptive weight tuning law (2.23), then the

dynamic sliding variable ξ, the formation tracking error ex and the reference tracking error δx

are all semi-globally UUB if the compact set conditions of the CNNs are satisfied such that

either Ei ∈ ΩE or Yi ∈ ΩY is satisfied when t ≥ t0, where ΩE and ΩY are compact sets for Ei

and Yi, respectively.

Proof. To prove the effectiveness of the proposed control law, consider the following

Lyapunov function:

V1,2 =
1
2

ξT(L + B)−1 ⊗ Inξ +
N

∑
i=1

1
η1

Vi
W

According to Lemmas 2.2 and 2.6, both L + B and VWi are positive definite, which

indicates that Vi,2 is nonnegative. The time derivative of Vi,2 is given as

V̇1,2 = ξT(L + B)−1 ⊗ Inξ̇ −
N

∑
i=1

2nNc+1

∑
j=1

n

∑
k=1

1
η1

W̃iτ(j, k) ˙̂W i(j, k)

= ξT[Ḣ + ẇ− ...x d + (K + Λ)⊗ In(H + w− ẍd) + KΛ⊗ In(v− ẋd)]

− 1
η1

tr{W̃T
τ

˙̂W}

(2.26)

where W̃τ = diag{W̃1τ, W̃2τ, . . . , W̃Nτ} and Ŵ = diag{W̃1, W̃2, . . . , W̃N}.

Substituting (2.2) and (2.3) into (2.26), then one has

V̇1,2 = ξT[µu̇ + µ̄ζ̇ + ẇ− ...x d + KΛ⊗ In(v− ẋd)]−
1
η1

tr{W̃T
τ

˙̂W}

+ ξT[(K + Λ)⊗ In(µu + µ̄ζ + w− ẍd)]

= ξT[π̇ + µ̄(ζ̇ − ˙̄ζ) + ẇ− ...x d + KΛ⊗ In(v− ẋd)]−
1
η1

tr{W̃T
τ

˙̂W}
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+ ξT[(K + Λ)⊗ In(π + µ̄(ζ − ζ̄) + w− ẍd)]

= ξT
[

π̇ + µ̄

(
u̇g(ζ, u̇)−

π̇g(ζ̄, π̇
µ )

µ + µ̄g(ζ̄, π̇
µ )

)
+ ẇ− ...x d + KΛ⊗ (v− ẋd)

]

+ ξTµ̄

[
ζ(t0) +

∫ t

t0

u̇g(ζ, u̇) dt− ζ̄(t0)−
∫ t

t0

π̇g(ζ̄, π̇
µ )

µ + µ̄g(ζ̄, π̇
µ )

dt
]

+ ξT[(K + Λ)(π + w− ẍd)]−
1
η1

tr{W̃T
τ

˙̂W}

where

ρ = [ρ1, ρ2, . . . , ρN]
T, ζ̄ = [ζ̄1, ζ̄2, . . . , ζ̄N]

T, ζ = [ζ1, ζ2, . . . , ζN]
T

µ = diag{µ1, µ2, . . . , µN} ⊗ In, µ̄ = diag{µ̄1, µ̄2, . . . , µ̄N} ⊗ In

By Lemma 2.7, when conditions ζi(t) = ζ̄i(t) and ζ̇i(t) = ˙̄ζi(t) are given, the expression

of V̇1,2 is further modified as

V̇1,2 = ξT[π̇ + ẇ− ...x d + KΛ⊗ In(v− ẋd)]−
1
η1

tr{W̃T
τ

˙̂W}

+ ξT[(K + Λ)⊗ (π + w− ẍd)]

= ξT[ẇ + (K + Λ)⊗ w + π̇ − ...x d + (K + Λ)⊗ In(π − ẍd)]

+ ξT[KΛ⊗ In(v− ẋd)]−
1
η1

tr{W̃T
τ

˙̂W}

= ξT[WTφ + ϵ− ŴT
τ φ− C⊗ Inξ]− 1

η1
tr{W̃T

τ
˙̂W}

= −ξTC⊗ Inξ + ξT[W̃T
τ φ + ϵ]− 1

η1
tr{W̃T

τ
˙̂W}

= −ξTC⊗ Inξ + ξTϵ +
1
η1

tr{W̃T
τ (η1φξT − ˙̂W)}

= −ξTC⊗ Inξ + ξTϵ

where C = diag{c1, c2, . . . , cN} and φ = [φT
1 , φT

2 , . . . , φT
N]

T.

By Lemma 2.8, the following inequality is obtained:

V̇1,2 ≤ −σ(C)∥ξ∥2 + ϵM∥ξ∥ (2.27)

where ϵM is a positive constant that satisfies ∥ϵi∥ ≤ ϵM, further leading to the conclu-

sion that V̇1,2 would remain negative outside the compact set Ω1
ξ :

Ω1
ξ =

{
ξ(t)

∣∣∣∣ ∥ξ(t)∥ ≤ ϵM

σ(C)

}
(2.28)
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2.5.2 Robust formation control via Chebyshev neural networks

Hence, the dynamic sliding variable ξ will keep decreasing until ∥ξ∥ is within the

compact set Ω1
ξ . By Lemma 2.1, ξ is semi-globally UUB.

Regarding an arbitrary vector, its norm satisfies the following inequality (Lewis et al.

2013):

∥ξ∥1 =
N

∑
i=1
|ξi| ≥ ∥ξ∥2 ≥ ∥ξ∥∞

By applying the final value theorem of Laplace transform, the following equation is

obtained

lim
t→∞
∥ξ(t)∥ ≤ lim

t→∞

N

∑
i=1
|ξi(t)| = lim

s→0

N

∑
i=1

s|L(ξi)| ≤
ϵM

σ(C)
(2.29)

By applying Laplace transformation to (2.14), one has

L(ξi) = sL(ρi) + ρi(0) + λiL(ρi)

L(ρi) = sL(exi) + exi(0) + kiL(exi)

which is equivalent to

L(ρi) =
1

s + λi
(L(ξi)− ρi(0))

L(exi) =
1

s + ki
(L(ρi)− exi(0))

Accordingly, there are

lim
t→∞
∥ρ(t)∥ ≤ lim

t→∞

N

∑
i=1
|ρi(t)| = lim

s→0

N

∑
i=1

s|L(ρi)| ≤
ϵM

σ(CΛ)

lim
t→∞
∥ex(t)∥ ≤ lim

t→∞

N

∑
i=1
|exi(t)| = lim

s→0

N

∑
i=1

s|L(exi)| ≤
ϵM

σ(CΛK)

By the definition of local tracking errors in (2.12), one also has

lim
t→∞
∥δx(t)∥ ≤ lim

t→∞
∥(L + B)−1 ⊗ Inex∥ ≤

ϵM

σ(CΛK)σ(L + B)

As a result, both ex and δx are semi-globally UUB, which completes the proof.

Remark 2.4. If the initial formation tracking error of the system is too large, the high value

of dynamic sliding variable will cause rapid and severe oscillation during the weight tuning

process. The unstable weight values can potentially result in an unregulated output of the NN,
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Table 2.3. Initial states of the ODRs for the CNN-based controller.

Robot number px
i (m) py

i (m) θi(kg ·m2)

1 2.0 3.0 0

2 −0.5 2.0 π/4

3 0.5 0.0 2π/3

4 1.5 −3.3 5π/4

which will jeopardise the performance of the designed controller. Hence, the smooth projection

law (2.21) is employed in this design to restrict the weight matrix and estimation error in the

unstable period to prevent system failure.

Remark 2.5. It is found that the value of tuning rate η1 in (2.23) should be chosen critically

because high value can not only lead to high sensitivity of errors and precision, but also cause

chattering in estimation error Ẽ, which makes it hard to converge. Besides, if the value of η1 is

too low, the NN will become insensitive and estimation error Ẽ will not converge as well.

2.5.3 Simulation results and discussion

To illustrate the stability of the controller design in (2.22), a numerical simulation based

on the a group of ODRs is conducted. The model of the ODR is still set as (2.17) and

the parameters of the ODRs remain the same as what’s given in Table 2.1. The initial

states of the ODRs are altered into the values in Table 2.3.

The external disturbance stays the same as the FTDO case and the formation reference

is changed to

xdi(t) =
[

2cos
(
−t
10

+
π

4

)
+ cos

(
t

10
+

iπ
2

)
, 2sin

(
−t
10

+
π

4

)
+ sin

(
t

10
+

iπ
2

)
,

iπ
4

]T

(2.30)

The parameters in (2.22) are set as ki = 2.5, λi = 2.5 and ci = 10. The order of the CNN

is chosen as Nc = 3. The weight matrices of the CNN are set as 019×3 and the error

sensitivity is chosen as η1 = 0.1. The curves of ∥δxi∥, ∥ξi∥ and ui are shown in Figures

2.11-2.13, respectively.
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Figure 2.11. ∥δxi∥ of individual ODRs (CNN-based design).

Figure 2.12. ∥ξi∥ of individual ODRs (CNN-based design).

Figure 2.13. Control input of individual ODRs (CNN-based design).
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Similar to the FTDO-based design, both ∥δxi∥ and ∥ξi∥ are semi-globally UUB within

the region of 8.8× 10−3 and 1.6× 10−3, respectively. The control input of each individ-

ual ODR is still smooth, which matches the characteristics of the DSM technique.

The norm of the CNN estimation error is also given in Figure 2.14, where the error

norm is found to be semi-globally UUB within the value of 0.4 for each individual

agent.

Figure 2.14. CNN estimation error.

The system trajectories and formation status are recorded in Figure 2.15. The formation

reference given in (2.30) is a time-varying circular formation (see the green dashed

circle) that performs self-rotation while its centre travels on another circular trajectory

(purple dashed circle). It is observed in Figure 2.15 that all four ODRs are able to track

their references (dotted-dashed lines) to form the expected formation.

2.6 Chapter summary

This chapter focuses on the implementation of the DSM technique in multi-agent sce-

narios. A brief introduction of the DSM theory is first given to clarify the conditions

and controller design procedures for nominal second-order systems. The FTDO struc-

ture is then employed to perform finite-time estimation of the system uncertainty, and

the stability of the corresponding FTDO-based DSM formation controller is validated

by both theoretical analysis and a numerical simulation. To reduce our assumption on

the system uncertainty, the CNN approximation mechanism is introduced and inte-

grated with the DSM technique to obtain an adaptive formation control scheme. The
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Figure 2.15. Trajectories of individual ODRs (CNN-based design).

semi-global uniform ultimate boundedness of error-related states in the CNN-based

design is also illustrated by a numerical simulation. Both control designs are found to

have smooth control input signals, which matches our expectation.

In the next chapter, the issue of obstacle avoidance will be considered to ensure the

safty of MASs during the formation tracking process. A reference correction algorithm

is developed to deal with the passive correction led by the unreachable reference sce-

nario. An observer-based formation controller is further proposed for MASs with both

matched and mismatched uncertainties.
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Chapter 3

Robust Formation Control
with Obstacle Avoidance

OTHER than ensuring the boundedness of each agent’s tracking error

to guarantee a robust formation status, it is also necessary to design

obstacle avoidance algorithms to maintain the safety of each robot. In this

chapter, an observer-and-algorithm-based formation controller is proposed

for second-order multi-agent systems to achieve time-varying formation

without having collision with obstacles. First, a new sliding surface design

is proposed for second-order multi-agent systems with both matched and

mismatched disturbances. The artificial potential field technique is then in-

tegrated with the sliding mode control scheme to develop a robust forma-

tion controller. To attenuate the passive corrections led by the inter-agent

communication, a new reference correction algorithm is further developed.

Comparative simulations based on a group of omni-directional robots are

given to illustrate the effectiveness of the robust formation controller and

the new algorithm.
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Chapter 3 Robust Formation Control with Obstacle Avoidance

3.1 Introduction

To carry out practical formation tracking tasks such as real-time surveillance, we usu-

ally need to employ autonomous UAVs (Dong et al. 2018), uncrewed grounded vehicles

(Wang et al. 2019) or uncrewed underwater vehicles (Li et al. 2019b) in non-ideal envi-

ronments. It is common sense that the practical environments are usually filled with

obstacles, which indicates the necessity of considering the obstacle avoidance issue in

the field of MASs.

The obstacle avoidance issue is more challenging for multi-agent applications com-

pared to single-agent systems because interactions among agents can largely increase

the complexity of the system. One popular approach to solve the obstacle avoidance

issue is optimal control. A distributed optimal control law that only requires local in-

formation was implemented to achieve high obstacle avoidance capability for linear

MASs (Chen and Sun 2016). To ensure that each agent can move along the optimal tra-

jectory, the theory of model predictive control was employed to perform simultaneous

optimisation without colliding into any obstacles (Dai et al. 2017).

Apart from the optimisation perspective, artificial potential field (APF) is one famous

approach that is widely used for both path planning and motion control to achieve

real-time collision avoidance (Wen et al. 2017, Li et al. 2018, Sharma et al. 2021). A po-

tential function based sliding mode surface was first designed by Li et al. to handle

the local minima issue of APF with the assumption that the reference trajectory should

remain outside the collision regions (Li et al. 2018). To deal with the obstacle avoid-

ance problem of a group of stochastic second-order agents, the APF technique was

employed with a proportional-derivative formation controller to ensure the bounded-

ness of the expectation of formation tracking error (Wen et al. 2017). However, the effect

of interactions among agents was often ignored among the aforementioned articles.

For example, the results obtained by Wen et al, illustrate that when one agent needs to

move away from its reference trajectory to avoid an obstacle, there are sudden boosts in

the reference tracking errors of the other agents, leading to chaotic system formations.

Therefore, how to ensure the robustness of the system’s formation when part of the

agents need to avoid obstacles is a gap to be filled.

System uncertainty is another factor that is worth considering in the formation con-

trol community due to its tight link with the robustness of system formations. Most
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research works only focused on matched uncertainties that exist in the same channel

as control input (Zou and Kumar 2012, Wen et al. 2017), leaving problems related to

mismatched uncertainties unsolved.

Mismatched uncertainties usually refer to the uncertain factors caused by parameter

perturbations, external winds or mismodelled dynamics that affect the system through

channels different from control input (Chen et al. 2015). The most suitable method to es-

timate the mismatched uncertainty is to employ observers (Ma et al. 2017, Mondal et al.

2017b). The ESO structure was proved to be effective by Ma et al. to achieve adaptive

consensus control for second-order MASs with mismatched disturbances (Ma et al.

2017). A new homogeneous disturbance observer was developed by Mondal et al. to

construct the sliding mode consensus controller for high-order MASs. An observer-

based sliding mode controller (Mondal et al. 2017b) was further designed by Mondal

et al. to achieve the state consensus of heterogeneous MASs. However, no previous

work has yet discussed the problem of obstacle avoidance for MASs with mismatched

disturbances, which leads to a considerable challenge.

The following issues are addressed in this chapter:

1. How to ensure each agent’s safety by avoiding collisions with static obstacles

when the agent is affected by both matched and mismatched disturbances?

2. How to guarantee the uniform ultimate boundedness of each agent’s reference

tracking error with the existence of matched and mismatched disturbances?

3. How to ensure the robustness of the overall system formation while a part of the

agents need to move away from the desired position to avoid obstacles?

The contents in this chapter are organised as follows. The system modelling of a class

of nonlinear MASs with both matched and mismatched disturbances and the prob-

lem formulation are given Section 3.2. A brief introduction of the APF technique is

given in Section 3.3. The development of the observer-based sliding mode formation

controller and the reference correction algorithm (RCA) are presented in Section 3.4,

where numerical simulation results are given to illustrate the effectiveness of the pro-

posed control scheme. The final conclusions are drawn in Section 3.5.
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3.2 System modelling and problem formulation

In this chapter, consider a group of second-order nonlinear agents affected by both

matched and mismatched disturbances, where the system dynamics of the ith agent is

given as ẋi = vi + di

v̇i = fi(xi, vi) + giui + w̄i, i = 1, 2, . . . , N
(3.1)

where xi = [xT
i,p, xT

i,a]
T ∈ Rn and vi = [vT

i,p, vT
i,a]

T ∈ Rn are the position and veloc-

ity information of the ith agent, respectively, xi,p ∈ Rn1 is the agent’s coordinates in

the global frame, xi,a ∈ Rn2 is the agent’s angular status, vi,p ∈ Rn1 is the agent’s lin-

ear velocity, vi,a ∈ Rn2 is the agent’s angular velocity, fi(xi, vi) ∈ Rn is the unknown

continuous system dynamics, ui ∈ Rn is the control input, gi ∈ Rn×n is the known cou-

pling matrix for the control input, di ∈ Rn is the mismatched disturbance and w̄i ∈ Rn

is the matched disturbance. The parameters mentioned above satisfy the conditions

that n1 ≥ 2, n2 ≥ 0 and n1 + n2 = n.

Define wi = fi(xi, vi) + w̄i to be the overall matched uncertainty of the ith agent, then

we have the simplified version of (3.1) as follows:ẋi = vi + di

v̇i = giui + wi, i = 1, 2, . . . , N
(3.2)

Accordingly, we have the following cluster expression:ẋ = v + d

v̇ = gu + w
(3.3)

where

x = [xT
1 , xT

2 , . . . , xT
N]

T ∈ RnN×1, v = [vT
1 , vT

2 , . . . , vT
N]

T ∈ RnN×1, d = [dT
1 , dT

2 , . . . , dT
N]

T

g = diag{g1, g2, . . . , gN}, u = [uT
1 , uT

2 , . . . , uT
N]

T, w = [wT
1 , wT

2 , . . . , wT
N]

T

Definition 3.1. (Lewis et al. 2013) Consider a state vector X ∈ Rn, suppose there is a cor-

related continuous Lyapunov function V(X). Then the vector X is said to be UUB if V(X)

satisfies V(X) = 0 only when ∥X∥ = 0, and there exists a positive boundary bX and a time

tX(X(t0), bX) such that ∥V(X)∥ ≤ bX for all t ≥ t0 + tX, where t0 is the initial time and

X(t0) is the initial value of X.
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Lemma 3.1. (Lewis et al. 2013) Consider a positive definite function V(X), if there is a pos-

itive boundary bX such that V̇(X) is expected to remain negative when ∥X∥ > bX, then the

uniform ultimate boundedness of the state X is guaranteed.

The desired position for the ith agent is specified as xdi ∈ Rn (i = 1, 2, . . . , N), where xdi

is continuous and differentiable. The main goal of the to be proposed control scheme

is to ensure the uniform ultimate boundedness of the ith agent’s formation tracking

error, which is specified as

lim
t→∞
||xi(t)− xdi(t)|| ≤ ν

g
δ , i = 1, 2, . . . , N (3.4)

where ν
g
δ is a small positive constant.

The communication topology of system (3.3) is given as a directed graph (see Section

2.3) and the following assumptions are made:

Assumption 3.1. The formation reference vector xdi for the ith agent is second-order differen-

tiable and its time derivatives ẋdi and ẍdi are bounded and known.

Assumption 3.2. (Shtessel et al. 2007) For the above mentioned second-order agents, suppose

both the mismatched uncertainty di and matched uncertainty wi are bounded and differentiable.

Also, the uncertainties ḋi and ẇi have Lipschitz constants βi,d and βi,w, respectively.

3.3 Artificial potential fields

To achieve the goal of obstacle avoidance, APFs are employed in this chapter to offer

high potential to each obstacle, which can further generate the repulsive forces to drive

the agents away from the obstacles.

The operating space of the MAS contains No fixed obstacles. Each obstacle can be

described as an element of the set O = {(po,k, ro,k), k = 1, 2, . . . , No}, where po,k denotes

the Cartesian position of the centre of the kth obstacle, and ro,k is the radius of the kth

obstacle. Without the loss of generality, the obstacle avoidance problem is discussed

on the basis of two-dimensional space in latter parts, if not stated otherwise.

Define zi,k to be the relative position vector between the ith agent and the kth obstacle

that can be expressed as:

zi,k = xi,p − po,k =
−−−→po.kxi,p
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Assumption 3.3. In this chapter, each agent can be modelled as a circle and the radius of the

ith agent is expressed as ra,i, where i = 1, 2, . . . , N.

Now, we define the repulsive potential function Φ(∥zi,k∥) between the ith agent and

the kth obstacle as follows:

Definition 3.2. (Wen et al. 2017) The potential function Φ(∥zi,k∥) is a nonnegative, differen-

tiable and monotonically decreasing function that satisfies the following conditions

1. Φ(∥zi,k∥) → +∞ when ∥zi,k∥ → ri,k, where ri,k = ϵ1(ra,i + ro,k) is the minimal safe

distance between the centre of the ith agent and the centre of the kth obstacle, and ϵ1 is a

constant that satisfies ϵ1 > 1.

2. Φ(∥zi,k∥) → 0 when ∥zi,k∥ → ri,k, and Φ(∥zi,k∥) = 0 when ∥zi,k∥ ≥ ri,k, where

ri,k = ϵ2(ra,i + ro,k) represents the outer edge of the artificial potential field, and ϵ2 is a

constant that satisfies ϵ2 > ϵ1.

Assumption 3.4. The information set (po,k, ro,k) of the kth obstacle is known or can be obtained

from detection when ∥zi,k∥ ≥ ri,k.

Define the total potential function for the ith agent as

Φi =
No

∑
k=1

Φ(∥zi,k∥) (3.5)

The repulsive force between the ith agent and the kth obstacle is obtained as the nega-

tive gradient of the potential function Φ(∥zi,k∥) as follows:

fi,k = −∇zi,k Φ(∥zi,k∥) = −∇xi,p Φ(∥zi,k∥)

Then the combined repulsive force fi which is applied to the ith agent is given as

fi =
No

∑
k=1

fi,k = −
No

∑
k=1
∇zi,k Φ(∥zi,k∥) (3.6)

Remark 3.1. To offer additional safety, the parameter is chosen with the condition of ϵ1 > 1.

Hence, if the norm of the distance vector zi,k is guaranteed to be larger than ri,k, then the

collision between the ith agent and the kth obstacle can be sufficiently avoided.
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3.4 Robust formation control with reference correction

3.4.1 Observer-based sliding mode formation controller

By the definition of δxi and δvi in Chapter 2, we have the reference tracking error dy-

namics of the system (3.3) as δ̇x = δv + d

δ̇v = −ẍd + gu + w

To estimate the matched and mismatched uncertainties, the FTDO structure (Yang et al.

2013) is implemented:

γ̇i,1 = νi,1 + vi, γ̇i,2 = νi,2, γ̇i,3 = νi,3, γ̇i,4 = νi,4 + giui, γ̇i,5 = νi,5, γ̇i,6 = νi,6

νi,1 = −αi,1β
1
3
i,dsgn

2
3 (γi,1 − xi) + γi,2, νi,2 = −αi,2β

1
2
i,dsgn

1
2 (γi,2 − νi,1) + γi,3

νi,3 = −αi,3βi,dsgn(γi,3 − νi,2), νi,4 = −αi,4β
1
3
i,wsgn

2
3 (γi,4 − vi) + γi,5

νi,5 = −αi,5β
1
2
i,wsgn

1
2 (γi,5 − νi,4) + γi,6, νi,6 = −αi,6βi,wsgn(γi,6 − νi,5)

x̂i = γi,1, d̂i = γi,2, ̂̇di = γi,3, v̂i = γi,4, ŵi = γi,5, ̂̇wi = γi,6

(3.7)

where d̂i and ŵi are the estimation value for the ith agent’s matched and mismatched

uncertainties di and wi, respectively, and the expression of sgn(·) is as explained in

Section 2.4.1.

Then define the uncertainty observation errors of the ith agent asd̃i = d̂i − di

w̃i = ŵi − wi

(3.8)

To facilitate the controller design, define the local mismatched uncertainty sum edi and

the local mismatched uncertainty observation sum êdi for agent i as follows:
edi =

N

∑
j=1

aij(di − dj) + bidi =
N

∑
j=1

lijdj + bidi

êdi =
N

∑
j=1

aij(d̂i − d̂j) + bid̂i =
N

∑
j=1

lijd̂j + bid̂i

(3.9)
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If define ed = [eT
d1, eT

d2, . . . , eT
dN]

T and êd = [êT
d1, êT

d2, . . . , êT
dN]

T to act as the cluster expres-

sion, we then have ed = (L + B)⊗ Ind

êd = (L + B)⊗ Ind̂

Based on the definition of local errors (2.12), the local formation tracking error dynam-

ics is further obtained as ėx = ev + ed

ėv = (L + B)⊗ In(−ẍd + gu + w)

To ensure the sliding motion with the existence of mismatched uncertainties, define

the modified sliding surface for the ith agent as

si = evi + êdi + λiexi (3.10)

where λi is a positive constant.

Accordingly, if define S = [sT
1 , sT

2 , . . . , sT
N]

T, then the time derivative of the modified

sliding variable is obtained as

Ṡ = ėv + ˙̂ed + Λ⊗ In ėx

= (L + B)⊗ In(δ̇v +
˙̂d + Λ⊗ Inδ̇x)

= (L + B)⊗ In(−ẍd + gu + w + ˙̂d + Λ⊗ In(δv + d))

where Λ = diag{λ1, λ2, . . . , λN}.

Define ∆ri,k = ri,k − ri,k to represent the width of the potential field, then the artifi-

cial potential function between the ith agent and the kth obstacle is chosen as follows

according to Definition 3.2:

Φ(∥zi,k∥) =


α

(
ln
(∥zi,k∥ − ri,k

∆ri,k

)
+

ri,k − ∥zi,k∥
∥zi,k∥ − ri,k

)
, ∥zi,k∥ ∈ (ri,k, ri,k]

0, otherwise
(3.11)

where α is a positive constant.

By using the chain rule of calculus, the repulsive force generated by the artificial po-

tential field is obtained as the following equation:

fi,k =


α

ri,k − ∥zi,k∥
(∥zi,k∥ − ri,k)

2
zi,k

∥zi,k∥
, ∥zi,k∥ ∈ (ri,k, ri,k]

0, otherwise
(3.12)
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Based on the previous analysis related to the APF (3.12), disturbance observer (3.7) and

modified sliding variable (3.10), the proposed distributed observer based sliding mode

formation controller is designed as

ui = g−1
i (−cisi − ŵi − ̂̇di − λiδvi − λid̂i − δxi + ẍdi + Fi) (3.13)

where Fi = [ f T
i , 01×n2 ]

T and ci ∈ R+.

Remark 3.2. The artificial potential function is chosen as (3.11) so that the potential function

Φ(∥zi,k∥) and the norm ∥ fi,k∥ will achieve 0 simultaneously when ∥zi,k∥ = ri,k, which further

ensures the continuity of both functions.

Remark 3.3. In terms of the usage of the APF, it is not necessary to illustrate the APF function

(3.11) because it will not be directly used during the controller design. With Assumption 3.4

guaranteeing that the essential knowledge of the obstacles can be obtained forehand, a simpler

way to implement APF is to calculate the repulsive force regarding each obstacle as (3.12) and

perform summation as (3.6) to obtain Fi that acts as the overall repulsive force for the ith agent.

3.4.2 Reference correction algorithm

During a formation control process, the position reference distributed to each agent

can be unreachable when the agent is expected to encounter collision with obstacles at

the very position, which can lead to the problem of unreachable references.

To simplify the discussion by treating each agent as a point, we define the circle centred

in po,k with the radius of ri,k to be the inner boundary of the kth obstacle’s potential

field regarding the ith agent, and the circle centred in po,k with the radius of ri,k to be

the outer boundary of the kth obstacle’s potential field regarding the ith agent. Now,

we are ready to give a clear definition of the unreachable reference scenarios as follows:

Definition 3.3. Consider a plane that contains the ith agent and the kth obstacle (see Figure

3.1), the tangents of the inner boundary of the obstacle’s potential field that go through the

centre of the agent can separate the plane into five regions: a (beyond the intersection angle

of tangents), b (within tangents intersection angle and in the opposite direction of obstacle), c

(within tangents intersection and between the agent and obstacle), d (within the inner radius

of APF) and e (within tangents intersection and behind the obstacle). If the current desired

position of the agent lies in regions d and e, then the current position reference is considered to

be unreachable.
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X

Y

O

Obstacle k

a

b

c

d
e

Agent i
a

i,kr-

Figure 3.1. Unreachable reference scenarios.

Assumption 3.5. For the ith agent, the outer boundaries of the obstacles’ artificial potential

fields do not overlap, the initial position of each agent does not lie inside the inner boundaries of

the potential fields, and the given position reference vector xdi does not permanently stay inside

the inner boundaries of the potential fields.

Different from the obstacle avoidance of independent systems, the effect of commu-

nications among agents needs to be considered for the obstacle avoidance of MASs.

According to (2.12) and (3.10), the local formation tracking error and sliding variable

of the ith agent are affected by the reference tracking errors of both itself and the agents

whose information is accessible. Therefore, if one agent suffers from the unreachable

reference scenario and has to move away from the reference trajectory to avoid colli-

sion with an obstacle, the agents that have access to its current state will perform pas-

sive corrections and move away from the desired trajectories to decrease the values of

variables defined in (2.12) and (3.10), which can jeopardise the system’s performance.

Hence, a distributed reference correction algorithm is proposed in this section to atten-

uate the passive correcting behaviours caused by the unreachable reference issue and

avoid the local minima problem when the agent faces single obstacle. The detailed

steps of the algorithm are illustrated in Algorithm 1. To sum up, the controller design

of the reference correction algorithm based sliding mode controller can be illustrated

by Figure 3.2, where i = 1, 2, . . . , N.

Remark 3.4. The purpose of making Assumption 3.5 is to rule out the local minima issue that

is caused by multiple obstacles. Furthermore, it also ensures that the reference trajectories for

agents will not stay unreachable.
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Figure 3.2. RCA-based robust controller.

Algorithm 1: Reference correction algorithm
Input: xpi,O,xdi,ẋdi,ẍdi

Output: xdi,ẋdi,ẍdi

ko
i = 0 ;

k = arg mink ∥
−−−→xp,i po,k∥ ;

if ∥−−−→xp,i po,k∥ ∈ (ri,k, ri,k] then

if sin(< −−−→xpi po,k,−−−→xpixdi >)∥−−−→xp,i po,k∥ ∈ [0, ri,k] & cos(< −−−→xpi po,k,−−−→xpixdi >) ≥ 0 then

if
√
∥−−−→xpi po,k∥2 − r2

i,k ≤ ∥
−−−→xpixdi∥ or ∥−−−→xdi po,k∥ ≤ ri,k then

Find the kth obstacle’s inner boundary’s tangent that crosses xpi;

Find the tangent Ti that has a point xc that minimize the value of ∥−−→xdixc∥;
xdi ← xc ;

Obtain the projection of ẋdi and ẍdi on tangent Ti: Ẋdi and Ẍdi ;

ẋdi ← Ẋdi ;

ẍdi ← Ẍdi ;

ko
i = k ;

end

end

end

Return xdi, ẋdi, ẍdi ;
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3.4.3 Stability analysis of the algorithm-and-observer-based scheme

Before presenting the stability analysis for the proposed control scheme, it is necessary

to first recall the following useful results:

Lemma 3.2. (Li et al. 2018) If a given agent’s state will not cross the inner boundary of any

obstacle’s potential field, then its total potential function (3.5) can be considered to be bounded

throughout the tracking control process.

Lemma 3.3. (Yang et al. 2013) For a second-order system with mismatched uncertainties, if

the disturbance observer is designed in the form given in (3.7), then the observation errors that

were defined in (3.8) will converge to zero within a finite time to.

Now, we are ready to present the main result of this chapter.

Theorem 3.1. Consider a second-order MAS (3.3) affected by both matched and mismatched

uncertainties, where Assumptions 3.1-3.5 hold. By the artificial potential field (3.11), the RCA

(Algorithm 1), the finite-time disturbance observer (3.7) and the distributed control law (3.13),

the sliding variable S, the local formation tracking error ex, and the position tracking error δx

are all UUB.

Proof. The proof contains two parts, the first part illustrates that each agent is able to

avoid the collision with any given obstacle with the existence of both mismatched and

matched uncertainties, while the uniform ultimate boundedness of the system states

are proved in the second part.

Part 3.1.1. In this part, the effectiveness of obstacle avoidance is analysed between the

ith agent and the kth obstacle. The same result can also be extended to the other cases.

Construct an energy Lyapunov function as the following equation regarding the ith

agent and the kth obstacle:

Vi,k =
1
2

zT
i,kzi,k +

1
2

vT
i vi

Then its time derivative is expressed as

V̇i,k = zT
i,k ẋpi + vT

i v̇i

= zT
i,k(vpi + dpi) + vT

i (−c̄si − ŵi − ˙̂di − λiδvi − λid̂i − δxi + ẍdi + Fi + wi)

= zT
i,k(vpi + dpi)− c̄vT

i si − vT
i (w̃i − ẍdi +

˙̂di + λid̂i)− vT
i (λiδvi + δxi) + vT

i Fi
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= zT
i,k(vpi + dpi)− c̄vT

i si − vT
i (w̃i − ẍdi +

˙̂di + λid̂i)− vT
i (λiδvi + δxi) + vT

pi fi,k

Since the formation reference is continuous and bounded, terms including zT
i,k(vpi +

dpi), c̄vT
i si, vT

i (w̃i − ẍdi +
˙̂di + λid̂i), and vT

i (λiδvi + δxi) are all bounded. Thus, if the ith

agent is moving toward the kth obstacle, the agent can be considered as moving toward

the gradient direction of the potential function Φ(∥zi,k∥). According to Definition 3.2,

we can obtain that if ∥zi,k∥ → ri,k, vT
pi fi,k → +∞. Therefore, the following inequality

sufficiently holds if the ith agent is about to collide into the kth obstacle:

vT
pi fi,k >− zT

i,k(vpi + dpi) + c̄vT
i si + vT

i (λiδvi + δxi)− vT
i (w̃i + ẍdi +

˙̂di + λid̂i)

+
ηv

2
zT

i,kzi,k +
ηv

2
vT

i vi

where ηv is a positive number which is big enough. Based on the above condition, the

following equation can be obtained:

V̇i,k > ηvVi,k

Hence, we obtain the following equation

∥zi,k∥2 > 2eηv(t−tc)Vi,k(tc)− ∥vi∥2

where tc represents the time when the agent i is about to have collision with the kth

obstacle.

With ηv being a positive number that is big enough, the condition ∥zi,k∥ > ri,k is guar-

anteed. By Lemma 3.2, we also get that both the potential function Φ(∥zi,k∥) and the

norm ∥Fi∥ of the ith agent remain bounded throughout the formation tracking process.

Part 3.1.2. Choose the Lyapunov candidate as the following equation:

V2,1 =
1
2

STP⊗ InS +
1
2

eT
x P⊗ Inex

The time derivative of the Lyapunov candidate is given as

V̇2,1 = STP⊗ InṠ + eT
x P⊗ In ėx

= ST[P(L + B)]⊗ In[δ̇v +
˙̂d + Λ⊗ In(d̂ + δv)] + eT

x P⊗ In(S− êd −Λ⊗ Inex + ed)

= eT
x P⊗ InS + ST[P(L + B)]⊗ In[−ẍd + gu + w + ˙̂d + Λ⊗ In(d̂ + δv)]

− eT
x [P(L + B)]⊗ Ind̃− eT

x (PΛ)⊗ Inex
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By Lemma 2.3, the following alternative expression of V̇2,1 is obtained:

V̇2,1 = −1
2

ST(CQ)⊗ InS− eT
x (PΛ)⊗ Inex +

1
2

STQ⊗ In(F + w̃)− 1
2

eT
x Q⊗ Ind̃

≤ −
[
∥ex∥ ∥S∥

] [σ(P)σ(Λ) 0

0 1
2 σ(CQ)

] [
∥ex∥
∥S∥

]

+
[

σ(Q)
2 ∥d̃∥

σ(Q)
2 (∥F∥+ ∥w̃∥)

] [∥ex∥
∥S∥

] (3.14)

where C = diag{c1, c2, . . . , cN}.

By Lemma 3.3, if the parameters of the disturbance observer are chosen properly, then

the observation errors w̃ and d̃ will converge to zero within the finite time of to. There-

fore, (3.14) can be rewritten as follows when t > to:

V̇2,1 ≤ −
[
∥ex∥ ∥S∥

] [σ(P)σ(Λ) 0

0 1
2 σ(CQ)

] [
∥ex∥
∥S∥

]
+
[
0 σ(Q)

2 ∥F∥
] [∥ex∥
∥S∥

]
(3.15)

Define

H2,1 =

[
σ(P)σ(Λ) 0

0 1
2 σ(CQ)

]
, h2,1 =

[
0 σ(Q)

2 ∥F∥
]

, χ2,1 =

[
∥ex∥
∥S∥

]

then (3.15) is rewritten as

V̇2,1 ≤ −χT
2,1H2,1χ2,1 + h2,1χ2,1

When every agent is outside the outer APF boundary of each obstacle, the combination

of the repulsive forces for the ith agent will remain Fi = 0(i = 1, 2, . . . , N). Then one

has

V̇2,1 ≤ −χT
2,1H2,1χ2,1 ≤ −c̄V2,1 (3.16)

where c̄ = 2σ(H2,1)/σ(P). Hence, both ex and S are expected to converge exponen-

tially after time to when there are no obstacles to avoid.

Otherwise when ∥F∥ ̸= 0, the time derivative of the Lyapunov function V̇2,1 will re-

main negative when ∥χ2,1∥ > δ(h2,1)/δ(H2,1). Therefore, we can get that

∥ex∥ ≤ ∥χ∥ ≤
σ(Q)FM

min(2σ(P)σ(Λ), σ(CQ))

∥S∥ ≤ ∥χ∥ ≤ σ(Q)FM

min(2σ(P)σ(Λ), σ(CQ))
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where ∥F∥ ≤ FM and FM ∈ R+. Thus, both S and ex are bounded. Based on (2.12), we

have

∥ex∥ ≥
σ(Q)

2σ(P)
∥δx∥ (3.17)

which further leads to the following equation:

∥δx∥ ≤
2σ(P)
σ(Q)

∥ex∥ ≤
2σ(Q)σ(P)FM

min(2σ(P)σ(Λ), c̄σ(Q))σ(Q)

By Lemmas 3.1, δx, ex and S are UUB within the following regions, respectively:

Ω1
δ =

{
δx

∣∣∣∣∥δx∥ ≤
2σ(Q)σ(P)FM

min(2σ(P)σ(Λ), c̄σ(Q))σ(Q)

}
Ω1

e =

{
ex

∣∣∣∣∥ex∥ ≤
σ(Q)FM

min(2σ(P)σ(Λ), σ(CQ))

}
Ω1

S =

{
S
∣∣∣∣∥S∥ ≤ σ(Q)FM

min(2σ(P)σ(Λ), σ(CQ))

}
which completes the proof.

3.4.4 Simulation results and discussion

To illustrate the effectiveness of the proposed sliding mode controller design (3.13),

simulations based on a multi-ODR system is conducted.

Consider the three-wheel ODR mentioned in Chapter 2, we can make some simpli-

fications based on the model in (2.17) to get the following second-order dynamics

(Fei et al. 2021b): ẋi = vi + di

v̇i = MiTs(θi, Ri)ui + wi

where xi = [px
i , py

i , θi]
T, Mi = diag{1/mi, 1/mi, 1/Ii}, mi is the mass of the robot, Ii is

the inertia of the robot, ui = [F1
i , F2

i , F3
i ]

T is the force vector of the three motors, and

Ri is the radius of the robot. The system contains five heterogeneous omni-directional

robots, whose model parameters and initial states are given in Table 3.1.

