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Abstract

Mixture models are a family of statistical models that can model datasets with underlying
sub-population structures e↵ectively. This thesis focuses on one particular mixture model,
called the Mixtures of Factor Analyzers (MFA) model [Ghahramani et al., 1997], which is
a multivariate clustering model more parsimonious than the well known Gaussian mixture
model (GMM). The MFA model has two hyperparameters, g, the number of components,
and q, the number of factors per component. When these are assumed to be known in
advance, approximate maximum likelihood estimates for the remaining model parameters
can be obtained using Expectation Maximisation (EM)-type algorithms [Dempster et al.,
1977] [Ghahramani et al., 1997] [McLachlan and Peel, 2000] [Zhao and Yu, 2008].

This work reviews methods for fitting the MFA model in the more realistic case where its
two hyperparameters are not known a priori. A systematic comparison of seven methods
for fitting the MFA model when its hyperparameters are unknown is conducted. The
methods are compared based on their ability to infer the two hyperparameters accurately,
as well as general model fit, clustering accuracy and the length of time taken to fit the
model. The results suggest that a näıve grid search over both hyperparameters performs
the best on all of the metrics except for the time taken to fit the models. The Infinite Mix-
tures of Infinite Factor Analyzers (IMIFA) algorithm [Murphy et al., 2020] also performs
well on most of the metrics. However, like the näıve search, IMIFA is also very com-
putationally intensive. The Automatic Mixture of Factor Analyzers (AMFA) algorithm
[Wang and Lin, 2020] is a viable alternative when available computation time is limited,
as it often performs comparably to the näıve search and IMIFA, but with greatly reduced
computation times. To facilitate the comparison, the R package autoMFA is created, which
implements five methods for the automated fitting of the MFA model and is available on
the Comprehensive R Archive Network (CRAN).

A limitation of the MFA model is its inability to deal with asymmetrical cluster shapes,
which is a consequence of using multivariate Gaussian component densities. The Mixtures
of Mean-Variance Mixture of Normal Distribution Factor Analyzers (MMVMNFA) family
is proposed as a generalisation of the MFA model, which permits asymmetrical component
densities. A new EM-type algorithm for parameter estimation of MMVMNFA models is

ix



x Abstract

developed. Based on its performance in the comparison, the AMFA algorithm is selected
and generalised to the MMVMNFA family. Six specific instances of the MMVMNFA
family are considered, and the steps for the EM-type algorithm are derived for each. The
Julia package FactorMixtures is created, which contains implementations of each of these
algorithms. The six instances are tested on two synthetic datasets and two real world
datasets, where their superior ability to capture heavy-tailed data and data exhibiting
multivariate skewness is demonstrated in comparison to the standard MFA model, which
cannot e↵ectively capture either of these properties.
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Chapter 1

Introduction

Mixture models are statistical models which are able to model datasets with underlying
sub-population structures e↵ectively. They are also a powerful unsupervised learning
technique which can be applied to classification problems where the predictor variables
are all numeric. However, often there are challenging issues with the use of these models
in practice. This thesis studies some of the issues related to the model fitting process, in
particular, the choice of hyperparameters.

Example 1. To motivate the idea of a mixture model, we will consider the “faithful”
dataset from Härdle [1991] which is available in the statistical programming language R

[R Core Team, 2021]. The faithful dataset measures the length of eruptions of the Old
Faithful geyser in Yellowstone National Park in the USA, as well as how long it took for the
geyser to erupt again. Both measurements are in minutes. Figure 1.1 is a scatter plot of
the dataset. Visually, there appears to be two reasonably well separated sub-populations
present in the data.

If we were careless in our analysis of this dataset, we might ignore the presence of these
sub-populations. For example, we could try to model the data using a single bivariate
Gaussian distribution, with the mean and covariance matrix given by their respective
Maximum Likelihood Estimates (MLEs). Figure 1.2 shows, perhaps unsurprisingly, that
fitting a bivariate Gaussian distribution will not produce a reasonable model for this data.
In fact, this model predicts that the data should be densest in the region between the two
sub-populations while in reality, the data is actually very sparse in this region.

Given that in this example we can clearly observe two sub-populations in the data, we
will instead model the data using a mixture model. Figure 1.3 shows the contours of
a two component bivariate Gaussian mixture model fitted to the faithful dataset1. The

1
More information on how models such as this can be fitted will be provided later.
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4 Chapter 1. Introduction

for i = 1, . . . , g. Here we are using the slight abuse of notation Y ⇠ fi(y;✓i) to mean
that Y is a random vector whose density function is given by fi(y;✓i). We call

⇡ =
⇥
⇡1 . . . ⇡g

⇤

the vector of mixing proportions, where ⇡i � 0 for each i, and
Pg

i=1
⇡i = 1.

In other words, we say that the random vector Y follows a mixture distribution if it
is generated by first randomly selecting a density function fi(y;✓i) with probability ⇡i

from a set of g possible density functions {f1, . . . , fg} and then randomly drawing Y from
fi(y;✓i).

A mixture model is a statistical model of the form

Yj ⇠ fi(yj;✓i) with probability ⇡i, (1.1)

independently for j = 1, . . . , n and for i = 1, . . . , g. In other words, under a mixture
model, we postulate that each p⇥ 1 data point Yj is drawn independently from the same
mixture distribution for j = 1, . . . , n.

The formulation of a mixture model in Equation (1.1) is quite intuitive. Recall that in
Example 1, the scatter plot Figure 1.1 appears to show two clear sub-populations. The
number of points in each sub-population does not appear to be exactly equal. In fact, the
number of points which appear to belong to the sub-population corresponding to shorter
eruptions with a smaller gap until the next eruption is less than the number belonging to
the other sub-population. As a result, a reasonable model for this dataset might suggest
that some proportion p < 0.5 of the points belong to the sub-population with smaller
eruptions and a smaller gap until the next eruption while the remaining points must
belong to the other sub-population. The model should also allow for the distribution of
points in each sub-population to be di↵erent so that we can capture the potentially very
di↵erent behavior of the two sub-populations. This is what the formulation of a mixture
in Equation (1.1) describes.

While in Example 1 there appear to be two clearly separate sub-populations produced by
the physical process driving the eruptions, mixture models can also be applied to datasets
where there are no separate physical populations. Indeed, mixture models may contain
highly overlapping components, which makes them a very flexible family of models that
are often used as a tool for density estimation.

It is mathematically convenient to encode the “with probability ⇡i” statement from Equa-
tion (1.1) into the mixture model by instead conditioning on a multinomial random vari-
able, which leads to the following (equivalent) formulation of a mixture model:

Zj ⇠ Multinomial(1,⇡),

Yj | Zij = 1 ⇠ fi(x;✓i).
(1.2)
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The formulation in Equation (1.2) is a hierarchical model with two levels. At the first
level of the hierarchy, Zj is drawn from a multinomial distribution with a single trial with
probability vector ⇡. This means that

Zj =
⇥
Z1j . . . Zgj

⇤

will be a vector of zeros, except for a single entry which will be equal to one. The position
of the one indicates which sub-population the data point Yj belongs to. Accordingly,
Zij = 1 if and only if Yj belongs to sub-population i. Also, since Zj is assumed to follow
a multinomial distribution, it follows that Pr(Zij = 1) = ⇡i, which makes the equivalence
between Equation (1.1) and Equation (1.2) clear.

At the top layer of the hierarchy, conditioned on data point j belonging to sub-population
i, the model states that Yj is distributed according to the density function for sub-
population i.

1.2 The Factor Analysis Model

Perhaps the most well known multivariate probability distribution is the multivariate
Gaussian distribution. The p-dimensional multivariate Gaussian distribution is parame-
terised by the p ⇥ 1 mean vector µ and the p ⇥ p covariance matrix ⌃. A simple model
for multivariate data is just to use the multivariate Gaussian distribution, i.e.

Yj ⇠ Np(µ,⌃),

independently for j = 1, . . . , n. We call this the multivariate Gaussian model, under
which closed-form MLEs exist for µ and ⌃.

The simplicity of the multivariate Gaussian model and the existence of MLEs for its
parameters are both appealing properties. However, the number of scalar parameters
required to define the model is given by2 k⇤

G
(p) = p + p(p + 1)/2. When p is large, this

has two major implications. First, we will require at least k⇤
G
(p) data points to obtain

unique parameter estimates for µ and ⌃, which may not always be possible. Second, the
estimation of the full p⇥p covariance matrix ⌃ will become increasingly computationally
expensive, and possibly prohibitively so, even if we have enough data points to guarantee
a unique solution.

The factor analysis (FA) model is one way of addressing these problems. This model
postulates that Yj is formed as the sum of an underlying mean µ, a linear combination of
q < p independent underlying factors (after which the model is named) and an additive
error vector ej.

2
Justification of the expressions for k⇤G(p) and k⇤FA(p, q) is provided in Appendix A.1.
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A special case of the model was first used by Spearman [1904] to find an underlying
“general intelligence factor” which could explain the intra-student correlations in the
results of tests in seemingly unrelated fields. Spearman employed the simplest case of
the FA model, i.e. using a single underlying factor (q = 1). Thurstone [1931] later
formalised and generalised Spearman’s work so any integer number of factors q � 1 could
be considered.

The FA model is
Yj = µ+BUj + ej, (1.3)

where
Uj ⇠ Nq(0, Iq)

and
ej ⇠ Np(0,D)

independently, for j = 1, . . . , n. Here, Iq denotes the q⇥ q identity matrix, Yj is one of a
set of n independent and identically distributed p-dimensional random variables, the p⇥1
vector µ is the underlying mean of the data, the p⇥ q matrix B (where q < p ) is called
the factor loading matrix and D is called the error-variance matrix. The q ⇥ 1 vector Uj

are called the factors and the p⇥ 1 vector ej are called the errors.

So, as mentioned above, Equation (1.3) shows that under the FA model, each p⇥1 obser-
vation Yj is a sum of the underlying mean µ, a vector composed of linear combinations
of the q < p underlying factors specific to each individual, Uj (with the coe�cients of the
linear combinations stored in the factor loading matrix B), and an additive error vector
ej.

We can show that under the FA model,

Yj ⇠ Np(µ,BB> +D).

Hence, the FA model is just a multivariate Gaussian model with a restricted covariance
structure. The number of scalar parameters required to define the FA model is k⇤

FA
(p, q) =

pq � q(q � 1)/2 + 2p, which scales linearly with p as opposed to the quadratic scaling of
k⇤
G
(p). This shows that the FA model is one way of avoiding the issues encountered when

fitting full-covariance multivariate Gaussian models.

1.3 The Mixtures of Factor Analyzers Model

The Mixtures of Factor Analyzers (MFA) model combines a mixture model with the
FA model. More specifically, it is a mixture model where the component densities are
all FA models and was initially proposed by Ghahramani et al. [1997]. As a result, it
can perform both clustering and local dimension reduction, which can be useful in some
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applications. For example, MFA models have been applied to the clustering of cell lines
on the basis of gene expressions from microarray experiments [McLachlan et al., 2003],
in image processing, where it has been used for face detection [Yang et al., 1999] and in
finance, where MFA models have been used to model Value at Risk (VaR) [Ko and Baek,
2018].

The MFA has the hierarchical stochastic formulation

Zj ⇠ Multinomial(1,⇡)

ej | Zij = 1 ⇠ Np(0,Di)

Uj | Zij = 1 ⇠ Nqi(0, Iq)

Yj | Uj, ej, Zij = 1 = µi +BiUj + ei,

(1.4)

independently, for j = 1, . . . , n and where ej | Zij = 1 and Uj | Zij = 1 are also assumed
to be independent.

Here, the parameters µi, Bi andDi are the mean, factor loading matrix and error-variance
matrix of the ith FA model, respectively. The number of latent factors in the ith FA model
is given by qi. For simplicity, unless stated otherwise we will assume a common latent
dimensionality q across all of the FA models in the mixture.

1.4 Motivation

In practice, when attempting to fit a mixture model to a dataset, we will generally only
observe the yj’s. Notably, this means that we will either need to specify g a priori or
infer it while fitting the mixture model. While in Example 1 the bivariate scatter plot
showed two well separated sub-populations and hence we chose to use g = 2, in general
the “best” choice of g may not be clear following visualisation of the data alone. As
mentioned earlier, it is also possible to fit mixture models to datasets where no clear sub-
population structure is present. In such cases, it is necessary to infer g via some other
means.

In a similar manner, when we attempt to fit an FA model to a dataset, we would also
generally only observe the yj’s. As a result, we either need to specify q a priori

3 or infer
it during the model fitting process.

Since the MFA model is a mixture model with component densities that all follow the FA
model, to fit an MFA model we will, in general, need to infer both g and q. Several authors
have suggested methods for determining these two hyperparameters automatically.

Even though several methods for automatically inferring g and q in the MFA model have
been proposed, the degree to which implementations of these methods are available varies.

3
Such as Spearman using q = 1 in an attempt to determine the “general intelligence factor” of students.
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Some of the methods have implementations which can be found relatively easily, while
others have no publicly available implementations at all. Additionally, of the publicly
available implementations, they are not all implemented in the the same language, with
some being implemented in R and others in Matlab [Matlab, 2022].

This thesis fills three gaps in the existing literature. First, it provides a common framework
through which a number of existing methods for automatically fitting the MFA model
can be accessed in the form of the R package autoMFA, which we have produced and
made available on the Comprehensive R Archive Network (CRAN). Second, it performs a
systematic comparison of seven di↵erent methods for fitting the MFA model in the case
where its two hyperparameters are unknown. The methods are used to fit MFA models
to 1,200 synthetically generated datasets and compared based on their ability to infer the
hyperparameters of the MFA model correctly, as well as clustering accuracy, general model
fit and the amount of time they took to fit the models. Finally, it proposes the Mixtures
of Mean-Variance Mixture of Normal Distribution Factor Analyzers (MMVMNFA) model
family as a generalisation of the MFA model which can also model multivariate skewness.
A new Expectation Maximisation (EM)-type algorithm is derived for the MMVMNFA
model family, and six specific instances are given, along with all of the steps needed for
the EM-type algorithms in each case. In addition, it generalises one of the methods from
the systematic comparison so that the number of factors, q, can be inferred automatically
for MMVMNFA models. Implementations of the six examples can be found in our Julia
[Bezanson et al., 2017] package FactorMixtures4, which we use to test the examples of
MMVMNFA models on two synthetic datasets and two real world datasets.

1.5 Aims and Objectives

The aims and objectives of this thesis are as follows:

I Produce a publicly available R package which contains implementations of automatic
MFA model fitting methods for which no pre-existing R implementation is available.

II Perform a systematic comparison of the current methods for automatically fitting
the MFA model.

III Investigate extensions of the MFA model and its model fitting procedures.

1.6 Outline of Thesis

In Chapter 2, we provide background information on methods for fitting the MFA model
and some of the techniques which we will use in the systematic comparison. In Chap-

4
Available at https://github.com/john-c-davey/FactorMixtures
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ter 3, we provide a literature review of the existing methods for automatically determining
the hyperparameters of the MFA model. Each of the methods discussed in this chapter
is available in the R package autoMFA which we developed to facilitate the systematic
comparison. Then, in Chapter 4, we perform a systematic comparison of the existing
methods. They are assessed in terms of the average time taken to fit each model, their
average Adjusted Rand Index5 (compared to the true sub-population structure which gen-
erated the data sets), the proportion of the time where they correctly inferred the number
of components (g) and the number of factors (q) and the average Bayesian Information
Criterion (BIC) [Schwarz, 1978] of each model. In Chapter 5 we generalise a parameter
estimation technique which was initially proposed for the MFA model to a much broader
family of models which maintains the parsimonious mixture model formulation of the
MFA model whilst also having the ability to capture heavy-tails and multivariate skew-
ness. We call this the Mixtures of Mean-Variance Mixture of Normal Distribution Factor
Analyzers (MMVMNFA) family. We also generalise one of the methods from Chapter 3
to the MMVMNFA family so that the number of factors, q, can be automatically in-
ferred. Six instances of the MMVMNFA family are provided, with a complete EM-type
algorithm for parameter estimation given in each case. Finally, in Chapter 6 we compare
the performance of the six MMVMNFA models on two synthetic datasets and two real
world datasets.

5
This quantity will be defined in Chapter 2.
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Chapter 2

Background Information

In this chapter, we will provide the background information required to cover the content
contained in the remainder of this thesis. We will begin by revisiting mixture models, the
FA model and then the MFA model in more detail. We will also introduce the Adjusted
Rand Index as a method for comparing the similarity of two partitions. Then, we will
introduce the EM algorithm as the most common parameter estimation approach for the
MFA model in the case where g and q are assumed to be known. Finally, we will consider
two existing EM-type algorithms for estimating the parameters of the MFA model.

2.1 Mixture Models

Using the law of total probability, it follows from Equation (1.2) that the density of yj

can be expressed as

f(yj;⇥) =
gX

i=1

⇡ifi(yj;✓i), (2.1)

where ⇥ := (⇡1, . . . , ⇡g�1,✓1, . . . ,✓g)1 is the set of model parameters. From this, we can
observe that the density function of a mixture model is just a weighted sum of the density
functions of the mixture components, with weights given by the mixing proportions.

Strictly speaking, the number of components, g, is also a model parameter. However,
since both the number of mixing proportions and the number of component-density-
function-specific parameter vectors both depend on g, we choose not to include it in ⇥
for simplicity. However, g is not generally known a priori and will need to be estimated
from the data.

1
Note that the condition that

P
i ⇡i = 1 means that ⇡g can be deduced from ⇡1, . . . ,⇡g�1 .

11



12 Chapter 2. Background Information

The indicator vectors are also not typically observed, which means that they need to be
inferred should we wish to examine the sub-population structure of a dataset using a
mixture model. Finally, to fit a mixture model, we also need to choose a form for the
component densities fi(yj;✓i) a priori.

The identifiability of a statistical model is a very important property that impacts on
how well we can recover the model parameters from the observed data. The following
definition, due to McLachlan and Basford [1988], describes when identifiability will hold
for mixture models.

Definition 2.1.1. Mixture model identifiability [McLachlan and Basford, 1988]

Let f(y;⇥) define a class of finite mixture densities according to Equation (2.1). Such a
class of finite mixtures is said to be identifiable for ⇥ 2 ⌦ if for any two members

f(y;⇥) =
gX

i=1

⇡ifi(y;✓i)

and

f(y;⇥⇤) =
g⇤X

i=1

⇡ifi(y;✓
⇤
i )

then
f(y;⇥) ⌘ f(y;⇥⇤)

if and only if g = g⇤ and we can permute the component labels so that

⇡i = ⇡⇤
i and fi(y;✓) ⌘ fi(y;✓

⇤)

for i = 1, . . . , g. Here, ⌘ implies equality of the densities for almost all y relative to the
underlying measure on Rp appropriate for f(y;⇥).

McLachlan and Basford [1988] also explain that for mixture models where all of the
component densities fi(y;✓i) belong to the same parametric family (which is true of all
of the mixture models considered in this thesis), then f(y;⇥) is invariant under the g!
permutations of the component labels in ⇥. In practice, however, this is of little concern
since if we use a maximum likelihood estimation technique, we can impose a suitable
constraint on the resulting parameter estimate, such as

⇡1 � ⇡2 · · · � ⇡g,

as used by Aitkin and Rubin [1985].

We will now consider a simple example of a mixture model.
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Example 2. Perhaps the best known mixture model is the Gaussian mixture model
(GMM), defined as

Zj ⇠ Multinomial(1,⇡),

Yj | Zij = 1 ⇠ Np(µi,⌃i),
(2.2)

independently for j = 1, . . . , n and i = 1, . . . , g. ⌅

As mentioned in Example 1, Figure 1.3 shows the contours of a two component bivariate
GMM. The GMM has seen extensive use in the field of cluster analysis, where the goal of
a model is to try and identify groups (or clusters) of data points based on some measure
of similarity. Using the faithful data from Example 1, we might expect that a cluster
analysis model would be able to identify those points with shorter eruptions and shorter
inter-eruption times as belonging to one group and the remaining points with longer
eruptions and longer inter-eruption times as belonging to another group.

There are two types of cluster analysis models: hard classifiers and soft classifiers. Hard
classifiers assign each data point a single label indicating which group it has been assigned
to. Soft classifiers instead assign to each data point a vector containing the probability
that the data point belongs to each group.

Mixture models are an example of a soft classifier because, as shown in Section 2.6,
the most common method for fitting mixture models involves estimating the posterior
probability that each data point belongs to each component of the mixture.

Mixture models have also seen usage outside of cluster analysis. For example, Karl Pearson
used a two-component GMM to estimate a bimodal empirical density function as early
as 1894 [Pearson, 1894].

2.2 The FA Model

As we mentioned in the introduction, under the FA model, the q⇥1 vectors Uj are called
the factors or the factor vectors and the p⇥1 vectors ej are called the errors, where q < p.
The p⇥ 1 vector µ is the underlying mean vector of the data2. The p⇥ q matrix B is the
matrix of factor loadings (the factor loading matrix) and the p⇥p matrix D is a diagonal
matrix describing the magnitude of the errors ej (the error-variance matrix). Note that
the error-variance matrix D being constrained to be diagonal enforces the condition that
each element of Yj is independent from the other elements of Yj when conditioned on
the factors. In other words, the only dependence between the elements of Yj is captured
by the corresponding vector of factors Uj.

2
For simplicity, we often assume that the data has been centered before fitting the FA model so that

µ = 0. This simplifies the log-likelihood of the model, which in turn simplifies the model fitting process.
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Since by assumption Uj and ej are independent, it follows from Equation (1.3) that

Yj ⇠ Np(µ,BB> +D), (2.3)

so
f(yj;µ,B,D) = �p(yj;µ,BB> +D), (2.4)

where �p represents the p-dimensional Gaussian density function.

Equation (2.3) shows that the FA model is just a p-dimensional Gaussian model for the
data with a restricted covariance matrix. While the stochastic formulation of Equa-
tion (2.3) is especially useful if we are seeking an explanatory model3, the restricted-
covariance Gaussian model interpretation is equally valid.

To maintain identifiability under the FA model, Ledermann [1937] showed that the number
of factors, q, are required to obey the so called Ledermann bound,

q  p+
1�

p
1 + 8p

2
. (2.5)

This bound ensures that the number of parameters required to fit the FA model is less
than the number required to fit a full-covariance p-dimensional Gaussian model to the
data. The FA model can, therefore, be considered a dimension reduction technique so
long as Equation (2.5) is satisfied.

Even when the Ledermann bound is satisfied, the FA model su↵ers from an identifiabil-
ity issue, as the distribution of Y is invariant under orthogonal transformations of the
factor loading matrix B. To see this, for any orthogonal q ⇥ q matrix V, we can write
Equation (1.3) as

Yj = µ+BUj + ej

= µ+BVV>Uj + ej
= µ+B0U0

j + ej,

where B0 := BV and U0
j := V>Uj.

SinceU0
j is a linear combination of Gaussian random variables it must also have a Gaussian

distribution, and using the usual formulæ,

E
⇥
U0

j

⇤
= V>0 = 0,

and
Cov

�
U0

j

�
= VT Cov (Uj)V = VTV = Iq.

3
Like Spearman, who wanted to use the underlying factors to measure the “general intelligence factor”

of students.
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Hence,
U0

j ⇠ Nq(0, Iq)

which means that
Yj = µ+B0U0

j + ej

also satisfies the requirements of the FA model.

