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Abstract

Our understanding of cardiac diseases has greatly advanced since the advent of electro-

cardiography (ECG). With the increasing influx of available data in recent times, significant

research efforts have been put forth to automate the study and detection of cardiac con-

ditions. Naturally, the focus has progressed toward studying dynamic changes in ventric-

ular depolarisation and repolarisation across serial recordings - as complex beat-to-beat

changes in morphology manifest over time. Manual extraction of diagnostic and prognos-

tic markers is a laborious task. Hence, automated and accurate methods are required to

extract markers for the study of ventricular lability and detection of common diseases, such

as myocardial ischemia and myocardial infarction.

The aim of this thesis is to improve automated marker extraction and detection of dis-

eases for the study of ventricular depolarisation and repolarisation lability in ECG. As such,

two novel template adaptation methods capable of capturing complex beat-to-beat mor-

phological changes are proposed for three-dimensional and two-dimensional data, respec-

tively. The proposed three-dimensional template adaptation method provides an inhomoge-

neous method for transforming template vectorcardiogram (VCG) by exploiting registration-

inspired parametrisation and an efficient kernel ridge regression formulation. Analysis

across simulated data and clinical myocardial infarction data demonstrates state-of-the-art

results. The two-dimensional template adaptation method draws from traditional registration-

based techniques and treats the ECG as a two-dimensional point set problem. Valida-

tion against previously employed simulated data and a gold-standard annotated clinical

database demonstrate the highest level of performance. Subsequently, frameworks employ-

ing the proposed template adaptation techniques are developed for the automated detection

of ischemic beats and myocardial infarction. Furthermore, a small study analysing ventric-

ular repolarisation variability (VRV) in non-ischemic cardiomyopathy (CM) is considered,

utilising markers of cardiac lability proposed in the development of the three-dimensional

template adaptation system.

In summary, this thesis highlights the necessity for custom template adaptation methods

for the accurate measurement of beat-to-beat variability in cardiac data. Two novel state-

of-the-art methods are proposed and extended to study myocardial ischemia, myocardial

infarction and non-ischemic CM.
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1
Introduction

CARDIAC health is critical for the function of all human physiological pro-

cesses and sustenance of life. Ventricular depolarisation and repolari-

sation lability can be observed in electrocardiography (ECG) and employed to

study heart disease. Thus, the development of accurate systems capable of

automatically extracting cardiac markers and detecting disease is critical for

the advancement of biomedical science related to cardiac health. This chap-

ter describes the motivations for the research conducted on automated cardiac

analysis in this thesis. Additionally, the original contributions of this thesis are

presented.
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1.1 Introduction

1.1 Introduction

In a 2007 essay for The New York Review (Dyson, 2007), Freeman Dyson, a pioneer of

twentieth century physics and avid futurist, predicted that "the twenty-first century will be the

century of biology". His self-admitting realisation that "biology is now bigger than physics",

paved the way for his belief that the domestication of biotechnology will revolutionise our

lives over the next fifty years. Dyson’s outlook, which echoes both purist elements of sci-

entific realism and optimism, has already begun across the broad range of research and

applications defined under biotechnology. In this context, computer vision and machine

learning extend themselves as natural processes in enabling automated diagnosis and sci-

entific progress in biomedical research. However, the application of such technologies is

at its infant stages of being realised and will require a concerted effort to be solidified as

foundational tools in this new age.

Heart arrhythmia and disease have been long studied due to their quality-of-life, mortal-

ity and socio-economic implications. Globally, cardiovascular disease (CVD) is the leading

cause of mortality and a large contributing factor to disability (Roth et al., 2020). Further-

more, CVD impacts are continuing to increase across all countries with the exception of

high-income countries (Roth et al., 2020). Likewise, disability adjusted life years (DALY),

which is a cumulative measure of the number of years lost due to ill-health, disability or

early death, has also seen an increasing trend over the last three decades (Roth et al.,

2020). To estimate the financial burden, a recent American Heart Association (AHA) report

indicated that medical and productivity costs associated with CVD stood at $555 billion in

2015 and are expected to rise to $1.1 trillion by 2035 (Dunbar et al., 2018). The culmina-

tion of these startling trends and figures highlights the importance of increased efforts in

research and policy related to CVD.

The ECG and the closely related vectorcardiogram (VCG) have been previously studied to

identify markers of CVD and arrhythmia. The ECG represents variations in the summed

electrical potential generated by heart muscle (Clark and Kruse, 1990). Similarly, VCG is

a method of recording both the magnitude and direction of the summed electrical forces

generated by the cardiac cycle across time. Subtle variations due to physiological changes

manifest as morphological deviations in the ECG and vary across different cardiac con-

ditions. In the case of myocardial infarction, more commonly known as heart attack, the

changes have been shown to be observable in beat-to-beat QT variability (QTV) of the

ECG (Schmidt et al., 2014, 2018a) and VCG (Hasan et al., 2012a). Similarly, for my-

ocardial ischemia - which refers to the obstruction by a partial or complete blockage of
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a coronary artery from plaque, morphological changes are known to arise in the ST-interval

of the ECG (Alpert et al., 2000; Thygesen et al., 2007, 2012, 2018). In a position state-

ment, Baumert et al. (2016a) proposed that more sophisticated tools for the analysis of

subtle morphological changes are required to study QTV and other markers. This thesis

focuses on the development of tools capable of accurately capturing such subtle variations

in two-dimensional and three-dimensional ECG. Similar to other areas of research where

template matching (or correspondence matching) is employed (e.g. biomedical computer

vision), image registration inspired methods are utilised to achieve this.

The development of automated tools capable of capturing morphological changes may pro-

vide more accurate analysis and classification methods. Ultimately, the purpose of automa-

tion in biomedical applications is three-fold: (a) to reduce the manual labour required by

medical practitioners, (b) to decrease human error by such laborious manual efforts and (c)

to minimise the variability in assessment by different medical practitioners (i.e. have an un-

biased consensus). The extraction of morphological features in ECG has been well studied

with evidence suggesting template adaptation tools yield superior results to their counter-

parts (Baumert et al., 2012). However, for the three-dimensional representation of summed

electrical activity in the heart, sophisticated methodologies for feature extraction are sparse.

Hence, in this thesis, we propose an inhomogeneous template adaptation method for VCG.

Conversely, numerous ECG-specific tools have been proposed to extract important mor-

phological features in the analysis of ventricular depolarisation and repolarisation variability

(Porta et al., 1998; Zifan et al., 2005; Vullings et al., 1998; Dubois et al., 2007; Rincón et al.,

2011; Martinez et al., 2004), however, these methods have been shown to yield lower ac-

curacy compared to template matching techniques across simulated data (Baumert et al.,

2012) and annotated clinical data (Schmidt et al., 2014). Although having demonstrated

superior performance to their counterparts, template matching techniques share common

drawbacks such as strictly performing homogeneous adaptations (Berger et al., 1997; Starc

and Schlegel, 2006) or not addressing the correspondence problem (Schmidt et al., 2014,

2018a). More specifically, the correspondence problem relates to finding corresponding

samples between two sets of data. In this thesis, for the case of the ECG, we incorpo-

rate mathematically smooth inhomogeneous adaptations with correspondence assignment

to provide a more robust solution. To evaluate the performance of the proposed template

adaptation methods in automated detection of myocardial ischemia and myocardial infarc-

tion, we combine our novel adaptation methods with traditional classifiers. Lastly, a study

assessing ventricular repolarisation variability (VRV) in non-ischemic cardiomyopathy (CM)
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1.2 Contextual statement

is assessed using the proposed three-dimensional template adaptation technique. The re-

mainder of this chapter provides an overview of the research questions addressed and the

novel contributions to cardiac data processing produced by this thesis.

1.2 Contextual statement

The ECG has long been used to study physiological markers of lability related to heart

disease. Analysis of pathophysiology in cardiac conditions has been employed to study

complex patterns (Hasan et al., 2012a; Baumert et al., 2016a; Shaffer and Ginsberg, 2017;

Ramírez et al., 2019; Vogel et al., 2019). In particular, markers of ventricular depolarisation

and repolarisation have been studied, e.g. - QTV (Baumert et al., 2016a), T-wave shape

variability (Baumert et al., 2016a; Hekkanen et al., 2020) and ST-elevation (Channer and

Morris, 2002). These markers have previously been linked to myocardial infarction, myocar-

dial ischemia, sudden cardiac death and many other conditions. Although morphological

features are rich in information, the extraction of such features is plagued by limited clinical

resources. Manual delineation of the ECG by clinical experts is not only a cumbersome but

error prone process, which is further amplified in the age of big data. Furthermore, manual

diagnosis and prognosis in the study of cardiac conditions is extremely laborious and opin-

ions vary amongst practitioners. With the computer revolution, great research efforts have

been expended towards developing automated methods in cardiac analysis and classifica-

tion. The focus of this this is the development of inhomgeneous feature extraction tools and

their application to the analysis and classification of cardiac disease and lability.

Previous works on beat-to-beat VCG feature extraction via template adaptation are sparse.

Continuing on from the works of Schmidt et al. (2014, 2018a) and the conclusions of

Baumert et al. (2012), an inhomogeneous template adaptation method for accurate VCG

feature extraction is developed. The method addresses the shortcomings of traditional

methods, which are unable to capture subtle morphological beat-to-beat variations, com-

bined with evidence that template adaptation methods perform better compared to their

counterparts (Baumert et al., 2012; Schmidt et al., 2014). The proposed model demon-

strated superior performance compared to current methods across simulated data and a

myocardial infarction study. To illustrate the potential of the proposed method for other

physiological data applications, a supplementary gallery of adaptations across a three-

dimensional upper-limb movement database is provided.
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Research efforts in ECG template adaptation have recently made great strides. Initial works

utilised homogeneous adaptations, which provided a novel approach, but lacked the techni-

cal complexity to capture subtle variations in data. More recently, inhomogeneous template

adaptations were proposed to account for this, however, the limitation of these works is

that they assume a one-to-one correspondence between sample points. Although, these

inhomogeneous methods have yielded state-of-the-art results for minor variations in signal,

they are unsuitable for capturing larger morphological deformations. Generally, the sig-

nal processing domain has not focused on the correspondence problem. The correspon-

dence problem stems from image registration and computer vision where a correspondence

needs to be established between two sets of unordered data. To provide a more robust,

generalised and complete solution, a non-binary correspondence based template adap-

tation is developed. The performance of the proposed method yields an improvement in

QTV measurement across synthetic data and a myocardial infarction study. Furthermore,

the algorithm yielded state-of-the-art results in terms of ECG feature extraction against the

gold-standard database for QTV. To demonstrate the potential general application of the al-

gorithm beyond ECG analysis, a small dicrotic notch extraction analysis was performed and

benchmarked against a previously proposed work. The work in this thesis demonstrated a

significantly higher accuracy.

Few automated methods exist for classifying ischemic beats using beat-specific annota-

tions. Initial methods used simplistic thresholding inspired by manual annotation rules

(Papaloukas et al., 2001). Subsequent methods utilised a variety of interpretable (Golet-

sis et al., 2003, 2004; Exarchos et al., 2006, 2007; Tsipouras et al., 2007) and neural net-

work approaches (Papaloukas et al., 2002a,b). However, previously proposed interpretable

efforts have neglected to utilise state-of-the-art feature extraction techniques, such as tem-

plate adaptation. Additionally, black-box models lack the transparency and interpretability

for widespread use. The classification framework in this work utilises the correspondence-

based template adaptation combined with an interpretable classifier, k-nearest neighbour

(kNN). Improved statistical sensitivity and specificity measures are observed compared to

previous proposed methods. Furthermore, a more robust analysis of the sensitivity and

specificity is performed to highlight the limitation of previous works using subject-wise eval-

uation and to provide a more representative measure of performance.

The evaluation of automated myocardial infarction systems has been studied extensively,

however, research has neglected to focus on beat-to-beat dynamics and dependencies.
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Furthermore, research has suggested that the VCG has superior diagnostic abilities com-

pared to the standard ECG in myocardial infarction assessment (Chou, 1986). In this thesis,

an long short-term memory (LSTM) framework is implemented utilising the aforementioned

three-dimensional inhomogeneous template adaptation method. The performance of the

method is evaluated against a popular database for the analysis of myocardial infarction -

the Physikalisch-Technische Bundesanstalt (PTB) database. The sensitivity and specificity

of the method are comparable to previous works, especially VCG based methods. However,

further research is required to develop a more sophisticated LSTM network architecture.

VRV has been shown to have predictive value in patients with ischemic heart disease,

where the suspected mode of death is malignant ventricular arrhythmia. Furthermore, pre-

vious works studying patients with non-ischemic CM have suggested that the potential for

risk stratification remains unclear (Baumert et al., 2016a). To evaluate potential risk strat-

ification in non-ischemic CM using VRV, the aforementioned three-dimensional inhomo-

geneous template adaptation technique is employed in conjunction with two-dimensional

template adaptation.

1.3 Overview of Thesis

This thesis consists of eight chapters: the introduction, the literature review, five chapters

of research contribution and the conclusion. The five main chapters can be separated

into three primary chapters, stemming from three modified journal submissions, and two

secondary chapters arising from conference submissions. The chapter outline is as follows:

Chapter 1 provides an introductory narrative describing the focus and key research ques-

tions addressed in this thesis.

Chapter 2 contains the literature review related to the research topic of this thesis. The liter-

ature review describes important physiological information pertaining to heart health. Next,

foundational concepts in registration and machine learning are described in conjunction

with previously proposed automated tools for the assessment of ventricular depolarisation

and repolarisation lability.

Chapter 3 describes the three-dimensional inhomogeneous template adaptation technique

developed as part of this thesis. The description contains an in-depth mathematical deriva-

tion of the methodology followed by an evaluation of algorithmic performance.
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Chapter 4 describes the correspondence based two-dimensional template adaptation tech-

nique developed as part of this thesis. The chapter contains a rigorous algorithmic descrip-

tion and evaluation of the developed framework.

Chapter 5 represents the automated ischemic beat detection framework developed as part

of this thesis. In this chapter a detailed description of the algorithm is provided alongside a

robust validation process.

Chapter 6 is a mini-chapter describing an LSTM framework employing the method from

Chapter 3. It is an applications chapter demonstrating the potential usage of the proposed

method in Chapter 3. The chapter provides a description of the framework and an evalua-

tion of system performance.

Chapter 7 is a mini-chapter utilising the algorithm introduced in Chapter 3. In this chapter

VRV is used to assess non-ischemic dilated CM.

Chapter 8 provides a summary of the findings arising from the original contributions of this

thesis. To conclude, a discussion regarding future research directions is provided.

1.4 Statement of original contribution

This thesis consists of two peer-reviewed first-author manuscripts, a third manuscript under

review, one first-author conference paper and a co-author conference paper. Additionally,

Appendix A contains a third conference paper. All software related to the contents of this

thesis, including statistical analysis, was implemented in MATLAB®/RStudio. Furthermore,

Bash/Slurm were utilised to enable high performance computing (HPC) for computationally

demanding tasks. The author contribution in each study consisted of hypothesis formula-

tion, methodology development and hypothesis testing.

1.5 Data

A combination of publicly available, synthetically generated and online datasets were used

in this thesis. The PTB database, Complex Upper-Limb Movements (CULM) database, QT

Database (QTDB) and European ST-T (EST-T) database were sourced from PhysioNet.

Additionally, the dataset labelled E-HOL-03-0401-017 was sourced from the Telemetric and

Holter ECG Warehouse (THEW); the data stems from the Defibrillators in Non-Ischemic

Cardiomyopathy Treatment Evaluation (DEFINITE) study. An in-depth description of the

datasets employed in this thesis is given below.
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1.5.1 Clinical

1.5.1 Clinical

The PTB database (Bousseljot et al., 1995), available on PhysioNet (Goldberger et al.,

2012), was employed in Chapter 3 for the analysis of myocardial infarction using three-

dimensional template adaptation. Furthermore, this dataset was utilised in Chapter 4 for the

evaluation of the two-dimensional template adaptation framework. Lastly, this dataset was

used for the development and evaluation of the LSTM network in Chapter 6. Specifically,

the PTB database contains 79 patients with acute myocardial infarction (22 female, mean

age 63 ± 12 years; 57 male, mean age 57 ± 10 years) and 69 control subjects (17-female,

42 ± 18 years; 52 male, 40 ± 13 years). Approximately two minutes of data are available

for each recording. Each subject is represented by one to five records; and, each recording

contains fifteen simultaneously observed signals, consisting of: the standard 12 leads in

conjunction with the three orthogonal Frank leads. Each signal is digitised at 1000 samples

per second, with a 16 bit resolution. The data were obtained using a non-commercial

prototype recorder with the specifications available on PhysioNet.

In Chapter 3 the CULM database (Miranda et al., 2018) was utilised to generate a visual

gallery of template adaptation results. The data consists of ten healthy subjects (7 males;

26.4 ± 4.52 years of age; 9 right-handed) who were asked to perform a variety of upper-limb

motor tasks. The data was collected using a camera-based motion capture system (VICON,

Oxford UK) and was preprocessed with internal system software to map trajectories. The

data is four dimensional, containing: three spatial dimensions and one temporal dimension.

The QTDB (Laguna et al., 1997) was utilised in the analysis of the correspondence-based

framework proposed in Chapter 4. This database is the gold-standard for the assessment

of ECG methods. The database consists of 105 fifteen-minute recordings; each recording

contains two leads. Furthermore, 30 to 50 selected beats in each recording contain anno-

tations for the onset, peak and end markers of the P, QRS, T and U waves. Each signal is

digitised at 250 samples per second. To ensure an adequate level of physiological variabil-

ity, the database was compiled using several other datasets including: MIT-BIH Arrhythmia

(MIT-BIH Arrhythmia) database (Moody and Mark, 2001), EST-T database (Taddei et al.,

1992) and ECG databases collected at Boston’s Beth Israel Deaconess Medical Center.

In Chapter 5 the EST-T database (Taddei et al., 1992) was used for the development of

an ischemic beat detector. The EST-T database contains 90 ECG recordings from 79 am-

bulatory ECG with each being two hours in length. The subjects were 9 women (aged

55-71) and 70 men (aged 30-84). Furthermore, the data were digitised at 250 samples

per second with a 12-bit resolution (20mV input range). In this study, only the raw ECG

Page 8



Chapter 1

were utilised. Alternative annotations for normal, ischemic and noisy beats were obtained

from Papaloukas et al. (2001). The annotations were independently marked by three clin-

icians. For ambiguous regions in the recordings, a subsequent joint decision was made.

Across the subset of the database, 20 ischemic ST-segment episodes and 20 ischemic T-

wave episodes were present. The resultant selection yielded 86 384 cardiac beats of which

6 754 were deemed noisy. Thus, of the 76 989 remaining beats, 37 663 (48.92%) were

labelled as ischemic and the rest as normal.

In Chapter 4 visual adaptations are presented to provide a qualitative assessment of cor-

respondence based template adaptation in photoplethysmogram (PPG). The publicly avail-

able BIDMC PPG and Respiration (BIDMC) database (Pimentel et al., 2017; Goldberger et al.,

2012) was employed. This database contains 53 eight minute recordings of PPG sampled

at 125 Hz. In this thesis, 5 cycles for seven subjects were extracted from the BIDMC

database.

Finally, the E-HOL-03-0401-017 dataset was sourced from the THEW and used in Chap-

ter 7 to study the predictive value of VRV in patients with non-ischemic dilated CM. This

database contains 393 recordings from 236 patients (67 women, age 60 ± 14 years; 168

men, age: 58 ± 12 years; 1 record not specified) enrolled in the DEFINITE study. The data

contains 24 hour Holter 3-lead (Frank lead configuration) ECG, digitised at 500 samples

per second with an amplitude resolution of 1 µV Rashba et al. (2006). ECG recording was

performed at enrolment and again up to 5 years later. The all-cause mortality during the

follow-up period was 4.8%.

1.5.2 Synthetic

For the purpose of algorithm evaluation in Chapter 3, a synthetic dataset was generated.

The simulated data contains a set of non-linear morphological variations and common noise

sources, including: baseline wander (BW), muscle artefact (MA), electrode movement (EM)

and additive white Gaussian noise (AWGN). The noise was incorporated into the data via

an equally weighted combination of the four sources and across four levels of signal-to-

noise ratio (SNR). Additionally, the VCG was generated via a Frank lead transformation

using the standard eight lead ECG configuration from Sameni et al. (2007). Morphological

variations were introduced by varying the T-wave amplitude and polarity in leads V1-V3 of

the simulated 8-lead ECG. Under this configuration, an additional non-linear and randomly

seeded T-wave variation was introduced at the T-wave onset and offset. At each T-wave
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1.5.2 Synthetic

amplitude 30 seconds of noisy synthetic data were generated. Thus, yielding 300 seconds

of data across the four SNR ratios.

In Chapter 4, simulated data from Porta et al. (1998) was employed to assess the QTV mea-

surement performance of the proposed method. Briefly, a single ECG beat from a healthy

subject (26 year old) was extracted from lead VII and digitised at 1000 samples per second

with a 12-bit amplitude resolution. The T-wave amplitude was then lowered in steps of 10%

of the amplitude. The ten cardiac beats were each respectively appended 500 times to gen-

erate an ECG sequence, thus forming 10 different recordings. Each recording maintained a

QTV of zero, however, contained different T-wave amplitudes. Next three sources of noise

were independently introduced into the recordings - BW, AWGN and amplitude modulation

(AM). Thus, the resultant database contained thirty 500-second recordings in total. The aim

of the simulation was to generate ECG with varying morphology and noise levels; and zero

QTV. Thus, an ideal automated method would yield a QTV of zero.

Lastly, in 4 a simulated PPG dataset was generated to quantitatively assess dicrotic notch

detection via correspondence based template adaptation. Earlier works have used the di-

crotic notch to improve systolic blood pressure estimation Gu et al. (2008) and to study

athletic differences Wang et al. (2015). Briefly, a set of PPG cycles were replicated to gen-

erate sequences of 210 seconds sampled at 500 Hz using a previously proposed simulation

tool (Charlton et al., 2019). Next, common noise sources (AM, BW and AWGN) were in-

troduced into the simulated data. The distortions were imposed across 29 physiologically

plausible RR intervals, resulting in 87 recordings in total. Due to the intra-recording RR

interval being constant in the developed database, the true dicrotic notch variability across

any given recording was zero. Thus, similar to the ECG simulated data, an ideal system

would return a dicrotic notch variability of zero.
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2

Literature review

CARDIAC function is critical for the operation of human physiological pro-

cesses and sustenance of life. The role of the heart is to distribute blood

and oxygen throughout the body via the circulatory system, and deliver waste

products back to the lungs for removal. A healthy cardiac system is directly

correlated to a functional lifestyle and prolonged life-expectancy. This chap-

ter describes various state-of-the-art techniques used for assessing debilitating

heart conditions via ECG methods. Furthermore, the foundational workings

of registration and machine learning are described - providing a high-level de-

scription of the algorithmic methods proposed in this thesis. Through feature

extraction techniques and classification methods, temporal sequences relating

to defective time series can be detected.
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2.1 Physiological Background

2.1 Physiological Background

The cardiac cycle is a pseudo-periodic bio-process that is essential for the sustenance

of human life. Great efforts have been undertaken to understand cardiac physiology and

pathophysiology. The focus of this thesis is on robust information extraction from heart data.

Thus, in the following section an overview of the cardiac cycle, modes of measurement and

related biomedical signal morphologies are described. Additionally, previously proposed

methods for the detection of cardiac conditions are described.

2.1.1 Heart Function and Disease

The primary purpose of the heart is to enable adequate blood and oxygen flow to be dis-

tributed throughout the body. Blood consists of red blood cells to carry oxygen, white blood

cells to facilitate the immune system, platelets to assist in clotting and plasma to serve as a

transport medium (Dean, 2005). The heart is the driving force of blood distribution amongst

most animal lifeforms and has evolved over the period of some 500 million years (Stephen-

son et al., 2017). A functional cardiac system is imperative to a prolonged and functional

lifestyle, with a plethora of links to both cardiac and non-cardiac phenomena. Scientifi-

cally, functional cardiac operation is evaluated by a series of proper physiological flows and

electrical processes. The flow of blood through arteries, veins and capillaries is one such

consideration. Similarly, electrical conduction and timing across appropriate pathways in

heart muscle is deemed important.

Myocardial ischemia pertains to the phenomena where blood flow to the heart is reduced

by a partial or complete obstruction of a coronary artery (Shimokawa and Yasuda, 2008).

The link between myocardial ischemia and myocardial infarction has long been studied.

It is known that myocardial infarction is attributable to prolonged myocardial ischemia -

resulting from insufficient oxygen supply to the myocardium (DeFilippis et al., 2019; Thyge-

sen et al., 2018). Pathologically, myocardial infarction is defined as myocardial cell death

from prolonged ischemia (Thygesen et al., 2018). Silent myocardial infarction, where in-

dividuals suffer death of myocardial cells without knowledge, has been found to be preva-

lent in sudden cardiac death (SCD) victims (Vähätalo et al., 2019). Similarly, SCD has

been found to account for ∼50% of mortality after myocardial infarction (Waks and Bux-

ton, 2018). The impacts of myocardial infarction extend to abnormalities in the autonomic

nervous system (ANS), which have been linked to the genesis of sudden cardiac death

(Zipes and Wellens, 1998). A link between SCD and various other heart arrhythmia/disease
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have been established. For instance, it is known that ventricular tachyarrhythmia (VA) are

a major cause of SCD; particularly ventricular tachycardia (VT) (Israel, 2014). Ventricu-

lar tachyarrhythmias are also commonly observable in the early stages of myocardial is-

chemia (Bhar-Amato et al., 2017); highlighting the complex and interrelated interactions

between pathophysiologies. Pertaining to cardiomyopathy studies, diseased patients have

been found to represent the second largest group who experience SCD. In at least 80% of

SCD patients, coronary artery disease (CAD) is present (Zipes and Wellens, 1998); CAD

is caused by plaque build-up in the wall of arteries supplying blood to the heart. The im-

portance of this is highlighted by the fact that in most patients with ischemic heart disease,

the cause of myocardial ischemia is a reduction in coronary blood flow due to CAD (Steen-

bergen and Frangogiannis, 2012). Extensive research in the field has helped improve the

understanding of heart physiology and pathophysiology but many interactions are still un-

clear. By and large, the association between varying heart defects and biomedical data are

not sufficiently understood. Similarly, the complex beat-to-beat interaction and causality be-

tween different heart conditions is still unclear. However, several established markers exist

in clinical practice, including: lower ventricular ejection fraction (LVEF), long QT syndrome,

short QT syndrome and ion channelopathies. Thus, providing a foundation and promise for

further study of biomedical data.

Cardiac function can be assessed via a number of modalities. The most commonly em-

ployed tool is ECG, which is described in the ensuing section. Alternative techniques in-

clude the echocardiogram (ECHO), nuclear cardiac test, coronary angiogram, magnetic

resonance imaging (MRI) and coronary computed tomography angiogram (CCTA). ECHO

is a commonly employed medical imaging technique used to detect tissue damage, valve

functionality, pumping capacity and other structural information. Similarly, nuclear cardiac

testing, coronary angiogram, MRI and CCTA are other imaging modalities that offer rich

structural information. Imaging based techniques are solely employed in clinical and con-

trolled settings due to the immobile and expensive nature of medical imaging equipment.

Furthermore, it is expensive and impractical to employ imaging tests for regular and con-

tinuous monitoring of cardiac conditions. Additionally, PPG can be employed to track heart

rate variability (HRV) by optically measuring volumetric changes in blood.
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2.1.2 Biomedical Signals

In this section, important biomedical signals employed in the study of cardiac diseases are

presented, namely: ECG, VCG and PPG. A detailed explanation of the electrode configu-

ration for ECG and VCG is provided. Furthermore, the specific bio-processes that generate

waveform segments and sub-segments are introduced.

ECG Background

Electrocardiography, the process of producing a recording of the heart’s electrical activity

can be dated to the 19th century works of Carlo Matteucci. His efforts showed that an elec-

trical current accompanied each cardiac contraction (Fye, 1994). Soon after, the German

physiologist Emil DuBois-Reymond, the father of electrophysiology described an "action

potential" that accompanied muscular contraction and confirmed Matteucci’s discovery of

electrical activity in the frog heart. Dutch physicist William Einthoven’s attendance at the

First International Congress of Physiologists permitted him the opportunity to see Waller’s

demonstration of recording the heart’s electrical impulse (Waller, 1887). The demonstration

inspired Einthoven and several other physiologists of the time to pursue further investiga-

tion; their line of research included improvements in apparatus via the use of an electric

arc light and a higher-resolution projecting microscope. The improvements permitted the

investigating group to identify three distinct deflections, which were later classified as the

P, QRS and T waves. Waller’s earlier works had only identified two separate deflections

(Bayliss et al., 1892). Einthoven’s further attempts to enhance the capillary electrometer led

him to conclude that the device had limited use in cardiac electrophysiology due to a poor

frequency response; he proceeded to focus his attentions on galvanometers. Subsequently,

Einthoven’s modifications to the galvanometer yielded a device capable of capturing 1 mm

deflections on the abscissa, representing 0.04 seconds, which still serves as the foundation

for ECG devices today.