The communication topology of the multi-robot system is chosen as the one shown

in Figure 3.3 so that ODRs can have in-degrees of one, two and three for the sake of

diversity.
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Table 3.1. Parameters and initial states of ODRs with mismatched disturbances.

Robot number Model parameters Initial states

mi(kg) Ri(m) Ii(kg ·m2) px
i (m) py

i (m) θi(rad)

1 4.8 0.24 0.15 0 0.8 π/6

2 4.5 0.23 0.12 −1.3 1.4 π/3

3 5.5 0.30 0.25 −1.4 −1.2 −π/4

4 5.3 0.28 0.21 0 −0.6 −π/6

5 5.0 0.25 0.15 0.8 0.3 π/4

1

2

5

4

3

Figure 3.3. Communication topology of the multi-ODR cluster.

The formation pattern is chosen as a time-varying circular formation (each ODR moves

in a sine-wave trajectory while the relative distance between each pair of ODRs stays

the same to form a radial-fixed circle), which can be abstracted as:

xdi =

[
3
2

cos
(

2i
5

π

)
+

3
20

t,
3
2

sin
(

2i
5

π

)
+ sin

(
3
10

t
)

, 0
]T

, i ∈ [1, 5] (3.18)

The matched and mismatched nonlinear uncertainties are chosen as the following

equations, respectively

di =

[
3

10
sin
(

t +
i
5

π

)
+

1
5

,
1
10

cos
(

3
2

t +
i
4

π

)
+

1
5

,
1
5

sin
(

6
5

t +
i
3

π

)
+

1
10

]T

wi =

[
1
2

sin
(

3
2

t +
i
4

π

)
+ 2,

3
5

sin
(

2t +
i
3

π

)
+

3
2

,
1
2

sin
(

4
5

t +
i
5

π

)
+ 1
]T

The parameters for the finite time disturbance observer are chosen as αi,1 = 4, αi,2 = 8,

αi,3 = 4, αi,4 = 6, αi,5 = 12, αi,6 = 6, βi,d = 0.7 and βi,w = 5 for i ∈ [1, 5]. The parameter

values for the APF are set as ϵ1 = 1.1 and ϵ2 = 2, respectively. The parameters in

the sliding mode controller (3.13) are chosen as ci = 2 and λi = 2 for i ∈ [1, 5]. Two
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3.4.4 Simulation results and discussion

obstacles are chosen and their corresponding information is given as po,1 = [2.9, 2.0],

po,2 = [1.8,−1.6], ro,1 = 0.3 and ro,2 = 0.25.

The reference tracking errors and sliding variables of all ODRs are shown in Figures

3.4 and 3.5, respectively, where the boundedness of each ODR’s position tracking error

and sliding variable is illustrated.

Figure 3.4. Reference tracking errors of the RCA-based robust controller.

Two snapshots of the system formation status are given in Figure 3.6. It is clear that

when the outputs of disturbance observer are stabilised and there are no obstacles to

avoid, the position reference tracking errors and sliding variables of all five ODRs will

converge to a small neighbourhood around zero.

Chattering phenomenons are observed in each ODR’s position tracking error and slid-

ing variable during obstacle avoidance procedure. One main reason is that the pro-

posed reference correction algorithm might provide reference points with relatively

large distance between each control iteration comparing with the given reference ẋdi.

Such problem can be considered as a future aspect to work on to improve the perfor-

mance of the algorithm.

Alternatively, after conducting a comparison between the results of ODR two and ODR

four, it is found out that as the distance between the reference trajectory and the centre

of the obstacle decreases, the chattering phenomenon appears to be more severe.
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Chapter 3 Robust Formation Control with Obstacle Avoidance

Figure 3.5. Sliding variables of the RCA-based robust controller.

Figure 3.6. Trajectories of individual ODRs (RCABSMC).

Moreover, for a trajectory that enters the inner boundary of one obstacle’s potential

field, the smaller the distance between the entrance point (where trajectory enters the

boundary) and the exit point (where trajectory leaves the boundary) is, the more obvi-

ous the chattering is. Specifically, for the sine wave references that we use during this

simulation, more chattering can be observed for those that have to avoid obstacles on

wave peak or valley (see ODRs two and three) comparing with the one that needs to

avoid the obstacle in somewhere between the peak and valley (see ODR four).
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3.4.4 Simulation results and discussion

Apart from that, no collisions are observed between any pair of ODR and obstacle ac-

cording to the trajectories of each ODR in Figure 3.6, indicating that the goal of obstacle

avoidance is fulfilled.

To test whether the proposed reference correction algorithm can attenuate the passive

corrections in the system, define a scalar ∆i to be the absolute position reference track-

ing error of the ith ODR as

∆i =
∫ tn

0
∥δxi(τ)∥1dτ (3.19)

where tn represents the current time.

Then we are able to compare the performance of the robust SMC scheme (3.13) and the

reference correction algorithm based sliding mode controller (RCABSMC). The com-

parisons in the absolute reference tracking error ∆i are illustrated in Figure 3.7.

Figure 3.7. Comparison of absolute position reference tracking errors.

Meanwhile, the trigger flag ko
i of the ith ODR’s reference correction algorithm is also

given in Figure 3.8 to justify that the RCA works during the formation tracking process.

For ODRs that do not need to avoid obstacles (see ODR one and ODR five), remarkable

declines can be observed in their absolute position reference tracking error, meaning

the passive correction phenomenon is attenuated. Similar trends is also spotted for the

ODRs that are involved in obstacle avoidance (see ODRs two, three and four).
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Chapter 3 Robust Formation Control with Obstacle Avoidance

To sum up, the stability of the sliding mode controller (3.13) and the performance of

the reference correction algorithm (Algorithm 1) are both proved.

Figure 3.8. RCA flags of ODRs 1-5.

3.5 Chapter summary

In this chapter, the formation control problem for nonlinear second-order MASs with

issues including mismatched uncertainties and obstacle avoidance is considered. Slid-

ing mode surface is first updated to ensure cooperative error convergence with mis-

matched disturbances. A novel observer-based SMC scheme is then proposed to en-

sure the uniform ultimate boundedness of the position tracking error and sliding vari-

able of each agent. APFs are also implemented to drive agents away from obstacles.

A distributed reference correction algorithm is also proposed to deal with the newly

defined unreachable reference scenario and its related passive correcting phenomenon.

The stability of the proposed control scheme and the validity of the obstacle avoidance

scheme are illustrated by both the Lyapunov stability theory and numerical simula-

tions. The effectiveness of the proposed reference correction algorithm is also demon-

strated by the comparative studies conducted based on the absolute reference tracking

error.

In the next chapter, the collision avoidance issue will be investigated for a class of

MASs with limited information. A new neural-based observer is developed to estimate

the unknown velocity and the system uncertainty simultaneously to further construct

a robust formation control scheme. An observer-based collision-free control scheme is

further proposed to achieve robust formation control.
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Chapter 4

Robust Formation Control
with Limited Information

ALTHOUGH the sliding mode technique is a popular choice to ensure

the robustness of the system performance, most of the controller de-

signs are based on the assumption that the controller can gain access to all

the system states and the reference states. Therefore, it is necessary to dis-

cuss the feasibility of designing a sliding mode controller when only part

of the necessary information is available. In this chapter, an observer-based

formation controller is proposed for second-order multi-agent systems with

limited information to ensure both the convergence of the system’s track-

ing error and the boundedness of the relative distance between each pair

of agents. First, two new finite-time neural-based observer designs are in-

troduced to estimate both the agent velocity and the system uncertainty.

The sliding mode differentiator is then employed for every agent to ap-

proximate the unknown derivatives of the formation reference to further

construct the limited-information-based sliding mode controller. To en-

sure that the system is collision-free, artificial potential fields are introduced

along with a time-varying topology. An example of a multiple robot system

is used to conduct numerical simulations, and necessary comparisons are

made to justify the effectiveness of the proposed limited-information-based

control scheme.
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Chapter 4 Robust Formation Control with Limited Information

4.1 Introduction

According to the concept of MASs, each intelligent agent within the system shall pos-

sess the ability to sense, make decision and actuate. In practice, the implementation of

MASs usually involves the development of real-time and embedded systems such as

intelligent rovers (Sharma et al. 2021) that only contains a limited amount of resources

(such as space, weight, computational power, etc.). Hence, it is hard to expect that ev-

ery agent can be equipped with enough number of sensors to acquire its own system

states, and how to maintain the robustness of the system with limited system informa-

tion becomes one problem worthy of investigation.

Various robust control methods have been proposed to ensure system stability when

uncertainty exists. A Q-learning-based approach was proposed by Radac and Lala

to perform optimal robust control for nonlinear systems (Radac and Lala 2020). An

observer based H∞ approach (Li et al. 2018) was presented for a class of quantised net-

worked control systems to ensure robustness with the existence of randomly occurring

uncertainties. For second order systems, SMC (Lin et al. 2019, Chu et al. 2019, Fei et al.

2020) is one popular method to achieve fast error convergence and maintain system

robustness.

Global sliding mode scheme (Chu et al. 2019) was used with a recurrent NN to per-

form adaptive control for dynamic systems. An adaptive dynamic SMC scheme was

proposed by Fei et al. to regulate system formations (Fei et al. 2020). However, most

results are inapplicable if either system states or state references are not completely

known, leading to a lack of robustness. Hence, how to perform SMC with limited

information in both system states and their references becomes one big gap to fill.

For practical systems with restricted sensing capabilities, observers (Hu and Jiang 2017,

Yu et al. 2019) are usually employed to estimate the inaccessible system states. ESOs

were implemented by Yu et al. to approximate the uncertainties of followers and the

unknown control input of the leader for the formation tracking of high-order MASs

(Yu et al. 2019). A type of observer was constructed for rigid spacecrafts to achieve

finite-time convergence of the estimation error (Hu and Jiang 2017). However, ob-

servers with similar structure are only capable to approximate energy-bounded uncer-

tainties, and the high gain design is hard to realise for practical implementations.
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To face the aforementioned issues, the idea of neural-based observer was first brought

up by Kim et al., where a dynamic recurrent neural-based observer was developed

(Kim et al. 1997). radial basis function NNs were then used by Chen et al. to build

up adaptive observers to perform backstepping control (Chen et al. 2017). Currently,

one unsolved challenge for the neural-based observer is that no existing design can

guarantee finite-time characteristics.

With part of the necessary system information being unknown, there is a high chance

that agents will collide into each other before the control input is stabilised. Therefore,

collision avoidance techniques are essential to avoid inter-agent collisions. For ideal

and completely known systems, the dynamic window approach (Lee et al. 2021) is

commonly used to generate smooth and optimal trajectories for robots. However, mo-

tion control approaches such as APF (Sharma et al. 2021) are more suitable for systems

with uncertainties.

A collision-free consensus algorithm was proposed for autonomous underwater ve-

hicles with static communication topology (Li and Wang 2013). The problem of con-

nectivity assurance was further considered along with collision avoidance issue by

Sharma et al. for a group of mobile robots (Sharma et al. 2021). However, such results

are far from satisfactory because potential collisions are still expected for agent pairs

without direct communication if the system topology is assumed to be static. Hence,

how to ensure that every agent pair is collision-free becomes an important issue.

Motivated by the above discussions, the following issues are investigated in this chap-

ter:

1. How to estimate the unknown agent velocity and the system uncertainty simul-

taneously?

2. How to construct a sliding mode controller when the velocity reference is un-

known to each agent?

3. How to ensure that an arbitrary pair of agents are collision free when each agent

is affected by the above unknown factors?

The contents in this chapter are organised as follows. The system modelling of a class

of nonlinear MASs with limited information and the problem formulation are given
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in Section 4.2. A brief introduction about the distance-related communication topol-

ogy, the radial basis function NN estimation and the inter-agent APF construction is

given in Section 4.3. The development of the finite-time neural-based observers and

the limited-information-based sliding mode formation controller are presented in Sec-

tion 4.4, where numerical simulation results are given to illustrate the effectiveness of

the proposed control scheme. The final conclusions are drawn in Section 4.5.

4.2 System modelling and problem formulation

Consider a group of nonlinear agents with second-order dynamics that is written asẋi = vi

v̇i = fi(xi, vi) + giui + w̄i, i = 1, 2, . . . , N
(4.1)

where xi = [xT
i,p, xT

i,a]
T ∈ Rn is the observable position information, vi = [vT

i,p, vT
i,a]

T ∈
Rn is the inaccessible velocity information, xi,p ∈ Rn1 is the agent’s coordinates in

the global frame, xi,a ∈ Rn2 is the agent’s angular status, vi,p ∈ Rn1 is the agent’s linear

velocity, vi,a ∈ Rn2 is the agent’s angular velocity, fi(xi, vi) ∈ Rn is the unknown system

dynamics, w̄i ∈ Rn is the external disturbance, gi ∈ Rn×n is the known nonlinear

control gain matrix and ui ∈ Rn represents the control input. The aforementioned

parameters satisfy the conditions that n1 ≥ 2, n2 ≥ 0, and n1 + n2 = n. If define wi =

fi(xi, vi) + w̄i to represent the overall uncertainty, (4.1) has the following alternative

form: ẋi = vi

v̇i = giui + wi, i = 1, 2, . . . , N
(4.2)

Similar to the discussion we had in Chapter 3, the cluster dynamics is obtained asẋ = v

v̇ = gu + w
(4.3)

where

x = [xT
1 , xT

2 , . . . , xT
N]

T, v = [vT
1 , vT

2 , . . . , vT
N]

T

w = [wT
1 , wT

2 , . . . , wT
N]

T, g = diag{g1, g2, . . . , gN}
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The position reference for the ith agent is illustrated as xdi ∈ Rn (i = 1, 2, . . . , N). The

aim of this chapter is to provide a robust formation controller that can achieve the semi-

global uniform ultimate boundedness of each agent’s position tracking error, which is

specified as

lim
t→∞
||xi(t)− xdi(t)|| ≤ νs

δ, ∀xi(t0) ∈ Ωx, i = 1, 2, . . . , N (4.4)

The following assumption is made regarding the unified model (4.3):

Assumption 4.1. The ith agent can get access to its position reference. The norm ∥xdi −
xdj∥(j ∈ [1, N]) remains bounded. Furthermore, xdi is at least second-order differentiable

but its time derivatives are not directly provided to the agent. The variable ẍdi has a known

Lipschitz constant βi,x.

4.3 Preliminaries

4.3.1 Distance-related communication topology

In this chapter, the communication topology of the MAS is described by a time-varying

weighted directed graph G = {R(G), E(G),A(G)}, where R(G) = {r1, r2, . . . , rN} is

the set of nodes, E(G) ⊆ R× R represents the set of edges, andA(G) = [aij] ∈ RN×N is

the adjacency matrix with nonnegative elements. The overall communication graph G

consists of two subgraphs G1 and G2 that satisfyA(G) = A1 +A2, whereAk (k = 1, 2)

is the adjacency matrix for graph Gk. G1 is a static directed graph that represents the

distance-invariant communication topology and G2 is a time-varying graph that illus-

trates the information exchange achieved by limited range communication approaches.

We use terms ak
ji and ek

ji to represent the element in the jth row and ith column of

matrix Ak, and the directed edge from rj to ri in graph Gk for i, j ∈ [1, N], respectively.

We consider ak
ii = 0 for both subgraphs. In graph Gk, node rj is considered as the

neighbour of ri if and only if the directed edge ek
ji exists. The element a1

ji satisfies a1
ji = 1

if and only if the edge e1
ij exists. In G2, the edge e2

ij is built when the relative distance

between the node pair (ri, rj) is not larger than Rc if and only if e1
ij does not exist, which

leads to

a2
ji =

 f (∥zi,j∥), ∥zi,j∥ ≤ Rc , a1
ji = 0 and i ̸= j

0, otherwise
(4.5)
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where zi,j = xi,p − xj,p, Rc ∈ R+ represents the outer boundary of the distance-based

communication range and f (∥zi,j∥) is a continuous function whose value is contained

within the region of [0, 1].

The degree matrix D(G) of graph G is defined as D(G) = diag{∑N
j=1(a1

ij + a2
ij), i ∈

[1, N]}. The Laplacian matrix of the graph G is written as L(G) = D(G) − A(G).

Based on A = A1 + A2, we have D(G) = D1 +D2 and L(G) = L1 + L2, where Dk =

diag{∑N
j=1 ak

ij, i ∈ [1, N]} and Lk = Dk −Ak represent the degree matrix and Laplacian

matrix of graph Gk, respectively. Graph Gk is considered to be strongly connected if

there always exists a directed path from a given node ri to any other nodes in Gk.

Graph G1 is assumed to be static and strongly connected in this design.

Assumption 4.2. Matrix L2 and its time derivative L̇2 are bounded such that ∥L2∥F ≤ L1
M

and ∥L̇2∥F ≤ L2
M are satisfied simultaneously, where L1

M and L2
M are both positive constants.

Remark 4.1. The static communication graph G1 is constructed to ensure that the overall

topology G remains strongly connected, which further guarantees the robustness of the for-

mation tracking process. Instead of relying on static communication topology (Sharma et al.

2021), the distance-related communication topology G2 is defined so that each agent can obtain

necessary information of the nearby agents to avoid potential collisions.

4.3.2 Radius basis function neural networks

In this chapter, the radial basis function NN (Zheng et al. 2021) is implemented in the

state observer to approximate uncertain function wi:

wi = WT
i φ(Yi) + ϵi, i ∈ [1, N] (4.6)

where Yi ∈ Rm1 is the input vector of the radial basis function NN of the ith agent,

φ(Yi) = [φ1(Yi), φ2(Yi), . . . , φm(Yi)]
T ∈ Rm is the Gaussian activation function, Wi ∈

Rm×n is the optimal weight and ϵi is the network bias. The Gaussian activation func-

tion φ(Yi) is expressed as

φj(Yi) = exp
[−(Yi − dj)

T(Yi − dj)

µ2
G

]
, j = 1, 2, . . . , m (4.7)

where dj = [dj,1, dj,2, . . . , dj,m1 ]
T is the centre of receptive field and µG denotes the width

of the Gaussian function.
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The estimation procedure of the radial basis function NN is given as

ŵi = ŴT
i φ(Yi)

where Ŵi ∈ Rm×n is the estimated weight matrix. The following lemma concerning

radial basis function NNs is important for our later designs:

Lemma 4.1. (Zheng et al. 2021) When the approximated function wi is bounded, the esti-

mation error ϵi is expected to be bounded by a positive constant ϵM such that ∥ϵi∥ ≤ ϵM is

satisfied.

4.3.3 Artificial potential fields among agents

In this design, APFs are implemented for all agents so that they can avoid colliding into

each other. It is first assumed that the ith agent can be illustrated by a circle centred at

xpi with the radius of rai.

Now, we are ready to define the repulsive potential function Φ(∥zi,j∥) between the ith

and the jth agent as follows:

Definition 4.1. (Sharma et al. 2021) Φ(∥zi,j∥) is a nonnegative, differentiable and monoton-

ically decreasing function that satisfies:

1. Φ(∥zi,j∥) → +∞ when ∥zi,j∥ → ri,j, where ri,j = ϵ1(ra,i + ra,j) is the minimal safe

distance between the agent pair {i, j}, and ϵ1 is a constant that satisfies ϵ1 > 1.

2. Φ(∥zi,j∥) → 0 when ∥zi,j∥ → ri,j, and Φ(∥zi,j∥) = 0 when ∥zi,j∥ ≥ ri,j, where

ri,j = ϵ2(ra,i + ra,j) represents the outer boundary of the APF, and ϵ2 is a constant that

satisfies ri,j ∈ (ri,j, Rc] and ri,j < ∥xdi − xdj∥.

Based on the above discussion, the relationship between the APF and the limited range

communication is given as what is shown in Figure 4.1.

The repulsive force generated between the ith and the jth agents is obtained as the neg-

ative gradient of Φ(∥zi,j∥), and the repulsive force posed on the ith agent is obtained

as

fi,j = −∇zi,j Φ(∥zi,j∥)
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X

Y

O

Agent i

r-

r-Rc
i,k

i,k

Figure 4.1. Communication and APF ranges of the ith agent.

Then we have the combined repulsive force fi applied to the ith agent as

fi = ∑
j∈Ni

fi,j = − ∑
j∈Ni

∇zi,j Φ(∥zi,j∥)

where Ni is the neighbour set of the ith agent in graph G.

In this chapter, the potential function is chosen as

Φ(∥zi,j∥) =


αln(
∥zi,j∥ − ri,j

ri,j − ri,j
) + α

ri,j − ∥zi,j∥
∥zi,j∥ − ri,j

, for ∥zi,j∥ ∈ (ri,j, ri,j]

0, otherwise

(4.8)

Accordingly, the repulsive force is obtained as

fi,j =


α

ri,j − ∥zi,j∥
(∥zi,j∥ − ri,j)

2

zi,j

∥zi,j∥
, for ∥zi,j∥ ∈ (ri,j, ri,j]

0, otherwise

(4.9)

Remark 4.2. The outer boundary of the APF is chosen as ri,j ≤ Rc to ensure that necessary

position information is already obtained for each agent before generating the repulsive force fi.

The purpose of applying condition ri,j < ∥xdi − xdj∥ is that no redundant repulsive force is

generated to disturb the system formation.

4.4 Observer-based collision-free formation controller

The main results of this chapter include two parts, designs and analysis of the finite-

time neural-based observer are presented in Section 4.4.1, while the robust limited-

information-based sliding mode formation controller is illustrated in Section 4.4.2.
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4.4.1 Finite-time neural-based state observer design

4.4.1 Finite-time neural-based state observer design

Motivated by the previous neural-based observer design (Kim et al. 1997, Liu et al.

2013), we propose a finite-time neural-based state observer that can estimate both un-

known system state and disturbance for agents with second order dynamics (4.2) as ˙̂xi = v̂i + α1sgnβ1(xi − x̂i)

˙̂vi = α2sgnβ2(xi − x̂i) + giui + ŴT
i φ(Yi)

(4.10)

where x̂i ∈ Rn is the estimated position information, v̂i ∈ Rn is the estimated velocity

information, Yi = [xT
i , v̂T

i ]
T, α1, α2 ∈ R+ and β2 = 2β1 − 1 > 0. According to the

approximating properties of radial basis function NNs, we have the expression of the

estimation error as

w̃i = WT
i φ(Yi) + ϵi − ŴT

i φ(Yi) = W̃T
i φ(Yi) + ϵi (4.11)

where W̃i = Wi − Ŵi denotes the weight estimation error.

With x̃i = xi − x̂i and ṽi = vi − v̂i, we obtain the error dynamics of the neural-based

observer as follows:  ˙̃xi = ṽi − α1sgnβ1(x̃i)

˙̃vi = w̃i − α2sgnβ2(x̃i)
(4.12)

where the expression of sgn(·) is as explained in Section 2.4.1.

Define Z̄i = [sgnβ1(x̃T
i ), ṽT

i ]
T, then we are able to obtain the time derivative of the Z̄i as

˙̄Zi =

[
β1diag(|x̃i|β1−1)(−α1sgnβ1(x̃i) + ṽi)

−α2sgnβ2(x̃i)

]
+

[
0

w̃i

]
= Zi AoZ̄i + Bow̃i

where the following equations are applied:

Zi = diag([|x̃T
i |β1−1, |x̃T

i |β1−1]), Ao =

[
−α1β1 In β1 In

−α2 In 0n×n

]
, Bo =

[
0n×n

In

]

To ensure the boundedness of the observation error, the online weight tuning law of

the radial basis function NN is chosen as follows:

˙̂W i = η1φ(Yi)sgnβ1(x̃T
i )− η2∥sgnβ1(x̃T

i )∥Ŵi (4.13)

The following lemmas are helpful for the stability analysis of the neural-based ob-

server.
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Lemma 4.2. (Li et al. 2019a) If Ao is a Hurwitz matrix, there always exists a symmetric

positive definite matrix P2 such that

Ao
TP2 + P2Ao = −Q2

where Q2 is a symmetric positive definite matrix.

Lemma 4.3. (Hu and Jiang 2017) Consider a continuous positive definite Lyapunov candidate

V(x̃i, ṽi) for a nonlinear agent (4.2), if its time derivative satisfies the condition that

V̇ ≤ −β̄1V ᾱ1 + β̄2V ᾱ2

where 0 < ᾱ2 < ᾱ1 < 1, β̄1, β̄2 > 0, then the error states x̃i and ṽi are both finite-time UUB.

The function V(x̃i, ṽi) is contained within the attraction region of

ΩV =

{
(x̃i, ṽi)

∣∣∣∣ V(x̃i, ṽi) ≤ ᾱ1−ᾱ2

√
β̄2/β̄3

}
where β̄3 ∈ (0, β̄1). With t0 acting as the initial time, the boundary of the settling time is

obtained as

T ≤ V1−ᾱ2(t0)/[(β̄1 − β̄3)(1− ᾱ1)]

Theorem 4.1. Consider the ith nonlinear agent (4.2), by the neural-based observer (4.10) and

the neural weight update law (4.13), then we have that both W̃i and Z̄i are semi-globally UUB

and Z̄i is semi-globally finite-time UUB if the following conditions are met simultaneously:

1. The parameters are chosen reasonably within the constrains of α1, α2 > 0, 0.5 < β1 < 1

and β2 = 2β1 − 1

2. The compact set conditions of the radial basis function NNs are satisfied such that we

have wi ∈ Ωw or Yi ∈ ΩY when t ≥ t0, where Ωw is a compact set of wi.

Proof. The characteristic polynomial of Ao is obtained as

det(λI2 − Ao) = λ2 + α1β1λ + α2β1

which indicates that Ao is a Hurwitz matrix. Define the following continuous Lya-

punov candidate Vo:

Vo =
1
2

Z̄T
i P2Z̄i +

1
2

tr{W̃T
i W̃i} (4.14)
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By Lemma 4.2, if we define Co = [In, 0n×n], we are able to obtain the time derivative of

Vo as

V̇o = −
1
2

Z̄T
i ZiQ2Z̄i − Z̄T

i P2Bow̃i − tr{W̃T
i

˙̂Wi}

= −1
2

Z̄T
i ZiQ2Z̄i − Z̄T

i P2Bo(W̃T
i φ(Yi) + ϵi) + η1tr{W̃T

i φ(Yi)(CoZ̄i)
T}

+ η2tr{W̃T
i ∥CoZ̄i∥(Wi − W̃i)}

(4.15)

By Lemma 4.1, if we apply the inequalities that ∥Wi∥F ≤ WM, tr{W̃i(Wi − W̃i)} ≤
WM∥W̃i∥F−∥W̃i∥2

F and φ(Yi) ≤ φM, we can rewrite (4.15) into the following equations:

V̇o ≤ −
1
2

σ(Q2)∥Z̄∥3−1/β1 + σ(P2)ϵM∥Z̄∥+ Z̄TP2BoW̃φ(z̄) + η1φT(z̄)W̃TCoZ̄

+ η2∥Co∥∥Z̄∥∥W̃∥F(WM − ∥W̃∥F)

≤ −1
2

σ(Q2)∥Z̄i∥3−1/β1 + (k3 + k2∥W̃i∥F)∥Z̄i∥ − η2k1∥Z̄i∥∥W̃i∥2
F

(4.16)

where k1 = ∥Co∥F, k2 = φMmax(|σ(P1)|, |σ(P1)|) + η2k1WM, P1 = P2Bo + η1Co and

k3 = σ(P2)ϵM. Then we have

V̇o ≤ −
1
2

σ(Q2)∥Z̄i∥3−1/β1 +

[
− k1η2

(
∥W̃i∥F −

k2

2k1η2

)2

+ k3 +
k2

2
4k1η2

]
∥Z̄i∥

≤ −1
2

σ(Q2)∥Z̄i∥3−1/β1 +

(
k3 +

k2
2

4k1η2

)
∥Z̄i∥

Therefore, the negativeness of function V̇o is guaranteed when ∥Z̄i∥ > Ko, where Ko =

((4k1k3γ2 + k2
2)/(2k1γ2σ(Q2)))

2−1/β1 . Because the radial basis function NN can only

guarantee semi-global stability, by Lemma (2.1), we have that the ∥Z̄i∥ is semi-globally

UUB within the following neighbourhood:

Ωz =

{
Z̄i

∣∣∣∣∥Z̄i∥ ≤ Ko

}
(4.17)

Similarly, the weight estimation error W̃i is also semi-globally UUB according to a stan-

dard Lyapunov theory extension (Kim and Lewis 1999).

Consider another function Vz as follows:

Vz =
1
2

Z̄T
i P2Z̄i (4.18)
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If the weight estimation error is bounded such that ∥W̃i∥F ≤ W̃M, the time derivative

of Vz is obtained as

V̇z =
1
2

Z̄T
i Zi(AT

o P2 + P2Ao)Z̄i − Z̄T
i P2Bow̃i

= −1
2

Z̄T
i ZiQ2Z̄i − Z̄T

i P2Bo(W̃T
i φ(Yi) + ϵi)

≤ −1
2

σ(Q2)∥Z̄i∥3−1/β1 + k4∥Z̄i∥

(4.19)

where k4 = σ(P2)ϵM + σ(P2Bo)W̃M φM. By the inequality that σ(P2)∥Z̄i∥2/2 ≤ Vz ≤
σ(P2)∥Z̄i∥2/2, one has

V̇z ≤ −k5V(3β1−1)/2β1
z + k6V1/2

z (4.20)

where equations k5 = (σ(P2)/2)(1−3β1)/2β1σ(Q2)/2 and k6 = k4(2/σ(P2))
1/2 are ap-

plied.

Because the radial basis function NN only guarantees semi-global stability, by Lemma

4.3, the error vector Z̄i of the proposed observer (4.10) is semi-globally finite-time UUB,

which completes the proof.

Notice that inequality (4.16) used in the proof of Theorem 4.1 can be rewritten as fol-

lows:

V̇o ≤ −
1
2

σ(Q2)∥Z̄i∥1−1/β1∥Z̄i∥2 + k2∥W̃i∥F∥Z̄i∥+ k3∥Z̄i∥ − η2∥Z̄i∥∥W̃i∥2
F

≤ −χT
o Hoχo +Hoχo

(4.21)

where

χo =

[
∥Z̄i∥
∥W̃i∥F

]
, Ho =

[
k3 0

]
, Ho =

[
σ(Q2)∥Z̄i∥1−1/β1/2 −k2/2

−k2/2 η2∥Z̄i∥

]

It is observed in (4.21) that the positiveness of Ho is determined by the value of the

matrix determinant that det(Ho) = σ(Q2)η2∥Z̄i∥2−1/β1/2 − k2
2/4. Theoretically, we

need to offer high values to η1 and η2 so that the matrix Ho is positive definite to further

guarantee the convergence of Z̄i.

However, high values of η1 and η2 will also introduce high error-sensitivity in (4.13)

and lead to oscillations or even instability when the value of ∥Z̄i∥ is too high. There-

fore, the performance of the observer is unsatisfactory if we only have static weight

tuning parameters. Hence, a new varying-parameter neural-based observer is further

introduced.
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4.4.1 Finite-time neural-based state observer design

Because the vector Z̄i is not completely known to the agent, it is necessary to find a

substitute for it. According to our previous design of the NN tuning law in (4.13), we

can treat the parameters η1 and η2 as the amplifiers of the value of ∥sgnβ1(z̃1)∥. Hence,

it is reasonable to choose the value of ∥sgnβ1(z̃1)∥ as the criterion to set the values of η1

and η2. For analysing, after slicing the value region of ∥sgnβ1(z̃1)∥ exponentially into

nv(nv ∈ R+) parts, we define the value sets η̄1 and η̄2 as follows:

η̄i = [η̄i,1, η̄i,2, . . . , η̄i,nv ], i = 1, 2

By defining a constant cv ∈ R, we present the fractional parameter design as

ηi =



η̄i,1 ∥sgnβ1(z̃1)∥ ∈ [10cv−1,+∞)

η̄i,2 ∥sgnβ1(z̃1)∥ ∈ [10cv−2, 10cv−1)

...
...

η̄i,j ∥sgnβ1(z̃1)∥ ∈ [10cv−j, 10cv−j+1)

...
...

η̄i,nv ∥sgnβ1(z̃1)∥ ∈ [0, 10cv−nv+1)

(4.22)

where j = 1, 2, . . . , nv.

Hence, a new parameter design regarding the neural-based observer is proposed:

Theorem 4.2. Consider the ith nonlinear agent (4.2), by the neural-based observer (4.10) and

the neural weight update law (4.13), we have that both W̃i and Z̄i are semi-globally UUB and

Z̄i is semi-globally finite-time UUB if the following conditions are met:

1. The parameters of the observer are chosen reasonably within the constrains of α1, α2 > 0,

0.5 < β1 < 1 and β2 = 2β1 − 1.

2. The sets η̄1 and η̄2 are chosen properly within the following region:

Ωη̄ =



{
(η̄1,j, η̄2,j)

∣∣K̄ < 10cv−j

}
j ∈ [1, nv){

(η̄1,j, η̄2,j)
∣∣K̄ < 10cv−nv+1

}
j = nv

(4.23)

3. The compact set conditions of the radial basis function NNs are satisfied such that we

have wi ∈ Ωw or Yi ∈ ΩY when t ≥ t0.
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Proof. According to (4.17), if we have η1 = η̄1,j and η2 = η̄2,j when j ∈ [1, nv − 1], then

the following inequality is obtained:

2−1/β1

√
4k1k3η2 + k2

2
2k1η2σ(Q2)

< 10cv−j

which indicates that ∥Z̄i∥ will further converge to the (j + 1)th fractional region men-

tioned in (4.22).

Otherwise for j = nv, we have η1 = η̄1,nv and η2 = η̄2,nv that further lead to

2−1/β1

√
4k1k3η2 + k2

2
2k1η2σ(Q2)

< 10cv−nv+1

we can then guarantee that ∥Z̄i∥ is restricted within the nvth fractional region, which

leads to the conclusion that both ∥Z̄i∥ and ∥W̃i∥F are semi-globally UUB. The proof of

the finite-time characteristic of ∥Z̄i∥ is similar to the one of Theorem 4.1. Hence, the

proof is completed.

Remark 4.3. We choose the radial basis function NN because its Gaussian activation function

can ensure the boundedness of vector φ(Yi) regardless of the value of our estimation v̂i, which

further decreases the chance of having oscillations in its output. Theoretically, the finite-time

neural-based observer design can also be extended to fit higher-order systems.

4.4.2 Robust sliding mode controller with limited information

Regarding the definition of the ith agent’s position and velocity tracking errors men-

tioned in (2.8), we have the error dynamics of the cluster asδ̇x = δv

δ̇v = −ẍd + gu + w
(4.24)

where δx = [δT
x1, δT

x2, . . . , δT
xN]

T, δv = [δT
v1, δT

v2, . . . , δT
vN]

T, and xd = [xT
d1, xT

d2, . . . , xT
dN]

T.

With the definition of local formation tracking errors as mentioned in (2.12), we have

the sliding variable si for agent i as

si = evi + λiexi (4.25)

where λi ∈ R+ represents the slope of the sliding surface.
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4.4.2 Robust sliding mode controller with limited information

Then the sliding vector for the cluster is expressed as

S = ev + Λ⊗ Inex = (L + B)⊗ In(δv + Λ⊗ Inδx) (4.26)

where the following terms are applied:

ex = [eT
x1, eT

x2, . . . , eT
xN]

T, ev = [eT
v1, eT

v2, . . . , eT
vN]

T

S = [sT
1 , sT

2 , . . . , sT
N]

T, Λ = diag{λ1, λ2, . . . , λN}

To estimate the first-order and second-order derivatives of the position reference xdi, a

four-layer sliding mode differentiator (Levant 2003) is employed for each agent:

γ̇i,1 = νi,1, γ̇i,2 = νi,2, γ̇i,3 = νi,3, γ̇i,4 = νi,4

νi,1 = −αi,1β
1
4
i,xsgn

3
4 (γi,1 − xdi) + γi,2

νi,2 = −αi,2β
1
3
i,xsgn

2
3 (γi,2 − νi,1) + γi,3

νi,3 = −αi,3β
1
2
i,xsgn

1
2 (γi,3 − νi,2) + γi,4

νi,4 = −αi,4βi,xsgn(γi,4 − νi,3)

(4.27)

where x̂(j−1)
di = γi,j (j = 1, 2, 3, 4) stands for the estimation of the (j− 1)th time deriva-

tive of xdi, and the expression of sgn(·) is as explained in Section 2.4.1. With the imple-

mentation of the finite-time neural-based observer (4.10), we have the approximated

velocity tracking error, local velocity tracking error and sliding variable as

δ̂vi = v̂i − γi,2, êvi =
N

∑
j=1

lijδ̂vj + bi δ̂vi, ŝi = êvi + λiexi (4.28)

Then the estimated sliding vector for the entire system is written as:

Ŝ = êv + Λ⊗ Inex = (L + B)⊗ In(δ̂v + Λ⊗ Inδx) (4.29)

According to (4.26), the time derivative of S is obtained as follows:

Ṡ = (L + B)⊗ In(−ẍd + gu + w + Λ⊗ Inδv) + L̇2 ⊗ In(δv + Λ⊗ Inδx) (4.30)

Based on the discussions about the APF (4.9), the neural-based observer (4.10), the

sliding mode differentiator (4.27) and the limited-information-based sliding variable
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>
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>
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Figure 4.2. Limited-information-based formation control scheme.

(4.28), we are ready to present the limited-information-based formation controller de-

sign for the ith agent as

ui = g−1
i (−ci ŝi − ŵi − λi δ̂vi − δxi + γi,3 + Fi) (4.31)

where Fi = [ f T
i , 01×n2 ]

T and ci ∈ R+. Based on the above discussions, the system

design is illustrated as the diagram in Figure 4.2.

The following lemma is helpful for the stability proof of the limited-information-based

controller design:

Lemma 4.4. (Levant 2003) With the parameters properly chosen for the sliding mode differ-

entiator (4.27), if there is no input noise regarding the implemented differentiator, the following

equations are true for agent i within a finite-time td:

γi,j = x(j−1)
di , i = 1, 2, . . . , n, j = 1, 2, 3, 4

Now we are ready to present our controller design:

Theorem 4.3. Consider a second-order MAS (4.3) with limited information under Assump-

tions 4.1-4.2, by the finite-time neural-based observer (4.10), the sliding mode differentiator

(4.27), the APF between pairs of agents (4.8) and the limited-information-based formation con-

trol law (4.31), then the states S, ex and δx are all semi-globally UUB if the following conditions

are met:

1. The parameters in the controller satisfy σ(CQ1)/2 − σ(P1)L2
M/σ(L1 + B) > 0 and

σ(Λ)− L2
M/σ(L1 + B) > 0, where C = diag{c1, c2, . . . , cN}.
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2. The compact set conditions of the radial basis function NNs are satisfied such that we

have wi ∈ Ωw or Yi ∈ ΩY when t ≥ t0.

Proof. This is a two-parted proof, where the effectiveness of the collision avoidance

scheme and the formation controller are proved, respectively.

Part 1. In this part, we offer analysis regarding the proposed collision avoidance mech-

anism. For simplicity, the proof of collision is conducted on the agent pair {i, j}, where

i, j ∈ [1, N] and i ̸= j. The same result can also be extended to any other agent pairs.