Any q ⇥ q orthogonal matrix V will have 1

2
q(q � 1) free parameters, so to achieve identi-

fiability, we need to apply 1

2
q(q� 1) constraints to B. We can see this by noting that the

number of free parameters in the matrix V is the same as the number of free parameters
in an orthonormal basis of Rq. For such a basis, we have q � 1 parameters in the first
vector in the basis (one is lost due to the normalisation constraint). For the second basis
vector, we have q � 2 free parameters because of normalisation and the constraint that
it is orthogonal to the first basis vector. For the third basis vector, we have q � 3 free
parameters due to one normalisation constraint and two orthogonality constraints, and
so on. So in total we have

Pq�1

i=1
i = 1

2
q(q � 1) free parameters.

There are many possible ways to apply these constrains to the factor loadings. One
method which we will make use of is Varimax rotation [Kaiser, 1958], which applies a
particular orthogonal rotation to factor loading matrices and has an existing implemen-
tation in R.

2.3 The MFA Model

Using the law of total probability, the density of the MFA model is given by

f(yj;⇥) =
gX

i=1

f(yj | Zij = 1;⇥) Pr(Zij = 1;⇥)

=
gX

i=1

⇡i�p(yj;µi,BiB
>
i +Di). (2.6)

where ⇥ = (⇡1, . . . , ⇡g�1,✓1, . . . ,✓g) and ✓i = (µi,Bi,Di), for i = 1, . . . , g.

As the MFAmodel is a probabilistic mixture of FA models, both of the identifiability issues
from the FA model also apply to the MFA model. Accordingly, to achieve identifiability,
the number of factors per component, q, must satisfy the Ledermann bound and q(q�1)/2
constraints must be applied to each of the loading matrices, leading to a total of gq(q�1)/2
constraints.

Let
y =

⇥
y>
1

· · · y>
j

⇤>
.
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Under the MFA model, the log-likelihood of y will be

`(⇥ | y) = log
nY

j=1

f(yj | ⇥)

Using Equation (2.6), it follows that

`(⇥ | y) =
nX

j=1

log

 
gX

i=1

⇡i�p(yj;µi,BiB
>
i +Di)

!
. (2.7)

2.4 The Adjusted Rand Index

Suppose now that we have a set of data {Yj}, where j = 1, . . . , n and two candidate
partitions of the dataset indices, P1 = {p1,1, p1,2, . . . , p1,⌘1} and P2 = {p2,1, p2,2, . . . , p2,⌘2}.
Here, pi,k \ pi,l = ; for each i 2 {1, 2} and each k, l 2 {1, . . . , ⌘i} where k 6= l. We also
assume that

⌘i[

k=1

pi,k = {1, 2, . . . , n}

for i 2 {1, 2}.

The partitions give us a way of representing potential sub-population structures. So, in
Chapter 4, where we want to assess the quality of the MFA models being fitted, we can
simulate datasets using a mixture model. By doing so, we have access to the “true” sub-
population structure of each dataset, which we can represent using a partition. Then,
each time we fit a model to these datasets, we will also obtain an inferred sub-population
structure which gives us a second “inferred” partition. We can then compare the two
partitions to measure the model’s ability at inferring the sub-population structure of the
dataset. However, the method we might use to go about comparing the two partitions is
not immediately obvious.

Consider Table 2.1, a contingency table for the partitions P1 and P2. Here, we define ni,k

to be the number of objects (in our case data point indices) common between subsets p2,i
and p1,k, for i 2 {1, 2, . . . , ⌘2} and k 2 {1, 2, . . . , ⌘1}. Also, define n·,k :=

P⌘2
i=1

ni,k and
ni,· :=

P⌘1
k=1

ni,k.

The Rand Index (RI), proposed in Rand [1971], is defined as

RI(P1,P2) :=

�
n
2

�
+
P⌘2

i=1

P⌘1
k=1

n2

ik � 1

2

�P⌘2
i=1

n2

i,· +
P⌘1

k=1
n2

·,k
 

�
n
2

� ,

and is one possible method for measuring the similarity of the two partitions of the data
point indices.
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Partition 1

Partition 2

Class p1,1 p1,2 . . . p1,⌘1 Sums
p2,1 n1,1 n1,2 . . . n1,⌘1 n1,·
p2,2 n2,1 n2,2 . . . n2,⌘1 n2,·
...

...
...

. . .
...

p2,⌘2 n⌘2,1 n⌘2,2 . . . n⌘2,⌘1 n⌘2,·
Sums n·,1 n·,2 n·,⌘1 n·,·

Table 2.1: A contingency table for partitions P1 and P2.

The RI of two partitions will always lie between zero and one. Values close to zero
indicate little agreement between the partitions while values close to one indicate that
the partitions are similar. It is also worth noting that the number of subsets making up
each partition does not need to be the same when calculating their RI. That is, we do not
require ⌘1 = ⌘2. To see why this is desirable, consider comparing the partitions

P1 = {{1, 2, 3}, {4, 5, 6}} and P2 = {{1, 2, 3}, {4, 5}, {6}}.

These two partitions appear to be very similar since the only di↵erence is data point
index 6 belonging to its own subset in P2. Thankfully, the Rand Index can still be used
to compare these two datasets, and, as might be expected, produces the relatively high
value of 0.86 in this example.

The Rand Index takes the value one if the two partitions are equivalent, which is to say
that it will take the one if and only if P1 = P2.

On the other hand, the RI will only take the value zero if the two partitions have nothing
in common. More formally, for every possible pair of data point indices (up to reordering),
P1 and P2 cannot both assign the pair to be in the same partition and they also cannot
both assign the pair to be in di↵erent positions. This is not a trivial condition to meet.
In fact, Hubert and Arabie [1985] showed that if the partitions P1 and P2 are picked at
random from the generalized hypergeometric distribution, then its expected value is

E [RI(P1,P2)] = 1 + 2
⌘2X

i=1

✓
ni,·
2

◆ ⌘1X

k=1

✓
n·,k
2

◆
/

✓
n

2

◆2

�
"

⌘2X

i=1

✓
ni,·
2

◆
+

⌘1X

k=1

✓
n·,k
2

◆#
/

✓
n

2

◆
.

That is, the RI will not, on average, take the value zero even if the partitions are randomly
generated.

As a result, we will use a corrected-for-chance variation of the RI called the Adjusted
Rand Index (ARI), proposed by Hubert and Arabie [1985]. It is defined as

ARI(P1,P2) =
RI(P1,P2)� E [RI(P1,P2)]

1� E [RI(P1,P2)]
.
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Hubert and Arabie [1985] also show that

ARI(P1,P2) :=

P⌘2
i=1

P⌘1
k=1

�
nik

2

�
�
P⌘2

i=1

�
ni,·
2

�P⌘1
k=1

�
n·,k
2

�
/
�
n
2

�

1

2

⇥P⌘2
i=1

�
ni,·
2

�
+
P⌘1

k=1

�
n·,k
2

�⇤
�
P⌘2

i=1

�
ni,·
2

�P⌘1
k=1

�
n·,k
2

�
/
�
n
2

� .

Unlike for the RI, if the data is randomly assigned into partitions in the manner described
above, its ARI has an expected value of zero. It is still bounded above by one, but unlike
the RI, the ARI can also take values less than zero if the RI is less than its expected
value. The ARI is bounded below by minus one.

We will use the ARI to compare the sub-population structures inferred by the MFA
fitting procedures with the true sub-population structure that generated the data while
performing the systematic comparison of methods in Chapter 4.

2.5 Parameter Estimation for the MFA Model

For now, suppose that the two hyperparameters of the MFA model, g and q, are known.
Under this assumption, consider the problem of performing maximum likelihood estima-
tion on Equation (2.7). The standard approach to obtaining an estimate for a particular
parameter would proceed by taking the derivative of Equation (2.7) with respect to the
parameter, setting the resulting expression equal to zero and then solving this equation
for the parameter.

For illustration purposes, suppose we want to find a MLE for the µi’s. From Equa-
tion (2.7), we find that

@`

@µk

=
@

@µk

"
nX

j=1

log

 
gX

i=1

⇡i�p(yj;µi,BiB
>
i +Di)

!#

=
nX

j=1

"
@

@µk

�
⇡k�p(yj;µk,BkB

>
k +Dk)

 

Pg
i=1

⇡i�p(yj;µi,BiB
>
i +Di)

#
. (2.8)

In fact, Equation (2.8) is su�ciently complicated that a closed form expression for the
MLE of µi is not available. The same is true of Bi and Di, meaning that using a direct
approach to obtain MLEs is not feasible for the MFA model.

While we cannot derive analytic expressions for the maximum likelihood estimators of the
MFA model, we can still obtain approximate maximum likelihood solutions via iterative
methods. The most common method for producing approximate MLEs for the parameters
of mixture models is the Expectation Maximisation (EM) algorithm of Dempster et al.
[1977] and generalisations thereof, such as the Expectation Conditional Maximisation
(ECM) algorithm of Meng and Rubin [1993], the Alternating Expectation Conditional
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Maximisation (AECM) algorithm of Meng and van Dyk [1997] and the Parameter Ex-
panded Expectation Maximisation (PX-EM) algorithm of Liu et al. [1998]. Accordingly,
we will discuss the EM algorithm and its extensions (which we will refer to as EM-type
algorithms) in more detail.

2.5.1 The EM Algorithm

The EM algorithm is a parameter estimation algorithm which is applicable to a broad
range of problems [Dempster et al., 1977]. At a high level, the idea of the EM algorithm
is to introduce some new (and typically unobserved) latent variables such that the joint
likelihood of the observed data and the latent variables is of a simpler form than that of
the observed data alone. We call this joint log-likelihood the complete-data log-likelihood.

The EM algorithm is iterative. We use k to track the number of iterations which have been
completed, so ⇥(k) is the estimate of ⇥ given by the kth iteration of the EM algorithm.
Each iteration of the EM algorithm is composed of two steps. In the first step, which
is usually called the E-step, we find the su�cient statistics of the complete-data log-
likelihood, except that wherever functions of the latent variables appear, we replace them
with their conditional expectation given the observed data and the current estimates of
the model parameters. Then, in the second step, which is generally called the M-step,
we find maximum likelihood estimates for the model parameters using the complete-data
log-likelihood, in terms of the modified su�cient statistics from the E-step.

The original motivation of the EM algorithm was to develop a parameter estimation tech-
nique for missing data problems. In fact, Dempster et al. [1977] provides several examples
of applying the EM algorithm to missing data problems. In some cases, data is explic-
itly missing from the design matrix, so the missing data is used as the latent variables.
They also discuss the FA model, where the unobserved factors Uj constitute a natural
choice of latent variable. However, the latent variables need not be explicitly missing
or unobserved. The EM algorithm can be applied in any situation where augmenting
the observed data with a set of latent variables makes a previously intractable likelihood
function tractable.

More formally, suppose we have a model with parameter vector ⇥. Let y be the observed
data to which we wish to fit the model and let w be the set of latent variables. We define
an observation of the complete data to be xi = (yi,wi), the concatenation of the observed
data and the latent variables. We also define the so called Q-function as

Q(⇥;⇥(k)) = E
h
log f(x;⇥) | y;⇥(k)

i
, (2.9)

where f(x;⇥) is the complete-data likelihood function of the model. This means that the
Q-function is just the conditional expectation of the complete-data log-likelihood given
the observed data.
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Calculating the Q-function is the first step of each iteration of the EM algorithm and is
known as the expectation step or E-step. The second step in each iteration of the EM
algorithm is the maximisation step or M-step, so called because in this step, we maximise
the Q-function, Equation (2.9), with respect to ⇥.

Suppose now that we have our observed data y and that we have chosen an appropriate
set of latent variables w such that we can evaluate the complete-data likelihood, that is,
we can compute f(x;⇥). Under this pretense, Algorithm 2.1 defines the EM algorithm.

Algorithm 2.1: The EM Algorithm from Dempster et al. [1977]

Input: A set of observed data y, an initial estimate of the parameters ⇥(0), a
convergence criterion and a maximum number of iterations kmax

Result: Approximate maximum likelihood estimates for the vector of parameters
⇥

1 Set k = 0;
2 while Convergence criterion not satisfied and k < kmax do
3 The E-Step: Compute Q(⇥;⇥(k));

4 The M-Step: Set ⇥(k+1) to be the ⇥ that maximizes Q(⇥;⇥(k)) from the
previous step;

5 if Convergence criterion satisfied then
6 Return ⇥(k+1);
7 else
8 Set k = k + 1;
9 end

10 end

11 Return ⇥(kmax);

Algorithm 2.1 contains three objects which we have not yet discussed; a convergence
criterion, the maximum number of iterations and an initial estimate of the parameters.
Like most iterative methods, the EM algorithm requires a convergence criterion. That
is, it needs to have a rule with which it can determine whether or not the sequence of
parameter estimates which it has produced has converged to a final set of values. There are
many possible choices for convergence criteria. Two common choices for EM algorithms
are the absolute di↵erence in log-likelihood,

|`(⇥(k+1) | y)� `(⇥(k) | y)| < ", (2.10)

and the relative absolute di↵erence in log-likelihood

|`(⇥(k+1) | y)� `(⇥(k) | y)|
|`(⇥(k) | y)|

< ", (2.11)
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for some pre-specified " > 0. We usually also specify a maximum number of iterations
because if the convergence criterion is strict enough, it may take a very large number of
EM iterations before the convergence criterion is met. This maximum number of iterations
acts as a second termination condition. If the maximum number of iterations is met, then
the algorithm will terminate, even if the convergence criterion is not yet satisfied.

Dempster et al. [1977] showed that the sequence of observed-data log-likelihoods produced
by the EM Algorithm are guaranteed to be non-decreasing. Whilst this is an extremely
desirable property, the increase in log-likelihood from one iteration to the next may be very
small. Consequently, the convergence of the algorithm may be slow. Dempster et al. [1977]
note that the rate of convergence tends to decrease as the number of latent variables being
used increases. As a result, minimising the number of latent variables which are introduced
may be desirable to increase the e�ciency of the algorithm. However, introducing less
latent variables may lead to more complicated complete-data log-likelihoods.

It may happen that the log-likelihood function `(⇥ | y) is multimodal. In this case, the
algorithm will be sensitive to the initial parameter estimates which are supplied. If the
model is initialised close to a local maximum of `(⇥ | y) then it is likely that the EM
iterations will converge to the local maximum, instead of the global maximum. As a
result, it is usually advisable to perform several runs of the EM algorithm using di↵erent
combinations of initial parameters. By doing so, we increase the chances of having the
EM algorithm converge to the global maximum of `(⇥ | y) in at least one of the runs.

As mentioned previously, there are a number of extensions to the original EM algorithm
presented by Dempster et al. [1977]. These include the ECM algorithm of Meng and Rubin
[1993], the AECM algorithm of Meng and van Dyk [1997] and the PX-EM algorithm of
Liu et al. [1998]. While we will not discuss these in great detail in this work, it is worth
mentioning that the EM-type algorithms which we utilise in this work are technically
ECM algorithms. This is because some of the maximisations in the M-step are actually
conditional maximisations which use the current (i.e. (k + 1)st time step) estimates of
other parameters.

To demonstrate the EM algorithm, in the following example, we work through the deriva-
tion of an ECM algorithm for a simple GMM.

Example 3. Consider a set of independent scalar observations y1, . . . , yn. Suppose that
each observation has been generated by one of two univariate Gaussian distributions
with mixing proportions ⇡1 and ⇡2 respectively. In other words, suppose the data were
generated by the mixture model

Zj ⇠ Multinomial(1,⇡)

Yj | Zij = 1 ⇠ N(µi, �
2

i ),

independently for j = 1, . . . , n, where ⇡ = (⇡1, ⇡2).
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Using the law of total probability, the log-likelihood of the observed data is given by

`(⇥ | y) = log
nY

j=1

f(yj;⇥)

=
nX

j=1

log
2X

i=1

f(yj | Zij = 1;⇥) Pr(Zij = 1;⇥)

=
nX

j=1

log
2X

i=1

⇡i�(yj | µi, �
2

i ), (2.12)

where ⇥ = (⇡1, µ1, µ2, �2

1
, �2

2
)>. As would be expected, this is similar to the likelihood of

the MFA model from Equation (2.7), and as in the MFA model, we cannot obtain closed
form expressions for the MLEs of the parameters of this model directly by di↵erentiating
this log-likelihood.

So, instead, we can use the EM algorithm to obtain approximate MLEs. In order to
apply the EM algorithm, we need to introduce suitable latent variables. In this case, the
choice of latent variables seems fairly obvious from the formulation of the model; the only
piece of unobserved data in the model are the indicator vectors Zj. So, we define the
complete data as xj = (yj, zj)> where zj = (z1j, z2j). It follows that the complete-data
log-likelihood is given by

`(⇥ | x) = log
nY

j=1

f(xj;⇥)

= log
nY

j=1

f(yj | zj;⇥)f(zj;⇥)

= log
nY

j=1

2Y

i=1

(⇡i�(yj;µi, �
2

i ))
zij

=
nX

j=1

2X

i=1

zij log ⇡i�(yj;µi, �
2

i ). (2.13)

We obtain Equation (2.13) by applying the multinomial density, and by realising that
since

f(yj | zj;⇥) = �(yj;µi⇤ , �
2

i⇤)

where i⇤ is the index of the unique entry of zj such that zij = 1, we can also write this as

f(yj | zj;⇥) =
2Y

i=1

�(yj;µi, �
2

i )
zij .
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The next step in deriving the EM algorithm for this model is to find the Q-function, which
in this case is given by

Q(⇥;⇥(k)) =
nX

j=1

2X

i=1

E
h
Zij | y;⇥(k)

i
log ⇡i�(yj;µi, �

2

i ). (2.14)

In this example, we notice that the complete-data log-likelihood, Equation (2.13), is linear
in the zij’s. As a result, because with respect to the conditional expectation only the
Zij’s are random variables, we find that the only unknown quantity in Equation (2.14) is

E
h
Zij | yj;⇥(k)

i
. However, we will see in Section 2.6 and then again in Chapter 5 that

sometimes multiple quantities need to be calculated in each E-step.

Next, we define the responsibilities4 as

⌧ (k)ij := E
h
Zij | yj;⇥(k)

i
.

To perform the E-step, we need to calculate the Q-function from Equation (2.14). The

only unknowns in Equation (2.14) are the ⌧ (k)ij ’s, so if we can calculate these then we can
perform the E-step. Since each Zij is an indicator variable,

⌧ (k)ij = Pr
⇣
Zij = 1 | yj;⇥(k)

⌘
, (2.15)

and using Bayes’ rule and the law of total probability, it follows from Equation (2.15)
that

⌧ (k)ij =
⇡(k)
i �(yj;µ

(k)
i , �2

i
(k))

P
2

l=1
⇡(k)
l �(yj;µ

(k)
l , �2

l
(k))

. (2.16)

So, given our set of observed data y and k-step estimates for the model parameters, we
can calculate the responsibilities using Equation (2.16). This means that the E-step is to
calculate the Q-function from Equation (2.14) by using Equation (2.16). The M-step, on
the other hand, is to maximise the Q-function with respect to ⇡i, µi and �i.

We will maximise the Q-function with respect to the ⇡i’s first. Note that the ⇡i’s are also
subject to the constraint that

P
2

i=1
⇡i = 1. We can find a suitable maximiser by using

Lagrange multipliers, forming the modified objective function

Q⇤
1
(⇡i,�) =

nX

j=1

2X

i=1

⌧ (k)ij log ⇡i � �

 
2X

i=1

⇡i � 1

!
.

4
The name responsibilities reflects the interpretation of the ⌧ (k)ij ’s as the posterior probability that

data point yj belongs to sub-population i. In other words, ⌧ (k)ij measures the degree of responsibility that

sub-population i has for data point yj .
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Note that here, we have dropped the terms in Equation (2.14) that do not depend on ⇡i.

Solving this in the usual way leads to the coupled system of equations

2X

i=1

⇡i = 1 (2.17)

nX

j=1

⌧ (k)ij

⇡i
= �. (2.18)

Rearranging Equation (2.18) and substituting it into Equation (2.17) leads to � = n after
noting that

2X

i=1

nX

j=1

⇡i = n,

which follows almost immediately from Equation (2.16). Equation (2.18) then yields

⇡(k+1)

i =
1

n

nX

j=1

⌧ (k)ij . (2.19)

Consider now the following modified Q-function, where only the terms which depend on
µi and �i have been included:

Q⇤
2
(µi, �

2

i ;⇥
(k)) =

nX

j=1

2X

i=1

⌧ (k)ij log


(�2

i )
� 1

2 exp

✓
�1

2

(yj � µi)2

2�2

i

◆�
. (2.20)

The M-step estimate for µi can be obtained by taking the partial derivative of Equa-
tion (2.20) with respect to µi and setting the resulting expression equal to zero, which
yields the updated estimate

µ(k+1)

i =
1

ni

nX

j=1

⌧ (k)ij yj, (2.21)

where ni =
Pn

j=1
⌧ (k)ij . The estimate for �2

i is obtained by taking the partial derivative of
Equation (2.20) with respect to �2

i , setting it equal to zero and solving it for �2

i , which
produces the updated estimate

�2

i
(k+1)

=
1

ni

nX

j=1

⌧ (k)ij (yj � µi
(k))2. (2.22)

These three updates comprise the M-step of the algorithm. Algorithm 2.2 summarises
the steps of the EM Algorithm for this example.
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Algorithm 2.2: The EM Algorithm for Example 3

Input: An initial estimate of the parameters, ⇡(0)

i , µ(0)

i and �2

i
(0), i = 1, 2, a

convergence criterion and a maximum number of iterations kmax

Result: Approximate maximum likelihood estimates for ⇡i, µi and �2

i , i = 1, 2.
1 Set k = 0;
2 while Chosen convergence criterion not satisfied and k < kmax do

3 The E-Step: Compute ⌧ (k)ij using Equation (2.16) for i 2 {1, 2} and
j 2 {1, . . . , n};

4 The M-Step: Compute ⇡(k+1)

i , µ(k+1)

i and �2

i
(k+1) using Equation (2.19),

Equation (2.21) and Equation (2.22), respectively, for i 2 {1, 2};
5 if Convergence criterion satisfied then

6 Return ⇡(k+1)

i , µ(k+1)

i and �2

i
(k+1) for i 2 {1, 2};

7 else
8 Set k = k + 1;
9 end

10 end

11 Return ⇡(kmax)

i , µ(kmax)

i and �2

i
(kmax) for i 2 {1, 2};

⌅

We demonstrate Algorithm 2.2 with the following example.

Example 4. Figure 2.1 shows the evolution of a mixture model density function defined
by the parameter estimates produced by Algorithm 2.2. In this case, 1500 points were
generated according to the two-component univariate Gaussian mixture model with the
following parameters:

⇡ =

✓
1

3
,
2

3

◆>

, µ1 = 0, µ2 = 3, �2

1
= 1, �2

2
= 0.16.

The initial estimates used were

⇡(0) =

✓
1

2
,
1

2

◆>

, µ(0)

1
= 1, µ(0)

2
= 2, �2

1

(0)

= �2

2

(0)

= 1.

While the initial parameter estimates define a density that describes the data poorly,
we see that the EM iterations gradually improve the estimated density until after ten
iterations the estimated density is almost indistinguishable from the true density. The R

code used to generate these figures is included in Appendix C.

⌅
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2.6 EM-type Algorithms for the MFA Model

Several EM-type algorithms for the MFA model have been proposed. We will examine
two of these in this work. The first, which we will call MFA-ECM-1 was proposed in
Ghahramani et al. [1997]. It treats both the factor and the indicator vectors as latent
variables. The second, which we will call MFA-ECM-2, was proposed in Zhao and Yu
[2008]. In contrast to MFA-ECM-1, this algorithm only treats the indicator vectors as
latent variables.