Present day guidelines pertaining to the digital recording of ECG suggest minimum sam-

pling and resolution frequencies. According to AHA guidelines (Kligfield et al., 2007), the

bulk of diagnostic information contained in an ECG recording is contained below 100 Hz

in adults and 250Hz for infants. Thus, in contemporary studies high sampling rates are

often observed ranging between 250-1000 Hz. Furthermore, studies (Zywietz et al., 1986;

Berson and Pipberger, 1967) have suggested that a sampling rate of 500 Hz is required to

reduce the amplitude error to roughly 1% in adults; further demonstrating the importance of

high sampling rates.
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Table 2.1. Depolarisation rates (adapted from Sampson and McGrath (2015).

Conduction Area
Depolarization Rate
(beats per minute)

SA node 60-100
AV node 40-60
His-Pukinje system 20-40

Cardiac Electrophysiology

ECG is considered a non-invasive method which records from the body surface the tempo-

ral changes in summed electric potential created by heart muscle cells (Clark and Kruse,

1990). The ECG projects the heart’s conduction system as a temporal signal. Specifically,

the electrical impulse from which the heart beat is regulated stems from the sinoatrial (SA)

node; a discrete patch of electrical cells located in the right atrium (Sampson and McGrath,

2015). In their resting state, cardiac cell membranes are negatively charged and depo-

larize upon cardiac activity (Becker, 2006). The SA node serves as the heart’s primary

natural pacemaker because it has the quickest rate of depolarisation. In the event of SA

node failure, the next quickest pacemaker regulates the depolarization rate (see Table 2.1).

This variability in depolarisation rate serves two purposes: 1) it permits the atria to com-

plete contraction before the signal pulsates to the ventricles; 2) serves as a fail-safe (albeit

at a slower rate) in the event of SA node failure. From the SA node the electrical signal

spreads across both atria (inducing depolarisation) and also arrives at the atrioventricular

(AV) node, where conduction is considerably slower (∼10 times) (Klabunde, 2012), com-

pared to the surrounding muscle. Next, the electrical impulse travels from the AV node to

the bundle of His, which in a healthy heart serves as the only path for electrical conduction

between the atria and ventricles. The bundle of His carries the electrical signal into the two

ventricles (left and right) via the left and right bundle branches, thus inducing ventricular

depolarisation. This set of bio-processes manifests as different waveforms in the ECG. The

P-wave is generated by the depolarisation of the atria. Similarly, the QRS wave represents

the depolarisation of the ventricles. Lastly, the ST, T and U waves depict the ventricular

repolarisation process.

ECG Configuration

To observe the strength of the extracellular electric field, two electrodes across varying lo-

cations on the body are required. In the standard configuration, the frontal plane ECG is
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measured from the supine patient by the attachment of an electrode to each of the four ex-

tremities (LA - left arm, RA - right arm, LL - left leg, RL - right leg) (Walker, H Kenneth and

Hall, W Dallas and Hurst, 1990). In this system, bipolar lead I is defined as the potential

difference between the left arm (positive pole) and the right arm - wherein a positive de-

flection in the recording is observed as current passes from right to left. Lead II represents

the potential difference between the right arm and left leg (positive pole). Lead III records

the potential difference between the left arm and left leg (positive pole). Three augmented

leads record the difference in potential between the right arm, left arm and left leg, respec-

tively, with a ground lead formed by the summation of the remaining two unused limb leads.

For augmented leads, the positive pole is defined by the designated limb. The described

leads form the cardiac electrical vectors through the entire 360 degrees of the frontal plane

(Walker, H Kenneth and Hall, W Dallas and Hurst, 1990).

Conversely, vectors radiating across the horizontal plane are observed in the precordial

leads (V1 - V6) (Walker, H Kenneth and Hall, W Dallas and Hurst, 1990). For these leads,

the electrodes are placed on the anterior and left lateral chest. Specifically, the V1 electrode

is placed on the fourth right intercostal area adjacent to the sternum. Similarly, the V2

electrode is located in the fourth left intercostal area adjacent to the sternum. The V3

electrode is defined at the midpoint of the line connecting the electrode location for V2 and

the electrode location for V4; the V4 electrode is positioned in the fifth left intercostal space

in the midclavicular line. Similarly, the V5 electrode location is positioned in line with V4 on

the anterior axillary line. The V6 electrode is located in line with the electrode positions of V4

and V5 but on the midaxillary line. In the case of precordial leads, the electrode is defined as

the positive pole. The negative pole is defined by forming an electrical connection between

all the limb leads such that an electrical current moving toward any given precordial lead will

manifest as an upward deflection on the recording (Walker, H Kenneth and Hall, W Dallas

and Hurst, 1990). The combination of the six frontal and six horizontal plane leads defines

the standard 12-lead ECG recording, as shown in Fig. 2.1.

Non-standard ECG configurations exist and are primarily used to investigate specific and

localised diseases. For example, in this thesis, the EST-T database is employed to study

myocardial ischemia for which the original investigators used non-standard ECG leads (Tad-

dei et al., 1992). Traditionally, such configurations are discouraged unless a particular rea-

son exists for doing so (Jowett et al., 2005). Furthermore, it is standard practice to accu-

rately document any such modifications to alert future users to the limitations of the study

(Jowett et al., 2005).
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Figure 2.1. Standard ECG electrode placement.
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VCG Configuration

The VCG is an alternative approach to evaluating cardiac function by which the ECG is con-

sidered as containing both magnitude and direction (Yang et al., 2012; Hasan and Abbott,

2016). Historically, the preferred method for directly obtaining the three orthogonal leads

relied on using the Frank VCG lead system. This non-standard ECG configuration contains

seven electrodes in total. Five are located in the transverse plane with the two additional

electrodes located on the back of the neck and the left foot, respectively (Frank, 1956). In

this system, the three-dimensional representation of cardiac electrical activity can be ob-

tained by measuring ECG in three directions; right-to-left (X-axis), head-to-feet (Y-axis), and

front-to-back (Z-axis). Fig. 2.2 depicts the electrode configuration for such a system. The

Frank lead configuration is no longer employed in clinical practice due to the non-standard

setup of electrodes. Similar to the ECG, the physiological processes measured by the

VCG yields a series of three-dimensional loops representing ventricular depolarisation and

repolarisation, namely the: P-loop, QRS-loop and T-loop.

More recently, alternative methods have been proposed to obtain the VCG from the stan-

dard 12-lead ECG configuration; these are derived methods from the standard 12-Lead

ECG. Such techniques are often based on mathematical transformations, optimization and

parameter-fitting. Derived methods are not currently standardized and solely utilized in

research activities. A well-known derived technique, the inverse Dower transform (IDT)

(Edenbrandt and Pahlm, 1988), relies on the use of the pseudo-inverse matrix proposed

earlier by Dower et al. (1980). Additionally, Kors et al. (1990) evaluated several models,

namely through the use of: multivariate regression, a cardio-electrical activity model and

quasi-orthogonal ECG leads. However, studies (Guillem et al., 2009, 2008) have found the

aforementioned methods to be lacking. Primarily, these techniques suffer from informa-

tion loss or the introduction of unwanted information during reconstruction; thus, yielding

a different result when compared to direct methods. Acar and Koymen (1999) proposed

a singular value decomposition (SVD) based method for the reconstruction of orthogonal

leads from ECG - although a well-equipped method, it similarly suffers from the notion that

SVD is inherently sensitive to small disturbances in the signal. Thus, in this thesis we focus

on the use of datasets employing the Frank Lead System.

PPG

PPG is an affordable optical method that measures blood volume changes in the microvas-

cular bed of tissue with each heartbeat (Allen et al., 2021). Devices measuring PPG contain
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Figure 2.2. Standard configuration for a Frank Lead VCG System consisting of seven unipolar elec-
trodes (A, C, E, I, M H and F). The signals are viewed in the three orthogonal directions
(X, Y and Z). Adapted from Hasan and Abbott (2016).
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a light source and a photodetector (Castaneda et al., 2018). The detector is placed at one of

two points: 1) along the light source or 2) on the opposite side of the tissue absorbing light

radiation; the reflected light is proportional to variations in blood volume (Castaneda et al.,

2018). The portion of absorbed/reflected light correlates directly with changes in blood vol-

ume from which a continuous pulse wave signal can be obtained (Grote and Zou, 2017).

Physiologically, the process which produces alternations in the detected light intensity per-

tains to the systolic and diastolic phase of the cardiac cycle. It is a cost-effective tool for

monitoring and studying pulse rate and respiration. The study of physiology using PPG is

beyond the scope of this thesis - instead, PPG is solely utilised for algorithm assessment.

2.1.3 ECG Evaluation

Since its inception, the ECG has been employed to study arrhythmia and heart disease.

In the early twentieth century, Sir Thomas Lewis discovered an irregular heartbeat, atrial

fibrillation (AF), via the use of ECG (Lewis, 1909). Subsequent research findings and med-

ical establishment of cardiac conditions led to the similar use of ECG in the diagnosis of

myocardial ischemia and myocardial infarction (Fye, 1994). Since then, the ECG has be-

come a standard tool for studying all cardiac arrhythmia and disease. These conditions are

qualitatively and quantitatively assessed by continued or sporadic changes in both temporal

and morphological signal properties. In this section several important markers of cardiac

lability are described, which are related to myocardial ischemia, myocardial infarction and

nonischemic dilated cardiomyopathy.

ST Segment Changes

ST-segment changes are produced by the flow of injury currents (Wagner et al., 2009).

The currents are generated by voltage gradients across the boundary of ischemic and non-

ischemic myocardium between the resting and plateau phase of the ventricular action po-

tential, corresponding to the TQ and ST segments of the ECG, respectively (Kléber et al.,

1978). Common changes that occur in the course of myocardial ischemic (and infarction)

episodes include: ST-segment depression and elevation, hyperacute T-wave changes, QRS

complex variations and T-wave inversion (Wagner et al., 2009). Currently, guidelines rec-

ommend a diagnosis of myocardial ischemia (or infarction) when two or more contiguous

ECG leads exceed established threshold values (Alpert et al., 2000; Thygesen et al., 2007,
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2012, 2018). Clinically, ST elevation, ST depression and T-wave changes are the most com-

monly utilised measures in acute myocardial ischemia for which the most recent universal

guidelines (Thygesen et al., 2018) require:

1. New ST-elevation at the J-point in 2 contiguous leads with the cut-point: ≥1 mm in all

leads other than leads V2-V3 where the following cut-points apply: ≥0.2 mm in men

≥ 40 years; ≥2.5 mm in men < 40 years, or ≥ 1.5 mm in women.

2. New horizontal or downsloping ST-depression ≥0.5 mm in 2 contiguous leads and/or

T inversion ≥ 1 mm in 2 contiguous leads with prominent R wave or R/S ratio > 1.

It is worth noting that AHA myocardial disease definitions are regularly updated as knowl-

edge evolves (Alpert et al., 2000; Thygesen et al., 2007, 2012, 2018). As such, in the first

universal definition (Alpert et al., 2000), the requirements for myocardial ischemia stated:

Patients with ST segment elevation:

1. New or presumed new ST segment elevation at the J point in two or more contiguous

leads with the cut-off points ≥0.2 mV in leads V1, V2, or V3 and ≥0.1 mV in other

leads (contiguity in the frontal plane is defined by the lead sequence aVL, I, inverted

aVR, II, aVF, III).

Patients without ST segment elevation:

(a) a. ST segment depression

(b) b. T wave abnormalities only

legend

New or presumed new ST segment depression or T wave abnormalities, or both,

should be observed in two or more contiguous leads. Also, new or presumed new

symmetric inversion of T waves ≥1 mm should be present in at least two contiguous

leads.

Occasionally, myocardial ischemia may manifest ST segment changes to meet criteria in

one lead but be marginally below the threshold for the contiguous lead (Thygesen et al.,

2012). Diagnostic values below guideline thresholds do not necessarily exclude the pres-

ence of an ischemic episode (or myocardial infarction) as a single static recording may

miss the more complex beat-to-beat ECG changes that might be present in serial record-

ings (Thygesen et al., 2012). The diagnostic significance of changes in the ST segment

is well established, however, to improve accuracy, more sophisticated frameworks across

serial recordings are necessary.
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QTV

QTV is a beat-to-beat marker used to measure cardiac repolarisation and depolarisation

lability in ECG. The simplest form, standard deviation of QT (SDQT), is defined as the

beat-to-beat standard deviation of the QT-interval across a sequence of cardiac cycles:

SDQT =

√√√√ 1
N

N

∑
n=1

(QTn − QTmean)2. (2.1)

To enable performance comparison with previously proposed methods for measuring QTV

(Schmidt et al., 2014, 2018a; Porta et al., 1998; Berger et al., 1997), the primary focus

of this thesis is on SDQT. The QT-interval pertains to the period that ventricular depolar-

isation and repolarisation occur. In ECG, to obtain the QT-interval, the detection of two

temporal points are required, namely: the QRS-wave onset and the T-wave end (Tend)

(Baumert et al., 2016a). It is important to note that alternative measures of QT variability

have been studied, however, they are all foundationally derived from the QT-interval. Stan-

dard alternative measures of QTV include: normalised QT interval variance, short-term QT

interval variability and long-term QT interval variability. Another important measure of QTV,

which incorporates heart rate information, is the QT variability index (QTVi). Specifically, it

is defined as the normalised QT interval variance (Baumert et al., 2016a). In studies where

the HRV may be non-negligible, this normalisation is important.

Under resting conditions, HRV is considered a significant physiological source of QTV

(Cabasson et al., 2012). This link between QTV and HRV stems from the cellular depen-

dency of action potential duration on the cardiac cycle time (Zaza et al., 1991). Although

related, it has been demonstrated that a considerable QTV fraction is not correlated with

heart rate (HR) - thus, a significant portion of QTV is not linearly caused by HRV and may

contain important information (Almeida et al., 2006). In addition to HRV, the relationship

between QTV and T-wave amplitude has been studied. Hasan et al. (2013) found a signif-

icant difference in QTV between different leads and accredited the dissimilarity to varying

T-wave amplitudes across the different leads. Additional research has suggested that leads

with high SNR and tall T-waves tend to exhibit lower QTV (Avbelj et al., 2003). The rela-

tionship between QTV and other ECG features highlights the need for techniques capable

of accurately delineating the entire ECG when studying ventricular depolarisation and re-

polarisation.
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Figure 2.3. The QT interval measured across 148 subjects from the PTB database with each con-
taining approximately two minute recordings. Increased variability can be observed in
myocardial infarction patients (top) compared to healthy subjects (bottom).

QTV has been extensively studied across a broad range of cardiac diseases. It appears

to be useful for the ECG screening of CAD, left ventricular (LV) hypertrophy and LV sys-

tolic dysfunction (Schlegel et al., 2010). In CAD patients without prior myocardial infarction,

SDQT was found to be significantly increased (Vrtovec et al., 2000). Murabayashi et al.

(2002) investigated the relationship between ischemic episodes in patients with known

CAD. The investigation reported an association between acute ischemia and labile ven-

tricular repolarisation, indicated by an enhanced QTV. The cause of this relationship is

related to cellular changes, which accompany ischemic episodes, having a destabilising

effect on ventricular repolarisation (Murabayashi et al., 2002). Similarly, Hiromoto et al.
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(2006) investigated the the relationship between QTV and LV function in patients with pre-

vious myocardial infarction. The authors reported a strong correlation between QTV, the

infarcted site and LV function. In myocardial infarction patients, an elevated QTV has been

reported (Hasan et al., 2013). This phenomena can be observed in Fig. 2.3. Furthermore,

the authors observed that optimal discrimination between myocardial infarction patients and

healthy subjects could be observed by evaluating QTV across lead II. The interrelated rela-

tionship between CAD, myocardial ischemia and myocardial infarction may attribute to this

recurrent observation in increased QTV. In hypertrophic cardiomyopathy (HCM) caused

by beta-myosin heavy chain mutation, an increased QTVi has been reported (Atiga et al.,

2000). Additionally, in HCM patients from ambulatory ECG, increased SDQT was observed

(Cuomo et al., 2004). In summary, the described works demonstrate the importance of

assessing QTV when investigating cardiac defects.

QTV has similarly been investigated in non-cardiac diseases. Correlations between men-

tal disorders and increased QTV have been observed. In panic disorder (PD) patients, an

increased short-term QTVi has been reported (Baumert et al., 2016b; Pohl and K Yera-

gani, 2001; Yeragani and Kumar, 2000). Pohl and K Yeragani (2001) described a similar

increase in QTV - rising with the ingestion of the sympathetic stimulation agent, isopro-

terenol. Additionally, 24-hour Holter ECG recordings have indicated higher QTV measures

at night-time in patients with PD (Yeragani et al., 2002). Short-term antidepressant treat-

ment tended to increase QTVi (Koschke et al., 2009). Furthermore, in myocardial infarction

patients, depression and QTVi were correlated - suggesting an increased risk in SCD (Car-

ney et al., 2003). In sleep studies, elevated QTV has been observed in obstructive sleep

apnoea (Baumert et al., 2008). Similarly, an increased QT-corrected interval dispersion has

been reported in obstructive sleep apnoea patients. Bonnet et al. (2005) observed that

caffeine induced sympathetic activation resulted in increased QTVi during rapid eye move-

ment (REM) sleep. The authors concluded that the increase was most likely due to the

sympathetic effects of caffeine. QTV has been evaluated in numerous other non-cardiac

studies. In a spinal cord study (Ravensbergen et al., 2012), increased QTVi was reported

for thoracic nerve injury (T5-T6); this level of spinal cord injury relates to the vertebrae lo-

cated in the mid-back. Further studies have found a correlation between QTV and diabetes

mellitus, autonomic neuropathy and renal failure (Baumert et al., 2016a). The plethora of

research on both cardiac and non-cardiac diseases suggests QTV may contain important

information for improving the understanding of physiology and pathophysiology in these

conditions. Additionally, evidence suggesting similar QTV changes across related diseases

(e.g. - CAD, myocardial ischemia, myocardial infarction, CM and others) provides support
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for continued research efforts. Application specific tools capable of capturing subtle beat-

to-beat dynamics, both temporally and morphologically, are critical for the future study of

QTV.

VCG Features

Increased beat-to-beat variability in the QT interval has been linked to heart disease and

mortality. As such, a variety of VCG markers to assess ventricular repolarisation (QRS-

loop) and depolarisation (T-loop) lability have been proposed. A common metric is total

cosine R to T (TCRT), which is a measure of vector deviation between the QRS-loop and

T-loop. It is obtained by calculating the cosine values between the dominant QRS-loop

and T-loop vectors within the optimised decomposition space. The TCRT metric has been

analysed in a series of studies (Acar et al., 1999; Smetana et al., 2004). The clinical utility

of TCRT is unclear, showing predictive capabilities for cardiac mortality in some studies

(Porthan et al., 2009; Huang et al., 2009), whilst not in others (Perkiömäki et al., 2006;

Lin et al., 2007). The majority of previous studies utilised single beat analysis of the VCG.

In Hasan et al. (2012a), beat-to-beat dynamics of TCRT were investigated by evaluating the

mean and standard deviation across each recording. The authors observed no significant

difference between myocardial infarction patients and healthy subjects. The aforementioned

study (Hasan et al., 2012a), is the most comprehensive analysis of beat-to-beat dynamics

in myocardial infarction patients to date. Three distance variability (DV) features pertaining

to dynamic ventricular depolarisation (T-loop) assessment presented in this study included:

1) standard deviation (SD) of mean loop length (MLL), 2) SD of DVT and 3) mean of DVT.

Briefly, the MLL was obtained by the euclidean summation of consecutive points in the loop.

The DV was obtained by taking the coefficient of variance of the shortest point-to-point dis-

tance between the T-loop and template T-loop; the shortest distance was determined by

employing kNN between the two loops. Each of the three VCG features mentioned was

reported to demonstrate a statistical difference between myocardial infarction patients and

healthy subjects. Tereshchenko et al. (2010) investigated ventricular ventricular arrhyth-

mias in implantable cardioverter-defibrillator (ICD) using beat-to-beat VCG metrics. The

authors reported that large T-peak cloud volume (convex hull volume of T-peaks across a

serial recording) is associated with increased risk of VT in patients with structural heart dis-

ease and systolic dysfunction. In a follow-up study, (Han and Tereshchenko, 2010) similarly

Page 25



2.2 Registration and Machine Learning

reported a correlation between elevated T-peak cloud volume, sustained VT and appro-

priate therapies. Additional investigations have reported predictive value between three-

dimensional QRST integral sums and SCD (Sur et al., 2013). The investigation of dynamic

VCG features in cardiac diseases is promising and requires further study.

2.2 Registration and Machine Learning

In this section a brief overview of image registration and machine learning is provided.

Registration and machine learning serve an important role in the original contributions of

this thesis. Registration-inspired transformation and optimisation are employed in the study

of ECG feature extraction. Machine learning is used to assess the discriminative abilities of

given features in diagnosing heart disease.

2.2.1 Registration

Registration can be described as the process of aligning two sets of data by a spatial trans-

formation. There are two primary fields of study in registration: image and point-set. The

two are extremely intertwined and overlapping. Image registration relies on image intensi-

ties whereas point-set registration is applied across point clouds. In this thesis, they encom-

pass the umbrella term - registration. Through registration, correspondences between data

samples can be obtained. This is important in pseudo-periodic biomedical signals where

subtle feature shifts manifest between cycles and in the presence of noise.

The general registration process consists of three distinct mathematical considerations:

shape representation, transformation and registration criteria (Huang et al., 2006). Shape

representation pertains to the selection of data description, common choices include: clouds

of points (Cartesian coordinates), Fourier descriptors and medial axes. Transformation cor-

responds to the mathematical model under which the data are transformed. Data can be

transformed globally or locally. Global transformations homogeneously alter data and in-

clude the set of affine transformations: translation, rotation, skew (line parallelism preserv-

ing distortion) and scaling (Oliveira and Tavares, 2014). Local transformations correspond

to inhomogeneous mathematical motions, common methods include: optical flow, free form

deformations (FFD) and thin plate splines (TPS) (Huang et al., 2006). Lastly, registration

criteria relates to the process under which optimal transformation parameters are obtained.

This can be achieved by an estimate of geometric correspondences which are then used
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to estimate the transformation. Alternatively, energy functionals can be optimised using

derivative/heuristic techniques. Registration and template adaptation draw many parallels.

However, template adaptation methods typically neglect to treat temporal deviations as a

two-dimensional process and with moving point-to-point correspondences.

2.2.2 Machine Learning

Classification describes the process in which a computer program is queried to specify

which of k categories an input belongs to based on a feature vector (Goodfellow et al.,

2016). Where labelled data is provided (a priori knowledge), classification is considered

supervised learning (Sathya and Abraham, 2013). Unsupervised learning describes a sys-

tem where categorical labels are not provided. Instead, the classification algorithm infers

category separation using techniques capable of determining which observations are re-

lated. Many classification algorithms exist, including but not limited to: linear discriminant

analysis (LDA), adaptive boosting, naive Bayes, support vector machines, decision trees

and logistic regression (Sarker, 2021). In this thesis, classification is performed by super-

vised learning methods, namely: kNN and LSTM. For brevity, a brief overview of machine

learning techniques only related to the original contributions of this thesis are provided.

Classifier

Input Output

Figure 2.4. Flow diagram of an idealised supervised classifier trained to discriminate three cate-
gories (circle, hexagon and triangle).

Classification in supervised learning is defined by a series of processes. The first step re-

quires the input of labelled observational data into the classification algorithm. For each

observation, the probability it belongs to any given class is estimated using the cost func-

tion which the classifier was previously trained on. Common cost functions include dis-

tance metrics and statistical measures of similarity. The training step involves the optimised

minimisation of the classification error between the input (labelled data) and the classified
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output samples. Fig. 2.4 depicts the information flow for an arbitrary supervised learning

classifier.

k-Nearest Neighbours

The kNN algorithm is a simple and interpretable method for classification requiring two

design selections: 1) the distance function and 2) the value of k - which denotes the number

of neighbours to evaluate the distance function against (Zhang, 2016). Classification is

performed by a majority vote based on historical data stored in the framework (Sarker,

2021). For the case where k is selected to be an even number, the tie-break can be decided

by evaluating the distance values to each of the k neighbouring samples, or at random. kNN

is considered an instance-based learning method since it does not focus on constructing a

general internal model, instead it stores all instances of the provided training data (Sarker,

2021).

Artificial Neural Networks

An artificial neural network (ANN) is a machine learning framework in which non-linear

elements (neurons) are ordered in successive layers (Lek and Park, 2008). Information

flow is unidirectional, flowing from the input layer to the output later, via a hidden layer or

series of hidden layers. Nodes are connected between layers with no lateral connection

between nodes or feedback in any given layer (Lek and Park, 2008). Each neuron contains

a set of parameters, known as weights and biases, which through an iterative process

(back-propagation) are updated to minimise the difference between predicted and target

outputs. The predicted output is obtained by the forward-propagation process, in which the

current weight and bias values are employed to produce an estimate (Goodfellow et al.,

2016).

Recurrent Neural Networks

Recurrent neural networks are a set of algorithms related to ANN with feedback links capa-

ble of incorporating current and past information. They are used in analysing and learning

sequential data such as time series (Sarker, 2021). Generally, a recurrent neural network

(RNN) contains a series of stacked neural networks that are capable of passing informa-

tion across time steps. During back-propagation and forward-propagation, the state of the

current time step is inferred from all previous time steps. The most commonly employed

RNN is the LSTM. The LSTM was proposed to address long-term dependencies that occur
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in muli-layer neural networks (Hochreiter and Schmidhuber, 1997). The authors introduced

the use of memory cells, which are able to discern relevant information and control the

information flow between stacked networks (Hochreiter and Schmidhuber, 1997).

2.2.3 Automated ECG Analysis Applications

A number of mathematical models have been employed in the ECG and VCG to measure

cardiac repolarisation and depolarisation lability. Similarly, a series of classification frame-

works have been used to assess their diagnostic and prognostic capabilities in assessing

cardiac diseases. Here, a brief review is provided into: 1) automated (and semi-automated)

QTV and VCG techniques and 2) myocardial infarction and myocardial ischemia classifica-

tion methods.

QTV Methods

Automated ECG delineation is an area of research which has received much attention. ECG

delineation is a difficult task due to the varying manifestation of conditions and diseases

in waveform morphology. In QTV analysis, this task is further complicated by the subtle

beat-to-beat changes and reduced signal amplitudes in the T-wave. Simulated data for the

evaluation of the QT-interval has previously been generated (Baumert et al., 2012), against

which a series of algorithms have been evaluated (Schmidt et al., 2014, 2018a). Similarly,

annotated clinical data (QTDB) exists for the assessment of algorithmic measurement of

the QT-interval and other waveforms.

Numerous methods have been proposed for measurement of the QT-interval. One of the

most commonly employed is a derivative based technique (Baumert et al., 2012). The

derivative algorithm (Porta et al., 1998) is dependent on a series of pre-processing steps,

namely: QRS detection, parabolic fitting, identification of the isoelectric line, detection of

the T-wave and signal differentiation. Subsequently, the T-wave end is located where the

absolute value of the first derivative of the T-wave down slope is below a pre-determined

threshold. The performance of this algorithm was reported to be sub-optimal in comparison

to two early template based methods (Baumert et al., 2012). Template based methods have

evolved over time but follow the same underlying principle. A template of the entire beat or

segment(s) of the beat is obtained by averaging across the sequence (Schmidt et al., 2014,

2018a; Starc and Schlegel, 2006) or selecting a single representative beat (Berger et al.,

1997). Early template adaptation schemes were solely based on temporal adaptations. In
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Berger et al. (1997), the focus is on manually defining a QT interval by annotating the be-

ginning of the QRS complex and the T-wave offset for a single beat; the T-wave onset is

similarly annotated. The ECG is resampled to 1 KHz and R-peak detections is performed

via the automated Pan and Tompkins algorithm (Pan and Tompkins, 1985). For each beat,

the T-wave template is then compressed or stretched based on a sum of squared differ-

ences error function with a progressive search performed to determine the optimal scaling

factor (Berger et al., 1997). Finally, the duration of this scaled T-wave combined with the

constant time interval between the QRS onset and T-wave onset yields the estimated QT

interval. In Starc and Schlegel (2006), a similar sub-segment adaptation approach is taken.

However, the fundamental idea in this technique is to independently adapt template data

for both the QRS complex and the T-wave in a fully-automated manner. Template gener-

ation is performed by averaging the respective waves across 60 beats, with a dissimilarity

exclusion criteria included. Subsequently, the QRS-complex and T-wave are respectively

shifted along the temporal axis to obtain the best-fit relative to the template. Baumert et al.