Consider an energy-based Lyapunov function as follows:

Vi,j =
1
2

zT
i,jzi,j +

1
2

vT
i vi +

1
2

vT
j vj (4.32)

Accordingly, its time derivative is obtained as

V̇i,j = zT
i,j(vi,p − vj,p) + ∑

k=i,j
vT

k (−ck ŝk + w̃k − λkδ̂vk − δxk + γk,3) + ∑
k=i,j

vT
k,p fk (4.33)

By Assumption 4.1 and the compact set conditions of the radial basis function NNs, we

have that terms ∑k=i,j vT
k (−ck ŝk + w̃k − λkδ̂vk − δxk + γk,3) and zT

i,j(vi,p − vj,p) should be

bounded in any time. For the scenario where the ith agent is running toward the jth

agent, with the condition that ∑k=i,j vT
k,p fk → +∞ when ∥zi,j∥ → ri,j, we always get

that V̇i,j → +∞ when ∥zi,j∥ is small enough. Such result will further lead to a boost of

∥zi,j∥ that indicates the separation of the agent pair {i, j}.

Meanwhile, we obtain the following equation based on the condition that ∥xdi− xdj∥ >
ri,j:

lim
t→+∞

∥Fi∥ = 0, i = 1, 2, . . . , N (4.34)

Part 2. To prove the semi-global uniform ultimate boundedness of the sliding variable

S and local formation tracking error ex, construct the following Lyapunov function:

V3,1 =
1
2

STP1 ⊗ InS +
1
2

eT
x P1 ⊗ Inex (4.35)

Motivated by the work of Chen et al. (Chen et al. 2019), the time derivative of V3,1 is

further obtained as

V̇3,1 = ST[P1(L + B)]⊗ In[−ẍd − C⊗ InŜ− w̃− δx + γ3 + F + Λ⊗ In(δv − δ̂v)]

+ eT
x P1 ⊗ InS− eT

x (P1Λ)⊗ Inex + ST(P1 L̇2)⊗ In(δv + Λ⊗ Inδx)

+ eT
x (P1 L̇2)⊗ Inδx

(4.36)
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Define γ̃3 = γ3 − ẍd, γ̃2 = η2 − ẋd, ṽ = v̂− v, w̃ = ŵ− w, v̂ = [v̂T
1 , v̂T

2 , . . . , v̂T
N]

T and

ŵ = [ŵT
1 , ŵT

2 , . . . , ŵT
N]

T. By Lemma 4.4, we get that both γ̃2 and γ̃3 will converge to 0

after finite time td. By Lemma 2.3, we further obtain

V̇3,1 = ST[P1(L + B)]⊗ In{F− w̃− C⊗ InS− [C(L + B)]⊗ Inṽ−Λ⊗ Inṽ}

+ ST[P1 L̇2(L + B)−1]⊗ InS− eT
x (P1Λ)⊗ Inex + eT

x [P1 L̇2(L + B)−1]⊗ Inex

≤ −[σ(CQ1)/2− σ(P1)L2
M/σ(L1 + B)]∥S∥2 + σ(P1)K1[σ(Λ) + σ(C)K1]∥ṽ∥∥S∥

+ [σ(P1)L1
M + σ(Q1)/2](∥w̃∥+ ∥F∥)∥S∥ − σ(P1)[σ(Λ)− L2

M/σ(L1 + B)]∥ex∥2

≤ (K3(w̃M + ∥F∥) +K4ṽM)∥S∥ −K2∥S∥2 −K5∥ex∥2

≤ −
[
∥S∥ ∥ex∥

] [K2 0

0 K5

] [
∥S∥
∥ex∥

]
+
[
K6 0

] [ ∥S∥
∥ex∥

]

where K1 = σ(L + B), K2 = σ(CQ1)/2 − σ(P1)L2
M/σ(L1 + B), K3 = (σ(P1)L1

M +

σ(Q1)/2), K4 = σ(P1)K1(σ(Λ) + σ(C)K1), K5 = σ(P1)(σ(Λ)− L2
M/σ(L1 + B)), K6 =

K3(w̃M + ∥F∥) +K4ṽM, ∥w̃∥ ≤ w̃M and ∥ṽ∥ ≤ ṽM are applied.

By the inequality of σ(L+ B) ≥ σ(L1 + B), the following inequalities are ensured when

∥F∥ = 0:

∥S∥ ≤ K7

min(K2,K5)
, ∥ex∥ ≤

K7

min(K2,K5)
, ∥δx∥ ≤

K7

σ(L1 + B)min(K2,K5)
(4.37)

where K7 = K3w̃M +K4ṽM.

Particularly, if the formation reference satisfies min(i,j)∥xdi − xdj∥ > Rc, we have the

distance-based communication that satisfies

lim
t→∞

(||L2(t)||+ ||L̇2(t)||) = 0

By Lemma 2.1, we have that ∥S∥, ∥ex∥ and δx are semi-globally UUB within the fol-

lowing neighbourhood ultimately:

Ω2
S =

{
∥S∥

∣∣∣∣∥S∥ ≤ σ(Q1)(w̃M + (cσ(L1 + B) + σ(Λ))ṽM)

min(cσ(Q1), 2σ(Q1)σ(Λ)

}
Ω2

e =

{
∥ex∥

∣∣∣∣∥ex∥ ≤
σ(Q1)(w̃M + (cσ(L1 + B) + σ(Λ))ṽM)

min(cσ(Q1), 2σ(Q1)σ(Λ)

}
Ω2

δ =

{
∥δx∥

∣∣∣∣∥δx∥ ≤
σ(Q1)(w̃M + (cσ(L1 + B) + σ(Λ))ṽM)

σ(L1 + B)min(cσ(Q1), 2σ(Q1)σ(Λ)

} (4.38)

which completes the proof.
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4.4.3 Simulation results and discussion

Table 4.1. Parameters and initial states of ODRs with limited information.

Robot number Model parameters Initial states

mi(kg) Ri(m) Ii(kg ·m2) pX
i (m) py

i (m) θi(rad) p̂x
i (m) p̂y

i (m) θ̂i(rad)

1 4.8 0.24 0.15 1.8 0.1 0 1.5 0.4 0

2 5.5 0.30 0.25 −0.9 0.6 π/3 −0.7 0.3 π/4

3 4.5 0.23 0.12 −0.7 2.3 −π/3 −0.2 1.9 −π/2

4 5.8 0.31 0.29 0.8 −0.5 π/2 0.6 −0.3 7π/12

5 5.3 0.28 0.21 −0.1 −1.3 π/4 0 −1.1 π/3

6 5.0 0.25 0.15 1.5 1.5 −π/4 1.2 1.7 −π/3

Remark 4.4. According to (4.37) and (4.38), the convergence boundaries of the system states

can be reduced if we properly increase the value of ci and λi. Therefore, the upper-limits of the

convergence neighbourhood can be manually designed regardless of each agent’s initial states.

4.4.3 Simulation results and discussion

To justify the performance of the proposed neural-based observer design (4.10) and the

limited-information-based sliding mode controller (4.31), numerical simulations based

on a multiple ODR system are conducted.

Consider a cluster of three-wheel ODRs (Fei et al. 2021a), where the dynamics of the ith

agent is written as ẋi = vi

v̇i = MiTS(θi, Ri)ui + wi

(4.39)

where xi = [px
i , py

i , θi]
T, Mi = diag{1/mi, 1/mi, 1/Ii}, mi is the mass of the robot, Ii is

the inertia of the robot, ui = [F1
i , F2

i , F3
i ]

T is the force vector of the three motors, and Ri

is the radius of the robot. The dynamics related parameters, the initial system states

and the initial observer states are chosen as shown in Table 4.1.

The static topology L1 is selected as the directed graph in Figure 4.3 and bi = 2 for

i ∈ [1, 6].
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1

25

4 3

6

Figure 4.3. Static communication topology L1.

The position reference for the ith agent is chosen as

xdi =

[
9
5

cos
(

iπ
3

)
+

1
5

t,
9
5

sin
(

iπ
3

)
+ sin

(
3

10
t
)

, 0
]T

(4.40)

The time-varying communication function f (∥zi,j∥) for the distance-related communi-

cation is chosen in the form of

f (∥zi,j∥) =


e−14(∥zi,j∥−1.1)

5 + 5e−14(∥zi,j∥−1.1)
∥zi,j∥ ∈ [0, Rc]

0 ∥zi,j∥ ∈ (Rc,+∞)

where the communication boundary is set as Rc = 1.5 m. The values of f (∥zi,j∥) and

its derivative d f /d∥zi,j∥ are illustrated by Figure 4.4, which justifies the validity of

Assumption 4.2. The APF for each agent is constructed with the value selection of

α = 2, ϵ1 = 1.1 and ϵ2 = 2.

Figure 4.4. Illustration of f (∥zi,j∥) and its gradient.

The parameters of the sliding mode differentiator are set as αi,1 = αi,4 = 6 and αi,2 =

αi,3 = 8. By Theorem 4.3, the parameters of the sliding mode controller are set as λi = 2

and ci = 2 for each agent. The uncertainty wi is chosen as

wi = [0.5sin(pxi) + tanh(pxi) + 0.6sin(0.6t + iπ/5),

0.3sin(pyi)− 1.4e−|pyi|−1 + 0.8sin(0.4t + iπ/5),

0.2cos(θi) + sin(0.5t + iπ/5)]T
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4.4.3 Simulation results and discussion

Firstly, we define the following three error norms to illustrate the amount of estimation

error for each method to further justify our designs of the finite-time neural-based

observer:

Nx =
6

∑
i=1
∥x̃i∥, Nv =

6

∑
i=1
∥ṽi∥, Nw =

6

∑
i=1
∥w̃i∥

By Theorem 4.1, the basic parameters for the observers are chosen as β1 = 2/3, α1 = 8

and α2 = 8. For radial basis function NNs, the number of neurons is chosen as m = 8,

the receptive field centres are chosen as dj = (j− 3)12n(j ∈ [1, m]), and the width of

the Gaussian function is set as µG = 8. Here, we choose the following three designs for

the performance comparison regarding the values of Nx, Nv and Nw:

1. The original finite-time observer (OFTO) (Li et al. 2019a):
˙̂xi = v̂i − α1sgnβ1(x̃i)

˙̂vi = ŵi − α2sgnβ2(x̃i) + giui

˙̂wi = −α3sgnβ2(x̃i)

(4.41)

with the parameter α3 chosen as α3 = 6.

2. The neural-based observer (4.10) with static parameters (NBOSP), where the neu-

ral weight tuning parameters in (4.13) are chosen as η1 = 200 and η2 = 20.

3. The neural-based observer (4.10) with varying parameters (NBOVP), where cv =

1 and the neural weight tuning parameters in (4.13) are chosen as follows by

Theorem 4.2:
η̄1 = [1, 5, 50, 200, 10000]

η̄2 = [0.05, 0.25, 5, 20, 100]
(4.42)

The comparative results of three observer designs are presented in Figure 4.5, and the

bounded regions ofNx,Nv andNw are provided in Table 4.2. Although the OFTO can

achieve boundedness of ∥x̃i∥, ∥ṽi∥ and ∥w̃i∥, the estimation accuracy is comparatively

low (Nw can only be bounded within 4.1).

However, the estimation precision is found to be significantly improved if the radial

basis function NN is introduced into the observer design (see the results of NBOSP),

which validates the necessity of designing the neural-based observer. Compared to the

NBOSP design, the NBOVP design not only increases the estimation precision by 50%
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(the value of Nw drops from 2.3 to 1.1), but also shortens the error converging time

from 4s to 2.3s, which proves the validity of Theorem 4.1.

Moreover, the NBOVP design can also attenuate the oscillation of the radial basis func-

tion NN output (see when t ∈ [0, 4] in Figure 4.5), illustrating the effectiveness of

having a fractional parameter design as described in Theorem 4.2.

Figure 4.5. Performance comparisons among three observer designs.

Since the NBOVP design is proved to have higher estimation accuracy, it is employed

in all later comparative simulations, if not specially stated otherwise. To illustrate that

the range-based communication topology G2 is helpful for avoiding potential colli-

sions, the following three scenarios where (4.31) is implemented are chosen for further

comparisons:

1. The APF in (4.8) is implemented along with the static topology (ST) that satisfies

L = L1.

2. The APF is disabled (∥Fi∥ = 0) while the time-varying topology (TVT) that satis-

fies L = L1 + L2 is employed.
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4.4.3 Simulation results and discussion

Table 4.2. Observer accuracy comparisons.

Criteria Observer designs

OFTO NBOSP NBOVP

Nx 4.2× 10−3 2.1× 10−4 1.5× 10−5

Nv 2.3× 10−1 5.3× 10−2 1.7× 10−3

Nw 4.1 2.3 1.1

3. The APF is implemented along with the time-varying topology (APFTVT) that

satisfies L = L1 + L2.

By defining rcol
i,j = Ri + Rj to be the relative distance of the agent pair {i, j} when

collision happens, we then have the relative distance between different pairs of agents

as shown in Figure 4.6.

Although the APF technique is employed in the ST design, such structure can only

ensure safety for the pairs of agents that have static communication in G1, leaving

potential safety issue for agents that are not connected initially (see Agent pair (1,6)

in Figure 4.6). Such results point out that the ST design is insufficient, which further

indicates the necessity of introducing the distance-based communication described by

G2.

However, collisions are observed for all three pairs if the APF technique is turned off

(see TVT). Hence, the MAS (4.3) is considered as collision-free if and only if we em-

ploy both the APF and the range-based communication, indicating the necessity and

effectiveness of having the APFTVT design. It is measured that the APFTVT method

can guarantee inequalities ∥zi,j∥ > ri,j and ∥zi,j∥ ≥ rcol
i,j + 0.1 in this simulation. The

propagation of three related elements in the adjacency matrix A2 is also given in Figure

4.7, where we observe that necessary edges (see a2
16 and a2

54) are formed when potential

collision is expected, but no new edge is generated when the connection has already

existed in the static graph G1 (see a2
23), which matches our design rule in (4.5).

The norms of system states are presented in Figure 4.8, where it is observed that ∥δx∥2

is bounded within 0.016, ∥ex∥2 is bounded within 0.057, and the values of ∥S∥2 and
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Figure 4.6. Effectiveness of the collision avoidance scheme.

∥Ŝ∥2 are bounded within 0.12 simultaneously. The trajectories of all agents are pre-

sented in Figure 4.9 to illustrate the movement and formation status of the entire sys-

tem. According to (4.40), the formation reference is a circular formation whose centre

moves in a sine-wave trajectory (purple circle). It is observed that each agent follows

its reference trajectory (dotted line) with bounded tracking error and compose the ex-

pected formation successfully, which illustrates the effectiveness of the proposed dis-

tributed formation controller (4.31).

Remark 4.5. For a formation tracking task where there is at least one channel of the agent’s

position state whose norm is expected to have a linear relationship with time like (4.40), we need

to enlarge the width of the Gaussian function by increasing the value of µ. Otherwise, potential

divergence issue will occur when t is large enough because φ(Yi) will lose sensitivity to Yi if

∥Yi − dj∥ is too large.
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4.4.3 Simulation results and discussion

Figure 4.7. Propagation of adjacency elements in A2.

Figure 4.8. Performance of the limited-information-based formation controller.
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Chapter 4 Robust Formation Control with Limited Information

Figure 4.9. Trajectories of the system while applying the limited-information-based forma-

tion controller.

4.5 Chapter summary

In this chapter, the robust and collision-free formation control problem for second-

order MASs with limited information was investigated. A new finite-time neural-

based state observer was first designed to estimate the unknown velocity and the

system uncertainty simultaneously. Furthermore, an error-related observer parameter

design was proposed to attenuate the chattering phenomenon and increase approxi-

mation precision. By introducing a distance-related directed topology, agents are able

to obtain each other’s position to generate repulsive force to avoid collision. A dis-

tributed robust SMC scheme was then proposed to ensure the semi-global uniform

ultimate boundedness of the system’s formation tracking error. The validity of each
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design is first guaranteed by the Lyapunov stability theory, and further illustrated by

simulations and comparisons.

In the next chapter, the actuator saturation phenomenon is considered to enhance the

practicality of the formation control algorithms. Analysis regarding the joint effect of

actuator saturation and input coupling is also discussed. To attenuate the state os-

cillation and maintain the robustness of the system simultaneously, an observer-and-

algorithm-based formation control law is proposed for first-order agent clusters.
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Chapter 5

Formation Control of
First-Order Agents with

Input Saturation

TO ensure the practicality of the formation control scheme, it is essen-

tial to consider the issue of actuator saturation. In this chapter, the ro-

bust formation control problem of a cluster of nonlinear first-order agents

is investigated. A new cooperative tuning scheme for three-layer neural

networks is first proposed for first-order agents without input constraints.

To ensure that the neural estimation error can be bounded within finite-

time regardless of the actuator saturation phenomenon, a neural-based ob-

server structure is then proposed to further construct an observer-based

controller. To attenuate the state fluctuation brought by coupled and sat-

urated control input, a control input distribution algorithm is presented.

In order to extend the stability of the uncertainty estimation process into

a global perspective, a new adaptive observer is developed along with an

auxiliary control compensation term to achieve robust formation tracking.

The compensated controller is then validated through both simulations and

physical experiments.
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Chapter 5 Formation Control of First-Order Agents with Input Saturation

5.1 Introduction

Although multiple neural-based designs are validated through both the Lyapunov sta-

bility theory and comparative simulations, both the CNN (Zou and Kumar 2012) and

the radial basis function NN (Zheng et al. 2021) are two-layer NNs. According to Liu

et al., the approximation precision of an NN will be improved after introducing more

hidden layer into the network design. Hence, one of the main focuses in this chapter is

to explore a suitable way to employ three-layer NNs in multi-agent formation tracking

scenarios.

In terms of the tracking problem of single systems, the dynamic programming ap-

proach was used along with a three-layer NN to perform optimal control (Liu et al.

2013). When it comes to the multi-agent scenarios, the cooperative tuning design is

one popular approach. To estimate the uncertain nonlinearities and external distur-

bances in each individual agent, three-layer NNs were tuned based on the formation

tracking error to perform formation tracking for a group of autonomous underwater

vehicles (Elhaki and Shojaei 2018).

However, the cooperative weight tuning law proposed by Elhaki and Shojaei is not

fully error-related, which will lead to the potential divergence of weight values. Hence,

how to obtain a fully local-error-related cooperative tuning law has become a consid-

erable challenge for multi-agent scenarios.

In the area of control engineering, it is also vital to consider the actuator saturation

phenomenon when justifying the applicability of one control scheme. Currently, a

convenient way to deal with the saturation effect is to treat it as a bounded distur-

bance and make corresponding compensation while designing the controller (Gao and

Selmic 2006, Shojaei 2016). The three-layer NN was first used by Gao and Selmic to ap-

proximate the effect of saturation phenomenon (Gao and Selmic 2006). However, the

network weight in the hidden layer is set to be constant, which leads to a lack of adap-

tiveness. The adaptiveness of the three-layer NN is further improved by constructing

adaptive tuning law for the weight matrix in the hidden layer (Shojaei 2016).

Although the tracking-error-based weight tuning approach mentioned by Shojaei is

proved to be effective for both saturated and unsaturated systems, the convergence

time of the NN estimation error will increase along with the system’s initial tracking

error. Furthermore, the neural estimation error will not settle before the tracking error
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converges. Such features expose the drawbacks of employing variables related to the

reference tracking error as the weight tuning criterion in systems with actuator satu-

ration. Therefore, it is necessary to develop a finite-time tuning approach that adjusts

the neural weights regardless of the tracking error.

Besides, although the NNs are proved to have high estimation accuracy for nonlinear

functions, such result is based on the assumption that the input of the NN is restricted

within a compact set. However, the NN estimation process in adaptive control usually

requires the system states as the network input because of their correlation with the

system uncertainty, which means that the stability of the NNs only exists semi-globally.

Hence, it is also necessary to find an estimation structure that possesses global stability

to be used in the practical scenarios.

To ensure that the amplitude of the control input is restricted within the saturation lim-

itation, many researchers choose to implement smooth and bounded functions within

the controller design (Huang et al. 2016, Liu et al. 2019, Li et al. 2019b). Currently, plenty

of results have been obtained for systems without input coupling effect (Huang et al.

2016, Bai et al. 2019). An adaptive reaching-law-based SMC approach was developed

for formation tracking of electromagnetic systems by Huang et al. to achieve finite-

time and chattering-free error convergence (Huang et al. 2016). A compensation term

was introduced along with an auxiliary system for a class of discrete-time system by

Bai et al. to perform adaptive control based on reinforcement learning (Bai et al. 2019),

Similarly, saturation functions are also applied in the controller design of coupled sys-

tems. For example, a saturation function was added into the controller by Fu and Yu to

deal with the input saturation problem of a cluster of marine surface vehicles (Fu and

Yu 2018). Additional control terms were introduced by Li et al. to deal with the input

saturation issue of underwater vehicles (Li et al. 2019b).

However, obvious oscillations of system states were observed in the results obtained

by Fu and Yu, while chattering phenomenons were also recorded for control inputs by

Li et al. Such observations indicate that the amplitude limitation of control input is not

the only concern for systems that have both coupled and saturated actuators. Hence,

it is essential to investigate the joint effect of actuator saturation and input coupling

effect.

Motivated by the above discussions, the following issues are investigated in this chap-

ter:
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1. How to settle the three-layer NN tuning process within finite time when the ac-

tuator is affected by input saturation?

2. How to analyse and attenuate the joint effect of input coupling and actuator sat-

uration?

3. How to design an adaptive observer structure that ensures global stability and

can be employed in practice?

The contents in this chapter are organised as follows. The system modelling of a class

of first-order nonlinear MASs with actuator saturation and the problem formulation

are given Section 5.2. A brief introduction of three-layer NNs and two corresponding

neural-based formation controller is given in Section 5.3. A new adaptive observer

structure with global stability is then presented in Section 5.4, where physical exper-

iments are carried out to validate the practicality of the observer-based scheme. The

summary of this chapter’s work is presented in Section 5.5.

5.2 System modelling and problem formulation

Consider a distributed nonlinear multi-agent system consists of N first-order agents,

and the dynamics of the ith agent is given as

ẋi = fi(xi) + gi(xi, Pi)S(ui, UMi) + w̄i, i = 1, 2, . . . , N (5.1)

where xi ∈ Rn is the position information of the ith agent, gi(xi, Pi) ∈ Rn×n is the

nonlinear control gain matrix, Pi represents the model parameter set, ui ∈ Rn is the

control input, fi(xi) ∈ Rn is the unknown dynamics of the system, w̄i ∈ Rn represents

the external disturbance, and S(ui, UMi) ∈ Rn is the saturated control input. The jth

element of S(ui, UMi) is expressed as

S(ui(j), UMi) =

ui(j) |ui(j)| ≤ UMi

sign(ui(j))UMi |ui(j)| > UMi

(5.2)

where ui(j) is the jth element of ui and UMi ∈ R+ is the saturation limit. Obtaining the

value of gi(xi, Pi) is necessary for controller design, but it is hard to obtain the precise

value of Pi with the existence of measurement error. If define P̂i to be our measure-

ment of the parameter set, then the control gain matrix obtained through calculation is
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ĝi(xi, P̂i) ∈ Rn×n, and the parameter estimation error is given as P̃i = Pi − P̂i. Define

g̃i(xi, P̃i) = gi(xi, Pi)− ĝi(xi, P̂i) to represent the modelling error of the input coupling

matrix, the simplified model is given as

ẋi = ĝi(xi, P̂i)S(ui, UMi) + Ei (5.3)

where Ei = g̃i(xi, P̃i)S(ui, UMi) + w̄i + fi(xi) represents the combination of unknown

factors. For simplicity, terms gi and ĝi are used in the rest of this chapter to represent

gi(xi, Pi) and ĝi(xi, P̂i), respectively, unless specially stated.

Then the cluster dynamics is obtained as follows:

ẋ = ĝS(u) + E (5.4)

where

x = [xT
1 , xT

2 , . . . , xT
N]

T ∈ RnN, ĝ = diag{ĝ1, ĝ2, . . . , ĝN} ∈ RnN×nN

S(u) = [ST(u1, UM1),ST(u2, UM2), . . . ,ST(uN, UMN)]
T ∈ RnN

E = [ET
1 , ET

2 , . . . , ET
N]

T ∈ RnN

The position and velocity references of the ith agent are described by xdi ∈ Rn and ẋdi ∈
Rn, respectively. The main purpose of the controller design is to ensure the semi-global

uniform ultimate boundedness of each uncertain agent’s reference tracking error with

the actuator saturation (5.2), which is illustrated as

lim
t→∞
∥xi(t)− xdi(t)∥ ≤ νs

δ, ∀xi(t0) ∈ Ωx, i = 1, 2, . . . , N (5.5)

Assumption 5.1. The state references xdi and ẋdi are known and bounded when t ≥ t0. The

parameter measurement error P̃i is also bounded. The initial state of the ith agent is bounded

such that xi(t0) ∈ Ωx is satisfied.

Assumption 5.2. There is a known positive constant τi and a finite time ts for the ith agent

such that the following inequality is satisfied when t ≥ ts

|g−1
i (t)(ẋdi(t)− fi(xi(t))− w̄i(t))| ≤ τi1n×1

where τi < UMi and 1n×1 is an n-dimensional column vector whose every entry is 1.

Remark 5.1. Notice that Assumption 5.2 is made to ensure that the formation tracking process

is feasible to the saturated agents in (5.1) after a finite amount of time. In an ideal situation
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where ui = g−1
i (t)(ẋdi(t) − fi(xi(t)) − w̄i(t)), one has ẋi = ẋdi, meaning that the agent

can successfully track the velocity reference. However, it is still necessary to have a residual

amount of control input to reduce the value of ∥xi(t)− xdi(t)∥ when ∥xi(t0)− xdi(t0)∥ > νs
δ,

where xi(t0) and xdi(t0) are the initial system state and the initial position reference. Hence,

the inequality of τi < UMi is given to offer the redundancy in the control input. The time ts is

defined to mark the time when the formation tracking task is feasible to each agent in (5.4).

5.3 Formation control via three-layer neural networks

This section focuses on the NN-based formation controller design for saturated first-

order MASs. A fully error-related cooperative tuning approach is first proposed for

first-order MASs without actuator saturation, To achieve finite-time convergence of the

estimation error when the actuator is saturated, a NN-based observer is then proposed.

Afterwards, the combined effect of actuator saturation and input coupling is analysed

and summarised as the reverse effect. To attenuate the state oscillation, a new control

input algorithm is provided.

5.3.1 Three-layer neural networks

In this section, three-layer NNs are implemented to approximate the unknown nonlin-

ear function Ei and act as a part of the adaptive control law. According to the universal

approximation rule (Liu et al. 2013), an m (m ≥ 3) layered NN is able to estimate any

unknown function with high precision if the input vector of the NN is restricted to

its compact set. If the compact set conditions of the network are satisfied, then the

NN-based estimation of Ei is written as

Ei = WT
i T (JT

i yi) + ϵi, i = 1, 2, . . . , n

where Ji ∈ R2n×n̄ and Wi ∈ Rn̄×n are the optimal weight matrices, yi = [xT
i , uT

i ]
T ∈ R2n

is the input vector of the three-layer NN, n̄ ∈ R is the number of neurons in the hidden

layer, ϵi ∈ Rn is the network bias and T (·) is the hyperbolic tangent activation function

of the hidden layer. Define ȳj as the jth element of the vector JT
i yi, then the jth element

of T (JT
i yi) has the following expression:

T (ȳj) =
eȳj − e−ȳj

eȳj + e−ȳj
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The estimation process of a three-layer NN is

Êi = ŴT
i T ( ĴT

i yi) (5.6)

where Ĵi and Ŵi are the estimated weight matrices.

The estimation error of the three-layer NN is given as

Ẽi = Ei − Êi = W̃T
i T ( ĴT

i yi) + ϵ̄i(yi)

where ϵ̄i(yi) = WT
i [T (JT

i yi)− T ( ĴT
i yi)] + ϵi and W̃i = Wi − Ŵi.

Assumption 5.3. The neighbourhood of [−UMi, UMi] is included in the approximation com-

pact set Ωu for each individual agent.

Assumption 5.4. The weight matrices W, J and the estimation error ϵ are bounded such that

there are positive constants WM, JM and ϵM that satisfy

∥W∥F ≤WM, ∥J∥F ≤ JM, ∥ϵ∥ ≤ ϵM

where

ϵ = [ϵT
1 , ϵT

2 , . . . , ϵT
N]

T ∈ RnN, W = diag{W1, W2, . . . , WN} ∈ Rn̄N×nN

J = diag{J1, J2, . . . , JN} ∈ R2nN×n̄N

Lemma 5.1. (Liu et al. 2013) Based on the boundedness of the activation function T (·), the

three-layer NN approximation error ϵ and the optimal weight matrices W and J, there exist

positive constants TMi, ϵ̄Mi, TM and ϵ̄M such that:

∥T ( ĴT
i yi)∥ ≤ TMi, ∥ϵ̄i(yi)∥ ≤ ϵ̄Mi, ∥T ( ĴTy)∥ ≤ TM, ∥ϵ̄(y)∥ ≤ ϵ̄M

where ϵ̄(y) = [ϵ̄T
1 (y1), ϵ̄T

2 (y2), . . . , ϵ̄T
N(yN)]

T.

5.3.2 Neural adaptive formation control via cooperative tuning

In this subsection, the saturation phenomenon is removed by setting UMi = +∞. Ac-

cording to the agent dynamics (5.3), one has

δxi = xi − xdi (5.7)

where δxi ∈ Rn is the position tracking error of the ith agent.
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Then the global form is obtained as follows:

δx = x− xd (5.8)

where

δx = [δT
x1, δT

x2, . . . , δT
xN]

T ∈ RnN, xd = [xT
d1, xT

d2, . . . , xT
dN]

T ∈ RnN

Define bi ∈ R+ to be the ith diagonal element of B, the local formation tracking error

of the ith agent is obtained as

exi =
N

∑
j=1

aij(δxi − δxj) + biδxi =
N

∑
j=1

lijδxj + biδxi (5.9)

where lij is the element on the ith row and jth column of L. In (5.9), the practical

meaning of bi is the ith agent’s sensitivity on its own reference tracking error δxi. Define

ex = [eT
x1, eT

x2, . . . , eT
xN]

T, then the following global form is obtained:

ex = (L + B)⊗ Inδx (5.10)

The time derivative of (5.10) is obtained as

ėx = (L + B)⊗ In(ĝu + E− ẋd) (5.11)

To perform adaptive estimation, the weight tuning law set of a three-layer NN is usu-

ally chosen as follows (Elhaki and Shojaei 2018, Wu et al. 2020):
˙̂W i = Γ1GW(exi, Ĵi, Ŵi, yi)− Γ2Ŵi

˙̂Ji = Γ3GJ(exi, Ĵi, Ŵi, yi)− Γ4 Ĵi

where Γi ∈ R+(i ∈ [1, 4]) are the error-invariant tuning gains, and GW and GJ represent

the related tuning functions that satisfy ∥GW∥F = ∥GJ∥F = 0 when ∥exi∥ = 0 (GW and

GJ will no longer affect Wi when there is no error).

In the work of (Elhaki and Shojaei 2018), parameters Γ2 and Γ4 are set to be static. Al-

though it is reasonable to include terms like−Γ2Ŵi and−Γ4 Ĵi to prevent the oscillation

of neural weights when the value of ∥exi∥ is high, such terms will also lead to contra-

dictions that ˙̂W i = −Γ2Ŵi and ˙̂Ji = −Γ4 Ĵi when ∥exi∥ = 0, meaning that a potential

divergence of estimation error always exists unless ∥Wi∥F = ∥Ji∥F = 0 or Γ2 = Γ4 = 0.
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To deal with the estimation error divergence issue, the idea of selecting Γ2 and Γ4 as

time-related exponentially decreasing functions is proposed (Wu et al. 2020). Although

such approach is found to be effective, it does introduce the danger that the three-layer

NN will lose the protection from−Γ2Ŵi and−Γ4 Ĵi after certain period of time, leading

to potential chattering or oscillation.

To maintain the protection of −Γ2Ŵi and −Γ4 Ĵi while avoiding the divergence issue, a

fully error-related tuning approach was then proposed (Liu et al. 2013). However, this

approach is never investigated in a cooperative way for multi-agent systems. There-

fore, a set of fully local-error-related tuning laws of Ŵi and Ĵi is proposed as
˙̂W i = η1T ( ĴT

i yi)eT
xi − η2∥exi∥Ŵi

˙̂Ji =
η3

2nN
sign(yi)eT

xiŴ
T
i (In̄ − α( ĴT

i yi))− η4∥exi∥ Ĵi
(5.12)

where α( ĴT
i yi) = diag{T 2

j ( ĴT
i yi)}, j ∈ [1, n̄] and ηi ∈ R+ (i = 1, 2, 3, 4). Then one has

∥ ˙̂W i∥F = ∥ ˙̂Ji∥F = 0 when ∥exi∥ = 0, while −η2∥exi∥Ŵi and −η4∥exi∥ Ĵi remain to be

the counter parts to reduce the chattering in the network output without triggering the

divergence of the three-layer NN estimation error. Accordingly, the following global

form is obtained:
˙̂W = η1T ( ĴTy)eT

x − η2∆e ⊗ In̄Ŵ
˙̂J =

η3

2nN
sign(y)eT

xŴT(In̄N − α( ĴTy))− η4∆e ⊗ I2n Ĵ
(5.13)

where the following equations are applied:

Ŵ = diag{Ŵ1, Ŵ2, . . . , ŴN} ∈ Rn̄N×nN, Ĵ = diag{ Ĵ1, Ĵ2, . . . , ĴN} ∈ R2nN×n̄N

∆e = diag{∥ex1∥, ∥ex2∥, . . . , ∥exN∥} ∈ RN×N, y = [yT
1 , yT

2 , . . . , yT
N]

T ∈ R2nN×1

Based on the NN-based estimation (7.9) and the weight tuning law set (5.13), the coop-

erative formation controller is designed as

ui = ĝ−1
i (ẋdi − Êi − kiexi) (5.14)

The following theorem summarises the fully error-related cooperative tuning law set

design for the three-layer NN:

Theorem 5.1. Consider system (5.4) without actuator saturation (UMi = +∞), and Assump-

tions 5.1 and 5.4 hold. By the three-layer NN-based estimation (7.9), the weight tuning law set

(5.12), and the formation controller (5.14), the system states ex, δx, W̃ and J̃ are semi-globally

UUB if the following conditions are met:
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1. The parameters η2, η3 and η4 in (5.12) and (5.13) satisfy η2 > η3/2 and η4 > η3/2.

2. The compact set conditions of the NNs hold such that either Ei ∈ ΩE or yi ∈ Ωy is

satisfied when t ≥ t0, where Ωy is a compact set of yi and Ωu ⊂ Ωy.

Proof. Define W̃ = W − Ŵ and J̃ = J − Ĵ, then consider the following Lyapunov func-

tion candidate:

V4,1 =
1
2

eT
xPex +

1
2

tr{W̃TW̃}+ 1
2

tr{ J̃T J̃} (5.15)

where P = P⊗ In. By Lemma 2.3, the time derivative of V4,1 is obtained as

V̇4,1 = eT
xP [(L + B)⊗ In]δ̇x − tr{W̃T ˙̂W} − tr{ J̃T ˙̂J}

=
1
2

eT
xQϵ̄ + η4tr{ J̃T∆e ⊗ I2n(J − J̃)} − tr

{
J̃T η3

2nN
sign(y)eT

xŴT(INn̄ − α( ĴTy))
}

+ tr
{

W̃TT ( ĴTy)eT
x

(
1
2
Q− η1 ⊗ InN

)}
+ η2tr{W̃T∆e ⊗ In̄(W − W̃)} − 1

2
eT

xQKex

where K = diag{k1, k2, . . . , kN} ⊗ In and Q = (P(L + B)) ⊗ In. With the following

inequalities:

tr{W̃T(W − W̃)} ≤WM∥W̃∥F − ∥W̃∥2
F, ∆e ≤ ∥ex∥ ⊗ IN

tr{ J̃T(J − J̃)} ≤ JM∥ J̃∥F − ∥ J̃∥2
F,

∥∥∥∥ 1
2nN

sign(y)
∥∥∥∥ ≤ 1

the expression of V̇4,1 is further modified as

V̇4,1 ≤ −
1
2

σ(QK)∥ex∥2 − η2∥W̃∥2
F∥ex∥+

1
2

σ(Q)ϵ̄M∥ex∥+ η2WM∥W̃∥F∥ex∥

+ η3∥ J̃∥F∥ex∥(WM + ∥W̃∥F)∥T ( ĴTy)∥σ(1
2
Q− η1 ⊗ InN)∥W̃∥F∥ex∥

+ η4 JM∥ J̃∥F∥ex∥ − η4∥ J̃∥2
F∥ex∥

≤ (r1∥W̃∥F + r2 − η2∥W̃∥2
F + r3∥ J̃∥F + η3∥W̃∥F∥ J̃∥F − η4∥ J̃∥2

F)∥ex∥

− 1
2

σ(QK)∥ex∥2

(5.16)

where r1 = σ(Q/2− η1 ⊗ InN)TM + η2WM, r2 = σ(Q)ϵ̄M/2 and r3 = η3WM + η4 JM.

Page 105



5.3.3 Issues correlated with actuator saturation

With the parameters chosen as η2 > η3/2 and η4 > η3/2, (5.16) can be rewritten into

the following form:

V̇4,1 ≤ −
1
2

σ(QK)∥ex∥2 − η3

2
∥ex∥(∥W̃∥F − ∥ J̃∥F)

2 − (η2 −
η3

2
)∥ex∥(∥W̃∥F −

r1

2η2 − η3
)2

− (η4 −
η3

2
)∥ex∥(∥ J̃∥F −

r3

2η4 − η3
)2 +

(
r2

3
2(2η4 − η3)

+
r2

1
2(2η2 − η3)

+ r2

)
∥ex∥

≤ −1
2

σ(QK)∥ex∥2 + r4∥ex∥
(5.17)

where r4 = r2
3/(4η4 − 2η3) + r2

1/(4η2 − 2η3) + r2. Hence, V̇4,1 will remain negative

when ex belongs to the following region:

Ω3
e =

{
ex

∣∣∣∣∥ex∥ >
2r4

σ(QK)

}
(5.18)

By (5.10), the reference tracking error is semi-globally UUB within the following neigh-

bourhood:

Ω3
δ =

{
δx

∣∣∣∣∥δx∥ ≤
2r4

σ(QK)σ(L + B)

}

By the Lyapunov theory extension (Kim and Lewis 1999), both W̃ and J̃ are semi-

globally UUB, which completes the proof.

Although the cooperative tuning approach (5.12) can guarantee the semi-global uni-

form ultimate boundedness of the error states ex and δx, its performance is question-

able when there exists the actuator saturation phenomenon (5.2).

Theoretically, the error related weight tuning procedure (5.12) will not settle before

∥exi∥ converges to a neighbourhood around zero. Correspondingly, the settling time

for the weight tuning process is expected to be prolonged along with the increment

in each agent’s initial local formation tracking error because of the actuator saturation

in (5.2). Hence, further investigation is essential to explore a more suitable way to

implement three-layer NNs when the system is affected by input saturation.

