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is available at the end of the filling these missing data gaps exist and these can be highly accurate, but any inter-
article polation method results are uncertain and these methods do not provide measures of

this uncertainty. We present a new two-step spatial stochastic random forest (SS-RF)
method that uses random forest algorithms to construct Beta distributions for inter-
polating missing data. This method has comparable performance with the traditional
remote sensing compositing method, and additionally provides a probability for

each interpolated data point. Our results show that the SS-RF method can accurately
interpolate missing data and quantify uncertainty and its applicability to the challenge
of monitoring forest using free and incomplete satellite imagery data. We propose that
there is scope for our SS-RF method to be applied to other big data problems where a
measurement of uncertainty is needed in addition to estimates.
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Introduction

Forest management is a global priority identified by the United Nations and World
Bank Sustainable Development Goals (SDGs)[1] and is important in most countries in
the world. Satellite images are a freely available and frequently updated data source for
forest monitoring. Forest presence can be identified in satellite images for large scale
areas by calculating vegetation indices from the spectral bands, which are the colours
and near-infrared information captured in the images[2]. Large scale forest cover maps
are a transparent tool for identifying forest growth, forest clearing and degradation, and
quantifying environmental issues associated with these changes in forest cover such as
biodiversity, carbon stocks and social welfare[3]. Examples of these forest cover maps
derived from satellite images at global and regional scales include[3-5] and[6]. The

benefits of using satellite images to construct large scale forest cover maps have been
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demonstrated for decades in the remote sensing field and they are often the only prac-
tical way to monitor forests at regional and global scales[7]. However, a key challenge
with using satellite images for forest mapping is missing data due to cloud cover. This is
particularly a problem in tropical regions because of the climate driven frequent cloud
cover[8]. Unfortunately, these tropical regions of the world with the most persistent
cloud cover are where large scale and frequent monitoring is most needed[9] because
they are home to large, ecologically important forests, and these forests are continu-
ally impacted by seasonal effects and human intervention such as land clearing[10]. The
missing data problem occurs for all spectral satellites, including Landsat 7 and Landsat
8, and for newer satellites such as Sentinel 2[11]. Radar satellites exist which can capture
data even beneath clouds, but these images are noisy and do not capture spectral infor-
mation needed to derive vegetation indices[9], such as Normalised Differenced Vegeta-
tion Index (NDVI) and Enhanced Vegetation Index (EVI), which are commonly used for
crop and forest detection and monitoring. Regardless of technology improvements to
new satellites, spectral satellite images which have this cloud cover missing data prob-
lem are currently still the best available free data for monitoring forests at large scales.
This means we continue to need methods for dealing with the cloud cover missing data
problem. In the remote sensing field, the traditional approach to this issue is interpola-
tion via compositing, which uses the most recently observed values of the pixels from
previous time points to fill the missing gaps in the current image[12]. This approach can
be successful when there is minimal change in the land cover between images and when
the missing pixels have been observed very recently. A limitation of the compositing
approach is that it does not account for uncertainty. Any interpolation of data will have
some uncertainty, and we need ways to quantify this to obtain more statistically com-
plete estimates and inferences. In this paper we present a new stochastic spatial random
forest (SS-RF) method that addresses both of the gaps identified above and builds on the
idea of compositing by using recently observed values of the missing data to produce an
interpolated land cover classification. We cast this approach in a Bayesian framework to
provide posterior probabilistic updates of the required classifications. This has a novel
additional benefit of providing a measure of uncertainty attached to the interpolated val-
ues. In addition to compositing, there are statistical approaches to interpolating miss-
ing data in satellite images including canonical spatial kriging-based approaches[13,
14] spectral-based and temporal-based models, and hybrid combinations of these[15].
In previous work[16] we developed a machine learning approach to spatial interpola-
tion which is fast and accurate. Machine learning methods are popular and useful for
remote sensing applications including for identifying clouds and cloud shadow as a pre-
processing step to interpolation[11, 17], and monitoring changes in forest cover[18].
Machine learning algorithms are also popular for important environmental monitoring
beyond remote sensing applications including identifying deforestation[19] and land-
slide susceptibility[20].

There are many types of machine learning methods in the literature. We chose a deci-
sion tree method, random forest, for our study model because these models are flex-
ible, non-parametric, scalable to big data problems[21], and have been popular in the
remote sensing field for over two decades due to their high accuracy in performing satel-
lite image classification[22—24].
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In our machine learning approach to geostatistical interpolation we used decision tree
methods, spatial information and observed sections of an image to train methods and
interpolate missing data in the same image at the same point in time. That is, we trained
and tested a random forest models on the spectral information that was captured by the
satellite, then used these models to interpolate the values of pixels which were missing
due to simulated clouds. Importantly, we utilised only latitude and longitude as covari-
ates in the random forest model. This is the minimal information available for all images
even when spectral data are missing. We demonstrated that this approach was surpris-
ingly accurate[16]. However, like traditional compositing, all these statistical approaches
to spatially interpolating missing data also do not measure the uncertainty of the inter-
polated values they produce.