(2012) reported that the two described template matching algorithms, particularly the time

shifting algorithm (Starc and Schlegel, 2006), performed better in QT interval detection

compared to conventional methods; the simulated data contained AWGN, BW and AM,

respectively. Thus, the authors recommended the use of template adaptation techniques

in future beat-to-beat analysis of QTV. More recently, Schmidt et al. (2014, 2018a) pro-

posed two-dimensional signal warping across the duration of an entire beat. In their works,

the authors stipulated that accurate QT interval measurement required adaptation across

both time and signal amplitude. Briefly, two-dimensional signal warping is performed by

obtaining a time-averaged template of the entire beat, with a rejection criteria. QT interval

annotation can be obtained manually or automatically and R-peak detection is obtained by

a previously proposed method (Afonso et al., 1999) - in the absence of manual QRS an-

notations. The template is locally adapted by a geometrically defined grid of control points

against each beat and optimised by minimising a sum of squared errors cost function. The

resultant waveform yields a warped signal capable of capturing subtle morphological devi-

ations in two-dimensions. The works of Schmidt et al. (2014, 2018a) yielded significantly

improved results in QT interval measurement against the same simulated database and

previously proposed template adaptation methods for QT interval detection (Berger et al.,

1997; Starc and Schlegel, 2006). Furthermore, statistical analysis of SDQT across the

PTB database yielded a significantly increased QTV in comparison to the template stretch

algorithm (Berger et al., 1997).
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The performance of two-dimensional signal warping has also been assessed against the

QTDB. This database contains manual QT interval annotations and has been previously

used by a series of a methods (Laguna et al., 1994; Vullings et al., 1998; Martinez et al.,

2004; Zifan et al., 2005; Dubois et al., 2007; Rincón et al., 2011) to assess performance

of ECG delineation with results reported for QRS onset and T-wave offset measurement.

Early works (Laguna et al., 1994), focused on delineation via the use of the differentiated

ECG signal and information related to wave shape. The method utilised criteria to iden-

tify wave presence or absence in each lead according to the relative differentiated signal

magnitude in the different waves. Subsequently, the wave boundaries were inferred using

a threshold based analytical rule inferred from manual expert measurements. Later works

by Vullings et al. (1998) proposed the use of dynamic time warping (DTW) across an an-

notated reference beat in three regions, namely the: P-region, QRS-region and T-region.

DTW determines the optimal match between two time series by evaluating a cost path and

imposing a series of restrictions; this method shares similarities with template adaptation.

In Martinez et al. (2004), a wavelet based algorithm was proposed to delineate the ECG.

At the time of publication (2004), the authors reported the lowest standard deviation error

in the T-wave offset (18.1 ms) in supervised two lead evaluation. Zifan et al. (2005) pro-

posed the automated delineation of ECG by using a piecewise derivative DTW; to date, this

method has yielded the lowest standard deviation error in the measurement of the QRS

onset (3.60 ms) across the QTDB. Consequent works, by Dubois et al. (2007), described

an automatic ECG feature extraction technique using generalised orthogonal forward re-

gression (GOFR) combined with a custom parameterised function - the Gaussian mesa

function. GOFR segments the heartbeat signal into a series of Gaussian mesa functions

where each wave is modelled by a single function; thus, producing an interpretable result.

However, the authors did not report QRS onset results; additionally, the reported standard

deviation error in T wave offset detection is the highest amongst the reviewed literature.

Lastly, Rincón et al. (2011) proposed an additional wavelet-based ECG delineation algo-

rithm with a multilead caveat to exploit the information available across multiple leads and

improve accuracy, stability and resilience to artifacts compared to single-lead systems. At

the time of publication (2011), the authors reported state-of-the-art performance in super-

vised two-lead evaluation - with their method yielding the minimum standard deviation error

in the T wave offset (16.9 ms) and the second-lowest standard deviation error in the QRS

onset (7.0 ms). However, the subsequent development of two-dimensional signal warping

(Schmidt et al., 2014) yielded both a lower standard deviation error in the T-wave offset
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(12.8 ms) and QRS onset (6.1 ms) in supervised two lead evaluation. For detailed numeric

results pertaining to the outlined algorithms refer to Table 4.3.

VCG Methods

Automated beat-to-beat QT interval feature extraction in VCG has received far less consid-

eration than it’s contemporary, the ECG. In large part, this is due to the relative sparsity of

available VCG data and the difficulty in assessing VCG morphology relative to physiology.

As such, a well-established metric akin to QTV in ECG has not been adopted for the as-

sessment of ventricular depolarisation and repolarisation lability. Furthermore, no standard

annotated database exists for the assessment of VCG loop feature accuracy. However,

beat-to-beat methods have been assessed against simulated data (Astrom et al., 2000)

and in diagnostic or prognostic applications for several cardiac diseases (Hasan and Ab-

bott, 2016).

Subtle beat-to-beat variation in QRS-loops of the VCG have been employed to study elec-

trical instability of the heart. In such studies, the variability was quantified by the ensemble

variance of successive time-aligned sinus beats (Ben-Haim et al., 1991; Prasad and Gupta,

1979). Furthermore, these works considered an increased variance to be indicative of

cardiac instability. However, these methods were inherently flawed as they employed in-

adequate means for respiratory compensation by neglecting loop alignment; thus, suffering

from increased variability unrelated to cardiac defects. Loop alignment refers to the process

of optimally positioning each beat to a reference beat. It can be considered a form of three-

dimensional template adaptation where the loop(s) of each beat are adapted to a reference

beat. To address this limitation, Sörnmo (1998) proposed a method for global alignment

of VCG. The authors employed rotation, scaling and time synchronisation to achieve ap-

propriate loop alignment. Parameter estimation was achieved using a maximum-likelihood

estimator. The study reported that measurements on morphological variability were re-

duced by a factor of 0.53 after loop alignment. Further analysis by Astrom et al. (2000)

assessed the breakdown noise level of the proposed loop alignment technique; concluding

that the breakdown point is highly correlated to the loop morphology. Loop alignment analy-

sis holds important implications for beat-to-beat assessment of trigonometric VCG features

such as TCRT.

In Karsikas et al. (2009), the authors assessed differences in CAD patients versus healthy

subjects using TCRT. The method employed a simple framework consisting of: digital fil-

tering, an R-detector, removal of extrasystoles and heart-rate normalised segmentation
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of the QRS-loop and T-loop. TCRT analysis has been further expanded to account for

rate-dependence using regression fitting (Kenttä et al., 2010). In their investigation, the

authors attempted to account for rate dependence by analysing a series of regression mod-

els, including: linear, hyperbolic, parabolic, logarithmic, shifted logarithmic, exponential and

second-degree polynomial. Additional works, by Han and Tereshchenko (2010), proposed

a method for the assessment of ventricular lability using convex hulls. The technique em-

ployed baseline wander correction using a zero-order polynomial fit between R-peaks and

subtraction between the polynomial fit and the baseline. Severe noise was reduced with a

low-pass filter and premature ventricular complex beats were manually rejected.

Ischemic Beat Classification

Myocardial ischemia detection methods have been explored using a variety of threshold-

based and classification techniques. The literature in myocardial ischemia can be separated

into two distinct areas - ischemic episode detection and ischemic beat detection. In this the-

sis the focus is on the beat specific aspect of ischemic detection. The database employed in

this thesis, and existing ischemic beat classification research, is the EST-T database; which

is publicly available with ischemic episode annotations on Physionet. To study ischemic

beat detection, an external set of beat-specific annotations have been generated for this

database. The key advantage in using this subset of updated annotations is that they do

not assume that each beat in an ischemic episode may necessarily manifest as an ischemic

beat. Techniques which assessed this same subset of ischemic beats are described below.

In Papaloukas et al. (2001), the authors used a knowledge-based technique (with thresh-

olds for the J80 point and ST segment slope) in conjunction with pre-processing steps

for ECG noise handling and feature extraction. Subsequent works (Papaloukas et al.,

2002b,a), employed the use of principal component analysis (PCA) and ANN for ischemic

beat detection. Raw ECG information was fed into the classifier and PCA, a popular di-

mensionality reduction technique, was used to decrease the input feature size. Further

investigations evaluated the use of multi-criteria decision analysis (Goletsis et al., 2003,

2004) and mining-based association rule classification (Exarchos et al., 2006). Additionally,

fuzzy expert systems (Exarchos et al., 2007; Tsipouras et al., 2007) have been investigated

in the development of ischemic beat classifiers. These systems employed the use of a crisp

set of rules to deduce a series of fuzzy rules, thus, creating a fuzzy model.
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Myocardial Infarction Classification

Myocardial infarction classification has been extensively studied in ECG. Researchers have

used a variety of pre-processing methods, features and classifiers (Ansari et al., 2017).

Commonly employed pre-processing methods have included baseline wander removal,

noise removal, beat averaging and ectopic beat removal (Ansari et al., 2017). From a

feature standpoint - morphological descriptors (e.g. ST-segment deviation), wavelet trans-

forms and PCA have been widely employed to reduce dimensionality and improve robust-

ness. Here, a broad overview of the primary classification techniques is described, with a

specific focus on methods analysing the PTB database.

Classification techniques have greatly evolved with the advent of deep learning and im-

provements in computational resources. Earlier methods relied on less computationally

demanding techniques such as DTW. In Huang and Kinsner (2002), the authors proposed

a DTW system combined with thresholding to achieve frame classification - the study re-

ported an 89.7% sensitivity and 84.6% specificity across a single recording from the MIT-

BIH Arrhythmia database. Zhou et al. (2011) used a polynomial approximation combined

with PCA and a support vector machine (SVM) to achieve classification - they reported an

98.7% sensitivity and 96.6% specificity across the PTB database. Arif et al. (2012) em-

ployed the use of a kNN scheme to achieve detection - obtaining a 99.6% sensitivity and

99.1% specificity across the PTB database. In Sharma et al. (2015), a multiscale energy

and eigenspace approach was introduced for classification of myocardial infarction. The

basis for the framework was that pathological information alters covariance structures of

multiscale multivariate matrices; and that eignevalue analysis can capture these morpho-

logical deviations when combined with SVMs. The authors reported a 93% sensitivity and

99% specificity across the PTB database. More recently, numerous deep learning methods

have been presented. Lui and Chow (2018) proposed a convolutional neural network (CNN)

combined with a RNN to achieve classification. The study reported a 92.4% sensitivity and

97.7% specificity across the PTB database. Similar works by Acharya et al. (2017) re-

ported a 95.5% sensitivity and 94.2% specificity by implementing a CNN against the same

database. More advanced deep learning concepts such as, transfer learning, have also

been presented in literature (Kachuee et al., 2018). In this investigation, information learned

from arrhythmia classification was utilised as a reference for training of the evaluated CNN

classifiers. The authors reported a 95.2% precision and 95.1% recall rate across the PTB

database, respectively. Image processing inspired techniques have also arisen in literature,

where one-dimensional ECG data are transformed by the use of Gramian Angular Fields,
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Recurrence Plots and Markov Transition Fields into an aggregated image (Ahmad et al.,

2021). CNN outputs of the images are then fed into an SVM to perform classification. The

authors reported both a 98% statistical precision and recall rate across the PTB database.

Significantly lesser research efforts have been placed on VCG based myocardial infarction

detection. This is in part due to a clinical preference toward analysing the ECG. However,

some works have incorporated VCG data in their classification frameworks and reported

promising results. In Yang (2011), the authors proposed a multiscale recurrence quantifi-

cation analysis of VCG across multiple wavelet scales combined with three classification

methods, namely: LDA, quadratic discriminant analysis and kNN. The overall classification

accuracy of the LDA (accuracy-92.7%, sensitivity-96.5%, specificity-75%) was shown to

outperform the scores of eight cardiologists (accuracy-87.2%, sensitivity-80.3%, specificity-

97.1%) employed for the study by 5.5% across the PTB database. An additional analy-

sis using DTW and self-organising maps across VCG was presented by the same group

(Yang et al., 2013) - they reported a 91.4% accuracy, 86.8% sensitivity and 92.5% speci-

ficity in distinguishing myocardial infarction patients from healthy subjects across the same

database.

2.2.4 Limitations in Previous ECG Analysis Applications

Although great strides have been made, the presented literature on ECG and VCG evalua-

tion methods still has several areas requiring further investigation. Firstly, for the analysis of

ventricular depolarisation and repolarisation lability in VCG, no concerted effort has been

made to capture subtle morphological changes, which carry important diagnostic and prog-

nostic information. Current VCG literature focused on adaptation methods has solely ex-

plored global variations in loop morphology, namely: time synchronisation, translation, rota-

tion and scaling. Nonetheless, previous investigations on loop morphology have presented

important findings paving the way for further research. Furthermore, inhomogeneous tem-

plate adaptation methods in ECG have been previously investigated and demonstrated

state-of-the-art results in QTV measurement. Since the VCG consists of three orthogonal

ECG leads, the state-of-the-art performance of template adaptation should theoretically ex-

tend in three-dimensions. Moreover, previously proposed methods in VCG analysis have

primarily focused on trigonometric features such as TCRT. Important results have been

demonstrated from the analysis of trigonometric variables, in turn, providing a basis for the

analysis of geometric variables. The sparse analysis of geometric features has in part been

due to the lack of an adequate VCG pre-processing framework. In summary, a tailored
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method has not been previously proposed to study complex VCG beat-to-beat variations in

morphology.

Although template adaptation methods have previously demonstrated state-of-the-art re-

sults in ECG literature, further modes of improvement can be explored. Firstly, the majority

of methods have focused on homogeneous template adaptation, in turn, neglecting to cap-

ture a significant amount of spatial information. For methods that have addressed template

adaptation as a two-dimensional process, the correspondence problem between point-sets

has not been treated as a moving and probabilistic process. Additionally, the performance

of these methods has been been assessed across other quasi-periodic biomedical signals

(e.g. - PPG). Hence, a general solution treating inhomogeneous template adaptation as

a time-series registration process, ought to be explored using inhomogeneous template

adaptation as a foundation.

In ischemic beat detection literature, little emphasis has been placed on utilising robust fea-

ture extraction methods such as template adaptation, which have recently demonstrated

improved performance relative to previously proposed methods. Additionally, current litera-

ture studying ischemic beat detection has neglected to utilise appropriate cross-validation

techniques, thus reporting results which are not necessarily representative of true perfor-

mance across unseen data. This is the case as previous works have permitted data leakage

between training and validation sets in the classification process. A hold-out or k-fold cross

validation scheme has not been employed in these works. Thus, the evaluation of sys-

tems with adequate feature extraction and cross-validation should be explored to build on

previous works.

In myocardial infarction applications, little research effort has been placed on utilising VCG

for classification. Furthermore, the use of LSTMs has been neglected. LSTMs should

theoretically be able to capture subtle and complex morphological relations pertaining to

variability across temporal sequences - by exploiting past information. Furthermore, pre-

processing involving the use of template adaptation techniques has received little attention.

Such methods have been shown, in this thesis and previous works, to exhibit improved ca-

pabilities in capturing subtle beat-to-beat morphological variations. Hence, pre-processing

and classification are both areas which can be further investigated in myocardial infarction

detection.

Although promising research has been conducted on VRV in non-ischemic CM patients, the

potential for risk stratification remains unclear. In particular, beat-to-beat variability metrics
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have received little attention outside of HRV and QTVi. Beat-to-beat variability has been ob-

served across a variety of cardiac conditions and diseases. Thus, further study of ECG and

VCG metrics assessing risk stratification in non-ischemic CM patients should be pursued

to provide additional insights.

2.3 Contributions

The key contributions that this thesis provides are separated into two parts: algorithm de-

velopment and respective applications. In the algorithm development chapters, gaps in cur-

rent VCG and ECG algorithmic literature are addressed. Subsequently, in the applications

chapters, the developed algorithmic frameworks from the first section are employed in the

analysis of several cardiac diseases, including: myocardial ischemia, myocardial infarction

and non-ischemic CM.

2.3.1 Algorithmic Development

Firstly, VCG analysis was addressed as an inhomogeneous template adaptation process.

This study introduced a method capable of capturing subtle beat-to-beat morphological

deviations in three-dimensional data. Previous literature has solely addressed this as a

homogeneous process; focusing on global changes in morphology. Furthermore, geomet-

ric features of T-loop variability were adapted from previous works and applied to study

myocardial infarction. The method utilised parametric fitting drawn from computer vision

studies in the form of - FFD, combined with kernel ridge regression to capture localised

deviations in signal morphology. State-of-the-art pre-processing was performed utilising

two-dimensional signal warping, for the purpose of T-loop extraction.

Subsequently, a novel two-dimensional template adaptation method was formulated as a

modified registration process. Similarly to the first method, the technique employed FFD

parametrisation, however, in two-dimensions. In this work, the FFD control point grid was

resolved as an incremental process via gradient based optimisation. This produced an

interpretable physical result pertaining to the control point locations. Furthermore, a con-

strained correspondence matrix was employed which permitted for non-binary probabilistic

correlations between samples of the template and target data, thus, allowing for temporal

interpolation. The method was assessed against state-of-the art ECG algorithms using pre-

vious benchmarks, and additionally against simulated PPG data. The latter demonstrated

the generalisation capabilities of the algorithm in other quasi-periodic biomedical signals.
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2.3.2 Algorithmic Applications

A novel technique for ischemic beat detection was proposed using the correspondence

based two-dimensional template adaptation algorithm. The framework employed a semi-

automated and fully-interpretable model for the detection of ischemic beats by combining

template adaptation with a kNN classifier. The interpretability aspect is significant as many

previous works in ischemic detection have neglected to employ methods which can readily

be understood by medical practitioners, thus, limiting clinical potential. Furthermore, in

ischemic beat detection, previous works have neglected to undertake appropriate cross

validation of their systems. In these works, data leakage has been permitted between

training and testing data, thus providing a biased assessment of performance. In this thesis,

algorithmic assessment is performed using a hold-out strategy to yield more representative

statistical measures of performance on unseen data.

Lastly, three-dimensional VCG template adaptation was applied across two smaller studies

for the purpose of myocardial infarction detection and VRV analysis in non-ischemic CM.

In the myocardial infarction study, two limitations of previous works were addressed - the

lack of appropriate pre-processing for VCG and the lack of a classifier capable of capturing

historical data (i.e. - LSTM). The second study is a novel investigation into VRV and risk

stratification in patients with non-ischemic CM; an area of research that is still unclear.

In this investigation, all-cause mortality was assessed against dynamic VCG features and

cQTVi - where patients with a high cQTVi were found to have a higher all-cause mortality

in univariate survival analysis.
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Inhomogeneous Template Adaptation of

Temporal Quasi-Periodic

Three-Dimensional Signals

The content of this chapter is a modified version of the publication:

Karisik, F. and Baumert, M. (2019), ‘Inhomogeneous Template Adaptation of Temporal

Quasi-Periodic Three-Dimensional Signals’, IEEE Transactions on Signal Processing 67,

pp. 6067–6077.
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Abstract

We propose a novel framework for performing inhomogeneous template adapta-

tion on temporal three-dimensional data. Templates of interest are first globally

translated and rotated using statistical methods in the form of Procrustes anal-

ysis. In this globally adapted form, the data is parameterized to a minimum

bounding rectangular prism using a parameterization method known as free-

form deformation. The parameterized model is then reduced to a linear least

squares problem, which subsequently allows for a robust local template adap-

tation scheme utilizing a non-parametric formulation. To account for complex

noise behaviour encountered in quasi-periodic signals, we ensue to complete

the framework with an adaptive noise model. We demonstrate the power of

the proposed framework using three applications: firstly, we quantify the ability

of the proposed framework to track geometric features of heart disease on a

synthetic dataset containing three-dimensional electrocardiogram signals. Next

we track these features on a publicly available real dataset (PTB database) to

demonstrate its potential in heart disease diagnostics. Lastly, we apply the pro-

posed framework to map three-dimensional velocity profiles using the publicly

available Complex Upper-Limb Movements database.

3.1 Introduction

In signal processing, template adaptation is a technique utilized to match two patterns.

Template adaptation accounts for morphological changes by allowing certain variations in

the template signal, for which a minimization technique is utilized to obtain the optimal

transformation.

Template adaptation techniques are particularly paramount in quasi-periodic signal pro-

cessing applications (Schmidt et al., 2014; Starc and Schlegel, 2006; Berger et al., 1997;

Andreotti et al., 2013). Traditionally, three-dimensional template adaptation techniques in

signal processing have focused on a global scale (Astrom et al., 2000). Global adapta-

tion refers to obtaining an optimal homogeneous rotation, translation, scaling and reflec-

tion. Conversely, local adaptation refers to obtaining an inhomogeneous data transfor-

mation reflecting localized morphological changes. In this paper, we introduce a novel
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framework for applying an inhomogeneous template adaptation for temporal quasi-periodic

three-dimensional signals using a global-to-local approach.

We relate template adaptation to the registration problem commonly encountered in com-

puter vision. Registration refers to the problem of obtaining a mapping function between two

finite point sets in order to minimize a mutual distance metric (Maiseli et al., 2017). Similar

to template adaptation, rigid (global) registration refers to homogeneous transformations

and non-rigid (local) registration refers to inhomogeneous transformations. Extensive re-

search has been undertaken in non-rigid registration with many applications in shape and

image recognition (Vemuri et al., 1998; Huang et al., 2006; Oliveira and Tavares, 2014).

The registration problem is an ill-posed problem and has thus received much attention in

literature (Besl and McKay, 1992; Pomerleau et al., 2015; Pluim et al., 2003; Crum et al.,

2004; Hill et al., 2001). Broadly speaking, non-rigid registration methods differ in three main

aspects: representation, transformation and registration criterion (Huang et al., 2006). In

this work, we focus on the transformation aspect of registration techniques.

The iterative closest point (ICP) algorithm is perhaps the most notable registration method

due to its simplicity and efficacy. Although many variants exist, the generalized ICP ap-

proach obtains an optimal translation and rotation by minimizing some error metric itera-

tively (Besl and McKay, 1992). From a transformation model perspective, the ICP algorithm

iteratively performs an optimal rotation and translation. This transformation model is consid-

ered to be the simplest and one of the most commonly used registration methods; however

the registration method is highly susceptible to outliers in its fundamental form.

Another class of non-rigid registration methods is based on computer graphics parameter-

ization, where a reference shape is embedded into a user defined shape described by its

control points. Many such parameterizations exist, including but not limited to: free-form

deformation (FFD) (Sederberg and Parry, 1986), barycentric coordinates (Floater et al.,

2005) and thin-plate splines (Bookstein, 1989). From the aforementioned, FFD is the most

commonly implemented technique in registration problems. In this work, we focus on a

probabilistic idea of shape formed by a prior based on FFD with a noise adaptive regu-

larization term; in the process avoiding expensive iterative transformations. Sederbeg and

Parry introduced FFD in 1984 as a computer graphics deformation technique. In three

dimensions, FFD models embed data into a parallelepiped lattice of control points, where

subsequent shifting of control points results in smooth localized deformations. Due to its low

computational cost and relative ease of implementation, FFD is the dominant parameteri-

zation model in registration techniques. Various models for shifting the control points have
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been proposed. Rueckert et al. (2001) suggested the use of a mutual information based

criterion to solve FFD embedded magnetic resonance image registration problems. Many

similar methods have been proposed in the field of image registration (Pluim et al., 2003),

however these methods are known to be computationally expensive. In this work, we intro-

duce an adaptive non-parametric least squares minimization to achieve a computationally

cost-effective transformation.

In signal processing, where temporal quasi-periodic signals are commonly of interest a

prior one-to-one correspondence can be obtained by re-sampling or interpolating the target

shape to match the length of the reference shape; assuming quasi-periodicity. Thus, with a

correspondence in place, we treat quasi-periodic signals as the transformation aspect of a

registration problem, with a focus on obtaining a mapping function between a template and

noisy target signal. This is the first such formulation in three-dimensional signal processing.

We aim to illustrate the potential of the forthcoming algorithm by quantifying its ability to ro-

bustly measure the variation of three-dimensional physiological signals. Additionally, we aim

to illustrate its potential for three-dimensional tracking of hand movement. The electrocar-

diogram (ECG) is one of the most extensively studied physiological signals (Almeida et al.,

2006; García et al., 2003; Sameni et al., 2007). It describes the temporal changes in

summed electric potential created by heart muscle cells (Clark and Kruse, 1990). A sig-

nificant segment of the ECG is denoted as the QT interval. It represents the period of

the ventricular depolarization and repolarization process during a cardiac cycle. These

processes vary non-linearly from beat-to-beat and elevated QT interval variability has in-

dicated to be a robust predictor of cardiac diseases as well as mortality (Baumert et al.,

2016a; Hasan et al., 2012a). Quantifying these subtle changes is technically challenging

and and sophisticated template matching algorithms have shown to produce state-of-the-art

performance (Baumert et al., 2012; Starc and Schlegel, 2006). Relatedly, vectorcardiogra-

phy (VCG) is the method of recording the electrical field vector magnitude and direction of

activity in the heart (Chou, 1986). VCG produces a method to represent cardiac electri-

cal activity in three orthogonal directions. Recently, beat-to-beat variability in several VCG

features has indicated the ability to provide potential diagnostic information for myocar-

dial infarction patients (Hasan et al., 2012a). However, existing signal processing methods

utilized to study morphology solely focus on a global template adaptation, neglecting inho-

mogeneous morphological changes.
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3.2 Methodology

In this section, we describe in detail the template adaptation framework. We first explain

Procrustes analysis as a statistical tool to achieve global adaptation. Next, we describe the

parameterization technique applied on the template. Thereafter, we introduce the notion of

ridge regression and formulate our problem as a kernel ridge regression (KRR). We expand

on the KRR by briefly describing the kernel used in this work. Next, we present a method

for dealing with observations of varying noise level through a simple noise estimation tech-

nique. To conclude the section, we describe a subtlety in our implementation boosting

performance time and provide a pseudo-code implementation of the proposed framework.

3.2.1 Procrustes Analysis

Procrustes analysis is a statistical shape analysis technique most commonly used to glob-

ally align shapes by any combination of optimal translation, rotation, scaling and reflection

(Rohlf and Slice, 1990). In our proposed framework, we employ Procrustes analysis for

global translation, scaling and rotation of the template. The template and target data are

treated as ordered three-dimensional signals. The problem of optimal translation, scaling

and rotation can be expressed as an optimization problem to obtain the translation compo-

nent (T), scaling factor (s0) and the rotation component (R) in the ensuing equation:

Yg = s0R(Yo) + T, (3.1)

where where Yg denotes an N × 3 matrix containing the globally adapted template and

Yo denotes an N × 3 matrix containing the original template signal. Procrustes analysis

commonly employs a least squares formulation and singular value decomposition (SVD)

to obtain the optimal values. The optimal rotation can be obtained using the centroids of

the template and target data combined with a SVD. Firstly, we obtain the centroids in the

following manner:

Ȳo =
1
N

N

∑
a=1

Ya
o , (3.2)

Ȳt =
1
N

N

∑
a=1

Ya
t , (3.3)
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3.2.1 Procrustes Analysis

where Yt an N × 3 matrix containing the target signal, Ȳo a three-dimensional vector and Ȳt

a three-dimensional vector. SVD factorizes a matrix into the product of three matrices; (5),

where the columns of U and V are orthonormal and the diagonal matrix D contains positive

real entries (Strang, 2016). Using the obtained centroid values and SVD the optimal rotation

matrix can be obtained in the following manner:

H = ∑N
a=1(Y

a
o − Ȳo)× (Ya

t − Ȳt)T, (3.4)

where the SVD of H is given by:

H = UDVT, (3.5)

leading to the optimal rotation matrix:

R = VUT. (3.6)
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Figure 3.1. Example of a three-dimensional global adaptation (red) of template (green) to noisy
target (black). The top row (a) shows the result of the adapted three-dimensional signal.
Rows two (b), three (c) and four (d) depict the amplitude of each adapted orthogonal
channel X, Y and Z against time.

Using the result of the optimal rotation matrix, the optimal global scaling factor and transla-

tion matrix can be obtained. The global scaling factor is defined by the normalized trace of
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the diagonal matrix D. The translation is the sum of two elements; the rotated centroid of

the template and the centroid of the target data. Mathematically, this can be expressed as:

T = −R(Yo) + Yt. (3.7)

The result of the globally adapted template using Procrustes analysis can be observed

in Fig. 3.1. Although the global adaptation serves as a useful first step in adapting the

template, it is unable to adapt the template to capture subtle inhomogeneous morphological

changes.

3.2.2 FFD Parameterization

Free-form deformation is a computer graphics technique for deforming geometric data

in a free-form manner (Sederberg and Parry, 1986). Data are embedded into a three-

dimensional parallelepiped, defined by lattice of control points, where each embedded data

point is parameterized to the lattice of control points. By applying a FFD parameterization

onto geometric data, a linear relationship between the control points and data can be ob-

tained. We exploit the linear relationship to formulate a non-parametric statistical template

adaptation method.

Mathematically, FFD is defined in terms of a tensor product tri-variate Bernstein polyno-

mial. Free-form deformation imposes a local coordinate system on a parallelepiped re-

gion (Sederberg and Parry, 1986; Procházková, 2017). In this work, a constant lattice of

2 × 2 × 2 (eight control points) was used for all experiments. Fig. 3.2 illustrates a three-

dimensional signal enclosed by the minimum-bounding rectangular prism containing the

globally adapted template and the target signal as denoted in the caption. Any point, Ya
g ,

in the globally adapted template signal, Yg, has (s, t, u) coordinates in a FFD system ex-

pressed as:

Ya
g = Xo + sS + tT + uU. (3.8)

The (s, t, u) coordinates of Ya
g can be obtained in the following manner:

s =
T × U(Ya

g − Xo)

T × U × S
, (3.9)
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t =
S × U(Ya

g − Xo)

S × U × T
, (3.10)

u =
S × T(Ya

g − Xo)

S × T × U
, (3.11)

where Xo denotes the origin of the parallelepiped and {S, T, U} the embedding lengths

of the parallelepiped from the origin. In this coordinate system, the control points can be

expressed as:

Pijk = Xo +
i
l
S +

j
m

T +
k
n

U, (3.12)

where l, m, n denote the number of control points in each of the three directions (i.e.

l, m, n = 1) of the lattice and i, j, k the index (i.e. i, j, k = {0, 1}) of each control point

in the respective direction. To obtain a linear relationship between any sample point, a of

Ya
g , and an FFD lattice control point, Pijk, requires evaluation of the following equation:

xa
ijk = ∑ł

i=0 (
l
i)(1 − s)l−isi×

∑m
j=0 (

m
j )(1 − t)m−jtj×

∑n
k=0 (

n
k)(1 − u)n−kuk

(3.13)

where s, t and u denotes the embedding rectangular prism localized coordinate system.