5.3.3 Issues correlated with actuator saturation

Now, consider the MASs with saturated actuators. In most of the previous research

works (Cui et al. 2016, Huang et al. 2016, Fu and Yu 2018, Han et al. 2019, Zhou et al.
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2020), the only issue regarding saturation is considered as restricting the amplitude

of each element in the control input within the saturation limitation UMi. However,

such results are far from sufficient for a system that has coupled and saturated control

inputs like (5.3).

To point out the potential issue, an example of a two-dimensional system is picked.

Consider the following nominal first-order system:[
Ẋ

Ẏ

]
=

[
cos(θ1) cos(θ2)

sin(θ1) sin(θ2)

]
S(ui, UMi) (5.19)

where ui = [∥U1∥, ∥U2∥]T is the nominal control input vector, U1 and U2 are two vec-

tors, θ1 ∈ (−π, π] is the included angle between U1 and the X axis, and θ2 ∈ (−π, π]

is the included angle between U2 and the X axis. Suppose that in one certain moment,

the desired U1 and U2 is obtained based on the calculation of a stable nominal con-

troller as the dashed vectors shown in Figure 5.1(a), where the circle with the radius of

UMi represents the actuator saturation limit. To ensure that the amplitudes of U1 and

U2 do not exceed UMi, the saturation operation (5.2) is obtained, which further leads

to Ū1 and Ū2 (see the solid vectors in Figure 5.1(b)).

UMi-UMi X

Y

U2

U1 Uc

U1

θ1
θ2

UMi-UMi X

Y

U2

U1
-

U2
-

Uc
-

U2
-

U1

θ1
θ2

(a) (b)

Figure 5.1. Saturation’s effect on coupled control input. (a) Combined effect of nominal control

input (Uc). (b) Combined effect of saturated control input (Ūc).

According to the nominal system dynamics in (5.19), the following results are obtained:[
cos(θ1) cos(θ2)

sin(θ1) sin(θ2)

]
ui = Uc,

[
cos(θ1) cos(θ2)

sin(θ1) sin(θ2)

]
S(ui, UMi) = Ūc

After comparing Figure 5.1(a) with Figure 5.1(b), it is found that the overall effect of

the saturated control input (Ūc) is different from the one of the nominal controller (Uc).
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Such circumstances will lead to elevations or fluctuations of the error-related states.

Before conducting further discussions, it is necessary to offer the definition of the afore-

mentioned issue. In this thesis, the corresponding phenomenon is defined as the re-

verse effect of coupled actuator saturation phenomenons as follows:

Definition 5.1. For a system where control input is coupled and saturated as (5.3), suppose

there is a nominal controller ui, then the control input is said to be affected by the reverse effect

when the following condition is met:

sign(giui) ̸= sign(giS(ui))

Moreover, as mentioned in Section 5.3.2, the saturation phenomenon will also delay

the cooperative neural tuning procedure (5.12) because the output of the three-layer

NN cannot be fully reflected by the control input due to the saturation phenomenon.

It is unreasonable to employ a weight tuning process (5.12) that cannot guarantee the

semi-global uniform ultimate boundedness of W̃ and J̃ before the convergence of ex

and δx. As a result, apart from the aim to make the control input bounded, two more

problems correlated with the saturation phenomenon are worthy of further discussion:

Problem 5.1. How to have a finite-time NN-based estimation of system uncertainties regard-

less of the reference tracking errors δxi and exi?

Problem 5.2. How to ensure that the coupled controller can provide control inputs with correct

combined control direction to attenuate the reverse effect?

5.3.4 Observer design via the three-layer neural network structure

Regarding the first problem, the method of reconstructing the previous three-layer NN

into a finite-time observer is proposed (Liu et al. 2013):

˙̂xi = ĝiui + Êi + γidiag{sign(x̃i)}|x̃i|βi (5.20)

where x̃i = xi − x̂i, γi ∈ Rn×n is a positive definite constant diagonal matrix and βi is

a real number that satisfies βi ∈ (0.5, 1).

The weight tuning law set of the three-layer NN is chosen as
˙̂W i = η1T ( ĴT

i yi)x̃T
i − η2∥x̃i∥Ŵi

˙̂Ji =
η3

∥sign(yi)∥
sign(yi)x̃T

i ŴT
i (In̄ − α( ĴT

i yi))− η4∥x̃i∥ Ĵi
(5.21)
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Then the error dynamics of the neural-based observer is obtained as

˙̃xi = Ẽi − γidiag(|x̃i|βi−1)x̃i + ĝi(S(ui, UMi)− ui) (5.22)

The following assumption is made to ensure the boundedness of the initial error in

(5.20).

Assumption 5.5. The error states x̃i, W̃i and J̃i are all bounded such that

x̃T
i (t0)x̃i(t0) + tr{W̃T

i (t0)W̃i(t0)}+ tr{ J̃T
i (t0) J̃i(t0)} ≤ Ve

where Ve is a positive constant.

Before presenting the theorem for the observer design, let us first recall one useful

result:

Lemma 5.2. (Hu and Jiang 2017) For a continuous Lyapunov function V(X) that satisfies:

V̇ ≤ −ρ1V ρ̄(t) + ρ2V1/2(t)

the state X is globally finite-time UUB within the region of ΩV = {X|V(X)ρ̄−1/2 < ρ2/ρ̄1},
where ρ̄1 ∈ (0, ρ1), ρ̄ > 1/2, ρ1, ρ2 > 0. The settling time T is bounded by:

T ≤ V1−ρ̄(t0)

(ρ1 − ρ̄1)(1− ρ̄)

Then the final result result on the finite-time observer design is given as the following

theorem:

Theorem 5.2. Consider system (5.3) with actuator saturation (5.2), where Assumptions 5.1,

5.3, 5.4 and 5.5 hold. By the neural-based observer (5.20), and the weight tuning law set (5.21),

the semi-global uniform ultimate boundedness of x̃i, W̃i and J̃i is guaranteed if the following

conditions are met:

1. The control input satisfies |ui| ≤ UMi1n×1.

2. The parameters η2, η3 and η4 in (5.21) satisfy η2 > η3/2 and η4 > η3/2.

3. The compact set conditions of the three-layer NNs hold such that either Ei ∈ ΩE or

yi ∈ Ωy is satisfied when t ≥ t0
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Furthermore, the observation error x̃i is semi-globally finite-time UUB.

Proof. Consider a Lyapunov candidate as follows:

V4,2 =
η1

2
x̃T

i x̃i +
1
2

tr{W̃T
i W̃i}+

1
2

tr{ J̃T
i J̃i} (5.23)

With the control input satisfies |ui| ≤ UMi1n×1, one has S(ui, UMi) = ui, which further

leads to

V̇4,2 = η1x̃T
i

˙̃xi + tr{W̃T
i

˙̃W i}+ tr{ J̃T
i

˙̃Ji}

= η1x̃T
i (W̃

T
i T ( ĴT

i yi) + ϵ̄i(yi))− γiη1x̃T
i diag{sign(x̃i)}|x̃i|βi − η1tr{W̃T

i T ( ĴT
i yi)x̃T

i }

− η3tr
{

J̃T
i

sign(yi)

∥sign(yi)∥
x̃T

i ŴT
i (In − α( ĴT

i yi))

}
+ η4tr{ J̃T

i ∥x̃i∥ Ĵi}+ η2tr{W̃T
i ∥x̃i∥Ŵi}

≤ −σ(γi)η1∥x̃i∥1+βi + η3∥ J̃i∥F∥x̃i∥(WMi + ∥W̃i∥F)− η2∥W̃i∥2
F∥x̃i∥ − η4∥ J̃i∥2

F∥x̃i∥

+ η1∥x̃i∥ϵ̄Mi + η4 JMi∥ J̃i∥F∥x̃i∥+ η2WMi∥W̃i∥F∥x̃i∥

where ∥Wi∥ ≤WMi and ∥Ji∥ ≤ JMi are applied based on Lemma 5.1.

Similar to the proof of Theorem 5.1, if define r5 = η2WMi and r6 = η3WMi + η4 JMi,

there is

V̇4,2 ≤ −∥x̃i∥
[

η1(σ(γi)∥x̃i∥βi − ϵ̄Mi)−
r2

5
2(2η2 − η3)

−
r2

6
2(2η4 − η3)

]

Then the semi-globally UUB region of ∥x̃i∥ is given as follows:

∥x̃i∥ ≤
[

1
2η1σ(γi)

(
r2

5
(2η2 − η3)

+
r2

6
(2η4 − η3)

+ 2η1ϵ̄Mi

)]1/βi

(5.24)

By the Lyapunov theory extension (Kim and Lewis 1999), W̃ and J̃ are both semi-

globally UUB. Alternatively, select the following Lyapunov candidate:

V4,3 =
1
2

x̃T
i x̃i

Then the time derivative of V4,3 is obtained as

V̇4,3 = x̃T
i

˙̃xi

= −γi x̃T
i diag{sign(x̃i)}|x̃i|βi + x̃T

i (W̃
T
i T ( ĴT

i yi) + ϵ̄i(yi))

≤ −σ(γi)∥x̃i∥βi+1 + ∥x̃i∥w̃M
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where ∥W̃T
i T ( ĴT

i yi) + ϵ̄i(yi)∥ ≤ w̃M and w̃M is a positive constant because the NN

estimation error is semi-globally UUB.

Define r7 = σ(γi)
√

2βi+1 and r8 =
√

2w̃M, we have

V̇4,3 ≤ −r7V(βi+1)/2
3 + r8V1/2

3 (5.25)

By Lemma 5.2, x̃i is finite-time UUB. However, because the input of the NN needs to

satisfy xi ∈ Ωx and ui ∈ Ωu, x̃i is considered to be semi-globally finite-time UUB, and

the finite-time characteristics of ∥x̃i∥ remains until it reaches the following neighbour-

hood:

Ω1
x̃ =

{
x̃i

∣∣∣∣∥x̃i∥ ≤
(

w̃M

σ(γi)

)1/βi
}

(5.26)

which completes the proof.

After constructing the finite-time neural-based observer (5.20), Problem 5.1 is solved.

Now, it is vital to consider Problem 5.2.

5.3.5 Observer-based formation controller via control input distribu-

tion algorithm

To attenuate the previously defined reverse effect of actuator saturation, let us first

decompose the previous controller design (5.14) for our analysis:

ui = ut,i + ud,i + ue,i (5.27)

where ut,i = ĝ−1
i ẋdi is the control input to maintain the velocity tracking behaviour,

ud,i = −ĝ−1
i Êi is the control input to compensate for the estimated system uncertain-

ties, and ue,i = −ki ĝ−1
i exi(ki ∈ R+) is the control input for formation error reduction.

It is observed that both ut,i and ud,i are consistently needed throughout the formation

tracking process. By Assumption 5.2, there is

lim
t→ts
|ĝ−1

i (t)(ẋdi(t)− Êi)| ≤ τi1n×1

which indicates that the combination of ut,i and ud,i is bounded after ts.
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By Assumption 5.5 and Theorem 5.2, there is a finite time to and three positive con-

stants EM, ĒM and ẼM that satisfy

|Ei| ≤ EM1n×1, |Ei − Êi| ≤ ĒM1n×1, lim
t→to
|Ei(t)− Êi(t)| ≤ ẼM1n×1

Based on the obtained boundedness conditions, the following smooth projection func-

tion (Fei et al. 2020) S̄(V , τM, ψM) is introduced to improve the performance of the

proposed controller:

S̄(V(j), τM, ψM) =


τM + ψM(1− e(τM−V(j))/ψM), if V(j) > τM

V(j), if |V(j)| ≤ τM

ψM(e(τM+V(j))/ψM − 1)− τM if V(j) < −τM

(5.28)

where V(j) denotes the jth element of the column vector V , τM is a positive constant,

and ψM denotes a small positive constant. Then define um,i ∈ Rn to be the control input

to maintain the velocity tracking behaviour for the ith agent:

um,i = ĝ−1
i (ẋdi − S̄(Êi, EM, ψE)) (5.29)

where ψE is a small positive constant.

To attenuate the reverse effect of saturation phenomenon, we propose a control in-

put distribution algorithm (CIDA) that generates a positive variable ξ̄i to shrink ue,i

as shown in Algorithm 2. The CIDA keeps monitoring if the nominal control in-

put ui
nom = um,i + ue,i triggers the reverse effect. If the nominal control input does

not exceed the saturation limit, then the controller will run at its maximum effort

within the saturation limitation. Otherwise, a series of calculation is performed to

generate a shrinking factor ξ̄i ∈ (0, 1] for each agent to reduce the scenarios where

sign(ĝiui) ̸= sign(ĝiSi(ui)). Based on the discussions about the neural-based observer

(5.20), the weight tuning law set (5.21), the formation maintaining control input (5.29),

and Algorithm 2, the final controller design is given as

ūi = S̄(um,i, τi, ψu) + ξ̄iue,i (5.30)

where S(ūi, UMi) = ūi is guaranteed by Algorithm 2.

Based on the results of neural-based observer and the CIDA, the final system design of

this section is given in Fig. 5.2.

The results on the new saturated formation controller design is given as the following

theorem:
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Algorithm 2: Control Input Distribution Algorithm
Input: S̄(um,i, τi, ψu),ue,i,UMi

Output: ξ̄i

ξ̄min = 1 ;

ui
nom = S̄(um,i, τi, ψu) + uei ;

ui
sat = S̄(ui

nom, UMi, 0) ;

if ui
nom ̸= ui

sat then

uup = UMi1n×1 − S̄(um,i, τi, ψu) ;

ulo = −UMi1n×1 − S̄(um,i, τi, ψu) ;

for j = 1 : n do

if ue,i(j) = 0 then

ξ̄i = 1;

else

if ue,i(j) > 0 then

ξ̄i = uup(j)/ue,i(j) ;

else

ξ̄i = ulo(j)/ue,i(j) ;

end

end

ξ̄min = min(ξ̄i, ξ̄min) ;

end

end

ξ̄i = ξ̄min ;

Return ξ̄i ;

ui

xdi
.
xdi

exi

Formation
References

Error
Calculation (5.7)

δxj

δxi

ξi

Actuator

ui

xi
.
xdi

um,i

exi

um,i

xi

Si(ui)

Communication
CIDA

EiControl Input for Velocity

Algorithm-and-Observer-Based Formation Controller

Local Tracking
Error (5.9)

Neural-Based
Observer (5.20)Maintenance (5.29)

Control
Law (5.30) Saturation (5.2)

Actuator
_

Figure 5.2. Algorithm-and-observer-based formation controller.

Theorem 5.3. Consider system (5.4) with actuator saturation (5.2), and Assumptions 5.1-

5.5 hold. By the finite-time neural-based observer (5.20), the weight tuning law set (5.21),

the formation control law (5.30), and the CIDA (Algorithm 2), the error states ex and δx are
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5.3.5 Observer-based formation controller via control input distribution algorithm

semi-globally UUB within the following regions, respectively

∥ex∥ ≤
σ(Q)ẼMnN

k̄σ(Q)
, ∥δx∥ ≤

σ(Q)ẼMnN
k̄σ(Q)σ(L + B)

(5.31)

if the following conditions are met simultaneously:

1. η2, η3 and η4 in (5.21) satisfy η2 > η3/2 and η4 > η3/2

2. ki in (5.30) satisfies ki = k̄ > 0(i = 1, 2, . . . , N)

3. ψu in (5.30) satisfies ψu < ŪMi − ẼM − ϵE

4. The compact set conditions of the NNs hold such that either Ei ∈ ΩE or yi ∈ Ωy is

satisfied when t ≥ t0

Proof. With the implementation of the shrinking factor ξ̄i generated by Algorithm 2, it

is hard to use Lyapunov functions to directly obtain a result for the stability analysis.

Therefore, it is essential to first illustrate that the value of ξ̄i will converge to one within

finite time for each individual agent. Afterwards, the Lyapunov stability theory is

employed to prove that ex is semi-globally UUB.

The formation tracking procedure of the ith agent is divided into the following three

stages:

1. When t ≤ t f = max(ts, to) and ξ̄i ∈ [0, 1).

2. When t > t f = max(ts, to) and ξ̄i ∈ [0, 1).

3. When t > t f = max(ts, to) and ξ̄i = 1.

To analyse the transformation from one stage to another, the following Lyapunov func-

tion is constructed regarding the formation tracking error of system (5.4):

V4,4 =
1
2

eT
x P⊗ Inex

Then the time derivative is obtained as

V̇4,4 = eT
x P(L + B)⊗ In(ĝS(ū) + E− ẋd)
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where ū = [ūT
1 , ūT

2 , . . . , ūT
N]

T. Based on the knowledge of S(ūi, UMi) = ūi, one has

V̇4,4 = eT
x P(L + B)⊗ In(ĝū + E− ẋd) (5.32)

For the first stage, consider one extreme circumstance that equations ξ̄i = 0 and |Ẽi| =
ĒM1n×1 remain true until time t f , when the neural-based observer is settled and the

formation tracking task is achievable. With |S̄(um,i, τi, ψu)| ≤ |um,i|, the following

equation is obtained:

ėx = (L + B)⊗ In(ĒM1nN×1)

With (L⊗ In)ĒM1nN×1 = 0nN×1, one has |ėx| ≤ σ(B)ĒM1nN×1, which further leads to

|ex(t f )| ≤ |ex(t0)|+ t f σ(B)ĒM1nN×1

After the finite time t f , the system (5.4) is at the second stage, where (5.32) is expressed

as

V̇4,4 = eT
x P(L + B)⊗ In(Ẽ− k̄ξ̄ ⊗ Inex)

where

ξ̄ = diag{ξ̄1, ξ̄2, . . . , ξ̄N}, Ẽ = [ẼT
1 , ẼT

2 , . . . , ẼT
N]

T

If define ŪMi = UMi − τi to represent the minimum amplitude of the accessible control

input for error reduction, it is reasonable to have ẼM < ŪMi for every agent when

t ≥ t f .

Define ex = min(|ex|) and ex = max(|ex|) to represent channels with the lowest and

the highest amplitude in vector ex, respectively. By ψu < ŪMi − ẼM, if define ŨMi =

ŪMi − ẼM − ψu to represent the least amount of residual control input for each agent,

it is confident to say that the available control input can reduce the amplitude ex with

the speed of
d|ex|

dt
≤ −σ(L + B)ŨMi

For other channels, consider the extreme scenario where ėxi(j)exi(j) > 0 is satisfied

when |exi(j)| < |ex|. Because the controller parameter ki is chosen as ki = k̄ for each

individual agent, |exi(j)| will increase until |exi(j)| = |ex|, leading to ˙̇exi(j) ≤ −σ(L + B)ŨMi, if ex ≥ 0

˙̇exi(j) ≥ σ(L + B)ŨMi, if ex < 0
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Thus, the parameter ξ̄i is expected to converge to 1 within the finite time of

tξ̄ =
|ex(t0)|+ t f σ(L + B)ĒM − ŨMi/k̄

σ(L + B)ŨMi

Finally, every agent will achieve the third stage after the finite time of t f + tξ̄ to have

the following results:

V̇4,4 = eT
x P(L + B)⊗ In(−k̄ex + Ẽ)

= − k̄
2

eT
x Q⊗ Inex +

1
2

eT
x Q⊗ InẼ

≤ − k̄
2

σ(Q)∥ex∥2 +
1
2

σ(Q)∥ex∥∥Ẽ∥

(5.33)

Hence, V̇4,4 will remain negative unless the following equations are satisfied:

∥ex∥ ≤
σ(Q)ẼMnN

k̄σ(Q)
, ∥δx∥ ≤

σ(Q)ẼMnN
k̄σ(Q)σ(L + B)

(5.34)

Note that the neural-based observer (5.20) only holds semi-global stability. Hence, by

Lemma 2.1, both ex and δx are semi-globally UUB, which completes the proof.

Remark 5.2. In (5.21), parameters η1 and η3 both act as the NN’s sensitivity to the observation

error x̃i. Hence, if the values of η1 and η3 are increased, the convergence neighbourhood of ∥x̃i∥
(5.24) will shrink in theory. However, if the values of η1 and η3 are set to be very high, the

NN in (7.9) will be over-sensitive to errors, leading to oscillations in its output. On the other

hand, both η2 and η4 act as the damper to stop the weight matrix from changing rapidly. Hence,

increasing the values of η2 and η4 will decrease the amount of chattering in network output,

but it will also extend the convergence time of the observation error.

Remark 5.3. The constant matrix γi in (5.20) acts as the observer’s sensitivity to the error-

related term diag{sign(x̃i)}|x̃i|βi . By both (5.24) and (5.26), it is expected that the conver-

gence region of ∥x̃i∥ will shrink if the value of σ(γi) is increased. The effect of βi is compar-

atively complex. When ∥x̃i∥ ≤ 1, setting βi close to 0.5 will bring faster convergence speed.

However, due to the characteristics of the fractional-order term, choosing βi close to 1 will lead

to a faster convergence when |x̃i| > 1n×1.

Remark 5.4. The purpose of employing the smooth projection law in (5.29) is to restrict the

effect of Êi, which will attenuate chattering in the control input ui and system state xi if the

states in the neural-based observer are experiencing oscillation. Regarding the proportional

parameter ki in term ue,i, a rise in its value will result in a decrease in the ultimate convergence

region of both δx and ex (see (5.34)).
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Remark 5.5. The purpose of Assumption 5.5 is to ensure that the initial estimation error of the

neural-based observer is bounded. Related parameters are also useful to prove the finite-time

convergence of observation error x̃i and the shrinking factor ξ̄i.

5.3.6 Simulation results and discussions

To justify the performances of the proposed neural-based observer (5.20), the CIDA

(Algorithm 2) and the distributed formation control law (5.30), simulations and com-

parisons regarding a multi-robot system are provided.

Consider a multi-robot system that contains six ODRs (Fei et al. 2022a), and the dy-

namics of the ith robot is given as the following equation as mentioned in Chapter

2:

ẋi = Tf (θi, Ri)ui + w̄i

where xi = [px
i , py

i , θi]
T denotes the state vector that contains the position and orien-

tation information of the robot, ui = [u1
i , u2

i , u3
i ]

T represents the speed vector of the

robot’s motors and w̄i is the external disturbance vector.

With the existence of measurement error, it is hard for us to get the precise value of Ri.

Hence, the parameter value that is measured and employed in the controller design

process is illustrated as R̂i. The value of Ri, R̂i and the initial state values are provided

in Table 5.1. The actuator saturation limit is set as UMi = 0.25 by Assumption 5.2.

The communication topology is chosen as Fig. 5.3 and bi = 2. The system uncertainties

and formation references are chosen as follows, respectively:

w̄i = [0.02cos(0.5t + π/2) + 0.03e−|p
x
i |−1, 0.03sin(0.2t) + 0.02tanh(py

i ),

0.04sin(0.1t + θi) + 0.01tanh(θi)]
T,

xdi = [2cos(−0.15t + π) + 2cos(iπ/3)− 1, 2sin(iπ/3) + 2sin(−0.15t + π), 0]T,

i = 1, 2, . . . , 6

(5.35)

To justify the effectiveness of our designs, simulations based on the following four

controller designs are conducted:

1. The cooperatively tuned formation controller design (CTFC) that uses (5.12) as

the weight tuning law. The control input is chosen as ui = S̄(uc,i, τ̄i, ψ̄i), where

uc,i = ĝ−1
i (ẋdi − Êi − kiexi), τ̄i = 0.24 and ψ̄i = 0.01.
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Table 5.1. Model parameters and initial states of six saturated first-order ODRs.

Robot number Model parameters Initial states

Ri(m) R̂i(m) px
i (m) py

i (m) θi(rad) p̂x
i (m) p̂y

i (m) θ̂i(rad)

1 0.24 0.21 -0.2 -0.7 −π/4 0 -0.3 −π/5

2 0.23 0.25 1.6 3.6 −π/5 1.4 3.3 −π/6

3 0.30 0.33 -4 -2.4 π/3 -3.7 -2.1 π/4

4 0.28 0.24 -1.9 -1.1 π/4 -1.6 -0.8 π/6

5 0.25 0.28 -1.6 -4.6 −π/3 -1.1 -4.1 −π/4

6 0.32 0.29 3.6 -1.5 −π/6 3.9 -1.9 −π/5

1

2 5

43

6

Figure 5.3. The strongly connected topology of the multi-ODR system.

2. The restricted cooperatively tuned formation controller design (RCTFC) that uses

(5.12) as the weight tuning law. The control input is chosen as ui = S̄(uc,i, τ̄i, ψ̄i),

where uc,i = um,i + ue,i, EM = 0.10, τ̄i = 0.24 and ψ̄i = ψE = 0.01.

3. The observer-based formation controller design (OBFC) that implements the pro-

posed neural-based observer (5.20) and the weight tuning law (5.21). Algorithm

2 is not applied and the controller is chosen as ui = S̄(uo,i, τ̄i, ψ̄i), where uo,i =

ue,i + S̄(um,i, τi, ψi), τ̄i = 0.24, τi = 0.22, EM = 0.10 and ψi = ψE = ψ̄i = 0.01.

4. The algorithm-and-observer-based formation cont-roller design (AOBFC) that

has the neural-based observer (5.20) tuned by (5.21). Algorithm 2 is implemented

to generate the shrinking factor ξ̄i and the controller is designed as (5.30), where

τi = 0.22, EM = 0.10 and ψE = ψu = 0.01.

The tuning parameters of the NN are chosen as η1 = 15, η2 = 0.1, η3 = 0.1 and

η4 = 0.06 in all simulations. Initially, Ĵi(0) is chosen as a random 6× 5 matrix with
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Figure 5.4. Merits of using the neural-based observer over using the cooperative tuning

design.

elements whose norms are less than 1 and Ŵi(0) is chosen as a 5× 3 zero matrix. For

the designs that employ neural-based observer (5.20), the parameters are chosen as

βi = 0.9 and γi = diag{12, 12, 18}.

The proportional parameter ki in ue,i is chosen as ki = k̄ = 3 for every agent in each sim-

ulation. To compare the performance of different designs, define the Euclidean-norm

calculation of an arbitrary column vector V as ∆̄(V) =
√
VTV . To illustrate the mer-

its of the neural-based observer (Theorem 5.2) over the cooperative tuning approach

(Theorem 5.1), the trends of ∆̄(Ẽ), ∆̄(ex), ∆̄(δx) and ∆̄(u) are provided in Fig. 5.4. The

semi-globally UUB region and convergence time of each method are recorded in Table

5.2.

Although the norm of ex and δx are both semi-globally UUB for the CTFC design,

it is hard to say that the system error states converged due to the high value of bẼ

(over 1000). Adding an extra smooth projection function to restrict the amplitudes of

the NN output can lead to a success converge for both ex and δx in RCTFC, but the

accuracy of the NN is far from sufficient (∆̄(Ẽ) ≥ 100). Furthermore, the control input

of the RCTFC is also filled with chattering (see ∆̄(u) in Fig. 5.4), which indicates the

cooperative tuning method (5.12) is not suitable when the actuators are restricted by

saturation phenomenon.
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Table 5.2. Performance comparison of four control schemes.

Design Semi-globally UUB region Convergence time

bẼ bex bδx bu tẼ tex tδx tu

CTFC 1.4× 103 8.5 3.1 1.1 – – – –

RCTFC 4.2× 102 1.5× 10−1 5.5× 10−2 8.0× 10−1 37.7 s 17.6 s 17.6 s 10.1 s

OBFC 4.8× 10−2 1.5× 10−2 5.0× 10−3 6.5× 10−1 13.2 s 16.0 s 17.8 s 17.0 s

AOBFC 5.3× 10−2 1.5× 10−2 5.0× 10−3 6.5× 10−1 4.2 s 14.0 s 14.3 s 10.0 s

On the contrary, ∆̄(Ẽ) of the neural-based observer (5.20) in AOBFC is bounded within

the region of 0.053 in 4.2 seconds, which proves the validity of the finite-time charac-

teristics claimed in Theorem 5.2. Besides, the local formation tracking error ex and the

reference tracking error δx are semi-globally UUB within 0.015 and 0.005, respectively.

As a result, the existence of Problem 5.1 and the validity Theorem 5.2 are both illus-

trated. Hence, the neural-based observer design (5.20) is a method more suitable than

the cooperative tuning design (5.12) for systems with actuator saturation.

To verify the existence of the reverse effect mentioned in Problem 5.2, the values of

each agent’s local formation tracking error exi in the first 20 seconds are recorded and

presented in Fig. 5.5. It is observed that every agent with the OBFC design experiences

oscillation in the value of eθ and part of the agents have fluctuated trends in ex (ODRs

one, three, four and six) and ey (ODRs two, five and six), which indicates the existence

of the reverse effect. In comparison, most of the state fluctuations are attenuated in

the AOBFC design. To validate that the CIDA algorithm is also capable to restrict the

amplitudes of the control input within the saturation limit to satisfy S(ūi, UMi) = ūi,

the curves of each agent’s control input are shown in Fig. 5.6.

The evolution of the shrinking factor ξ̄i in Algorithm 2 is provided in Fig. 5.7, where

it is observed that each ξ̄i converges to one within the finite time of 13.8 seconds, il-

lustrating the validity of Theorem 5.3. However, the proposed CIDA algorithm cannot

completely avoid the reverse effect mentioned in Problem 5.2 (see ODR three in Fig.

5.5). As stated in the proof of Theorem 5.3, the factor ξ̄i is determined by both the ac-

cessible control input amplitude ŪMi and the maximum error amplitude in exi. Hence,
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Figure 5.5. Illustration of the reverse effect and the merits of implementing CIDA.

Saturation limit

Figure 5.6. Evolution of control inputs in AOBFC.
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when one channel (py
i channel in ex3) has a significant amount of error over other chan-

nels (px
i channel in ex3), the channels with small error amplitudes can be overshadowed

due to a low value of ξ̄i, which leads to an increment of ex. This circumstance is eased

when the amplitude of different channels in the error vector achieves similar values or

the shrinking factor ξ̄i rises to higher values (see ODR three in Fig. 5.5 and Fig. 5.7

around ten seconds).

Figure 5.7. Shrinking factor ξ̄i.

To monitor the formation tracking behaviour of the system (5.4), the trajectories of all

agents are recorded in Fig. 5.8. It is observed that the entire system is able to track

the desired time-varying circular formation (5.35) (a circular formation whose centre is

moving in a circular trajectory) with the existence of model uncertainty, external dis-

turbances and actuator saturation, which concludes the effectiveness of the proposed

formation control scheme (5.30) and the CIDA (Algorithm 2).

Remark 5.6. In all simulations, the system uncertainty is chosen as (5.35), which is a function

related to both the system state xi and the task time t. In practice, the relationship between

the actual system state xi and the task time t should be a continuous but unknown function

xi = F (t). In theory, the task time t can be seen as an unknown function whose variable is

system state xi, further leading to t = G(xi). Hence, both the system uncertainty w̄i and the

overall system uncertainty Ei can be treated as an unknown function that use xi as the variable,

which indicates that the estimation process (7.9) is valid.
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Figure 5.8. Trajectories of the multi-robot system while applying the AOBFC design.

5.4 Practical formation control of multi-robot systems

Although the NN-based estimation process is able to approximate the unknown factors

within bounded error, such complex structure does increase the computational burden

of each agent. Hence, it is necessary to develop an adaptive estimation structure with

less complexity.

In this section, a new adaptive observer design is proposed to obtain global stability in

both the estimation process and the control process. The CIDA structure will also be

modified to check if there is an alternative approach to design a saturated controller.
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5.4.1 Adaptive observer design with global stability

To ensure global stability, the method of employing the NN structure is no longer avail-

able. Instead of relying on one particular kind of estimation tool, it is also reasonable

to consider the uncertainty approximation issue in the perspective of controller de-

sign. To illustrate such idea, construct the following imaginary system according to

the dynamics of the individual agents (5.3):

˙̂xi = ĝiui + ûi (5.36)

where ûi ∈ Rn is the control input of the imaginary system.

Then the error dynamics of the imaginary system is given as

˙̃xi = Ei − ûi (5.37)

Accordingly, when x̃i achieve the equilibrium point to have ∥x̃i∥ = 0, the condition

of Ei = ûi is also satisfied. Hence, it is reasonable to transfer the above uncertainty

approximation problem into the controller design problem of (5.36). The following

assumption is made to establish the observers with global stability:

Assumption 5.6. The uncertain factor Ei is bounded such that ∥Ei∥ ≤ E1
M and ∥Ėi∥ ≤ E2

M

are satisfied simultaneously. The control gain matrix is bounded such that there are positive

constants g1
M and g2

M that satisfy the following inequalities:

∥ĝ∥F ≤ g1
M, ∥ ˙̂g∥F ≤ g2

M

Based on the designs proposed in the previous part of the thesis, the control input ûi

can be designed in an adaptive way as follows:

ûi = Êi + k̃i x̃i (5.38)

where the term Êi is defined as an adaptive term that is sensitive to x̃i and k̃i is a

positive definite diagonal matrix. Inspired by the tuning laws of NNs, the self adaptive

law of Êi is given as
˙̂Ei = η5x̃i − η6Êi (5.39)

where η5 and η6 are both positive definite diagonal matrices. To illustrate the estima-

tion error regarding Ei, define Ẽi = Ei − Êi.

The results on the adaptive observer with global stability is given as the following

theorem:
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Theorem 5.4. Consider system (5.3) with actuator saturation (5.2), where Assumptions 5.1

and 5.6 hold. By the imaginary system (5.36), the imaginary control input (5.38), and the

adaptive law (5.39), the uniform ultimate boundedness of x̃i and Ẽi is guaranteed if the control

input satisfies ui = S(ui, UMi).

Proof. Consider the following Lyapunov candidate for the ith agent:

V4,5 =
1
2

x̃T
i η5x̃i +

1
2

ẼT
i Ẽi

Then the time derivative of V4,5 is given as

V̇4,5 = x̃T
i η5 ˙̃xi + ẼT

i
˙̃Ei

= x̃T
i η5(Ei − ûi) + ẼT

i (Ėi − ˙̂Ei)

= x̃T
i η5(Ẽi − k̃i x̃i) + ẼT

i Ėi − ẼT
i (η5x̃i − η6Êi)

= −x̃T
i η5k̃i x̃i + ẼT

i Ėi − ẼT
i η6Ẽi + ẼT

i η6Ei

By Assumption 5.6, an alternative version of V̇4,5 is given as

V̇4,5 ≤ −σ(k̃i)σ(η5)∥x̃i∥2 − σ(η6)∥Ẽi∥2 + E2
M∥Ẽi∥+ σ(η6)E1

M∥Ẽi∥

≤ −χT
4,1H4,1χ4,1 + h4,1χ4,1

where

H4,1 =

[
σ(η5)σ(k̃i) 0

0 σ(η6)

]
, h4,1 =

[
0 E2

M + σ(η6)E1
M

]
, χ4,1 =

[
∥x̃i∥
∥Ẽi∥

]

By Lemma 3.1, both ∥x̃i∥ and ∥Ẽi∥ are UUB within the following neighbourhoods,

respectively:

Ω2
x̃ =

{
x̃i

∣∣∣∣∥x̃i∥ ≤
E2

M + σ(η6)E1
M

σ(H4,1)

}
ΩẼ =

{
Ẽi

∣∣∣∣∥Ẽi∥ ≤
E2

M + σ(η6)E1
M

σ(H4,1)

}
which completes the proof.

After modifying the observer design, it is also essential to update the formation control

law to achieve the boundedness of the formation tracking error.
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5.4.2 Observer-based robust formation controller

Although the CIDA proposed in Section 5.3 works, it does require some preliminary

information that is hard to obtain (such as the value of τi Assumption 5.2). Hence, it is

vital to find an alternative method that could increase the practicality of the control de-

sign. To ease the requirement on the accessible information, Assumption 5.2 is further

modified as follows:

Assumption 5.7. There is an unknown positive constant τi and a finite time ts for the ith

agent such that the following inequality is satisfied when t ≥ ts

|g−1
i (t)(ẋdi(t)− fi(xi(t))− w̄i(t))| ≤ τi1n×1

where τi < UMi and 1n×1 is an n-dimensional column vector whose every entry is one.

Inspired by the auxiliary variable design (Han et al. 2019), a new adaptive auxiliary

variable ξi is defined for the ith agent, which further leads to the following nominal

controller design:

unom
i = ĝ−1

i (ẋdi − keexi − ûi − kξξi) (5.40)

where ke and kξ are both positive definite diagonal matrices.

The adaptive law of the auxiliary variable is set as

ξ̇i = η7 ĝi(unom
i − S(unom

i , UMi))− η8ξi (5.41)

where η7 and η8 are both positive definite diagonal matrices. Accordingly, the forma-

tion control law is given as

ui = S(unom
i , UMi) (5.42)

Based on the above discussions, the observer-based design presented in this chapter

can be illustrated as the diagram in Figure 5.9, and final result of the observer-based

formation controller is given as the following theorem:

Theorem 5.5. Consider a cluster of nonlinear first-order agents (5.4) with actuator saturation

(5.2), where Assumption 5.1, 5.6 and 5.7 hold. By the adaptive observer (5.36), the estimation

tuning law (5.39), the auxiliary tuning law (5.41) and the compensated formation control law

(5.42), then ξi, ex and δx are all semi-globally UUB if the controller parameters are chosen
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Formation
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Figure 5.9. Compensated observer-based formation controller for physical experiments.

properly such that the following matrix is positive definite:

H4,2 =



σ(Q)σ(ke)/2 −K1/2 −σ(Q)/4 0 −σ(Q)/4

−K1/2 σ(η8) −K2/2 0 0

−σ(Q)/4 −K2/2 σ(η7kξ) 0 0

0 0 0 σ(η5)σ(K̃) 0

−σ(Q)/4 0 0 0 σ(η4)


where

K1 = σ(Q)σ(kξ)/2, K2 = σ(η8kξ) + σ(η7)

Proof. Consider the following Lyapunov candidates:

Ve =
1
2

eT
x P⊗ Inex, Vξ =

1
2

ξTξ, Vζ =
1
2

ζTζ, Vo =
1
2

x̃Tη5 ⊗ IN x̃ +
1
2

ẼTẼ

where

ξ = [ξT
1 , ξT

2 , . . . , ξT
N]

T, unom = [(unom
1 )T, (unom

2 )T, . . . , (unom
N )T]T

udiff = unom − S(unom), ζ = ĝudiff

According to (5.41), the time derivative of ξ is given as

Vξ = ξTξ̇

= ξT(η7 ⊗ IN)ζ − ξT(η8 ⊗ IN)ξ

≤ σ(η7)∥ξ∥∥ζ∥ − σ(η8)∥ξ∥2

Accordingly, the time derivative of Vζ is given as

V̇ζ = ζTd(ĝucom)/dt + ζT( ˙̂gS(u)− gṠ)
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5.4.2 Observer-based robust formation controller

= ζT[ẍd − ke(L + B)⊗ In(gS(u) + w− ẋd)− kξ ⊗ In(η7 ⊗ Inζ − η8 ⊗ Inξ)− ˙̂u]

+ ζT(ġS(u)− gṠ)

where Ṡ = dS(u)/dt.

According to the boundedness of the saturation phenomenon, there exist two positive

constants that satisfy ∥S(u)∥ ≤ S1
M and ∥Ṡ∥ ≤ S2

M. Hence, we can rewrite V̇ζ as

V̇ζ ≤ x2
M∥ζ∥+ σ(ke)σ(L + B)(g1

MS1
M + wM,1 + x1

M)∥ζ∥ − σ(η7kξ)∥ζ∥2

+ σ(η8kξ)∥ζ∥∥ξ∥+ û1
M∥ζ∥+ (g2

MS1
M + g1

MS2
M)∥ζ∥

where ∥w∥ ≤ w1
M and ∥ẇ∥ ≤ w2

M.