Satellite images can be considered as space-time data[25] because they provide
repeated measures, in terms of spectral information, as the same spatial locations at
multiple points in time. Our SS-RF method uses images of the same area from recent
points in time that have no or minimal missing data to provide a probabilistic statistical
solution for filling data gaps in images with most or all of the spectral data missing. The
outputs of our method are a probability and an interpolated value. As an overview, our
method fits a random forest with spatial information[16] to observed satellite images of
the same area captured on previous, recent dates and constructs a Beta distribution to
produce both a land cover classification and a probability of the classification of interest.
The values from the Beta distribution can be used to interpolate missing data in images
and provide a measurement of uncertainty of the interpolated values. We demonstrate
our new SS-RF method in a case study interpolating forest presence in regions of satel-
lite images where spectral data are missing due to simulated cloud cover. We produce
spatial plots of the probabilities produced by the SS-RF, which identify regions of high
and low uncertainty about the presence of forest cover, in addition to classifications and
an associated probability for each observation. The paper is structured as follows. In
“Materials and methods” section we introduce the case study data, steps taken to calcu-
late vegetation indices from the satellite images, and simulate clouds. We then describe
the SS-RF method in detail. In “Results” section we present results of our SS-RF method
and compare these with results from compositing, the traditional remote sensing inter-
polation approach. This section is followed by a discussion of the results, including com-
parisons between the SS-RF method and compositing, benefits and limitations of the
SS-RF approach and future work in “Discussion” section. Finally, we summarise our
method and results in “Conclusion” section.

Materials and methods

Study area

The case study area is in Queensland, Australia, approximately 100 km North West of
the Injune township. The 37 x 60 km landscape in this region is comprised of forest,
pasture and agricultural land [26] (Fig. 1). For this site we have a time series of Land-
sat 8 images, captured at 16 day intervals between 24 July 2017 to 27 July 2018. For the
images that are not missing due to cloud cover we can calculate our variable of interest
which is Normalised Differenced Vegetation Index (NDVI). This is described in the tar-
get response subsection. As a vegetation index, NDVI can theoretically range from — 1
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Fig. 1 Location of the Injune case study site in Queensland, Australia
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Fig. 2 NDVI of the same area within Landsat 8 images at pixel scale for approximately 1 year. The NDVI
values are shown by the scale from light green around 0 to darker green as NDVI approaches 1. White regions
indicate the data are missing due to cloud cover

to 1, with values closer to 1 indicating forest and vegetation and values below 0 gener-
ally indicating areas without vegetation including bare earth, water or snow. In the case
study data NDVI is generally within the range from 0 to 1 and missing data are NA.
There are a number of images that weren’t provided in the time series, which leaves 22
images which can be processed, and of these some regions in the images are missing due
to cloud, as shown by the white areas in Fig. 2.

In Fig. 2 the darker green regions indicate forest land cover and lighter green indicate
not forest land cover. White regions indicate the data are missing due to cloud cover or
other atmospheric effects. In some cases, such as 31/12/2017 where the entire plot is
white, the entire area in the image is missing due to cloud cover.

Calculating response variables: vegetation index and binary land cover

The variable we use to identify forest presence and absence is Normalised Differenced
Vegetation Index (NDVI). This variable is a measure of greenness which can be used to
identify the presence and different types of vegetation in the landscape[27]. We calculate
NDVI based on Landsat 8 satellite images using the remote sensing formula

(rNIR — TRED)
(rNIR + TRED)

NDVI =
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where r is the ratio of reflectance in the two spectral bands recording the colour red
and near infrared (NIR) information in the satellite image[28]. We identify forest using
NDVI as the measure of vegetation because it is widely used and can be calculated easily
from a freely available satellite image. Based on a cut-off value of 0 < 0.4 not forest and
0.4 > 1 forest[27] we produce a binary land cover classification identifying pixels as for-
est or not forest.

Spatial scales

We perform analysis at two spatial scales. The first is at the original satellite image scale
which is pixel level. A Landsat 8 pixel is approximately 30 m x 30 m[26]. We also per-
form analysis at a more aggregated ‘neighbourhood’ scale. The intention is to explore
whether the performance of the SS-RF method is impacted by data at different spatial
scales because spectral satellite images are available at different resolutions e.g. 30 m for
Landsat and 250 m for MODIS satellites[29]. To create neighbourhoods we aggregate
pixels within the same area and assign the neighbourhoods a value of the mean NDVI
value of all the pixels in that neighbourhood. We specify each neighbourhood to have
33 x 33 pixels as per Colin et al (2018)[30] using the Raster package[31] in R[32]. An
example of NDVI at neighbourhood scale is shown in Fig. 3. Aggregating the NDVI data
to neighbourhood scale produces a smoother image than data at pixel scale (Fig. 3). We
use the SS-RF method on both spatial scales to predict the probability of pixel land cover
being forest, and the probability of the neighbourhood land cover being forest.