Thus, by applying an FFD parameterization for each point in the template signal, Yg, we

can obtain the following linear relationship:

Yg = XV, (3.14)

where X denotes the N × 8 matrix containing the FFD weights and V the 8 × 3 matrix

containing the control point spatial coordinates.

To obtain a linear least squares adaptation of the template signal to a target signal, Yt, that

is, obtain the optimal location of the control points using (14), we formulate the location of

the control points in the following manner:

Vl = (XTX)−1XTYt, (3.15)
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such that,

Yl = XVl, (3.16)

where Vl denotes the optimal location of the lattice control points and Yl the locally adapted

template. Although elegant, this parametric template adaptation formulation is unable to

robustly adapt the template signal to a target signal due to a finite dimensional relation-

ship between the parameterization and data. To address this issue, we introduce a novel

non-parametric method with adaptive hyper-parameter estimation in the following section.

We formulate the linear least squares regression as a kernel ridge regression problem.

We no longer attempt to adapt the template by spatially shifting the control points in three-

dimensions, but instead we utilize the parameterized coordinates as input weights into the

non-parametric method; in the process conceding the smoothness properties of FFD, and

instead inheriting the smoothness properties of the nonparametric model described in the

next section. The parameterization of the template data to a minimum-bounding rectangular

prism is performed for each new target signal. In addition, the Procrustes analysis transfor-

mation produces a set of more robust FFD weights compared to a direct parameterization

on the original template. This is achieved by embedding the globally adapted template to a

lattice closer resembling the target signal.
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Figure 3.2. Example of globally adapted template (green) parameterization to a minimum-bounding
rectangular prism (grey) containing the three-dimensional template and current target
beat (black).

3.2.3 Kernel Ridge Regression

Kernel ridge regression can be considered the kernel extension of ridge regression (Schölkopf et al.,

2013). Ridge regression is a formulation of linear least squares which adds a regularization

term to the standard formulation (Marquardt and Snee, 1975). The role of regularization

in the proposed framework is to penalize overfitting the template to noisy observations.

Regularization can also serve as a method to produce a unique solution in regression prob-

lems (Neumaier, 1998). Formulating the inhomogeneous template adaptation process in
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the form of a KRR, we obtain:

f ∗(Yt, Λ, l, c1) = K(K + c1Λ)−1Yt, (3.17)

where Λ denotes the adaptive diagonal regularization matrix, l the adaptive kernel length,

c1 an adaptive scalar multiplying factor and K the kernelized form of the FFD weights matrix

X. We estimate c1 on a target-to-target shape basis using a heuristic method described

in the forthcoming section. Using this formulation, the parameterization matrix is embed-

ded by a kernel function that translates the finite-dimensional parametric model into a non-

parametric model. In this work, we employ a smoothing Gaussian kernel function (Hof-

mann et al., 2008). Mathematically, this kernel function can be expressed in the following

form:

k(x, x′) = exp(−|x − x2|
2l2 ), (3.18)

where l denotes the kernel width (Duvenaud, 2014). The kernel width dictates the length of

the wiggles in the adaptation function. For all experiments in this work, we used a variation

of a common mean estimation for the kernel width (Hofmann et al., 2008) as described in

Algorithm 1; we added a standard deviation factor to account for variations in scale. The

Gaussian kernel function was selected for its smoothing properties which are inherent to

the bell-shaped Gaussian distribution. The result of the local adaptation can be observed

in Fig. 3.3.

3.2.4 Adaptive Noise Estimation

To account for the dynamic nature of noise levels that may be encountered in quasi-periodic

signals, we employed an adaptive data-driven diagonal regularization matrix, which differs

from traditional regularization models that employ an identity matrix. We propose the use of

a normalised stationary noise estimation model, where each entry of the diagonal matrix λ

is estimated as the difference between observations. For an N × N diagonal matrix, Ytarget,

the ath diagonal entry can be mathematically expressed as:

Λa =
Ya

t − Ya−1
t

max(Λ)
. (3.19)

The intuition behind using a simple differentiation noise model stems from attempting to

penalize large deviations between points; thus simultaneously penalizing adaptations not
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Figure 3.3. Example of a three-dimensional global-to-local adaptation (red) of template (green) to
noisy target (black). The top row (a) shows the result of the adapted three-dimensional
signal. Rows two (b), three (c) and four (d) depict the amplitude of each adapted orthog-
onal channel X, Y and Z against time.

abiding to a quasi-periodic behavior and large deviations generated by a low SNR. Further-

more, we introduce an entirely novel adaptive heuristic for estimating the ridge regulariza-

tion factor, c1. The heuristic employs an activation function utilizing an inter-related ratio of

channel variance, rv, from the target signal. The ratio is defined as the minimum channel

variance divided by the sum of the three channel variances; the domain of rv is: [0, 1
3 ]. We

introduce the following piecewise activation function:

f (rv) =

−rvlog1.5(r
rv
v ) 0 < h ≤ 1

3 ,

0 otherwise.
(3.20)

The range of the activation function across the aforementioned domain is: [0,−1
3 log1.5(

1
3

1
3 )].

The introduced activation function logarithmically reduces the estimate of c1 in relation to rv,

a novel feature related to the planarity of the target signal; an increase in planarity requires

a reduction in regularization.

Page 49



3.3 Applications

The entirety of the concepts proposed in this work can be readily implemented. How-

ever, it should be noted that in our implementation of the FFD parameterization, we used

a vectorized solution to obtain the FFD weights, this implementation was found to perform

considerably faster than a conditional statement based implementation (∼7 times faster).

Algorithm 1 Algorithm for global-to-local template adaptation.
Input: Yo, Yt

Output: f ∗(Yt, Λ, l, c1)

1: Interpolate target signal, Yt, to length of template signal, Yo.

2: Compute globally adapted template, Yg, using Procrustes analysis.

3: Generate minimum-bounding rectangular prism (MBRP) control points containing the

globally adapted template and the current Yt.

4: for a = 1 to N do

5: Parametrize into X matrix each data point of Yg to MBRP using FFD.

6: Obtain differential noise estimate:

Λa =
Ya

t −Ya−1
t

max(Λ)
.

7: end for

8: Hyper-parameter estimation:

Obtain pairwise distance, pdist of X, such that:

l = mean(pdist) + 2std(pdist).

Obtain variance of each Yt channel (VarXYZ), such that:

rv = min(VarXYZ)
∑ VarXYZ

.

Apply non-linear activation function, yielding, c1.

9: Perform kernel ridge regression to obtain locally adapted template:

f ∗(Yt, Λ, l, c1) = K(K + c1Λ)−1(Yt).

3.3 Applications

In this section we perform a quantitative analysis of the proposed framework; in addition to

tracking three-dimensional features on synthetic signals, we demonstrate the potential for

tracking features on real data, a simple classifier and mapping upper-limb movements.

3.3.1 Synthetic VCG Feature Tracking

Morphological changes in the ST segment of an ECG are an established diagnostic indica-

tor of myocardial injury or infarction (Nikus et al., 2014; Morris and Brady, 2002; Hasan et al.,
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Table 3.1. Sum of squared errors (mV) across the three analysed methods and varying SNR.
T-wave Inversion Proposed Method Procrustes Analysis Butterworth Filter

SNR 10dB 15dB 20dB 25dB 10dB 15dB 20dB 25dB 10dB 15dB 20dB 25dB

−0.1AT 1432 839 520 359 2234 2079 2051 2053 10554 11398 11887 12165
−0.2AT 1439 853 540 417 2107 1921 1879 2168 10553 11190 11562 13113
−0.3AT 1468 881 577 462 2146 1938 1887 2047 10732 11438 11852 12934
−0.4AT 1654 997 643 467 2476 2248 2194 2055 12391 13148 13592 13317
−0.5AT 1880 1130 731 466 2774 2499 2433 1965 14039 14864 15351 13252
−0.6AT 1688 1010 653 434 2436 2128 2040 1731 12896 13491 13855 12504
−0.7AT 1672 997 641 427 2504 2174 2070 1851 13135 13690 14034 12932
−0.8AT 1866 1108 705 464 2763 2379 2255 1886 14721 15183 15481 14321
−0.9AT 1872 1111 702 501 2784 2358 2207 2172 15229 15575 15819 15791
−AT 1749 1024 634 452 2516 2106 1954 1873 13860 14062 14220 14511

2013). In vectorcardiography, the three-dimensional extension of the ECG across orthog-

onal channels, several spatial features of the T-loop have been proposed as potential in-

dicators of myocardial injury or infarction. In this work, we use several variations of two

features suggested by Hasan et al. (2013): 1 - the mean-loop-length (MLL), defined as

the summation of the distance between consecutive points in a VCG, and 2 - the distance

variability (DV), defined as the vector containing the Euclidean distances between corre-

sponding points of a template three-dimensional signal and an adapted three-dimensional

signal.

We evaluated the ability of our proposed framework to robustly capture VCG features in

three-dimensional signals corrupted by various noise sources and signal-to-noise ratios

(SNR). In the process, we simulated common high-amplitude noises that cannot be re-

moved by standard signal processing methods such as: baseline wander, muscle artefact

and electrode movement (Sameni et al., 2007); combined with additive white Gaussian

noise for which techniques exist. The simulated analysis includes a noise model consisting

of an equally weighted combination of the four aforementioned noise sources. By using a

synthetic multi-channel ECG generator (Sameni et al., 2007), we simulated morphological

changes across the T-wave. The VCG was obtained from eight standard ECG leads using

the Frank lead transformation. Fig. 3.4 illustrates eight synthetic ECG leads (a) converted

to three orthogonal leads via a Frank lead matrix transformation (b), for which the QRS-loop

(segment between (’o’) annotations in (b)) and T-loop (segment between (*) annotations in

(b)) are plotted within a human torso (Mayol, 2019).

To map complex morphologies, the T-wave was varied by lowering the signal amplitude, AT,

of the wave in leads V1-V3 of the synthetic ECG in steps of −0.1AT between −0.1AT :

−AT. The aim of this experimental setup was to simulate T-wave inversion, an indicator

of myocardial infarction (Pollehn, 2002). Our experimental setup for testing the described
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Figure 3.4. Example of synthetic multi-lead ECG (a) across one beat. Three-orthogonal leads (b)
are obtained by performing a Frank lead matrix transformation onto the eight ECG leads
(a). The QRS-loop (segment between ’o’ markers in (b)) and T-loop (segment between
’*’ markers in (b)) from Leads X, Y and Z can be observed in (c); with projections onto
the three orthogonal planes.

framework was motivated by similar morphological modelling in the ECG by Porta et al.

(1998). In addition, a non-linear random (seeded) T-wave morphological change was ap-

plied at the T-wave onset and offset, respectively. The random deviation was drawn from a

set of 20 possible deviations at each the T-wave onset and offset. At each step of AT 30

seconds of noisy synthetic data was produced; this can be observed in Fig. 3.5 for −0.5AT.

Thus across each noise level (10dB, 15dB, 20dB and 25dB), 300 seconds of simulated mul-

tichannel ECG data was generated for each SNR level. To provide a comparative narrative

we analysed the beat-to-beat performance of two additional methods across the dataset:

Procrustes analysis and Butterworth bandpass filtering (bandpass range: 0.05-40Hz, ac-

cording to American Heart Association recommendations (Bailey et al., 1990)).
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In Table 3.1, we observe the sum of square errors performance of the proposed method

compared to the two other methods; the proposed method outperforms the other methods in

all instances. In Fig. 3.6 we provide a comparative performance of the proposed framework

with the two other methods in tracking the beat-to-beat T-wave features across different

steps of the negated AT and noise levels. Comparing the T-loop feature errors across

different amplitudes and SNR levels in Fig. 3.6, it is evident that the proposed method

outperforms both Procrustes analysis and Butterworth bandpass filtering in each instance.
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Figure 3.5. Comparison of adaptation results across various SNR (10dB to 25dB) for 30 seconds of
simulated vectorcardiogram T-loop data. Examples show an identical simulated target
truth (diamond marked trace) across each of the plots, the accumulated sampled noisy
data across the 30 seconds (circle marked line) and the adapted result for each beat
(unmarked line). Each colour is associated to a single beat.
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Figure 3.6. Results of VCG feature tracking on the synthetic data using the proposed method, Pro-
crustes analysis and Butterworth bandpass filtering. The cumulative error percentage of
MLLT (left), IQR o f DVT (center) and the Median o f DVT (right) features is depicted
across varying noise levels (10-25dB) and T-wave inversions, where an x-axis value of
-1 indicates a waveform multiplied by -1 across the synthetic dataset (note: the y-axis is
logarithmic).

3.3.2 PTB Database Myocardial Infarction Feature Tracking

Tracking of beat-to-beat features is a critical element in the diagnosis and monitoring of

cardiac conditions and events. To exemplify the usefulness of our proposed framework,

we applied our algorithm across the PTB database containing the ECG of 79 patients with

acute myocardial infarction (22 female, mean age 63 ± 12 years; 57 male, mean age 57 ±
10 years) and 69 control subjects (17 female, 42 ± 18 years; 52 male, 40 ± 13 years). We

extracted approximately two minutes of ECG recording for each patient. The database is

publicly available (Goldberger et al., 2000; Bousseljot et al., 1995).
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To extract the relevant segments of the ECG waveform pertaining to the T-loop, we applied

the 2DSW algorithm (Schmidt et al., 2014). The algorithm utilizes an inhomogeneous tem-

plate matching scheme in two-dimensions to track interval changes across the ECG. In our

application, we were only interested in tracking the onset and offset of the T-loop.
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Figure 3.7. Box plots comparing T-wave beat-to-beat features of healthy subjects and MI patients
across the four methods analysed.

We generated the T-loop VCG template using the ensemble average across the entire

recording for each patient. In the template generation process and the subsequent adap-

tation process, each T-loop beat was interpolated to match the length of the respective

template. Additionally, we normalized each T-loop using the loop vector-norm of the sin-

gular values. Template adaptation was then performed utilizing the proposed framework.
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To further elaborate on the comparative narrative, we studied the feature tracking ability of

2DSW, Procrustes analysis and Butterworth bandpass filtering (0.05-40Hz).

We tracked the features studied in the previous section: MLL and DV. The beat-to-beat vari-

ability was calculated as the standard deviation of each feature. Fig. 3.7. illustrates the box

plot representation of the beat-to-beat feature statistics for normal subjects and MI patients

across the database; this has been illustrated for each of the four methods analysed. The

features were considered statistically significant if p − value < 0.05, using the unpaired

Student t-test. Statistical significance was achieved for each feature across all methods;

thus providing limited intuition in terms of the practical advantages of our proposed method.

Consequently, we proceeded to develop a simple classifier for the four methods utilising the

three studied T-wave features.

3.3.3 PTB Database Classification

To evaluate the capabilities of the proposed method in potential diagnostic applications for

MI we implemented a reciprocal regressor. The reciprocal regressor was utilized in con-

sideration with the rightward skew that is prevalent across the feature distributions for each

method (note: the Fig. 3.7 y-axis is logarithmic). The scores of the reciprocal regressor for

each method were respectively analysed using the receiver operating characteristic (ROC)

curve. Fig. 3.8 illustrates the ROC and area under the curve (AUC) result for each method.

It is evident that template adaptation techniques yield superior results compared to the

frequency domain filtering method. Furthermore, the AUC of the template adaptation meth-

ods increases with complexity. At the lower end of the AUC-value spectrum is Procrustes

analysis, which only considers global translation, rotation and scaling. Furthermore, in

comparison to 2DSW, the proposed technique produces a slightly higher AUC value.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Our Method AUC: 0.84262

2DSW AUC: 0.83984

Procrustes Analysis AUC: 0.80045

Butterworth Filter AUC: 0.78781

Figure 3.8. The ROC curves for the regressor output scores and the associated AUC value for each
method.
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3.3.4 Complex Upper-Limb Movement Tracking

In point-to-point hand movements, hand trajectory motion has indicated a bell-shaped ve-

locity profile (Abend et al., 1982). Analysis of hand movements is important in studying the

correlation between brain activity and muscle motion. The data analyzed in this work was

recorded using a three-dimensional camera-based motion capture system (VICON, Oxford

UK).
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Figure 3.9. Results of using the proposed framework on the Complex Upper-Limb Movements
database. Velocity profile template adaptations (red) to noisy target velocity profiles
(black) using the templates (green). The triangle (left column: (a), (c), (e)) and ellipse
(right column: (b), (d), (f) and) velocity profiles of three people (rows).

More recently, Miranda et al. (2018) found a broad set of complex upper-limb movements

can similarly be modelled as a combination of motor primitives with a bell-shaped velocity

profile. For a particular hand trajectory, a template trajectory motion can be obtained by av-

eraging across the dataset. By obtaining a three-dimensional template velocity profile, the
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suggested framework can be used to track subtle variations between consecutive quasi-

periodic upper limb movements. As an example, we show several three-dimensional trajec-

tories from the Complex Upper-Limb Movements database which contains hand trajectory

obtained from ten subjects as they were performing various prescribed upper-limb motor

tasks. The database is publicly available on the PhysioNet site (Goldberger et al., 2000).

For three people, we show the result of an adapted template for the three-dimensional ve-

locity profile of a triangle and ellipse. Using the limited data, in which patients may only

have repeated the same action several times, we used a Savitzky-Golay filter to obtain a

smoothed peak-retaining (Schafer, 2011) template. The Savitzky-Golay filter utilized a third

order polynomial with a frame length of thirteen. Visual results can be observed in 3.8. The

first column presents the results of the template adaptation scheme across three peoples’

velocity profiles as they attempted to draw a triangle. Similarly, for each person, the second

column indicates the velocity profiles of an ellipse (see 3.9).

3.4 Discussion

In this contribution we proposed a novel template adaptation scheme for tracking three-

dimensional signals. To the best of our knowledge, this is the first framework for adapt-

ing three-dimensional signals, where the channels are spatially correlated. The proposed

framework presents a technique to treat noisy quasi-periodic temporal three-dimensional

signals. By employing an appropriate parameterization technique and then formulating a

non-parametric solution, the proposed work is able to detect subtle inhomogeneous vari-

ations in temporal shapes. In comparison to transformation algorithms traditionally found

in literature, the proposed framework does not require an expensive optimization problem

to obtain the optimal location of the FFD control points. Instead, by forfeiting the tradi-

tionally exploited smoothness properties of free-form deformations, it exploits a computa-

tionally cheaper alternative in the form of a least squares non-parametric method. Our

proposed framework is capable of producing smooth template adaptations capturing non-

linear changes by adaptively selecting the kernel width. Furthermore, by employing such a

kernel function, our algorithm doesn’t abandon the notion of smoothness but relies on the

smoothness properties associated with Gaussian kernels instead. The inexpensive nature

of the proposed framework is significant for the purpose of real-time applications such as

biomedical diagnostic devices.

In addition to computational efficiency, accuracy signifies another important aspect of the

proposed framework. The proposed framework was capable of tracking cardiac disease
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features amongst various noise levels using simulated data. The algorithm produced rela-

tively small errors amongst 10dB noise levels, and improved with an increasing SNR. The

proposed method achieved superior results to Procrustes analysis and frequency based

filtering. Furthermore, this conclusion was supported by the results obtained from analyz-

ing the PTB database, where the algorithm detected statistically significant differences in

VCG features between myocardial infarction patients and normal subjects; and in addition

produced the highest AUC value compared to three other methods employing reciprocal

regression scores. This demonstrates the applicability of the proposed framework in track-

ing quasi-periodic signal morphology. However, it should be noted that the orthogonality of

the analysed VCG data is only assumed, thus there is a potential limitation in the analysed

features arising from this fact. Orthogonal statistical transformations such as SVD distort

the anatomic-orientation information observable in raw VCG data.

Furthermore, by applying the proposed framework to the Complex Upper-Limb Movements

database, another potential application to a three-dimensional signal processing problem

was illustrated. The ability of the proposed method to translate to an independent and

differently distributed database illustrates the prowess of the heuristic hyper-parameter es-

timations; particularly for the regularization term.

3.5 Conclusion

We have proposed a framework for locally adapting variously shaped noisy quasi-periodic

three-dimensional signals. We quantified the performance across a synthetic dataset and

demonstrated superior results to a global adaptation method and bandpass filtering. Using

real vectorcardiograms, the proposed template adaptation algorithm proved to be effective

in detecting subtle beat-to-beat morphological changes in patients with myocardial infarc-

tion; demonstrated by the classification analysis. Additionally, we illustrated the ability of

the proposed work to adapt a template across various quasi-periodic velocity profiles, with

varying morphology and noise levels. Importantly, it should be noted that the proposed

work proposes an entirely adaptive framework. Thus, the framework may be beneficial in

applications where quasi-periodic motion tracking is of importance.
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4

Template Adaptation of 2D

Quasi-Periodic Data Using a Soft-Assign

Localized Correspondence Matrix

The content of this chapter is a modified version of the publication:

Karisik, F. and Baumert, M. (2021), ‘Template Adaptation of 2D Quasi-Periodic Data Using

a Soft-Assign Localized Correspondence Matrix’, IEEE Transactions on Signal Processing

69, pp. 826–836.
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4.1 Introduction

Abstract

In this work we propose a framework for the adaptation of arbitrary quasi-periodic

time series. We parameterize and adapt data using traditional free form defor-

mations. The method follows an alternating approach, inspired by the robust

point matching algorithm, under which a correspondence matrix is updated and

the subsequent deformation is obtained; thus, the template data are adapted

to the target data. We demonstrate the performance of the algorithm across

several ECG and PPG databases and compare it to previous works.

4.1 Introduction

In signal processing, template adaptation is a technique employed to match two patterns.

Template adaptation aims to deform a parameterized template signal to a target signal by

optimizing a cost function. Global adaptation aims to retrieve a universal transformation

matching the template data to the target data. Such adaptations have been proposed in

three-dimensional applications (Astrom et al., 2000; Karisik and Baumert, 2019). Local

adaptation, on the other hand, seeks to obtain deformations capturing subtle variations

unique to subsets of the data (Karisik and Baumert, 2019; Schmidt et al., 2014, 2018a).

Most previous research addressed the problem of template adaptation by pre-aligning an

established and prominent feature of the quasi-periodic pattern. By imposing an initial

alignment on the template, prior works have been limited by assuming a correspondence

between the remaining samples of the template and target signals with respect to the refer-

ence feature. Whilst this approximation is robust when a singular quasi-periodic feature is

of concern, it is of limited value for quasi-periodic signals. For instance, where physiological

signals are of concern, in excess of five features may manifest for any given cycle. Our

work seeks to overcome this significant limitation. Two fields of literature are particularly

relevant to our problem, signal warping and registration techniques.

Signal warping is a well established audio processing technique inspired by the necessity

to overcome temporal contractions and expansions in word pronunciations. In dynamic

time warping (DTW) (Vintsyuk, 1968), perhaps the most commonly employed warping al-

gorithm, data are compared sample to sample between a reference and target sequence.

A rectangular matrix map is generated by analysing a Euclidean distance cost function.
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The algorithm is then tasked with the dynamic programming problem of obtaining the least

cost path. Many variations and constraints have been applied to DTW, with the Sakoe-

Chiba band being amongst the most popular. The Sakoe-Chiba band limits the permissible

warping path across the rectangular matrix. Further inspired variants include: correlation

optimized warping (Tomasi et al., 2004), derivative DTW (Keogh and Pazzani, 2001) and

FastDTW (Salvador and Chan, 2007). Although differences beyond the scope of this work

exist in the frameworks of DTW algorithms, they are linked by a common target: to capture

one-dimensional shifts between time-series. Warping algorithms have been employed in

time series analysis (Vullings et al., 1998; Huang and Kinsner, 2002; Ramírez et al., 2017),

however, they are incapable of capturing features in two dimensions and are therefore of

limited use in quasi-periodic time series. Due to the limitations of signal warping in template

adaptation we ensue to relate our problem to the registration process.

Registration is the process of aligning two sets of data in two-dimensional and three-

dimensional applications. In point set registration and image registration (where a prior cor-

respondence may exist, but is increasingly distorted) a broad field of research exists. Our

work primarily draws inspiration from point set registration techniques due to their general

reliance on Cartesian coordinates; image registration methods hold a preference toward im-

age intensities. Specifically, the registration problem seeks to establish a bijective or strictly

injective (not bijective) mapping between two sets of data, permitting sample rejection. In

time series data, focusing on injective mappings would be a theoretically flawed approach,

that is, permitting the rejection of samples would undermine the sampling process. Simi-

larly, focusing on bijective mappings, that is, a one to one correspondence between sam-

ples, may yield insufficient adaptations due to inhomogeneous temporal variations. Conse-

quently, insufficient samples would exist in local regions to amply match features between

the template and target signals. Thus the problem of template adaptation in time series

data needs to permit for data interpolation (non-binary correspondences). As such, our

work seeks to combine assumptions specific to the adaptation of time series data with the

foundations of traditional registration techniques. We ensue to describe related registration

techniques and their relevant features.

Based on global deformations, the iterative closest point (ICP) algorithm is amongst the

simplest and earliest point set registration methods proposed (Besl and McKay, 1992).

In ICP the model dataset is iteratively rotated and translated to match the target dataset;

the process involves the evolving estimation of a correspondence variable and universal

transformations. ICP is commonly employed in the registration domain due to it’s ease of

Page 63



4.1 Introduction

implementation and performance on simple problems. Many variants of ICP have been

proposed to improve robustness (Pomerleau et al., 2015). However, even amongst these

variants the subpar performance of ICP in the presence of noise limits its applicability in time

series analysis. Although ICP is inadequate for the problem of time series adaptation due

to its reliance on global adaptation and sensitivity to noise, our method draws motivation

from the iterative nature of the process.

To address the need for inhomogeneous adaptations we explore a family of algorithms for

the local parameterization of data. In point set registration, one such popular parameteri-

zation technique is thin-plate splines (TPS) (Bookstein, 1989). TPS and related methods

require explicitly determining two sets of corresponding points to retrieve the deformations

pertaining to the rest of the shape. TPS has an inherent analogy to the physical bending

energy of a thin metal plate whilst providing smooth deformations. The most popular TPS

based registration method is that of Chui and Rangarajan (2003), based on earlier works

(Rangarajan et al., 1996; Gold et al., 1998). The technique jointly estimates the correspon-

dence matrix and thin plate spline parameters by an alternating and iterative process. Op-

timization is performed by deterministic annealing and demonstrates strong performance

in the presence of few outliers. Although TPS registration methods are not appropriate

for time series adaptations due to their underlying bijective mapping assumption, we draw

inspiration from the deterministic annealing optimization inherent to the process.

Another family of registrations pertaining to local parametrizations are free form deforma-

tions (FFD) (Sederberg and Parry, 1986; Huang et al., 2006). Under FFD, data are em-

bedded by a lattice of control points where consequent shifting of a control point results

in locally weighted deformations. Free form deformations similiarly provide smoothness

guarantees. Traditional FFD offers global support across control points, meaning the entire

lattice can be shifted. Contemporary FFD techniques provide local support which is suffi-

cient for minute variations in shape, but cumbersome for a unitary lattice offset. In contrast

to TPS, FFD parameterizations provide no capacity guarantee to retrieve the exact target

shape by deformation of the source shape under noisy conditions. In signal processing,

where signal to noise components are often indeterminate, exact shape retrieval would be

akin to overfitting. Thus, a deformation model with a strong mapping prior, such as cubic or

Bernstein polynomial based methods, are suitable in meeting this balance between obtain-

ing a correspondence matrix (with probabilities which aren’t necessarily binary) and shape

fitting. As such, our framework employs FFD to achieve non-binary probabilities.
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Specifically, in the proposed work we formulate a template adaptation technique for quasi-

periodic time series data inspired by the aforementioned techniques. We aim to demon-

strate that the algorithm can capture subtle variations in quasi-periodic signals. Our focus

is on biomedical data, namely, electrocardiogram (ECG) and photoplethysmogram (PPG).

The ECG and PPG are amongst the most extensively studied physiological signals (Sörnmo

and Laguna, 2006; Laguna et al., 2016; García et al., 2000b; Gil et al., 2010); the ECG rep-

resents variations in the summed electrical potential generated by heart muscle, whilst the

PPG describes volumetric changes of blood circulation using a photodetector at the sur-

face of the skin. An important ECG feature is the QT interval, which represents the period

of ventricular depolarization and repolarization of a cardiac cycle. QT interval variability

(QTV) is a non-linear process observed from beat-to-beat and is algorithmically difficult to

quantify. Robust tracking of the QT interval is of utmost importance as elevated QT vari-

ability has been found to be a predictor of heart disease and mortality (Hasan et al., 2012a;

Baumert et al., 2016a). Additionally, elevated QTV has been observed in sleep apnea

(Baumert et al., 2008; Schmidt et al., 2018b), demonstrating the broader importance of this

feature. Similarly, robust tracking of the dicrotic notch in PPG is of importance to assess

properties of the arterial vascular system (Middleton et al., 2011).