By the results obtained in the observer design, we have

V̇o ≤ −σ(η5)σ(K̃)∥x̃∥2 − σ(η6)∥Ẽ∥2 + ∥Ẽ∥(wM,2 + σ(η6)wM,1)

where K̃ = diag{k̃1, k̃2, . . . , k̃N}.

Meanwhile, the time derivative of Ve is obtained as

V̇e = eT
x (P(L + B))⊗ In(gS(u) + w− ẋd)

= eT
x (P(L + B))⊗ In(ĝunom + E− ẋd − ζ)

≤ −1
2

σ(Q)σ(ke)∥ex∥2 +
1
2

σ(Q)∥ex∥∥Ẽ∥+
1
2

σ(Q)ϵM∥ex∥+
1
2

σ(Q)σ(kξ)∥ex∥∥ξ∥

+
1
2

σ(Q)∥ex∥∥ζ∥

where ∥û− E∥ ≤ ∥Ẽ∥+ ϵM and ϵM is a positive bounded constant.

Accordingly, if define V4,6 = Ve + Vζ + Vξ + Vo, then we have

V̇4,6 ≤ −
1
2

σ(Q)σ(ke)∥ex∥2 +
1
2

σ(Q)∥w̃∥∥ex∥+
1
2

σ(Q)σ(kξ)∥ex∥∥ξ∥+
1
2

σ(Q)∥ex∥∥ζ∥

+
1
2

σ(Q)ϵM∥ex∥ − σ(η8)∥ξ∥2 + σ(η7)∥ξ∥∥ζ∥ − σ(η7kξ)∥ζ∥2 + σ(η8kξ)∥ζ∥∥ξ∥

+ ∆ζ∥ζ∥ − σ(η5)σ(K̃)∥x̃∥2 − σ(η6)∥w̃∥2 + ∆w∥w̃∥

where

∆ζ = x2
M + û1

M + g2
MS1

M + g1
MS2

M + σ(ke)σ(L + B)(g1
MS1

M + wM,1 + x1
M)

∆w = wM,2 + σ(η6)wM,1
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then one has

V̇4,6 ≤ −χT
4,2H4,2χ4,2 + h4,2χ4,2

where

χ4,2 =
[
∥ex∥ ∥ξ∥ ∥ζ∥ ∥x̃∥ ∥w̃∥

]T
,

h4,2 =
[
σ(Q)ϵM/2 0 ∆ζ 0 ∆w

]
Hence, by Lemma 2.1, ∥ex∥, ∥ξ∥ and ∥ζ∥ are semi-globally UUB within the following

regions, respectively:

Ω4
e =

{
ex

∣∣∣∣∥ex∥ ≤
σ(h4,2)

σ(H4,2)

}
, Ω1

ξ =

{
ξ

∣∣∣∣∥ξ∥ ≤ σ(h4,2)

σ(H4,2)

}
, Ω1

ζ =

{
ζ

∣∣∣∣∥ζ∥ ≤ σ(h4,2)

σ(H4,2)

}

Similar result is also obtained for δx:

Ω4
δ =

{
δx

∣∣∣∣∥δx∥ ≤
σ(h4,2)

σ(H4,2)σ(L + B)

}
which completes the proof.

5.4.3 Simulations results and discussions

To validate the new observer-based compensated controller design (5.42), the exam-

ple of a three-wheel ODR cluster is employed for comparative numerical simulations.

Still, consider the first-order model presented in Section 5.3. Suppose that the cluster

contains three ODRs with the directed topology shown in Figure 5.10.

1

2

3

Figure 5.10. The communication topology among 3 ODRs in the experiment.

The initial states and the ODR parameter values are given in Table 5.3.

The system formation reference is chosen as a time-varying circular formation whose

centre moves in a sine wave trajectory, which is abstracted as the following expression:

xdi(t) =
[

4
5

cos
(

π

18
t +

2i
3

π

)
+

1
5

sin
(

π

15
t
)

,
4
5

sin
(

π

18
t +

2i
3

π

)
+

4
5
− t, 0

]T

(5.43)
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Table 5.3. Model parameters and initial states of three saturated first-order ODRs.

Robot number Model parameters Initial states

Ri(m) R̂i(m) px
i (m) py

i (m) θi(rad) p̂x
i (m) p̂y

i (m) θ̂i(rad)

1 0.134 0.13 −0.6 0.3 −π/4 −0.6 0.3 −π/4

2 0.128 0.13 0.1 1.4 π/5 0.1 1.4 π/5

3 0.126 0.13 1.1 0 π/10 1.1 0 π/10

The uncertain term wi is chosen as

wi =

[
2

25
cos
(

1
2

t +
iπ
2

)
,

9
100

sin
(

1
5

t +
iπ
3

)
,

2
25

sin
(

1
10

t +
iπ
4

)]T

The saturation limit is chosen as UMi = 0.2, and the error sensitivity of individual

agents is chosen as bi = 0.5. The first item to justify is the adaptive observer’s stability.

With the parameters chosen as η5 = diag{15, 15, 6}, η6 = diag{0.8, 0.8, 0.8} and k̃i =

diag{8, 8, 2}, the estimation performance of the adaptive observer (5.36) embedded in

each agent is shown in Figure 5.11. It is observed that the estimation error of (5.36) is

bounded such that ∥Ei − ûi∥ ≤ 2.1× 10−3 is achived for all agents, which validates

Theorem 5.4.

Figure 5.11. Estimation performance of the proposed adaptive observer.

To show the necessity and merits of the control law presented in Theorem 5.5, compar-

ative simulations based on the following three designs are conducted:
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1. The observer-based formation controller (OBFC) which employs the adaptive ob-

server (5.36) by having ui = S(uob
i , UMi), where

uob
i = ĝ−1

i (ẋdi − keexi − ûi)

2. The compensated formation controller (CFC) which only employs the auxiliary

variable ξi by having ui = S(ucom
i , UMi), where

ucom
i = ĝ−1

i (ẋdi − keexi − kξξi)

3. The compensated observer-based formation controller (COBFC) which employs

both the adaptive observer (5.36) and the auxiliary variable ξi, which further

leads to the design in (5.42).

The parameter values in the above three designs are selected as ke = diag{1, 1, 0.5},
kξ = diag{2, 2, 2}, η7 = diag{6, 6, 1} and η8 = diag{0.5, 0.5, 0.5}. The propagation

of the error-related norms are presented in Figure 5.12. As shown in the results, the

tracking errors ex and δx will have a smaller bounded region if the adaptive observer

is employed to compensate for the uncertain factors inside the system.

In specific, the trends of ex in each state channel is provided in Figure 5.13. After com-

paring the results of COBFC and OBFC, it is observed that implementing the auxiliary

variable ξ will help attenuate the oscillation of system states. However, the perfor-

mance of the compensation term can still be improved by exploring more parameter

settings.

The control input is also recorded in Figure 5.14, where the control input is restricted

within the saturation limit as what’s declared in Theorem 5.5.

The formation statuses of the entire system in time t = 0s and t = 90s are also pro-

vided in Figure 5.15, where all three robots are able to maintain bounded tracking

error around their desired trajectories (see dotted lines) to achieve a time-varying cir-

cular formation (see the purple dash-dotted line), which validates the effectiveness of

Theorem 5.5.
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Figure 5.12. Performance comparison among COBFC, OBFC and CFC.

5.4.4 Practical experiments and results

To further prove the effectiveness of the observer-based formation control scheme in

practice, three ODRs (see Figure 5.16) are developed and employed to carry out physi-

cal experiments. It is seen that the physical structure of the ODRs satisfies the theoreti-

cal analysis provided in Chapter 2, which means the dynamic model should match the

one provided in Section 5.3.

The OptiTrack system is deployed to act as the feedback of each individual ODR. The

distributed communication among robots are carried out in the internet layer on com-

puters, and the useful information is sent to each ODR through WiFi by using the

Transmission Control Protocol.
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Figure 5.13. Comparison of ex between COBFC and OBFC.

Although it is impossible to know the specific value of Ei in the experiment, it is rea-

sonable to record the value of ∥x̃i∥ instead to illustrate that the estimation error of the

adaptive observer is bounded. The trends of ∥x̃i∥ of each individual ODR is recorded

in Figure 5.17. It is observed that the value of ∥x̃i∥ is UUB such that ∥x̃i∥ ≤ 10−2 is

satisfied for every ODR, which further proves the validity of Theorem 5.4 in practice.

The propagation of the local tracking errors are provided in Figure 5.18. If the auxiliary

variable is not implemented by setting ξi = [0, 0, 0]T for each agent, then the propaga-

tion of the local tracking error contains state fluctuation with high amplitudes. On the

other hand, although the state fluctuation phenomenon is not ruled out after employ-

ing the auxiliary variable ξi, the amplitudes of the fluctuation is remarkably decreased,

which justifies the necessity of including ξi in the controller design.

Correspondent to the simulation results, the norms of ex, δx and ξ are also recorded in

Figure 5.19. Although CFC is able to maintain the boundedness of each state, it can
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Saturation limit

Figure 5.14. Control input of the COBFC scheme.

Figure 5.15. System trajectories of COBFC in simulation.
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Figure 5.16. Photo of 3 ODRs in the lab.

Figure 5.17. Boundedness of ∥x̃i∥ in the experiment.

only ensure ∥ex∥ ≤ 2× 10−1. However, the tracking precision is increased by at least

60% if the adaptive observer is implemented (see the results of COBFC and OBFC),

which validates the necessity of employing the observer design and the stability of the

observer-based control scheme.

The control input of each motor is also recorded and presented in Figure 5.20, where

the amplitudes of any arbitrary input is restricted within the actuator saturation limit

UMi.

Note that there are several remarkable boost of the system states in Figures 5.17-5.20

(see around 18s, 38s, 45s and 60s). The corresponding reason is that sometimes one or
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Figure 5.18. Effectiveness of the auxiliary variable in the experiment.

several ODRs may enter the blind area of the OptiTrack system because there are only

eight cameras covering the lab (about 24m2), and the measurement of the ODR states

will then change abruptly. However, the stability of the system will not be affected

by the occasional faults in the feedback because the error states will still converge to

a bounded neighbourhood. Hence, the proposed adaptive observer and the observer-

based compensated controller is proved to be robust in practice.

The system formation in time t = 0s, t = 60s and t = 90s is recorded in Figure 5.21,

where all three ODRs are able to track their desired trajectories within bounded error to

form a time-varying circular formation (see the purple dash-dotted circle). The video

for the physical experiment of the COBFC design is uploaded in link https://youtu.

be/ZB1qV9C7WSM.
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Figure 5.19. Performance comparisons among COBFC, OBFC and CFC.

5.5 Chapter summary

The first main focus of this chapter is the implementation of three-layer NNs in the

formation tracking problem of uncertain and saturated first-order multi-agent sys-

tems. First, a fully local-error-related cooperative tuning law for unsaturated agents

was proposed to avoid the divergence of the weight estimation error. After introduc-

ing the actuator saturation phenomenon along with the input coupling phenomenon

into the system dynamics, two correlated problems including the slow convergence of

cooperative neural estimation and the reverse effect were discussed. The three-layer

NN was further modified into an observer to achieve semi-global finite-time conver-

gence regardless of each agent’s formation tracking error. A control input distribution

algorithm was then developed to attenuate the reverse effect caused by coupled and
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Saturation limit

Figure 5.20. Control input of the COBFC scheme in the experiment.

saturated control inputs. Simulation examples are given to show the effectiveness and

advantages of the proposed new designs compared with some existing results.

Following the above results in uncertainty approximation, a new adaptive variable is

employed to replace the NNs in the observer structure to achieve global stability. An

adaptive auxiliary variable is also added into the controller design to attenuate the state

fluctuation led by the reverse effect. The corresponding observer-based compensated

formation controller is first validated by the Lyapunov stability theory and numeri-

cal simulations. To further prove the practicality of the design, physical experiments

that includes three networked ODRs are conducted to illustrate the robustness of the

formation tracking process.

In the next chapter, the study of the effect of the actuator saturation phenomenon is

extended to nonlinear second-order agent clusters. A new method of implementing
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Figure 5.21. Formation status and trajectories of individual ODRs in the experiment.

the linear programming technique to regulate the nominal control input is developed

to reduce the state oscillations in the formation tracking process.
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Chapter 6

Formation Control of
Second-Order Agents with

Input Saturation

AFTER analysing the effect of actuator saturation on first-order systems,

it is also necessary to extend the same issue to second-order systems.

Hence, the robust formation control problem for a group of saturated non-

linear second-order agents is discussed in this chapter. To carry out the

uncertainty estimation process without prior knowledge of the uncertain

function, new observer structures that combine the neural network estima-

tion with the sliding mode technique are proposed. A finite-time estimation

sliding surface is then defined to obtain finite-time characteristics. Both the

adaptive windup compensator and the linear programming technique are

employed to attenuate the state fluctuation phenomenon and further con-

struct the observer-based formation controller. A multiple omni-directional

robot system is used in the simulations to illustrate the effectiveness of the

proposed adaptive observer and the observer-based robust formation con-

troller.
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6.1 Introduction

After investigating the effect of actuator saturation on the cooperative first-order agent

clusters, it is also essential to extend the same topic to second-order agent clusters.

Although the approach to design a saturated formation controller is proposed in the

previous chapter, it is still essential to investigate the effect of an extra layer of integra-

tion and the corresponding mitigation.

Similar to the previous chapters, the unknown factors such as modelling uncertainty

and external disturbances are considered to ensure the robustness of our controllers.

Currently, a part of researchers choose to employ switching function (Yang et al. 2012)

to passively reject the influence of uncertain terms, while the others implement differ-

ent estimation techniques such as NNs (Fei et al. 2020) and observers (Xu et al. 2020)

to approximate and compensate for uncertain factors to further obtain adaptive con-

trollers.

The sliding mode observer was first proposed to perform finite-time uncertainty esti-

mation for systems with arbitrary order (Levant 2003). The super-twisting-algorithm-

based approach (Chalanga et al. 2016) is found to have high approximation preci-

sion for both matched disturbances (Dou et al. 2021) and mismatched disturbances

(Mondal et al. 2017a). The same structure was further modified by Sun et al. to achieve

fixed-time estimation (Sun et al. 2018). However, prior knowledge of the uncertain

term’s Lipschitz constant is essential to ensure the convergence of estimation error,

which makes this structure too conservative for certain practical scenarios.

As mentioned in Chapter 5, employing the cooperative tuning approach for NNs is

not a suitable choice for systems with actuator saturation. Hence, we only consider

the neural-based observer structure for second-order agents that are affected by input

saturation. Although there have been several neural-based observer designs devel-

oped in the previous chapters, the finite-time convergence of the NN weight has not

yet been achieved. Hence, it is essential to analyse if there is an approach to integrate

the sliding mode technique with the neural-based estimation structure such that these

two schemes can compensate for each other’s shortcomings.

Regarding a saturated system with second-order or higher-order dynamics, the state

windup phenomenon is commonly seen. Ding and Zheng found out that large error

overshoot is expected if we implement a linear sliding surface to design the controller
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(Ding and Zheng 2015). To attenuate the state overshoot phenomenon, a saturation

function was then employed to construct a saturated sliding surface (Ding and Zheng

2015) for continuous-time sliding mode controller design. To achieve faster error con-

vergence, a nonsingular saturated terminal sliding surface (Ding and Zheng 2016) was

further proposed to ensure finite-time stability. Although the discontinuous sliding

surfaces (Ding and Zheng 2015, Ding and Zheng 2016) proposed by Ding and Zheng

are helpful for reducing the amplitude of the overshoot, the state windup phenomenon

is still obvious and the discontinuous sliding surface design has introduced complexity

into the stability analysis.

Other than modifying the sliding surface, some researchers choose to employ auxil-

iary variables to act as the overshoot compensator. Cui et al. introduced a set of frac-

tional tuning laws for the auxiliary variable that is used to compensate for the state

windup issue in the SMC scheme (Cui et al. 2016). Although the fractional design

(Cui et al. 2016) is found to be effective, the fact that it uses the value of the auxiliary

variable as a denominator in the tuning law may lead to the singular issue. Regarding

an electric machine set, Han et al. proposed an adaptive compensator (Han et al. 2019)

design that is free of the singular issue to attenuate the windup phenomenon. How-

ever, the design introduced by Han et al. can only be used for discrete-time systems.

Hence, it is essential to investigate if there is a nonsingular tuning approach for the

windup compensator in continuous-time systems. Besides, the reverse effect defined

in Chapter 5 is also considered in the current chapter.

Motivated by the above gaps, this chapter mainly focuses on providing analysis and

solutions to the following issues:

1. How to integrate the sliding mode technique with the NN approximation ap-

proach to shorten the convergence time of the estimation error?

2. How to let NNs obtain finite-time characteristics in an observer structure?

3. How to attenuate the state oscillation led by the state windup phenomenon and

the reverse effect simultaneously?

The contents in this chapter are organised as follows. The system modelling of a clus-

ter of nonlinear second-order agents with actuator saturation and the problem formu-

lation are given Section 6.2. A brief introduction about the two-layer NN estimation
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is given in Section 6.3. The development of the finite-time neural-based sliding mode

observer, the algorithm-and-observer-based robust formation controller design is in-

troduced in Section 6.4, where both the theoretical analysis and numerical simulation

results are given to illustrate the effectiveness of the proposed control scheme. The

final conclusions are drawn in Section 6.5.

6.2 System modelling and problem formulation

Consider a multi-agent system consists of N(N ∈ R+) agents that have the following

nonlinear second-order dynamics:ẋi = vi

v̇i = fi(xi, vi) + gi(xi, vi)S(ui, UMi) + w̄i, i = 1, 2, . . . , N
(6.1)

where xi ∈ Rn denotes the accessible position information of the ith agent, vi ∈ Rn

denotes the known velocity information, fi(xi, vi) ∈ Rn is the unknown function in

agent dynamics, w̄i ∈ Rn is the external disturbance, gi(xi, vi) ∈ Rn×n is the known

control gain matrix, ui ∈ Rn represents the control input vector, S(ui, UMi) ∈ Rn is

the saturated control input and UMi is the known constant saturation limit. If define

S(ui(j), UMi) to be the jth element of S(ui, UMi), then we have the following expres-

sion:

S(ui(j), UMi) =

ui(j) |ui(j)| ≤ UMi

sign(ui(j))UMi |ui(j)| > UMi

(6.2)

Without loss of generality, we use gi to represent gi(xi, vi), if not specially stated oth-

erwise. If we have wi = fi(xi, vi) + w̄i to represent the overall uncertainty, then we

obtain an alternative expression of (6.1) as follows:ẋi = vi

v̇i = giS(ui, UMi) + wi, i = 1, 2, . . . , N
(6.3)

Define x = [xT
1 , xT

2 , . . . , xT
N]

T, v = [vT
1 , vT

2 , . . . , vT
N]

T, g = diag{g1, g2, . . . , gN}, w =

[wT
1 , wT

2 , . . . , wT
N]

T and S(u) = [ST(u1, UM1),ST(u2, UM2), . . . ,ST(uN, UMN)]
T, we then

obtain the cluster’s dynamics as ẋ = v

v̇ = gS(u) + w
(6.4)
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The position reference of the ith agent is denoted as xdi ∈ Rn. The main goal of this

chapter is to construct a controller such that the reference tracking error of each agent is

semi-globally UUB when the actuator is saturated, which is equivalent to the following

inequality:

lim
t→∞
||xi(t)− xdi(t)|| ≤ νs

δ, ∀xi(t0) ∈ Ωx, i = 1, 2, . . . , N (6.5)

The following assumptions are made regarding the agent cluster in (6.4).

Assumption 6.1. The formation reference xdi and its derivatives ẋdi and ẍdi remain bounded

and known throughout the formation tracking process. The initial state of the ith agent satisfies

xi(t0) ∈ Ωx and vi(t0) ∈ Ωv, where Ωx and Ωv are both compact sets.

Assumption 6.2. Consider the ith saturated agent in (6.3), the unknown function wi is

bounded for the ith agent when t ≥ t0, and there is a finite time ts ≥ t0 such that the fol-

lowing inequality exists satisfied when t ≥ ts:

τi1n×1 > |g−1
i (ẍdi − wi)|

where τi is an unknown positive constant that satisfies τi < UMi and 1n×1 is an n-dimensional

column vector whose every entry is 1.

Assumption 6.3. The control gain matrix is bounded such that there are positive constants

g1
M and g2

M that satisfy the following inequalities:

∥g∥F ≤ g1
M, ∥ġ∥F ≤ g2

M

Remark 6.1. Notice that Assumption 6.2 is made to ensure that the formation tracking process

is feasible to the saturated agents in (6.4) after a finite amount of time. In an ideal situation

where ui = g−1
i (t)(ẍdi(t) − wi(t)), we then have ẍi = ẍdi, meaning that the agent can

successfully track the acceleration reference. However, it is still necessary to have a residual

amount of control input to reduce the value of ∥xi(t)− xdi(t)∥ when ∥xi(t0)− xdi(t0)∥ > νs
δ,

where xi(t0) is the initial position of the ith agent, vi(t0) is the initial agent velocity and xdi(t0)

is the initial position reference of the ith agent. Hence, we have τi < UMi to offer redundancy in

the control input for error reduction. The time ts is defined to mark the time when the formation

tracking task is feasible to each agent in (6.4).
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6.3 Two-layer neural networks

In this chapter, two-layer NNs are implemented to construct sliding mode observers

for each agent to estimate the unknown function wi:

wi = WT
i T (Yi) + ϵi, i = 1, 2, . . . , N

where Yi = [xT
i , vT

i ]
T ∈ R2n is the input vector of the NN for the ith agent, Wi ∈ R2n×n is

the unknown weight matrix that represents the set of optimal coefficients to estimate,

ϵi ∈ Rn is the bounded network bias that satisfies ∥ϵi∥ ≤ ϵM, ϵM is a small positive

number, T (·) is the hyperbolic function, and the jth element of T (Yi) is expressed as

T (Yi(j)) =
eYi(j) − e−Yi(j)

eYi(j) + e−Yi(j)

where Yi(j) is the jth element of Yi. The NN estimation ŵi is given as

ŵi = ŴT
i T (Yi) (6.6)

where Ŵi is the estimated weight matrix.

Define w̃N
i = wi − ŵi as the estimation error of the NN, then we have its expression as

follows:

w̃N
i = W̃T

i T (Yi) + ϵi (6.7)

where W̃i = Wi − Ŵi is the estimation error of the weight matrix.

Assumption 6.4. The optimal weight Wi is bounded such that ∥Wi∥F ≤ WM is satisfied for

all i ∈ [1, N].

6.4 Observer-based formation control scheme

6.4.1 Neural-based sliding mode observer design

In most previous works, sliding mode observer (Fei et al. 2021b, Dou et al. 2021) is

one popular approach for system uncertainty estimation. For a nominal second-order

system with matched disturbance (6.3), if we define v̂i as the observer’s estimation of
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state vi, the observer usually employs the following design:

γ̇i,1 = µi,1 + giui, γ̇i,2 = µi,2, . . . , γ̇i,k = µi,k

µi,1 = −αi,1β
1
k
i,wsgn

k−1
k (γi,1 − vi) + γi,2

...

µi,k−1 = −αi,k−1β
1
2
i,wsgn

1
2 (γi,k−1 − µi,k−2) + γi,k

µi,k = −αi,kβi,wsgn(γi,k − µi,k−1),

v̂i = γi,1, ŵi = γi,2

where k is a positive number that satisfies k ≥ 2, αi,j(j ∈ [1, k]) is a positive number

and βi,w is the Lipschitz constant of the (k− 2)th derivative of the unknown function

wi. The term sgnm1(γ̄) has the following expression

sgnm1(γ̄) = [sign(γ̄(1))|γ̄(1)|m1 , sign(γ̄(2))|γ̄(2)|m1 , . . . , sign(γ̄(m2)|γ̄(m2)|m1 ]T

where γ̄ ∈ Rm2×1, γ̄(k) is the kth element of γ̄, m1 ∈ R+ and m2 ∈ R+. Such de-

sign follows the idea of augmenting the system and implement the sliding mode ap-

proaching law on each first-order subsystem to achieve precise state tracking. Due to

the implementation of function sgnm1(γ̄), the above method is also referred as super-

twisting-based observer (Chalanga et al. 2016). Although this observer design is easy

to be implemented, there is one severe issue:

Problem 6.1. Its requirement of knowing the Lipschitz constant in advance is hard to sat-

isfy for practical scenarios. Hence, how to estimate the unknown factors without any priori

knowledge has become a gap to fill.

To solve Problem 6.1, it is reasonable to employ NNs for the adaptive estimation of

wi without any prior knowledge of its Lipschitz constant. The method of tuning NN

weight with local formation tracking error (Lewis et al. 2013) is found to be effective for

MASs with ideal actuators. However, using terms correlated with reference tracking

error to tune the NN weight will potentially prolong the converging time of estima-

tion error when the actuator saturation phenomenon exists because the weight tuning

process will not settle before the tracking error converges. Therefore, the structure of

neural-based observers (Liu et al. 2013) is proposed so that the estimation process can

work independently from the reference tracking process. For a nominal second-order
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system (6.3) with velocity measurement, we have the nominal expression of neural-

based observer as  ˙̂xi = ˙̂vi + αi,1(xi − x̂i)

˙̂vi = αi,2(vi − v̂i) + giS(ui, UMi) + ŴT
i T (Yi)

(6.8)

where x̂i is the estimation of state xi and v̂i represents the estimation of state vi.

Although the Lipschitz constant is not required in (6.8) because of the implementation

of NN, it is hard to obtain finite-time characteristics in such structure. Meanwhile, the

approximation accuracy of (6.8) also has high dependency on the estimation precision

of the NN if we only employ the NN output as the estimation of wi.

To reduce the dependency on the NN estimation accuracy, the method of turning the

estimation problem into a tracking problem regarding the following imaginary second-

order system is proposed:  ˙̂xi = v̂i

˙̂vi = giS(ui, UMi) + ûi

(6.9)

where ûi is the imaginary control input of the system. In this imaginary system, giui

is treated as the known system dynamics. If we define x̃i = xi − x̂i and ṽi = vi − v̂i to

represent the position and velocity tracking errors of the imaginary system regarding

the actual system (6.3), respectively, we can then have the tracking error dynamics of

system (6.9) as  ˙̃xi = ṽi

˙̃vi = wi − ûi

(6.10)

In theory, when ∥x̃i∥ = 0 and ∥ṽi∥ = 0 are satisfied simultaneously, we also have

∥wi− ûi∥ = 0. Hence, the final goal of the observer design is abstracted as designing an

imaginary control input ûi to achieve the semi-global uniform ultimate boundedness

of the error states x̃i and ṽi. Based on the observation errors x̃i and ṽi, the estimation

sliding surface of the observer is defined as

s̃i = ṽi + λ̃i,1x̃i (6.11)

where λ̃i,1 ∈ R+ represents the slope of the sliding surface.

Accordingly, the derivative of the estimation sliding surface s̃i is given as

˙̃si = ˙̃vi + λ̃i,1 ˙̃xi = wi − ûi + λ̃i,1ṽi
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Based on our previous analysis of the NN-based estimation (6.6) and the observer slid-

ing surface design (6.11), we propose the following imaginary control input design for

the neural-based sliding observer (6.9):

ûi = ŴT
i T (Yi) + λ̃i,1ṽi + c̃i,1s̃i + x̃i (6.12)

where c̃i,1 ∈ R+ is the imaginary controller’s sensitivity to s̃i. The update law of the

NN is chosen as
˙̂W i = η1T (Yi)s̃T

i − η2Ŵi (6.13)

where η1 ∈ R+ indicates the NN’s sensitivity to s̃i and η2 ∈ R+ is the damper constant

that can prevent the divergence of weight matrix Ŵi.

Theorem 6.1. Consider the imaginary second-order system (6.9) under Assumption 6.4. By

the estimation sliding surface (6.11), the sliding-variable-based tuning law (6.13) and the imag-

inary control input design (6.12), we have that the states s̃i, x̃i and W̃i are all semi-globally

UUB if the NN compact set conditions are satisfied for all agents when t ≥ t0.

Proof. Consider the following continuous Lyapunov candidate:

V5,1 =
1
2

s̃T
i s̃i +

1
2η1

tr{W̃T
i W̃i}+

1
2

x̃T
i x̃i

Then the time derivative of V5,1 is obtained as

V̇5,1 = s̃T
i

˙̃si −
1
η1

tr{W̃T
i

˙̂W i}+ x̃T
i

˙̃xi

= s̃T
i (wi − ûi + λ̃i,1ṽi)−

1
η1

tr{W̃T
i

˙̂W i}+ x̃T
i (s̃i − λ̃i,1x̃i)

= s̃T
i (W̃

T
i T (Yi) + ϵi − c̃i,1s̃i)− tr{W̃T

i (T (Yi)s̃T
i − η2Ŵi/η1)} − λ̃i,1x̃T

i x̃i

≤ −c̃i,1∥s̃i∥2 + ϵM∥s̃i∥+
η2

η1
WM∥W̃i∥F −

η2

η1
∥W̃i∥2

F − λ̃i,1∥x̃i∥2

≤ −
[
∥s̃i∥ ∥W̃i∥F ∥x̃i∥

] 
c̃i,1 0 0

0 η2/η1 0

0 0 λ̃i,1



∥s̃i∥
∥W̃i∥F

∥x̃i∥



+
[
ϵM η2WM/η1 0

] 
∥s̃i∥
∥W̃i∥F

∥x̃i∥



(6.14)
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Define

H5,1 =


c̃i,1 0 0

0 η2/η1 0

0 0 λ̃i,1

 , h5,1 =
[
ϵM η2WM/η1 0

]
, χ5,1 =


∥s̃i∥
∥W̃i∥F

∥x̃i∥


then (6.14) is modified as

V̇5,1 ≤ −χT
5,1H5,1χ5,1 + h5,1χ5,1

≤ −σ(H5,1)∥χ5,1∥2 + ∥h5,1∥∥χ5,1∥

Hence, the time derivative V̇5,1 is negative when the following condition is met:

∥χ5,1∥ >
∥h5,1∥

σ(H5,1)

By the characteristics of matrix norm and Lemma 2.1, we have that the states s̃i, W̃i and

x̃i are semi-globally UUB within the following neighbourhood, respectively:

Ωs̃ =

{
s̃i

∣∣∣∣∥s̃i∥ ≤
η1ϵM + η2WM

η1σ(H1)

}
ΩW̃ =

{
W̃i

∣∣∣∣∥W̃i∥F ≤
η1ϵM + η2WM

η1σ(H1)

}
Ω3

x̃ =

{
x̃i

∣∣∣∣∥x̃i∥ ≤
η1ϵM + η2WM

η1σ(H1)

} (6.15)

which completes the proof.

Remark 6.2. Note that NNs with three or more layers (Liu et al. 2013) are often found to have

higher estimation precision over two-layer NNs. Besides, (6.13) is not the optimal tuning law

because we have ˙̂W i = −η2Ŵi when ∥s̃i∥ = 0, which further leads to a potential divergence

issue. However, the neural-based observer structure in (6.9) is still expected to have robust

performance because the final estimation (6.12) is not fully dependent on the output of the NN.

The error-related terms such as λ̃i,1ṽi ,c̃i,1s̃i and x̃i are able to compensate for the network bias

ϵi and further leads to ∥wi − ûi∥ ≤ ϵM. Hence, we can still ensure that the estimation error of

structure (6.9) will be bounded within a small neighbourhood around zero while the structure’s

simplicity is maintained by employing two-layer NNs instead of multi-layer NNs.

6.4.2 Practical finite-time neural-based sliding mode observer

It is undeniable that the performance of an observer-based controller is correlated with

the characteristic of the observer. Hence, it is vital to design an observer with finite

Page 151



6.4.2 Practical finite-time neural-based sliding mode observer

error converging time. To acquire finite-time characteristics, the previous linear sliding

surface is modified into a finite-time sliding surface for the observer as follows:

s̃i = ṽi + λ̃i,1x̃i + λ̃i,2x̃p
i (6.16)

where λ̃i,2 is a positive constant, p = p1/p2 ∈ (0, 1), p1 and p2 are both positive odd

number and p1 < p2. Define x̃i(j) to be the jth element in x̃i, then we have x̃p
i =

[x̃p
i (1), x̃p

i (2), . . . , x̃p
i (n)]

T.

The time derivative of the terminal sliding surface (6.16) is expressed as

˙̃si = ˙̃vi + λ̃i,1ṽi + pλ̃i,2diag{x̃p−1
i }ṽi

It is observed that there is a potential singular issue when ∥x̃i∥ → 0. Inspired by Wang

et al. (Wang et al. 2018b) and Feng et al. (Feng et al. 2013), a saturation function is

implemented to avoid singularity, and the controller design is given as

ûi = ŴT
i T (Yi) + c̃i,1s̃i + c̃i,2s̃p

i + x̃i + λ̃i,1ṽi + pλ̃i,2diag{S(x̃p−1
i , h)}ṽi (6.17)

where h is a positive constant.

Before presenting the theorem for the practical finite-time observer design, let us first

recall some useful results.

Lemma 6.1. (Sun et al. 2021a) For any variables ζ1 and ζ2, we have

|ζ1|ζ̄1 |ζ2|ζ̄2 ≤ ζ̄1

ζ̄1 + ζ̄2
ζ̄3|ζ1|ζ̄1+ζ̄2 +

ζ̄2

ζ̄1 + ζ̄2
ζ̄
−ζ̄1/ζ̄2
3 |ζ1|ζ̄1+ζ̄2

where ζ̄1, ζ̄2 and ζ̄3 are all positive constants.

Definition 6.1. (Sun et al. 2021a) Consider a vector X whose equilibrium point is ∥X∥ = 0

and its correlated continuous Lyapunov function V(X). Then vector X is said to be semi-

globally practically finite-time bounded (SGPFTB) if there exists a positive scalar bX and a

finite converging time tset < ∞ such that ∥X∥ ≤ bX for all t ≥ tset and X(t0) ∈ ΩX
V .

Lemma 6.2. (Sun et al. 2021a) Suppose there exists scalars β̄1 > 0, ᾱ1 ∈ (0, 1) and γ̄1 > 0.

Consider a vector X that satisfies X(t0) ∈ ΩX
V and its correlated continuous Lyapunov function

V(X) that satisfies the following inequality:

V̇(X) ≤ −β̄1V ᾱ1(X) + γ̄1, t ≥ t0
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Then X is considered to be SGPFTB within the residual region of

ΩX =

{
X
∣∣∣∣V(X) ≤

(
γ̄1

(1− β̄3)β̄1

)1/α1
}

where β̄3 ∈ (0, 1). The finite convergence time tset is provided as

tset ≤
1

β̄1β̄3(1− ᾱ1)

[
V1−ᾱ(X(t0))−

(
γ̄1

(1− β̄3)β̄1

)(1−ᾱ1)/ᾱ1
]

The following theorem summarises the development of the finite-time neural-based

sliding mode observer:

Theorem 6.2. Consider the imaginary second-order system (6.9) under Assumption 6.4. By

the estimation sliding surface design (6.16), the sliding-variable-based tuning law (6.13) and

the imaginary control input (6.17), we have the following results if the NN compact set condi-

tions are satisfied for all agents when t ≥ t0:

1. The error-related vectors W̃i, s̃i and x̃i are all semi-globally UUB.

2. The error-related vectors W̃i, s̃i and x̃i are all SGPFTB if 2c̃i,1 − 1 > 0.

Proof. This proof contains two parts, the semi-global uniform ultimate boundedness

of W̃i, s̃i and x̃i are proved in the Part 6.2.1 while their finite-time characteristics are

addressed in Part 6.2.2.

Part 6.2.1. Consider the following continuous Lyapunov candidate for the imaginary

system (6.9):

V5,1 =
1
2

s̃T
i s̃i +

1
2η1

tr{W̃T
i W̃i}+

1
2

x̃T
i x̃i (6.18)

Then V̇5,1 is given as

V̇5,1 = s̃T
i

˙̃si −
1
η1

tr{W̃T
i

˙̂W i}+ x̃T
i ṽi

= s̃T
i (wi − ûi + λ̃i,1ṽi + pλ̃i,2diag{x̃p−1

i }ṽi)− tr{W̃T
i T (Yi)s̃T

i − η2Ŵi/η1}

+ x̃T
i (s̃i − λ̃i,1x̃i − λ̃i,2x̃p

i )

= s̃T
i ϵi − c̃i,1s̃T

i s̃i − c̃i,2s̃T
i s̃p

i + s̃T
i λ̃i,2diag{x̃p−1

i − S(x̃p−1
i , h)}ṽi − λ̃i,1x̃T

i x̃i − λ̃i,2x̃T
i x̃p

i

− η2

η1
tr{W̃T

i (Wi − W̃i)}
(6.19)
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According to Wang et al. (Wang et al. 2018b) and Feng et al. (Feng et al. 2013), the

system is said to enter the singular region when S(x̃p−1
i , h) ̸= x̃p−1

i . However, it is

proved that the state x̃i is expected to escape the singular region monotonically, mean-

ing that the singular region does not affect the stability of the method and (6.19) is

further reduced as

V̇5,1 ≤ −c̃i,1∥s̃i∥2 − c̃i,2∥s̃i∥p+1 + ϵM∥s̃i∥ −
η2

η1
∥W̃i∥2

F +
η2

η1
WM∥W̃i∥F − λ̃i,1∥x̃i∥2

− λ̃i,2∥x̃i∥p+1

≤ −χT
5,1H5,1χ5,1 + h5,1χ5,1

(6.20)

Hence, by Lemma 2.1, we have that s̃i, x̃i and W̃i are semi-globally UUB within the

neighbourhood presented in (6.15).

Part 6.2.2. Still, we consider the Lyapunov function V5,1 and the inequality presented

in (6.20). By using Young’s inequality, we have

ϵM∥s̃i∥ ≤
1
2

ϵ2
M +

1
2
∥s̃i∥2,

η2

η1
WM∥W̃i∥F ≤

η2

2η1
W2

M +
η2

2η1
∥W̃i∥2

F

Then we can rewrite (6.20) as

V̇5,1 ≤ −
2c̃i,1 − 1

2
∥s̃i∥2 − c̃i,2∥s̃i∥p+1 +

1
2

ϵ2
M −

η2

2η1
∥W̃i∥2

F +
η2

2η1
W2

M − λ̃i,1∥x̃i∥2

− λ̃i,2∥x̃i∥p+1

By Lemma 6.1, choose ζ̄1 = 1− p, ζ̄2 = 1 + p, ζ1 = 1 and ζ2 = ∥s̃i∥, then one has

∥s̃i∥1+p ≤ 1− p
2

(
2

1 + p

)(p+1)/(p−1)

+ ∥s̃i∥2

Similarly results are also obtained for ∥x̃i∥ and ∥W̃i∥F as follows, respectively:

∥x̃i∥1+p ≤ 1− p
2

(
2

p + 1

)(p+1)/(p−1)

+ ∥x̃i∥2

∥W̃i∥
p+1
F ≤ 1− p

2

(
2

p + 1

)(p+1)/(p−1)

+ ∥W̃i∥2
F

Define ∆1
V to be a positive constant as follows

∆1
V =

(
(1− p)(2c̃i,1 − 1)

4
+

λ̃i,1(1− p)
2

+
η2(1− p)

4η1

)(
2

p + 1

)(p+1)/(p−1)
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+
1
2

ϵ2
M +

η2

2η1
W2

M

Then we have

V̇5,1 ≤ −
2c̃i,1 + 2c̃i,2 − 1

2
∥s̃i∥1+p − η2

2η1
∥W̃i∥

1+p
F − (λ̃i,1 + λ̃i,2)∥x̃i∥1+p + ∆1

V

Based on the format of V5,1, we have the following transformations

∥s̃i∥1+p = 2(1+p)/2
(

1
2
∥s̃i∥2

)(1+p)/2

∥W̃i∥
1+p
F = (2η1)

(1+p)/2
(

1
2η1
∥W̃i∥2

F

)(1+p)/2

∥x̃i∥1+p = 2(1+p)/2
(

1
2
∥x̃i∥2

)(1+p)/2

Hence, V̇5,1 has the following alternative expression:

V̇5,1 ≤ −β1V(1+p)/2
5,1 + ∆1

V

where

β1 = 2(p−1)/2min
{

2c̃i,1 + 2c̃i,2 − 1, η2η
(p−1)/2
1 , 2(λ̃i,1 + λ̃i,2)

}
By Lemma 6.2, with 2c̃i,1 − 1 > 0, we have that W̃i, s̃i and x̃i are all SGPFTB, which

completes the proof.