The derivation of MFA-ECM-1 is simpler than that of MFA-ECM-2, since we condition
on more latent variables. This results in a simpler Q-function in the M-step. Most of
the mathematical details in the derivation of this algorithm are included in Ghahramani
et al. [1997]. As a result, in the derivation of MFA-ECM-1 we have not included full
mathematical details as they are already available in the original paper.

On the other hand, the derivation of MFA-ECM-2 is more complicated. We have included
more detail in the derivation of this algorithm, since some of the details were excluded
in the original work. In both derivations, we assume that g and q are known a priori for
now.

2.6.1 MFA-ECM-1

Recall the MFA model defined by Equation (1.4). Ghahramani et al. [1997] derived an
ECM algorithm for this model as follows.

Recall that under Equation (1.4), the only pieces of observed data are the yj’s. We define
the complete data as xj = (yj,uj, zj). So the latent variables for observation yj are both
the corresponding factor vector uj and the corresponding indicator vector zj.

The log-likelihood of the complete data is therefore

`(⇥ | x) = log
nY

j=1

f(xj;⇥)

= log
nY

j=1

f(yj | zj,uj;⇥)f(zj,uj;⇥)

/ log
nY

j=1

gY

i=1

(⇡i�p(yj;µi +BiUj,Di))
zij , (2.23)

which we obtain by using a broadly similar argument to Example 3. We do, of course,
need to adjust the conditional density of the observed data and also apply independence
to break up the joint distribution of the indicators and factors into the product of their
distributions. We also note that the distribution of the factors is the standard multivariate
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Gaussian distribution, so we can ignore it and work with the expression in Equation (2.23),
which is correct up to a constant of proportionality.

For ease of computation, we define

euj :=


uj

1

�
,

and
eBi :=

⇥
Bi µi

⇤
,

such that
eBieuj = µi +Biuj,

which is the location parameter in the Gaussian density function in Equation (2.23).

Let ⇥ = (⇡1, . . . , ⇡g�1,✓1, . . . ,✓g)> be a vector containing the parameters of the model,

where ✓i = (eBi,Di)>. We define the responsibilities analogously to those of Example 3.
That is,

⌧ (k)ij := E
h
Zij | yj;⇥

(k)
i
.

It follows that the Q-function for the ✓i’s is

Q(✓i;⇥
(k)) / �1

2

nX

j=1

gX

i=1

⌧ (k)ij log |Di|�
nX

j=1

gX

i=1


1

2
y>
j D

�1

i yj

� y>
j D

�1

i
eBiE

h
Zij

eUj | y;⇥(k)
i

+
1

2
tr
n
eB

>
i D

�1

i
eBiE

h
Zij

eUj
eU

>
j | y;⇥(k)

io �
(2.24)

up to a constant of proportionality. The mixing proportions have not been included in
Equation (2.24) since we can estimate them separately, in an almost identical manner to
that of Example 3.

We now proceed with the E-step, which constitutes evaluating the conditional expecta-
tions in Equation (2.24). The ⌧ (k)ij ’s can be calculated using

⌧ (k)ij =
⇡(k)
i �(yj;µ

(k)
i ,B(k)

i B(k)
i

>
+D(k)

i )
Pg

l=1
⇡(k)
l �(yj;µ

(k)
l ,B(k)

l B(k)
l

>
+D(k)

l )
, (2.25)

which is derived in the same manner as Equation (2.16).

As a brief aside, if we are interested in using the MFA model to infer the sub-population
structure of a dataset, then we can use the responsibilities from Equation (2.25). Recall

that the ⌧ (k)ij ’s satisfy

⌧ (k)ij = Pr(Zij = 1 | yj;⇥
(k)),
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so they are the posterior probability that data point j belongs to component i. While
these already give us “soft classifications” (i.e. probabilities), we can obtain hard classifi-

cations for each data point by assigning yj to the component satisfying argmaxl ⌧
(k)
lj . We

generally do this at the end of the model fitting process, using the final estimates of the
responsibilities.

By exploiting the binary nature of the Zij’s, it is not hard to see that

E
h
Zij

eUi | y;⇥(k)
i
= ⌧ (k)ij E

h
eUi | y, Zij = 1;⇥(k)

i
(2.26)

and

E
h
Zij

eUj
eU

>
j | y;⇥(k)

i
= ⌧ (k)ij E

h
eUj

eU
>
j | y, Zij = 1;⇥(k)

i
. (2.27)

Since Uj and Yj are jointly Gaussian, we have that

E
h
eUj | yj, Zij = 1;⇥(k)

i
=


�i(yj � µi)

1

�
(2.28)

and

E
h
eUi
eU

>
i | yi, Zij = 1;⇥(k)

i
=

2

4
Wij E

h
Uj | yj, Zij = 1;⇥(k)

i

E
h
Uj | yj, Zij = 1;⇥(k)

i>
1

3

5

(2.29)
where

�i := (BiB
>
i +Di)

�1Bi

and
Wij := Iq � �>

i Bi + �i(yj � µi)(yj � µi)
>�>

i .

The E-step is to calculate theQ-function, Equation (2.24), using Equations (2.25) to (2.29).

As mentioned earlier, the M-step estimate for ⇡(k+1)

i can be derived in almost exactly the
same way as Equation (2.19), leading to

⇡(k+1)

i =
1

n

nX

j=1

⌧ (k)ij . (2.30)

Di↵erentiating Equation (2.24) with respect to eBi and Di separately leads to the following
two M-step updates:

eB
(k+1)

i =

 
nX

j=1

⌧ (k)ij yjE
h
eUj | y, Zij = 1;⇥(k)

i>
!

⇥
 

nX

j=1

⌧ (k)ij
eB

(k)

i E
h
eUj

eU
>
j | y, Zij = 1;⇥(k)

i!�1
(2.31)
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and

D(k+1)

i =
1

ni
diag

(
nX

j=1

⌧ (k)ij

⇣
yj � eB

(k)

i E
h
eUj | y, Zij = 1;⇥(k)

i⌘
y>
j

)
. (2.32)

Algorithm 2.3: The MFA-ECM-1 Algorithm from Ghahramani et al. [1997]

Input: An initial estimate of the parameters, ⇥(0), a convergence criterion and a
maximum number of iterations kmax

Result: Maximum likelihood estimates for the vector of parameters ⇥
1 Set k = 0;
2 while Chosen convergence criterion not satisfied and k < kmax do
3 The E-Step: Compute the condition expectations in Equation (2.24) using

Equation (2.25), Equation (2.26), Equation (2.27), Equation (2.28) and
Equation (2.29) for i 2 {1, . . . , g} and j 2 {1, . . . , n};

4 The M-Step: Compute ⇥(k+1) using Equation (2.30), Equation (2.31) and
Equation (2.32), respectively;

5 if Convergence criterion satisfied then
6 Return ⇥(k+1);
7 else
8 Set k = k + 1;
9 end

10 end

11 Return ⇥(kmax);

Algorithm 2.3 summarises MFA-ECM-1, which was the first EM-type scheme introduced
for the fitting of the MFA model. Its derivation is appealing in its simplicity, as including
the factors as latent variables means that the M-step estimates for the loading matrices
and error-variance matrices can be determined by finding the appropriate derivative of
the Q-function, setting it equal to zero and then rearranging. However, we will see in
Section 2.6.2 that the inclusion of the factors as latent variables is not necessary to derive
an EM-type scheme for the MFA model. Since it includes more latent variables than is
strictly necessary, we can expect this method to converge more slowly that MFA-ECM-2
which we introduce next in Section 2.6.2.

2.6.2 MFA-ECM-2

More recently, Zhao and Yu [2008] addressed the issue of a potentially large amount of
latent variables being used in MFA-ECM-1 by proposing an ECM algorithm for the MFA
model which uses only the indicator vectors as latent variables. We call this algorithm
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MFA-ECM-2. As alluded to at the end of Section 2.6.1, by only using the Zij’s as latent
variables we would expect MFA-ECM-2 to generally achieve a faster rate of convergence
than MFA-ECM-1. However, this comes at the cost of estimating the underlying factors
Uj.

To derive MFA-ECM-2, we first divide the model parameters into two sets, as follows.
Let ⇥ = (✓1,✓2) with

✓1 = (⇡1, . . . , ⇡g�1,µ1
, . . . ,µg)

and
✓2 = (B1, . . . ,Bg,D1, . . . ,Dg).

Let the complete data be given be xj = (yj, zj). The complete-data log-likelihood satisfies

` (⇥ | y, z) /
nX

j=1

gX

i=1


zij log ⇡i �

1

2
zij(yj � µi)

> (BiBi +Di)
�1 (yj � µi)

� 1

2
log

��BiB
>
i +Di

��
�
.

(2.33)

The Q-function is for the parameters in ✓1 satisfies

Q
⇣
✓1;⇥

(k)
⌘
/

nX

j=1

gX

i=1

⌧ (k)ij


log ⇡i �

1

2
(yj � µi)

>
⇣
B(k)

i B(k)>
i +D(k)

i

⌘�1

(yj � µi)

�

(2.34)

where ⌧ (k)ij is defined as usual, which means that they can be calculated using Equa-
tion (2.25). The update for the ⇡i’s is identical to their update in MFA-ECM-1, being
given by Equation (2.30).

The partial derivative of Equation (2.34) with respect to µi is

@Q

@µi

=
nX

j=1

⌧ (k)ij (B(k)
i B(k)>

i +D(k)
i )�1(yj � µi),

which provides the update

µ(k+1)

i =

Pn
j=1

⌧ (k)ij yj
Pn

j=1
⌧ (k)ij

. (2.35)

Now consider the problem of updating Bi and Di. We show in Appendix A.2 that the
Q-function for the parameters in ✓2 satisfies

Q
⇣
✓2;⇥

(k+1/2)
⌘
/ �n

2

gX

i=1

⇡(k+1)

i

h
log |BiB

>
i +Di|+ tr

n�
BiB

>
i +Di

��1

S(k)
i

oi
(2.36)



32 Chapter 2. Background Information

where

S(k)
i :=

1

n⇡(k+1)

i

nX

j=1

⌧ (k)ij (yj � µ(k+1)

i )(yj � µ(k+1)

i )>,

and ⇥(k+1/2) = (✓(k+1)

1
,✓(k)

2
). Using the shorthand Q⇤ for Q

⇣
✓2 | ⇥(k+1/2)

⌘
, we show in

Appendix A.3 that

@Q⇤

@Bi
= �n⇡(k+1)

i

h
(BiB

>
i +Di)

�1Bi � (BiB
>
i +Di)

�1S(k)
i (BiB

>
i +Di)

�1Bi

i
. (2.37)

Setting Equation (2.37) equal to zero leads to

Bi = S(k)
i (BiB

>
i +Di)

�1Bi. (2.38)

Notice that this is not an expression for the maximum likelihood solution for Bi, but it is
an expression which must be satisfied by any maximum likelihood solution for Bi. Also,
notice that for any Bi satisfying Equation (2.38), it must also be true that

BiV = S(k)
i (BiB

>
i +Di)

�1BiV

for any q⇥ q matrix V. If, in addition, we have VV> = Iq then we know that B⇤
i := BiV

must also satisfy Equation (2.38) sinceB⇤
iB

⇤
i
> = BiB

>
i . In other words, given any solution

Bi to Equation (2.38), we can always find an equivalent solution by postmultiplying Bi

by any q ⇥ q matrix V satisfying VV> = Iq.

Using Equation (2.38), Jöreskog [1967] showed that a local maximum of Q⇤ with respect
to Bi is given by

B̂
(k+1)

imi
=
h
D(k)

i

i1/2
Umi(⇤mi � Imi)

1/2Vmi , (2.39)

for a fixed value of mi, where

S̃i :=
h
D(k)

i

i�1/2

S(k)
i

h
D(k)

i

i�1/2

, (2.40)

⇤mi is a diagonal matrix containing the mi largest eigenvalues of S̃i and Umi is an or-
thogonal matrix composed of the corresponding mi eigenvectors of S̃i. Vmi is an mi ⇥ q
matrix satisfying VmiVmi

> = Imi . This solution will be real-valued provided that
max{�i1, . . . ,�im} > 1, where �il is the lth eigenvalue of S̃i. In other words, when at
least one of the eigenvectors of S̃i is strictly greater than one. Since we want the global
maximum likelihood estimates of Bi from Q⇤, we want to find the value of mi which

maximises the likelihood of the corresponding B̂
(k+1)

imi
, for each possible i.
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We will find the optimal value of mi by expressing Q⇤ in terms of mi. In Appendix A.4,
we show that

����
h
D(k)

i

i� 1
2

���� ·
����B̂

(k+1)

imi

h
B̂

(k+1)

imi

i>
+D(k)

i

���� ·
����
h
D(k)

i

i� 1
2

���� =
miY

l=1

�il, (2.41)

where �il is the lth eigenvalue of S̃i, sorted in descending order. Consequently,
����B̂

(k+1)

imi

h
B̂

(k+1)

imi

i>
+D(k)

i

����

|S̃i|
= c0

miY

l=1

�il

 
pY

l=1

�il

!�1

,

where c0 is a constant introduced by the two

����
h
D(k)

i

i� 1
2

���� terms, which do not depend on

mi. Hence,

log

����B̂
(k+1)

imi

h
B̂

(k+1)

imi

i>
+D(k)

i

����� log |S̃i| /
miX

l=1

log �il �
pX

l=1

log �il. (2.42)

Since log |S̃i| and ⇡(k+1)

i are both constants with respect to ✓2, the maximum likelihood
estimates from Q⇤ will be the same as those from

Q⇤+
n

2

gX

i=1

⇡(k+1)

i log |S̃i| / �n

2

gX

i=1

⇡(k+1)

i


log

|BiBi
> +Di|
|S̃i|

+ tr
n�

BiBi
> +Di

��1

S(k)
i

o�
.

(2.43)
Now consider the trace term in Equation (2.43). We show in Appendix A.5 that
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In Appendix A.6, we also show that in combination with Equation (2.42), Equation (2.44)
leads to
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Since the function log x�x+1 is negative and strictly decreasing for x 2 (1,1), it follows
that Q⇤ is maximised if we take

mi =
pX

i=1

I(�il > 1),
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where the eigenvalues are sorted in order of decreasing magnitude. Our update for Bi,
therefore, is

B(k+1)

i =
h
D(k)

i

i1/2
Umi(⇤mi � Imi)

1/2Vi, (2.46)

with mi :=
Pp

i=1
I(�il > 1) and where Vi is an mi ⇥ q matrix satisfying ViVi

> = Imi .

The final parameter for which we need to derive an M-step estimate is Di. Recall that
Di is diagonal, so

D(k)
i = diag(d(k)i1 , . . . , d(k)ip ).

Now, define
D(k)

il := diag(d(k+1)
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We show in Appendix A.3 that
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Define
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Then pre-multiplying and post-multiplying Equation (2.47) by
h
D(k)

i

i� 1
2
before setting

the element-wise derivatives equal to zero produces the constraint on any MLE for dil
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Now define

B̃i :=
h
D(k)
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for j = 1, . . . , l � 1.

With el as the lth column of the p⇥ p identity matrix, we have

⌃̃il = D̃il + B̃iB̃
>
i = !ilele

>
l +Cil,

where

Cil := Ip + B̃iB̃
>
i +

l�1X

j=1

!(k+1)

ij eje
>
j .

Suppose that Cil is symmetric and positive definite. Then, via Proposition 1 of Zhao
et al. [2007],
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As shown in Appendix A.7, applying Equation (2.49) to Equation (2.48) and rearranging
produces
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il el
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Our update of Di can, therefore, be performed component-wise by setting

d(k+1)

il = (!(k+1)

il + 1)d(k)il ,

where !(t+1)

il is defined by Equation (2.50) sequentially from l = 1 to p.

However, in practice, an update of this form does not guarantee that Cil will be positive
definite. Zhao and Yu [2008] instead suggest that the update be performed by computing

!(k+1)

il according to Equation (2.50) and then setting

d(k+1)

il = max
n
⌘, (!(k+1)

il + 1)d(k)il

o
, (2.51)

for l = 1, . . . , p and some pre-specified ⌘ > 0, which acts as the smallest possible entry
in any of the error-variance matrices. They show that this update will guarantee an
increasing sequence of likelihoods and also benefits from additional numerical stability.

The inferred sub-population structure of a dataset can be obtained from the responsi-
bilities estimated by MFA-ECM-2 in the same way as it was obtained from those of
MFA-ECM-1, as discussed in Section 2.6.1.

Algorithm 2.4 summarises MFA-ECM-2.
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Algorithm 2.4: MFA-ECM-2 from Zhao and Yu [2008]

Input: An initial estimate of the parameters, ⇥(0), a convergence criterion and a
maximum number of iterations kmax

Result: Maximum likelihood estimates for the vector of parameters ⇥
1 Set k = 0;
2 while Chosen convergence criterion not satisfied and k < kmax do
3 The E-Step: Compute the responsibilities using Equation (2.25) for

i 2 {1, . . . , g} and j 2 {1, . . . , n};
4 The M-Step: Compute ⇥(k+1) using Equation (2.30), Equation (2.35),

Equation (2.46) and Equation (2.51), respectively;
5 if Convergence criterion satisfied then
6 Return ⇥(k+1);
7 else
8 Set k = k + 1;
9 end

10 end

11 Return ⇥(kmax);



Chapter 3

Existing Methods

In this chapter, we will discuss existing methods which have been proposed to infer g, q
or both g and q for the MFA model. We will also include information about their usage in
our R package autoMFA, which is available on CRAN. This package provides a consistent
framework for applying each of the methods discussed in this chapter, making it easy to
apply one or all of them and compare the results.

We will discuss five di↵erent methods which aim to determine the optimal values of g
and q with as little input from the user as possible. The parameter estimation routines
for all but one of the methods are based on either MFA-ECM-1 or MFA-ECM-2. The
only method which is not based on one of these two algorithms is based on a Bayesian
formulation of the MFA model.

The simplest method for choosing g and q is to fit MFA models for a large number of
combinations of g and q and then choose a final model according to some model selection
criterion. In fact, we will regard this näıve grid search as the gold standard, as by
searching over large enough ranges for g and q, we should be almost guaranteed to find
the best possible values of g and q. We can view the other methods in this chapter as
approximations of this method, since they are attempting to find the best values of g and
q without exhaustively searching over all of the possible combinations. This is of practical
importance because for some datasets, an exhaustive search over large ranges of g and q
will be prohibitively computationally expensive.

Three of the five methods instead attempt to choose g using a hierarchical splitting
approach. That is, by starting with a single sub-population and then allowing it to be
split into two sub-populations if certain criteria are met, and so on. Some of the methods
also include mechanisms by which an existing sub-population can be removed from the
mixture.

37
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Four out of the five methods also attempt to determine q without näıvely searching over a
range of possible values. Two of them use an approach which is intrinsically linked to the
derivation of MFA-ECM-2 in Section 2.6.2 and try to choose q using an approximation of
the BIC. Another attempts to choose q by examining the sample covariance structure of
each of the components in the mixture and then comparing it with the modeled covariance
structure of that component. It then adds an extra factor to the component with the
largest di↵erence between the modeled and sample covariance structure. Finally, the
method which uses the Bayesian formulation of the MFA model is designed to give very
small factor loadings to some columns in the factor loading matrix if less factors are
supported by the data than were specified by the user at the outset. As a result, we can
automatically select q by retaining only the columns of the factor loading matrices with
non-negligible loadings.

We have developed the aforementioned R package autoMFA so that each of the methods
discussed in this chapter can be accessed via a standard framework in R. While some
of the methods had existing implementations in other programming languages, this is
(to our knowledge) the first such R package. The package also o↵ers other advantages,
such as a consistent output format across each of the methods, and additional diagnostic
information which was not available in some of the original implementations.

We note that the code in autoMFA has not been professionally optimised. The code has,
however, been structured as consistently as possible between the di↵erent methods.

3.1 Näıve Grid Search

The first method for automatically choosing the values of g and q is the simplest. We
perform a näıve grid search over di↵erent combinations of g and q, fitting several MFA
models for each combination using MFA-ECM-21 (with several di↵erent starting values)
and then choose the best model amongst all of the candidate models according to some
model selection criterion.

To perform this method, we assume that the true values of g and q lie within the ranges
gmin  g  gmax and qmin  q  qmax respectively. Here qmax is still required to respect
the Ledermann bound. If we choose inappropriate values for qmin, qmax, gmin or gmax such
that the true values of g or q or both lie outside of the grid defined by those four values,
then clearly this method will not be able to infer g or q or both correctly.

Ideally, by searching over large ranges of possible values for g and q, we should be able to

1
We could instead use MFA-ECM-1 to fit each MFA model, or other similar schemes like the AECM

algorithm for the MFA model from McLachlan et al. [2003]. We chose to use MFA-ECM-2 because of its

improved rate of convergence compared to the aforementioned two algorithms, which was demonstrated

in Zhao and Yu [2008].



3.1. Näıve Grid Search 39

find the best combination of parameters reliably. However, the total number of candidate
models is given by

ncand = ns(qmax � qmin + 1)(gmax � gmin + 1),

where ns is the number of initial values used for each parameter combination. Hence, the
number of candidate models grows rapidly as gmax and qmax increase (assuming that we
hold gmin and qmin fixed, often both at one). For example, searching over 1  g  10 and
1  q  5 with ns = 10 produces 500 candidate models. In other words, we would need
to perform MFA-ECM-2 in full, 500 times, just for this relatively small example.

Several di↵erent model selection criteria are possible. We have chosen to select the final
model using the BIC. That is, the final model is the model which obtained the lowest
BIC value amongst all of the ncand models which will be fitted using MFA-ECM-2. The
BIC is the most commonly applied model selection criterion for mixture models, however
McLachlan et al. [2019] discuss some other possible methods.

To calculate the BIC of a model, we need to know how many parameters it contains. In
the case of an MFA model with g components and q factors per component, the number
of parameters is given by

k⇤
MFA

(p, g, q) = g

✓
2p+ pq + 1� 1

2
q(q � 1)

◆
� 1. (3.1)

We obtain this expression via a simple counting argument; we need to estimate g � 1
mixing proportions, with the final one constrained by unity, we also need to estimate
g p ⇥ 1 mean vectors, g p ⇥ p diagonal error-variance matrices (which only contain p
parameters each) and finally g p⇥ q factor loading matrices where 1

2
q(q � 1) constraints

have been applied to each. Rearranging then leads to Equation (3.1).

The feasibility of this näıve approach will depend on the dataset being considered. For
small datasets where each execution of MFA-ECM-2 is very fast, this approach is reason-
able. However, if we were instead working with a dataset that took several hours to fit a
single MFA model, then this method may be completely infeasible.

We have created implementations of this algorithm in both R and Julia. In R, the näıve
search is available as the MFA ECM function in our R package autoMFA, while in Julia
it is available as the MFA ECM function in our package FactorMixtures. Julia’s superior
performance may significantly improve the range of datasets where using this näıve im-
plementation is feasible.

The R method MFA ECM in the autoMFA package has the following inputs:

• Y, an n⇥ p data matrix where each row represents a data point.
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• gmin, the lower bound on the range of g values to be searched over. By default it is
set to one.

• gmax, the upper bound on the range of g values to be searched over. By default it
is set to ten.

• qmin, the lower bound on the range of q values to be searched over. By default it is
set to one.

• qmax, the upper bound on the range of q values to be searched over. If it is unspec-
ified, it will default to the Ledermann bound.