Although our work draws intuition from the registration field, we propose a novel algorithm

with assumptions suited to time series deformations. First and foremost, this is motivated by

our efforts to propose a solution to the incomplete correspondence assumption observed in

template adaptation literature. Furthermore, we address the problem utilizing a well-defined

geometric parameterization to achieve guaranteed mathematical smoothness and a contin-

uous cost function. The intent of these secondary contributions is to address further limi-

tations observed in signal processing literature related to template adaptation. Lastly, and

perhaps most importantly, our technique aims to illustrate its potential as a general frame-

work for the adaptation of arbitrarily shaped quasi-periodic data by extending the analysis

to the application of PPG. Although our method is not exclusive to the biomedical domain,

we focus on such applications due to the prevalence of quasi-periodic data in the field.

4.2 Methodology

4.2.1 Normalization

In the proposed method data are first mapped into a unity box by min-max normalization.

This is performed to generalize parameter selection across the model. Consider Y to be the
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length N template signal and Q to be the length N target signal. We denote the normalized

template data, Ỹ, where Ỹx
a and Ỹy

a denotes the ath sample value across the x (temporal)

and y (amplitude) axes, respectively. Similarly, we denote the normalized target data, Q̃,

where Q̃x
b and Q̃y

b denotes the bth sample value across the x (temporal) and y (amplitude)

axes, respectively.

4.2.2 Deformation Representation

Our technique employs traditional free form deformations (Sederberg and Parry, 1986) to

place a prior on the method such that adaptations yield constrained results modelled by a

product of Bernstein polynomials; in turn reducing the effects of noise. Under this process

the template sequence is embedded to a lattice of control points. Subsequent shifting of

control points results in locally weighted deformations of the data. In FFD, a local coordinate

system is first imposed on the data:

Ỹa = Xo + saS + taT, (4.1)

where Xo denotes the origin of an l × m lattice of control points, P0, and {S, T} the embed-

ding lengths of the lattice along the x-axis and y-axis, respectively. The (s, t) coordinates

of sample point Ỹa can be obtained in the following manner:

sa =
Ỹx

a − Px
min

Px
max − Px

min
, (4.2)

ta =
Ỹy

a − Py
min

Py
max − Py

min
, (4.3)

where {Px
min, Px

max, Py
min, Py

max} denotes the set containing the minimum and maximum con-

trol point values along the x-axis and y-axis, respectively. In this coordinate system, the

resultant deformation of shifting P0 to P1 is defined by the tensor product of Bernstein poly-

nomials:

f̃ (Ỹ) =
l

∑
i=0

m

∑
j=0

βi(sa)β j(ta)P1
ij, (4.4)

where βi(sa) = (l
i)(1 − sa)l−isi

a and βi(ta) = (m
j )(1 − ta)m−jtj

a. Given Eq. 4, FFD can be

reformulated as an incremental process, i.e. P1 = P0 + δP, where δP = Θ = {δPx
i,j, δPy

i,j}
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and (i, j) ∈ [1, l]× [1, m]. Thus, the deformation process can be re-written as:

f̃ (Θ; Ỹ) = ∑l
i=0 ∑m

j=0 βi(sa)β j(ta)(P0
ij + δPij)

= ∑l
i=0 ∑m

j=0 βi(sa)β j(ta)(P0
ij) +

∑l
i=0 ∑m

j=0 βi(sa)β j(ta)(δPij).

(4.5)

Under this formulation the first term of the deformation process, P0
ij, returns the initial param-

eterized template, Ỹ, based on the linear precision of Bernstein polynomials. The second

term, δPij, corresponds to a shift of the control points and the resultant shape deformations

they produce. Thus, we can reformulate Eq. 5 to:

f̃ (Θ; Ỹ) = Ỹ + δ f̃ (Θ; Ỹ), (4.6)

Fig. 4.1 illustrates an ECG parameterized to a 6× 6 FFD lattice. This concludes the descrip-

tion of the transformation model pertaining to our proposed technique. In the subsequent

section, we formulate the adaptation cost function and demonstrated how to estimate Θ.

Figure 4.1. Example of an ECG template (blue) and beat (black) parameterized to an FFD lattice of
6 × 6 control points.

4.2.3 Correspondence Weighting & Deformation

To account for localized temporal shifts in quasi periodic data, we introduce a correspon-

dence matrix. We relax the traditional restrictions placed on the correspondence matrix
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where the assignment problem seeks to obtain a strictly injective (not bijective) or bijec-

tive mapping; instead we permit the solution to interpolate temporal and amplitude values

by allowing for a non-binary correspondence between template and target data. Further-

more, we abstain from incorporating an outlier slack variable. In point set registration prob-

lems, outliers related to injective mappings manifest when inappropriate samples have been

drawn in the preprocessing feature extraction step. In signal processing, each time step

corresponds to a deterministic interval, thus proposing an algorithm permitting for injective

mappings where certain time stamps can be discarded would be a naive approach under

which the removal of information would be permitted.

Our correspondence matrix formulation is inspired by the work of Rangarajan et al. (1996)

and adapted to the signal processing domain. In addition to removing the binary constraint

between template and target samples, we introduce a band matrix to minimize the permissi-

ble search space by the optimization algorithm. The reduced search space aims to prevent

the minimization process returning a solution corresponding to an undesirable deformation.

The energy function we seek to minimize in this work has the form:

E(M, f̃ ) = ∑N
a=1 ∑N

b=1 za,bma,b∥Q̃b − f̃ (Θ; Ỹa)∥2 +

λ∥ f̃ (Θ; Ỹa)∥2 + τ ∑N
a=1 ∑N

b=1 ma,blogma,b

− log ξ ∑N
a=1 ∑N

b=1 ma,b,

(4.7)

where ma,b fulfils ∑N
a=1 ma,b = 1 and ∑N

b=1 ma,b = 1 for a, b ∈ {1, ..., N}, ma,b ∈ [0, 1],

za,b ∈ {0, 1} and M = [ma,b]. M holds the correspondence values between each template

and target sample. The first term corresponds to the least squares error measure between

all samples of the template and the target with a band matrix incorporated. In the below

example of a tridiagonal band matrix, z has the form:

za,b =



z1,1 z1,2 0 · · · · · · 0

z2,1 z2,2 z2,3
...

0 . . . . . . . . . ...
... . . . . . . . . . 0
... zN−1,N−2 zN−1,N−1 zN−1,N

0 · · · · · · · · · zN−1,N zN,N


,
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where the notion of a band matrix similarly extends to a matrix with a bandwidth greater than

one (greater than the tridiagonal case). The matrix, za,b, serves as a binary matrix where the

bandwidth determines the range of template samples evaluated against the target samples.

This helps to reduce the solution space. In our work the bandwidth is set as a percentage

of the signal length. The second term is the standard L2 ridge regularization term observed

in statistical modelling and is incorporated to reduce overfitting. The third term is an entropy

barrier function serving to constrain the values of ma,b in the range: [0, 1]. The multiplier,

τ, enforced onto the barrier function is employed to permit for the process of annealing in

the optimization step of the algorithm. Annealing, specifically simulated annealing (SA), is

a commonly employed optimization technique that treats the objective function as a system

energy and is analogous to the annealing process of solids. SA searches for the function

minimum by decreasing the system temperature; the search is more stochastic at higher

temperatures and gradually becomes more deterministic as the temperature parameter is

lowered. Deterministic annealing (DA) is a closely related derivative of simulated annealing

under which the minimization of the objective function is treated as the minimization of the

free energy of the system. DA considers the minimum energy at each temperature and

in turn deterministically optimizes the objective function (Peyvandi, 2017). Annealing is

incorporated into the network to ensure that through an iterative process an improved local

suboptimal solution can be obtained. An in-depth discussion relating to the motivation for

annealing based optimization is provided by Rangarajan et al. (1996). The fourth term is

incorporated to prevent zero matches in the correspondence matrix; the value is set close

zero in order to satisfy the Sinkhorn-Knopp algorithm condition, ma,b > 0. The Sinkhorn-

Knopp method is utilized to meet the doubly stochastic constraints imposed on the cost

function in Eq. 7 and is justified in (Rangarajan et al., 1996); it operates by alternating

between row and column normalizations until a guaranteed convergence transpires (Knight,

2008).

Similar to the work of Chui and Rangarajan (2003) the proposed technique operates on the

principle of alternating estimations between the correspondence matrix and transformation

(control point shifts); this is performed repeatedly and in conjunction with deterministic an-

nealing. In the first step of the alternating technique we take the derivative of Eq. 7 with

respect to ma,b and equate it to zero, from this we can obtain the following analytic result:

ma,b = e−za,b
∥Q̃b− f̃ (Θ;Ỹa)∥2

τ + ξ. (4.8)

The value of ξ is set using a heuristic under which we take the minimum value obtained in
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Figure 4.2. Example of an ECG template (blue) adapted (red) to a noisy beat (black) on the first
(a), second (b) and fifth (c) iteration. The first two iterations are illustrated under the
data being normalized whilst the final iteration (c) demonstrates the data scaled back to
pre-normalization values.
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Eq. 8 with ξ excluded. The intuition behind assigning this specific positive non-zero value

is that it represents the minimum observable correspondence between the template and

target; thus, serving as the lowest data-driven (observable) value which could be employed.

We set the value in this fashion to ensure numerical stability and prevent the overestimation

of this constant incorrectly influencing the Sinkhorn-Knopp normalization. To obtain the

optimal control point shift estimation, we differentiate Eq. 7 with respect to Θ, that is:

∂E(M, f̃ )
∂Θi,j

= −2 ∑N
a=1 ∑N

b=1 za,bma,b(Q̃b − f̃ (Θ; Ỹa))

(∇ f̃ (Θ; Ỹa).
∂δ f̃ (Θ;Ỹa)

∂Θi,j
+ 2λ f̃ (Θ; Ỹa).

(4.9)

Eq. 9 is solved utilizing an adaptive gradient descent method due to the substantially vary-

ing magnitude of gradient sizes between different control points and directional derivatives.

This technique is employed to obtain the transformation estimate in a timely manner and

to discourage the parameter solution settling at a saddle point for extended iterations. We

utilize the RMSprop adaptive gradient descent method to achieve faster convergence com-

pared to traditional gradient descent (Hinton et al., 2012). For parameter, Θi,j, the related

partial derivative (i.e. - left-hand side of Eq. 9) at iteration, step, of the gradient descent is:

gi,jstep =
∂E(M, f̃ )

∂Θi,j step
. (4.10)

Therefore, the gradient update for any given parameter Θi,j can be obtained by the following

memory based two step process:

vi,jstep = αvi,jstep−1 + (1 − α)(gi,jstep)
2, (4.11)

where α denotes the momentum value and vi,jstep the exponentially decaying average of

the previous squared gradients. Thus the (i, j)th parameter is updated by:

Θi,jstep+1 = Θi,jstep −
η√

vi,jstep + ϵ
gi,jstep, (4.12)

where η denotes the general learning rate and ϵ a small constant to prevent division by zero.

The update rule accumulates the previous gradient in some proportion which prevents rapid

growth in vt and encourages the optimizer to continue converging.
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4.2.4 De-normalization

To obtain the adapted template in the original scale we perform the inverse of the normal-

ization function described in Subsection A across the x-axis and y-axis, respectively:

f x
a (Θ; Ỹa) =

f̃ x
a (Θ; Ỹa)− Yx

min
Yx

max − Yx
min

,

f y
a (Θ; Ỹa) =

f̃ y
a (Θ; Ỹa)− Yy

min

Yy
max − Yy

min
.

(4.13)

While # iterations not > I0

FFD Paramterization

Sinkhorn-Knopp 
Normalization

Correspondence 
Matrix Estimation

FFD Transformation

Normalization
* Output: Normalized Target 

Signal, Normalized 
Template Signal

Input:
* if first iteration 

**all other iterations 

While # iterations not > I1

Output: 
Paramterized 

Template

** Output: Adapted 
Template

Input: Target Signal, 
Template Signal

Input: Paramterized 
Template

Figure 4.3. The proposed adaptation framework given a target signal and template signal.

In the current work we determined values to suffice for a coarse optimization utilizing de-

terministic annealing and RMSprop across an external ECG database. In doing so we set,

I0 = 3, I1 = 5 and I2 = 20. These values were selected under the condition that no

gradient magnitude was larger than 0.001 normalized units across a subset of the external

ECG database. M was initialized by solving Eq. 8 under the starting pose of the data be-

ing matched and the incremental control point shifts, δ, being initialized to zero. Annealing

followed a schedule of an approximately tenfold reduction in the magnitude of τ at each up-

date. This was determined to be an amply low (yet coarse) reduction rate through trial and

error. The band matrix was initialized with a bandwidth of 0.75% of the template length and

updated at the same rate upon each iteration of I0, as observed in line 11 of Algorithm 1.

The intent of widening the matrix bandwidth in this manner was to permit for the incremen-

tal adaptation of the template signal. The penalty factor λ was set to 0.05. To tune the λ
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Algorithm 2 Pseudo code for template adaptation.
Input: Y, Q
Output: f (Θ; Ỹ)

1: Initialize parameters τ, M, δ and bandwidth.
2: Normalize Y and Q to Ỹ and Q̃ , respectively.
3: while # of iterations ≤ I0 (deterministic annealing step) do
4: Parametrize f (Θ; Ỹ) to l × m FFD lattice using (1)-(6).
5: while # of iterations ≤ I1 (alternating update step) do
6: Update M using (8) and Sinkhorn’s method.
7: while # of iterations ≤ I2 maximum steps do
8: Update Θ using (9)-(12).
9: end while

10: end while
11: Update τ and band matrix bandwidth.
12: end while
13: De-normalize f̃ (Θ; Ỹa) to f (Θ; Ỹa) using (13).

and bandwidth hyperparameters, we used a grid-search method to minimize the error of

the cost function across a subset of the external database. Following standard optimization

values η, α and ϵ were respectively set to 0.001, 0.9 and 1 × 10−7 (Team, 2020). Addi-

tionally, the template and target signals were normalized to the maximum temporal length

and amplitude, respectively, to permit for generalized hyper-parameter estimation. Fig. 4.2

demonstrates an example ECG adaptation from the first to the fifth iteration. Algorithm 1 de-

picts pseudo code describing the adaptation framework given a template and target signal.

Fig. 4.3 complements Algorithm 1 by illustrating the iterative process of the framework.

4.3 Applications

In this section we undertake a qualitative study of the proposed technique and compare it to

previously published algorithms. We also provide a graphic gallery of adaptations. It should

be noted, for each instance that a feature is evaluated (Q-onset, T-end and dicrotic notch),

the template is manually annotated. The subsequent temporal location of the annotated

index/indices denotes the adapted template location for the given feature. In addition, tem-

plate generation is performed via detection of the signal signature peaks and a predefined

number of selected samples on either side of these apexes.

4.3.1 Simulated ECG Data

To determine the performance of our proposed technique with respect to common ECG

artefacts known to corrupt the QT interval (Baumert et al., 2016a), we employed data previ-

ously described by Porta et al. (1998) and evaluated in several related studies. In summary,
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a single ECG beat of a healthy 26 year old subject was extracted from lead II at a sam-

ple rate of 1000 Hz and 12-bit amplitude resolution. Subsequently, the T-wave amplitude,

WT, of the reference beat was lowered from WT to 0.1WT in decrements of 0.1WT. The

ten cardiac beats were replicated 500 times, forming ten synthetic recordings consisting of

500 beats each. Thus, each recording was characterized by varying T-wave amplitude and

maintaining a QTV of zero. Additive white Gaussian noise (AWGN), baseline wander (BW)

or sinusoidal amplitude modulation (AM) were introduced to model further distortions; in

turn producing 30 recordings overall. The synthetic ECG data is characterized by a con-

stant QT interval, therefore an ideal detection system would yield zero QTV.

Table 4.1 and Fig. 4.4 illustrate the QTV results across the synthetic ECG dataset for

the proposed algorithm and five other methods. Observing Table 4.1, it is evident that

the two most simplistic algorithms, Conventional (Porta et al., 1998) and Template Stretch

(Berger et al., 1997), yield a significantly higher QTV in contrast to their counterparts. The

Conventional method is a threshold derivative based technique whilst Template Stretch is

a technique where temporal contractions and expansions are applied across the entirety of

a template (manually annotated) cardiac cycle. The two algorithms present rather porous

results across the baseline wander test, indicated by the high standard deviation in Table

4.1. Furthermore, in the presence of Gaussian noise or baseline wander the performance

of the two algorithms is dependent on the T-wave amplitude. This is illustrated by the

decreasing QTV as the amplitude acquisition range increases in sub-plots (a) and (b) of

Fig. 4.4.

In the second tier of performance are the 2DSW and Template Shift (Starc and Schlegel,

2006) algorithms, respectively. 2DSW is a technique under which inhomogeneous template

(manually annotated) adaptations are performed whilst the Template Shift algorithm is a

technique under which separate QRS and T-wave templates (automatically annotated) are

generated and independently shifted in time. Observing Table 4.1, both algorithms obtained

a QTV above 1 ms with a comparatively lower standard deviation to the aforementioned

algorithms. The results of Fig. 4.4 suggest a weakly inverse relationship between the T

amplitude acquisition range and QTV pertaining to these two algorithms.

Producing state-of-the-art performance are i2DSW (Schmidt et al., 2018a) and the pro-

posed method. i2DSW (manually annotated) is a weighted variant of 2DSW. Observing

Table 4.1, i2DSW yields a 0.84 ± 0.51 QTV across the synthetic data. The superior per-

formance of i2DSW, relative to previous works, is superseded by the proposed method for
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Table 4.1. Summary of the QTV across the proposed algorithm and five others.
Algorithm

QTV 2DSW Conventional Template Shift Template Stretch i2DSW Proposed Method

Gaussian Noise (ms) 0.68 3.36 0.91 1.58 0.24 0.37
Baseline Wander (ms) 2.05 6.38 1.48 9.66 0.97 0.22

Amplitude Modulation (ms) 0.67 1.09 2.02 0.93 1.32 0.32

Mean ± SD (ms) 1.13 ± 1.04 3.61 ± 3.76 1.47 ± 1.17 4.06 ± 4.29 0.84 ± 0.51 0.30 ± 0.07

which we obtained a 0.3 ± 0.07 QTV across the dataset. Furthermore, Fig. 4.4 demon-

strates that both algorithms are agnostic to the the T-wave amplitude, presenting a near

constant QTV across various amplitudes.
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Figure 4.4. Results across the zero QTV simulated ECG data using the proposed method and five
other published techniques. High accuracy performance is indicated by algorithms with
QTV closer to zero. QTV across Gaussian noise (a), baseline wander (b) and amplitude
modulation (c) is illustrated.

4.3.2 PTB Database QT Variability Tracking

Tracking of beat-to-beat variability is essential for the robust study of cardiac control, ab-

normalities and diseases (Porta et al., 2015; Baumert et al., 2011a, 2008). It is of utmost

importance for QT interval measurement techniques to robustly capture pathophysiological

variations. As such, we evaluate the sensitivity of the proposed technique against that of

several existing methods. We utilize the readily available PTB Diagnostic ECG Database

(Bousseljot et al., 1995) containing 79 patients with acute myocardial infarction (22 female,

mean age 63 ± 12 years; 57 male, mean age 57 ± 10 years) and 69 control subjects (17-

female, 42 ± 18 years; 52 male, 40 ± 13 years). Approximately two minutes of sampled
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data were extracted for each subject. Previous efforts have examined the PTB database to

determine if myocardial infarction patients possess statistically different QT variability when

compared to healthy controls (Hasan et al., 2013). Furthermore, Hasan et al. (2013) also

concluded that ECG Lead II distinguished the two groups most effectively. We utilized Lead

II in this work.

The data were pre-processed to meet the requirements of the proposed algorithm. For

each subject we extracted the beats using QRS annotations and beat rejection criteria from

Schmidt et al. (2014). A beat was excluded if the normalized Manhattan distance exceeded

1µV/sample across the 2DSW algorithm. This criterion was imposed to ensure identical

beats across subjects were evaluated between the proposed method and previous meth-

ods. Next, the mean beat length was obtained. For each recording all beats were linearly

interpolated to the respective template length via shrinking or stretching. The template

length was obtained by taking the average beat length across the recording. Template QT

annotations were manually marked.

Figure 4.5. QTV results obtained across the PTB database using the proposed method and three
others. The results are summarized across healthy subjects (grey) and MI patients
(black) in the form of the mean (bar) plus standard deviation (line segment).

Fig. 4.5 illustrates the mean and standard deviation obtained by applying the proposed

technique and several other popular algorithms. Each algorithm showed a statistically sig-

nificant difference in QTV (p - value < 0.05 using the unpaired student t-test) between

control subjects and MI patients. Observing Table 4.2, it is evident that the proposed algo-

rithm marginally yields the lowest coefficient of variation across healthy subjects in the PTB

database. Furthermore, our framework and i2DSW produced a notably lower coefficient of

variation across MI patients compared to the template stretch and 2DSW algorithms. This

is further evidence supportive of the decreased dispersion obtained across the synthetic

dataset and, hence, superior performance achieved by the proposed method.
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Table 4.2. Summary of the coefficient of variation for the proposed method and other methods.
Algorithm Healthy Subjects MI Patients

i2DSW 0.45 0.64
2DSW 0.44 0.88

Template Stretch 0.47 0.83
Proposed Method 0.43 0.67

4.3.3 QTDB

To study the performance of our algorithm in tracking beat-to-beat QTV, compared to man-

ual annotations, we utilized the QT Database (QTDB) (Laguna et al., 1997). This database

contains 105 subject recordings with manual annotations pertaining to clinically important

ECG features (onset, peak and end markers for P, QRS, T and where present U waves).

Each recording contains at least 30 annotated cardiac cycles. The QTDB contains a variety

of ECG morphologies and thus presents for a robust analysis of QT detection. The template

for each recording was obtained by averaging the entirety of the equi-length cardiac cycles

for each subject. Furthermore, beat rejection was employed via the use of the Hausdorff

Distance, a commonly employed metric to measure how far two metric subsets are from

one another. The cut-off criteria for the Hausdorff distance was obtained by selecting the

value of the 95th percentile of the supervised two lead Hausdorff distance values (i.e. re-

jection of bottom 5%); for comparative purposes, the 5% rejection value was selected to

closely match the minimum rejection rate of 94.7% of 2DSW, as observed in Table 4.3.

To account for the two commonly employed strategies for evaluating the QTDB we have

analysed the performance of our algorithm based on a single lead and two leads. This

is important to note as the associated manual annotations are based on two leads. In

single lead analysis, each lead is independently delineated and the resultant features are

compared to the reference annotations (single lead evaluation). Alternatively, in two lead

analysis, each lead is independently delineated and the reference annotation is utilized

to determine the algorithmic annotation that most closely matches the reference value for

each beat.

Table 4.3 illustrates the QRS-onset and T-end results of the proposed method and several

other methods across the QTDB. For each algorithm, we present the mean and standard

deviation across the database. Since we are evaluating beat-to-beat variations (QTV) the

standard deviation is of primary interest whilst the mean presents little value. Observing

the single lead evaluation, we see that our algorithm yields comparable performance to the

state-of-the-art algorithms. Furthermore, the supervised two lead evaluation results demon-

strate that our algorithm yields the lowest standard deviation across the T-onset compared
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Table 4.3. Summary of the QTV across the QTDB of the proposed algorithm and seven others.
Algorithm (lead used) Q-onset T-end

Se (%)* mean std Se (%) mean std
single lead evaluation (all results in ms)

(Zifan et al., 2005) (2) 74.8 -5.22 3.60 63.4 6.72 33.5
(Vullings et al., 1998) (1) 81.5 -0.8 10.6 79.4 9.4 49.0
(Dubois et al., 2007) (1) n.a. n.a. n.a. 82.1 45.0 38.6
(Dubois et al., 2007) (2) n.a. n.a. n.a. 81.6 42.8 40.3
(Rincón et al., 2011) (1) 99.6 5.4 8.4 99.3 -5.3 22.7
(Rincón et al., 2011) (2) 99.7 8.6 12.6 99.2 -4.6 27.2
(Schmidt et al., 2014) (1) 88.3 -4.1 7.1 90.3 -5.6 15.1
(Schmidt et al., 2014) (2) 88.6 -6.0 7.9 90.7 -6.8 16.5

Proposed Method (1) 92.0 0.6 8.4 92.0 1.32 17.7
Proposed Method (2) 89.6 0.6 8.4 89.6 1.32 17.4

supervised two lead evaluation (all results in ms)
(Martinez et al., 2004) 100 4.6 7.7 99.8 -1.6 18.1

(Martinez et al., 2004) ** 99.9 -3.6 8.6 99.0 13.5 27.0
(Dubois et al., 2007) n.a. n.a. n.a. 93.6 34.8 30.3
(Rincón et al., 2011) 100 3.4 7.0 100 -2.4 16.9
(Schmidt et al., 2014) 92.6 -3.0 6.1 94.7 -3.7 12.8

Proposed Method 95.0 5.3 5.8 95.0 11.4 12.5
* SE denotes the sensitivity, i.e. the percentage of evaluated beats.

**(Martinez et al., 2004) evaluated (Laguna et al., 1994)
and reported the results.

to all algorithms. Similarly, we can observe that the Q-onset standard deviation holds the

second lowest standard deviation value.

4.3.4 Simulated PPG Data

In order to demonstrate the potential of the proposed method in PPG applications, we eval-

uated the performance of the algorithm in tracking the dicrotic notch across simulated data

containing common factors known to affect PPG feature measurements. Some previous

works have utilized this physiological feature to improve systolic blood pressure estimation

(Gu et al., 2008) and to study athletic differences via PPG pulse shape (Wang et al., 2015).

To the best of our knowledge there are no expertly (manually) annotated databases to eval-

uate the performance of dicrotic notch detection algorithms. To overcome this limitation in

literature, we have used a synthetic PPG generation tool (Charlton et al., 2019). Briefly,

a set of PPG beats were replicated to generate simulated signals consisting of trains of

PPG beats, each of 210 seconds duration sampled at 500 Hz. Consequently, distortions

in the form of amplitude modulation or baseline wander were introduced, leading to two
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Table 4.4. Summary of the dicrotic notch variability across the proposed algorithm versus Li et al.
Algorithm dicrotic notch

AWGN AM BW
mean std mean std mean std

all results in ms
(Li et al., 2010) 53.40 50.50 2.19 0.58 2.98 3.81

Proposed Method -0.57 5.31 0.31 1.11 0.26 1.91

distorted recordings. The distortions were repeated for a range of 29 physiologically plau-

sible RR intervals, resulting in 58 recordings overall. Additionally, for the undistorted 210

seconds recording, additive white Gaussian noise was introduced and the distortion was

repeated 29 times from 20 dB to 10 dB. Thus, the database contained 87 recordings in

total. Since the RR interval is constant across the recordings, the dicrotic notch variability

is zero. Therefore, algorithm performance is evaluated based on the obtained dicrotic notch

variability and its proximity to zero. We have attached the modified simulated database in

the supplementary material.

Furthermore, we evaluated the performance across the only open-source dicrotic notch

detection algorithm, proposed by Li et al. (2010). The results are summarised in Table

4.4. Similar to the QT interval, we are interested in the beat-to-beat tracking ability of the

algorithm and therefore focus on the standard deviation. In the instance of AWGN and

BW our algorithm outperforms the other evaluated method. Regarding AM distortion, our

technique produced comparatively competitive results.

4.3.5 BIDMC PPG Adaptations

To further illustrate potential applications of the proposed algorithm, we have included a

visual gallery of adaptations on PPG data. The publicly available BIDMC PPG and Res-

piration Dataset (Pimentel et al., 2017; Goldberger et al., 2012) contains 53 eight minute

recordings of PPG sampled at 125 Hz; the data were previously utilized to benchmark algo-

rithms for estimating the respiratory rate from the PPG. For a particular subject, a template

PPG was obtained by averaging the data across a thirty second interval; where the sig-

nal apex (systolic peak) was taken as the reference point to delineate each beat. In this

work, we extracted template PPG for seven subjects across the BIMDC database and sub-

sequently plotted five adaptations for each subject. Fig. 4.6 depicts the effectiveness of

template adaptation achieved by the proposed algorithm.
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Figure 4.6. Example of seven subjects (a) - (g) across the BIMDC database. For each subject five
beats were considered from left to right. In each instance the template (blue) is adapted
to the beat (black) producing the resultant deformation (red).

4.4 Discussion

The proposed method is a general framework for 2D template adaptations. In comparison

to previously proposed template adaptation algorithms in signal processing literature our

method is based on a robust mathematical foundation. By using free form deformations
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and a quadratic cost function we obtain mathematically smooth and continuously differen-

tiable adaptations. Furthermore, we introduce a doubly stochastic correspondence matrix,

which provides correspondence probabilities between two sets of signals. Under the pro-

posed model, binary correspondences were persistent for pronounced features such as the

R-peak of the ECG. For less evident features, the algorithm obtained non-binary probabili-

ties which acted as temporal interpolation points. The advantage of permitting non-binary

correspondences in the doubly stochastic matrix stems from the fact that contraction and

expansion of localized regions in quasi-periodic data may not match up with the number

of relevant samples in the given region. Non-binary correspondences are permissible by

virtue of the fact that a spline interpolation method is being utilized under which there is no

guarantee that the deformation model can retrieve an exact adaptation to the target data;

that is, the model provides no guarantee that template data can perfectly match noisy sam-

ples. This is a desirable property as the proposed algorithm is restricted from overfitting.