After illustrating the development of the neural-based sliding mode observer, we now

focus on the cooperative formation control problem regarding (6.4).

6.4.3 Robust formation control via linear programming

With the definition of δxi and δvi in (2.8), the cluster expression of the error dynamics is

written as follows: δ̇x = δv

δ̇v = −ẍd + gS(u) + w
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where δx = [δT
x1, δT

x2, . . . , δT
xN ]

T ∈ RnN, δv = [δT
v1, δT

v2, . . . , δT
vN]

T ∈ RnN, and xd =

[xT
d1, xT

d2, . . . , xT
dN]

T ∈ RnN.

With the definition of local errors as mentioned in (2.12), the following sliding surface

is defined for the controller construction:

si = evi + λiexi (6.21)

where λi ∈ R+ indicates the slope of the sliding surface.

Define Λ = diag{λ1, λ2, . . . , λN} ∈ RN×N, then the cluster is expressed as

Ṡ = (L + B)⊗ In(−ẍd + gS(u) + w + Λ⊗ Inδv)

where ex = [eT
x1, eT

x2, . . . , eT
xN]

T ∈ RnN, xd = [xT
d1, xT

d2, . . . , xT
dN]

T ∈ RnN and S =

[sT
1 , sT

2 , . . . , sT
N]

T ∈ RnN.

Suppose that the actuator is ideal instead of saturated, we then construct the following

nominal sliding mode controller for the ith agent:

unom
i = g−1

i (ẍdi − ûi − cisi − λiδvi − δxi) (6.22)

where ci ∈ R+ denotes the controller’s sensitivity to the value of sliding variable si.

However, regarding a second-order system (6.3) with actuator saturation, the con-

troller design unom
i will lead to the state windup issue (Cui et al. 2016, Ding and Zheng

2016), which indicates that unom
i is inadequate. To ease the state windup phenomenon,

the method of employing auxiliary variables (Cui et al. 2016, Han et al. 2019) is com-

monly used. Inspired by the discrete-time compensator design (Han et al. 2019) pro-

posed by Han et al., a new compensator design is developed for continuous-time sys-

tems.

Define an auxiliary vector ξi ∈ Rn for the ith agent to act as the anti-windup compen-

sator. Then we modify the previous nominal sliding mode controller into the following

form:

ucom
i = g−1

i (ẍdi − ûi − cisi − λiδvi − δxi − ciξi) (6.23)

To make the vector ξi adaptive, we choose the following tuning law:

ξ̇i = η3giudiff
i − η4ξi (6.24)
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where udiff
i = ucom

i −S(ucom
i , UMi) denotes the difference between the desired compen-

sated control input ucom
i and the actual capability of the saturated actuator, η3 ∈ R+ is

the auxiliary variable’s sensitivity to udiff
i and η4 ∈ R+ is the self-converging speed of

ξi.

As mentioned in Chapter 5, employing saturation phenomenon to the control input

arbitrarily is insufficient. Hence, it is still essential to make modification to the com-

pensated nominal control input in (6.23) to conquer the following problem:

Problem 6.2. The amplitude of (6.23) is not bounded and may exceed the saturation limitation.

Hence, how to reduce the scenarios where the reverse effect is triggered and attenuate state

chattering and oscillation is an important issue to investigate.

To deal with Problem 6.2, the linear programming method is employed to regulate

ucom
i to further obtain a new control input ureg

i . The goal of employing the linear pro-

gramming method lies in the following three parts:

1. Ensure that the amplitudes of the elements in ureg
i do not exceed the saturation

limitation UMi. In other words, we have ureg
i = S(ureg

i , UMi).

2. Attenuate the reverse effect by reducing the circumstances when sign(giui) ̸=
sign(giS(ui)).

3. Minimise the difference between giucom
i and giu

reg
i .

Normally, a linear programming problem contains two important parts, the restric-

tions of the variables and the cost function to maximise or minimise. The optimisation

restrictions are usually expressed as follows:

AX ≤ B

AeqX = Beq

Bl ≤ X ≤ Bu

(6.25)

where X ∈ Rn is the vector to be optimised, A and Aeq are n× n matrices, B, Beq, Bl

and Bu are n× 1 vectors.

To achieve ureg
i = S(ureg

i , UMi), it is vital to have −UMi1n×1 ≤ ureg
i ≤ UMi1n×1. Be-

cause the output of the linear programming algorithm is ureg
i , the upper and lower

bounds of ureg
i are chosen as Bl = −UMi1n×1 and Bu = UMi1n×1, respectively.
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To attenuate the reverse effect, it is essential to have a case by case discussion to obtain

the optimisation restrictions A, B, Aeq and Beq.

1. Define gi(j) to be the jth row in matrix gi. When gi(j)ucom
i = 0, we can use

equation AeqX = Beq to express our expectation by having gi(j)ureg
i = 0.

2. When gi(j)ucom
i ̸= 0, there are two restrictions that can be given in the form of

AX ≤ B. First, to ensure sign(gi(j)ureg
i ) ̸= −sign(gi(j)ucom

i ), we need to have

−sign(gi(j)ucom
i )gi(j)ureg

i ≤ 0.

Besides, the overall effect of ureg
i should be less than the one of ucom

i to reduce

state oscillation. Hence, we also have

sign(gi(j)ucom
i )gi(j)ureg

i ≤ sign(gi(j)ucom
i )gi(j)ucom

i

The last element to confirm is the cost function to minimise, which is the difference

between giucom
i and giu

reg
i . With the conditions that gi(j)ureg

i = 0 when gi(j)ucom
i = 0

and sign(gi(j)ureg
i ) ̸= −sign(gi(j)ucom

i ) when gi(j)ucom
i ̸= 0, we construct the follow-

ing cost function to illustrate the difference between giucom
i and giu

reg
i :

Ξ1(u
reg
i ) =

n

∑
j=1

sign(gi(j)ucom
i )(gi(j)ucom

i − gi(j)ureg
i ) (6.26)

Although the value of giucom
i is time-varying, as long as we know sign(giucom

i ), the

specific value of giucom
i does not affect the final result of the optimisation. Hence, we

can simplify the cost function as

Ξ2(u
reg
i ) = −

n

∑
j=1

sign(gi(j)ucom
i )gi(j)ureg

i (6.27)

Accordingly, we can summarise the problem formulation of the linear programming

process as finding the vector ureg
i that minimise the difference between gi(j)ureg

i and

gi(j)ucom
i , which has the following mathematical expression:

ureg
i = argminUΞ2(U), when AU ≤ B, AeqU = Beq and Bl ≤ U ≤ Bu (6.28)

The detailed steps of the linear programming process is illustrated in in Algorithm

3. Although linear programming is an optimisation tool, it is only employed as an
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Algorithm 3: Linear-programming-based control input regulation algorithm (LPB-

CIRA)
Input: ucom

i , gi

Output: ureg
i

Bl = −UMi1n×1;

Bu = UMi1n×1;

if ucom
i ̸= S(ucom

i , UMi) then

for j = 1 : n do

if gi(j)ucom
i = 0 then

Btem = 0;

Atem = gi(j);

Add Atem and Btem to Aeq and Beq, respectively;

else

Btem = gi(j)ucom
i ;

Atem = sign(gi(j)ucom
i )gi(j);

Add Atem and Btem to A and B, respectively;

Btem = 0;

Atem = −sign(gi(j)ucom
i )gi(j);

Add Atem and Btem to A and B, respectively;

end

end

Obtain ureg
i = arg minX Ξ2(X ) that subjects to (6.25);

else

ureg
i = ucom

i ;

end

Return ureg
i

attachment for the sliding mode controller in (6.23), which makes it different from the

conventional optimal controller. Hence, to avoid misleading, Algorithm 3 is named as

the linear-programming-based control input regulation algorithm (LPBCIRA) to better

illustrate its purpose.

Based on our discussions on the finite-time sliding mode observer (6.17), the sliding

surface (6.21), the adaptive auxiliary variable (6.24), the compensated controller design
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(6.23) and the LPBCIRA (Algorithm 3), we have the overall system diagram in Figure

6.1.

Formation
References

Tracking
Error (2.8)

Communication
TrackingLocal

Error (2.12) 

δvi

LPBCIRA 

Actuator

ui
^

xi

Observer (6.10) 
Neural Based

Saturation
(6.2)

xdi
.
xdi

.
xdi
.

δxj δvj

δxi

exi evi Sliding 
Surface (6.21)

.
xdi
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δxi δvi

Control  
Nominal 

Input 
(6.23)

si
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ui
reg

xi vi

S(uia,UMi)
reg

Saturation
(6.2)

S(uia, UMi)
com Varaible 

Auxiliary

Update
(6.24)

ui
com

ξi

Observer-based Formation Control
via Linear Programming

Figure 6.1. Observer-based formation control via linear programming.

The following theorem summarises the proposed robust sliding mode formation con-

troller design:

Theorem 6.3. Consider a cluster of saturated second-order agents (6.4) under Assumptions

6.1- 6.4. By the finite-time sliding mode observer (6.17), the sliding surface design (6.21),

the anti-windup compensator ξi, the auxiliary variable tuning law (6.24), the compensated

nominal formation controller (6.23) and the LPBCIRA (Algorithm 3), the states δx, ex and S

are all semi-globally UUB if the NN compact set conditions are satisfied for all agents when

t ≥ t0 and the parameters of the observer-based controller are chosen properly such that the

following matrix is positive definite:

H5,2 =



σ(QC)/2 0 −σ(QC)/4 −K4/2 0 −σ(Q)TM/4 0

0 σ(PΛ) 0 −K3/2 0 0 0

−σ(QC)/4 0 η4 −K5/2 0 0 0

−K4/2 −K3/2 −K5/2 σ(C) 0 −K1/2 0

0 0 0 0 σ(C̃) 0 0

−σ(Q)TM/4 0 0 −K1/2 0 η2/η1 0

0 0 0 0 0 0 σ(Λ̃)


where

K1 = TM
σ(Q)

2
, K2 =

σ(Q)σ(C)
2

+
1

σ(L + B)

K3 = σ(C) +
σ(Λ)

σ(L + B)
, K4 =

σ(Q)

2
+K2

K5 = η3 +
σ(Q)σ(C)

2
C̃ = diag{c̃1,1, c̃2,1, . . . , c̃N,1}
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Λ̃ = diag{λ̃1,1, λ̃2,1, . . . , λ̃N,1}

Proof. Note that our final design ureg
i is based on the compensated controller design

ucom
i . Meanwhile, based on the restrictions of the linear programming algorithm pro-

cess, we get that ureg
i is a stable and valid design if and only if ucom

i is capable of ensur-

ing the semi-global uniform ultimate boundedness of the error-related states. Hence,

this proof is carried out based on the condition that ui = ucom
i .

Define ξ = [ξT
1 , ξT

2 , . . . , ξT
N]

T, udiff = [(udiff
1 )T, (udiff

2 )T, . . . , (udiff
N )T]T ∈ RnN, S(ucom) =

[ST
1 (u

com
1 , UM1),ST

2 (u
com
2 , UM2), . . . ,ST

N(u
com
N , UMN)]

T, û = [ûT
1 , ûT

2 , . . . , ûT
N]

T, κ = gudiff

and C = diag{c1, c2, . . . , cN} ∈ RN×N, then consider the following Lyapunov candi-

dates for the system (6.4):

V5,2 =
1
2

STP⊗ InS +
1
2

eT
x P⊗ Inex, Vξ =

1
2

ξTξ, Vκ =
1
2

κTκ

According to (6.24), we have the time derivative of Vξ as

V̇ξ = ξTξ̇

= ξT(η3gudiff − η4ξ)

≤ η3∥ξ∥∥κ∥ − η4∥ξ∥2

For V5,2, the time derivative is obtained as

V̇5,2 = STP⊗ InṠ + eT
x P⊗ In ėx

= ST(P(L + B))⊗ In(−ẍd + gS(ucom) + w + Λ⊗ Inδv) + eT
x P⊗ In(S−Λ⊗ Inex)

= ST(P(L + B))⊗ In(−ẍd + gucom − gudiff + w + Λ⊗ Inδv) + eT
x P⊗ In(S

−Λ⊗ Inex)

= ST(P(L + B))⊗ In(w̃O − C⊗ InS− C⊗ Inξ − κ)− eT
x (PΛ)⊗ Inex

where w̃O = w − û. By the finite-time characteristics of design (6.17), we have that

the estimation error states x̃i, s̃i and W̃i are all SGPFTB. Hence, it is reasonable to have

that w̃O is bounded when t ≥ to such that ∥w̃O∥ ≤ ∥W̃∥F∥T (Y)∥ + ϵ̄M, where W̃ =

diag{W̃1, W̃2, . . . , W̃N} and ϵ̄M is a bounded positive constant.

Besides, we get that the fictitious control input ûi is bounded when t ≥ to such that

there is ∥ ˙̂u∥ ≤ û1
M, where û = [ûT

1 , ûT
2 , . . . , ûT

N]
T. We then have the following alternative
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expression for V̇2 when t ≥ max(to, ts):

V̇5,2 ≤ −
1
2

σ(QC)∥S∥2 − σ(PΛ)∥ex∥2 +
1
2

σ(Q)TM∥W̃∥F∥S∥+
1
2

σ(Q)ϵ̄M∥S∥

+
1
2

σ(QC)∥S∥∥ξ∥+ 1
2

σ(Q)∥S∥∥κ∥

where ∥T (Y)∥ ≤ TM is applied.

Regarding Vκ, we have

V̇κ = κTd(gucom)/dt + κT(ġS(u)− gṠ)

= κT[
...x d − û1

M − (C(L + B))⊗ In(W̃TT (Y) + ϵ− C⊗ InS− δx − C⊗ Inξ − κ)−Λ

⊗ In(−ẍd + gS(u) + w)− (L + B)−1 ⊗ In(S−Λ⊗ Inex)]− κTgṠ − κT ġS(u)

where

Ṡ = dS(u)/dt, S̃ = [s̃T
1 , s̃T

2 , . . . , s̃T
N]

T

x̃ = [x̃T
1 , x̃T

2 , . . . , x̃T
N]

T, ṽ = [ṽT
1 , ṽT

2 , . . . , ṽT
N]

T

To analyse the derivative of Vκ more conveniently, we separate the above Lyapunov

function into two parts:

V1
κ = −κTgṠ − κT ġS(u)

V2
κ = κT[

...x d − ˙̂u− (C(L + B))⊗ In(w̃O + ϵ− C⊗ InS− δx − C⊗ Inξ − κ)−Λ⊗ In

(−ẍd + gS(u) + w)− (L + B)−1 ⊗ In(S−Λ⊗ Inex)]

According to the boundedness of the saturation phenomenon, there exist two positive

constants that satisfy ∥S(u)∥ ≤ S1
M and ∥Ṡ∥ ≤ S2

M. By Assumption 7.4, it is reasonable

to have ∥ẍd∥ ≤ x1
M and ∥ ...x d∥ ≤ x2

M, where x1
M and x2

M are both positive constants. By

applying inequality scaling, we have the following equations when t ≥ to:

V1
κ ≤ ∥κ∥(g1

MS2
M + g2

MS1
M)

V2
κ ≤ ∥κ∥x2

M + û1
M∥κ∥+

σ(Q)

2
∥κ∥(TM∥W̃∥F + ϵ̄M + σ(C)∥S∥+ σ(C)∥ξ∥) + σ(C)∥ex∥

+ σ(Λ)(x1
M + g1

MS1
M + wM)∥κ∥+ 1

σ(L + B)
∥κ∥(∥S∥+ σ(Λ)∥ex∥)− σ(C)∥κ∥2

where wM is a positive constant that satisfies ∥w∥ ≤ wM.

Hence, we further have the norm expression of V̇κ as follows:

V̇κ ≤ −σ(C)∥κ∥2 +K1∥κ∥∥W̃∥F +K2∥κ∥∥S∥+K3∥κ∥∥ex∥+
σ(Q)σ(C)

2
∥κ∥∥ξ∥
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+ ∆κ∥κ∥

where ∆κ is a positive constant that is given as

∆κ = σ(Λ)(x1
M + g1

MS1
M + wM) + x2

M + û1
M +

σ(Q)

2
ϵ̄M + g1

MS2
M + g2

MS1
M

To justify the closed-loop stability of the observer-based scheme, the observation er-

rors are also considered in the tracking process. Accordingly, consider the following

Lyapunov candidate for the observer design:

Vo =
1
2

S̃TS̃ +
1

2η1
tr{W̃TW̃}+ 1

2
x̃Tx̃ (6.29)

Similar to the proofs of Theorems 6.1 and 6.2, we have

V̇o ≤


∥S̃∥
∥W̃∥F

∥x̃∥


T 

σ(C̃) 0 0

0 η2/η1 0

0 0 σ(Λ̃)



∥S̃∥
∥W̃∥F

∥x̃∥

+
[
ϵ̄M η2WM/η1 0

] 
∥S̃∥
∥W̃∥F

∥x̃∥


Therefore, it is reasonable to combine V5,2, Vξ , Vκ and Vo as follows to analyse the

stability of the closed-loop observer-based scheme:

V5,3 = V5,2 + Vξ + Vκ + Vo

Then we have the following time derivative:

V̇5,3 ≤ −χT
5,2H5,2χ5,2 + h5,2χ5,2

where

χ5,2 =
[
∥S∥ ∥ex∥ ∥ξ∥ ∥κ∥ ∥S̃∥ ∥W̃∥F ∥x̃∥

]T

h5,2 =
[

1
2 σ(Q)ϵ̄M 0 0 ∆κ ϵ̄M η2WM/η1 0

]
According to the preliminary condition of Theorem 6.3, matrix H2 is positive definite,

which means that V̇3 will remain negative until ∥χ2∥ ≤ ∥h2∥/σ(H2). Hence, by Lemma

2.1 and the fact that the NN estimation approach is only valid semi-globally, the semi-

global uniform ultimate boundedness of ∥S∥, ∥ex∥, ∥ξ∥, ∥κ∥, ∥S̃∥, ∥W̃∥F and ∥x̃∥ are

proved simultaneously.
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Hence, the stability of the design ucom
i is proved. Based on the discussion presented

in the first half of the proof and the fact that employing LPBCIRA does not affect the

stability of ucom
i , the design ureg

i can also achieve the semi-global uniform ultimate

boundedness of the error-related variables S, ex and δx, which completes the proof.

Remark 6.3. Note that although both the state windup issue and the reverse effect can intro-

duce oscillation into the system states, they share different triggering reasons and illustrations.

The state windup issue only exists if one of the following two conditions is met:

1. The investigated system is a first-order system with input saturation and integration-

based structures such as the proportional–integral–derivative control scheme are used

(Bohn and Atherton 1995).

2. The investigated system is a second-order or higher-order system with input saturation

(Han et al. 2019).

However, the reverse effect defined in this chapter is caused by the combination of the input

saturation and the input coupling effect. In terms of the system performance, state windup issue

usually appears as fluctuations around the neighbourhood of ∥δxi∥ = 0, while the oscillation

caused by the reverse effect is more disarray. Corresponding discussion will be extended in

Section 6.4.4 along with the simulation results.

Remark 6.4. To attenuate the reverse effect, one of the linear programming restriction is

chosen as −sign(gi(j)ucom
i )gi(j)ureg

i ≤ 0 when gi(j)ucom
i ̸= 0. Take the circumstance

when sign(gi(j)ucom
i ) > 0 as an example, we have −gi(j)ureg

i ≤ 0, which is equivalent

to gi(j)ureg
i ≥ 0. In theory, if we want to fully avoid the reverse effect, we need to ensure that

gi(j)ureg
i > 0 when sign(gi(j)ucom

i ) > 0. However, there is a chance that the linear program-

ming approach cannot find out its optimal solution because the boundary of the solution region

is not available when we do not include the points on line gi(j)ureg
i = 0. Hence, what the

LPBCIRA can do is to ensure that the following equation is satisfied:

sign(gi(j)ureg
i ) =

0 or sign(gi(j)ucom
i ), when sign(gi(j)ucom

i ) ̸= 0

0, when sign(gi(j)ucom
i ) = 0

Remark 6.5. The linear cost function to minimise was first chosen as Ξ1(u
reg
i ) to indicate the

overall effort difference between ureg
i and ucom

i . We choose to add up the effort difference in each

channel directly without applying any weight to illustrate that every channel is treated with

the same amount of importance.
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Table 6.1. Parameters and initial states of saturated second-order ODRs.

Robot number Model parameters System initial states Observer initial states

mi(kg) Ri(m) Ii(kg ·m2) px
i (m) py

i (m) θi(rad) p̂x
i (m) p̂y

i (m) θ̂i(rad)

1 3.0 0.20 0.08 3.4 0.5 π/5 3.0 0.8 π/6

2 3.2 0.22 0.10 1.2 1.5 −π/3 1.5 1.8 −π/5

3 2.8 0.21 0.07 −0.8 1.2 π/6 −1.1 1.0 π/7

4 2.6 0.19 0.05 −1.0 −0.8 π/4 −1.2 −1.0 π/3

5 3.1 0.23 0.09 1.6 −0.3 −π/4 1.3 0.0 −π/5

6 2.9 0.18 0.06 3.2 −0.8 π/6 3.1 −1.0 π/5

6.4.4 Simulation results and discussions

To justify the effectiveness of the finite-time neural-based sliding mode observer (6.17),

the windup compensating auxiliary variable ξi, the compensated sliding mode forma-

tion controller (6.23), the LPBCIRA (Algorithm 3) and the linear-programming-based

sliding mode formation controller ureg
i , comparative simulations regarding a multi-

robot system are conducted.

Consider a cluster of three-wheel ODRs (Fei et al. 2020). Based on the discussion in

Chapter 2, the dynamics of the ith robot is given asẋi = vi

v̇i = MiTs(θi, Ri)S(ui, UMi) + wi

(6.30)

where xi = [px
i , py

i , θi]
T, Mi = diag{1/mi, 1/mi, 1/Ii}, mi is the mass of the robot, Ii is

the inertia of the robot, ui = [F1
i , F2

i , F3
i ]

T is the force vector of the three motors and Ri

is the radius of the robot. The parameter values of each robot are given in Table 6.1.

The desired formation is chosen as a time-varying circular formation to test the sys-

tem’s performance when a set of complex references is given. The specific expression

of the formation reference is given as

xdi(t) =
[

cos
(

1
10

t
)
+ 2cos

(
1

10
t +

iπ
3

)
,−sin

(
1

10
t
)
+ 2sin

(
1

10
t +

iπ
3

)
, 0
]T

(6.31)
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The unknown nonlinear term wi is chosen as follows to ensure the diversity of nonlin-

earities:

wi =
1
5

[
1
2

sin(px
i ) +

3
5

sin
(

3
5

t +
iπ
5

)
,−3

5
e−|p

y
i −1| +

4
5

sin
(

2
5

t +
iπ
5

)
,

1
5

cos(θi) +
2
5

sin
(

1
2

t +
iπ
5

)]T

The communication topology is chosen as the directed graph shown in Figure 6.2, and

the value of bi is set as bi = 2.

1

2 5

43

6

Figure 6.2. Communication topology of the multi-ODR system.

The first thing to justify is the necessity and advantages of developing the neural-based

sliding mode observer. Regarding the ODR cluster, suppose that the control input is

selected as ui = unom
i , which does not lead to the divergence of the system states and

satisfy that xi ∈ Ωx and vi ∈ Ωv. With the neural updating parameters chosen as

η1 = 10 and η2 = 1, we have the following four designs to offer comparative results:

1. The cooperatively tuned NN estimation (CTNNE) (Lewis et al. 2013) where the

tuning law is chosen as

˙̂W i = η1T (Yi)sT
i − η2Ŵi

2. The observer-based NN estimation (OBNNE-1) where the observer structure (6.9)

is implemented with the linear sliding surface design (6.11), the adaptive weight

update law (6.13) and the imaginary control input (6.12). The output of the NN

is used as the estimation of wi, which leads to w̃ = [(w̃N
1 )T, (w̃N

2 )T, . . . , (w̃N
N)

T]T.

The related parameter values are chosen as λ̃i,1 = 2 and c̃i,1 = 3 by Theorem 6.1.

3. The observer-based NN estimation (OBNNE-2) where the observer structure (6.9)

is implemented with the linear sliding surface design (6.11), the adaptive weight

update law (6.13) and the imaginary control input (6.12). The imaginary con-

trol input ûi is chosen as the estimation of wi, leading to w̃ = w̃O. The related

parameter values are chosen as λ̃i,1 = 2 and c̃i,1 = 3 by Theorem 6.1.
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4. The observer-based finite-time NN estimation (OBFTNNE) where the observer

structure (6.9) is implemented with the finite-time sliding surface design (6.16),

the adaptive weight update law (6.13) and the imaginary control input (6.17).

The imaginary control input ûi is chosen to act as the estimation of wi, leading to

w̃ = w̃O. The related parameter values are chosen as λ̃i,1 = 1.5, λ̃i,2 = 0.5 p1 = 3,

p2 = 5, h = 1, c̃i,1 = 3 and c̃i,2 = 3 by Theorem 6.2.

The propagation of observation error norm correlated with different designs are il-

lustrated in Figure 6.3, where the finite settling time tset and the ultimate bounded

region w̃M of each approach are recorded in Table 6.2. For each method, we have that

∥w̃∥ ≤ w̃M when t ≥ tset.

The propagation of observation error norm correlated with different designs are il-

lustrated in Figure 6.3, where the finite settling time tset and the ultimate bounded

region w̃M of each approach are recorded in Table 6.2. For each method, we have that

∥w̃∥ ≤ w̃M when t ≥ tset.

Figure 6.3. Estimation accuracy comparison of four estimation techniques.

It is observed in Figure 6.3 that although the CTNNE method works fine for system

without input saturation (Lewis et al. 2013), the estimation error norm did not converge

and even goes up to 6× 104 when the actuator is saturated. Such finding illustrates

that the NN tuning method that involves variables related to reference tracking errors

(Lewis et al. 2013) is not suitable for systems with input saturation.
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Table 6.2. Comparison of the estimation error and the converging time.

Criteria Estimation techniques

CTNNE OBNNE-1 OBNNE-2 OBFTNNE

tset (s) − 1.5 7.7 4.2

w̃M 6.00× 104 6.67× 10−1 2.85× 10−2 1.12× 10−2

On the contrary, the norm of the estimation error is expected to converge to a small

neighbourhood around 0 if we implement the neural-based observer structure (6.9),

which indicates the necessity of developing the neural-based sliding mode observer.

In specific, if we only use the output of NNs to act as our estimation of the uncertainty

(OBNNE-1) (Liu et al. 2013), ∥w̃∥ is bounded within 6.67× 10−1. Although such result

is acceptable, the estimation accuracy will increase remarkably by 96% as the value of

w̃M dropped from 6.67× 10−1 to 2.85× 10−2 if we adopt the OBNNE-2 design. Such

result justified the validity of Theorem 6.1 and the analyse provided in Remark 6.2.

Regarding the OBFTNNE, although it did not make a huge difference in the precision

perspective (w̃M = 1.12× 10−2), it shortened the error converging time significantly

from 7.7s to 4.2s, meaning that Theorem 6.2 is also valid.

To illustrate the performance of the auxiliary variable and the proposed observer-based

controller, we have the following three designs for comparison:

1. The nominal formation controller (NFC) where ui = S(unom
i , UMi).

2. The compensated formation controller (CFC) where the auxiliary variable ξi is

employed, the tuning law of ξi is chosen as (6.24) and ui = S(ucom
i , UMi). The

tuning parameters of the auxiliary variable is set as η3 = 1 and η4 = 0.5.

3. The linear-programming-based compensated formation controller (LPBCFC) in

which the auxiliary variable ξi is employed, the tuning law of ξi is chosen as

(6.24), the LPBCIRA is used and ui = ureg
i . The tuning parameters of the auxiliary

variable is set as η3 = 1 and η4 = 0.5.

In the above three designs, the parameter of the controller is chosen as ci = 2 and

λi = 2. The actuator saturation limitation is set as UMi = 1. To illustrate that both
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the state windup and the reverse effect exist in the multi-ODR cluster, we first have a

look at the propagation of the sliding variable si. If we employ the NFC design, then

we have the trend of si as shown in Figure 6.4. It is found that there are two different

kinds of state fluctuation according to Remark 6.3:

1. One kind of regulated oscillation around the value of equilibrium point of si =

[0, 0, 0]T. (See sx and sy of ODR one, two, five and six.)

2. One kind of disarray fluctuation without any specific characteristics. (See sθ of

all ODRs ).

Figure 6.4. Propagation of si (NFC).

The first phenomenon is caused by the state windup issue (Han et al. 2019), while the

second one is the illustration of the reverse effect in Definition 5.1. After employing

the auxiliary variable to compensate for the windup issue, we have the CFC design,

whose trends of si are given as the dotted lines in Figure 6.5.

Compared with the results of NFC, the auxiliary variable is found to be effective for

attenuating the windup phenomenon (see sx and sy of ODR one, two, five and six

in Figures 6.4-6.5). However, every ODR with the CFC design still experiences state

fluctuation in the channel of sθ, indicating the existence of the reverse effect.
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Figure 6.5. Propagation of si (CFC and LPBCFC).

After implementing the LPBCIRA, the amplitudes of the state fluctuation phenomenon

is significantly reduced for each ODR (see the curves of LPBCFC in Figure 6.5). Sim-

ilar results are also obtained in the perspective of ex (see Figure 6.6), indicating the

effectiveness of the LPBCIRA (Algorithm 3).

However, note that the LPBCFC design can not fully avoid the state fluctuation because

of the following two reasons:

1. The norm of the initial estimation error of the neural-based observer is not zero,

and it takes the observer a finite period of time (tset) to ensure that the estimation

error is bounded within a small neighbourhood around zero. Hence, it is possible

that the control input ucom
i will lead to state fluctuation when t < tset.

2. The implementation of the auxiliary variable ξi does not guarantee that the sys-

tem is free of the windup phenomenon. Hence, state overshoots may still exist

(see sy of ODR two and sθ of ODR six).

To show that the system is affected by the input saturation phenomenon and the LP-

BCIRA is able to maintain ureg
i within the saturation limitation, the control inputs of

LPBCFC are provided in Figure 6.7, where we see that the value of each channel in ureg
i

is restricted within the neighbourhood of [−1, 1].
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Figure 6.6. Propagation of exi (CFC and LPBCFC).

Figure 6.7. Control input of the LPBCFC scheme.

To offer intuitive comparison, the trends of ∥S∥, ∥ex∥, ∥δx∥ and ∥ξ∥ are also recorded

and presented in Figure 6.8, where more chattering is expected if the NFC design is

employed. Although the results of CFC and LPBCFC look similar, the CFC design still
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experiences state fluctuation when t ∈ [0, 5], which is significantly attenuated if the

LPBCFC design is employed. Regarding the specific bounded region of each vector, all

three methods achieve the same result because the actual control input of LPBCFC and

CFC will converge to unom
i ultimately. From the simulation data, we have the semi-

globally UUB region of ∥S∥ ≤ 2.7× 10−3, ∥ex∥ ≤ 8.3× 10−4, ∥δx∥ ≤ 3.1× 10−4 and

∥ξ∥ → 0 when t→ +∞, which further proves the validity of Theorem 6.3.

Figure 6.8. Comparison of the propagation of vector norms.

Although the trend of ∥ex∥ can illustrate the difference between the current system

formation and the expected system formation, it can only justify the short-term effect

of the state fluctuation phenomenon instead of the ling-term one. Hence, we define a

positive scalar ∆e as the absolute formation tracking error as follows within the period

of [t0, tn]:

∆e =
∫ tn

t0

∥ex(τ)∥1dτ (6.32)

where tn denotes the current time. Here, we can treat ∆e as the overall cost that mem-

orise how much formation error has the system had.

Besides, we also define a positive scalar ∆u as the following integration form to record

how much effort has the control input made regarding the multiple ODR system from
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t0 to tn:

∆u =
∫ tn

0
∥u(τ)∥1dτ (6.33)

The trends of ∆e and ∆u are recorded in Figure 6.9 simultaneously. We see that without

the implementation of the auxiliary variable and the LPBCIRA, the NFC design makes

the most overall effort while having the worst performance (∆e > 300). Although the

CFC design and the LPBCFC design share little difference in the perspective of ∆u (less

than three), their difference in ∆e is remarkable (more than 30). Such result indicates

that the LPBCFC design tends to make the right effort that reduces the system forma-

tion error rather than making the maximum effort regardless of the system behaviour.

The difference between the LPBCFC and CFC also shows that there are two kinds of

state fluctuation phenomenon for cluster (6.4), further proves the validity of the state-

ments made in Remark 6.3 and Theorem 6.3.

Figure 6.9. Overall cost and overall effort.

The formation status of the multi-ODR system is presented in Figure 6.10. It is ob-

served that the system is able to track the predefined trajectories (dotted curves) to

further form a rotating circular formation (dash-dotted curve), whose centre is also

spinning in a circular trajectory.

6.5 Chapter summary

In this chapter, we have addressed the formation control problem for saturated second-

order multi-agent systems with system uncertainties. New neural-based sliding mode
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Figure 6.10. System formation status while applying the LPBCFC design.

observer designs are proposed for nominal second-order systems and finite-time char-

acteristics have been achieved. A set of adaptive auxiliary variables is employed in

the SMC scheme to attenuate the state windup phenomenon. The linear programming

technique is further employed to attenuate the state fluctuation led by the reverse ef-

fect. Simulations are conducted to provide comparative results that illustrate the neces-

sity and the effectiveness of the proposed observer designs and the robust formation

control law.

In the next chapter, a new hierarchical formation control structure is developed to

avoid the coupling phenomenon between the inter-agent communication and the low-

level motion dynamics. Analysis and designs regarding a multi-UAV system and a

mixed-order MAS are conducted to illustrate the merits of using the hierarchical struc-

ture. Two-layer NNs are also employed to ensure the robustness of the controller de-

signs.

Page 174



Chapter 7

Hierarchical Formation
Control of Multi-Agent

Systems

CURRENTLY, most of the formation control algorithms are developed

in a single-layer structure that couples the inter-agent communication

with the specific motion dynamics. Although such method is valid, its cor-

responding stability analysis is hard to conduct when individual agents ac-

quire complex dynamics. Therefore, it is essential to develop a multi-layer

formation control structure that separates the multi-agent communication

and the motion control. In this chapter, the hierarchical control scheme

is discussed regarding the formation control issue of multi-agent systems.

First, the example of a multi-quadcopter system is employed to investigate

the hierarchical formation control design for unified-order multi-agent sys-

tems with complex and heterogeneous dynamics. After that, the formation

control problem is further expanded to mixed-order multi-agent systems,

and a neural-based hierarchical formation control structure is proposed for

a mixed-order cluster that contains both first-order agents and second-order

agents. Both theoretical analysis and simulations are conducted to prove

the effectiveness of the proposed schemes.
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7.1 Introduction

The control problem of networked MASs is first discussed by Olfati-Saber and Murray

(Olfati-Saber and Murray 2004), where the agent states achieve a consensus value cor-

related with the initial state values ultimately. Since then, most of the research works

in the field of MAS are developed in the similar fashion (Shi and Yan 2020, Sun et al.

2021b), where local errors are defined with the implementation of the Laplacian ma-

trix and further employed in the construction of motion control laws. Although such

method is proved to be effective and valid by using the Lyapunov stability theory,

it does increase the complexity of the stability analysis by introducing the Laplacian

matrix into the Lyapunov candidates (Lewis et al. 2013).

Among the many kinds of robots that are investigated, the motion control of uncrewed

grounded vehicles are comparatively easy (Fei et al. 2021a, Wang et al. 2019) because

no guidance law is needed. On the contrary, the control problem of UAVs are more

complex because it is essential to design separate control laws for the position loop

and the attitude loop. The movement of quadcopters is analysed based on an ideal

second-order dynamics and time-varying formation tracking process is achieved by a

Riccati-based approach (Dong et al. 2018). Both UAVs and uncrewed grounded vehi-

cles are modelled with a double-integrator structure by Ren et al. to achieve robust

three-dimensional formation control (Ren et al. 2022). However, it is worth mentioning

that Dong et al. ignored the coupling phenomenon between the position loop and the

attitude loop. Although Ren et al. employed the popular two-loop controller design,

chattering is observed in different system states because of the coupling between the

inter-agent communication and the under-actuated UAV model. Hence, it is essential

to discuss if employing a multi-layer formation control scheme can reduce the com-

plexity of the multi-UAV cluster formation control design.

Apart from unified-order MASs, mixed-order MASs have attracted massive interests

because of the implementation of hybrid-robot systems in practical scenarios (Shi and

Yan 2020). The cooperative consensus tracking problem was discussed for mixed-order

MASs (Li et al. 2019c) that contain both first-order and second-order agents, and the

error-related sliding variables were defined to construct neural adaptive consensus

control laws. Corresponding results are further extended to systems with agents that

have higher-order dynamics (Li et al. 2022). However, the idea of directly building

up the overall system model with the specific agent dynamics (Li et al. 2019c, Li et al.
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2022) is found to be problematic while designing the controller and analysing system

stability due to the mismatch in dynamics. Hence, how to avoid the state mismatch

among agents caused by the difference in dynamics orders has became a challenge.

Motivated by the above discussions, the following issues are investigated in this chap-

ter:

1. How to design a hierarchical formation control scheme for unified-order MASs

with complex agent dynamics?

2. How to construct a hierarchical formation control scheme for mixed-order MASs?

3. How to implement NNs in the hierarchical control structure to estimate the un-

known factors in the system dynamics?

The contents in this chapter are organised as follows. The development of the neural-

based sliding mode observer and the observer-based hierarchical formation control

scheme for a multi-UAV cluster are given in Section 7.2. The development of the

observer-based hierarchical formation control scheme for mixed-order MASs is pre-

sented in Section 7.3. The final conclusions are drawn in Section 7.4.

7.2 Hierarchical design for unified-order vehicle clusters

7.2.1 System modelling and problem formulation

Consider a distributed heterogeneous multi-drone system consists of N(N > 1) UAVs,

where the dynamics of the ith UAV is expressed as follows (Ren et al. 2022, Fei et al.