• eta represents ⌘ from Equation (2.51), which is the smallest possible entry allowed
for any of the error-variance matrices. By default, it is set to 0.005, as in Zhao and
Yu [2008].

• itmax controls the maximum number of ECM iterations which will be performed
when fitting models. By default, itmax = 500, so if the convergence criterion has
not been satisfied by the 500th iteration, then the model will be returned with the
parameters given by ⇥(500).

• nkmeans, the number of model initialisations based on k-means clustering. By
default it is set to five.

• nrandom, the number of random model initialisations. By default it is set to five.

• tol represents " from Equation (2.10) and Equation (2.11). By default it is set to
1⇥ 10�5.

• conv measure sets the measure of convergence, with “diff” representing Equa-
tion (2.10) (the default), and “ratio” representing Equation (2.11).

• varimax is a boolean variable which controls whether or not the loading matrices
from the final fitted model should be constrained using varimax rotation or not.
The default is FALSE, but if set to TRUE then each loading matrix is passed through
stats::varimax before the model is returned.

For each combination of g and q, a total of ns = nrandom+ nkmeans MFA models will be
fitted. nrandom controls the number of random initialisations which will be used. That is,
the dataset is randomly divided into g sub-populations (i.e. each data point is randomly
allocated a label from 1 to g) and then the initial estimates for the parameters in ⇥ are
created using these sub-populations. nkmeans controls the number of initialisations which
will be used based on the output of k-means clusterings. That is, the dataset is passed to
the stats::kmeans function in R with g centers. The sub-population structure inferred
by the k-means algorithm is then used to create the initial parameter estimates.
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The initial parameter estimates are calculated using the method suggested by McLachlan
et al. [2003]. For the ith sub-population (given either by a random initialisation or as the

result of a k-means clustering run), ⇡(0)

i is just the fraction of the total dataset belonging to

sub-population i. The initial value µ(0)

i is given by the sample mean of the data belonging

to sub-population i and the initial value D(0)

i is given by diag(Ŝi), where Ŝi is the sample

covariance matrix of the data points belonging to sub-population i. Finally, B(0)

i is given
by
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iq is the diagonal matrix containing the first q eigenvectors of
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sorted in descending order, and U(0)

iq is the corresponding matrix of eigenvectors. Here,⇣
�(0)

i

⌘2

is given by the mean of the remaining p� q eigenvalues of Ei.

The implementation of the Julia method MFA ECM is very similar to that of the MFA ECM

method in the R package autoMFA. Notably, however, the Julia implementation does not
have a varimax input, and the k-means clustering is performed using the kmeans function
from the Clustering.jl package.

3.2 AMFA

A major drawback of the näıve approach to inferring g and q is the computational burden
required to search over the whole grid of candidate (g,q) pairs. The Automatic Mixtures
of Factor Analyzers (AMFA) algorithm by Wang and Lin [2020] attempts to reduce this
burden by treating q as a parameter to be estimated during the execution of MFA-ECM-2.
Wang and Lin [2020] based their idea on the work of Zhao and Shi [2014], who introduced
the Automatic Factor Analysis (AFA) algorithm which aims to automatically determine
q in the FA model. In the AMFA method, we let ⇥ = (✓1,✓2) with

✓1 = (⇡1, . . . , ⇡g�1,µ1
, . . . ,µg, q1, . . . , qg)

and
✓2 = (B1, . . . ,Bg,D1, . . . ,Dg).

The key step in the argument for deriving the M-step update for q used by AMFA is in
examining the Q-function for ✓2 = (B̂im,Di) from the derivation of Algorithm 2.4. Recall
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that after assuming the update for Bi takes the form of

B̂
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1/2,

we were able to show that
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i
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(log �il � �il + 1)

#
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Previously, we assumed that mi  q is a fixed integer and we wanted to choose the
value of mi which maximises the likelihood of B̂imi . However, when we choose mi in
Equation (3.2), we are actually choosing the number of columns in B̂imi , i.e. the number
of factors. Of course, previously, if we chose mi < q we could always end up with a
q-factor loading matrix by rotating B̂imi by an orthogonal mi ⇥ q matrix.

If, instead, we treat q as a variable to be estimated, then Wang and Lin [2020] suggest
the update

q(k+1) = argmin
qqmax

(
gX

i=1

n⇡(k+1)

i

qX

l=1

(log �il � �il + 1) + k⇤
MFA

(g, q) log n

)
. (3.3)

where k⇤
MFA

(p, g, q) is the number of parameters being estimated in the MFA model with
g components and q factors, given in Equation (3.1). The expression being minimised in
Equation (3.3) is an approximation of the BIC. Recall that the BIC for a given model is

BIC := k⇤ log n� 2ˆ̀

where k⇤ is the number of parameters being estimated in the model and ˆ̀ is the maximised
value of the log-likelihood function for the model.

Since the Q-function from Equation (3.2) is by definition the expected value of the log-
likelihood of the complete data, it is our “best guess” at the log-likelihood of the model.
Hence, Equation (3.3) is an approximation of the BIC as claimed.

Functionally, Equation (3.3) acts as an additional M-step in Algorithm 2.4, to be per-
formed after updating ⇡i and µi but before updating Bi. For simplicity, we have included
Algorithm 3.1 which summarises the AMFA algorithm.

Since g still needs to be chosen in the AMFA algorithm, the initial grid search over
(g,q) has been reduced to a line search over g. When determining g, the AMFA method in
autoMFA behaves in the same way as MFA ECM; it fits ns = nrandom+nkmeansMFA models
for each value of g between gmin and gmax and then chooses the value of g corresponding
to the model with the best BIC.

AMFA is implemented in autoMFA as the AMFA method. The inputs are mostly identical
to those of MFA ECM, except that qmin and qmax are not valid inputs for the AMFA method.
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Algorithm 3.1: The AMFA algorithm from Wang and Lin [2020]

Input: An initial estimate of the parameters ⇥(0), a number of components g
and a maximum number of iterations kmax

Result: Maximum likelihood estimates for the vector of parameters ⇥
1 Set k = 0;
2 while Chosen convergence criterion not satisfied and k < kmax do
3 The E-Step: Compute the responsibilities using Equation (2.25) for

i 2 {1, . . . , g} and j 2 {1, . . . , n};
4 The M-Step: Compute ⇥(k+1) using Equation (2.30), Equation (2.35),

Equation (3.3), Equation (2.46) and Equation (2.51), respectively;
5 if Convergence criterion satisfied then
6 Return ⇥(k+1);
7 else
8 Set k = k + 1;
9 end

10 end

11 Return ⇥(kmax);

3.3 AMoFA

Kaya and Salah [2015] proposed the Adaptive Mixtures of Factor Analyzers (AMoFA)
algorithm which aims to determine both g and q automatically, without performing näıve
searches over either parameter, in contrast to the näıve search and AMFA methods. While
we defer a full description of the algorithm to their work, a brief outline of the algorithm
follows.

AMoFA begins by fitting a single component, single factor MFA model to the dataset
using a slightly modified version of MFA-ECM-1. Then, the algorithm chooses between
two potential actions: to add a component to the model or add a factor to an existing
component. Unlike the other methods which we consider, AMoFA allows for the number
of factors to di↵er between components. That is, instead of using a single value of q for
all components in the mixture, each component has its own number of factors qi.

The choice of whether to add a new component or to add a factor to an existing component
is governed by the Minimum Message Length (MML) criterion, which is a model selection
criterion proposed in Wallace and Boulton [1968] and applied to the MFA model by Kaya
and Salah [2015]. Both of the actions are considered by the algorithm, and the action
which results in the model with the smaller MML is retained.

To add a component to the model, an existing component is split into two smaller compo-



44 Chapter 3. Existing Methods

nents. The choice of which component to split is based on the multivariate kurtosis metric
�j from Mardia [1970], which was adapted to mixture models by Salah and Alpaydin [2004]
and is defined there as

�(k)
i :=

�
bi
2,p � p(p+ 2)

 
"
8p(p+ 2)
Pn

j=1
⌧ (k)ij

#� 1
2

(3.4)

where
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⇥
(yj � µi)(BiB

>
i +Di)

�1(yj � µi)
⇤2
. (3.5)

Mardia [1970] showed that in the context of non-mixture models2, under appropriate
assumptions, as n ! 1

� ⇠ N(0, 1)

asymptotically. The AMoFA algorithm uses this result to assess the kurtosis of the com-
ponents in the model, choosing to split the component with the largest |�(k)

j |. Intuitively,
this aims to select the component with the largest kurtosis, which is the least likely to
have been sampled from a multivariate Gaussian distribution.

Once a component has been selected for splitting, we then need to decide how to split it
(for simplicity, suppose component i has been selected for splitting). AMoFA does this by
specifying two new mean vectors, one for each “child” component. Then, these new mean
vectors are used as the respective initial parameter estimates for a two-component MFA
model, fitted only to the data currently assigned to component i. These assignments are
based on the responsibilities and use the same method as the one discussed at the end of
Section 2.6.1.

The mean vectors are defined as µ
new,1 := µi + ti and µ

new,2 := µi � ti, where µi is the
sample mean of all points currently assigned to cluster i, and

ti :=
pX

i=1

ui�i

with ui and �i respectively being the eigenvectors and eigenvalues of the sample covariance
matrix of all of the data points currently assigned to cluster i, Si, where

Si :=
1Pn

i=1
I(yj, i)

nX

j=1

I(yj, i)(yj � µi)(yj � µi)
>.

I(yj, i) is an indicator variable for data point j belonging to component i, so

I(yj, i) = 1 () argmaxk{⌧kj} = i.

2
Their definition of � subtracts p(p+ 2)

n�1
n+1 from b2,p and uses n instead of

Pn
j=1 ⌧

(k)
ij
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We point out here that the procedure for initializing new components is not well defined,
at least as presented in Kaya and Salah [2015]. The vector ti is defined in terms of the
values of the eigenvectors, but eigenvectors are only ever identifiable up to a sign change.
As a result, we suggest imposing a direction constraint on the eigenvectors, for example,
that their first element is always positive. This constraint is necessary if we want to
obtain equivalent results from cross-platform implementations of the algorithm, so we
have included it in the amofa method in autoMFA.

As mentioned earlier, whenever AMoFA requires parameter estimates of an MFA model,
it will produce them using a slightly modified version of the MFA-ECM-1. The only
change is in the M-step for the mixing proportions, where the MML criterion dictates
that any component satisfying

nX

j=1

⌧ (k)ij <
1

2
(p(qi + 2) + L⇤(qi)) (3.6)

should be removed, for i = 1, . . . , g, where

L⇤(qi) := log⇤(qi) + log c,

with c ⇡ 2.865064 and
log⇤(qi) = log qi + log log qi + · · ·

where the sum contains only as many terms as are positive. After removing any compo-
nents satisfying Equation (3.6), the remaining components have their mixing proportions
updated as normal.

MLEs for the two-component MFA model are obtained using this method. Then, the
two-component MFA model is re-combined into the original model ( i.e. the model before
splitting component i) by appropriately dividing up the original mixing proportion for
component i between the two new components according to their mixing proportions
from the 2 component model. The MML for the recombined model is calculated and
stored, for comparison against the MML obtained by a factor addition.

AMoFA uses the following factor addition metric. Let

�i := o↵diag
�
(BiB

>
i +Di)� Si

 
,

then with
�i := tr

�
�>

i �i

 
,

AMoFA chooses to add a factor to the component with the largest value of �i, which
is the element-wise sum of squares of the di↵erence between the modelled covariance of
component i and the sample covariance of component i (excluding the terms on the main
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diagonal, i.e. the variances). The scheme for the initialisation of the new column in the
factor loading matrix can be found in Salah and Alpaydin [2004]. Once the component
has been selected for factor addition and the new column of the appropriate factor loading
matrix has been initialised, the modified version of MFA-ECM-1 is used to find maximum
likelihood estimates for this new model. Once convergence has been achieved, the final
MML is calculated.

Whichever action resulted in the model with the lowest MML is retained. Then, the
process of selecting one of the two actions is repeated on this model, and this performed
iteratively until the decrease in the MML obtained by performing the best action falls
below a pre-specified tolerance "1.

Finally, once the MML decrease is less than "1, the algorithm enters its decremental phase.
AMoFA will now find the component with the smallest soft support, i.e. the smallest value
of
Pn

j=1
⌧ (k)ij and remove it from the model. Then, the modified version of MFA-ECM-1

is used to find maximum likelihood estimates for this model. The process of deleting the
weakest component continues until only one component remains, at which point the final
model is chosen to be the model with the smallest MML found throughout the entire
fitting process.

Algorithm 3.2: The AMoFA algorithm from Kaya and Salah [2015]

Input: An input dataset Y
Result: Maximum likelihood estimates ⇥ for an MFA model with g and qi

automatically chosen
1 repeat
2 Split an existing component using the process described above and store the

MML of the resulting model;
3 Add a factor to an existing component using the process described above and

store the MML of the resulting model;
4 Keep the model with the lower MML
5 until Decrease in MML is less than "1;
6 while While g > 1 do

7 Calculate ni =
Pn

j=1
⌧ (k)ij for i = 1, . . . , g;

8 Delete component i⇤ = argmini ni and fit the resulting g � 1 component
model. Check if this has a lower MML than any model encountered so far;

9 end
10 Return the model with the lowest MML encountered during the entire fitting

process.

The AMoFA algorithm is implemented as the amofa method in autoMFA. It takes the
following inputs:
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• Y, an n⇥ p data matrix as in MFA ECM and AMFA.

• itmax, which defines the maximum number of iterations used whenever the slightly
modified version of MFA-ECM-1 is applied during the fitting process, and is set to
100 by default.

• verbose, a boolean variable which controls whether detailed output should be
printed during the fitting process. This defaults to FALSE.

• varimax, which behaves in the same way as in as in MFA ECM and AMFA.

3.4 VBMFA

The Variational Bayesian Mixture of Factor Analyzers (VBMFA) algorithm from Ghahra-
mani and Beal [1999] is another algorithm which aims to infer both g and q without
requiring a näıve search over either parameter.

This method is based on a Bayesian formulation of the MFA model, making it unique in
this respect among the techniques that we will consider in this chapter. This formulation,
including specifications of the necessary prior distributions, can be found in Ghahramani
and Beal [1999]. We will note here, though, that it assumes a common error-variance
matrix D across all components.

We will not include a full description of the VBMFA algorithm, as it would require
a detailed introduction to Variational Bayesian methods. Instead, we refer interested
readers to Beal [2003] for details about Variational Bayesian methods more generally, and
for full details on how they can be applied to the Bayesian MFA model.

However, we will point out that the model fitting process of VBMFA is similar to that of
the frequentist models, as it makes use of the so-called Variational Bayesian Expectation-
Maximisation (VBEM) algorithm, which retains the alternating series of E-steps and
M-steps from the EM algorithm. We also note that during the execution of the VBEM
algorithm for the MFA model derived in Ghahramani and Beal [1999] and Beal [2003],
the mixing proportion of a component can be estimated as 0. In this circumstance, the
component would be removed from the model. This means that VBEM for the Bayesian
MFA model can perform automatic inference on the number of components. However,
starting with a very large number of components and waiting for unnecessary components
to be removed automatically is not very computationally e�cient. Instead, Beal [2003]
suggests an incremental approach which starts with a one component model and includes
a mechanism for component birth. The fitting process terminates once a pre-specified
number of attempts have been made to split each component and no-improvement to the
model’s fit has been achieved.
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The particular heuristic that Beal suggests for splitting an existing component into two
“child” components is as follows. Suppose component i is to be split. We first sample

di ⇠ Np

�
µi,BiB

>
i +D

�
.

Then, for all of the data points currently assigned to component i, we allocate any point
satisfying

(yj � µi)
>di � 0

to one “child” component. The remaining points are assigned to the other “child” com-
ponent.

Inference over the number of factors q is handled via the use of Automatic Relevance
Detection (ARD) priors over the columns of the factor loading matrices. Let Bl

i denote
the lth column of Bi. Then Beal [2003] suggests taking

p(Bl
i | ⌫ l

i) = �p

✓
Bl

i;0,
Ip
⌫ l
i

◆
.

The parameter ⌫ l
i is the precision on the lth column of Bi, which in turn is governed by

the hyperprior

p(⌫ l
i) = Gamma

✓
a⇤,

1

b⇤

◆
.

The model fitting process allows for ⌫l
i ! 1 in some circumstances. If this occurs, then

the entries of Bl
i will necessarily become very small, so this dimension is e↵ectively being

ignored by the model. After the model fitting process has been completed, we can finish
the inference on q by only including the columns of factor loading matrices that are not
extremely close to the zero vector according to some heuristic.

Unfortunately, however, in our testing, we were unable to reproduce the behaviour shown
in Beal [2003]. Neither the original Matlab implementation provided with Ghahramani
and Beal [1999] nor our equivalent R method vbmfa produced columns of factor loading
matrices with extremely small loadings. As a result, we could not produce inferred values
of q from the models fitted using vbmfa, as the number of columns in the output factor
loading matrices is just the maximum number of columns allowed, which is a user input.
Because of these issues, estimates of model BIC and the number of factors returned by
VBMFA are unreliable.

Ghahramani and Beal [1999] suggest centering and scaling all datasets before applying
the VBMFA algorithm. As a result, alongside the vbmfa method, we also include the
preprocess method, which takes in an n ⇥ p data matrix and returns a centered and
scaled version. The vbmfa method takes the following inputs:

• Y, which is expected to be an n⇥p data matrix returned by the preprocess method.
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• qmax, which represents the number of columns which the final models factor loading
matrices will contain3. The default number is p� 1.

• numTries controls how many times the algorithm will attempt to split each compo-
nent. If numTries splits are attempted for each component and no improvement in
the model fit is found then the fitting process will terminate.

• verbose, a boolean variable which controls whether detailed output should be
printed during the fitting process. This defaults to FALSE.

• varimax, which behaves in the same way as in as in MFA ECM, AMFA and autoMFA.

3.5 Incremental AMFA

The final algorithm included in autoMFA is our own contribution. It aims to infer g and
q automatically without a näıve search over either variable. The inference over q will
be performed using the M-step update from Algorithm 3.1, which only leaves g to be
inferred.

Instead of näıvely searching over a range of possible values for g, we propose an incre-
mental approach. The algorithm will begin by fitting a single component, single factor
model using the same initialisation procedures described in Section 3.1. Then, the single
component model will be split into a two component model. The points will be allocated
to the new components in the same way as the “child” components in VBMFA. The
two-component model will be fitted using Algorithm 3.1. If the BIC of the new model
is higher than the BIC of the model before splitting, then the split is rolled back and a
new split is attempted. If no improvement to the BIC is made after a specified number
of split attempts, then the fitting process is terminated.

Otherwise, the first split which decreases the BIC is accepted. Then the splitting process
is repeated. This time, the attempted splitting order for components will be in order of
decreasing |�j|, with �j as in Equation (3.4). The model fitting process is only terminated
once the algorithm has attempted to split each of the components the maximum specified
number of times without an improvement in the BIC occurring.

This algorithm is incorporated into autoMFA as the AMFA inc method. Most of the in-
puts are the same as those of the MFA ECM, and AMFA methods: Y, eta, itmax, tol,
conv measure and varimax are the same as those from AMFA. The arguments nkmeans

and nrandom behave in the same way as they do for AMFA, except that they only apply
to the initial single component, single factor model which is fitted. The only other input

3
Recall that the model should automatically give very low loadings to “unnecessary” columns in the

factor loading matrix, resulting in a model that essentially contains less than or equal to qmax factors for

each component. However, we were unable to observe this occurring in our experiments.
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is numTries, the maximum number of times that the algorithm should attempt to split
each component.

3.6 Additional Information About autoMFA

The output of models fitted using autoMFA has been standardised as much as possible.
The returned object will be a list with several elements. The fitted model itself will be
one of these elements, which itself will be a list containing the mixing proportion vector
⇡, the factor loading matrices Bi, the error-variance matrices Di, the mean vectors µi

and a vector containing the numbers of factors for each component.

Another element will be the clustering information, which will include the posterior prob-
abilities of each point belonging to each of the sub-populations in the model, and the
clusterings implied by these posterior probabilities.

There will also be a diagnostics element, which contains information specific to the fitting
process of each algorithm, but will always include the total time taken to fit the model.

Output list component Object name Description

model

mu The mean vectors
B The loading matrices
D The error-variance matrices
pivec The mixing proportion vector
numFactors Number of factors for each component

diagnostics

bic Fitted model BIC
logL Fitted model log-likelihood
totalTime Total time to fit model

clustering
responsibilities Posterior probabilities
allocations Posterior probability hard allocations

Table 3.1: The output information common to all autoMFA models.

Table 3.1 summarises the structure of the output. For example, if our fitted model is
called MFAfit, then we could obtain the loading matrices with MFAfit$model$B or the
BIC with MFAfit$diagnostics$bic. All models in the autoMFA package will provide the
information in Table 3.1.

3.7 Summary

We have introduced five di↵erent methods for automatically fitting the MFA model. Each
of these methods has been implemented in our R package autoMFA which is available on
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CRAN. The five methods available in autoMFA are summarised in Table 3.2. In addition,
the näıve search method has also been implemented in our Julia package FactorMixtures
so that it can benefit from Julia’s better computational e�ciency. We will use autoMFA

to perform a systematic comparison of the automatic MFA model fitting methods in the
following chapter.

Algorithm name Name in autoMFA Original Reference Discussed in
Näıve search MFA ECM - Section 3.1
AMFA AMFA Wang and Lin [2020] Section 3.2
AMoFA amofa Kaya and Salah [2015] Section 3.3
VBMoFA vbmfa Ghahramani and Beal [1999] Section 3.4
Incremental AMFA AMFA inc Wang and Lin [2020] Section 3.5

Table 3.2: A summary of the methods in autoMFA.
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Chapter 4

Systematic Comparison

Each of the methods from the previous chapter have been implemented in our R package,
autoMFA, which is available on CRAN.

The purpose of this chapter is to conduct a systematic comparison of automatic methods
for fitting the MFA model. We will compare the five methods in autoMFA, as well as three
additional methods with pre-existing R implementations.

The first additional method is GMMs fitted using the mclust package [Scrucca et al.,
2016]. This will serve as a benchmark to compare the ARI and BIC of the fitted MFA
models against. We expect that the unrestricted covariance structure of the GMMs may
a↵ord them higher log-likelihoods, but that the more parsimonious MFA models will
achieve lower BICs.

The other two additional methods are the Infinite Mixtures of Infinite Factor Analyzers
(IMIFA) and Overfitted Mixtures of Infinite Factor Analyzers (OMIFA) models, which
were proposed in Murphy et al. [2020]. Both methods are available in the R package IMIFA
[Murphy et al., 2021]. Both IMIFA and OMIFA are based on Bayesian formulations of
the MFA model and are designed to infer both g and q without näıve searches. Both of
these methods make use of Markov Chain Monte Carlo (MCMC). As a result, instead
of providing the BIC as a model selection criterion, they provide a modified version of
the BIC, the Bayesian Information Criterion Monte (Carlo) or BICM, as introduced by
Raftery et al. [2007]. We cannot, therefore, directly compare them to the methods from
autoMFA or mclust in terms of BIC.

The methods will be tested on a range of datasets generated by MFA models, defined by
various combinations of the following six variables:

• the dimension of the data

53
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• the number of factors, q

• the number of components, g

• the degree of separation of the components

• the number of points in the dataset

• whether the number of points is the same across all components.

Each of the six variables will have two possible values. Where possible, we have con-
structed these as “high” and “low” settings for each variable.