Image selection and simulating missing data

In the SS-RF method we interpolate simulated missing data in an image by using data
from images of the same area at two recent points in time when the data were observed.
We selected four images which were observed in the time series, which we refer to
ast—1, ¢t t+1and £+ 2. In order to assess the performance of the SS-RF method
we selected images with no missing data and then simulated missing data using our
approach we describe in this section. We selected only observed images (with no miss-
ing data) because in order to assess the performance of the SS-RF method at interpolat-
ing missing data, we need to know the real values of the pixels and neighbourhoods.
Based on these requirements, the time points chosen are:

Landsat NDVI subset 1
Injune forest cover 2017-2018
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Fig. 3 NDVI of the same area within Landsat 8 images at neighbourhood scale for approximately 1 year. The
NDVI values are shown by the scale from light green around 0 to darker green as NDVI approaches 1. White
regions indicate the data are missing due to cloud cover
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o t+2:10 September 2017
+ t 4 1:25 August 2017

+ £ 9 August 2017

o t—1:24July 2017

For the SS-RF method we use images at t — 1 and t to interpolate data in image ¢ + 1,
and use images at ¢ and ¢ + 1 to interpolate data in image ¢ + 2. For the composit-
ing method, we use only the most recent observed image to interpolate the missing
data. We use the values of image ¢ to interpolate ¢ + 1 and values of ¢ + 1 to interpo-
late £ 4+ 2. We simulated clouds to mimic how missing data appears in satellite images
and retained the true values to validate the results of the SS-RF and compositing
methods. In order to produce our own missing data, we simulated missing data in
cloud patterns on the images ¢ + 1 and ¢ + 2. We simulated the missing data patterns
independently of the NDVI based forest presence data using the process described
in[16] based on[33]. We applied the SS-RF method to the same pixels and neighbour-
hoods in each image, identified by their geographical location (longitude and lati-
tude), to ensure we were examining the same observations over time and could make
fair assessments of model performance when interpolating the values at future time
pointst + 1land ¢ + 2.

Figures 4 and 5 show the original NDVI images as a binary land cover plot of the
areas with forest indicated by green and not forest indicated by grey. The land cover
data in Fig. 4 are at pixel scale which is the original, finer resolution. The differences
in forest cover between areas are more distinct at this spatial scale (Fig. 5).

At both pixel and neighbourhood scales there is a difference in the composition of
land cover between areas 1 and 2; area 1 has more forest cover than area 2 which is
predominantly not forest at the image dates chosen. We selected these images deliber-
ately to examine the performance of the model on different land cover compositions;

Simulated missing data: pixel scale

Area 1

Image date: 25 August 2017 Image date: 10 September 2017
Fig. 4 Binary plots of NDVI for two smaller areas within the Landsat 8 images at pixel scale. White indicates
simulated cloud, green indicates forest and grey indicates not forest land cover. The image dated 25 August
2017 is attimet 4+ Tand the image dated 10 September 2017 is time t + 2
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Simulated missing data: Neighbourhood scale
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Image date: 25 August 2017 Image date: 10 September 2017
Fig.5 Binary plots of NDVI for two smaller areas within the Landsat 8 images at neighbourhood scale. White
indicates simulated cloud, green indicates forest and grey indicates not forest land cover

one image which is predominantly one land cover class (area 2) and one which is a
more heterogeneous combination of the two land cover classes (area 1).

General SS-RF method

Our SS-RF method uses a Bayesian recursive estimation scheme based on Beta distri-
butions to represent the probability of a pixel or neighbourhood in an image belong-
ing to one of two land cover classifications. We use the Beta distribution because in our
case study we are interested in a binary variable; forest or not forest land cover. Let 1)
denote the image at time ¢ and Pl-(t) denote the probability of forest in the jth region of
this image. Assume that P;t) follows a Beta distribution,

(¢ t t
P; ) ~Beta<al.(),ﬂi()) (1)

The SS-RF scheme updates the hyper-parameters ozl.(t) and ,Bi(t) which can be expressed as

(6)?

p,
o) = P (1-") @
V.
® pi ®?
Bi Zﬁ(l_l?i ) 3)

where v/ is the corresponding variance of the Beta distribution. The SS-RF scheme pro-
ceeds by taking the image I at time ¢ as a prior for the image /1 at time ¢ + 1. Hence
by Bayes’ theorem[34], the posterior probability of forest in the ith region of image I*+1)
is given by

p?pY o Beta (ozi(t), ,Bl.(t)) x Beta (a}t_l), ,Bi(t_l)) (4)

L
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with posterior mean given by

-1
al.t + al.t

of +af "+ BB

Ep) = 5)
In the SS-RF scheme, the values of p at times ¢ and ¢ — 1 are obtained using a random
forest (RF) algorithm. The RF algorithm is a machine learning method that classifies
observations based on the average of many shallow decision trees, each of which is con-
structed using a random sample of the regions in the image[21]. This so-called bagging
approach, combined with the use of training and test sets to respectively train each deci-
sion tree and evaluate its performance, produces highly accurate classifications and pre-
dictions[35]. The values of v are specified based on the variance observed in the testing
and training samples across the images.

In our case study we draw values of each observation from the beta distribution and
treat these as the values of the observations that are missing due to cloud. The sequential
steps in our algorithm are outlined in Appendix A.

SS-RF method applied to case study

In this case study we calculated the variance in NDVI observed in the random sample
used for testing and training across the images. Based on the results we set the value for
variance v in Eq. (1) to 0.01 for the image at time t and allowed a larger value of 0.02 for
the older image ¢ — 1 (see Appendix C). We predicted the probability of the land cover
class being forest at both pixel and neighbourhood spatial scales as a function of latitude
and longitude of the neighbourhoods per[16]. We take a sub sample of 100,000 observa-
tions from both the images at previous time points, ¢ and ¢ — 1. We split these into train-
ing samples of 80,000 and testing samples of 20,000, which represents an 80/20 per cent
split. We train the random forests on the training samples, and produce probabilities of
land cover being forest for the testing sets. We then apply the trained models to an addi-
tional random subset of the data of 200,000 observations to produce probabilities of land
cover being forest. We then take these probabilities for the previous images, t and ¢ — 1,
and use these in Eq. (3) to generate the Beta distribution, E (pgt)). The expected values
of this Beta distribution then gives our interpolated probabilities of forest cover at £ + 1
and uncertainty of these posterior predictions which are missing due to simulated cloud
cover.