Furthermore, the use of deterministic annealing reduces the need to estimate an appropri-

ate Lagrangian multiplier for the entropy term in Eq. 7, as multiple solutions are iterated

over to yield a final adaptation. Similarly, the band matrix is gradually increased to reduce

the need for the approximation of a valid domain and to permit gradual deformations.

We have demonstrated the ability of the algorithm to perform on several databases. Com-

pared to previously proposed QTV algorithms our method illustrated superior results across

the baseline wander and amplitude modulation synthetic ECG tests. Furthermore, it achieved

comparable results to the best performing algorithm across the white Gaussian noise test.

The high level of performance on QTV analysis is further supported by the results obtained

on the PTB database. Our algorithm detected statistically significant differences in QTV

between myocardial infarction patients and normal subjects, which is in alignment with the

comparative studies observed in 4.5. Furthermore, our algorithm yielded a similarly low

coefficient of variation to i2DSW for MI patients across the PTB database; thus, further il-

lustrating its ability to robustly estimate QTV. Regarding the QTDB, our method produced

competitive single lead results compared to the state-of-the-art and yielded superior results

under supervised two-lead analysis. This suggests that the proposed method may pro-

duce state-of-the-art QTV tracking under appropriate channel selection. By applying our

proposed method to the BIDMC database we provided a visually intuitive representation

of the algorithms prowess and applicability to PPG data. Importantly, we performed the

adaptations utilizing the same hyperparameters used across the two ECG datasets, in turn

demonstrating the generalisation ability of our framework. The results were further backed

by a beat-to-beat analysis into the dicrotic notch of the PPG. Our algorithm demonstrated
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superior results to a state-of-the-art arterial blood pressure delineator. However, it is impor-

tant to note that the difference in performance may not be as prevalent if a dedicated PPG

dicrotic notch delineator were available for comparison.

4.5 Conclusion

We have proposed a 2D template adaptation framework with a robust theoretical foundation.

Our method is able to detect subtle features in noisy quasi-periodic time series. It is of

interest to note that the hyperparameters were kept constant across experiments. Thus,

suggesting the described method may be an important tool in various applications where

2D quasi-periodic time series are of interest.

4.6 Control Point Partial Derivatives

The derivatives from Eq. 9 with respect to the FFD control point parameters can be easily

obtained. For an l × m grid of control points, each parameter is denoted by:

δPi,j = (δPx
i,j, δPy

i,j),

where i = 1, · · · , l and j = 1, · · · , m. Under this notation, consistent with the methodology

section, for the (i, j)th control point, the following holds:

∂δ f̃ (Θ; Ỹ)
∂δPx

i,j
=

[
βi(sa)β j(ta)

0

]
,

∂δ f̃ (Θ; Ỹ)
∂δPy

i,j
=

[
0

βi(sa)β j(ta)

]
.
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5

Interpretable Classification of Cardiac

Ischemic Beats Using Correspondence

Based Template Adaptation

The content of this chapter is a modified version of a text under review in IEEE Transactions

on Biomedical Engineering.
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5.1 Introduction

Abstract

The classification of ischemic beats in ECG is a critical component in the detec-

tion of myocardial ischemic episodes. Importantly, interpretable techniques are

necessary for widespread adoption of automated beat classification methods in

the clinical setting. As such, in this work we propose a novel and interpretable

ischemic beat classification framework. The method utilizes a recently devel-

oped feature extraction algorithm employing correspondence based template

adaptation to retrieve morphological features from the ECG. Template adapta-

tion permits for the manual annotation of morphological features, thus allowing

the inclusion of expert knowledge. We pair the feature extraction technique with

an interpretable classification method - k-nearest neighbours. Combined, the

two components yield an intuitive and robust model. We demonstrate the per-

formance of the proposed framework by evaluating the method across a task-

specific database utilizing ECG data from the European ST-T Database and

comparing the results against a set of previously proposed models. To provide

a more robust measure of performance on unseen data by the proposed work

we employ subject-wise validation alongside the conventionally used beat-wise

validation.

5.1 Introduction

Myocardial ischemia occurs when blood flow to the heart is reduced due to a partial or

complete obstruction of a coronary artery. According to World Health Organisation (WHO)

estimations, ischemic heart disease accounted for upwards of 9 million deaths in 2016

(Nowbar et al., 2019). The presence of myocardial ischemia is important in the prognosis

of ischemic heart disease and is diagnosed by several methods including the electrocardio-

gram (ECG) (Shimokawa and Yasuda, 2008). Due to the high mortality rates of ischemic

heart disease and prognostic abilities of ECG, robust and pragmatic diagnostic tools are of

utmost importance.

The ECG represents variations in the total electrical potential produced by heart muscle.

ECG recordings have been extensively used in signal processing and machine learning

literature for the purpose of: beat classification (Lyon et al., 2018), physiological marker

Page 84



Chapter 5

analysis (Baumert et al., 2016a; Porta et al., 2007; Martínez et al., 2006), and wearables

(Bayoumy et al., 2021). In the ECG, ischemic episodes manifest in the ST interval (Channer

and Morris, 2002), representing the period between the ventricular depolarisation offset and

the ventricular repolarisation offset of the cardiac cycle (Shimokawa and Yasuda, 2008).

Such episodes are observable by slow morphological changes in the ST segment and/or

T-wave. ECG monitoring is a well-established and non-invasive procedure for detecting

such morphological changes. However, visual ECG monitoring is time-consuming, expen-

sive and error-prone. Thus, robust and interpretable automated techniques for ischemic

detection can assist physicians towards more objective and efficient diagnosis.

Robust classification of ischemic beats is of paramount importance in accurately detecting

ischemic episodes. Conventionally, a moving-window of classified beats is evaluated to

determine ischemic episodes. In this work, we exclusively focus on the problem of ischemic

beat classification. We discuss several studies which evaluate ischemic episode detection

but only for the purpose of describing their ischemic beat classification methodology.

Numerous efforts have been made to classify ischemic beats using ECG including both in-

terpretable and black-box models. Exarchos et al. (2006) employed an automated method-

ology based on association rule mining for the detection of ischemic beats. Association rule

mining is a data mining technique commonly employed in pattern discovery of unsupervised

learning problems. In Goletsis et al. (2004), a combined genetic algorithm and multiciriteria

decision analysis based method was used to detect ischemic beats. In Papaloukas et al.

(2001, 2002c), the authors utilized a knowledge-based technique with previously studied

threshold levels of various morphological features in the ST-T interval. Exarchos et al.

(2007) employed a methodology for the automatic creation of fuzzy expert systems from

an initial training dataset is proposed. The framework consists of a three-step process:

(a) extraction of a set of rules from a decision tree derived from the training dataset, (b)

transformation of the set of rules into a fuzzy model and (c) the optimization of the fuzzy

model’s parameters using a global optimizer. Similarly, Presedo et al. Presedo et al.

(1996) focused on a fuzzy based implementation using expert knowledge. A related fuzzy

based model was proposed in Tsipouras et al. (2007). Orrego et al. (2012) presented a

dimensionality reduction study based on fuzzy rough sets. Their work described a novel

framework based on entropy, neighbourhood techniques and a modified feature selection

algorithm across a large feature space. In García et al. (2000a), a detection algorithm is

applied to the filtered root mean square series of differences between the beat segment
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and an average pattern to detect anomalous segments. Ranjith et al. (2003) used a rule-

based method consisting of ST-segment deviation and T-wave amplitude measurements for

the detection of ischemic episodes in a cardiac cycle. Comparison of ST segment changes

from a reference ST segment level is a well established technique (Jager et al., 1998). In

Correa et al. (2014) the authors utilized vectorcardiogram parameters for the purpose of

ischemic characterization; this approach requires three orthogonal leads or a transformed

12-lead system. Tseng et al. (2016) proposed and evaluated the performance of a support-

vector machine and spare representation using a modified rule-based method. Limitations

of previous works have included: a) not using beat-by-beat ischemic annotations; b) subpar

statistical measures (sensitivity/specificity) when evaluated against test data.

Similar to other biomedical engineering applications, neural networks have been extensively

employed in ischemic beat classification. In Stamkopoulos et al. (1998); Maglaveras et al.

(1998a) a dimensionality reduction (non-linear principal component analysis) based feature

extraction method combined with a neural network was employed to achieve beat classifi-

cation. Similarly, Maglaveras et al. (1998b) proposed a bidirectional associative memory

neural network for the classification of ischemic beats. In Papadimitriou et al. (2001), the

authors describe a supervising network self-organizing map model. This type of model

employs unsupervised learning for simple to resolve regions of beats in the learning pro-

cess and supervised learning for difficult ones in a two stage training procedure. Further-

more, Pelaez et al. (2014) used a multi-layer perceptron neural network combined with

wavelet transforms for the purpose of ischemia classification. Neural network and other

black-box based methods have produced state-of-the-art results but are inherently plagued

by a lack of interpretability. This characteristic limits their clinical adoption, hence more

transparent techniques with similar performance are needed. More recently, several other

works (Park et al., 2012; Kumar and Singh, 2016) have claimed state-of-the-art perfor-

mance across ischemic beat detection, however, they do not seem to have used the same

set of updated (beat-by-beat) annotations as reported in earlier related works (see Table

5.6).

Here, we proposed a fully interpretable and robust ischemic beat classification system. The

framework includes a recently proposed feature extraction technique which has yielded

state-of-the-art performance in ECG feature extraction across several databases. Further-

more, the technique permits for the prior/expert knowledge inclusion by means of man-

ual annotation. We elected to employ a k-nearest neighbour (kNN) classifier to provide a

simplistic and interpretable model which may pave an easier path toward future research
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and/or clinical adoption. Furthermore, contrary to earlier works we tune and evaluate our

algorithm in a more robust manner by undertaking a subject-wise training/validation and

testing process. The method was developed and evaluated on an updated set of ischemic

beat annotations for the European ST-T Database. The original and publicly available anno-

tations provide descriptions for ischemic episodes. Thus, a task-specific set of annotations

was utilized which provides a description for each beat as noisy, ischemic or normal. In

this work, we only quantitatively compare our results against methods that have been eval-

uated against beat-by-beat ischemic annotations. The proposed work is aimed at ischemic

beat classification and therefore ought to only be evaluated against methods with the same

objective that have utilized task-appropriate annotations.

5.2 Methodology and Materials

In this section we describe the proposed classification framework in detail. Firstly, we ex-

plain the feature extraction process using a recently proposed template adaptation tech-

nique. The process is based on a non-rigid registration algorithm which is able to account

for deviations in magnitude and amplitude via non-binary correspondences between tem-

plate and target data samples. Next, we describe the interpretable kNN classifier. We

conclude by providing a detailed description of the dataset alongside the training, validation

and testing process. The framework was implemented in MATLAB 2019b using GPU ca-

pabilities and the algorithm evaluation was performed using high-performance computing

resources available at The University of Adelaide.

5.2.1 Feature Extraction

Correspondence based template adaptation (Karisik and Baumert, 2021) is a technique

which fits a template time series to a target time series. By annotating morphological fea-

tures on the original template data the corresponding features can readily be identified upon

adaptation. In this work fiducial points were manually annotated across the template by the

authors. The method is underpinned by two fundamental processes: parameterisation and

energy minimisation. We commence by describing the parameterisation process as it is

a fundamental prerequisite for defining the energy minimisation formula and subsequent

optimisation.

As in Karisik and Baumert (2021), a min-max normalization is first performed on both the

template (deforming - D) and target data (fixed - F). We denote the normalized template by
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D̃ which encapsulates a 2D array containing the time and amplitude dimensions, respec-

tively; i.e. for a given sample, a, D̃a = [D̃x
a , D̃y

a ]. Similarly, we denote the target data by F̃a,

i.e. for a given sample, b, F̃b = [F̃x
b , F̃y

b ].

The deformation technique utilized in Karisik and Baumert (2021) is based on free-form

deformations (FFD) which enforce smooth adaptations and are defined by a localised coor-

dinate system, that is:

D̃a = Xo + saS + taT. (5.1)

In (1), the origin of an l × r control point lattice, P0, is denoted by Xo and the embedding

lengths of the lattice are represented by S (x-axis) and T (y-axis).

In FFD, the (s, t) coordinate for a given sample, D̃a, can be obtained by:

sa =
D̃x

a − Px
min

Px
max − Px

min
, (5.2)

ta =
D̃y

a − Py
min

Py
max − Py

min
, (5.3)

where Px
min, Px

max, Py
min and Py

max are the four control points corresponding to the minimum

and maximum spatial coordinates of the lattice.

Once parameterised to an FFD grid, a deformation from the control point lattice P0 to the

control point lattice P1 is obtained by the Bernstein polynomial tensor product:

g̃(D̃) =
l

∑
i=0

r

∑
j=0

βi(sa)β j(ta)P1
ij. (5.4)

In (4), βi(sa) = (l
i)(1 − sa)l−isi

a and βi(ta) = (m
j )(1 − ta)m−jtj

a. By the linear precision of

FFDs, we can express (4) as an additive process: P1 = P0 + δP, i.e.

g̃(Θ; D̃) = ∑l
i=0 ∑r

j=0 βi(sa)β j(ta)(P0
ij + δPij)

= ∑l
i=0 ∑r

j=0 βi(sa)β j(ta)(P0
ij) +

∑l
i=0 ∑r

j=0 βi(sa)β j(ta)(δPij).

(5.5)
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Here, δP = Θ and (i, j) denotes the indices of the l × r control point lattice. In (5), the first

term represents the initial template and the second term the contribution of the incremental

control point shifts. Therefore, (5) can be expressed as:

g̃(Θ; D̃) = D̃ + δg̃(Θ; D̃). (5.6)

Utilizing the relationship obtained in (6), we ensue to formulate the adaptation cost func-

tion and the means by which Θ is estimated. In Karisik and Baumert (2021) the corre-

spondence based template adaptation can be described by minimising the following cost

function iteratively:

E(M, g̃) = ∑N
a=1 ∑N

b=1 za,bma,b∥F̃b − g̃(Θ; D̃a)∥2 +

λ∥g̃(Θ; D̃a)∥2 + τ ∑N
a=1 ∑N

b=1 ma,blogma,b

− log ξ ∑N
a=1 ∑N

b=1 ma,b.

(5.7)

In (7), ma,b is constrained (via the Sinkhorn-Knopp method (Knight, 2008)) by ∑N
a=1 ma,b =

1, ∑N
b=1 ma,b = 1 (ma,b ∈ [0, 1]); m contains the correspondence probabilities between the

two input datasets. The first term represents the error measure (least squares). A band

matrix constraint is imposed on the system by the introduction of the binary (0 or 1) variable

z. This constraint is introduced to limit the range of permissible comparisons between the

template and target sets. As an example, in the tridiagonal case z can be represented by:

z =



z1,1 z1,2 0 · · · · · · 0

z2,1 z2,2 z2,3
...

0 . . . . . . . . . ...
... . . . . . . . . . 0
... zN−1,N−2 zN−1,N−1 zN−1,N

0 · · · · · · · · · zN−1,N zN,N


.

The bandwidth of the band matrix in the present work is set as a portion of the template

length (see (Karisik and Baumert, 2021)). The second term is employed to regularize the

system. The third term (entropy barrier function) is utilized to restrict the values of ma,b to

a number between 0 and 1 (inclusive). Relatedly, τ is used to allow for annealing during

optimisation. The fourth term bars zero values in the correspondence matrix to satisfy

Page 89



5.2.2 Features

the constraints of the Sinkhorn-Knopp algorithm. In the current framework, due to the

low sampling rate (250 Hz) and significant morphological changes caused by ST-segment

and T-wave changes, a grid size of 2 × 10 was used. The dimensions were obtained by

undertaking a restricted parameter sweep across various grid sizes from a small training

data batch and obtaining a minimised mean squared error.

Optimisation of the described template adaptation method is based on an alternating esti-

mation approach between m and the morphological deformation Θ. This is systematically

performed in an iterative approach whilst incorporating annealing. To estimate ma,b in the

first iteration, (7) can be differentiated w.r.t ma,b and equated to 0. This produces the analytic

solution:

ma,b = e−za,b
∥F̃b−g̃(Θ;D̃a)∥2

τ + ξ. (5.8)

To computationally avoid near-zero matches a heuristic is employed to define ξ (see (Karisik

and Baumert, 2021)). The estimated (optimal) control point shifts and subsequent transfor-

mation are then obtained by differentiating (7) w.r.t Θ:

∂E(M,g̃)
∂Θi,j

= −2 ∑N
a=1 ∑N

b=1 za,bma,b(F̃b − g̃(Θ; D̃a))

(∇g̃(Θ; D̃a).
∂δg̃(Θ;D̃a)

∂Θi,j
+ 2λg̃(Θ; D̃a).

(5.9)

The method used to solve (9) is based on gradient descent (adaptive), namely RMSprop

(Hinton et al., 2012). The intent of using such an approach is to address the diverse range

of gradients across control points. Furthermore, adaptive methods assist in reducing the

time to reach a minima and discourage saddle points.

The adapted template is de-normalized in an inverse manner to the initial normalization

to recover the original time and amplitude scales. This concludes the feature extraction

methodology. We ensue to describe the selected features, classifier and database.

5.2.2 Features

In the proposed framework the following set of features are fed into the classifier:

1. the QT interval;

2. the T-wave amplitude;

3. the ST area;

Page 90



Chapter 5

4. the ST deviation;

5. the ST slope;

6. age (patient data);

7. the JT-peak interval;

8. and the ST interval.

J point

J80 point

ST area (enclosed area)

T-offset

P

S

Q

R

Isoelectric line

ST interval

QT interval

JT-peak interval

J point

J80 point

T-wave
amplitude

ST slope

T-offset

P

S

Q

R

Isoelectric line

ST deviation

Figure 5.1. The set of morphological features which are extracted via the use of correspondence
based template adaptation. This set of features serves as the classifier input.

The feature set primarily consists of morphological features (see Fig. 5.1) which have been

extracted via correspondence based template adaptation. The original template data were

manually annotated due to the complex morphology of the ECG. Briefly, the QT interval

represents the period pertaining to the ventricular depolarization and repolarization process

during a cardiac cycle and is defined by the temporal length from the QRS-onset to the T-

wave offset. The T-wave amplitude represents the amplitude deviation of the T-wave peak

from the isoelectric line. The ST area represents the area between the ECG, isoelectric

line, J point and J80 point. The ST deviation is defined as the distance between the J80

point and the isoelectric line (the same feature between the J point and the isoelectric line

is also utilized). The intent of this feature is to capture the amplitude deviation of the ST

segment. The ST slope is the gradient of the line connecting the J and J80 points. The
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JT-peak interval represents the temporal length of the J point to the T-peak. Lastly, the ST

interval denotes the interval between the S point and the T-wave offset.

5.2.3 Classification

In the proposed work a k-nearest neighbour (kNN) approach is employed to differentiate

between normal and ischemic beats. The kNN classification algorithm is amongst the most

popular and interpretable techniques in statistical learning literature. The primary principle

behind the method is that if the majority of the k (pre-specified) nearest neighbours of an

instance under classification belong to a particular class, then the instance is labelled as

belonging to the majority class (see Fig. 5.2). The nearest neighbour evaluation is per-

formed in the feature space where a distance function is employed to enable comparison.

For the binary classification problem consider an unknown instance, Cu, and consider a

known instance, Ct1, belonging to the training set; each instance contains a nine element

vector containing the described morphological features. A distance measure, in this case

the correlation coefficient, is employed to then generate a set of distances against all train-

ing samples, which for the given case is obtained by:

Distancecorrelation =
∑

N f
f=1 Cu, f Ct1, f

∑
N f
f=1 Cu, f ∑

N f
f=1 Ct1, f

. (5.10)

The voting method is then employed on the nine features (N f = 9) across the 30-nearest

neighbours and hence classification is achieved. The kNN algorithm contains only a single

hyperparameter, k.

k=1

Class B

Class A

k=3

k=9

Figure 5.2. An example of a binary kNN classifier for k=1,3 and 9. The diamond (green) denotes the
query point, the stars (yellow) denote Class A members and the triangles (blue) denote
Class B members.
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5.2.4 Database

We used the European ST-T Database (Taddei et al., 1992), which is publicly available

on PhysioNet (Goldberger et al., 2012). The ECG measurements were obtained by thir-

teen research groups from eight countries. The goal of the study was to prototype an

ECG database for the assessment of ambulatory ECG monitoring systems. The database

comes with annotations pertaining to ST-segment and T-wave changes which contain fur-

ther descriptions denoting the nature of the events (ischemic/non-ischemic). For the pur-

pose and evaluation of the described classification framework, a task-specific database was

employed utilizing the ECG measurements from the original European ST-T database com-

bined with updated beat-by-beat annotations. The annotations were independently labelled

by three clinicians as ischemic, noisy or normal. Any discrepancies in annotations were

amended after a mutual evaluation by the three clinicians. The European ST-T database

contains 90 continuous two-channel recordings, each two hours in length, taken from 79

ambulatory ECGs. The subjects were 70 men (aged 30-84) and 9 women (aged 55-71).

The data were sampled at 250 samples per second with a 12-bit resolution over a 20 mV

input range. A myocardial ischemia diagnosis was present or suspected in each subject.

The task-specific ECG database was formed by extracting eleven hours of continuous two-

channel data from 10 representative files of the original database as observable in Table 5.1

(this subset of data was selected and annotated by earlier works - see Table 5.6). Across the

eleven hour excerpt, 20 ischemic ST-segment episodes and 20 ischemic T-wave episodes

were present. The accumulated data resulted in 86 384 cardiac beats of which 6 754 were

discarded on account of improper QRS detection and/or artifacts. From the remaining 76

989 beats, 37 663 (48.92%) were labelled as ischemic and the rest as normal.

For algorithm evaluation, we employed two strategies. Firstly, we used a inter-subject train-

ing/validation/testing split. The validation step was used to tune the k value of the clas-

sification framework. Fig. 5.3 demonstrates the accuracy of the system against varying

values of k. Steady performance is illustrated across varying values of k, with the optimal

value occurring at k = 30. This value was selected and employed across all the remaining

algorithm evaluation in the ensuing sections. Furthermore, the broad range of k values

with a comparably high accuracy demonstrate the robustness of the selected feature set.

A less robust set may be highly dependent on the value of k; this is because a high vari-

ance across the features would yield vastly different performance. Upon attaining a set of

suitable values and performance metrics the framework was employed across the testing

data. Table 5.2 demonstrates the split across the training, validation and testing data. In
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Figure 5.3. Accuracy of the different k values from 10 to 50 nearest neighbours against the validation
set (see Table 5.2); accuracy is defined as the percentage of correctly classified beats.

summary, fourteen out of twenty recordings (70%) were used for the training purposes,

two out of twenty recordings (10%) were used for validation and the remaining four out of

twenty recordings (20%) were used for testing purposes; each set was constructed to very

nearly form a balanced split between ischemic and normal beats. A more robust measure

of cross-validation such as leave-one-out (LOO) was not employed in a subject-wise man-

ner due to the difficulty of generating a balanced distribution of ischemic and non-ishemic

beats across the limited data available.

Secondly, we used an intra-subject training and testing split similar to Goletsis et al. (2004)

and in line with previous works observable in Table 5.6. This type of training and testing split

was utilized to be able to fairly compare results against previous efforts made across the

task-specific database. The validation data consisted of 26936 beats and the testing data

was comprised of 50 053 beats. A K-fold (100) cross-validation (see 5.3) was employed

on this subset of the data and observed in parallel to the subject-wise validation. No fur-

ther hyper-parameter tuning was performed when evaluating the algorithm in a beat-wise

manner to avoid over-fitting.
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Table 5.1. Summary of subject recordings and
respective durations utilized from
the European ST-T Database (sub-
set containing beat-by-beat annota-
tions).
Subject Hour(s)
e0103 1
e0104 2
e0105 1
e0108 1
e0113 1
e0114 1
e0147 1
e0159 1
e0162 1
e0206 1

Table 5.2. The training/validation/testing splits
across the two-lead ECG for each
subject.

Subject Channel 1 Channel 2
e0103 Training Testing
e0104 Training Training
e0105 Validation Training
e0108 Validation Training
e0113 Training Training
e0114 Training Training
e0147 Training Training
e0159 Training Testing
e0162 Testing Training
e0206 Testing Training

Table 5.3. Performance against the training and validation data for k-fold validation (beat-wise) and
the hold-out strategy (subject-wise).

Validation Method Sensitivity (%) Specificity (%)
K-fold (beat-wise) 93 94
Hold-out (subject-wise training) 93 94
Hold-out (subject-wise validation) 88 70

5.3 Results

In this section we evaluate the proposed framework and compare it to the sensitivity/specificity

benchmarks set by previously published methods. We perform model assessment and eval-

uate the classifier performance across both a beat-wise and subject-wise validation. Table

5.3 shows the test/validation results for the K-fold (beat-wise) and the hold-out (subject-

wise) approaches, respectively. An average sensitivity of 93% and average specificity of

94% is observed across the 100-fold evaluation of the framework. Furthermore, a 93%

sensitivity and 94% specificity is observed against the training set of the hold-out method -

whilst an 88% sensitivity and 70% specificity is seen across the validation set of the hold-out

method.

Table 5.4 summarises the raw false positive and false negative results across the subject-

wise test data. Similarly, Table 5.5 summarises the raw false positive and false negative

results across the beat-wise test set. Table 5.6 demonstrates that the proposed framework

yields a 93% sensitivity and 94% specificity across the beat-wise validation and a 98%

sensitivity and 70% specificity across the subject-wise validation. It should be noted that
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Table 5.4. Test results against the subject-
wise validation. Ischemic beats
are denoted by I and normal beats
are denoted by N.

True
Class

Predicted Class
I N total

I 7890
(50.7%)

167
(1.1%)

8057

N 2274
(14.6%)

5336
(34.3%)

7610

total 10164 5503 15667

Table 5.5. Test results against the beat-wise
validation. Ischemic beats are de-
noted by I and normal beats are
denoted by N.

True
Class

Predicted Class
I N total

I 22916
(45.8%)

1570
(3.1%)

24486

N 1804
(3.6%)

23763
(47.4%)

25567

total 24720 25333 50053

Table 5.6. Performance comparison of ischemic beat detection across similar techniques and
against the ESC ST-T Database (equivalent subset).

Algorithm Sensitivity (%) Specificity (%)
Rule-based (Papaloukas et al., 2001) 70 63
ANN and PCA (Papaloukas et al., 2002b) 90 90
ANN & parametric modelling (Papaloukas et al.,
2002a)

81 84

Multicriteria decision analysis (Goletsis et al., 2003) 90 89
Genetic algorithms & multicriteria decision analysis
(Goletsis et al., 2004)

91 91

Association rule mining-based (Exarchos et al., 2006) 87 93
Automated creation of fuzzy expert system (Exar-
chos et al., 2007)

91 92

A framework for fuzzy expert system creation
(Tsipouras et al., 2007)

81 73

Current work (beat-wise) 93 94
Current work (subject-wise) 98 70

other methods have been proposed, however, they have employed alternative evaluation

measures or test sets, thus making direct comparison unattainable.

Lastly, Fig. 5.4 illustrates the receiver-operating-characteristic (ROC) curves when the bi-

nary classifier is evaluated in a beat-wise and subject-wise manner. The area under the

curve (AUC) value for the beat-wise and subject-wise approach is 0.9781 and 0.8044, re-

spectively.
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Figure 5.4. ROC curves for the beat-wise and subject-wise test results using the classification
framework.

5.4 Discussion

Robust discrimination between the two-class problem of ischemic beat and normal beat

detection is of critical importance in the observation of ischemic episodes and subsequent

diagnosis of myocardial ischemia. In the current study, an interpretable classification model

is proposed based on a correspondence based template adaptation feature extraction tech-

nique and a kNN classifier. In the proposed work, the template signal was generated by

averaging the signal length across the entire recording beat-by-beat. The beats were ex-

tracted based on a set interval, where each QRS point was considered to be the central

sample of the cardiac cycle. This is not dissimilar to other template adaptation methods

(Schmidt et al., 2014).

Previously, template adaptation has been studied and applied in ECG literature for the

extraction of morphological features (Baumert et al., 2012; Karisik and Baumert, 2021;

Schmidt et al., 2014). Furthermore, it provides an interpretable and observable approach

to the feature extraction process. In this work, the extraction method permits for the in-

corporation of human knowledge by manual delineation of the template beat; automatic

methods also exist and have been utilized in earlier works (Schmidt et al., 2014, 2018a).

Manual selection was utilized in this work due to the complex nature of beat morphologies
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pertaining to ischemic beats. In our framework, the feature extraction method employs a

parameterisation to impose smooth deformations in the form of splines. The application

of a parameterised grid with smooth properties prevents unrealistic template adaptations.