Page 178



Chapter 7 Hierarchical Formation Control of Multi-Agent Systems

Table 7.1. Parameter definitions.

Term(s) Definition

Ki,x, Ki,y, Ki,z, Ki,ϕ, Ki,θ, Ki,ψ Aerodynamic drag coefficients

w̄i,x, w̄i,y, w̄i,z, w̄i,ϕ, w̄i,θ, w̄i,ψ External disturbances

Ji,x, Ji,y, Ji,z Moments of inertia around the axis

mi The mass of the UAV

g The gravity constant

υi The drag force coefficient

2022b):

p̈x
i =

cos(ϕi)sin(θi)cos(ψi) + sin(ϕi)sin(ψi)

mi
(ui,1 + ui,2 + ui,3 + ui,4) + w̄i,x −

Ki,x

mi
ṗx

i

p̈y
i =

cos(ϕi)sin(θi)sin(ψi)− sin(ϕi)cos(ψi)

mi
(ui,1 + ui,2 + ui,3 + ui,4) + w̄i,y −

Ki,y

mi
ṗy

i

p̈z
i =

cos(ϕi)cos(θi)

mi
(ui,1 + ui,2 + ui,3 + ui,4) + w̄i,z −

Ki,z

mi
ṗz

i − g

ϕ̈i = −
Ki,ϕ

Ji,x
ϕ̇i +

Ji,y − Ji,z

Ji,x
θ̇iψ̇i +

Ri

Ji,x
(−ui,2 + ui,4) + w̄i,ϕ

θ̈i = −
Ki,θ

Ji,y
θ̇i +

Ji,z − Ji,x

Ji,y
ϕ̇iψ̇i +

Ri

Ji,y
(−ui,1 + ui,3) + w̄i,θ

ψ̈i = −
Ki,ψ

Ji,z
ψ̇i +

Ji,x − Ji,y

Ji,z
ϕ̇i θ̇i +

υi

Ji,z
(−ui,1 + ui,2 − ui,3 + ui,4) + w̄i,ψ, i ∈ [1, N]

(7.1)

where px
i , py

i and pz
i represent the global coordinates of the ith UAV, ϕi, θi and ψi denote

the roll angle, pitch angle and yaw angle, respectively, ui,j(j ∈ [1, 4]) represents the

combined thrust or force provided by the jth motor, Ri is the distance between the

centre of the drone and the centre of the rotor, and the rest of the parameters are defined

in Table 7.1.

For the sake of simplicity, the following definitions are made to divide the control input

of the system into Ti, τi,1, τi,2 and τi,3:

Ti = ui,1 + ui,2 + ui,3 + ui,4, τi,1 = −ui,2 + ui,4

τi,2 = −ui,1 + ui,3, τi,3 = −ui,1 + ui,2 − ui,3 + ui,4

(7.2)
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Due to the strong coupling between channels, the position channel and the attitude

channel should not be combined into an overall second-order model (Du et al. 2017).

Instead, design and analysis based on individual loops are required. Define xi,p =

[px
i , py

i , pz
i ]

T and vi,p = [ ṗx
i , ṗy

i , ṗz
i ]

T. We then have the dynamics of the position loop asẋi,p = vi,p

v̇i,p = fi,p + gi,pTi + w̄i,p − ḡp, i ∈ [1, N]
(7.3)

for which we have the following equations:

fi,p = −[Ki,x ṗx
i /mi, Ki,y ṗy

i /mi, Ki,z ṗz
i /mi]

T, w̄i,p = [w̄i,x, w̄i,y, w̄i,z]
T, ḡp = [0, 0, g]T

gi,p =
[

cos(ϕi)sin(θi)cos(ψi)+sin(ϕi)sin(ψi)
mi

cos(ϕi)sin(θi)sin(ψi)−sin(ϕi)cos(ψi)
mi

cos(ϕi)cos(θi)
mi

]T

If we have wi,p = fi,p + w̄i,p as the overall system uncertainties in the position loop,

(7.3) can be simplified to the following version:ẋi,p = vi,p

v̇i,p = gi,pui + wi,p, i ∈ [1, N]
(7.4)

Similarly, if define xi,a = [ϕi, θi, ψi]
T and vi,a = [ϕ̇i, θ̇i, ψ̇i]

T, then the dynamics in the

attitude loop has the following expression:ẋi,a = vi,a

v̇i,a = gi,aτi + wi,a, i ∈ [1, N]
(7.5)

where wi,a = fi,a + w̄i,a, w̄i,a = [w̄i,ϕ, w̄i,θ, w̄i,ψ]
T and

fi,a =


(Ji,y − Ji,z)θ̇iψ̇i/Ji,x − Ki,ϕϕ̇i/Ji,x

(Ji,z − Ji,x)ϕ̇iψ̇i/Ji,y − Ki,θ θ̇i/Ji,y

(Ji,x − Ji,y)ϕ̇i θ̇i/Ji,z − Ki,ψψ̇i/Ji,z

 , gi,a =


Ri
Ji,x

0 0

0 Ri
Ji,y

0

0 0 υi
Ji,z

 , τi =


τi,1

τi,2

τi,3



For the sake of convenience while analysing the cluster formation tracking behaviour

in later parts, it is still necessary to have a unified cluster dynamics expression. For

the ith UAV, define xi = [xT
i,p, xT

i,a]
T and vi = [vT

i,p, vT
i,a]

T, then the following simplified

version is obtained: ẋi = vi

v̇i = ui + wi − ḡi, i ∈ [1, N]
(7.6)
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where we have ui = [(gi,pTi)
T, (gi,aτi)

T]T, wi = [wT
i,p, wT

i,a]
T and ḡi = [ḡT

p , 0, 0, 0]T.

To obtain the cluster expression, we define x = [xT
1 , xT

2 , . . . , xT
N]

T, v = [vT
1 , vT

2 , . . . , vT
N]

T,

u = [uT
1 , uT

2 , . . . , uT
N]

T, w = [wT
1 , wT

2 , . . . , wT
N]

T and ḡ = [ḡT
1 , ḡT

2 , . . . , ḡT
N], which further

lead to ẋ = vs.

v̇ = u + w− ḡ
(7.7)

There are two sets of reference for each UAV to follow, the position reference and the

attitude reference. Throughout this section, we use xd
i,p ∈ R3 and ψd

i ∈ R1 to represent

the position reference and the desired yaw angle for the ith UAV, respectively. The goal

of this article is to achieve semi-global uniform ultimate boundedness for each UAV’s

position tracking error and attitude tracking error, which is illustrated as

lim
t→∞
∥xi,p − xd

i,p∥ ≤ νs
p, lim

t→∞
∥ψi − ψd

i ∥ ≤ νs
a, ∀xi(t0) ∈ Ωx (7.8)

where both νs
p and νs

a are small positive constants.

The communication graph of the multi-UAV system (7.7) is chosen as a strongly con-

nected graph, and the following assumptions are made for the multi-UAV system (7.7):

Assumption 7.1. The trajectory reference xd
i,p and its derivatives ẋd

i,p and ẍd
i,p are all bounded

and accessible to the ith UAV. The yaw angle reference ψd
i is bounded and known to the ith

UAV.

7.2.2 Two-layer neural networks for uncrewed aerial vehicles

In this subsection, two-layer NNs are employed to estimate the overall system uncer-

tainty wi. According to the universal approximation theorem, a two-layer NN can be

used to approximate the unknown function when the network compact set conditions

are satisfied (Li et al. 2022). Hence, the uncertainty wi is expressed as the following

form:

wi = WT
i φ(xi, vi) + ϵi, i = 1, 2, . . . , n

where φ(·) is the activation function vector of the NN, Wi is the optimal weight ma-

trix, ϵi is the bounded network approximation bias that satisfies ∥ϵi∥ ≤ ϵM and ϵM is a

bounded positive number. To reduce the complexity of the NN design, we chose the ac-

tivation function as the identity function, which further leads to φ(xi, vi) = [xT
i , vT

i ]
T ∈

R12×1, Wi ∈ R12×6 and ϵi ∈ R6.
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For the ith UAV, the NN estimation of wi is given as

ŵi = ŴT
i φ(xi, vi) (7.9)

where Ŵi denotes the estimated weight matrix.

Define W̃i = Wi − Ŵi and w̃i = wi − ŵi. Then the estimation error w̃i is given as

w̃i = W̃T
i φ(xi, vi) + ϵi

The following assumption is made to ensure the boundedness of the NN output:

Assumption 7.2. The optimal weight matrix Wi is bounded such that ∥Wi∥F ≤ WM is met

for each UAV, where WM is a positive constant.

Remark 7.1. In a practical task, the external disturbance may include functions that do not

use the system states xi and vi as variables. For example, the external disturbance w̄i can be a

function that only relates to the task time t (such as w̄i = sin(t)). However, since the system

states xi and vi are correlated with external variables such as t, and therefore can be expressed

as a function whose variables include the external variables, the external variables can also be

seen as a function that uses the system states xi and vi as its variables. Hence, we are still able

to employ the NN to perform a unified estimation of w̄i, which validates the implementation of

(7.9).

7.2.3 Overview of the observer-based hierarchical control scheme

In this section, the robust formation control problem of multi-UAV systems is consid-

ered when each UAV contains model uncertainty. To reduce the complexity of the

controller design, a hierarchical two-level formation controller design is proposed to

separate the concerns.

In high-level designs, virtual agents are generated according to the second-order nom-

inal model of UAVs to act as the reference generators that provide feasible commends

to the low-level design, and the low-level controllers are responsible for the actual mo-

tion control of physical UAVs. A new neural-based observer design is also proposed in

this section for the estimation and compensation of the nonlinear model uncertainties.
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7.2.4 High-level design for unified-order vehicle clusters

To ensure that the formation controller of each UAV is offered with a sufficient number

of state references, each high-level virtual agent is defined to have the homogeneous

second-order dynamics as follows: ˙̄xi = v̄i,

˙̄vi = S(ūi, ŪMi)
(7.10)

where x̄i ∈ Rn and v̄i ∈ Rn are the position and velocity information of the virtual

agent, respectively, ūi ∈ Rn is the control input of the virtual agent, and S(ūi, ŪMi) ∈
Rn is the actuator saturation phenomenon. Define S(ūi(j), ŪMi) to be the jth element

of S(ūi, ŪMi). Then we have

S(ūi(j), ŪMi) =

ūi(j) |ui(j)| ≤ ŪMi

sign(ūi(j))ŪMi |ūi(j)| > ŪMi

(7.11)

where ŪMi is a positive constant that represents the saturation limitation.

Accordingly, we have the following cluster expression: ˙̄x = v̄,

˙̄v = S(ū)
(7.12)

where
S(ū) = [ST(ū1, ŪM1),ST(ū2, ŪM2), . . . ,ST(ūN, ŪMN)]

T

x̄ = [x̄T
1 , x̄T

2 , . . . , x̄T
N]

T, v̄ = [v̄T
1 , v̄T

2 , . . . , v̄T
N]

T

Regarding the virtual system (7.10), we define the high-level tracking errors δ̄xi and δ̄vi

as δ̄xi = x̄i − xd
i,p

δ̄vi = v̄i − ẋd
i,p

(7.13)

The tracking error dynamics for the ith virtual agent is given as
˙̄δxi = δ̄vi

˙̄δvi = S(ūi, ŪMi)− ẍd
i,p
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Then we have the virtual local formation tracking errors ēxi and ēvi as follows, respec-

tively: 
ēxi =

N

∑
j=1

lijδ̄xj + bi δ̄xi

ēvi =
N

∑
j=1

lijδ̄vj + bi δ̄vi

(7.14)

where bi is the ith diagonal element of B. Define λ̄i to be a positive constant. Then the

virtual sliding surface is designed as

s̄i = ēvi + λ̄iS̄(ēxi, τ̄e, ψ̄e) (7.15)

where τ̄e is a positive constant, ψ̄e is a very small positive constant and S̄(ēxi, τ̄e, ψ̄e) ∈
Rn is a bounded smooth projection function whose jth element is expressed as

S̄(ēxi(j), τ̄e, ψ̄e) =



τ̄e + ψ̄e

(
1− exp

(
τ̄e − ēxi(j)

ψ̄e

))
, if ēxi(j) > τ̄e

ēxi(j), if |ēxi(j)| ≤ τ̄e

ψ̄e

(
exp

(
τ̄e + ēxi(j)

ψ̄e

)
− 1
)
− τ̄e, if ēxi(j) < −τ̄e

(7.16)

Then we have the time derivative of the virtual sliding surface as

˙̄si = ˙̄evi + λ̄idiag{S̄d(ēxi, τ̄e, ψ̄e)}ēvi (7.17)

where the jth element in S̄d(ēxi, τ̄e, ψ̄e) has the following expression:

S̄d(ēxi(j), τ̄e, ψ̄e) =



exp
(

τ̄e − ēxi(j)
ψ̄e

)
, if ēxi(j) > τ̄e

1, if |ēxi(j)| ≤ τ̄e

exp
(

τ̄e + ēxi(j)
ψ̄e

)
, if ēxi(j) < −τ̄e

Define S̄ = [s̄T
1 , s̄T

2 , . . . , s̄T
N]

T, ēx = [ēT
x1, ēT

x2, . . . , ēT
xN]

T, ēv = [ēT
v1, ēT

v2, . . . , ēT
vN]

T and Λ̄ =

diag{λ̄1, . . . , λ̄N}. Then the cluster expression is obtained as

S̄ = ēv + (Λ̄⊗ I3)S̄(ēx, τ̄e, ψ̄e)

Based on the discussions about the tracking error (7.13) and the sliding surface design

(7.15) of the virtual system (7.10), we have the nominal high-level controller design as

follows:

ūnom
i = ẍd

i,p − c̄i s̄i − λ̄idiag{S̄d(ēxi, τ̄e, ψ̄e)}δ̄vi − k̄i δ̄xi

Page 184



Chapter 7 Hierarchical Formation Control of Multi-Agent Systems

where c̄i and k̄i are both positive constants.

To ensure that the amplitudes of the control input stay within the saturation limitation,

we have the following saturated high-level formation controller:

ūi = S̄(ūnom
i , τ̄u, ψ̄u) (7.18)

where τ̄u and ψ̄u are both positive constants.

Now we are ready to present our result within high-level controller design:

Theorem 7.1. Consider the virtual cluster (7.10), where Assumption 7.1 holds. By the sliding

surface design (7.15) and the sliding mode controller (7.18), the variables S̄, ēx and δ̄x are all

UUB.

Proof. Consider a Lyapunov candidate as follows:

V6,1 =
1
2

S̄TP⊗ I3S̄ +
1
2

ēT
x (PK̄)⊗ I3ēx

where K̄ = diag{k̄1, k̄2, . . . , k̄N}.

The time derivative of V6,1 is given as

V̇6,1 = S̄TP⊗ I3
˙̄S + ēT

x (PK̄)⊗ I3 ˙̄ex

= S̄TP⊗ I3( ˙̄ev + Λ̄⊗ I3diag{S̄d(ēx, τ̄e, ψ̄e)}ēv) + ēT
x (PK̄)⊗ I3(S̄

− (Λ̄⊗ I3)S̄(ēx, τ̄e, ψ̄e))

= S̄T(P(L + B))⊗ I3(
˙̄δv + Λ̄⊗ I3diag{S̄d(ēx, τ̄e, ψ̄e)}δ̄v) + ēT

x (PK̄)⊗ I3S̄

− ēT
x (PK̄Λ̄)⊗ I3S̄(ēx, τ̄e, ψ̄e)

First, we rule out the saturation phenomenon (7.11) and have ūi = ūnom
i instead to test

if the nominal controller is able to ensure the uniform ultimate boundedness of both s̄i

and ēxi. Then we have the modified version of V̇6,1 as

V̇6,1 = −S̄T(P(L + B)C̄)⊗ I3S̄− S̄T(PK̄)⊗ I3ēx + ēT
x (PK̄)⊗ I3S̄

− ēT
x (PK̄Λ̄)⊗ I3S̄(ēx, τ̄e, ψ̄e)

= −S̄T(P(L + B)C̄)⊗ I3S̄− ēT
x (PK̄Λ̄)⊗ I3S̄(ēx, τ̄e, ψ̄e)

By Lemma 2.3 and the inequality that S̄(ēx, τ̄e, ψ̄e) ≤ ēx, we have the following norm

form:

V̇6,1 ≤ −
1
2

σ(QC̄)∥S̄∥2 − σ(PK̄Λ̄)∥S̄(ēx, τ̄e, ψ̄e)∥2
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Hence, we get that V̇6,1 will remain negative until ∥S̄∥ = ∥S̄(ēx, τ̄e, ψ̄e)∥ = 0 is achieved.

By the characteristics of the smooth projection function S̄(ēx, τ̄e, ψ̄e), ∥ēx∥will also con-

verge to the value of zero. According to (7.14), we have that ∥δ̄x∥ = 0 is ultimately

achieved as well. By the definition of UUB (Lewis et al. 2013), we have that ∥S̄∥, ∥ēx∥
and ∥δ̄x∥ are all UUB, which indicates that the design of ūnom

i is able to achieve con-

vergence of the virtual tracking error.

If we recall the saturation phenomenon (7.11) and the saturated controller design (7.18),

similar results are also expected and the states ∥S̄∥, ∥ēx∥ and ∥δ̄x∥ are all UUB, which

completes the proof.

Remark 7.2. The virtual high-level agent (7.10) is constructed with a saturation phenomenon

(7.11) to ensure that the states x̄i, v̄i and ūi are a set of suitable and feasible reference vectors

to prevent the low-level UAVs from causing aggressive motion and create large pitch angles or

rotational angles (Tang et al. 2018).

7.2.5 Neural-based observer design for unified-order vehicle clusters

Differently from the high-level design, it is vital to consider the system uncertainties

wi for the low-level design. To maintain the robustness of the formation tracking pro-

cess, one popular way is to employ the neural-based observer designs (Liu et al. 2013,

Fei et al. 2021a) to estimate the unknown terms and then perform compensation in the

controller design. On the basis of the work proposed by Fei et al. (Fei et al. 2021a),

the sliding mode technique is integrated with an artificial NN to approximate the un-

known factor wi in system (7.6).

Although the sliding mode structures (Liu et al. 2013, Fei et al. 2021a) are effective for an

arbitrary kind of uncertainty, the design of only using the NN output as the estimation

value relies too much on the accuracy of the NN. In other words, if we were to use the

FTDO designs (Liu et al. 2013, Fei et al. 2021a), then the norm of the difference between

ŵi and wi would be no less than ϵM, which illustrates their limitation. To overcome this

weakness, we propose to have an alternative way of analysing the problem. First, we

build up an imaginary second-order observation system according to the actual system
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(7.6):  ˙̂xi = v̂i

˙̂vi = giui + ûi

(7.19)

where ûi is the imaginary control input, and vectors x̂i and v̂i represent our estimations

of states xi and vi, respectively. As ui is the to be designed controller and gi is known

in advance, the term giui is treated as the known dynamics for the imaginary system.

By comparing the difference between the imaginary system (7.19) and the actual UAV

dynamics (7.6), we have the following tracking error dynamics for the imaginary sys-

tem:  ˙̃xi = ṽi

˙̃vi = wi − ûi

(7.20)

where x̃i = xi − x̂i and ṽi = vi − v̂i are applied.

In theory, we have wi = ûi when both ∥x̃i∥ = 0 and ∥ṽi∥ = 0 are satisfied. Hence, our

goal of building up an adaptive observer to estimate wi is also equivalent to designing

a tracking controller ûi that reduces the value of ∥x̃i∥ and ∥ṽi∥ as much as possible. To

achieve the uniformly ultimate boundedness of x̃i and ṽi, we define the observation

sliding surface as

s̃i = ṽi + λ̃i x̃i (7.21)

where λ̃i is a positive constant.

We have the derivative of the observation sliding surface as

˙̃si = ˙̃vi + λ̃i ˙̃xi = wi − ûi + λ̃iṽi

Based on our previous discussion about the artificial NN estimation of wi (7.9), we

have the following neural adaptive sliding mode controller design for the imaginary

system:

ûi = ŴT
i φ(xi, vi) + λ̃iṽi + c̃i s̃i + k̃i x̃i (7.22)

where c̃i and k̃i are both positive constants, and the update law of the NN is

˙̂W i = η1φ(xi, vi)s̃T
i − η2∥s̃i∥Ŵi (7.23)

where η1 and η2 are both positive constants.

Now we are ready to present our result of the neural-based sliding mode observer

design.
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Theorem 7.2. Consider the system of (7.19), where Assumption 7.2 is satisfied. By the obser-

vation sliding variable (7.21), the NN estimation (7.21), the adaptive neural weight tuning law

(7.23) and the imaginary control input (7.22), we have that the error states s̃i, x̃i and W̃i are all

semi-globally UUB if the compact set conditions of NNs hold when t ≥ t0.

Proof. Consider the following Lyapunov candidate:

V6,2 =
1
2

s̃T
i s̃i +

1
2η1

tr{W̃T
i W̃i}+

k̃i

2
x̃T

i x̃i

Then the derivative of V6,2 is obtained as follows:

V̇6,2 = s̃T
i

˙̃si −
1
η1

tr{W̃T
i

˙̂W i}+ k̃i x̃T
i

˙̃xi

= s̃T
i (wi − ûi + λ̃iṽi)−

1
η1

tr{W̃T
i

˙̂W i}+ k̃i x̃T
i (s̃i − λ̃i x̃i)

= s̃T
i (W̃

T
i φ(xi, vi) + ϵi − c̃i s̃i)−

1
η1

tr{W̃T
i (η1φ(xi, vi)s̃T

i − η2∥s̃i∥Ŵi)} − k̃iλ̃i x̃T
i x̃i

= −c̃i s̃T
i s̃i − k̃iλ̃i x̃T

i x̃i + s̃T
i ϵi +

η2

η1
∥s̃i∥tr{W̃T

i (Wi − W̃i)}
(7.24)

We can further modify (7.24) into the following norm form:

V̇6,2 ≤ −c̃i∥s̃i∥2 − k̃iλ̃i∥x̃i∥2 + ∥s̃i∥ϵM +
η2

η1
∥s̃i∥∥W̃i∥F(WM − ∥W̃i∥F)

≤ −c̃i∥s̃i∥2 − k̃iλ̃i∥x̃i∥2 + ∥s̃i∥ϵM −
η2

η1
∥s̃i∥(∥W̃i∥2

F −WM∥W̃i∥F +
W2

M
4
−

W2
M

4
)

≤ −c̃i∥s̃i∥2 − k̃iλ̃i∥x̃i∥2 + ∥s̃i∥ϵM −
η2

η1
∥s̃i∥(∥W̃i∥2

F −
WM

2
)2 +

η2W2
M

4η1
∥s̃i∥

≤ −c̃i∥s̃i∥2 − k̃iλ̃i∥x̃i∥2 + ∥s̃i∥ϵM +
η2W2

M
4η1

∥s̃i∥

≤ −χT
6,1H6,1χ6,1 +H6,1χ6,1

where

χ6,1 =

[
∥s̃i∥
∥x̃i∥

]
, H6,1 =

[
ϵM + η2W2

M/4η1 0
]

H6,1 =

[
c̃i 0

0 k̃iλ̃i

]

Hence, V̇6,1 is said to be negative when the following condition is met:

∥χ6,1∥ >
4η1ϵM + η2W2

M
4η1σ(H6,1)
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By Definition 2.1, we have that the vector χ1 is semi-globally UUB within the following

neighbourhood:

Ω1
χ =

{
χ6,1

∣∣∣∣∥χ6,1∥ ≤
4η1ϵM + η2W2

M
4η1σ(H6,1)

}

Hence, the error states s̃i and x̃i are both semi-globally UUB. According to the Lya-

punov stability theory extension (Kim and Lewis 1999), the correlated state W̃i is also

semi-globally UUB, which completes the proof.

As a result, we are confident to have ∥w̃i∥ ≤ w̃M, where w̃M is a positive constant, to

support the theorems in the low-level formation controller design.

7.2.6 Low-level design for unified-order vehicle clusters

Regarding the low-level design, we need to first focus on the position loop to provide

an essential reference for the attitude control loop (Du et al. 2017). Accordingly, the

position loop dynamics (7.4) and the attitude loop dynamics (7.5) of the ith UAV are

investigated for the low-level designs.

By Theorem 7.1, we have that the states x̄i, v̄i and ūi will converge to xd
i,p, ẋd

i,p and ẍd
i,p,

respectively. Hence, it is reasonable to use states x̄i, v̄i and ūi to act as the references

for the ith low-level system. Define δxi,p and δvi,p to be the low-level reference tracking

errors as follows: δxi,p = xi,p − x̄i

δvi,p = vi,p − v̄i, i ∈ [1, N].
(7.25)

Then we have the tracking error dynamics asδ̇xi,p = δvi,p

δ̇vi,p = gi,pui + wi,p − ūi − ḡp, i ∈ [1, N]
(7.26)

Different from the nominal system designs (Fei et al. 2021b, Fei et al. 2021a), we did not

design ui directly from the perspective of (7.26). Instead, we first define ui,p = gi,pui to

denote the nominal control input of the position loop. Then (7.26) can be rewritten asδ̇xi,p = δvi,p

δ̇vi,p = ui,p + wi,p − ūi − ḡp, i ∈ [1, N]
(7.27)
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The position loop sliding surface is constructed as follows:

si,p = δvi,p + λ
p
i δxi,p (7.28)

where λ
p
i is a positive constant.

The time derivative of the sliding surface is given as

ṡi,p = δ̇vi,p + λ
p
i δvi,p = ui,p + wi,p − ūi + λ

p
i δvi,p − ḡp

By the neural-based observer design, we have ûi = ŵi, where ŵi = [ŵT
i,p, ŵT

i,a]
T repre-

sents our estimation of the system uncertainty wi.

Based on the discussion about the neural-based observer (7.22) and the potential-based

position loop sliding variable (7.28), we have the following nominal controller design:

ui,p = ūi − ŵi,p − λ
p
i δvi,p − kp

i δxi,p − cp
i si,p + ḡp (7.29)

where kp
i ∈ R+ and cp

i ∈ R+.

Now we are ready to present our results in the low-level nominal controller design for

the position loop (7.4) of the ith UAV.

Theorem 7.3. Consider the nominal position loop dynamics of the ith UAV (7.4), where As-

sumptions 7.1-7.2 are satisfied. By the neural-based observer (7.22) and the nominal control

law (7.29), the states δxi,p and si,p are both semi-globally UUB if the compact set conditions of

NNs hold when t ≥ t0.

Proof. Consider the following Lyapunov candidate for the ith UAV:

Vi,p =
1
2

sT
i,psi,p +

kp
i

2
δT

xi,pδxi,p (7.30)

The time derivative of the Lyapunov candidate (7.30) is given as

V̇i,p = sT
i,p ṡi,p + kp

i δT
xi,pδ̇xi,p

= sT
i,p(δ̇vi,p + λ

p
i δvi,p) + kp

i δT
xi,p(si,p − λ

p
i δxi,p)

= sT
i,p(ui,p + wi,p − ūi − ḡp + λ

p
i δvi,p) + kp

i δT
xi,p(si,p − λ

p
i δxi,p)

= sT
i,p(w̃i,p − kp

i δxi,p − cp
i si,p)− kp

i λ
p
i δT

xi,pδxi,p + kp
i δT

xi,psi,p

≤ −cp
i ∥si,p∥2 + ∥si,p∥w̃M − kp

i λ
p
i ∥δxi,p∥2
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where w̃i,p = wi,p − ŵi,p.

Alternatively, we have the following matrix form:

V̇i,p ≤ −χT
6,2H6,2χ6,2 +H6,2χ6,2

where

χ6,2 =

[
∥si,p∥
∥δxi,p∥

]
, H6,2 =

[
w̃M 0

]
, H6,2 =

[
cp

i 0

0 kp
i λ

p
i

]

Hence, V̇i,p is guaranteed to be negative within the following region:

∥χ6,2∥ >
w̃M

σ(H6,2)

By Definition 2.1, we have that the vector χ2 is semi-globally UUB within the following

region:

Ω2
χ =

{
χ6,2

∣∣∣∣∥χ6,2∥ ≤
w̃M

σ(H6,2)

}
As in the case of ∥χ2∥, the values of ∥si,p∥ and ∥δxi,p∥ are both semi-globally UUB,

which completes the proof.

After obtaining the nominal control ui,p, the next step is to use the flight control tech-

niques to calculate the reference for the row angle and the yaw angle. Inspired by

(Ren et al. 2022), with ui,p = [ui,x, ui,y, ui,z]
T, we have a new guidance law for Td

i :

Td
i =

miui,z

cos(ϕi)cos(θi)

ϕd
i = arcsin

(
(ui,xsin(ψd

i )− ui,ycos(ψd
i ))

(u2
i,x + u2

i,y + u2
i,z)

1/2

)

θd
i = arctan

(
ui,xcos(ψd

i ) + ui,ysin(ψd
i )

ui,z

) (7.31)

After both ϕd
i and θd

i are calculated, we can use the conventional approach of calculat-

ing the slope between the current value and the previous value to get the value of ϕ̇d
i ,

ϕ̈d
i , θ̇d

i , θ̈d
i , ψ̇d

i and ψ̈d
i as follows:

ξi,1 =


[0, 0, 0]T t ≤ tstep

xd
i,a(t)− xd

i,a(t− tstep)

tstep
t > tstep

(7.32)
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where ξi,1 is the estimation of ẋd
i,a, t represents the current time and tstep is the control

step size. Similarly, we have the following structure to get the second-order derivative

as

ξi,2 =


[0, 0, 0]T t ≤ 2tstep

ξi,1(t)− ξi,1(t− tstep)

tstep
t > 2tstep

(7.33)

Accordingly, we have ξi,1 = ẋd
i,a and ξi,2 = ẍd

i,a when t > 2tstep. Similarly to the position

loop, define δxi,a and δvi,a to be the reference tracking errors in the attitude loop, which

further leads to δxi,a = xi,a − xd
i,a

δvi,a = vi,a − ẋd
i,a, i ∈ [1, N]

(7.34)

If we define ui,a = gi,aui to be the nominal control input for the attitude loop, we have

the error dynamics as follows:δ̇xi,a = δvi,a

δ̇vi,a = ui,a + wi,a − ẍd
i,a, i ∈ [1, N]

(7.35)

Differently from the position loop, the vector δvi,a cannot be directly obtained because

ẋd
i,a is unknown to the ith UAV. Instead, the UAV can only gain access to the estimated

error vector δ̂vi,a as

δ̂vi,a = vi,a − ξi,1

Accordingly, we have the actual sliding surface for the attitude loop as si,a = δvi,a +

λa
i δxi,a, and the estimated sliding variable is given as

ŝi,a = δ̂vi,a + λa
i δxi,a (7.36)

where λa
i is a positive constant. The time derivative of the actual sliding surface si,a is

ṡi,a = δ̇vi,a + λa
i δvi,a = ui,a + wi,a − ẍd

i,a + λa
i δvi,a

Based on our discussion about the neural-based observer (7.22) and the estimated atti-

tude loop sliding variable (7.36), we have the following nominal controller design:

ui,a = ξi,2 − ŵi,a − λa
i δ̂vi,a − ka

i δxi,a − ca
i ŝi,a (7.37)

where ka
i and ca

i are both positive constants.

Now we are ready to present the result of the low-level nominal controller design for

the attitude loop of the ith UAV:
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Theorem 7.4. Consider the nominal attitude loop dynamics of the ith UAV (7.5), where As-

sumptions 7.1-7.2 are satisfied. By the neural-based observer (7.22), the first-order differentia-

tor (7.32), the second-order differentiator (7.33) and the nominal control law (7.37), the states

δxi,a and si,a are both semi-globally UUB if the compact set conditions of NNs hold when t ≥ t0.

Proof. Consider the following Lyapunov candidate.

Vi,a =
1
2

sT
i,asi,a +

ka
i

2
δT

xi,aδxi,a

Then we have the time derivative of Vi,a as

V̇i,a = sT
i,a ṡi,a + ka

i δT
xi,aδ̇xi,a

= sT
i,a(δ̇vi,a + λa

i δvi,a) + ka
i δT

xi,a(si,a − λa
i δxi,a)

= sT
i,a(ui,a + wi,a − ẍd

i,a + λa
i δvi,a) + ka

i δT
xi,a(si,a − λa

i δxi,a)

= sT
i,a(w̃i,a − ka

i δxi,a − ca
i ŝi,a + ξi,2 − ẍd

i,a + λa
i (δvi,a − δ̂vi,a))− ka

i λa
i δT

xi,aδxi,a + ka
i δT

xi,asi,a
(7.38)

where w̃i,p = wi,p − ŵi,p. We have ξi,1 = ẋd
i,a, ξi,2 = ẍd

i,a, δvi,a = δ̂vi,a and si,a = ŝi,a when

t > 2tstep. Therefore, (7.38) is rewritten as

V̇i,a = sT
i,a(w̃i,a − ca

i si,a)− ka
i λa

i δT
xi,aδxi,a

≤ −ca
i ∥si,a∥2 + w̃M∥si,a∥ − ka

i λa
i ∥δxi,a∥2

Similarly, we also have the following matrix form:

V̇i,a ≤ −χT
6,3H6,3χ6,3 +H6,3χ6,3

where

χ6,3 =

[
∥si,a∥
∥δxi,a∥

]
, H6,3 =

[
w̃M 0

]
, H6,3 =

[
ca

i 0

0 ka
i λa

i

]

Hence, V̇i,a is negative within the following region:

∥χ3∥ >
w̃M

σ(H6,3)

By Definition 2.1, we have that the vector χ3 is semi-globally UUB within the following

region:

Ω3
χ =

{
χ6,3

∣∣∣∣∥χ6,3∥ ≤
w̃M

σ(H6,3)

}
As in the case of ∥χ6,3∥, the values of ∥si,a∥ and ∥δxi,a∥ are both semi-globally UUB,

which completes the proof.
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As the position loop and the attitude loop are strongly coupled, a subtle fluctuation

in the output of any part of the controller design can lead to oscillation in the system

states. Regarding the designs covered by Theorems 7.1-7.4, there are two factors that

can lead to potential oscillations in the system’s control input:

1. The values of θd
i and ψd

i are not guaranteed to be smooth because they are gen-

erated by the reverse calculation (7.31). Hence, the output values of the direct

derivative structures (7.32) and (7.33) can be filled with chattering because of the

discontinuity of their input.

2. Before ∥Ŵi −Wi∥F is settled within a neighbourhood around 0, the output of the

NN is usually filled with oscillations (Fei et al. 2021a).

Before introducing the saturated and smoothed differentiator, it is essential to first

make the following assumption:

Assumption 7.3. The vectors ẋd
i,a and ẍd

i,a are both bounded such that limt→+∞ |ẋd
i,a| ≤ ξ1

M13

and limt→+∞ |ẍd
i,a| ≤ ξ2

M13 are met simultaneously.

Consequently, we have the saturated and smoothed differentiator designs, as shown

in Algorithm 4, where lξ is initially set as zero. Accordingly, we have

ξi,1 = D(tstep, tdiff, xd
i,a, t, ξ1

M)

ξi,2 = D(2tstep, tdiff, ξi,1, t, ξ2
M)

(7.39)

where tdiff is the differentiate step size.

To reduce the negative effect brought about by the fluctuations in the NN’s output,

the following observation introduction function is proposed to smoothly introduce the

uncertainty estimations ŵi,p and ŵi,a into the low-level controller designs.

f̄ (t) = 1− exp(−γ1(t− γ2))

1 + exp(−γ1(t− γ2))
(7.40)

where γ1 and γ2 are both positive constants.

Hence, instead of using ŵi,p and ŵi,a directly, we have the following smoothed position

controller and attitude controller:

us
i,p = ūi − f̄ (t)ŵi,p − λ

p
i δvi,p − kp

i δxi,p − cp
i si,p + ḡp (7.41)
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Algorithm 4: Saturated and smoothed differentiator D(tdelay, tdiff, ξ+in, t, ξM)

Input: tdelay, tdiff, ξ+in, t, ξM

Output: ξ+out

if t ≤ tdelay then

ξ+out = [0, 0, 0]T ;

else

if t ≥ lξ tdiff then

ξ+out = (ξ+in − ξ−in)/tdiff ;

lξ = lξ + 1 ;

else

ξ+out = ξ−out ;

end

end

ξ−out = ξ+out ;

ξ−in = ξ+in ;

ξ+out = S(ξ+out, ξM) ;

Return ξ+out ;

us
i,a = ξi,2 − f̄ (t)ŵi,a − λa

i δ̂vi,a − ka
i δxi,a − ca

i ŝi,a (7.42)

Ultimately, we have the following motion controller design:

Ti =
ḡT

pus
i,p

gcos(ϕi)cos(θi)

τi = g−1
i,a ui,a

(7.43)

In all, the hierarchical formation controller is illustrated as Figure 7.1. Now the overall

hierarchical design can be summarised as the following theorem:

Theorem 7.5. Consider a group of UAVs (7.7) with a strongly connected communication

topology, where Assumptions 7.1–7.3 are satisfied. By the high-level formation controller in

(7.18), the smoothed low-level position loop controller in (7.41), the smoothed low-level attitude

formation controller in (7.42) and the actual motion controller in (7.43), the values of
∥∥xi,p −

xd
i,p

∥∥ and
∥∥ψi − ψd

i

∥∥ are both semi-globally UUB if the compact set conditions of NNs hold

when t ≥ t0.
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Figure 7.1. Hierarchical formation control scheme for multi-UAV clusters.

Proof. By Theorem 7.1, one has

lim
t→+∞

∥∥x̄i − xd
i,p
∥∥ = 0, lim

t→+∞

∥∥v̄i − ẋd
i,p
∥∥ = 0, lim

t→+∞

∥∥v̄i − ẍd
i,p
∥∥ = 0 (7.44)

Since the value of the introduction function (7.40) will converge to 1 ultimately, the

result and analysis related to Theorem 7.3 remain the same.

Although the smoothed design in Algorithm 4 will lead to differences between the set

{ξi,1, ξi,2} and {ẋd
i,a, ẍd

i,a}, the difference should be small and bounded if the value of

tdiff is chosen properly. Suppose we have ∥ξi,1 − ẋd
i,a∥ ≤ ξ̃1

M and ∥ξi,2 − ẍd
i,a∥ ≤ ξ̃2

M,

similar to the proof of Theorem 7.4. We have that

lim
t→+∞

∥∥xi,a − xd
i,a
∥∥ ≤ w̃M + (λa

i + ca
i )ξ̃

1
M + ξ̃2

M
σ(H6,3)

(7.45)

where ξ̃1
M and ξ̃2

M are both small positive constants.

With the actual motion controller chosen as (7.43), we have that:

lim
t→+∞

∥xi,p − x̄i∥ ≤
w̃M + (λa

i + ca
i )ξ̃

1
M + ξ̃2

M
σ(H6,3)

lim
t→+∞

∥∥xi,a − xd
i,a
∥∥ ≤ w̃M + (λa

i + ca
i )ξ̃

1
M + ξ̃2

M
σ(H6,3)

which matches the goal of this section (7.8) and concludes the proof.
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Table 7.2. UAV system parameters.