That is, we infer the probability of observations at £ 4 1 as being the probability of the
observations being forest at time t, given the probability of being forest at time £ — 1.
These posterior probabilities, inform the decision rule which determines the class k of
neighbourhood i at the future time point ¢ 4 1 as forest or not forest.

For each sample of data we obtained a probability of each observation being forest and
a binary classification as forest or not forest where the former is based on the expec-
tation of the posterior probability distribution and the latter is based on whether this
expected value exceeds the threshold of 0.5. In our case study where we have the true
observed land cover classes that are underneath the simulated clouds, we compare the
plotted posterior probability of forest with the true land cover classes to evaluate how
well the model can interpolate the land cover. We assessed the accuracy of the SS-RF



Holloway-Brown et al. J Big Data (2020) 7:55 Page 9 of 23

method at interpolating missing data by producing confusion matrices using the true
class values of the testing data set and the predicted probabilities performed on the test-
ing data set converted to forest or not forest classifications.

To examine the performance of the SS-RF method compared to the standard remote
sensing solution to interpolating missing data, we performed compositing and com-
pared the results with the SS-RF outputs. Compositing interpolates missing image data
by taking the most recently observed value of each pixel and using this as the true value
for missing data. It is an absolute value and no uncertainty is included in this approach.
To perform compositing we used the most recently observed pixel values to interpolate
the simulated missing data at ¢ + 1 and ¢ + 2. Specifically, for £ + 2 we interpolated the
missing data with the values for the same pixels and neighbourhoods at £ + 1, and inter-
polated the data at ¢ + 1 using data from t. We produced confusion matrices of the true
class values of the testing data sets and the interpolated values produced by composit-
ing. We implemented the SS-RF and compositing methods for both the study areas 1
and 2 at pixel and neighbourhood scale, then compared the accuracy of the interpolation
results produced by the SS-RF method and compositing.

Results

We first present an example of the full outputs of the SS-RF method. The outputs take
the form of spatial plots of interpolated values identifying how probabilities of forest
are distributed, and plots of interpolated land cover classifications. Secondly, we pre-
sent the results of the SS-RF method and make comparisons between the two study
areas, and results for pixel and neighbourhood scale. Thirdly, we present a comparison
of the results of the SS-RF and compositing methods for area 1 and area 2 at pixel and
neighbourhood scale. Finally, we present the compositing results and make comparisons
between study areas and pixel and neighbourhood scale.

Visualising probabilities of forest land cover

The SS-RF method outputs can be used to effectively visualise the spatial distribution of
both discrete land cover classifications and posterior probabilities of forest in the area
of interest (Fig. 6). These visualisations provide maps of interpolated forest cover data,
and the uncertainty of those data values. In Fig. 6 the posterior probability of forest as
predicted by the SS-RF method is plotted by latitude and longitude. This can be viewed
as an uncertainty map of the interpolated forest cover data (Fig. 6). In Fig. 7 the true
class values observed before we simulated clouds for the sample and area are plotted by
latitude and longitude. By comparing true land cover classes (forest and not forest) with
the probabilities, we can see that the SS-RF method accurately identifies land cover for
this sample (Fig. 7). For example, in the top grid of Figure 7 between 147.3 and 147.4 on
the x axis, there is a region of predominantly grey observations which indicates that the
land cover is not forest. These same observations in Fig. 6 are predominantly dark blue,
which indicates low probability of forest. There is concordance between the posterior
probabilities and true class values of these points (Fig. 8). Fig. 8 shows the interpolated
land cover classifications; forest and not forest, that were produced for the same sample
of observations shown in Figs. 6, 7 using the SS-RF method. Figure 8 shows the prob-
abilities produced by the SS-RF method for sample 5 of area 1 on 10 September 2017
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Random forest probability values for sample 5 at t+2 10 September 2017 Area 1
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Fig. 6 Posterior probability of forest at pixel scale obtained from SS-RF method plotted by spatial
coordinates. The probability that each pixel has a land cover classification of forest is indicated by the
shading; darker blue indicates low probability the pixel is forest and light blue indicates high probability of
forest in that pixel. The pixels are in patches because they are part of a testing data sample that was taken at
random within the clouded area of the image

Original land cover class values for sample 5 at t+2 10 September 2017 Area 1

-25.84

True land cover class

W oo

Not_forest

Latitude

14.72 i 14‘73 ) 14‘74 i 14'75
Longitude
Fig. 7 True classifications of land cover plotted by spatial coordinates. Green indicates forest and grey

indicates not forest

plotted by latitude and longitude as a binary land cover classification. If the probability
of the observation being forest is equal to or greater than 0.50, the observation is plotted
as green and if the probability of the observation being forest is less than 0.5, it is plotted
as grey. We observe the same pattern as in Fig. 6, with predominantly grey ‘not forest’
land cover observed in the top grid between 147.3 and 147.4 longitude.