One hundred simulated replicates were used to evaluate the performance of the methods
according to the following quantities:

• model fitting time

• the inferred number of factors, q

• the inferred number of components, g

• the BIC of the fitted model

• the clustering allocation of each data point.

While the importance of tracking the first four quantities is hopefully clear, tracking the
clustering allocations of each model is useful as it allows us to calculate the ARI between
the sub-population inferred by each model and the true sub-population structure of the
dataset. We use this as a measure of the clustering accuracy of each model, that is, how
well each model is able to infer the underlying sub-population structure of the datasets.

We also identified the fabMix package [Papastamoulis, 2020] which provides methods for
fitting a model similar to OMIFA, except that it used finite factor analyzers as opposed
to infinite factor analyzers [Papastamoulis, 2018]. However, this method, which relied on
an näıve search for determining q, proved to be prohibitively slow and as a result, we were
unable to include it in the comparison.

4.1 Experimental Design

With six variables and two possible values for each variable, there will be 26 = 64 possible
combinations of the variables. Rather than running the full 64 trials, we instead make
use of a 26�2 fractional factorial design1, given by Box [2005]. This reduces the number

1
Here, we make use of the fractional factorial experiment notation Ik�p

. Here, I = 2 is the number

of levels of each factor in the experiment, k = 6 is the number of factors in the experiment and p = 2 is

the fraction of the full experiment which we conduct (i.e. 2
�2

=
1
4 of the full factorial design).
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of trials from 64 to 16, at the cost of introducing confounding from third and sixth order
interactions.

Table 4.1 summarises the variable settings used in each of the 16 di↵erent experiment
groups. Each of the 16 combinations has been given an experiment ID, which will be
used in the results section as a group label when we summarise our findings for all of the
experiments in that group.

The di↵erent settings for the 6 variables are as follows:

• For the dimension of the data, we chose the low setting to be p = 3 dimensional
data and the high setting to be p = 10.

• The number of factors used to generate the data scale with p. The low value is
q =

⌅
1

3
p
⇧
and the high value is q =

⌅
2

3
p
⇧
. This choice means that the fraction q/p

remains approximately constant, even as p increases. If we had instead made q = 1
the low setting regardless of p, then the p = 3 case has proportionally more factors
than the p = 10 case. However, in abiding by the Ledermann bound, we run into
an issue with the p = 3 case, because the maximum possible number of factors is
q = 1. Our high value for the number of factors is q = b2

3
3c = 2 which cannot

occur. Consequently, we have chosen to remove the 4 experiments which used the
high setting for q when p = 3, leaving us with 12 experiments instead of the original
16. The a↵ected combinations are shown in grey in Table 4.1.

• The number of sub-populations, like the dimensional of the data, varied between
three and ten. These values were not chosen completely arbitrarily; clearly the
minimum number of components required for a non-degenerate mixture model is
g = 2, so having three mixture components is still considered to be small. On the
other hand, a ten component model would generally be considered large, as this
would imply that the data follows a highly multimodal density function.

• The separation of each component is defined in terms of the mean of each component.
This is because the covariance matrices for each component will be approximately
equal in magnitude, which we will elaborate on later. First, define the temporary
mean of component i as µt,i. When p = 3 and g = 3, we have

µt,1 = (1, 0, 0)>, µt,2 = (0, 1, 0)>, µt,3 = (0, 0, 1)>.

Similarly, when p = 10 and g = 3, we have

µt,1 = (1, 0, . . . , 0)>, µt,2 = (0, 1, 0, . . . , 0)>, µt,3 = (0, 0, 1, 0, . . . , 0)>.

When p = 3 and g = 10, we take

µt,1 = (1, 0, 0)>, µt,2 = (1, 0, 1)>, µt,3 = (0, 0, 0)>, µt,4 = (0, 0, 1)>,
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µt,5 = (0,�1, 0)>, µt,6 = (0,�1, 1)>, µt,7 = (�1, 0, 0)>, µt,8 = (�1, 0, 1)>,

µt,9 = (0, 1, 0)>, µt,10 = (0, 1, 1)>.

Finally, when p = 10 and g = 3, we have

µt,1 = (1, 0, . . . , 0)>, µt,2 = (0, 1, 0, . . . , 0)>, . . . , µt,10 = (0, . . . , 0, 1)>.

For well separated data we set the mean of each component, µi, to be given by
µi = 3µt,i. For not well separated data, we instead took µi = 1.5µt,i.

• The total number of points also scaled with g, the low setting was 60g and the high
setting was 240g.

• If the proportion of points in each component is the same, then each component is
given an equal share of the total number of data points. Otherwise, we allocated
the number of points as follows. First, to make sure that none of the components
are too small to perform inference on, we assign 30 points to each. Then, defining
nt as the total number of points in the dataset, we calculate the total number of
data points yet to be allocated, nt � 30g. By design, we chose to allocate ten times
more of these remaining data points to the largest cluster than the smallest, with
the intermediate clusters obtaining a linearly interpolated fraction of this amount.
In practice, this means that the remaining points are distributed according to the
following proportion vectors ⇡⇤. For g = 3,

⇡⇤ =
�
0.60, 0.3, 0.06

�

and for g = 10

⇡⇤ =
�
0.18, 0.163, 0.145, 0.127, 0.109, 0.09, 0.072, 0.054, 0.036, 0.018

�
.

Each dataset is generated by simulating

Yi1,Yi2, . . . ,Yini

i.i.d⇠ Np

�
µi,BiB

>
i +Di

�
for i = 1, . . . , g

and then concatenating them into one dataset. We keep each covariance matrix relatively
small by taking Di = 0.01Ip and randomly generating Bi such that

Bi =

2

64

p
0.2R11 · · ·

p
0.2R1q

...
. . .

...p
0.2Rp1 · · ·

p
0.2Rpq

3

75

where Rlm
i.i.d⇠ N (0, 1), for l 2 {1, . . . , p} and m 2 {1, . . . , q}. In doing so, the elements

of each covariance matrix BiB
>
i + Di will be small compared to the elements of the

corresponding µi. As a result, the generated points will be tightly clustered around each
µi relative to the distance between the µi’s. Hence, the degree to which the components
are separated will be dependent almost entirely on the separation of the means, which is
the separation parameter we are controlling.
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ID p Total Points Well Separated g Proportion q
1 3 60g No 3 Unequal b1

3
pc = 1

2 10 60g No 3 Equal b1

3
pc = 3

3 10 240g No 3 Unequal b2

3
pc = 6

4 10 60g Yes 3 Unequal b2

3
pc = 6

5 3 240g Yes 3 Unequal b1

3
pc = 1

6 10 240g Yes 3 Equal b1

3
pc = 3

7 10 60g No 10 Equal b2

3
pc = 6

8 3 240g No 10 Equal b1

3
pc = 1

9 10 240g No 10 Unequal b1

3
pc = 3

10 3 60g Yes 10 Equal b1

3
pc = 1

11 10 60g Yes 10 Unequal b1

3
pc = 3

12 10 240g Yes 10 Equal b2

3
pc = 6

13 3 240g No 3 Equal b2

3
pc = 2

14 3 60g Yes 3 Equal b2

3
pc = 2

15 3 60g No 10 Unequal b2

3
pc = 2

16 3 240g Yes 10 Unequal b2

3
pc = 2

Table 4.1: Variable settings for each of the 16 combinations. Note the last four rows are
greyed out because they do not satisfy the Ledermann bound.

4.2 Results

We present the results of the comparison as the following set of tables. Table 4.2 and
Table 4.3 show the mean fitting time (in seconds) of the methods within each experiment
group. Table 4.4 and Table 4.5 show the mean BIC/BICM of the methods within each
experiment group. Table 4.6 shows the mean ARI of the methods within each experiment
group. Table 4.7 and Table 4.8 show the proportion of the experiments within each
group that correctly inferred the number of components, and inferred the number of
components to within a tolerance of two, respectively. Table 4.9 and Table 4.10 show
the corresponding proportions for the inferred number of factors, q. Table 4.11 shows the
proportion of experiments where each method correctly inferred q after stratifying on the
correct identification of g. Finally, Table 4.12 shows the ability estimates of each model
for predicting each of g, g ± 2, q and q ± 2 under the Rasch model [Rasch, 1960], which
ere obtained using the R package ltm [Rizopoulos, 2006]. We will discuss these tables in
the following section.

In addition to the tables described above, histograms for the inferred values of g and q
can be found in Appendix B.
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ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust
1 80.9881 4.0490 7.1489 1.4182 79.2914 0.1434
2 38.5470 2.2915 5.4293 0.5443 385.8049 0.0813
3 201.5613 14.7605 74.6669 5.4524 1417.7323 2.2793
4 40.1561 2.3887 6.7150 0.6172 312.0735 0.0691
5 206.8572 6.6270 1.7904 3.5234 202.7172 1.3102
6 172.4055 27.5839 8.7546 3.8093 1684.1250 2.2612
7 210.3839 13.6387 51.3788 4.2410 1659.7744 2.1338
8 527.8520 225.1070 16.4439 96.4536 521.6713 5.6754
9 385.6559 487.2741 368.8590 192.7831 4136.9533 8.1284
10 119.6726 29.9985 11.6425 4.5551 116.7766 0.3184
11 75.5418 30.1718 77.7980 9.7393 997.5532 0.5766
12 552.4807 196.8137 515.8520 231.5884 2748.2744 5.6644
Avg 217.6752 86.7254 95.5399 46.2271 1188.5623 2.3868

Table 4.2: Mean time taken (in seconds) to fit each model for each experiment group.

ID IMIFA OMIFA
1 403.7176 364.3704
2 877.5861 565.1778
3 1357.1503 757.5887
4 1020.3364 573.7155
5 864.7408 452.6027
6 968.9900 742.5656
7 1010.6108 891.7379
8 842.1925 767.8052
9 1810.3102 1476.7388
10 547.2551 376.6435
11 1184.2645 884.7914
12 1839.0619 1596.3306
Avg 1060.5180 787.5057

Table 4.3: Mean time taken (in seconds) to fit each model for each experiment group
continued.
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ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust
1 1050.7228 1054.4714 1294.3148 - 1050.7228 1050.5567
2 3507.5636 3606.5715 3956.2990 - 3495.2498 3820.6508
3 17812.1526 17849.2621 20141.9293 - 17792.6720 18050.6258
4 5148.7162 5386.0111 5557.2780 - 4985.5135 5121.6210
5 3829.9685 3831.7224 3895.5671 - 3829.9685 3829.5695
6 12407.7403 12703.1300 12586.6397 - 12407.7403 12725.9944
7 19095.5663 19088.6927 20775.5173 - 18797.9084 19110.6593
8 17626.3888 17635.4263 17821.8976 - 17626.3888 17647.1745
9 46659.6513 47633.2190 51111.2959 - 46655.6679 48378.1994
10 5321.7465 5311.2477 5863.8217 - 5321.7465 5285.2753
11 13674.8590 15603.8832 15440.3559 - 13599.5406 14580.4656
12 66760.3419 69780.2167 72589.8460 - 66644.2970 66636.2590
Avg 17741.2848 18290.3212 19252.8968 - 17683.9513 18019.7543

Table 4.4: Mean BIC for each model and each experiment group.

ID IMIFA OMIFA
1 -2118.3328 -2384.8549
2 -4203.4096 -4771.5617
3 -16965.5368 -18976.5741
4 -5293.6050 -5853.9074
5 -95533.4676 -97659.5807
6 -18319.8867 -20830.9932
7 -31415.2886 -25043.5271
8 -265393.8117 -87380.4818
9 -69184.5104 -75598.8663
10 -86117.5153 -74742.2687
11 -19758.4464 -22376.9821
12 -90264.2513 -101370.5933
Avg -58714.0052 -44749.1826

Table 4.5: Mean BICM for the two methods from the IMIFA package.
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ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust IMIFA OMIFA
1 0.8446 0.8314 0.5720 0.7370 0.8446 0.8481 0.7610 0.7210
2 0.9566 0.9403 0.6119 0.5335 0.9617 0.7888 0.9648 0.9653
3 0.9589 0.9555 0.3667 0.9598 0.9600 0.8223 0.9593 0.9593
4 0.9506 0.8574 0.5397 0.7354 0.9952 0.8833 0.9940 0.9938
5 0.9997 0.9984 0.9847 0.9769 0.9997 0.9997 0.9972 0.9972
6 1.0000 1.0000 0.9513 0.9998 1.0000 0.9931 0.9999 0.9999
7 0.0475 0.0651 0.1368 0.0222 0.6359 0.2013 0.5574 0.5610
8 0.5811 0.5877 0.4811 0.4927 0.5811 0.5829 0.3879 0.3601
9 0.9369 0.9348 0.6108 0.9232 0.9369 0.8882 0.9371 0.9371
10 0.9483 0.9570 0.6980 0.3530 0.9483 0.9838 0.4376 0.4079
11 0.9926 0.8376 0.6912 0.7258 0.9995 0.9914 0.9990 0.9990
12 0.9911 0.9272 0.7010 0.9920 0.9920 0.9918 0.9902 0.9901
Avg 0.8507 0.8244 0.6121 0.7043 0.9046 0.8312 0.8321 0.8243

Table 4.6: Mean ARI for each model and each experiment group.

ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust IMIFA OMIFA
1 0.8800 0.8300 0.0800 0.6500 0.8800 0.8900 0.6300 0.5200
2 0.9900 0.9300 0.0400 0.0800 1.0000 0.6300 1.0000 1.0000
3 1.0000 0.9900 0.0100 0.9900 1.0000 0.4800 1.0000 1.0000
4 0.8800 0.6700 0.0100 0.2700 1.0000 0.5500 1.0000 1.0000
5 1.0000 0.9800 0.6600 0.9700 1.0000 1.0000 0.9800 0.9800
6 1.0000 1.0000 0.6900 1.0000 1.0000 0.9400 1.0000 1.0000
7 0.0000 0.0000 0.0400 0.0000 0.4500 0.0100 0.1700 0.1000
8 0.2100 0.3100 0.1800 0.1900 0.2100 0.3900 0.0000 0.0000
9 0.9800 0.9900 0.0000 0.4200 0.9900 0.4200 1.0000 1.0000
10 0.7600 0.7600 0.1000 0.0200 0.7600 0.9700 0.0000 0.0000
11 0.9100 0.0900 0.0300 0.0000 1.0000 0.8700 1.0000 1.0000
12 1.0000 0.5400 0.0400 1.0000 1.0000 1.0000 1.0000 1.0000
Avg 0.8008 0.6742 0.1567 0.4658 0.8575 0.6792 0.7317 0.7167

Table 4.7: Proportion of experiments where each model inferred the number of compo-
nents correctly.
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ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust IMIFA OMIFA
1 1.0000 1.0000 0.2900 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 0.3600 1.0000 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 0.1600 1.0000 1.0000 0.9900 1.0000 1.0000
4 1.0000 1.0000 0.3600 1.0000 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 0.9000 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 0.8600 1.0000 1.0000 1.0000 1.0000 1.0000
7 0.0000 0.0000 0.1500 0.0000 0.7500 0.1000 0.8800 0.8300
8 0.9900 0.9900 0.6500 0.6800 0.9900 0.9500 0.0300 0.0100
9 1.0000 1.0000 0.0000 1.0000 1.0000 0.9800 1.0000 1.0000
10 1.0000 1.0000 0.3800 0.0400 1.0000 1.0000 0.0000 0.0000
11 1.0000 0.3000 0.0900 0.1000 1.0000 1.0000 1.0000 1.0000
12 1.0000 0.8100 0.0500 1.0000 1.0000 1.0000 1.0000 1.0000
Avg 0.9158 0.8417 0.3542 0.7350 0.9783 0.9183 0.8258 0.8200

Table 4.8: Proportion of experiments where each model inferred the number of compo-
nents to within an error of ±2 components.

ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust IMIFA OMIFA
1 1.0000 1.0000 0.9700 - 1.0000 - 0.0000 0.0000
2 0.9100 0.3100 0.6500 - 1.0000 - 0.0000 0.0000
3 0.5500 0.6800 0.0300 - 0.8600 - 0.0100 0.0100
4 0.0000 0.0100 0.0200 - 0.1900 - 0.3100 0.3200
5 1.0000 1.0000 0.9700 - 1.0000 - 0.0000 0.0100
6 1.0000 0.0000 0.9400 - 1.0000 - 0.0000 0.0000
7 0.0000 0.0000 0.0000 - 0.0300 - 0.1200 0.1600
8 1.0000 1.0000 0.9900 - 1.0000 - 0.0000 0.0000
9 1.0000 0.0000 0.1800 - 1.0000 - 0.0000 0.0000
10 1.0000 1.0000 1.0000 - 1.0000 - 0.0000 0.0000
11 0.8900 0.0000 0.4300 - 1.0000 - 0.0300 0.0300
12 0.4100 0.1100 0.0400 - 0.9900 - 0.0200 0.0200
Avg 0.7300 0.4258 0.5183 - 0.8392 - 0.0408 0.0458

Table 4.9: Proportion of experiments where each model inferred the number of factors
correctly.
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ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust IMIFA OMIFA
1 1.0000 1.0000 1.0000 - 1.0000 - 1.0000 1.0000
2 1.0000 0.9400 1.0000 - 1.0000 - 1.0000 1.0000
3 1.0000 0.9900 0.4500 - 1.0000 - 1.0000 1.0000
4 0.3500 0.1500 0.2900 - 1.0000 - 1.0000 1.0000
5 1.0000 1.0000 1.0000 - 1.0000 - 1.0000 1.0000
6 1.0000 0.0500 1.0000 - 1.0000 - 1.0000 1.0000
7 0.0000 0.0000 0.0000 - 0.9600 - 1.0000 1.0000
8 1.0000 1.0000 1.0000 - 1.0000 - 1.0000 1.0000
9 1.0000 0.4900 1.0000 - 1.0000 - 1.0000 1.0000
10 1.0000 1.0000 1.0000 - 1.0000 - 1.0000 1.0000
11 1.0000 1.0000 1.0000 - 1.0000 - 1.0000 1.0000
12 1.0000 0.5600 0.4100 - 1.0000 - 1.0000 1.0000
Avg 0.8625 0.6817 0.7625 - 0.9967 - 1.0000 1.0000

Table 4.10: Proportion of experiments where each model inferred the number of factors
to within an error of ±2 factors.

ID AMFA AMFA inc amofa vbmfa MFA ECM Mclust IMIFA OMIFA
1 1.0000 1.0000 1.0000 - 1.0000 - 0.0000 0.0000
2 0.9091 0.3118 1.0000 - 1.0000 - 0.0000 0.0000
3 0.5500 0.6869 1.0000 - 0.8600 - 0.0100 0.0100
4 0.0000 0.0149 0.0000 - 0.1900 - 0.3100 0.3200
5 1.0000 1.0000 1.0000 - 1.0000 - 0.0000 0.0102
6 1.0000 0.0000 1.0000 - 1.0000 - 0.0000 0.0000
7 - - 0.0000 - 0.0444 - 0.0000 0.0000
8 1.0000 1.0000 1.0000 - 1.0000 - - -
9 1.0000 0.0000 - - 1.0000 - 0.0000 0.0000
10 1.0000 1.0000 1.0000 - 1.0000 - - -
11 0.8791 0.0000 1.0000 - 1.0000 - 0.0300 0.0300
12 0.4100 0.2037 0.7500 - 0.9900 - 0.0200 0.0200
Avg 0.7794 0.4907 0.9681 - 0.8649 - 0.0421 0.0453

Table 4.11: Proportion of experiments where each model inferred the number of factors
correctly, after conditioning on inferring the number of components correctly.
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Test AMFA AMFA inc amofa vbmfa MFA ECM Mclust IMIFA OMIFA
g 3.3173 1.2902 -5.9057 -1.1139 4.7089 1.3557 2.0980 1.8741
g ± 2 1.1533 0.2333 -3.5024 -0.7335 2.7120 1.1926 0.0732 0.0161
q 1.8966 -0.6396 0.0629 - 3.4864 - -4.2412 -4.1301
q ± 2 0.0717 -1.2541 -0.8121 - 2.7178 - 3.3964 3.3964

Table 4.12: Each method’s ability estimates for inferring the given criteria correctly,
obtained by fitting a Rasch model for each of the criteria.
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4.3 Analysis

We begin our analysis with a few general conclusions. Of the methods included in the
autoMFA package, the MFA ECM and AMFA methods performed the best, on average, for all
of the metrics except the time required to fit each model and for inferring q to within an
error of ±2. The IMIFA and OMIFA methods from the IMIFA package generally performed
comparably to the best methods in autoMFA. The GMMs fitted using the mclust package
performed slightly worse than the best autoMFA methods, on average, except for in the
time taken to fit each model. The AMFA inc method generally performed well, but not
as well as the aforementioned methods. The amofa and vbmfa methods almost always
performed the worst out of the methods included in the comparison.

4.3.1 Fitting Time

We first consider the mean fitting times given in Table 4.2 and Table 4.3. On average,
across all 1,200 datasets, the Mclust package had the lowest mean fitting time. The
slowest methods, on average, were IMIFA and MFA ECM. The di↵erence in mean fitting
time between Mclust and the two slowest methods was pronounced: the mean fitting
time of the IMIFA method was over 440 times greater than that of the Mclust method,
and the MFA ECM method’s mean fitting time was over 490 times greater than Mclust’s.

The dimension of the data had a clear impact on the model fitting time for the MFA ECM

method. This is likely because the MFA ECM method is not only impacted by the higher
computational burden of performing the necessary matrix computations in higher dimen-
sions (as are all of the other models), but it also has to evaluate six times more models,
since when p = 10, the Ledermann bound a↵ords qmax = 6 compared to qmax = 1 when
p = 3.

The vbmfa, amofa and AMFA inc methods generally required much less time to fit than
the AMFA and MFA ECM methods. This is also unsurprising, since the last two methods
both included a näıve search over g (and the MFA ECM method also utilises a näıve search
over q), whereas the first three methods do not involve any näıve searches. As we might
expect, the AMFA method was generally faster than the MFA ECM method since it only has
to search over a range of values for g whereas the MFA ECM method also had to search
over q. However, this was not always the case. In experiment groups one, five, eight and
ten the MFA ECM method was actually faster (on average) compared to the AMFA method.
Each of these experiment groups had p = 3 which means that qmax = 1. As a result, the
MFA ECM method only had to search over g, like the AMFA method. The time di↵erence
can be explained by slight di↵erences in the implementations of the two methods in this
situation.

The IMIFA and OMIFA methods were, on average, the second and third slowest over-
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all. However, their fitting times were considerably less variable, between the experiment
groups, when compared to those of the MFA ECM method. To see this, consider the ratio, r,
of the experiment group with the longest mean fitting time to the experiment group with
the shortest mean fitting time, for each method. We see that for MFA ECM (r = 52.1740),
the ratio is over ten times larger than for IMIFA (r = 4.5553) and OMIFA (r = 4.3811).

4.3.2 Mean BIC Score

Next, we compare the fit of the models based on mean BIC score, given in Table 4.4
and Table 4.5. Recall that the IMIFA and OMIFA methods provided the BICM instead of
the BIC, which means that we cannot compare these two methods with the rest of the
methods in the comparison using BIC. For the rest of the methods in the comparison,
we will quantify the di↵erences in mean BIC by making use of the guidelines given by
Raftery [1995], who suggests that a di↵erence in BIC of greater than six is “strong”
evidence that the model with the lower BIC is superior, and that a di↵erence of more
than ten constitutes “very strong” evidence.