Robot number 1 2 3 4 5 6

mi(kg) 2.08 2.10 2.11 2.10 2.09 2.12

Ri(m) 0.29 0.31 0.30 0.32 0.34 0.33

Ji,x(Ns2/rad) 1.25 1.23 1.24 1.23 1.24 1.25

Ji,y(Ns2/rad) 1.24 1.25 1.24 1.26 1.23 1.26

Ji,z(Ns2/rad) 2.50 2.52 2.51 2.49 2.50 2.53

Ki(Ns2/rad) 1.2× 10−2 1.3× 10−2 1.4× 10−2 1.1× 10−2 1.2× 10−2 1.3× 10−2

υi 5.1× 10−2 5.2× 10−2 4.9× 10−2 5.1× 10−2 4.8× 10−2 5.3× 10−2

7.2.7 Simulation results and discussion

To justify the performance of the proposed hierarchical formation controller design,

comparative simulations based on a multi-UAV system were conducted.

Consider a multi-UAV system that contains six heterogeneous UAVs whose dynamics

are expressed as (7.1). The system’s parameter values are given in Table 7.2, where we

have Ki = Ki,x = Ki,y = Ki,z = Ki,ϕ = Ki,θ = Ki,ψ.

The gravity constant g was set to g = 9.81. The communication topology of the system

was chosen as shown in Figure 7.2, and we used bi = 1 for i ∈ [1, 6].

1

2 5

43

6

Figure 7.2. Communication topology of the multi-UAV cluster.

The initial states are chosen as x1,p = x̂1,p = x̄1 = [4, 1, 0]T, x2,p = x̂2,p = x̄2 = [1, 2, 0]T,

x3,p = x̂3,p = x̄3 = [−2,−4, 0]T, x4,p = x̂4,p = x̄4 = [−4,−1, 0]T, x5,p = x̂5,p = x̄5 =

[−1.5,−1, 0]T and x6,p = x̂6,p = x̄6 = [0,−1, 0]T. All the other states were set as zero

vectors or zero matrices when t = 0.
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The position reference for the ith UAV was chosen as

xd
i,p =

[
3cos

(
2

25
t +

i− 1
3

π

)
, 3sin

(
2

25
t +

i− 1
3

π

)
,

1
2
+

3
20

t
]T

(7.46)

The reference of the yaw angle was chosen as ψd
i = 0. The system uncertainties were

chosen as follows:

w̄i,p =

[
3
5

sin
(

3
10

t +
iπ
6

)
,

4
5

sin
(

1
5

t +
iπ
5

)
,

9
10

sin
(

1
5

t +
iπ
4

)]T

w̄i,a =

[
1

10
sin
(

1
2

t− iπ
6

)
,

2
25

sin
(

3
5

t− iπ
5

)
,

3
50

sin
(

2
5

t− iπ
4

)]T

The parameters of the high level controller were chosen as ŪMi = 0.2, τ̄e = 0.5, ψ̄e =

0.05, c̄i = 1, λ̄i = 2, k̄i = 1.5, τ̄u = 0.19 and ψ̄u = 0.01. To illustrate the effectiveness

of the high-level formation controller (7.18), the norms of the high-level error-related

vectors δ̄xi and s̄i are given in Figures 7.3 and 7.4, respectively.

Figure 7.3. Norms of high-level tracking errors (Multi-UAV cluster).

Although the performance of the sliding mode controller (7.18) was affected by the

saturation phenomenon (7.11) and obvious state overshoots can be noted, the uniform

ultimate boundedness of both δ̄xi and s̄i was still achieved simultaneously, which vali-

dates the results presented in Theorem 7.1.

The parameters of the neural-based observer were selected as λ̃i = 2, c̃i = 4, k̃i = 4,

η1 = 20 and η2 = 0.5. Define ∥x̃∥, ∥s̃∥ and ∥d̃∥ as follows to represent the overall state
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Figure 7.4. Norms of high-level sliding variables (Multi-UAV cluster).

observation error norm, overall observation sliding variable norm and uncertainty es-

timation error norm, respectively.

∥x̃∥ =

√√√√ N

∑
i=i
∥x̃i∥2, ∥s̃∥ =

√√√√ N

∑
i=i
∥s̃i∥2, ∥w̃∥ =

√√√√ N

∑
i=i
∥w̃i∥2

Then we have the values of ∥x̃∥, ∥s̃∥ and ∥d̃∥ as shown in Figure 7.5, where it is found

that all three norms are semi-globally UUB for 2 × 10−3. Hence, Theorem 7.2 was

verified. However, both overshooting and chattering were observed in the output of

the neural-based observer within the first two seconds, which validates our motivation

of employing the observation introduction function (7.40).

Figure 7.5. Effectiveness of the neural-based observer.
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The parameters of the low-level position controller are chosen as λ
p
i = 2, cp

i = 2 and

kp
i = 2. And the parameters of the low-level attitude controller are selected as λa

i = 2,

ca
i = 4 and ka

i = 4. To illustrate the stability of our low-level controller design, we

define error norm vectors ∥δx,a∥, ∥δx,p∥, ∥sa∥ and ∥sp∥ as follows:

∥δx,a∥ =

√√√√ N

∑
i=i
∥δxi,a∥2, ∥δx,p∥ =

√√√√ N

∑
i=i
∥δxi,p∥2, ∥sa∥ =

√√√√ N

∑
i=i
∥si,a∥2, ∥sp∥ =

√√√√ N

∑
i=i
∥si,p∥2

The trends of ∥δx,a∥, ∥δx,p∥, ∥sa∥ and ∥sp∥ are recorded in Figure 7.6, where they are

semi-globally UUB for 4× 10−4, 7× 10−4, 3× 10−4 and 1.5× 10−3. Hence, both Theo-

rem 7.3 and 7.4 are valid.

Figure 7.6. Effectiveness of the low-level controller (Multi-UAV cluster).

To prove that the observation introduction function (7.40)) and the saturated differen-

tiator (Algorithm 4) help attenuate the chattering in the control input, the following

two comparative simulations were conducted:

1. The original controller (TOC) where both (7.32) and (7.33) are employed to pro-

vide the derivatives of the attitude reference xd
i,a. The derivatives are saturated

with ξi,1 = S(ξi,1, 0.2) and ξi,2 = S(ξi,2, 0.1).

2. The smoothed controller (TSC) where the introduction function (7.40) is used

with γ1 = 4 and γ2 = 2, and the attitude reference derivatives are obtained

as

ξi,1 = D(tstep, 10tstep, xd
i,a, t, 0.2), ξi,2 = D(2tstep, 10tstep, ξi,1, t, 0.1)
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where the overall controller is chosen simultaneously with (7.43). Furthermore, we

have the results shown in Figures 7.7 and 7.8.

Figure 7.7. Control input of the TOC scheme.

Figure 7.8. Control input of the TSC scheme.

As the introduction function (7.40) is not used in the TOC design, more chattering was

observed in the control input for the first four seconds. Besides, the TSC design was
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found to have smoother control input ultimately (see UAVs two and six) due to the im-

plementation of the smoothed differentiator (Algorithm 4). Therefore, the effectiveness

of the TSC design and its superiority over the TOC design are both illustrated.

Finally, define xd
p = [xd

1,p, xd
2,p, . . . , xd

N,p]
T and xp = [x1,p, x2,p, . . . , xN,p]

T to represent the

overall formation reference and the actual position of the multi-UAV system, respec-

tively. Then we have the norm of the overall reference tracking error of the system with

TSC design, as shown in Figure 7.9, where the semi-global uniform ultimate bounded-

ness of ∥xp − xd
p∥ proves the validity of Theorem 7.5.

Figure 7.9. Norm of the overall reference tracking error.

The trajectories of all UAVs are given in Figure 7.10 to illustrate the movement and

formation status of the entire system. According to (7.46), the desired formation is

a rotating circle that keeps on elevating (see the dotted grey circle). In Figure 7.10,

each UAV successfully reached its position reference within bounded error to form the

desired formation, which illustrates the effectiveness of the proposed design structure

in Figure 7.1. The angular status of each UAV is also given in Figure 7.11 to indicate

that the saturation phenomenon employed in the higher level helps restrict the pitch

and roll angle within [−30◦, 30◦] to further reduce the aggressive motion of each UAV.

7.3 Hierarchical scheme for mixed-order vehicle clusters

In the previous section, although each UAV has heterogeneous dynamics because of

the differences in the parameter values, all UAVs are modelled in a double-integrator
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Figure 7.10. Illustration of system formation and individual trajectories (Multi-UAV cluster).

Figure 7.11. Trends of angular states.

structure. Therefore, it is essential to extend the formation control problem to a MAS

that contains agents with different order dynamics (Li et al. 2019c) to increase the prac-

ticality of the control scheme.
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7.3.1 System modelling and problem formulation

Consider a mixed-order MAS with N(N ∈ R+) agents, where N1(N1 ∈ R+) agents

have first-order dynamics, and N2(N2 ∈ R+) agents have second-order dynamics. The

dynamics of a first-order agent is expressed as

ẋi = fi + giui + w̄i, i = 1, 2, . . . , N1 (7.47)

and the dynamics of a second-order agent is written asẋi = vi

v̇i = fi + giui + w̄i, i = N1 + 1, N1 + 2, . . . , N
(7.48)

where xi ∈ Rn denotes the position information of the ith agent, vi ∈ Rn denotes the

velocity information of the ith second-order agent, fi ∈ Rn is the unknown function in

agent dynamics, w̄i ∈ Rn is the external disturbance, gi ∈ Rn×n is the known control

gain matrix, ui ∈ Rn represents the control input vector, and N = N1 + N2. If we have

wi = fi + w̄i to be the overall uncertainty for the system, an alternative expression for

(7.47) is obtained as follows:

ẋi = giui + wi, i = 1, 2, . . . , N1 (7.49)

Similarly, (7.48) is rewritten asẋi = vi

v̇i = giui + wi, i = N1 + 1, N1 + 2, . . . , N
(7.50)

The position reference of the ith agent is denoted as xdi ∈ Rn. The reference vector

xdi and its time derivatives ẋdi and ẍdi are all known to the ith agent. The goal of this

section is to achieve the semi-global uniform ultimate boundedness of each agent’s

reference tracking error, which is abstracted as the following inequality:

lim
t→∞
||xi(t)− xdi(t)|| ≤ νs

δ, ∀xi(t0) ∈ Ωx, i = 1, 2, . . . , N (7.51)

The communication graph of the mixed-order MAS is chosen as a strongly connected

graph.

Assumption 7.4. The state vectors xi, vi and wi are all bounded. The formation reference xdi

and its derivatives also remain bounded throughout the formation tracking process.
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7.3.2 Two-layer neural network design for mixed-order clusters

In this section, a two-layer NN is implemented to estimate the unknown function wi

for each individual agent:

wi = WT
i φi + ϵi, i = 1, 2, . . . , N

where φi ∈ Rm is the input vector of the two-layer NN for the ith agent, m is a posi-

tive constant, Wi ∈ Rm×n represents the optimal weight, and ϵi ∈ Rn is the bounded

network bias that satisfies ∥ϵi∥ ≤ ϵM, in which ϵM is a small positive number.

The input vector is chosen as φi = xi for the ith first-order agent, while it is set as

φi = [xT
i , vT

i ]
T for the ith second-order agent. The NN estimation ŵi is given as

ŵi = ŴT
i φi (7.52)

where Ŵi is the estimated weight matrix.

Define w̃i = wi − ŵi and W̃i = Wi − Ŵi. We have the following expression for the

estimation error:

w̃i = W̃T
i φi + ϵi

Assumption 7.5. The optimal weight Wi is bounded such that ∥Wi∥F ≤WM for all i ∈ [1, N].

7.3.3 Dynamics mismatch in mixed-order multi-agent systems

In some previous works, an overall system dynamics is first constructed to obtain the

error dynamics for the whole cluster to further carry out the controller design and its

stability analysis (Fei et al. 2020, Li et al. 2019c, Li et al. 2022, Fei et al. 2021b). Taking the

aforementioned mixed-order systems that contains both first-order agents (7.49) and

second-order agents (7.50) as an example, we normally define the position tracking

error of the ith agent as

δxi = xi − xdi, i ∈ [1, N]

Due to the restrictions of the system model, the velocity tracking error is defined as

follows:

δvi =

0n×1, i ∈ [1, N1]

vi − ẋdi, i ∈ [N1 + 1, N]

Page 205
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Accordingly, the local formation tracking error exi and the local speed tracking error evi

are given as follows:
exi =

N

∑
j=1

aij(δxi − δxj) + biδxi =
N

∑
j=1

lijδxj + biδxi

evi =
N

∑
j=1

aij(δvi − δvj) + biδvi =
N

∑
j=1

lijδvj + biδvi

Such analysis is useful for systems that only contains agents with unified orders such

as the second-order MASs (Fei et al. 2020, Fei et al. 2021b). However, the very basic

and simple rules of ėxi = evi and δ̇xi = δvi are in fact invalid for first-order agents in

mixed-order systems, which further leads to the issue of variable mismatch.

Hence, instead of using the specific agent dynamics directly, we propose to first con-

struct an extra virtual agent on top of each actual agent dynamics to further perform

hierarchical control (Sharma et al. 2021). The virtual agents are treated as high-level

reference generators for the actual agents, which are considered as low-level systems

in the hierarchical design.

7.3.4 High-level design for mixed-order vehicle clusters

To ensure that the formation controller of each agent is offered with sufficient amount

of state references, each high-level virtual agent is defined to have the homogeneous

second-order dynamics as follows:  ˙̄xi = v̄i

˙̄vi = ūi

(7.53)

where x̄i ∈ Rn and v̄i ∈ Rn are the position and velocity information of the virtual

agent, respectively, and ūi ∈ Rn is the control input of the virtual agent.

Define x̄ = [x̄T
1 , x̄T

2 , . . . , x̄T
N]

T, v̄ = [v̄T
1 , v̄T

2 , . . . , v̄T
N]

T and ū = [ūT
1 , ūT

2 , . . . , ūT
N]

T, then the

dynamics of the virtual cluster is given as ˙̄x = v̄

˙̄v = ū
(7.54)

Page 206



Chapter 7 Hierarchical Formation Control of Multi-Agent Systems

Regarding the virtual system (7.53), the high-level position tracking error δ̄xi and ve-

locity tracking error δ̄vi are defined as follows:δ̄xi = x̄i − xdi

δ̄vi = v̄i − ẋdi

(7.55)

Accordingly, the tracking error dynamics of the ith virtual system is obtained as
˙̄δxi = δ̄vi

˙̄δvi = ūi − ẍdi

Then we have the local formation tracking error ēxi and the local velocity tracking error

ēvi for the ith virtual system (7.53) as follows, respectively:
ēxi =

N

∑
j=1

aij(δ̄xi − δ̄xj) + bi δ̄xi =
N

∑
j=1

lijδ̄xj + bi δ̄xi

ēvi =
N

∑
j=1

aij(δ̄vi − δ̄vj) + bi δ̄vi =
N

∑
j=1

lijδ̄vj + bi δ̄vi

(7.56)

where bi is the ith diagonal element of matrix B. Then we have the following cluster

expression: ēx = (L + B)⊗ In(x̄− xd) = (L + B)⊗ Inδ̄x

ēv = (L + B)⊗ In(v̄− ẋd) = (L + B)⊗ Inδ̄v

where ēx = [ēT
x1, ēT

x2, . . . , ēT
xN]

T, ēv = [ēT
v1, ēT

v2, . . . , ēT
vN]

T, δ̄x = [δ̄T
x1, δ̄T

x2, . . . , δ̄T
xN]

T, δ̄v =

[δ̄T
v1, δ̄T

v2, . . . , δ̄T
vN]

T and xd = [xT
d1, xT

d2, . . . , xT
dN]

T are applied.

Based on (7.13), we have the virtual sliding surface designed as follows:

s̄i = ēvi + λ̄i ēxi (7.57)

where λ̄i is a positive constant.

Define S̄ = [s̄T
1 , s̄T

2 , . . . , s̄T
N]

T, then the cluster expression is as follows:

S̄ = (L + B)⊗ In(δ̄v + Λ̄⊗ Inδ̄x)

where Λ̄ = diag{λ̄1, λ̄2, . . . , λ̄N}.

The time derivative of S̄ is given as

˙̄S = (L + B)⊗ In(ū− ẍd + Λ̄⊗ Inδ̄v)
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Based on the discussions about the tracking error (7.13) and the sliding surface design

(7.57) of the virtual system (7.53), we have the following high-level controller design:

ūi = ẍdi − c̄i s̄i − λ̄i δ̄vi − δ̄xi (7.58)

where c̄i is a positive constant.

Now the result of the unified high-level controller design is given as the following

theorem:

Theorem 7.6. Consider the virtual cluster (7.53) where Assumption 7.4 holds, by the sliding

surface design (7.57) and the sliding mode controller (7.58), the sliding variable S̄, the local

formation tracking error ēx and the high-level reference tracking error δ̄x are all UUB.

Proof. Consider a Lyapunov candidate as follows:

V6,3 =
1
2

S̄TP⊗ InS̄ +
1
2

ēT
x P⊗ In ēx

By Lemma 2.3, its time derivative is obtained as

V̇6,3 = S̄TP⊗ In
˙̄S + ēT

x P⊗ In ˙̄ex

= S̄T(P(L + B))⊗ In(ū− ẍd + Λ̄⊗ Inδ̄v) + ēT
x P⊗ In(S̄− Λ̄⊗ In ēx)

= −1
2

S̄TQC̄⊗ InS̄− ēT
x (PΛ̄)⊗ In ēx

≤ −1
2

σ(QC̄)∥S̄∥2 − σ(PΛ̄)∥ēx∥2

where C̄ = diag{c̄1, c̄2, . . . , c̄N}.

Hence, we get that V̇1 will remain negative until ∥S̄∥ = ∥ēx∥ = 0, which also leads

to ∥δ̄xi∥ = 0. By Lemma 3.1, we get that S̄, ēx and δ̄xi are UUB, which completes the

proof.

7.3.5 Low-level design for mixed-order vehicle clusters

From the proof of Theorem 7.6, we see that the states of the virtual agents are expected

to converge to the formation reference ultimately. Hence, it is reasonable to use the

corresponding states of the virtual agents to act as the reference for the low-level con-

trollers. The high level states x̄i, v̄i and ūi will act as the position reference, velocity

reference and acceleration reference for low-level systems, respectively.
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Define δxi and δvi to be the low-level tracking errors as follows, respectively:δxi = xi − x̄i, i ∈ [1, N]

δvi = vi − v̄i, i ∈ [N1 + 1, N]
(7.59)

Then the tracking error dynamics for first-order agents is written as

δ̇xi = giui + wi − v̄i, i ∈ [1, N1]

Similarly, the tracking error dynamics for second-order agents is given asδ̇xi = δvi

δ̇vi = giui + wi − ūi, i ∈ [N1 + 1, N]

With the NN approximation (7.52), the neural-based controller for the ith first-order

agent is expressed as

ui = g−1
i (−ŵi + v̄i − kiδxi) (7.60)

A fully error-related weight update law is chosen as follows:

˙̂W i = η1φiδ
T
xi − η2∥δxi∥Ŵi (7.61)

Now the result of the low-level controller design for first-order agents is summarised

as the following theorem:

Theorem 7.7. Consider the ith first-order agent (7.49) under Assumptions 7.4 and 7.5, by

implementing the neural-based controller designs (7.60) and the weight tuning law (7.61), the

low-level position tracking error δxi and the weight estimation error W̃i are semi-globally UUB

if the compact set conditions for two-layer NNs are met for each first-order agent when t ≥ t0.

Proof. Consider the following Lyapunov candidate for the ith first-order agent:

V6,4 =
1
2

δT
xiδxi +

1
2η1

tr{W̃T
i W̃i}

Then the time derivative of V6,4 is obtained as

V̇6,4 = δT
xi δ̇xi −

1
η1

tr{W̃T
i Ŵi}

= δT
xi(W̃

T
i φi + ϵi − kiδxi)− tr{W̃T

i (φiδ
T
xi − η2∥δxi∥Ŵi/η1)}

≤ −ki∥δxi∥2 + ϵM∥δxi∥ − η2∥δxi∥(∥W̃i∥2
F − ∥W̃i∥FWM)/η1

(7.62)
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In the perspective of δxi, (7.62) is rewritten as

V̇6,4 ≤ −∥δxi∥(ki∥δxi∥ − ϵM + η2(∥W̃i∥2
F −WM/2)2/η1 − η2W2

M/(4η1))

≤ −∥δxi∥(ki∥δxi∥ − ϵM − η2W2
M/(4η1))

which indicates that V̇6,4 will remain negative when the following inequality is satis-

fied:

∥δxi∥ >
4η1ϵM + η2W2

M
4kiη1

By Lemma 2.1, δxi is proved to be semi-globally UUB within the following neighbour-

hood:

Ω f
δ =

{
δxi

∣∣∣∣∥δxi∥ ≤
4η1ϵM + η2W2

M
4kiη1

}

According to the extension of Lyapunov stability (Kim et al. 1997), ∥W̃i∥ is also semi-

globally UUB, which completes the proof.

Regarding second-order agents, the following low-level sliding surface is designed

based on the low-level tracking errors δxi and δvi:

si = δvi + λiδxi (7.63)

where λi is a positive constant.

The time derivative of si is given as

ṡi = giui + wi − ūi + λiδvi

Accordingly, the low-level neural-based formation controller design is obtained as fol-

lows:

ui = g−1
i (−ŵi + ūi − λiδvi − δxi − kisi) (7.64)

where the update law of the neural weight is chosen as

˙̂W i = η1φisT
i − η2∥si∥Ŵi (7.65)

Now the result of the low-level controller design for second-order agents is given as

the following theorem:
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Theorem 7.8. Consider the ith second-order agent (7.50) under Assumptions 7.4 and 7.5, by

implementing the neural-based controller designs (7.64) and the weight tuning law (7.65), the

low-level position tracking error δxi, the sliding variable si and the weight estimation error W̃i

are guaranteed to be semi-globally UUB if the compact set conditions for two-layer NNs are

met when t ≥ t0.

Proof. Consider the following Lyapunov candidate for the ith second-order agent:

V6,5 =
1
2

sT
i si +

1
2

δT
xiδxi +

1
2η1

tr{W̃T
i W̃i}

Similar to the proof of Theorem 7.7, the time derivative of V6,5 is obtained as

V̇6,5 ≤ −λi∥δxi∥2 − ki∥si∥2 + ϵM∥si∥ − η2∥si∥(∥W̃i∥2
F − ∥W̃i∥FWM)/η1

which further leads to the semi-globally UUB neighbourhood of ∥si∥ as follows:

Ωs
s =

{
si

∣∣∣∣∥si∥ ≤
4η1ϵM + η2W2

M
4kiη1

}

In the perspective of δxi, the alternative form of V̇6,5 is given as

V̇6,5 ≤ −λi∥δxi∥2 + ∥si∥(ϵM + η2W2
M/(4η1))

Then we have the bounded region of δxi as follows:

Ωs
δ =

{
δxi

∣∣∣∣∥δxi∥ ≤
4η1ϵM + η2W2

M
4
√

kiλiη1

}

By Lemma 2.1 and the Lyapunov stability extension mentioned (Kim et al. 1997), ∥δxi∥,
∥si∥ and ∥W̃i∥ are all semi-globally UUB, which completes the proof.

7.3.6 Overall system stability analysis for mixed-order vehicle clusters

If we sum up Theorems 7.6-7.8, we obtain an overall hierarchical system design as

shown in Figure 7.12.

With the results obtained in Theorems 7.6-7.8, we have the conclusion that both the

high-level system and the low-level system are stabilised for an agent with arbitrary

dynamics order. Now, we are ready to summarise our result of this section.
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Figure 7.12. Hierarchical formation control scheme for mixed-order MASs.

Theorem 7.9. Consider a mixed-order MAS with both first-order agents (7.49) and second-

order agents (7.50), where Assumptions 7.4 and 7.5 hold, by the high-level formation controller

(7.58), the reference tracking error norm ∥xi − xdi∥ is semi-globally UUB for the ith agent if

1. The low-level controller (7.60) is employed for first-order agents

2. The low-level controller (7.64) is applied for second-order agents

3. The compact set conditions of NNs hold when t ≥ t0.

Proof. By Theorem 7.6, we have the following equation:

lim
t→∞
∥δ̄xi(t)∥ = lim

t→∞
∥x̄i(t)− xdi(t)∥ = 0 (7.66)

meaning that limt→∞ x̄i(t) = xdi(t).

By Theorem 7.7, we have the following equation for first-order agents:

lim
t→∞
∥δxi(t)∥ = lim

t→∞
∥xi(t)− x̄i(t)∥ ≤

4η1ϵM + η2W2
M

4kiη1
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With (7.66), it is guaranteed that

lim
t→∞
∥xi(t)− xdi(t)∥ ≤

4η1ϵM + η2W2
M

4kiη1

Similarly, the following result is obtained for second-order agents:

lim
t→∞
∥xi(t)− xdi(t)∥ ≤

4η1ϵM + η2W2
M

4
√

kiλiη1

By Lemma 2.1, we have that the reference tracking error norm ∥xi − xdi∥ is semi-

globally UUB for both first-order agents and second-order agents, which completes

the proof.

7.3.7 Simulation results and discussion

To illustrate the effectiveness of our proposed hierarchical formation control design, a

numerical simulation based on a multi-ODR system is conducted.

The rover cluster contains four ODRs, where two are set to perform motor speed con-

trol (first-order agents) and the others are set to perform motor force control (second-

order agents). As mentioned in Chapter 2, the dynamics of the ith first-order ODR is

set as

ẋi = Tf (θ1, Ri)ui + wi, i = 1, 2

where xi = [px
i , py

i , θi]
T denotes the position information of the rover, ui = [v1

i , v2
i , v3

i ]
T

is the speed vector of three motors, and Ri is the radius of the ith robot.

The dynamics of the ith second-order ODR is given asẋi = vi

v̇i = MiTs(θi, Ri)ui + wi, i = 3, 4

where vi is the speed information of the ith rover, Mi = diag{1/mi, 1/mi, 1/Ii}, mi is

the mass of the robot, Ii is the inertia of the robot, and ui = [F1
i , F2

i , F3
i ]

T is the force

vector of the three motors.

The parameters of the ODRs are chosen as R1 = 0.25m, R2 = 0.22m, R3 = 0.24m,

R4 = 0.28m, m3 = 3.2kg, m4 = 3.5kg, I3 = 0.12kg ·m2 and I4 = 0.15kg ·m2. The
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formation reference for the ith ODR is chosen as follows:

xdi =

[
3
2

cos
(

t
5
+

iπ
2

)
+

t
10

,
3
2

sin
(

t
5
+

iπ
2

)
+ 1, 0

]T
(7.67)

The nonlinear uncertain term wi is chosen as

wi = [0.1sin(0.2t) + 0.15tanh(x), 0.15sin(0.1t)− 0.1e−|pyi|−2, 0.05cos(θ1)

− 0.1sin(0.2t)]T, i = 1, 2

wi = [0.5sin(0.4t) + tanh(x), 0.3sin(0.5t)− 2e−|pyi|−1, 0.2cos(θ1) + sin(0.2t)]T, i = 3, 4

By Theorem 7.6, the parameters in (7.58) are chosen as c̄i = λ̄i = 2. By Theorem 7.7 and

Theorem 7.8, the parameter values in (7.60) and (7.64) are set as ki = λi = 2. The weight

tuning parameters in (7.61) and (7.65) are set as η1 = 15 and η2 = 0.2 simultaneously.

The communication topology is chosen as the strongly connected directed graph that

is shown in Figure 7.13.

1

2

3

4

Figure 7.13. Communication topology (Mixed-order multi-ODR cluster).

The initial status of the virtual system and the actual system is set as

x̄1(t0) = x1(t0) = [0.8, 2.3, π/6]T, x̄2(t0) = x2(t0) = [−1, 0.5,−π/2]T

x̄3(t0) = x3(t0) = [−0.6,−1.2, π/3]T, x̄4(t0) = x4(t0) = [2.2, 1.5,−π/4]T

To validate the high-level controller design (7.58), the values of ∥s̄i∥ and ∥δ̄xi∥ are given

in Figure 7.14, where the error-related vector norms are all UUB (∥s̄i∥ ≤ 6× 10−3 and

∥δ̄xi∥ ≤ 4× 10−2), which validates Theorem 7.6.

Regarding the low-level designs, the norms of δxi and si are given in Figure 7.15, where

the boundedness of the vectors (∥δxi∥ ≤ 2× 10−3 and ∥si∥ ≤ 4× 10−3) are illustrated to

further prove the effectiveness of the low-level control schemes mentioned in Theorem

7.7 and Theorem 7.8.
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Figure 7.14. Performance of the high-level controller design (Mixed-order multi-ODR clus-

ter).

To illustrate that the NN approximation scheme is valid, the norm of the estimation

error of each ODR is recorded in Figure 7.16, where we have ∥w̃i∥ ≤ 10−2.

In terms of the overall system performance, the propagation of ∥δ̄xi + δxi∥ is given in

Figure 7.17, where we have ∥δxi + δ̄xi∥ ≤ 6× 10−3. Hence, we also have ∥xi − xdi∥ ≤
6× 10−3, which proves the semi-global boundedness of each ODR’s tracking error, the

achievement of the main goal in (7.51), and the validity of Theorem 7.9.

According to the formation reference given in (7.67), each ODR is observed to rotate

around the centre that travels in a linear trajectory so that the entire system composites

a circular formation (see the dash-dotted circle), which is illustrated in Figure 7.18.

7.4 Chapter summary

In this chapter, the hierarchical formation control design is discussed for both unified-

order MASs and mixed-order MASs. Regarding the design for unified-order MASs, a
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Figure 7.15. Performance of the low-level controller design (Mixed-order multi-ODR clus-

ter).

Figure 7.16. Performance of the NN-based estimation in the mixed-order vehicle cluster.
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Figure 7.17. Overall tracking error of the mixed-order multi-ODR cluster.

Figure 7.18. System formation status of mixed-order multi-ODR cluster.
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neural-based sliding mode observer is proposed for both the position loop and the at-

titude loop of individual UAVs. To reduce the aggressive behaviours of the multi-UAV

cluster, a saturation phenomenon is employed in the high-level formation controller

design. An observer-based low-level formation controller is further constructed to en-

sure the robustness of the formation tracking process.

After expanding the formation control problem to mixed-order MASs, the dynamics

mismatch issue is analysed. The cooperatively tuned NNs were then implemented to

ensure the boundedness of the reference tracking errors of the MAS. The validity of

both designs are both guaranteed by the Lyapunov stability theory, and further illus-

trated by simulations and corresponding comparisons.

In the next chapter, the conclusions of the thesis are drawn to illustrate the contribu-

tions and achievements included in the presented work.
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Conclusions and Future
Work

THE research work presented in this thesis concentrates on the robust

formation control issue of nonlinear multi-agent systems. The em-

ployed methods include sliding mode control, neural network adaptive

control and observer-based control. Six general formation control scenar-

ios are investigated and robust controllers are proposed to handle issues

such as system uncertainty, actuator saturation, collision avoidance and dy-

namics mismatch. All methods have been validated by both the Lyapunov

stability theory and simulation. In particular, the designs on first-order sys-

tems are also verified by physical experiments regarding a robot cluster.

This chapter concludes this thesis and provides insights for the gaps that

are worthy of investigation in the future.
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8.1 Conclusions

8.1.1 Summary of technical chapters

This thesis discusses the development of the robust formation control schemes for

nonlinear agent clusters. In Chapter 2, two dynamic sliding mode formation con-

trol schemes are proposed to offer unique perspectives in the control design, which

offers the method of designing the changing rate of the control input rather than its

actual value. Both Chebyshev neural networks and finite-time disturbance observers

are proved to be helpful for maintaining the robustness of the dynamic sliding mode

control scheme.

To further ensure the safety of the multi-agent systems, static obstacles are considered

in Chapter 3, where the artificial potential fields are introduced to generate repulsive

force that can drive the agents away from the obstacles. The effect of the distributed

information sharing is also analysed to explain why some agents choose to move away

from their desired trajectories while the other agents are trying to avoid the obstacles.

To attenuate the aforementioned passive correcting behaviour, a reference correction

algorithm is developed to modify the reference of each agent when it is unreachable.

In practice, most of the real-time networked multi-agent systems can only carry a lim-

ited amount of sensing equipment, which further leads to the issue that every agent can

only access a limited amount of information about itself and the other agents around.

The restriction on the information availability leads to two issues to solve in Chapter

4, which are the individual adaptive state estimation issue and the collision avoid-

ance among agents. The first gap is filled by constructing a neural-based observer

structure that could estimate the unknown agent velocity and disturbances simultane-

ously. Regarding the collision avoidance problem, the previous idea of building artifi-

cial potential fields between the agents that have direct communication is inadequate

because those that are not connected in the static communication topology. Therefore,

a distance-related time-varying communication topology (inspired by the Bluetooth

technique) is introduced to ensure that each agent can exchange information with the

ones that are nearby when necessary.

To enhance the practicality of the formation control scheme, the actuator saturation

phenomenon is then considered for a cluster of nonlinear first-order agents in Chap-

ter 5. A fully-error-related cooperative tuning method is first presented to avoid the
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divergence issue of the neural weight. To achieve finite-time neural-based estimation

in a system with saturated control input, three-layer neural networks are then em-

bedded into the observer structure. For the agents whose control gain matrix is not

diagonal, the combined effect of input saturation and input coupling is analysed. A

control input distribution function is then proposed to attenuate the state fluctuation

lead by the reverse effect. To increase the practicality of the formation control scheme,

the neural network structure is replaced by an adaptive term to obtain an observer

with global stability. An adaptive auxiliary variable is then employed to compensate

for the state oscillation caused by the reverse effect. To validate the effectiveness of the

observer-based compensated formation control scheme, both numerical simulations

and physical experiments based on a multi-robot cluster are conducted.

The investigation of the reverse effect is then expended to a cluster of nonlinear second-

order agents in Chapter 6. A new structure that integrates the sliding mode control

technique and the neural-based approximation approach is first developed to reduce

the convergence time of the estimation error and increase the estimation precision.

Finite-time sliding surface is then introduced to ensure that the estimation error is

bounded within finite time. A nominal sliding mode formation control scheme is first

developed on the basis of the auxiliary compensation approach mentioned in Chapter

5. A control input regulation algorithm is then developed by applying the linear pro-

gramming approach to optimise the nominal control input to avoid the circumstances

where the control input triggers the reverse effect.

Although the previous method of considering the communication in the motion con-

trol layer is commonly seen, it does introduce complexity and trouble into the stabil-

ity analysis. In Chapter 7, a new hierarchical formation control structure is proposed

for both unified-order multi-agent systems with complex motion dynamics (such as

UAVs) and the ones that contain agents with different dynamics orders. A virtual

layer is constructed to include the distributed information sharing and further takes

the role of a cooperative path planner. The output of the virtual layer is then used as

the reference signals for the motion control layer. Such structure is found to achieve

a separation of concerns by dividing the inter-agent communication and the motion

control into two subsystems.
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8.1.2 Specific findings under particular technical topics

There are also some specific findings for several technical topics that are discussed

throughout this thesis.

Neural networks in multi-agent systems

Two tuning approaches are investigated and discussed in this thesis, which are the

cooperative tuning approach and the observer-based tuning method. Although the

adaptive tuning approach (see Chapter 2) is a unique method in the multi-agent struc-

ture, it does introduce complex coupling between the inter-agent communication and

the motion control process. Particularly when the actuators are restricted by the satu-

ration phenomenon, the cooperative weight tuning law has high chance of introducing

oscillations into the system because the saturated control input can not fully reflect the

output of the neural network. Hence, such design is not suitable for practical scenarios

(see Chapter 5).

On the other hand, the observer-based tuning approach is proved to be effective in both

ideal (see Chapter 4) and practical (see Chapters 5 and 6) examples because it has the

ability of working separately from the reference tracking process. Hence, employing

the neural-based observer structure is more suitable in both theory and practice.

Collision avoidance in multi-agent systems

For an environment that contains static convex obstacles, although the artificial poten-

tial fields can help build up safety zones around the obstacles to avoid collision, the

local minima issue still remains. The approach of reference adjusting is found to be

effective to both reduce the corresponding negative effect and attenuate the passive

corrections (see Chapter 3).

Apart from that, static communication topology is found to be insufficient for shar-

ing the essential information involved in the construction of artificial potential fields

among agents. One possible approach is to equip agents with range-based communi-

cation technique so that they are aware of the information of the agents that have the

potential of colliding into (see Chapter 4).

To sum up, the artificial potential field approach is found to be effective for both static

and dynamic obstacles if the following two preliminary conditions are met:
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1. Each obstacle is convex and could be included in circle or sphere with a fixed

radius.

2. The position of each obstacle is known before the construction or update of the

artificial potential field.

However, this method is not yet perfect. Its performance when the system is affected

by actuator saturation and the local minima issue are issues worthy of investigation,

which will be further summarised in the future work.

Actuator saturation in nonlinear systems

There are more issues to consider other than restricting the amplitudes of the control

input for nonlinear systems. To start with, any integration process that are included

in the position tracking procedure will lead to the famous windup phenomenon. As

mentioned in Chapter 6, the windup issue exists for both first-order systems with

integration-based control methods (such as the proportional-integral-derivative ap-

proach) and higher-order systems. One convenient way is to employ the auxiliary

compensation term.

Apart from the windup issue, the reverse effect also exists in systems with coupled

and saturated input. To attenuate the corresponding state oscillation, the methods of

control input shrinking (see Chapter 5) and linear-programming-based regulation (see

Chapter 6) are found to be effective. In comparison, the linear programming approach

is found to have better attenuating performance for the reverse effect by minimising

the difference between the control performance of the actual control input with the one

of the nominal control input.

8.2 Future work

Although plenty of research works have been conducted in the field of multi-agent

systems and formation control, there are still some possible gaps to work on in the

future, which includes the following aspects.
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Mixed-order multi-agent systems

Currently, most of the research works in the area of multi-agent system are based on

cluster of agents with unified orders (Fei et al. 2021a), which leaves gaps in the study for

mixed-order multi-agent systems (Li et al. 2022). As mentioned in Chapter 7, analysing

the stability of a mixed-order multi-agent system by using a cluster dynamics is not a

suitable choice because of the dynamics mismatch issue. Apart from the hierarchical

structure presented in Chapter 7, are there any other techniques to solve this issue?

Besides, how to employ the event trigger technique to ease the burden in computa-

tion and communication in a mixed-order multi-agent structure is also a considerable

challenge.

Real-time collision avoidance in practice

Although the collision avoidance issue is discussed in both this thesis (see Chapters 3

and 4) and many research articles (Lee et al. 2021, Sharma et al. 2021), most of the results

are obtained on the basis of ideal actuators that operate without actuator saturation.

Besides, most works are carried out in either path planning (Lee et al. 2021) or motion

control (Sharma et al. 2021). Therefore, will the system perform better when collision

avoidance algorithms are added in both the path planning layer and the motion control

layer?

The local minima issue has remain an open issue for the artificial potential field con-

struction. In practice, not all obstacles are convex, which may trap the robots that

enters. Hence, how to build up a memory-based guidance law for the robots to lead

themselves out of the local minima issue is a problem worthy of discussion.

Distributed multi-agent learning and optimal control

Machine learning is one popular topic in the recent decade. Although this technique

can help achieve the optimal results, it does require massive calculation power be-

cause of the many essential iterations to minimise the costs or maximise the rewards.

Hence, if an arbitrary task is given for a cluster of intelligent agents, how can they find

out the optimal and consensus solution within a short period of time is a challenge

to overcome. Also, should the agents just share the raw training data or the trained

parameter values?
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