SS-RF method results

The accuracy of the SS-RF method for interpolating land cover data was higher for
area 2 than for area 1 across both resolutions and image dates (Fig. 9). Overall accu-
racy for area 2 was higher for neighbourhood scale data, ranging from 0.955 to 0.967.
Overall accuracy for pixel scale data was 0.929 to 0.939. For area 2 overall accuracy was
slightly higher for 10 September 2017 image than the 25 August 2017 image, for both
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Interpolated land cover class for crop 1 sample 5 at t+2 10 September 2017
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Fig. 8 Interpolated land cover class as a binary land cover classification; forest and not forest, plotted by
spatial coordinates. Green indicates forest and grey indicates not forest

Model performance of SS-RF predicting missing data by area, date and resolution
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Fig. 9 Model performance interpolating land cover class for two areas on 25 August 2017 and 10 September
2017 at pixel and neighbourhood scale. Neighbourhood resolution results are in blue and pixel resolution
results are in green

pixel and neighbourhood scale data (Fig. 9). The accuracy of the SS-RF for interpolating
land cover data for area 1 was more variable than for area 2. This is expected as area 1
had a more heterogeneous structure of the two land cover classes forest and not forest.
The SS-RF was most accurate predicting land cover at pixel scale, with accuracy ranging
from 0.749 to 0.831. Overall accuracy for neighbourhood scale data ranged from 0.408
to 0.656, with 0.408 appearing as an outlier in the results for the neighbourhood scale
data and in the overall results for area 1 (Fig. 9). The low accuracy for this sample of data
seems to be due to the balance of the classes in the training data set compared with the
values in the testing data set. There were 11,343 (56.7%) forest and 8657 (43.3%) not for-
est land cover observations in the training set and in the testing set that was predicted
there were 50,271 (63.8%) forest and 29,729 (37.2%) not forest land cover observations.
For the 25 August 2017 image model performance was most accurate for pixel scale data
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with overall accuracy ranging from 0.825 to 0.831. For the 10 September 2017 image,
model performance was most accurate for pixel scale data with overall accuracy ranging
from 0.749 to 0.760.

Comparison of SS-RF method and compositing interpolation

Importantly, we found the SS-RF method had accuracy comparable with the com-
positing method in most situations. In situations where the SS-RF method was not as
accurate it had the additional benefit of providing the probability of forest presence in
addition to a classification. The relative performance of the SS-RF method compared
with compositing varied across resolutions and the two areas.

For area 2, overall the performance of the SS-RF method and compositing was com-
parable at both neighbourhood and pixel scales, as shown in Fig. 10. For the 25 August
2017 image (t) overall accuracy of the SS-RF method across both resolutions ranged
from 0.929 to 0.960, which is comparable with 0.968 to 0.971 for compositing. For the 10
September 2017 image overall accuracy of the SS-RF method ranged from 0.932 to 0.967
and from 0.966 to 0.985 for compositing.

Figure 11 shows model performance for area 1, which is the more heterogeneous of
the two areas in terms of combination of forest and not forest land cover and less stable
in terms of change over time. For area 1 the compositing approach had higher overall
accuracy than the SS-RF method, at both neighbourhood and pixel scales. The differ-
ence in performance between the two methods was more obvious at neighbourhood
scale, with the SS-RF method producing less accurate results below 0.65 for both image
dates, and had particularly low accuracy for the 25 August 2017 image. At pixel scale this
difference in performance between methods was slightly reduced, with SS-RF overall
accuracy above 0.75 for both image dates, and above 0.82 for 25 August 2017.

Compositing results
Using a compositing approach, for 10 September 2017 (¢ + 2) missing data we interpo-
lated using the most recently observed data, which were from 25 August 2017 (¢ + 1).

Comparative model performance for area 2
Neighbourhood Pixel

0.8~

Method
SS-RF
Composite

Model accuracy
o
>

o
S

25/8/17 109117 25/8/17 10/9/17
Image date

Fig. 10 Comparative accuracy of the SS-RF and compositing approaches interpolating forest and not forest
land cover classifications for area 2. SS-RF results are shown by the blue violin plots and composite results are
shown by the green violin plots
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Comparative model performance for area 1
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Fig. 11 Comparative accuracy of the SS-RF and compositing approaches interpolating forest and not forest
land cover classifications for area 1. SS-RF results are shown by the blue violin plots and composite results are
shown by the green violin plots

Compositing performance predicting missing data by area, date and resolution
Areal Area2
1.0- e
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I .
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® o6 Neighbourhood
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©
(<}
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2518117 101917 258117 100917
Image date
Fig. 12 Compositing performance interpolating land cover class for two areas on 25 August 2017 and 10
September 2017. Neighbourhood scale results are shown by the blue violin plots and pixel scale results are
shown by the green violin plots

For the 25 August 2017 image (¢ + 1) we interpolated using the most recently observed
data from the previous satellite image on 9 August 2017 (t). The accuracy of compositing
for interpolating land cover data was slightly higher for area 2 across both resolutions
and image dates (Fig. 12). Overall accuracy for area 2 was higher for neighbourhood
scale data, ranging from 0.971 to 0.985. Overall accuracy for pixel scale data ranged from
0.966 to 0.970. Overall for both images, compositing produced highly accurate results

for missing data interpolation.

Discussion
Model accuracy
Our results show the SS-RF method performs extremely well, with between 93% and

97% overall accuracy, when the land cover data are relatively stable over time and
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landscape is more homogeneous. This was the case in area 2 for all four images from
times ¢ — 1 to t + 2. Accuracy at pixel scale was high for the heterogeneous land cover
data in the 25 August 2017 image (0.825% to 0.831%), however this accuracy was notice-
ably lower for neighbourhood scale data for the same image (0.408% to 0.534%).