We employed a further restriction on the deformation process by using a sparse grid of 2

control points. The feature extraction method in this work utilizes a non-binary correspon-

dence matrix to achieve an appropriate template adaptation. The imposition of a non-binary

matrix permits for the adaptation and interpolation of points across signals with low sam-

ple rates (250 Hz in this work). It was previously observed in Karisik and Baumert (2021)

that persistent features such as the R-peak approach correspondence values of close to 1.

Lastly, a regularisation parameter is incorporated into the template adaptation cost function

to prevent adaptations that represent undesirable movement of the control points. This is

common practice in the image and point-set registration domain.

The classification algorithm that this work applies is amongst the most simplistic and com-

monly employed in data processing and automation literature. kNN classification is an ef-

fective and interpretable algorithm which provides a strong foundation for clinical adoption.

This is an important characteristic of the selected algorithm since many classification mod-

els are capable of producing state-of-the-art results but lack interpretability. An additional

advantage of using kNN classification stems from the fact that the method only contains

a single hyper-parameter, k. Thus, the design process merely consists of selecting an

appropriate distance function in conjunction with a data-driven value of k. In this work,

a correlation based distance function was found to yield the best results when compared

against: euclidean, cityblock, chebychev, minkowski, cosine and mahalanobis distances.

The simple design process of a kNN makes it easily adaptable for the purpose of future

datasets and improvements.

The results presented by the current framework are better than those obtained by methods

which have utilized the same subset of the European ST-T Database and the same up-

dated beat-by-beat annotations. The European ST-T is a standard database employed for

the purpose of myocardial ischemia. Our work demonstrated better results in terms of both

sensitivity and specificity compared to all previous comparable works (Papaloukas et al.,

2001, 2002b,a; Goletsis et al., 2003, 2004; Exarchos et al., 2006, 2007; Tsipouras et al.,

2007). Additionally, we evaluated our work in a subject-wise manner to provide a more rep-

resentative estimate of the framework’s performance. This has not been standard reporting

procedure previously and was raised in a recent review of myocardial ischemia and my-

ocardial infarction classification systems (Ansari et al., 2017). It should be noted that our
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work demonstrates a bias toward classifying ischemic beats when evaluated in a subject-

wise manner. This is observable in the ROC curve, for the subject-wise case in Fig. 5.4,

where a true positive rate is only attainable with a relatively high false positive rate (∽20%);

however, this trend does not continue and a high true positive rate can be achieved with

only an incremental percentage change from the aforementioned false positive rate offset.

Furthermore, there seems to be an element of variance between the validation set and test

set sensitivity. This apparent decrease in performance occurs due to two reasons: (a) there

is no leakage of data between the intra-channel training/validation and testing sets when

ischemic classification methods are evaluated in a subject-wise manner, (b) the limited size

of the training set consists of an insufficient set of sample data (limited variability) to guaran-

tee generalization. However, it is important to note that a less severe form of data leakage

still exists with our improved validation approach. This arises from the inter-channel leak-

age caused by employing data from different channels of the same patient across both the

training and validation sets; that is, the two channels are derived from the same cardiac

vector. Lastly, a more complex method for the validation (in a subject-wise manner) of the

proposed framework, such as leave-one-out cross validation, was not employed due to the

difficulty in generating a balanced split of the data between normal and ischemic beats

across folds. This is an important limitation to note pertaining to the dataset employed for

the evaluation of the current work and previously proposed methods. The development of

an improved dataset addressing this limitation is of critical importance for future works and

for widespread adoption of automated ischemic beat classification techniques.

The performance of the method can be improved in several ways. Firstly, more advanced

QRS detection could be applied. Better performing and more robust methods have been

employed since the release of the utilized algorithm (Tompkins and Afonso, 1993). The

QRS-detection system used was employed to provide a fair comparison with the previously

proposed algorithms; thus, serving to limit the amount of design variability in the classifi-

cation process. Secondly, modern ECG recorders could be employed for the recording of

the data with a higher sampling rate. Modern recorders produce less noisy signals with

higher resolution. Additionally, the method could be adapted to consider additional arry-

thmias and cardiac conditions. Algorithmically, an improved template generation method

could be utilized which includes beat-by-beat alignment before averaging, as observed in

Schmidt et al. (2014, 2018b). Lastly, the incorporation of clinical information containing pa-

tient health history and lifestyle characteristics could be included as input features to the

model.
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5.5 Conclusion

We introduced a novel technique for the detection of ischemic cardiac beats in the ECG.

The approach utilized a correspondence based template adaptation method for feature ex-

traction combined with a kNN classifier. The application of a correspondence based matrix

technique for the extraction of complex morphological features proved to be a successful

approach. The interpretable nature of the framework may make clinical adoption easier.

The proposed method discriminated between ischemic and normal cardiac sequences at a

greater rate than previously proposed works. This suggests that the proposed method has

potential to be applied in a clinical setting or modern monitoring systems, e.g. wearables.

Although, the method produced state-of-the-art results, further testing and evaluation is

needed on modern recording devices and across a large clinical study where more robust

cross-validation techniques can be employed.
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Classify Myocardial Infarction Using

Vectorcardiographic Ventricular

Depolarization and Repolarization

The content of this chapter is a modified version of the publication:

Karisik, F. and Baumert. M (2019), ‘A Long Short-Term Memory Network to Classify My-

ocardial Infarction Using Vectorcardiographic Ventricular Depolarization and Repolariza-
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Abstract

QT interval variability has indicated diagnostic and prognostic value in myocar-

dial infarction. Furthermore, research has suggested that vectorcardiogram has

superior diagnostic capabilities compared to electrocardiogram in myocardial

infarction. In this study, vectorcardiographic ventricular depolarization and repo-

larization were utilized to discriminate myocardial infarction patients from control

subjects. In summary, 147 vectorcardiogram recordings (78 MI vs. 69 Control)

were assessed. For each recording, sixty beats were extracted using the 2DSW

algorithm. An inhomogeneous three-dimensional template adaptation scheme

was applied across each QRS-loop and T-loop, respectively, to capture subtle

morphological changes between cardiac cycles. Training was performed on a

regularized two-layer long short-term memory network. The framework yielded

classification results against test set data with an overall 93.2% accuracy, 91.7%

sensitivity and 95.5% specificity. In conclusion, the use of template adapted

VCG and a recurrent neural network has demonstrated promising results in MI

classification.

6.1 Introduction

Myocardial infarction (MI) is a cardiac event in which the myocardium is deprived of suffi-

cient blood supply, resulting in irreversible damage. MI has been linked to a plethora of car-

diac conditions including tachycardia and sudden cardiac death (SCD) (Bhar-Amato et al.,

2017); thus, highlighting the broader health implications of MI. Traditionally, MI has been as-

sessed analyzing the standard 12-lead electrocardiogram (ECG). However, research has

suggested that vectorcardiogram (VCG) holds superior diagnostic value in MI diagnosis

(Pérez Riera et al., 2007; Chou, 1986). The primary advantage of VCG is that phasic

changes are more clearly identifiable (Chou, 1986).

Recent investigations have reported that increased beat-to-beat QT variability (QTV) con-

tains information related to sudden cardiac death and other diseases (Baumert et al.,

2016a). Robust measurement of QTV requires the detection of the QRS onset and T-

wave offset. Due to subtle morphological changes across cardiac cycles and low wave

amplitude, the detection of the T-wave offset is a difficult task. However, recent template
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adaptation techniques have demonstrated significant improvements in QTV measurement

(Schmidt et al., 2014, 2018a). Resultantly, the inclusion of the entire T-wave in analysis

of ventricular depolarization and repolarization has been recommended (Baumert et al.,

2016a). Furthermore, template adaptation techniques have been recommended for QTV

analysis. Although template adaptation techniques have demonstrated state-of-the-art per-

formance across ECG applications (Baumert et al., 2012; Starc and Schlegel, 2006), little

emphasis has been placed on VCG. Thus, we employ a recently proposed three-dimensional

template adaptation technique for pre-processing VCG. The adapted cardiac data are fed

into a long short-term memory (LSTM) network for classification. Therefore, in this work we

aim to incorporate both the reported advantages of VCG in MI and, template adaptation in

QTV measurement for the classification of MI.

Previous machine learning literature has focused on utilizing various combinations of the

12-lead ECG to discriminate between MI patients and healthy subjects. Furthermore, ex-

isting efforts have employed a series of machine learning and deep learning methods to

perform classification. A brief overview of the proposed techniques that have employed ro-

bust system validation against the PTB database via hold-out or K-fold methods is provided.

Several ECG based techniques have been proposed. Acharya et al. (2017) reported the

use of a convolutional neural network (CCN) on a single beat for each patient. Zhou et al.

(2011) proposed feeding a support vector machine polynomial for approximating coeffi-

cients of the ST segment. Further investigation by Arif et al. (2012) described a K-nearest

neighbour classifier utilizing time domain features, namely: T-wave amplitude, ST segment

deviation and Q-wave amplitude. In Sharma et al. (2015), the authors introduced a mul-

tiscale energy and eigenspace approach for the discrimination of MI and control subjects.

Similarly, existing methods have employed VCG based methods. Yang (2011) proposed

the use of multiscale recurrence quantification across linear discriminant analysis, quadratic

discriminant analysis and kNN. Further investigation by the same group proposed the use of

VCG and logistic regression (Yang et al., 2013). The aforementioned works have produced

state-of-the-art results, however, have neglected to consider long-term dependencies via

the use of recurrent neural networks. The performance of the prior algorithms is provided

in the Results section of this study.

6.2 Methodology

In this section, we briefly describe the proposed classification framework. The described

method employs template adaptation for the pre-processing of data and an LSTM network
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for the classification component. VCG data extraction is performed via two-dimensional

signal warping (Schmidt et al., 2014). Similarly, for both the QRS complex and T-wave,

template VCG loop alignment is performed via inhomogeneous template adaptation. The

beat-to-beat template data are processed as raw inputs by an RNN. Classification is per-

formed using a standard LSTM framework. The classifier employs a softmax activation

function combined with a cross-entropy loss function.

6.2.1 Template Adaptation

Procrustes analysis is a statistical shape alignment technique employed to globally match

spatial data. In this work, we utilize Procrustes analysis to globally rotate and translate the

reference template, Yr, to the target data, Yt. An independent Procrustes analysis is per-

formed on each VCG lead to account for varying temporal-shifts across different projections

of the same cardiac cycle. Mathematically, the optimal rotation (R) and translation (T) can

be obtained by minimizing the below equation using linear least squares:

Yg = R(Yr) + T. (6.1)

Next, the three-lead globally adapted VCG template, Yg, is parameterized. Free-from defor-

mation is a computer graphics technique utilized to parameterize three-dimensional data to

a lattice of control points. In this work, for each cardiac cycle we parameterize the globally

adapted template to the minimum bounding rectangular prism containing the template and

the target data. For a given sample, Ya
g , the three-dimensional point can be parameterized

to control point, Pijk, by the following:

xijk = ∑ł
i=0 (

l
i)(1 − s)l−isi × ∑m

j=0 (
m
j )(1 − t)m−jtj × ∑n

k=0 (
n
k)(1 − u)n−kuk, (6.2)

where s, t and u denote the embedding rectangular prism localized coordinate system. In

the interest of conciseness, we do not expand on how to obtain the value of s, t and u

for each three-dimensional sample, instead we refer the reader to the original works by

Sederberg and Parry (1986). Parameterizing each three-dimensional sample of Yg to the

control point lattice yields a matrix of FFD weights, X. Mathematically, the parameterization

can be expressed as:

Yg = XV, (6.3)
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where V denotes an 8 × 3 matrix of the control point coordinates. To obtain a locally

adapted template, Yf , a linear least squares optimization can be performed across the

embedding control points:

Yf = (XTX)−1XTYt. (6.4)

Subsequently, the template adaptation is described by:

Yf = XVf , (6.5)

where Vf denotes the optimal control point locations. However, such a formulation is un-

able to robustly capture subtle non-linearities in morphology, thus, the simple linear least

squares regression is extended to a kernel ridge regression (KRR). In the kernelized non-

parametric extension of the linear least squares solution, the described inhomogeneous

template adaptation technique becomes:

f ∗(Yt, Λ) = K(K + c1Λ)−1Yt, (6.6)

where K represents the kernelized FFD weights matrix and Λ the noise estimation regular-

ization matrix, respectively. The kernel function applied to the FFD weights matrix X is the

Gaussian kernel:

k(x, x′) = exp(
|x − x′|2

2σ2 ), (6.7)

where σ denotes the kernel width. The kernel width determines the length of the wiggles in

the Gaussian kernel function. Lastly, the noise estimation model used in this technique is

based on a simple differentiator model:

Λa = Yta − Yta−1 , (6.8)

where Λa denotes the ath diagonal entry in the N × N regularization matrix and Yta the ath

sample of the current VCG cycle, respectively. The regularization term is a square diagonal

matrix containing the estimated lambda values. A differentiator noise model is employed

to capture outliers in the data, which for the case of VCG can significantly differ between

samples. This concludes the three-dimensional template adaptation description. In the

ensuing section the employed RNN is described.
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6.2.2 Classification

LSTM

In this work, we propose the use of a LSTM network to discriminate between myocardial

infarction patients and control subjects. LSTM networks belong to the recurrent neural

network family and were developed to overcome two key limitations of traditional RNN net-

works - the vanishing gradient problem and the long-term dependency problem (Hochreiter

and Schmidhuber, 1997). RNNs are networks with a feedback mechanism, which allow for

information to persist (Olah, 2015). This inherent ability to retain information across multi-

ple time-steps makes RNNs a powerful tool in time-series classification problems. A brief

overview of an LSTM layer is provided based on Fig. 6.1.
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Figure 6.1. LSTM flow diagram.
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The primary component of an LSTM is the cell state, denoted by the uppermost horizontal

line in Fig. 6.1. Information flows directly across the cell state chain, passing through two

linear manipulations (Olah, 2015). As such, LSTMs are able to add or remove information to

the cell state, ct−1, which is regulated by the network gates (Hochreiter and Schmidhuber,

1997). Gates consist of a standard sigmoid layer combined with a pointwise multiplication

operation. Each gate outputs a value between zero and one, thus controlling the amount

of information to be transferred for the corresponding component (Olah, 2015). In Fig.

6.1, the leftmost sigmoid layer determines what information to discard from the cell state

by incorporating information from the current time step, xt, and the previous hidden state,

ht−1. A result of 1 instructs the system to retain all information in the cell state and a

value of 0 to discard all information, respectively (Olah, 2015). The next step is a two-fold

process which determines what new information to store in the cell state. Firstly, the centre

sigmoid layer identifies which values to update, whilst the leftmost tanh layer outputs a

vector of new candidate values. The vector multiplication of these two layers determines the

amount of new information to capture (Olah, 2015). Next, the cell state is updated to forget

information previously deemed to be unnecessary. Updated information is incorporated via

vector addition. Lastly, the neural network output is determined by a two-step process. A

sigmoid layer decides what part of the cell to output; whilst, a tanh clamping operation is

performed on the cell state and multiplied by the output of the rightmost sigmoid gate. Thus,

only information that is determined relevant is output as ht.

Network Architecture

Table 6.1 describes the implemented network architecture. The input to the network con-

sists of a 3-dimensional matrix containing sixty beats for each VCG recording. The classi-

fication architecture contains two LSTM layers, one dropout layer and one fully-connected

layer. The dropout layer serves as a regularization term in the network to prevent overfit-

ting. Dropout regularization excludes a percentage of terms for each update in the back-

propagation step of training the network. A constant dropout rate of 5% was used in this

work. The output layers consist of the standard softmax activation function combined with

a cross-entropy loss function. The softmax activation function is commonly employed in

literature as it produces probabilities pertaining to each class, from which the maximum es-

timated probability can be selected to produce the final prediction. Similarly, cross-entropy

is primarily employed in classification tasks as it has demonstrated superior performance

(Goodfellow et al., 2016). Network design selections can be observed in Table 6.2.
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Table 6.1. Network architecture.

Layer Layer Type Size
1 VCG Inputs 3×time steps
2 LSTM 2
3 LSTM 28
4 Dropout 28
5 Fully-Connected 28
6 Outputs 2

Table 6.2. Network design selections.

Design Selection Value
Learning Rate 0.075
L2 Regularization 0.000001
Optimizer Adam

6.3 Results

The performance of the proposed method was statistically evaluated using accuracy, sen-

sitivity and specificity measures. Based on the proposed classification architecture, the

system achieved 93.2% accuracy, 91.7% sensitivity and 95.5% specificity. A 5-fold cross-

validation was employed to evaluate the network with an 70/30 percent split between the

model selection and independent test data. Table 6.3 illustrates the performance of the

proposed method relative to existing classification techniques employing a robust valida-

tion approach (hold-out of K-fold). The confusion matrix across the test set data can be

observed in Table 6.4. Additionally, the receiver operating characteristic curve with the

optimal operating point is depicted in Fig. 6.2.

Figure 6.2. ROC curve for the proposed classification framework with the optimal operating point
highlighted (circle).
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Table 6.3. Performance comparison of cur-
rent method against existing tech-
niques.

Author Sensitivity Specificity

Acharya et al. (2017) 95.5% 94.2%
Zhou et al. (2011) 98.7% 96.6%
Arif et al. (2012) 99.6% 99.1%
Sharma et al. (2015) 93.0% 99.0%
Yang (2011) 96.5% 75.0%
(Yang et al., 2013) 86.8% 92.5%
Current Method 91.7% 95.5%

Table 6.4. Confusion matrix across PTB
database test set.

True

Predicted
MI C sum

MI 20

(45.50%)

2

(4.55%)

22

C 1

(2.27%)

21

(47.73%)

22

sum 21 23 44

6.4 Discussion

Classification of myocardial infarction patients is an important task for healthcare monitor-

ing. The current study investigates this task by providing an end-to-end classification sys-

tem capable of capturing dynamic changes in VCG. Our work focuses on pre-processing

data by template adaptation, in an effort to accurately capture morphological changes be-

tween cardiac cycles. This provides a benefit over traditional signal processing techniques,

such as Fourier filtering, as template adaptation attempts to preserve morphology amongst

noise. Additionally, two-dimensional signal warping, a state-of-the-art delineation method

for ECG is employed. This technique provides robust extraction of both the QRS-complex

and T-wave. By employing an accurate ECG delineation technique, the onset and offset

of VCG loops can be robustly extracted; thus, minimising the effect of noisy isoelectric line

samples being included in the three-dimensional template adaptation step.

Existing literature has neglected to evaluate the performance of LSTM networks in myocar-

dial infarction classification. LSTMs are a natural application for studying dynamic changes

in biomedical signals as they are capable of capturing long term dependencies between

time steps. This is particularly important in ECG analysis as beat-to-beat variability has

been demonstrated to contain important diagnostic information. Thus, in classification ap-

plications for ECG and VCG, the employment of RNNs is a sensible choice due to the com-

plex interrelations manifesting across serial recordings. Observing Table 6.3 and Table 6.4,

promising results have been reported across this study. The performance of the proposed

framework is comparable to several state-of-the art algorithms which have previously em-

ployed an appropriate validation scheme against the PTB database (Acharya et al., 2017;

Zhou et al., 2011; Arif et al., 2012; Yang, 2011; Sharma et al., 2015). Compared to the

Page 109



6.5 Conclusion

first VCG study employing the same database (Yang, 2011), the proposed network demon-

strated improved specificity (95.5% vs 75.0%) and slightly reduced sensitivity (91.7% vs

96.5%). Similarly, the performance of the proposed method indicated a comparable but im-

proved performance (sensitivity-91.7%, specificity-95.5% vs sensitivity-86.8%, specificity-

92.5%) relative to a study employing logistic regression (Yang et al., 2013). Thus, suggest-

ing that a balanced and high performance classifier can be attained via VCG classification.

Furthermore, relative to the remaining studies (12-lead ECG) in Table 6.3, the proposed

framework demonstrated lower, but comparable, sensitivity. Additionally, the specificity of

the proposed framework was comparable to most ECG based methods and only marginally

higher compared to one study (Acharya et al., 2017). Although the preliminary results are

promising, further hyper-parameter tuning is required to implement a more robust LSTM

classifier. The necessity for robust hyper-parameter tuning via search methods is important

as it permits the identification of an optimal network architecture within a discretely bounded

domain.

Due to the relatively small number of recordings in the PTB database, the training and

evaluation of the proposed classifier are inherently sensitive to incorrect classification. The

performance of neural network methods vastly improves with a significant training set, and

robust training practices. This is evident in our analysis as two misdiagnosed myocardial

infarction patients across twenty-two total samples significantly impacted the sensitivity re-

sults. A large database of recordings would be required to adequately train and assess

the performance of the current method and existing frameworks. Lastly, it is of interest to

mention that due to the small size of the employed database and the number of studies

undertaken across it, a form of data leakage exists. This occurs as each study is effectively

attempting to produce improved results across overlapping test sets. This devalues the

significance of the test set results as re-training of a model has occurred with the intent of

improving test performance.

6.5 Conclusion

In this study, a diagnostic assessment of VCG ventricular depolarization and repolariza-

tion in MI patients was performed via machine learning. To account for complex beat-to-

beat spatio-temporal behaviour of VCG data, a three-dimensional inhomgeneous template

adaptation technique was employed. Discrimination of control subjects and MI patients was

performed using an LSTM network. The results suggest that the proposed analysis of VCG
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depolarization and repolarization may be a suitable method in MI patient diagnostics. Fu-

ture analysis ought to look at extending training and validation with an increased complexity

level in network architecture, via a grid search. Furthermore, training and testing should

be performed across a large-scale database to evaluate the generalization of the proposed

framework.
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7

Evaluation of Ventricular Repolarization

Variability in Patients With Nonischemic

Dilated Cardiomyopathy

The content of this chapter is a modified version of the publication:

Schmidt, M., Karisik, F., Zausender, S., Linke, A., Malberg, H. and Baumert. M (2021),

‘Evaluation of Ventricular Repolarization Variability in Patients With Nonischemic Dilated

Cardiomyopathy From Vectorcardiography 2021 Computing in Cardiology (CinC), pp. 1–4.
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7.1 Introduction

Abstract

To investigate the predictive value of ventricular repolarization variability (VRV)

in patients with nonischemic dilated cardiomyopathy (CM), we analyzed the

Defibrillator in Non-Ischemic Cardiomyopathy Treatment Evaluation trial (DEF-

INITE). The Telemetric and Holter ECG Warehouse (THEW) dataset, E-HOL-

03-0401-017, contains 393 recordings from 236 patients. All patients had a left

ventricular ejection fraction < 36 % and were randomized to receiving standard

medical therapy with or without an ICD. 24h-Holter 3-lead (Frank lead system)

ECGs were performed at enrolment and subsequently within a 5 year follow-

up period. The all-cause mortality during the follow-up period was 4.8 %. We

analyzed three-dimensional variability of the T-loop using inhomogeneous three-

dimensional template adaptation. Similarly, single lead analysis was performed

by employing two-dimensional signal warping. To assess the predictive value of

the proposed VRV parameters, Kaplan-Meier survival curves of baseline Holter

ECGs were calculated. Our results demonstrated a significant association to

survival (P < 0.01 by the log-rank test) for the T wave amplitude corrected

QT interval variability index (cQTVi). The low cQTVi group showed no mortal-

ity for the entire observation period. We found no associations between cQTVi

groups and patient-specific parameters. Based on the Kaplan-Meier results, an

extended survival analysis was performed using the Cox proportional hazards

model. However, statistical significance was not observed. This can likely be

attributed to the small study-size and breach of the proportional hazards as-

sumption across input variables.

7.1 Introduction

Non-ischemic cardiomyopathy describes a broad set of diseases of the myocardium re-

lated to mechanical and/or electrical dysfunction, excluding those caused by ischemic fac-

tors, such as: myocardial ischemia and myocardial infarction (Bluemke, 2010). Research

of static variables has previously been employed to study ischemic and non-ischemic CM.

Markers such as fragmented QRS have indicated significant prognostic capabilities in pa-

tients who receive an ICD for primary or secondary prevention of SCD (Das et al., 2010).
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Additional works by Cho et al. (2021) found that inferior fragmented QRS may be predic-

tive of ventricular arrythmias in patients with non-ischemic CM. Similarly, studies evaluating

CM cohorts using ventricular lability have received some attention. Berger et al. (1997)

evaluated QTVi across a database of 83 dilated CM patients and 60 control subjects. The

authors found that dilated CM is linked to an increased QT interval variability compared

to normal subjects in both ischemic and non-ischemic patients (CM - 60.4±63.1 versus

healthy - 25.7±24.8 ms2); concluding that dilated CM leads to temporal lability in ventricu-

lar repolarisation. Further works have evaluated low-risk patients with non-ischemic dilated

CM. The authors concluded that patients with non-ischemic CM and preserved HRV have

an excellent prognosis and thus may not necessarily require ICD therapy (Rashba et al.,

2006). Furthermore, ventricular repolarization variability (VRV) has demonstrated predic-

tive value for mortality in patients with ischemic heart disease (El-Hamad et al., 2020),

where the mode of death is likely malignant ventricular arrhythmia (Baumert et al., 2016a).

However, the potential for risk stratification in patients with nonischemic cardiomyopathy

requires further investigation (Baumert et al., 2016a).

QT interval variations of the surface electrocardiogram (ECG) reflect beat-to-beat fluctu-

ations of ventricular repolarization. Previous studies have shown temporal VRV, as in-

dicated by an increased QT interval variability (QTV), is associated with cardiac mortal-

ity (Baumert et al., 2016a; Schmidt et al., 2018b). However, measuring subtle beat-to-beat

changes in QT interval remains challenging. Although novel QTV techniques have im-

proved sensitivity and robustness (Baumert et al., 2012; Schmidt et al., 2014), conventional

QTV measures still lack in insightful QTV description (Baumert et al., 2016a). More recent

techniques are able to capture VRV from vectorcardiography (VCG) (Karisik and Baumert,

2019) and thus offer new descriptive features for the characterization of ventricular repo-

larization. Thus, in this study we investigate the predictive value of VRV for all-cause mor-

tality in patients with nonischemic dilated cardiomyopathy. We analyzed the Defibrillator in

Non-Ischemic Cardiomyopathy Treatment Evaluation trial (DEFINITE) to evaluate: 1) the

applicability of new methods to characterize VRV using the VCG and 2) to investigate the

predictive value of VRV parameters for risk stratification of all-cause mortality.

7.2 Methodology

In this section we briefly describe the data and algorithmic frameworks employed for VRV

assessment. Template adaptation methods are employed for all parameter extraction. For
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detailed mathematical descriptions of the methods employed in this study, the reader is

referred to Karisik and Baumert (2019); Schmidt et al. (2018a).

7.2.1 VRV Quantification

To quantify VRV, we analyzed three-dimensional variability of the T-loop using inhomo-

geneous three-dimensional template adaptation (Karisik and Baumert, 2019). Inhomoge-

neous three-dimensional template adaptation is performed via a global-to-local adaptation

scheme. Templates of interest are first globally translated, scaled and rotated using Pro-

crustes analysis. Subsequently, local adaptation is performed using a kernel ridge regres-

sion formulation to capture subtle morphological changes. To account for complex noise

behaviour encountered in quasi-periodic data, the framework employs an adaptive noise

model. VRV was evaluated across the T-loop using two parameters: 1) mean-loop-length

(MLL) and 2) distance variability (DV). MLL is calculated as the sum of the distances be-

tween adjacent points for a given loop. DV contains the set of Euclidean distances between

corresponding samples of the template loop and the adapted template loop.

Similarly, single-lead QTV measurement was performed by the iterative two-dimensional

signal warping method (i2DSW) (Schmidt et al., 2014, 2018a). Analysis was undertaken

on the bipolar Z lead (pseudo-orthogonal) because it inherently contains a high T wave

amplitude, thus maximizing the signal-to-noise ratio (Schmidt et al., 2016). i2DSW was em-

ployed to account for subtle inhomogeneous shape variations of the ECG waveform across

time and amplitude (Schmidt et al., 2014, 2018a). The algorithm automatically generates

a template beat with common features of interest (e.g. the PQ, QRS or QT intervals and

amplitude related information) based on ensemble averaging of selected beats. To adapt

the template, a 2D mesh of warping points are superimposed on the data. Subsequently,

warping points are shifted across both time and amplitude to minimize a Euclidean cost

function between the template and target data, resulting in the adapted template. The

adapted template contains temporal and spatial information pertaining to annotated points

of interest; in this work, the QT interval and T wave amplitude were considered. An auto-

matic beat rejection proposed by (Schmidt et al., 2014) was applied to exclude noisy cardiac

cycles. Standard QTV parameters were employed, namely: standard deviation of QT inter-

vals (SDQT) and QT interval variability index (QTVi) (Berger et al., 1997). To account for

the inverse relationship between QTV and the T wave amplitude, we calculated the T wave

amplitude-corrected QTV measures of SDQT (cSDQT) and QTVi (cQTVi). All parameters
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Table 7.1. Characteristics of DEFINITE patients (THEW data) at baseline. Percentages are in
normal brackets and ranges are in square brackets. Left ventricular ejection fraction
(LVEF) and New York Heart Association (NYHA) classifications are included.

Therapy
Characteristic Standard ICD

Patients 103 (44 %) 132 (56 %)
Sex male 70 (30 %) 98 (42 %)

female 33 (14 %) 34 (14 %)
Age, yr mean 58.0 [22-80] 58.3 [26-82]
NYHA I 25 (11 %) 41 (17 %)

II 56 (24 %) 70 (30 %)
III 22 (9 %) 21 (9 %)

LVEF, % mean 21.8 [10-36] 20.6 [9-35]

were calculated from five minute epochs throughout the 24-h Holter ECGs. To character-

ize daily VRV we calculated the median, maximum quantile (highest 95 %) and minimum

quantile (lowest 5 %).