Table 4.4 shows that the MFA ECM method obtains the overall lowest mean BIC across all
1,200 experiments. The di↵erence between the method with the next lowest mean BIC,
AMFA, and the mean BIC of MFA ECM is over 50, which provides very strong evidence that
the MFA ECM method found better models than the other comparable methods, on average.

At an experiment group level, the MFA ECMmethod almost always achieved the lowest mean
BIC score out of all of the methods included in autoMFA. The only exception was in group
ten, where the AMFA inc method scored lower on average. This is unsurprising, as we
would expect that the MFA ECM method should explore the model space more thoroughly
than the other methods in autoMFA. This is analogous to the problem of predictor selection
in multiple linear regression: the näıve grid search is like attempting to find the best
combination of predictors by exhaustively fitting all of the possible linear models and
choosing the best one according to some criterion, whereas the other MFA methods are
similar to predictor selection algorithms like stepwise selection. They attempt to choose
the best model by some means other than by exhaustively fitting each possible model.
As a result, they will not explore the model space as thoroughly as the MFA ECM method,
which results in it generally finding better models.

Even though the näıve grid search generally attained lower mean BIC values than the
other methods, in some cases the di↵erence was minor. For example, the AMFA method
was able to achieve the same mean BIC value (up to four decimal places) as the MFA ECM

method in groups one, five, six, eight and ten. In addition, in experiment group nine the
di↵erence in mean BIC was less than six, so although there is some evidence that the
MFA ECM method found better models in this group, on average, it is not strong.

In the other groups, the di↵erences in mean BIC between the MFA ECM and AMFA methods
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were all greater than ten, providing convincing evidence that in these groups, the for-
mer method outperformed the latter. These six groups, namely experiments two, three,
four, seven, eleven and twelve all had p = 10 dimensional data. This suggests that the
AMFA method’s ability to find the “gold standard” models fitted by the MFA ECM method
decreases as the number of dimensions increases, which coincides with the Ledermann
bound increasing.

We observe a somewhat similar pattern for the mean BICs obtained via the Mclust

method. Namely, in groups one, five, ten and twelve the Mclust method achieved average
BICs lower than those of the MFA ECM method. The average di↵erence between the mean
BICs of the MFA ECM and Mclust methods is even more than ten in group ten, providing
very strong evidence that the Mclust method has fitted better models, on average, in
that group. However, in the remaining groups the average BIC of the models fitted using
the MFA ECM method are much lower than those fitting using the Mclust method. All
but one of these groups (group eight) were experiments with p = 10. This suggests, as
we might expect, that the full-covariance GMMs fitted using Mclust can obtain higher
log-likelihoods than the restricted-covariance MFA models. When p = 3, the number of
parameters saved by the restricted covariance structure of the MFA models is relatively
small, so the greater log-likelihoods obtained by Mclust translates into a lower BIC.
However, when p = 10, the number of parameters saved by the MFA models starts to
have an impact. This e↵ect is especially prominent in groups two, six, nine and eleven
where the mean di↵erence in BIC is especially large. These are all experiments where
the true number of factors is three, making the MFA models much more parsimonious
than the GMMs in these groups, such that the number of parameters saved by the MFA
models is more than enough to compensate for the higher log-likelihoods obtained by the
GMMs.

The amofa method performed poorly across each of the experiment groups, with much
higher mean BICs than the AMFA and MFA ECM methods. The AMFA inc method also
generally performed poorly in comparison to these two methods, although there is very
strong evidence to suggest that on average, it fitted better models in experiment group
ten.

Finally, we compare the BICM scores for the two methods from the IMIFA package. Across
the whole 1,200 experiments, the IMIFA method produced a lower average BICM value.
However, at an experiment group level, the OMIFA method actually obtains lower BICM
values in nine out of the twelve groups. In fact, the only groups where the IMIFA method
has the lower average BICM values are groups seven, eight and ten. The main reason that
the IMIFA method scored better on average was because in group eight, it obtained an
average BICM value whose magnitude was roughly three times that of the OMIFAmethod2.

2
Since both methods produced negative BICM values on this dataset, the larger BICM magnitude

favours the IMIFA method.
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Further investigation showed that this was not due to an outlier BICM value which was
biasing the average for the IMIFA. Given this, generally, the BICM criterion is suggesting
that in most of the experiment groups the OMIFA method produced better models, on
average.

4.3.3 Mean ARI

We used the ARI to measure how well each of the methods were able to recreate the
underlying sub-population structures of the datasets. We compared the models based on
their mean ARI scores, as given in Table 4.6.

The MFA ECM method obtained the highest overall mean ARI, across all 1,200 experiments.
The next highest overall mean ARI was obtained by the AMFA method. The IMIFA,
Mclust, AMFA inc and OMIFA methods all obtained very similar overall mean ARI values.
The vbmfa and amofa methods performed noticeably worse, on average, compared to the
preceding methods.

At the experiment group level, the mean ARI of the MFA ECM method was equal to or
greater than that of the remaining methods in autoMFA, except in experiment group eight,
where the AMFA incmethod attained the highest mean ARI. The amofamethod performed
the worst out of any of the methods for the majority of the experiment groups. The vbmfa
method performed erratically: in groups three, five, six, nine and twelve it attained mean
ARI’s equal or only slightly less than the MFA ECM method. These experiment groups all
had the high setting for the total number of data points, 240g, suggesting a possible link
between the vbmfa method’s ability to recreate the underlying sub-population structure
and the size of the dataset being used. However, in group eight, which was the only other
group with the high setting for the total number of points, vbmfa’s performance was worse
than the aforementioned groups and was even worse (proportional to the best performing
method for that group) than its performance in the some of the groups where the total
number of points per cluster was only 60g.

The IMIFA and OMIFA methods obtained mean ARI scores very close to the MFA ECM

method in the majority of the experiment groups, with the exception of groups one,
seven, eight and ten. Of these, all but group ten were not well separated, implying a
possible relationship between the separation of the components and the ability of the
IMIFA and OMIFA methods to recreate the sub-population structure of the datasets. A
similar pattern can be observed in the mean ARI scores for the Mclust method whose
performance was similar to that of the MFA ECM method, except in groups two, three, four
and seven. All of these except group four were not well separated groups. More broadly,
as might be expected, the well separated experiment groups generally obtained higher
mean ARI scores compared to the poorly separated experiment groups.

The two experiment groups with the lowest mean ARI scores were groups seven and eight.
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In both of these, the sub-populations were not well separated, of which there were ten in
each case. We will see later that all of the methods (except amofa) tended to underestimate
the number of components for both of these experiment groups. Essentially, because the
components were not well separated, several of the components could be overlapping,
making it very di�cult for the algorithms to correctly identify all ten components. The
MFA ECM method outperformed all of the other methods in experiment group seven by a
large margin. In group eight, however, the AMFA inc method obtained the highest overall
mean ARI, followed by Mclust and then MFA ECM and AMFA in joint third place.

4.3.4 Inference on g

We compared how well the di↵erent methods inferred the number of components, g,
using two metrics. First, we calculated the proportion of the experiments where each
method correctly estimated the number of components, as well as the proportion of the
experiments where each method inferred the number of components to within ±23. These
results are summarized in Table 4.7 and Table 4.8.

Then, we fit a Rasch model [Rasch, 1960] to each of the two cases above. Under this
model, each experiment has a unique di�culty parameter and each method has a unique
ability parameter. If the di�culty parameter of a given experiment is equal to the ability
parameter of a method, then the probability that the method correctly infers the number
of components (or the number of components ± 2 for the second case) is exactly 1/2.
We are interested in the ability parameters of each method, which are summarized in
Table 4.12.

The MFA ECM method achieved the highest overall proportion of experiments where it
inferred g correctly, and where it inferred g to within ±2. The AMFA method achieved
the second highest proportion of experiments where g was inferred correctly, but Mclust
inferred g to within an error of ±2 slightly more often making it the second best method
overall, on that metric. The amofa method had the lowest proportions on both metrics.

Among the MFA methods, the näıve grid search method was able to determine the correct
number of components the highest (or the equal highest) proportion of the time in all of
the experiment groups except group eight, where the AMFA inc method outperformed it,
and group nine, where the IMIFA and OMIFA methods outperformed it, although only by
a single experiment. It was able to determine the correct number of components 100%
of the time for experiment groups two through six, nine and ten. It also inferred the
correct number of components the vast majority of the time in groups one and nine. The

3
By also calculating the proportion of experiments where each method inferred the number of com-

ponents to within an error of ±2, we want to check if any of the methods, whilst not having a high

proportion of experiments where the value of g was inferred exactly, produced a distribution of inferred

values for g which was distributed about the true value with a low spread.



4.3. Analysis 69

Mclust method generally performed quite similarly to to the MFA ECM method, except in
groups two, three, four, seven, eight and nine, where it performed noticeably worse. All of
these except group four were poorly separated groups, indicating that Mclust’s ability to
infer g may be especially sensitive to the separation of the components. However, we also
note that when we instead consider Table 4.8, only group seven remains especially low
compared to the MFA ECM method’s result. Hence, while Mclust appears to be sensitive
to the separation of the components, it produced distributions which had narrow spreads
about the true values of g.

All of the methods performed poorly in groups seven and eight. Figure 4.1 and Figure 4.2
show that almost all of the methods tended to underestimate the number of components
in both of these experiment groups. The IMIFA and OMIFA methods in particular badly
underestimated the true number of components in group eight. The only exception was
the amofamethod, which instead overestimated the number of components in group seven.

All of the models tended to perform better, on average, when g = 3 compared to when
g = 10. This e↵ect is especially clear in Table 4.8, where the first six rows correspond to
the groups with g = 3. All of the models except amofa achieve almost perfect scores in
these rows, which is not true of the last six rows (which are the groups where g = 10).
This shows that in general, the methods appear to be able to infer g more accurately
when the true number of components is small.

The MFA ECM and AMFA methods generally performed similarly to the Mclust method.
However, in group ten, both methods performed noticeably worse than Mclust in terms
of the proportion of experiments where g was inferred correctly. However, Figure 4.3
shows that in this case, when these methods did not correctly infer that g = 10, they
almost always inferred g = 9 instead, which is reflected in the increased proportions shown
in Table 4.8.

The AMFA method generally performed comparably to the näıve grid search, with the
exception of group seven. Figure 4.1 shows that in this case, the AMFA method had
incorrectly inferred that all of the datasets had less than or equal to five components. As
a result, even when we consider the proportion of the datasets where the AMFA method
inferred a number of components less than two away from the true value, the proportion
is still zero. This poor performance may be due to the fact that group seven had p = 10
and g = 10, was not well separated and had the smaller maximum cluster size.

The amofa method generally had the poorest performance of any of the methods. Fig-
ure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4 show that it routinely and dramatically
overestimated the number of clusters present in the data, sometimes inferring upwards
of 40 components! The vbmfa method tended to underestimate the true number of com-
ponents. The AMFA inc approach performed relatively well, except in groups seven and
eleven. The poor performance in group seven is similar to the AMFA method in that it















76 Chapter 4. Systematic Comparison



Chapter 5

Extending the MFA Model

Having completed a review of several existing methods for automatically fitting the MFA
model, we will now focus instead on extending the MFA model. Ideally, we would like
to retain the parsimonious formulation of multivariate mixture models o↵ered by the
MFA model through its restricted covariance structure, whilst relaxing the condition that
Yj | Zij = 1 must be Gaussian.

In this chapter, we will discuss two methods for achieving this, and show that the first
method is a special case of the second. For each method, we also develop a novel, general
EM-type parameter estimation algorithm based on ECM-MFA-2. We provide several
examples of each class of model and derive complete EM-type algorithms for each example.
Implementations of each of these EM-type algorithms can be found in our Julia package
FactorMixtures.

5.1 Scale Mixtures of Normal Distributions

The first of the two methods which we will use to generalise the MFA model makes use
of the Scale Mixtures of Normal Distributions model family, defined as follows.

Definition 5.1.1. The Scale Mixtures of Normal Distributions Model [Lange and Sin-
sheimer, 1993]

A p-dimensional random variable Y is said to follow a Scale Mixtures of Normal Distri-
butions (SMN) model (also sometimes called a Normal Independent (NI) model) if it can
be expressed as

Y = µ+W� 1
2⌃� 1

2X (5.1)

where X ⇠ Np(0, Ip) is independent of the positive, scalar random variable W ⇠ h(w; ).
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Equivalently, we can formulate the SMN model hierarchically as

W ⇠ h(w; )

Y | W = w ⇠ Np(µ, w
�1⌃).

Here, h(w; ) is the density function of the positive random variable W , which we will
refer to as the scaling density. The vector  contains the parameters of W . Recall that
we use the slight abuse of notation W ⇠ h(w; ) to mean that W is a random variable
from the distribution with density function given by h(w; ).

The SMN model defines a whole family of distributions, which depend on the form of the
scaling density h(w; ). In comparison to a multivariate Gaussian model, the inclusion
of the scaling variables in the SMN model allows for the rate of decay in the tails of its
distributions to be altered. Exactly how the tails are altered, of course, depends on the
form of h(w; ). We propose combining the MFA model with the SMN model to form the
Mixtures of Scale Mixtures of Normal Distributions Factor Analyzers (MSMNFA) model,
defined hierarchically as

Zj ⇠ Multinomial(1,⇡),

Wj | Zij = 1 ⇠ hi(wj; i),

Yj | Zij = 1,Wj = wj ⇠ Np

�
µi, w

�1

j

�
BiB

>
i +Di

��
.

(5.2)

The MSMNFA family of models retains the parsimonious mixture model formulation of
the MFA model, whilst also inheriting the ability to have modified tails in each component
of the mixture from the SMN model. This is in contrast to the regular MFA model, where
the decay in the tails of each component is governed by the multivariate Gaussian density
function. As a result, we expect that when compared with the MFA model, the MSMNFA
model is more suitable for data with outliers or extreme values. We demonstrate this in
practice in Chapter 6.

Note that in Equation (5.2), we allow each component in the mixture to have its own
scaling density hi(wj; i). In practice, however, we generally assume that all of the
scaling densities come from the same distribution. We still allow the parameters,  i, to
di↵er from component to component, however.

5.2 Parameter Estimation for the MSMNFA Model

One of the attractive properties of the MSMNFA model is that it can model mixtures
where the components are not multivariate Gaussian, whilst still being easy to fit using an
EM-type scheme. In fact, we can generalise ECM-MFA-2 to apply to the whole MSMNFA
family. To see this, first define ⇥ = (✓1,✓2) with

✓1 = (⇡1, . . . , ⇡g�1,µ1
, . . . ,µg, 1

, . . . , g)
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and
✓2 = (B1, . . . ,Bg,D1, . . . ,Dg).

For convenience, define d(a,b,C,D) := a>(CC> + D)�1b for real p ⇥ 1 vectors a and
b, a real p ⇥ q matrix C and a real p ⇥ p matrix D such that (CC> + D)�1 exists,
where p, q 2 N+ and p > q. In addition, define dij = d(yj � µi,yj � µi,Bi,Di) and

d(k)
ij = d(yj � µ(k)

i ,yj � µ(k)
i ,B(k)

i ,D(k)
i ).

Let the complete data be given by xj = (yj, zj, wj). Then the complete-data log-likelihood
is given by

` (⇥ | y, z,w) /
nX

j=1

gX

i=1


zij log ⇡i + zij log hi(wj; i)�

zij
2

log

����
BiB

>
i +Di

wj

����

� 1

2
zijwjdij

�
.

(5.3)

After noticing that

log

����
BiB

>
i +Di

wj

���� = log
��BiB

>
i +Di

��� logwp
j ,

the log-likelihood simplifies slightly to

` (⇥ | y, z,w) /
nX

j=1

gX

i=1


zij log ⇡i + zij log hi(wj; i)�

zij
2

log
��BiB

>
i +Di

��

� 1

2
zijwjdij

�
.

(5.4)

This is very similar to the complete-data log-likelihood of the regular MFA model given
in Equation (2.33). The two di↵erences being that the Mahalanobis distance term is now
also scaled by a factor of wj and the inclusion of the log hi(wj; i) term.

The E-step is to calculate

⌧ij = E
h
Zij | Yj;⇥

(k)
i

which will now be given by

⌧ (k)ij =
⇡(k)
i f(yj | Zij = 1;⇥(k))

Pg
l=1

⇡(k)
l f(yj | Zlj = 1;⇥(k))

(5.5)

and then to calculate

E
h
ZijWj | yj;⇥

(k)
i
= ⌧ (k)ij E

h
Wj | yj, Zij = 1;⇥(k)

i
= ⌧ (k)ij ⇠(k)ij
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where
⇠(k)ij := E

h
Wj | yj, Zij = 1;⇥(k)

i

and then any other conditional expectations of the form

E
h
f(Wj, Zij) | yj;⇥

(k)
i

which may arise from the zij log hi(wj; i) term when Zij or Wj or both are attached to
any of the parameters in  i.

The marginal density f(yj | Zij = 1) in Equation (5.5) will be given by

f(yj | Zij = 1) =

Z 1

0

f(yj | Zij = 1,Wj)f(wj | Zij = 1) dwj. (5.6)

For specific choices of hi(wj; i) this may produce a known density function. Otherwise,
it can be computed using numerical integration, which is feasible because the integral in
Equation (5.6) is univariate.

The M-step for ⇡(k+1)

i is given by Equation (2.30). The M-step for µ(k+1)

i is

µ(k+1)

i =

Pn
j=1

⌧ (k)ij ⇠(k)ij yj
Pn

j=1
⌧ (k)ij ⇠(k)ij

, (5.7)

which is a straightforward generalisation of Equation (2.35) that arises because the Ma-
halanobis distance in Equation (5.4) is scaled by wj.

The update for  i is

 (k+1)

i = argmax
 i

(
nX

j=1

E
h
Zij log hi(wj; i) | yj;⇥

(k)
i)

.

Let ⇥(k+1/2) := (✓(k+1)

1
,✓(k)

2
). Given the form of Equation (5.4), it is clear that

Q(✓2;⇥
(k+1/2)) / �1

2

nX

j=1

gX

i=1


⌧ (k)ij log |BiB

>
i +Di|

+ ⌧ (k)ij ⇠(k)ij d(yj � µ(k+1)

i ,yj � µ(k+1)

i ,Bi,Di)

�
.

(5.8)

We notice that the only di↵erence between the Q-function in Equation (5.8) and the Q-
function given in Appendix A.2 (where we showed that Equation (2.36) holds under the

standard MFA model) is the ⇠(k)ij attached to the Mahalanobis distance term. As a result,
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we can apply the argument used to derive the M-step updates for Bi and Di under the
standard MFA model to derive the M-step updates for Bi and Di under the MSMNFA
model, with the updates given by Equation (2.46) and Equation (2.51) respectively, after

redefining S(k)
i as

S(k)
i :=

1

n⇡(k+1)

i

nX

j=1

⌧ (k)ij ⇠(k)ij (yj � µ(k+1)

i )(yj � µ(k+1)

i )>. (5.9)

In Equation (5.3) we have assumed that Wj | Zij = 1 is a real-valued continuous random
variable. However, the algorithm is almost exactly the same when Wj | Zij = 1 is a
real-valued discrete random variable. To see why this is true, suppose that Wj | Zij = 1
is discrete, with a countable sample space given by W ⇢ R. We show in Appendix A.8
that

` (⇥ | y, z,w) =
nX

j=1

gX

i=1

zij log ⇡i

+
nX

j=1

gX

i=1

X

m2W

zijI{Wj=m} log

⇢
�p

✓
yj;µi,

1

m
(BiB

>
i +Di)

◆

⇥ Pr(Wj = m | Zij = 1;⇥)

�
.

(5.10)

Clearly, the ⇡i’s can be updated as before. We now focus on the updates for Bi and Di.
Keeping only the terms dependent on the variables in ✓2, we find that

` (⇥ | y, z,w) /
nX

j=1

gX

i=1

X

m2W

zijI{Wj=m} log

⇢
�p

✓
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1

m
(BiB

>
i +Di)

◆�

which we can further simplify to

` (⇥ | y, z,w) / �1

2

nX

j=1

gX

i=1

X

m2W

zijI{Wj=m}
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log |BiB
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i +Di|+mdij

◆
,

This simplification follows because

log

����
BiB

>
i +Di

wj

���� = log |BiB
>
i +Di|� logwp

j .

In the E-step we therefore find that

Q(✓2;⇥
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�
,

(5.11)
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where ⇥(k+1/2) is defined as before and

I(k)
jim := E

h
I{Wj=m} | yj, Zij = 1;⇥(k)

i
= Pr(Wj = m | yj, Zij = 1;⇥(k)).

Finally, we observe that

nX

j=1

gX
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X

m2W
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gX
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X
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i ,Bi,Di)

=
nX

j=1

gX

i=1
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m2W

mI(k)
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mPr(Wj = m | yj, Zij = 1;⇥(k)) = ⇠(k)ij .

Hence,
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⌧ (k)ij log |BiB
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�
,

(5.12)

So, we have shown that the Q-function for ✓2 when Wj | Zij = 1 is continuous, Equa-
tion (5.8), is the same as the Q-function for ✓2 when Wj | Zij = 1 is discrete, Equa-
tion (5.12). Hence, the updates for Bi and Di will be the same as when Wj | Zij = 1 is
continuous. A similar argument can be employed to show that Equation (5.10) also leads
to the M-step update for µi given in Equation (5.7). Therefore, the M-steps for all of
the parameters except the  i’s are the same, whether the scaling density is discrete or
continuous.

In the discrete case, the update for  i is slightly di↵erent, because the support of
Wj | Zij = 1 may depend on the parameters in  i. We can account for this by including
all of the dependence on wj in our Q-function for  , which implies that

Q( ;⇥(k)) /
nX

j=1

gX

i=1

X

m2W

⌧ (k)ij I(k)
jim

⇢
p

2
logm� 1

2
md(k)

ij

+ log Pr(Wj = m | Zij = 1;⇥(k))

�
.

(5.13)
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Accordingly, our M-step for  i is

 (k+1)

i = argmax
 i

⇢ nX

j=1

X

m2W

⌧ (k)ij I(k)
jim

⇢
p

2
logm� 1

2
md(k)

ij

+ log Pr(Wj = m | Zij = 1;⇥(k))

��
.

(5.14)

Depending on the form of hi(wj; i), Equation (5.14) may contain redundant terms. In
fact, any term belonging to a realisation of Wj | Zij = 1 which is not a parameter of
hi(wj; i) can be removed.

Since we were able to apply a generalisation of Algorithm 2.4 to the MSMNFA model, a
natural question to ask is whether we can also generalise the approach used to determine
q in the AMFA algorithm from Chapter 3 to work for the MSMNFA model. Given the
similarity between Equation (5.4) and Equation (2.33), the M-step update for q proposed
in Wang and Lin [2020] can be generalised to the MSMNFA model by performing the
update

q(k+1) = argmin
qqmax

(
gX

i=1

n⇡(k+1)

i

qX

l=1

(log �il � �il + 1) + k⇤
MSMNFA

(g, q) log n

)
. (5.15)

In the context of the MSMNFA model, �il is the lth largest eigenvalue of the matrix

S̃i :=
h
D(k)

i

i�1/2

S(k)
i

h
D(k)

i

i�1/2

,

using the updated definition of S(k)
i from Equation (5.9). The number of parameters being

estimated in the MSMNFA model is just the number of parameters used to define the
MFA model plus the number of parameters required to define each component scaling
density hi(wj; i), so

k⇤
MSMNFA

(p, g, q) = k⇤
MFA

(p, g, q) +
gX

i=1

np( i),

where np counts the number of parameters in  i.