The lower accuracy of the SS-RF method in some cases compared with compositing
is driven by changes in the land cover data between the dates of the input images and
the image being interpolated. To demonstrate this, we present an example of a sam-
ple of data from area 1. The input random forest algorithms that are used to produce
the probabilities of forest cover p which are part of the calculation of the parameters «
andf have extremely high accuracy for 9 August and 25 August 2017 between 0.98 and
0.99 (See Appendix D for full results for this sample). The lower accuracy of the SS-RF
model is therefore unlikely to be driven by this component of the method, but rather by
the following Beta distribution step that relies on observed land cover from two images
(Fig. 13). As shown in Fig. 13, the amounts of forest and not forest observations are rela-
tively consistent between the first two images on 9 August 2017 and 25 August 2017,
but changes noticeably to more forest cover between 25 August 2017 and 10 September
2017. It appears the lower accuracy of the SS-RF method for 10 September 2017 is based
on the fact the land cover observed in the previous two time points is not an accurate
representation of the land cover on 10 September 2017.

As another example of the influence of the observed land cover in previous images and
stability of the land cover over time we show a case where the SS-RF method had high
accuracy (Fig. 14).

In this case the SS-RF had comparable performance with compositing, driven by
the fact that the land cover across all three time points was primarily not forest con-
sistently across the three time points (Fig. 14). Based on these results, we conclude
the accuracy of the SS-RF method is influenced by the level of stability in land cover
over time, as it performed well when the land cover had minimal change between the
observed images and the image being interpolated, and performed poorly when there
was more variation in the land cover over time (Fig. 13). We note this limitation is

Land cover classes 09/08/2017 Land cover classes 25/08/2017 Land cover classes 10/09/2017

Class type

® Forest

Latitude
Latitude
Latitude

Not_forest

14 1476 ‘w"{'Z |4'¢'J '-"f'b |4.72 14'/4 N'/b

Longitude Longitude Longitude
Fig. 13 Plot of the true land cover classifications for the same sample of pixels in Area 1 across three time
points, plotted by their latitude and longitude. The points are jittered by 0.1 to make interpretation easier as
they are spatially close together. Forest is shown in green and not forest in grey
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Fig. 14 Plot of the true land cover classifications for the same sample of neighbourhoods in Area 2 across
three time points, plotted by their latitude and longitude. The points are jittered by 0.1 to make interpretation
easier as they are spatially close together. Forest is shown in green and not forest in grey

not confined to the SS-RF method, as the accuracy of compositing is also impacted by

instability in land cover over time.

SS-RF outputs and method benefits

Our key model output is the posterior Beta distribution which provides the prob-
ability of each individual observation belonging to a land cover class, in this case
forest or not forest. From this output we progressed to a binary classification; how-
ever, the probabilities in their original form could be used to inform forest monitor-
ing and provide a probability of forest presence. In addition to using the probabilities
to interpolate the missing data in images, they could also be used to identify areas
where the chance of forest presence has decreased or increased and inform decisions
about where it could be beneficial to invest in field data collection. The key bene-
fit of our SS-RF method is the ability to produce a measurement of uncertainty for
land cover classifications of missing data (pixels or larger geographic regions). These
probabilities of forest cover can be used to produce spatial maps of uncertainty to
augment the interpolated land cover classifications. Additional benefits of our SS-RF
method include its speed, taking only minutes to train and produce results for hun-
dreds of thousands of observations, ability to handle very large amounts of data effi-
ciently, more relaxed statistical assumptions[35] and ease of implementation in open
source software R[32]. The method can be easily updated with new data in a recursive
manner, which further increases the computational efficiency and scalability of the
approach and improves its utility. This is highly relevant to our application where it is
of interest to interpolate forest cover in satellite images, and do this for new images
over time to monitor forest. Beyond our satellite image case study, the SS-RF method
can be applied to other fields, such as biomedicine, which requires binary classifi-
cation of images and uncertainty measurements for these classifications[36]. Indeed,
our method could be applied to any big data classification problem where the user

Page 15 of 23
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wants to predict the probability of an event or feature of interest. Examples of where
this is useful include predicting the probability of disease in health, species presence
in ecology, and crops in agricultural monitoring.

Comparing SS-RF interpolation with compositing

In the case study, the SS-RF method performed inconsistently compared with compos-
iting across the two different areas. For area 2, the SS-RF method results were compa-
rable with those for compositing at both neighbourhood and pixel scale. For area 1 in
our case study the compositing results were more accurate than the SS-RF land cover
predictions at both neighbourhood and pixel scale. We used overall accuracy produced
from confusion matrices to compare the SS-RF method and compositing because it
is possible to produce a classification from both approaches, however it is not possi-
ble to produce a probability from compositing. This means that the benefit of having a
probability of forest cover, which is a key contribution of our method, was not directly
incorporated into the comparison metric. Since the compositing method assumes the
most recently observed values of the pixels in images, for example at £ — 1 and t, are the
same, it implicitly assumes a 100% probability of the pixels having the same land cover
classification at both points in time. This is unlikely to be true for all observations, and
compositing does not account for this uncertainty whereas the SS-RF method does. The
probabilities for the interpolated land cover produced by the SS-RF give this method an
advantage over compositing overall.