7.2.2 Data

The Telemetric and Holter ECG Warehouse (THEW) dataset, E-HOL-03-0401-017, was

employed for analysis in this study (Couderc et al., 2007). This dataset contains 393 record-

ings from 236 patients of the DEFINITE study (67 women, age: 60 ± 14 years; 168 men,

age: 58 ± 12 years; 1 record not specified). All patients had a left ventricular ejection frac-

tion < 36% and were randomized to receiving standard medical therapy with or without

an ICD (see Tab. 7.1). 24h-Holter 3-lead (Frank lead system) ECGs were performed at

enrolment and within a 5-year follow-up period. The data were sampled at 500 Hz and

an amplitude resolution of 1 µV (Rashba et al., 2006); the all-cause mortality during the

follow-up period was 4.8%.

7.3 Results

To assess the predictive value of VRV parameters, Kaplan-Meier survival curves of baseline

Holter ECGs were obtained for the trichotomized median, min and max of SDQT, QTVi, cS-

DQT, cQTVi, MLLT, DVmean, and DVsd. Significant parameters were further investigated for

their correlations with patient-specific characteristics to show their independent value. Addi-

tionally, Spearman’s correlation analysis was performed to provide a clearer understanding

of the relationships between the analyzed parameters. Lastly, to evaluate the multivariate
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predictive potential of significant VRV parameters, the Cox proportional hazards model was

employed. To assess the validity of the model, the proportional hazards assumption was

tested across input variables.
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Figure 7.1. Hazard functions of Kaplan–Meier survival analysis; estimated hazard of DEFINITE
patients for trichotomized cQTVi (left) and trichotomized DVmeanMax (right). The last
observations of a patient are marked in the curves with a cross (censored data).

Kaplan-Meier survival analysis shows significant association between survival and cQTVi

(P < 0.01 by the log-rank test; Fig. 7.1). At year one, the mortality was zero in the low

and the medium cQTVi group and 5.0 % in the group with high cQTVi. After 2 years, it was

0.0 % in the low and the medium cQTVi group and 10.7 % in the group with high cQTVi. At

the end of survival estimation (after 3 years) cQTVi was 0.0 % in the low cQTVi group, 6.3 %

in the medium cQTVi group and 10.7 % in the group with high cQTVi. No further prediction

parameters were found to achieve statistical significance. However, a similar qualitative
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Table 7.2. Patient characteristics according to trichotomized cQTVi for sex, age, therapy, NYHA
class, and LVEF at baseline. Ranges are shown in square brackets.

cQTVi

low medium high

Sex male 41 44 46
female 18 15 15

Age, yr mean 56.8 60.8 57.4
[26-82] [27-80] [22-81]

Therapy Standard 23 27 29
ICD 36 32 31

NYHA I 18 14 16
II 32 33 32
III 9 12 12

LVEF, % mean 20.8 22.0 20.0
[10-34] [10-35] [9-34]
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Figure 7.2. Correlation analysis between single lead ECG (SDQT, cSDQT, QTVi, cQTVi) and
VCG (MLLT, DVmean, DVsd) VRV parameters (highlighted in red). Absolute values of
Spearman’s ρ are shown.

trend was observed in QTVi and the maximum of DVmean. Table 7.2 shows the patient-

specific characteristics of the trichotomized cQTVi. No statistically significant differences

were found between cQTVi groups with respect to sex, age, therapy, NYHA class, and

LVEF. Correlation analysis results between the studied parameters can be observed in Fig.

7.2. A moderate relationship (|ρ| > 0.3) is observable between DVmean and DVsd (median,

min and max) with SDQT and QTVi (median and max). The largest observed correlation
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Table 7.3. Likelihood ratio test values for Cox model.

Variable Sex Therapy Age cQTVi LVEF NYHA
P 0.518 0.789 0.168 0.986 0.979 0.444

global
P 0.812

(|ρ| > 0.5) is between SDQT (max) and DVmean (max). Additionally, it is worth noting

that the relationship between the VCG parameters and the single channel parameters are

reduced after T wave amplitude correction.

Multivariate analysis of survival was performed using the Cox proportional hazards model to

further assess the predictive value of cQTVi. The survival probability curve can be observed

in Fig. 7.3. Cox regression was performed by including sex, age, therapy, NYHA, LVEF and

cQTVi as input parameters. However, using the likelihood ratio test, statistical significance

was not observed (P = 0.812). Furthermore, statistical significance was not observed

for any single parameter using Cox-regression. The statistical significance results for Cox

regression can be observed in Table 7.3. The proportional hazards assumption for each

covariate included in the Cox regression model was assessed using scaled Schoenfeld

residuals to test for independence between residuals and time. Statistical significance was

not observed for sex, therapy, age and NYHA. Conversely, cQTVi and LVEF were found to

be statistically significant, thus, suggesting a breach of the proportional hazards assumption

(see Fig. 7.4).

Figure 7.3. Hazard function of Cox model survival analysis with input parameters sex, therapy, age,
cQTVi, LVEF and NYHA.
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Figure 7.4. Schoenfeld residual curves for input parameters to Cox model. P < 0.05 provides
evidence suggesting that the proportional hazards assumption has not been met.

7.4 Discussion

The present study provides an analysis of the predictive value of VRV in non-ischemic car-

diomyopathy. Quantification was performed using robust template adaptation methods for

VCG and single-lead ECG. The current work explored the use of dynamic geometric fea-

tures in three-dimensional ECG for risk stratification. Qualitative analysis demonstrated

similar predictive potential to cQTVi for the maximum of the DVmean, however, statistical

significance was not observed. Thus, a more comprehensive study with a larger num-

ber of end-points would be required to robustly assess the potential of geometric three-

dimensional features in survival analysis.

In the single-lead analysis statistical significance was observed for cQTVi (P < 0.01 by

the log-rank test). This result aligns with earlier works by Berger et al. (1997), wherein the

authors reported an increased QT interval variability for non-ishemic dilated CM patients

relative to healthy subjects. In our Kaplan-Meier analysis, the low cQTVi group showed

zero mortality for the entire observation period. Furthermore, no significant association

was found between the cQTVi groups and patient-specific parameters; thus, providing sup-

port that this non-invasive prognostic parameter may provide additional information for risk

estimation. In the low cQTVi group, 36 patients received an ICD implantation (see Tab. 7.2).

Observing the survival analysis presented in this study, the risk mortality of the low cQTVi
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group was zero. Thus, providing preliminary evidence that implantation may provide addi-

tional risks for patients.

To assess the predictive ability of cQTVi in conjunction with patient characteristics, we em-

ployed the Cox proportional hazards model. Multivariate regression was performed with

sex, age, therapy, cQTVi, NYHA and LVEF as input parameters. The analysis did not yield

statistical significance using the likelihood ratio test (globally: P = 0.812). The lack of

statistical significance can likely be attributed in part to two reasons. Firstly, the proposed

study is limited by the few end-points available. Secondly, results suggest that two out of

the six input parameters do not meet the proportional hazards assumption, namely: cQTVi

and LVEF. This breach of assumptions can quantitatively be observed in Fig. 7.4, where

cQTVi and LVEF yielded Schoenfeld individual P value results below < 0.05. Furthermore,

the global Schoenfeld P value was found to be statistically significant (P < 0.05), thus sug-

gesting that the model does not meet the proportional hazards assumption. Qualitatively,

this can be observed in in Fig. 7.4. Visual inspection of cQTVi residuals demonstrates a

non-stationary relationship against time.

7.5 Conclusion

In this study, we used two techniques to quantify VRV. Analysis was performed across

VCG and on a single derivative basis. Our initial Kaplan-Meier analysis provides some

evidence that patients with non-ischemic cardiomyopathy and a high cQTVi have a signif-

icantly higher all-cause mortality relative to patients with low cQTVi. However, multivariate

survival analysis using the Cox model does not support this finding. This can likely be at-

tributed to the small number of end-points observed in this database and a breach of the

proportional hazards assumption. Further investigation ought to be undertaken across a

more comprehensive database to decisively determine whether VRV can contribute to a

treatment decision.
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8

Conclusion

THIS chapter summarizes the conclusions of this dissertation and highlights

the original contributions of each chapter. Additionally, potential future

directions are discussed.
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8.1 Conclusion and thesis summary

Previous works in the analysis of ventricular repolarisation and depolarisation lability have

provided valuable insight and promising results. In particular, template adaptation meth-

ods have demonstrated state-of-the art performance. However, previous frameworks have

neglected to evaluate the VCG as an inhomogeneous process and the ECG as a correspon-

dence based registration process; thus, discarding a significant amount of morphological

information in VCG and limiting the generalisation capabilities of deformations in ECG. Fur-

thermore, analysis of cardiac diseases, namely - myocardial infarction, myocardial ischemia

and non-ischemic CM, has largely neglected to employ such techniques to capture subtle

beat-to-beat information. In this thesis, an inhomogeneous template adaptation technique

for the analysis of VCG is proposed in conjunction with a probability-based system for ECG

feature extraction. Moreover, these methods are extended for the analysis of the afore-

mentioned cardiac conditions. Correspondence-based template adaptation was used to

study myocardial infarction and myocardial ischemia in ECG. Similarly, three-dimensional

template adaptation was used to study myocardial infarction and VRV in non-ischemic CM.

Thus, the proposed systems present novel and highly accurate methods for the study of

myocardial diseases.

Ventricular repolarisation lability is an area of great clinical interest as increased beat-to-

beat variability has been observed in a variety of cardiac diseases. However, the process

of manually inspecting markers is a laborious, expensive and biased process. In Chapter 3,

a framework capable of capturing subtle beat-to-beat morphological variations in VCG via

template adaptation is presented. The system combines data parametrisation via FFD with

a computationally efficient kernel ridge regression formulation to obtain an optimal transfor-

mation for each beat. Additionally, the system employs accurate VCG loop extraction by in-

corporating state-of-the-art QRS and T-wave delineation (two-dimensional signal warping).

The analysis adopts previously proposed geometric features for the evaluation of ventricular

repolarisation lability. Against simulated data, the method demonstrated significantly higher

accuracy across both varying morphology and SNR compared to standard methods. Simi-

larly, in the assessment of myocardial infarction the method yielded improved performance

compared to traditional VCG methods. Lastly, the adaptive nature of the method demon-

strated qualitative capabilities in other biomedical applications (limb movement). Thus, the

proposed method presents a novel, computationally efficient and accurate technique for the

evaluation of three-dimensional quasi-periodic data.
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The ECG is considered a quasi-periodic process between cycles, thus features can subtly

deviate from their temporal location between beats. To further the modes of study for feature

measurement in cardiac diseases via template adaptation, a novel correspondence-based

technique was developed in Chapter 4. The proposed system employs an adapted form of

registration for the delineation of common ECG features (e.g. - QT-interval ). Correspon-

dences are assumed to be non-binary and the data are mapped by a FFD parametrisation.

By transforming the data as a mathematically smooth process and allowing non-binary cor-

respondences between samples of the template and target data, temporal interpolation

was permitted. Furthermore, by formulating the process as an iterative gradient-descent

based method, varying degrees of signal morphology and variation can be captured. The

framework demonstrated state-of-the-art performance across simulated data and annotated

clinical data for measuring QTV. Furthermore, in QTV analysis of myocardial infarction the

method confirmed an increased QTV in diseased patients compared to healthy subjects.

Lastly, an extended analysis was performed against simulated PPG, where the proposed

and unadjusted framework demonstrated superior performance in dicrotic notch measure-

ment compared to a previously proposed method. Hence, the novel correspondence based

template adaptation introduces an accurate and mathematically robust system for analysing

ECG and PPG.

Myocardial ischemia is a highly-prevalent cardiac condition and a pre-cursor to various

other diseases including myocardial infarction. Previous research efforts have proposed

numerous promising ischemic beat detection systems. However, such works have either

neglected to utilise an ischemic beat-specific set of annotations or valid cross-validation for

their proposed frameworks. In this thesis, an interpretable and robust framework for the de-

tection of ischemic beats in ECG is proposed. Appropriate cross-validation is performed via

a hold-out method to provide an unbiased and more representative measure of algorithm

performance against unseen data. The method employs the correspondence-based tem-

plate adaptation method developed in Chapter 4 in conjunction with a kNN classifier. The

selected classifier is amongst the most commonly used in machine learning literature and is

highly interpretable. The proposed system demonstrated superior performance against the

annotated database when evaluated in a beat-wise manner, and similarly when evaluated

in a statistically robust subject-wise manner. Therefore, the introduced framework presents

an interpretable and accurate method for the detection of ischemic beats.
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In Chapter 6, a novel LSTM network for the detection of myocardial infarction is presented.

The method utilises the three-dimensional template adaptation process described in Chap-

ter 3 to perform beat-to-beat extraction and pre-processing of input VCG data. The frame-

work showed promising results, approaching the performance of state-of-the-art classifiers,

and is comparable to the few other works that have employed VCG. The inherent advan-

tage of the classification scheme employed is that it utilises an LSTM network. This type

of RNN is capable of capturing temporal relations across samples. Additionally, in Chapter

7 an analysis of VRV in non-ischemic patients was performed using cQTVi and geometric

VCG features. The study presents some evidence, that ventricular repolarisation features of

lability in VCG qualitatively illustrate predictive prowess using Kaplan-Meier survival anal-

ysis. However, multivariate survival analysis did not support these findings, thus, further

investigation is required to establish VRV in risk stratification.

8.2 Future directions

Although computationally efficient and accurate, the developed three-dimensional system

in Chapter 3 is dependent on temporal synchronisation by means of two-dimensional sig-

nal warping. To overcome this limitation, the morphological transformation of the proposed

system could be reformulated as a three-dimensional correspondence-based system. Al-

though this would come at a computational cost, due to the requirement for gradient-

descent based optimisation, it would offer an independent solution. Additionally, the system

was only evaluated against ventricular repolarisation (the T-loop) and thus future research

should incorporate ventricular depolarisation (the QRS-loop). Furthermore, future works

ought to consider employing the technique across larger datasets, for which ventricular

repolarisation and depolarisation lability have not been exhaustively studied.

In Chapter 4, where a correspondence based template adaptation method is proposed, a

key drawback of the method is that it requires template and target data to be of equal length.

Thus, a pre-processing step is necessary where data are interpolated to the length of the

template by stretching or shrinking. This could be addressed by introducing slack vari-

ables in the optimisation process. Furthermore, the system is semi-automated, for quality

assurance purposes pertaining to template annotations in this thesis. However, in future

research this could be automated using similar methods to (Schmidt et al., 2014, 2018a).

To attain finer resolution adaptations, a more complex regularisation scheme could be em-

ployed. This could draw from machine learning literature in the form of drop-out regular-

isation. Alternatively, a custom regularisation which penalises the displacement between
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neighbouring samples could be employed; although this would come at a computational

cost. Additionally, the use of AWGN is prone to producing optimistic results as it does not

accurately reflect noise observed in ECG. Thus, a more comprehensive analysis of algo-

rithm performance against improved noise sources should be performed. Lastly, validation

of the proposed method ought to be extended across a large database containing extensive

clinical annotations.

Chapter 5 introduced a robust and appropriately validated framework for myocardial is-

chemia. Although the reported results were promising, the specificity of the system would

require improvement for clinical studies. Firstly, this could be refined by algorithmic improve-

ments. A more complex classifier could be employed, however, this is a delicate balancing

act with precision often coming at the cost of interpretability in machine learning. Secondly,

if the current kNN classifier were to be maintained, a significantly larger training set would be

beneficial. This would require the development or attainment of a large annotated database

for ischemic beat detection. Furthermore, any such database ought to be annotated ac-

cording to current best medical practice. It is worth noting, the annotated dataset employed

in this work is outdated, as the definition of myocardial ischemia has been updated since

its inception.

The proposed classification system in Chapter 6 presents the first work on LSTM networks

in myocardial infarction analysis. From a pre-processing standpoint, the system utilises the

three-dimensional template adaptation network proposed in this thesis, and could thus ben-

efit from the aforementioned improvements from that end. From a classification standpoint,

improvements could be made by training across a more complex network architecture, as

the proposed method employed only three layers with a small number of LSTM cells in the

first two layers. Additionally, in Chapter 7, where VRV is analysed in non-ischemic CM pa-

tients, a more comprehensive set of VCG features could be hand-crafted for the analysis

of ventricular repolarisation lability. Additionally, dynamic ventricular depolarisation features

could be included in future studies to provide a more detailed analysis. Lastly, due to the

small number of end-points in the DEFINITE study, a larger database ought to be analysed

to establish VRV metrics for risk stratification.
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A
Appendix

Beat-to-Beat Analysis of

Vectorcardiogram by Inhomogeneous

Template Adaptation

The content of this chapter is a modified version of the publication:

Karisik, F., Schmidt, M. and Baumert. M (2019), ‘Beat-to-Beat Analysis of Vectorcardiogram

by Inhomogeneous Template Adaptation’, 2019 41st Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), pp. 83–86.
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A.1 Introduction

Abstract

Increased QT interval variability in ECG has demonstrated value for the as-

sessment of ventricular depolarization and repolarization lability. More recently,

vectorcardiogram based analysis has shown similar promise. In this study, we

describe an inhomogeneous template adaptation technique for vectorcardio-

gram using a global-to-local adaptation scheme. The proposed framework was

employed across the PTB database to assess ventricular depolarization and

repolarization lability in VCG. The results demonstrated statistical significance

between control subjects and MI patients.

A.1 Introduction

The QT interval represents the sequence between the onset of the Q-wave and the offset

of the T-wave in a cardiac cycle of the electrocardiogram (ECG). This segment of the ECG

corresponds to the global ventricular depolarization and repolarization activity. Elevated

beat-to-beat QT interval variability (QTV) has been observed in various cardiac diseases

and sudden cardiac death (Baumert et al., 2016a; Piccirillo et al., 2007). Additionally, an

elevated QTV has been linked to cardiac sympathetic activity (Baumert et al., 2011b). Sim-

ilarly, research has suggested the potential relationship between QTV with T-wave ampli-

tude and morphology (Baumert et al., 2016a; Hasan et al., 2012b). Thus, QTV analysis has

demonstrated important relationships.

The vectorcardiogram (VCG) represents cardiac electrical activity as a single dipole (Chou,

1986). The magnitude and orientation of the dipole are represented by a three-dimensional

spatial vector. During sinus rhythm and in a structurally normal heart, the recorded mag-

nitude and direction are represented by three-dimensional loops. VCG analysis holds an

inherent advantage over conventional 12-lead ECG analysis because phasic changes are

more clearly identifiable (Chou, 1986). Furthermore, clinically, VCG has been reported to

provide improved diagnostic sensitivity in myocardial infarction patients (Pérez Riera et al.,

2007); however, beat-to-beat changes in VCG are not well understood.

Recently, dynamic VCG features have been assessed to study ventricular depolarization

and repolarization lability in myocardial infarction (MI) patients (Hasan et al., 2012a). Sta-

tistical analysis reported by Hasan et al. (2012a) established significance between control
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subjects and MI patients, where, the authors employed homogeneous template adaptation

to quantify variability. However, an important consideration in QT interval analysis is the

detection of subtle inhomogeneous changes across time, which Hasan et al. (2012a) ne-

glected to account for. Thus, in this work we aim to propose a method for the quantification

of VCG lability using an inhomogeneous method.

Template adaptation methods have yielded state-of-the art performance in QTV measure-

ment (Baumert et al., 2012; Schmidt et al., 2014, 2018a). Traditional ECG template adap-

tation methods rely on homogeneous shifting and stretching of data to minimize some ob-

jective function. By annotating template data, the QT interval can easily be obtained after

the adaptation process. More recently, Schmidt et al. (2014) introduced a method for inho-

mogeneous adaptation of ECG. This method is able to account for complex morphological

variations occurring beat-to-beat. Drawing from inhomogeneous template adaptation for

ECG, we propose an inhomogeneous template adaptation for VCG. The proposed frame-

work is applied across the PTB database to study differences between control subjects and

MI patients using ventricular depolarization and repolarization lability. Adaptations of pre-

viously employed VCG features (Hasan et al., 2012a) are employed to perform QT interval

quantification. Subsequently, analysis is performed across the feature results to test for

statistical significance between groups.

A.2 Methodology

In this section we describe the proposed approach for template adaptation of quasi-periodic

three-dimensional data. The framework follows a global-to-local adaptation scheme. Data

are first adapted globally using Procrustes analysis. Next, a local adaptation is performed

using kernel ridge regression (KRR) with a simple noise model. The proposed framework

flowchart can be observed in Fig. A.1.

A.2.1 Procrustes Analysis

Procrustes analysis is a statistical shape analysis technique used to homogeneously align

data (Gower and Dijksterhuis, 2004). Global alignment consists of translation, rotation,

scaling and reflection. In this work, we solely employ global translation and rotation via

Procrustes analysis. Optimal global translation and rotation between the VCG template

and a given VCG loop can be expressed as an optimization problem to obtain the rotation
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Figure A.1. Flowchart of the proposed framework flowing from left to right.

component, R, and the translation component, T, in the below equation:

Yg = R(Yr) + T, (A.1)

where Yg denotes the globally adapted template and Yr represents the original template.

A.2.2 Free-Form Deformation Parameterization

Free-form deformation (FFD) is a technique for deforming geometric data in a free-form

manner (Sederberg and Parry, 1986). Data are embedded to a three-dimensional paral-

lelepiped, defined by a lattice of control points, where each embedded data point is param-

eterized to the lattice. This process is employed to obtain a linear relationship between the

embedded data points and control points. The relationship between any embedded data

point x, and control point of the lattice Pijk, can be obtained by evaluating the following
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tri-variate Bernstein polynomial:

xijk = ∑ł
i=0 (

l
i)(1 − s)l−isi × ∑m

j=0 (
m
j )(1 − t)m−jtj × ∑n

k=0 (
n
k)(1 − u)n−kuk. (A.2)

The s, t and u values describe the given data sample in the lattice space. For brevity, we

skip the description on how to obtain s, t and u. The mathematical description can be

found in Sederberg and Parry (1986) with a pseudo-code implementation in Procházková

(2017). By virtue of FFD, the globally-adapted template vectorcardiogram, Yg (containing

n samples), can be embedded by a parallelepiped of p control points in three-dimensions.

Mathematically, this can be expressed by:

Yg = XV, (A.3)

where X denotes the n × p weights matrix of the embedded samples, and V denotes the

p × 3 geometric coordinates of the control points. Now, imagine we wish to obtain a linear

least squares (LLS) adaptation of the globally adapted template to a target beat, Yt; that is,

obtain the optimal location of the control points. This optimization can be described by:

Vf = (XTX)−1XTVCGt, (A.4)

such that,

Yf = XVf . (A.5)

Although pragmatic, this formulation is highly susceptible to outliers and, thus, incapable

of robustly capturing subtle morphological changes. To address this limitation, we propose

the use of a non-parametric model - kernel ridge regression.

A.2.3 Kernel Ridge Regression & Noise Estimation

Kernel ridge regression is a kernel-based extension of ridge regression. Ridge regression

is a regularized variation of the standard LLS approximation. Thus, the inhomogeneous

template adaptation step can be expressed as a KRR process:

f ∗(Yt, Λ) = K(K + c1Λ)−1Yt, (A.6)

where, c1 denotes a scalar multiplying factor and K = k(x, x′) represents a kernel function

with weight inputs, x, belonging to Xijk. Under this formulation, the covariance matrix is
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Figure A.2. An example of 15 raw (black) VCG T-loop cycles (left) and the corresponding adapted
data (right) for an MI patient. Green denotes the original template and red the adapted
template.
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Figure A.3. An example of 15 raw (black) VCG T-loop cycles (left) and the corresponding adapted
data (right) for a control subject. Green denotes the original template and red the
adapted template.

transformed by a kernel function that is not limited to a finite dimensional space. In this

work, we employ a Gaussian kernel function to exploit smoothness properties inherent to

this transformation (Hofmann et al., 2008). Mathematically, the Gaussian kernel function

can be expressed as:

k(x, x′) = exp(
|x − x′|2

2σ2 ), (A.7)

where σ denotes the kernel width.
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To account for the varying signal-to-noise ratio of VCG, a simple noise model is incorporated

via an adaptive regularization term. We employ a non-stationary noise estimation model

where each entry of the diagonal matrix λ is estimated as the difference between samples.

For an n × n diagonal matrix, Yt, the ath diagonal entry can be obtain by:

Λa = Yta − Yta−1. (A.8)

Fig. A.2 and Fig. A.3 depict adaptation results across fifteen beats for an MI patient and

control subject, respectively.

A.2.4 Template Generation & Features

Beat-to-beat delineation of the QRS-loop and T-loop was performed using two-dimensional

signal warping (Schmidt et al., 2014). For each loop, interpolation was performed to match

the length of the given cardiac segment to the respective mean length. Next, the template

loops were generated for each patient by averaging across beats for the respective record-

ing and loop. To evaluate the proposed method in assessing ventricular depolarization and

repolarization lability, several variations of previously proposed VCG features were evalu-

ated, namely: mean-loop-length (MLL) and distance variability (DV) (Hasan et al., 2012a).

MLL is defined as the distance summation between sequential samples. DV is defined as

the vector containing the Euclidean distances between corresponding points in the adapted

loop and template loop. In our analysis, we translated the adapted template to the origi-

nal template. Global realignment was performed to ensure the DV features were robust to

translation caused by motion and respiration artefacts. Furthermore, we normalized each

loop by the squared sum of its eigenvalues. This was performed to account for the various

physiological amplitudes present.

A.2.5 Data

In this study we employed the PTB diagnostic ECG database, which is freely available on

Physionet (Goldberger et al., 2000). We used the VCG (Frank lead system) leads available

in the database. In detail, 79 myocardial infarction patients (22 female, mean age 63 ± 12

years; 57 male, mean age 57 ± 10 years) and 69 control subjects (17-female, 42 ± 18

years; 52 male, 40 ± 13 years) were analyzed. Beat-to-beat analysis was performed using

the described inhomogeneous three-dimensional template adaptation.
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Table A.1. QRS-loop and T-loop features in the control and MI groups.

Feature Control
Subjects

MI
Patients p-value

MLLQRS 10.8 ± 4.1 13.9 ± 5.9 < 0.0005
MLLT 10.5 ± 5.4 19.6 ± 11.2 < 0.0001
DVQRS (std) 1.2 ± 0.5 1.6 ± 0.9 < 0.0100
DVT (std) 1.1 ± 0.7 2.2 ± 1.4 < 0.0001
DVQRS (mean) 2.4 ± 1.3 3.3 ± 1.6 < 0.0005
DVT (mean) 2.6 ± 1.3 5.1 ± 3.5 < 0.0001

The results from our analysis are shown in Table A.1. The features were considered statis-

tically significant for p < 0.05 (using the unpaired student t-test). All values were expressed

as mean ± standard deviation. The beat-to-beat VCG features were obtained for both the

myocardial infarction patients and the control subjects. Beat-to-beat variability was calcu-

lated as the standard deviation of the given ECG features.

A.3 Results

Observing Table A.1, the mean-loop-length of the QRS-loop (MLLQRS) was found to be

statistically lower in control subjects compared to the MI group. Similarly, the mean-loop-

length of the T-Loop (MLLT) was found to be statistically lower in control subjects compared

to the MI group. The point-to-point distance variability features were found to be statistically
lower in control subjects compared to the MI group for the QRS-loop. Similarly, for the T-

loop, the DV features were found to be statistically lower in control subjects compared to MI

patients.

A.4 Discussion

In this study, we introduced a novel framework for inhomogeneous template adaptation of

VCG. Our proposed method applies a global-to-local adaptation scheme. The proposed

framework presents an efficient system by avoiding expensive iterative optimization meth-

ods. Data are optimally translated and rotated using Procrustes analysis, which permits for

the data to be described by localized paramterization weights (FFD). FFD yields a linear

descriptor of the embedded shape, which is then adapted using a kernel ridge regression

formulation. Adaptation results can be observed in Fig. A.2 and Fig. A.3, where subtle

and smooth deformation of the template can be observed across fifteen beats. Although

the proposed method has demonstrated promising results, a more robust non-stationary
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noise estimation ought to be employed for the regularization term in the KRR formulation.

Autoregressive noise estimation could be one such area of investigation.

Statistical results across the PTB database indicate that both the beat-to-beat MLL of the

QRS-loop and T-loop may hold value in the assessment of MI patients. Similar results

were observed for the DV features. The preliminary results of this investigation suggest

that further VCG features ought to be investigated for the study of ventricular depolarization

and repolarization lability. Future research could explore time-series shape analysis. Fur-

thermore, sensitivity analysis ought to be performed against a synthetic database for the

presented features and any subsequently proposed features. Any such assessment should

include sufficient ST-segment changes.

A.5 Conclusion

The proposed inhomogeneous three-dimensional template adaptation method demonstrated

the ability to detect morphological variations in VCG. We evaluated the PTB database us-

ing the proposed method and observed statistical significance between control subjects

and MI patients. Thus, the proposed framework may be useful in the study of ventricular

depolarization and repolarization in VCG.
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