ECM-MSMNFA-1 (Algorithm 5.1) summarises the ECM algorithm obtained by general-

ising ECM-MFA-2 to the MSMNFA model family. Note that formulas for ⇠(k)ij and  (k+1)

i

cannot be given in general, as they depend on the distribution of the scaling variables
Wj. In the following section, three particular cases of the MSMNFA model family are
considered, and all necessary formulas for the E-steps and M-steps are given in each case,
so that ECM-MSMNFA-1 can be implemented.
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Algorithm 5.1: ECM-MSMNFA-1: General ECM algorithm for the MSMNFA
model family

Input: An initial estimate of the parameters, ⇥(0), a convergence criterion and a
maximum number of iterations kmax

Result: Maximum likelihood estimates for the vector of parameters ⇥
1 Set k = 0;
2 while Chosen convergence criterion not satisfied and k < kmax do

3 The E-Step: Compute the responsibilities ⌧ (k)ij using Equation (5.5), as well as

⇠(k)ij and any other necessary E-step estimates as given in the subsection for
each particular case of the MSMNFA model family, for i 2 {1, . . . , g} and
j 2 {1, . . . , n};

4 The M-Step: Compute ⇥(k+1) using Equation (2.30), Equation (5.7),

Equation (2.46) and Equation (2.51) (using the definition of S(k)
i given in

Equation (5.9)), respectively, as well as the specified M-step updates for the
parameters in  i as given in the subsection for each particular case of the
MSMNFA model family;

5 if Convergence criterion satisfied then
6 Return ⇥(k+1);
7 else
8 Set k = k + 1;
9 end

10 end

11 Return ⇥(kmax);
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5.3 Examples of the MSMNFA Model

Having derived a general EM-type algorithm for the MSMNFA model, we now present
three specific instances with full EM-type algorithms given for each.

5.3.1 The MtFA Model

The Mixtures of t Factor Analyzers (MtFA) model is perhaps the most well known special
case of the MSMNFA model family. It was initially proposed by McLachlan et al. [2007],
who wanted to develop a factor model which was less sensitive to outliers than the original
MFA model. McLachlan et al. [2007] also proposed an AECM algorithm for parameter
estimation of the MtFA model. More recently, Wang and Lin [2012] generalised ECM-
MFA-2 to the MtFA model, and showed that it generally performed better than the AECM
algorithm in terms of CPU time and numbers of iterations until convergence was achieved.
In other words, Wang and Lin [2012] gave the particular case of ECM-MSMNFA-1 which
applies to the MtFA model.

The MtFA model is obtained by taking

Wj | Zij = 1 ⇠ Gamma
⇣⌫i
2
,
⌫i
2

⌘
.

This model is called the MtFA model because

Yj | Zij = 1 ⇠ tp
�
µi,BiB

>
i +Di, ⌫i

�
,

which we demonstrate in Appendix A.9. That is, Yj | (Zij = 1) follows the p-dimensional
t-distribution with location vector µi, scale matrix BiB

>
i +Di and ⌫i degrees of freedom.

Recall that the t-distribution has heavier tails than the Gaussian distribution. As a result,
we expect that the MtFA model will be more robust to extreme observations compared
to the regular MFA model.

Under the MtFA model, we assume that

hi(wj; i) =

�
⌫i
2

�⌫i/2

�
�
⌫i
2

� wj

⌫i
2 �1e�

⌫i
2 wj .

Substituting this into Equation (5.2), our Q-function for the degrees of freedom, ⌫i, is

Q
⇣
⌫;⇥(k)

⌘
/

nX

j=1

gX

i=1

⌧ (k)ij

h⌫i
2
log

⌫i
2
� log�

⇣⌫i
2

⌘
+

⌫i
2
(⇣(k)ij � ⇠(k)ij )

i
(5.16)

where
⇣(k)ij := E

h
logWj | yj, Zij = 1;⇥(k)

i
. (5.17)
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This is the only other conditional expectation which needs to be calculated for the MtFA
model.

We show in Appendix A.10 that

Wj | Yj, Zij = 1 ⇠ Gamma

✓
⌫i + p

2
,
⌫i + dij

2

◆
.

Accordingly,

⇠(k)ij =
⌫(k)
i + p

⌫(k)
i + d(k)

ij

,

and

⇣(k)ij = DG

 
⌫(k)
i + p

2

!
� log

 
⌫(k)
i + d(k)

ij

2

!
, (5.18)

where

DG(x) :=
�(x)

�0(x)

is the digamma function. Proof of the latter result is deferred to Section 5.3.2.

Given the framework above, the only M-step we need to evaluate is for ⌫i. Using Equa-
tion (5.16), we find that

dQ

d⌫i
=

nX

j=1

⌧ (k)ij


1

2
log

⌫i
2
+

1

2
� 1

2
DG

⇣⌫i
2

⌘
+

1

2
(⇣(k)ij � ⇠(k)ij )

�
,

which implies that ⌫(k+1)

i will be given by the solution to

log
⌫i
2
+ 1�DG

⇣⌫i
2

⌘
+

Pn
j=1

⌧ (k)ij (⇣(k)ij � ⇠(k)ij )
Pn

j=1
⌧ (k)ij

= 0,

for each i 2 {1, . . . , g}. This expression can be solved numerically.

For the MtFA model, we only need to estimate one parameter for each of the component
density functions hi(wj; i), which is the degrees of freedom, ⌫i. So ns( i) = 1 for each
i, making

k⇤
MtFA

= k⇤
MFA

(p, g, q) + g.

This is all of the information required to implement ECM-MSMNFA-1 for the MtFA
model.
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5.3.2 The MSLFA Model

Another special case of the MSMNFA family is the Mixture of Slash Factor Analyzers
(MSLFA) model. Under this model, we take

hi(wj; i) = ⌫iw
⌫i�1

j Iwj2(0,1) (5.19)

for ⌫i > 0. It is not di�cult to show that with this choice of scaling density,

f(yj | Zij = 1;⇥) = ⌫i

Z
1

0

w⌫i�1

j �p

✓
yj;µi,

1

wj
(BiB

>
i +Di)

◆
dwj. (5.20)

The following definition will help us to identify the marginal distribution which results
from using the scaling density in Equation (5.19).

Definition 5.3.1. The Slash Distribution [Wang and Genton, 2006]

A p-dimensional random variable Y is said to have the multivariate slash distribution
with parameters µ, ⌃ and ⌫ if

Y = µ+⌃� 1
2

X

U1/⌫
(5.21)

where X ⇠ Np(0, Ip) is independent of U ⇠ U(0, 1). We denote this as Y ⇠ SLp(µ,⌃, ⌫).

Noting the similarity between Equation (5.21) and the definition of a Scale Mixtures of
Normal Distributions model given in Equation (5.1), it is clear that taking W = U2/⌫ in
Equation (5.1) (where U ⇠ U(0, 1)) will produce Y ⇠ SLp(µ,⌃, ⌫).

Taking Wj | Zij = 1 = U1/⌫i , which is equivalent to Equation (5.19), implies that Yj |
Zij = 1 ⇠ SLp(µ,⌃, 2⌫i). Using results from Wang and Genton [2006], this leads to the
density

f(yj | Zij = 1;⇥) =

8
<

:

2⌫i·2⌫i+p/2�1�(⌫i+p/2;d
(k)
ij /2)

(2⇡)p/2d
(k)
ij

⌫i+p/2 , yj 6= 0,

2⌫i
2⌫i+p(2⇡)

� p
2 , yj = 0,

(5.22)

which is equivalent to Equation (5.20). Here,

�(a; z) :=

Z z

0

ta�1e�t dt =
1X

k=0

(�1)kza+k

k!(a+ k)

is the lower incomplete Gamma function. Equation (5.22) is a useful form for the den-
sity function of the MSLFA model because it is faster to evaluate than using numerical
integration to calculate Equation (5.20).

Intuitively, in Definition 5.3.1 we see that the slash distribution can be constructed by
taking a multivariate Gaussian random variable and then dividing it by a uniform random
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variable on [0, 1] raised to the (positive) power 1/⌫. In particular, when ⌫ is very small,
we note that U1/⌫ will also be very small, so the magnitude of the fraction X/U1/⌫ will
be very large. As a result, we expect that the Slash Distribution will be able to model
data with very extreme observations e↵ectively.

It follows from a simple Bayesian argument that

f(wj | yj, Zij = 1) / w
⌫i+

p
2�1

j exp

✓
�1

2
wjd

(k)
ij

◆
Iwj2(0,1)

which implies that

Wj | yj, Zij = 1;⇥(k) ⇠ TruncatedGamma

✓
⌫(k)
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2
,
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2
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◆
.

Using results from Co↵ey and Muller [2000], we find that

⇠(k)ij =
2(⌫(k)
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2
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ij
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, 1
2
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where F� is the cumulative distribution function of the Gamma distribution.

Our Q-function for the shape parameter, ⌫i, is

Q
⇣
⌫;⇥(k)

⌘
/

nX
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gX

i=1

⌧ (k)ij

h
log ⌫i + (⌫i � 1)⇣(k)ij + log IWj2(0,1)

i
(5.23)

with

⇣(k)ij = E
h
logWj | yj, Zij = 1;⇥(k)

i
.

To evaluate ⇣ij, we present the following Lemma.

Lemma 5.3.2. Suppose

X ⇠ TruncatedGamma(↵, �, 0, t).

Then

E [logX] =
1

F�(t,↵, �)

�↵

�(↵)

Z t

0

x↵�1e��x log x dx,

where F� is the cumulative distribution function of the Gamma distribution.
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Proof. Suppose
X ⇠ TruncatedGamma(↵, �, 0, t).

Then

fX(x) =
1

F�(t;↵, �)

�↵

�(↵)
x↵�1e��x. (5.24)

Defining Y := logX, the usual change of variables formula shows that

fY (y) =
1

F�(t;↵, �)

�↵

�(↵)
e↵y��ey .

Note that the range of Y is from �1 to log t. Trivially, we must have that
Z

log t

�1
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. (5.25)

Also, notice that

@

@↵
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Hence,
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◆
,

which follows from Equation (5.25). Evaluating the partial derivative and simplifying
yields

E [Y ] =
@
@↵ F�(t;↵, �)

F�(t;↵, �)
+ DG(↵)� log �, (5.26)

since �0(↵) = DG(↵)�(↵). By definition,

F�(t,↵, �) =
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�(↵)
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Using this fact, we evaluate @
@↵ F�(t,↵, �) by first applying the product rule:
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By applying the quotient rule to the first derivative in Equation (5.27) and swapping the
order of integration and di↵erentiation before evaluating the second, we see that

@

@↵
F�(t,↵, �) = (log � �DG(↵)) F�(t,↵, �) +

�↵

�(↵)

Z t

0

x↵�1e��x log x dx. (5.28)

Substituting Equation (5.28) into Equation (5.26) yields

E [Y ] =
1

F�(t,↵, �)

�↵

�(↵)

Z t

0

x↵�1e��x log x dx,

the desired result.

Corollary 5.3.2.1. Suppose
X ⇠ Gamma(↵, �).

Then
E [logX] = DG(↵)� log �.

Proof. We replace Equation (5.24) with

fX(x) =
�↵

�(↵)
x↵�1e��x.

Noting that the only di↵erence is the lack of the CDF term, the result follows after
applying the same argument.

Corollary 5.3.2.1 allows us to calculate ⇣(k)ij under the MtFA model as given in Equa-
tion (5.18).

Using Lemma 5.3.2, we can evaluate ⇣(k)ij for the MSLFA model as

⇣(k)ij =
1

F�

⇣
1, ⌫(k)

i + p
2
, 1
2
d(k)
ij

⌘

h
1

2
d(k)
ij

i⌫(k)i +
p
2

�(⌫(k)
i + p

2
)

Z
1

0

u⌫
(k)
i +

p
2�1e�

1
2ud

(k)
ij log u du. (5.29)

The required integral can be calculated numerically, which, like Equation (5.6), is also
feasible because it is univariate.

Like in the MtFA model, we only need to work out a single M-step: that of ⌫i. Using
Equation (5.23), we find that

dQ

d⌫i
=

nX

j=1

⌧ (k)ij


1

⌫i
+ ⇣(k)ij

�
,
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which implies that

⌫(k+1)

i = �
Pn

j=1
⌧ (k)ij

Pn
j=1

⌧ (k)ij ⇣(k)ij

, (5.30)

for i = 1, . . . , g. Note that the leading negative in Equation (5.23) may at first glance
look like an infeasible update because ⌫i > 0, but recall that the support of Wj is (0, 1)

which implies that ⇣(k)ij < 0, while 0  ⌧ (k)ij  1 and hence ⌫(k+1)

i � 0.

Finally, using the same argument as for the MtFA model, we find that

k⇤
MSLFA

(p, g, q) = k⇤
MFA

(p, g, q) + g.

This is all of the information required to implement ECM-MSMNFA-1 for the MSLFA
model.

5.3.3 The MCNFA Model

Another example of a MSMNFA model is the Mixture of Contaminated Normal Factor
Analyzers (MCNFA) model.

Under this model we assume that

hi(wj; i) = ⌫iI{wj=�i} + (1� ⌫i)I{wj=1},

for 0  ⌫i  1 and 0  �i  1. Equivalently, we can represent this as the PMF

Pr(Wj = wj | Zij = 1) =

(
⌫i for wj = �i
1� ⌫i for wj = 1.

The law of total probability dictates that

f(yj | Zij = 1;⇥) = ⌫i�p

✓
yj;µi,

1

�i
(BiB

>
i +Di)

◆
+ (1� ⌫i)�p(yj;µi,BiB

>
i +Di),

so
Yj | Zij = 1 ⇠ CNp

�
µi,BiB

>
i +Di, ⌫i, �i

�
,

the p-dimensional Contaminated Normal distribution from Tukey [1960].

The Contaminated Normal model is a GMM with mixing proportions (⌫i, 1 � ⌫i). The
only di↵erence in the component densities is the scaling of the covariance matrix ⌃i in one
component. Since 0  �i  1, the division of ⌃i by �i in one of the components magnifies
the elements of that covariance matrix. This means that the observations belonging to
this component may be more extreme. An intuitive application of the Contaminated
Normal model is a dataset where the observations appear to have been generated for a
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Gaussian distribution, except that some of the data points are too extreme to have been
plausibly generated from exactly the same covariance matrix, instead appearing to have
been generated from a magnified version of the same covariance matrix.

It is worth noting that Punzo and McNicholas [2016] have previously proposed a similar
set of parsimonious mixture models which make use of the p-dimensional Contaminated
Normal distribution. However, in their models, parsimony is enforced by placing con-
straints on the eigen-decomposition of ⌃i using the methodology of Celeux and Govaert
[1995], instead of via the factor analytic covariance structure that we employ.

We will use the discrete formulation of the MSMNFA model from the beginning of this
chapter to derive M-step estimates for ⌫i and �i. Let the conditional expectation of the
indicator variables for Wj be given by

⇢ij := E
h
I{Wj=1} | yj, Zij = 1;⇥(k)

i

and
ij := E

h
I{Wj=�i} | yj, Zij = 1;⇥(k)

i
.

Using Bayes’ rule,

⇢(k)ij = Pr(Wj = 1 | yj, Zij = 1;⇥(k))

=
(1� ⌫(k)

i )�ijk,1

(1� ⌫(k)
i )�ijk,1 + ⌫(k)

i �
ijk,�

(k)
i

,

where
�ijk,1 := �p

⇣
yj;µ

(k)
i ,B(k)

i B>
i
(k)

+D(k)
i

⌘

and
�
ijk,�

(k)
i

= �p

⇣
yj;µ

(k)
i , (B(k)

i B>
i
(k)

+D(k)
i )/�(k)

i

⌘
.

It follows that we can calculate (k)
ij and ⇠(k)ij as

(k)
ij = Pr(Wj = �i | yj, Zij = 1;⇥(k))

= 1� ⇢(k)ij

and

⇠(k)ij = E
h
Wj | yj, Zij = 1;⇥(k)

i

= ⇢(k)ij + �(k)
i (k)

ij ,
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respectively. Beginning with Equation (5.10), by keeping only the terms which depend
on ⌫ and � and after expanding out the sum over m 2 W we obtain

Q(⌫,�;⇥(k)) /
nX

j=1

gX

i=1

⇢
p

2
⌧ (k)ij (k)

ij log �i �
1

2
⌧ (k)ij (k)

ij �id
(k)
ij

+ ⌧ (k)ij (k)
ij log ⌫i + ⌧ (k)ij ⇢(k)ij log(1� ⌫i)

�
.

(5.31)

Next, we find that

@Q

@⌫i
=

nX

j=1

⌧ (k)ij (k)
ij

⌫i
�

⌧ (k)ij ⇢(k)ij

1� ⌫i

which implies an update of the form

⌫(k+1)

i =

Pn
j=1

⌧ (k)ij (k)
ij

Pn
j=1

⌧ (k)ij ((k)
ij + ⇢(k)ij )

=

Pn
j=1

⌧ (k)ij (k)
ij

Pn
j=1

⌧ (k)ij

.

Finally, we find that

@Q

@�i
=

nX

j=1

(
p⌧ (k)ij (k)

ij

2�i
� 1

2
⌧ (k)ij (k)

ij d(k)
ij

)
.

which implies the update

�(k+1)

i =
p
Pn

j=1
⌧ (k)ij (k)

ij
Pn

j=1
⌧ (k)ij (k)

ij d(k)
ij

.

For the MCNFA model, we need to estimate two parameters for each of the component
densities hi(wj; i): ⌫i and �i. So ns( i) = 2 for each i, making

k⇤
MCNFA

(p, g, q) = k⇤
MFA

(p, g, q) + 2g.

It is worth noting that the MCNFA model may, at least in theory, su↵er from an identifi-
ability issue. To see this, consider a dataset with four sub-populations that all share the
same mean and covariance matrix. Under the MCNFA model, we need to assign these
four sub-populations into two mixture components, which are in turn composed of two
groups, one being modelled with the scaled covariance matrix and the other with a non-
scaled covariance matrix. There will be 4⇥ 3⇥ 2 = 24 combinations for the composition
of the two components and the scaled versus non-scaled group within each component.
Of the 24 combinations, only 12 are identical up to switching component labels. In other
words, there would be 12 di↵erent ways to parameterise this model even after accounting
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for label switching. However, in practice we would not expect this to be an issue, as the
example is rather contrived. If all four sub-populations have the same mean and covari-
ance matrix, then a simple (single component) Gaussian model for the data would likely
be more appropriate than a two component Contaminated Normal mixture model.

5.4 The Mean-Variance Mixture of Normal Distribu-
tion

The second method for generalising the MFA model makes use of the Mean-Variance
Mixture of Normal (MVMN) distribution family, which is defined as follows.

Definition 5.4.1. The Mean-Variance Mixture of Normal Distribution [Barndor↵-Nielsen
et al., 1982]

A p-dimensional random variable Y is said to belong to the Mean-Variance Mixture of
Normal (MVMN) distribution if it can be written in the form.

Y = µ+W� +W
1
2⌃

1
2X, (5.32)

where X ⇠ Np(0, Ip) and W is a positive random variable with density function h(w; ).

Equivalently, we can express a MVMN distribution hierarchically as

W ⇠ h(w; )

Y | W = w ⇠ Np(µ+ w�, w⌃).

The MVMN family is clearly similar to the SMN family. The main di↵erence is the inclu-
sion of the stochastic mean component W� in the definition of the MVMN distribution.
Under the SMN family, only the covariance matrix ⌃ of the multivariate Gaussian dis-
tributed vector Y | W = w is scaled by w which allows for the tails of the resulting
marginal distribution of Y to be altered. However, under the MVMN family, the addition
of the w� term in Equation (5.32) allows for asymmetric distributional shapes, as well as
the altered tails provided by the scaled covariance matrix.

We introduce the Mixtures of Mean-Variance Mixture of Normal Distribution Factor
Analyzers (MMVMNFA) model as a combination of the MFA model and the MVMN
model, represented hierarchically as

Zj ⇠ Multinomial(1,⇡),

Wj | Zij = 1 ⇠ hi(wj; i),

Yj | Zij = 1,Wj = wj ⇠ Np

�
µi + wj�i, wj

�
BiB

>
i +Di

��
.

(5.33)
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Like in the MSMNFA model from Section 5.1, hi is a density function with support over
R+ and parameter vector  i, for i = 1, . . . , g.

The MMVMNFA family inherits the parsimonious mixture model formulation from the
MFA model, but is much more flexible, allowing for modified tails and multivariate skew-
ness in each component. We expect it will, therefore, be a more suitable model for many
real world datasets, as they often display asymmetry. We demonstrate this in practice in
Chapter 6.

Example 5. The three examples of MSMNFA models from the previous section are all
examples of MMVMNFA models with � = 0. The corresponding scaling distributions or
densities are Wj | Zij = 1 ⇠ Inv-Gamma

�
⌫i
2
, ⌫i

2

�
for the MtFA model,

hi(wj; ⌫i) =
⌫i

w⌫i+1

j

for wj 2 (1,1)

for the MSLFA model and finally

hi(wj; ⌫i, �i) = ⌫iI{wj=1/�i} + (1� ⌫i)I{wj=1}

for the MCNFA model.

More generally, any MSMNFA model can by written as a MMVMNFA model setting
� = 0 and taking the scaling variable W ⇤

j | (Zij = 1) = (Wj | Zij = 1)�1, where
Wj | Zij = 1 is the scaling variable of the MSMNFA model. ⌅

5.5 Parameter Estimation for the MMVMNFA Model

We now show that parameter estimation for the MMVMNFA model can also be performed
by using an appropriately generalised version of MFA-ECM-2. In this case, we define
⇥ = (✓1,✓2) with

✓1 = (⇡1, . . . , ⇡g�1,µ1
, . . . ,µg,�1

, . . . ,�g, 1
, . . . , g)

and
✓2 = (B1, . . . ,Bg,D1, . . . ,Dg).

Let the complete data be given by xj = (yj, zj, wj). Then the complete-data log-likelihood
can be written as

` (⇥ | y, z,w) /
nX

j=1

gX

i=1


zij log ⇡i + zij log hi(wj; i)�

zij
2

log
��BiB

>
i +Di

��

� 1

2

zij
wj

(yj � µi � wj�i)
> (BiBi +Di)

�1 (yj � µi � wj�i)

�
.
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which we can expand to

` (⇥ | y, z,w) /
nX

j=1

gX

i=1

zij


log ⇡i + log hi(wj; i)�

1

2
log

��BiB
>
i +Di

��� 1

2

1

wj
dij

+
1

2
d(�i,yj � µi,Bi,Di) +

1

2
d(yj � µi,�i,Bi,Di)�

1

2
wjd

⇤
ij

�
,

(5.34)
where we define two additional special cases of d(., ., ., .):

d⇤
ij := d(�i,�i,Bi,Di)

and
d⇤
ij
(k) := d

⇣
�(k)

i ,�(k)
i ,B(k)

i ,D(k)
i

⌘
.

From Equation (5.34), we can see that the E-step will be to calculate

⌧ (k)ij = E
h
Zij | yj;⇥

(k)
i

as in Equation (5.5), where the marginal density is also calculated in the same way as for
the MSMNFA model, as given in Equation (5.6). We also need to calculate

E
h
ZijWj | yj;⇥

(k)
i
= ⌧ (k)ij E

h
Wj | yj, Zij = 1;⇥(k)

i
= ⌧ (k)ij ⇠(k)ij

and
E
h
ZijW

�1

j | yj;⇥
(k)
i
= ⌧ (k)ij E

h
W�1

j | yj, Zij = 1;⇥(k)
i
= ⌧ (k)ij %(k)ij

with ⇠(k)ij defined as before and

%(k)ij := E
h
W�1

j | yj, Zij = 1;⇥(k)
i
.