We were able to assess the accuracy of the compositing approach compared with our
SS-RF method in our case study because we simulated our clouds and missing data.
However, in real cases of missing data in images the true values of the data are unknown.
Although the SS-RF method did not consistently match the accuracy of the traditional
compositing approach, using the SS-RF method to interpolate missing data is beneficial
because it provides an uncertainty measurement in addition to a land cover classifica-
tion. It could be beneficial to use a combination of compositing and SS-RF probabili-
ties to interpolate missing data i.e. using the most recently observed values to create a
composite as a baseline and highlighting observations where the SS-RF and composite
values differ. For example, if according to the compositing approach an observation is
not forest and according to the SS-RF method the observation is forest. A limitation of
both compositing and the SS-RF method is reliance on stability in land cover over time.
When a significant change in land cover occurs between images, both compositing and
the SS-RF method will have lower accuracy interpolating the missing data. Where the
SS-RF method has an advantage in this scenario is the ability to quantify the uncertainty
of its land cover predictions, whereas compositing only provides a land cover prediction
based on the most recently observed data.

Our case study was an example where there were four consecutive images and we were
interpolating data at the next future time point e.g. £ + 1 using t and ¢ — 1. However,
in cases where you want to interpolate an intermediate step e.g. you have an observed
image at time t and at time t +2 and want to interpolate ¢ + 1 under a composit-
ing approach it is unclear which data is preferable to use. The SS-RF method does not
require a choice between the observed data, but uses data from both observed images to

inform predictions.



Holloway-Brown et al. J Big Data (2020) 7:55 Page 17 of 23

Thresholds for land cover classifications and limitations

To produce land cover classifications from the probability values produced by the SS-RF
method we used a probability threshold of 0.5 to classify observations as forest or not
forest. Under this threshold, observations with probabilities 0.5 or greater are classified
as forest and not forest otherwise. When probabilities are close to the extreme values
0 and 1 this is a clear rule, however for probabilities around 0.5 there is more uncer-
tainty around which is the appropriate land cover class. For other case studies different
thresholds may be selected based on a different loss or objective function, or using an
ROC curve to inform threshold choice. Regardless of the application, the selection of an
appropriate threshold is a challenging and subjective task.

A limitation is that the SS-RF method cannot detect sudden changes, sometimes
referred to as change points, in the landscape. See for example Fig. 13 where there was a
change in the true classes between time ¢ and ¢ + 1. There is likely to be a lag in detect-
ing such change in the images over time. For example, if there had been a dramatic event
such as tree clearing during the 16 days between satellite images and this land cover
change was obscured by cloud, the model would predict forest presence similar to the
previous observations. At least one time step of observed data is needed that reflects the
forest cover change to start to incorporate any such sudden changes into the predictions.

Although the SS-RF method uses images from different points in time, it is not a time
series method. The method does account for some effects of time by imposing a larger
variance for the older image to give more weight to the influence of the most recent
image when performing the interpolation. The treatment of data which are temporally
distant as though they are captured at the same point in time is not unusual in satel-
lite image processing. For example, the common practice of compositing we demon-
strated in this paper substitutes missing pixels with observed pixels of the same region
from a different time point and treats the pixels in the composited image as being from
the same time point. Our method extends on compositing by using the most recently
observed images of the same area to produce a probability of an observation belonging
to a land cover class, in addition to a land cover classification.

Extensions

We selected a decision tree method, random forest, for our study model because this
method offers key benefits for big data problems as described in the introduction. Other
supervised classification methods that are currently popular for satellite image analy-
sis include support vector machine[37-39] and deep learning methods: convolutional
neural networks (CNNs)[40, 41] and generative adversarial networks (GANs)[42]. These
methods could potentially be implemented within our stochastic framework in future
studies.

In this case study we focused on identifying two classes; our land cover of interest;
forest, and all other land cover was classified as not forest. This binary example necessi-
tated the use of the Beta distribution, which by definition is binary. To extend the SS-RF
method to more than two classes, a Dirichlet distribution could be implemented as an
alternative. In cases where there are multiple images in a row with missing data the out-
puts of the SS-RF method could be used in combination with observed data to interpo-

late missing data at a future time. For example, if the images at £ — 1 and ¢ are observed
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and used to interpolate ¢ + 1 but ¢ + 2 also has missing data, the interpolated values of
t 4+ 1 could be used with the observed values at ¢ to interpolate ¢ + 2, and continuing in
this Bayesian updating scheme using estimated land cover data until data are observed.
The benefit of this approach is that having long periods of cloud cover, as is common in
tropical areas, will not prevent the use of satellite images for forest monitoring and the
uncertainty of the interpolated data is measured. ePrevious images of the same area were
used in this case study because these are the data we have; the fact they are a sequence of
images in time is not essential to the method. This approach could also be used for cases
with multiple images of the same area at the same point in time i.e. at different resolu-
tions or from different data sources (aerial photograph, satellite image).

In our case study we simulated clouds so we knew the true values of observations at
t+1and ¢t + 2, and hence we were able to assess model accuracy. In cases where the
cloud data are truly missing, predicting values in images ahead of the image being taken
or available for analysis this is not possible. This is where the probabilistic nature of
the method is useful. In the case of truly missing data the real land cover values under
the clouds are unknown, therefore having an informed probability of the observations
being forest, in addition to a land cover classification is helpful. Having land cover clas-
sifications, and a measurement of the uncertainty around these, could inform forest
management planning by identifying forest cover or predicting trajectories of natural
regeneration or deliberate reforestation.

Conclusion

Forest management is a priority identified by the United Nations and World Bank Sus-
tainable Development Goals (SDGs)[1] and is important globally. Satellite images are
a freely available and frequently updated data source for forest monitoring. However,
missing data due to frequent cloud cover is a main barrier to using these data, particu-
larly in tropical areas where forest monitoring is essential. We have extended our pre-
vious spatial decision tree approach to image interpolation[16] and presented our new
SS-RF method to statistically predict missing data in satellite images, and importantly,
provide a measurement of uncertainty for these predictions.

The SS-RF method is fast, scalable to large amounts of data and accurate, perform-
ing probabilistic binary land cover prediction with overall accuracy up to 0.97. We com-
pared the performance of our new method with the remote sensing standard approach;
compositing. We found when land cover is relatively stable over time the SS-RF method
produced comparable results to compositing for predicting binary land cover; forest and
not forest, with the additional benefit of producing a probability of forest cover as well
as a land cover classification. In cases where the SS-RF method did not perform as well
as compositing, the probabilities it produced were useful to provide a measure of uncer-
tainty for the interpolated values. In a real scenario where data are truly missing, it is not
possible to know whether compositing or any method is accurate or not, which makes
having a probability associated with interpolate values so essential. This is the key ben-
efit of the SS-RF method. Beyond our satellite image case study, the SS-RF method can
be applied to other large images, such as those used in medicine or indeed any big data
problem where the user wants to predict the probability of an event or feature of interest.
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Appendices
Appendix A: SS-RF algorithm
The steps in our SS-RF algorithm are outlined below.

Form prior from image 7¢~V

Use random forest to obtain yl(«t_l)

=p;inl =D
Specify variance based on observed data e.g. v; = 0.10

Calculate ozi(t_l) and ﬁi(t_l)
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5. Set prior for probability of forest in area i in image I¢~1
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6. Form likelihood from image I¢~1)
Repeat steps 1 to 6 for image 1®
8. Set likelihood for probability of forest in area i in image 1)

Py(t) ~ Beta(a", B{"))

9. Compute posterior probability of forest of area i in image 1) as the expectation of
®

the posterior distribution for p;
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E@) =

10. Use the Beta distribution, E (pgt)) as predicted estimate for E (pEtH))
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11. Update E (p§t+2)) as the next images become available.

where p is the probability of the observation being forest, as derived from the random
forest, and v is some fixed variance. In this case we specify v; based on the variance

observed in the testing and training samples across the images, allowing greater variance

for I~ than for I.

Appendix B: Calculate hyperparameters
From the variance of y
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Appendix C: Selecting values of variance

In this case study to set variance values we calculated the variance in NDVI and mean
NDVI observed in the random samples used for testing and training across the images.

We then examined the average variance values to set variance for the images. The aver-

age results are below (Table 1):

Table 1 Mean NDVI variance across samples and images for crop 1 images

Image date

Average
variance
across samples

25/08/2017(t+ 1)
09/08/2017 (1)
24/07/2017 (t—1)

0.00994
0.01442
0.01222

Page 20 of 23
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Based on the sample variance values, we set variance to 0.01 at ¢ and allow a larger
value of 0.02 for t — 1.

Appendix D: Input probabilities accuracy

The probabilities (p) we use as input variables to calculate o and 8 come from a random
forest model which makes predictions on each observed image. For example, a random
forest is trained on an image at time t to predict probability of forest at time t.

To assess the accuracy of the random forest predicted probabilities, we produced
confusion matrices using the true class values of the testing data set and the predicted
probabilities performed on the testing data set converted to the class variable using
a 0.5 threshold. If the probability of being forest is 0.5 or greater, the probability was
converted to forest class and if it was below 0.5 converted to not forest class.

As an example, results for the input random forests for sample 1 at¢ + 1, tand ¢t — 1
are as follows (Table 2).

The input random forest for time t + 1 had overall accuracy = 0.985, = Kappa
0.978, = Sensitivity 0.986 and = Specificity 0.985 (Table 3).

The input random forest for time t had overall accuracy = 0.987, Kappa = 0.974,
Sensitivity = 0.989 and Specificity = 0.985 (Table 4).

The input random forest for time ¢t — 1 had overall accuracy = 0.988, Kappa = 0.975,
Sensitivity = 0.990 and Specificity = 0.985.

These results indicate the probability predictions from the input random forests are
highly accurate at detecting the true land cover values of forest and not forest in the
images at each time point. These are examples of the highly accurate inputs that are
then used to calculate the beta distributions used to interpolate missing data.

Table 2 Confusion matrix results for input random forest image 25/08/2017 (t + 1)

Prediction outcome

Forest Not forest
Reference
Forest 9864 151
Not forest 141 9843
Forest Not forest

Table 3 Confusion matrix results for input random forest for image 09/08/2017 (t)

Prediction outcome

Forest Not forest
Reference
Forest 10955 131
Not forest 127 8786

Forest Not forest
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Table 4 Confusion matrix results for input random forest for image 24/07/2017 (t — 1)

Prediction outcome

Forest Not forest
Reference
Forest 11837 119
Not forest 126 7917
Forest Not forest
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