Finally, we will also need to calculate any other conditional expectations of the form

E
h
f(Wj, Zij) | yj;⇥

(k)
i
.

The M-step estimate for ⇡i is again given by Equation (2.30) and the update for  i will
be given by

 (k+1)

i = argmax
 i

(
nX

j=1

E
h
Zij log hi(Wj; i) | yj;⇥

(k)
i)

.
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The Q-function for µ and � will be given by

Q(µ,�;⇥(k)) / �1

2

nX

j=1

gX

i=1

⌧ (k)ij


%(k)ij d(yj � µi,yj � µi,B

(k)
i ,D(k)

i )

� d(�i,yj � µi,B
(k)
i ,D(k)

i )� d(yj � µi,�i,B
(k)
i ,D(k)

i )

+ ⇠(k)ij d(�i,�i,B
(k)
i ,D(k)

i )

�
,

(5.35)

which implies that

@Q

@µi

=
nX

j=1

⌧ (k)ij


%(k)ij (B(k)

i B(k)
i

>
+D(k)

i )�1(yj � µi)� (B(k)
i B(k)

i

>
+D(k)

i )�1�i

�

and

@Q

@�i

=
nX

j=1

⌧ (k)ij


⇠(k)ij (B(k)

i B(k)
i

>
+D(k)

i )�1�i � (B(k)
i B(k)

i

>
+D(k)

i )�1(yj � µi)

�
.

Setting these jointly equal to zero yield the updates

µ(k+1)

i =

Pn
j=1

⌧ (k)ij yj(⇠̄
(k)
i %(k)ij � 1)

Pn
j=1

⌧ (k)ij (⇠̄(k)i %(k)ij � 1)
(5.36)

and

�(k+1)

i =

Pn
j=1

⌧ (k)ij yj(%̄
(k)
i � %(k)ij )

Pn
j=1

⌧ (k)ij (⇠̄(k)i %(k)ij � 1)
, (5.37)

where

⇠̄(k)i =

Pn
j=1

⌧ (k)ij ⇠(k)ij
Pn

j=1
⌧ (k)ij

and %̄(k)i =

Pn
j=1

⌧ (k)ij %(k)ij
Pn

j=1
⌧ (k)ij

.

Let ⇥(k+1/2) := (✓(k+1)

1
,✓(k)

2
). Given the form of Equation (5.34), it is clear that

Q
⇣
✓2;⇥

(k+1/2)
⌘
/ �1

2

nX

j=1

gX

i=1

⌧ (k)ij


log

��BiB
>
i +Di

��

+ %(k)ij d(yj � µ(k+1)

i ,yj � µ(k+1)

i ,Bi,Di)

� d(�(k+1)

i ,yj � µ(k+1)

i ,Bi,Di)� d(yj � µ(k+1)

i ,�(k+1)

i ,Bi,Di)

+ ⇠(k)ij d(�(k+1)

i ,�(k+1)

i ,Bi,Di)

�
.

(5.38)
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As a result, we can use a slight variation1 of the argument given in Appendix A.2 to show
that

Q
⇣
✓2;⇥

(k+1/2)
⌘
/ �n

2

gX

i=1

⇡(k+1)

i

h
log |BiB

>
i +Di|+ tr

n�
BiB

>
i +Di

��1

S(k)
i

oi
(5.39)

where we redefine S(k)
i as

S(k)
i :=

1

n⇡(k+1)

i

nX

j=1

⌧ (k)ij


%(k)ij (yj � µ(k+1)

i )(yj � µ(k+1)

i )> � (yj � µ(k+1)

i )�(k+1)

i

>

� �(k+1)

i (yj � µ(k+1)

i )> + ⇠(k)ij �i
(k+1)�(k+1)

i

>
�
.

(5.40)

This means that, as under the MFA and MSMNFA models, under the MMVMNFA model
the updates for Bi and Di are again given by Equation (2.46) and Equation (2.51), albeit

using the updated definition of S(k)
i given in Equation (5.40).

Since the updates for Bi and Di are still based on the method used by Zhao and Yu
[2008], the M-step update for q proposed by Wang and Lin [2020] can also be generalised
to

q(k+1) = argmin
qqmax

(
gX

i=1

n⇡(k+1)

i

qX

l=1

(log �il � �il + 1) + k⇤
MMVMNFA

(g, q) log n

)
. (5.41)

In the context of the MMVMNFA model, �il is the lth largest eigenvalue of the matrix

S̃i :=
h
D(k)

i

i�1/2

S(k)
i

h
D(k)

i

i�1/2

,

with S(k)
i as defined in Equation (5.40). The number of parameters being estimated in

the MMVMNFA model will be given by

k⇤
MMVMNFA

(p, g, q) = k⇤
MFA

(p, g, q) + pg +
gX

i=1

np( i),

where np counts the number of parameters in  i. This is similar to k⇤
MSMNFA

(p, g, q),
except with an additional pg parameters to estimate the g p⇥ 1 stochastic mean vectors
�i.

1
Clearly, in this case, we have four scalar terms after the logarithm term as opposed to just the

Mahalanobis distance term present in Appendix A.2. However, since the final four terms all share the

BiB
>
i +Di term, we can apply the same general argument as the one given in Appendix A.2, making use

of the linearity of the trace and then taking out a common factor of BiB
>
i +Di to achieve the desired

result.
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Algorithm 5.2: ECM-MMVMNFA-1: General ECM algorithm for the MMVM-
NFA model family

Input: An initial estimate of the parameters, ⇥(0), a convergence criterion and a
maximum number of iterations kmax

Result: Maximum likelihood estimates for the vector of parameters ⇥
1 Set k = 0;
2 while Chosen convergence criterion not satisfied and k < kmax do

3 The E-Step: Compute the responsibilities ⌧ (k)ij using Equation (5.5), as well as

⇠(k)ij , %(k)ij and any other necessary E-step estimates as given in the subsection
for each particular case of the MMVMNFA model family, for i 2 {1, . . . , g}
and j 2 {1, . . . , n};

4 The M-Step: Compute ⇥(k+1) using Equation (2.30), Equation (5.36),
Equation (5.37), Equation (2.46) and Equation (2.51) (using the definition of

S(k)
i given in Equation (5.40)), respectively, as well as the specified M-step

updates for the parameters in  i as given in the subsection for each
particular case of the MMVMNFA model family;

5 if Convergence criterion satisfied then
6 Return ⇥(k+1);
7 else
8 Set k = k + 1;
9 end

10 end

11 Return ⇥(kmax);
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ECM-MMVMNFA-1 (Algorithm 5.2) summarises the ECM algorithm obtained by gen-
eralising ECM-MFA-2 to the MMVMNFA model family. Like for ECM-MSMNFA-1,
formulas for ⇠(k)ij , %(k)ij and  (k+1)

i cannot be given in general, as they depend on the dis-
tribution of the scaling variables Wj, however, three particular cases of the MMVMNFA
model family are given in the next section. All necessary formulas for the E-steps and
M-steps are again given in each case, so that ECM-MMVMNFA-1 can be implemented.

5.6 Examples of the MMVMNFA Model

We now give three specific instances of the MMVMNFA family, along with complete
EM-type algorithms for each.

5.6.1 The MGHFA Model

An example of the MMVMNFA is the Mixture of Generalised Hyperbolic Factor Ana-
lyzers (MGHFA). This special case of the MMVMNFA family was previously introduced
in Tortora et al. [2015], albeit in that work the authors used an AECM algorithm for
parameter estimation. As such, their algorithm required treating the factors Uj as latent
variables to obtain updates for Bi and Di, in a similar manner to MFA-ECM-1. Our
proposed algorithm, ECM-MMVMNFA-1, does not condition on the factors to obtain
updates for Bi and Di.

In the MGHFA model, we take Wj | Zij = 1 ⇠ GIG (!i,!i,�i) , where GIG represents the
Generalised Inverse Gaussian distribution with density

hi(wj;!i,�i) =
w�i�1

j

2K�i(!i)
exp

⇢
�!i

2

✓
wj +

1

wj

◆�
,

and where K�i is the modified Bessel function of the third kind with index �i and !i > 0.

Marginalising over wj shows that

f(yj | Zij = 1;⇥) =


!i + dij

!i + d⇤
ij

� (�i�p/2)
2

⇥
K�i�p/2

⇣q
(!i + dij)(!i + d⇤

ij)
⌘

(2⇡)p/2|(BiB
>
i +Di)|1/2 K�i(!i) exp

�
� d(yj � µi,�i,Bi,Di)

 .

(5.42)
This implies that Yj | Zij = 1 ⇠ GH

�
�i,!i,!i,µi,BiB

>
i +Di,�i

�
, the generalised

hyperbolic distribution. The repeated parameter !i ensures that the resulting generalised
hyperbolic distribution will be identifiable.
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The usual Bayesian argument shows that

Wj | Zij = 1 ⇠ GIG
⇣
!i + dij,!i + d⇤

ij,�i �
p

2

⌘
.

Now, define

Rijk(a, b, c, d) :=

Ka+b

✓r⇣
d(k)
ij + c

⌘⇣
d⇤
ij
(k) + d

⌘◆

Ka

✓r⇣
d(k)
ij + c

⌘⇣
d⇤
ij
(k) + d

⌘◆ ,

for a, b 2 R and c, d 2 R+.

Using results from Jorgensen [1982], we have
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Similarly, we evaluate ⇣(k)ij as

⇣(k)ij := E
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using results from Browne and McNicholas [2015].

The Q-function for ! and � is given by
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or equivalently

Qi(!i,�i;⇥
(k)) / ⇣̄(k)i �i � log K�i(!i)�

!i

2

⇣
⇠̄i

(k)
+ %̄i

(k)
⌘
,

where
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and where ⇠̄i
(k)

and %̄i(k) are defined as in Section 5.5. Previously, Browne and McNicholas
[2015] and Tortora et al. [2015] proposed approximate updates for !i and �i as

�(k+1)

i = ⇣̄(k)i �(k)
i

"
@

@t
log Kt(!

(k)
i )

����
t=�

(k)
i

#

and

!(k+1)

i = !(k)
i �

"
@

@t
Qi(t,�

(k)
i ;⇥(k))

����
t=!

(k)
i

#"
@2

@t2
Qi(t,�

(k)
i ;⇥(k))

����
t=!

(k)
i

#�1

.

The update for �i is obtained using a majorizing surrogate function [Browne and McNi-
cholas, 2015], while the update for !i is just a single step of Newton’s Algorithm applied
to @

@!i
Qi.

In our implementations of this algorithm, we have chosen to use univariate numerical
optimisation instead. This avoids the possibility of taking likelihood-decreasing steps.

For the MGHFA model, we need to estimate two parameters for each of the component
densities hi(wj; i): ⌫i and �i. So ns( i) = 2 for each i, making

k⇤
MGHFA

(p, g, q) = k⇤
MFA

(p, g, q) + pg + 2g.

5.6.2 The MFA-BS Model

Another special case of the MMVMNFA model is what we call the Mixture of Factor
Analyzers using Birnbaum-Saunders scaling variables (MFA-BS) model. The reason for
changing the naming convention for this model is to reflect that the name Birnbaum-
Saunders is from the scaling variables, and not from the marginal distribution of the data
which was the case in all of the other special cases thus far. This marginal density of
the MFA-BS model is a mixture of the multivariate mean-variance mixtures based on the
Birnbaum-Saunders distribution which was proposed in Pourmousa et al. [2015].

The univariate Birnbaum-Saunders distribution is a two parameter distribution with den-
sity function

fBS(x;↵, �) =
1
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where x,↵, � > 0. Setting � = 1, we find that it can be written as the following mixture
of GIG densities:

fBS(x;↵, 1) =
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It is not hard to show that by taking

hi(wj;↵i) = fBS(wj;↵i, 1),

marginalisation over wj produces
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So the marginal distribution of the data conditioned on belonging to component i is a
mixture of Generalised Hyperbolic distributions.

It is also straightforward to show that
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Using results given in Naderi et al. [2018], we can therefore evaluate ⇠(k)ij and %(k)ij as
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The Q-function for ↵ is given by
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which implies an update of the form

↵(k+1)

i =

q
⇠̄(k)i + %̄(k)i � 2.

Since the scaling density has only one parameter for each component,

k⇤
MFA-BS

(p, g, q) = k⇤
MFA

(p, g, q) + pg + g.

5.6.3 The MFA-L Model

The final special case of the MMVMNFA family that we will consider is what we call the
Mixture of Factor Analyzers using Lindley scaling variables (MFA-L) model. Again, the
name Lindley comes from the distribution of the scaling variables and not the marginal
distribution of the data, so we use the same naming convention as the MFA-BS model.
The MFA-L model is based on the Mean-Variance Mixtures based on Lindley scaling
variables model from Naderi et al. [2018].

The univariate Lindley distribution is a one parameter distribution with density function

fL(x;↵) =
↵2

1 + ↵
(1 + x)e�↵x,

where x,↵ > 0. We can also write the Lindley density as a mixture of two GIG densities,
since
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Taking
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marginalisation over wj produces
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So, like for the MFA-BS model, under the MFA-L model the marginal distribution of
Yj | Zij = 1 is also a mixture of Generalised Hyperbolic distributions, albeit with di↵erent
parameters.

It is also straightforward to show that
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where

pij =
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where pijk is defined the same as pij, except using the k-step estimates for each of the
model parameters.

The Q-function for ↵ is given by
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= 0 is therefore equivalent to
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Since the scaling density again has only one parameter for each component,
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(p, g, q) + pg + g.
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5.7 Summary

In this chapter we proposed the MMVMNFA model family as a generalisation of the MFA
model which retains the parsimonious mixture model formulation of the MFA model but
can also model data with heavy-tails and/or multivariate skewness. We also generalised
MFA-ECM-2 (Algorithm 2.4), a parameter estimation algorithm for the MFA model, to
the MMVMNFA model family. In addition, we generalised the AMFA algorithm (Algo-
rithm 3.1), to the MMVMNFA model family. We provided six specific instances of the
MMVMNFA model family: the MtFA, MSLFA, MCNFA, MGHFA, MFA-BS and MFA-L
models. For each of these instances, full EM-type parameter estimation algorithms were
derived.

Three of these models have been proposed previously: the MtFA model by McLachlan
et al. [2007] with the ECM algorithm given in Section 5.3.1 previously proposed by Wang
and Lin [2012], the MCNFA model by Punzo and McNicholas [2016] and the MGHFA
model by Tortora et al. [2015]. However, this is the first work, to our knowledge, which
generalises the ECM algorithm given by Zhao and Yu [2008] for the MFA model and by
Wang and Lin [2012] for the MtFA model to the whole MMVMNFA model family, and
is also the first work to apply the general ECM algorithm to the five other special cases
given. This is of practical importance, because, as demonstrated by Zhao and Yu [2008]
for the MFA model and by Wang and Lin [2012] for the MtFA model, the use of an ECM
routine which does not treat the underlying factors Uj as missing data generally leads to
much faster model fits, in terms of both CPU time and the number of iterations used.

The method of generalisation which we employed in this chapter was to introduce a posi-
tive univariate scaling distribution hi(wj; i) for each component such that the conditional
distribution Yj | Zij = 1,Wj = wj belongs to the MVMN family. However, this is not
the only possible way to introduce asymmetry to the MFA model. For example, Lee and
McLachlan [2021] discuss a number of possible ways of introducing asymmetry into factor
models.

In addition, di↵erent formulations could be achieved by tightening or loosening various
assumptions. For example, the number of factors, q, could be allowed to vary between
components. The constraint structure for the component covariance matrices ⌃i from the
conditional distribution of Yj | Zij = 1,Wj = wj could also be investigated. Our method
of generalisation retained the MFA component covariance structure of ⌃i = BiB

>
i +Di,

but this is only one of a multitude of possible constraint structures. A number of possible
alternative constrained covariance structures are discussed by Celeux and Govaert [1995].

On the other hand, di↵erent models could also be achieved by restricting the factor loading
matrices to be the same across all of the components, or by restricting all of the scaling
distribution parameters to be the same across all of the components.
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However, a more comprehensive investigation of the di↵erent possible asymmetric parsi-
monious multivariate finite mixture models, as well as the multitude of combinations of
constraints that can be applied to the parameters of these models is beyond the scope of
this thesis.
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Chapter 6

Applying MMVMNFA Models

In the previous chapter, we propose the MMVMNFA model family as an extension of the
MFA model which can model data with heavy tails and/or multivariate skewness. We also
detailed how parameter estimates can be obtained for the MMVMNFA family of models.
In this chapter, we will show how models from the MMVMNFA family can achieve better
model fits and clustering results compared to the standard MFA model.

We will consider four datasets in this chapter. The first two will be synthetically generated,
which will allow us to introduce heavy tails and multivariate skewness, respectively. The
third is a real world dataset concerning wholesale goods orders in Portugal [Baudry et al.,
2012], where the orders are either classified as retail or commerical. The fourth is the
Australian Institute of Sport (AIS) dataset of Telford and Cunningham [1991], which
contains measurements of various physical properties of Australian athletes, as well as
their sex and the sport that they play.

The parameter estimation in this chapter will be performed using the Julia package Fac-
torMixtures that we developed. This package includes methods for fitting each of the six
instances of the MMVMNFA family discussed in Chapter 5, as well as the standard MFA
model. In each case, the number of components, g and the number of factors, q, will be
determined using a näıve search over the grid 1  g  5 and 1  q  qmax, where qmax is
the Ledermann bound. Each model will use the same initialisation scheme as the MFA ECM

method from autoMFA, which was described in Section 3.1. Fifteen initializations based on
the output of k-means clustering and fifteen random initializations for each combination
of g and q will be used. We will select the best model of each type using the BIC. We will
then compare the BICs, ARIs, fitting times and inferred values of g and q for the best
models of each type.

109
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6.1 Simulation Study 1

The first simulation study will compare the results of the MFA model with those of
the MMVMNFA models on a heavy-tailed multivariate dataset. We created a synthetic
two-component mixture model dataset where each component follows the multivariate
t-distribution by randomly generating

Y1, . . . ,Y500

i.i.d⇠ t3(µ1
,⌃1, ⌫1) and Y501, . . . ,Y1000

i.i.d⇠ t3(µ2
,⌃2, ⌫2)

where the location vectors are given by

µ
1
=
⇥
0 0 0

⇤>
, µ

2
=
⇥
2.5 2.5 2.5

⇤>
,

the scale matrices are given by ⌃1 =
1

2
I3, ⌃2 =

1

4
I3, and the degrees of freedom are given

by ⌫1 = 20 and ⌫2 = 3.

Figure 6.1 shows pairwise scatter plots of the resulting dataset. We can clearly see the
e↵ects of the t-distribution’s heavier tails, as we observe several extreme observations in
the purple group due to its relatively low degrees of freedom. As a result, we would
expect that using component densities with heavier tails than the multivariate Gaussian
distribution should produce a better model fit.

To test this, we used our Julia package FactorMixtures, to fit the MFA, MtFA, MSLFA,
MCNFA, MGHFA, MFA-BS and MFA-L models to this dataset. Since p = 3 in this
example, the Ledermann bound is qmax = 1, so no inference on q is required.

Table 6.1 and Table 6.2 show the BIC, ARI, fitting time (in seconds) and the inferred
number of components, g, for the best model of each type, chosen using the BIC. We
observe that as expected, the six MMVMNFA models all obtained lower BICs than the
MFA model. In addition, the di↵erence in BIC between the best MFA model and the
best of each of the six other MMVMNFA models was greater than ten, providing very
strong evidence that the MMVMNFA models are all able to describe the data better than
the standard MFA model. All of the MMVMNFA models correctly inferred g = 2, except
for the MFA-L model which inferred g = 5. The MFA model, in comparison, incorrectly
inferred g = 3. While the MFA-L model was able to obtain the lowest BIC of any of the
models, the fact that it inferred g = 5 shows that using the incorrect parametric form can
still lead to undesirable results, even when the data is well separated.

Since the data was generated with only two components, it is unsurprising that the five-
component MFA-L model achieved the lowest ARI of any of the models. The second lowest
was given by the MFA model, which also overestimated the number of components. Of the
remaining models, which all correctly inferred g, the MtFA model (perhaps unsurprisingly)
achieved the lowest BIC.
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Figure 6.1: The synthetic two-component mixture of t-distributions dataset with the first
500 points coloured black and the second 500 coloured purple.

The MFA model took the least amount of time to fit. It should be noted that this is not
an average time for all 30 initialisations of each type of model fitted for a particular com-
bination of g and q. Rather, it is the time taken by the best fitting model (according to
the BIC) of each type, out of all 150 models which were fitted for each type. However, it
is reasonable to expect that the MFA models should take less time to fit on average, com-
pared to the MMVMNFA models. This is because MFA-ECM-2 has less latent variables
than MMVMNFA-ECM-1, since MMVMNFA-ECM-1 also treats the scaling variables Wj

as latent variables. In addition, it is also clear that the MSLFA model took orders of
magnitude longer to fit than the other models, mainly due to the numerical integration
required to compute Equation (5.29).

This example shows that the MMVMNFA models may be worthwhile using, especially
for data that appears to have heavy-tailed distributions or outliers, as they can achieve
better model fits and clustering results compared to the standard MFA model. It also
shows that using an incorrect parametric form can lead to undesirable answers, even when
the data is well separated.
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MFA MtFA MSLFA MCNFA
BIC 7839.09 7762.51 7769.87 7806.69
ARI 0.8764 0.9801 0.9801 0.984
Time (seconds) 0.1137 0.8499 100.351 0.5446
Inferred g 3 2 2 2

Table 6.1: The BIC, ARI, fitting time (in seconds) and inferred value of g for the best
MFA, MtFA, MSLFA and MCNFA models (according to the BIC) on the synthetic two-
component mixture of t-distributions dataset.

MFA MGHFA MFA-BS MFA-L
BIC 7839.09 7812.43 7812.26 7739.02
ARI 0.8764 0.984 0.9801 0.6419
Time (seconds) 0.1137 7.0192 0.9208 1.8228
Inferred g 3 2 2 5

Table 6.2: The BIC, ARI, fitting time (in seconds) and inferred value of g for the best
MFA, MGHFA, MFA-BS and MFA-L models (according to the BIC) on the synthetic
two-component mixture of t-distributions dataset

6.2 Simulation Study 2

The second simulation study will compare the MFA model to the MMVMNFA models on
multivariate data exhibiting both heavy tails and multivariate skewness. To achieve this,
we created a synthetic two-component mixture of generalised hyperbolic distributions
dataset by randomly generating

Y1, . . . ,Y500

i.i.d⇠ GH3 (�1,!1,!1,µ1
,⌃1,�1

)

and
Y501, . . . ,Y1000

i.i.d⇠ GH3 (�2,!2,!2,µ2
,⌃2,�2

) ,

where the location vectors are given by

µ
1
=
⇥
�10 �5 �15

⇤>
, µ

2
=
⇥
15 0 10

⇤>
,

the stochastic mean vectors are given by

�
1
=
⇥
5 5 10

⇤>
, �

2
=
⇥
�2 4 �2

⇤>
,

the scale matrices are given by ⌃1 =
p
2I3, ⌃2 = I3, and where �1 = 5, �2 = 2, !1 = 5

and !2 = 10.
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Figure 6.2 shows pairwise scatter plots of the resulting dataset. This dataset clearly
exhibits multivariate skewness as well as heavy tails, as, for example, the black component
has heavy tails in the positive-x positive-y direction, but no corresponding heavy tail in
the negative-x negative-y direction.
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Figure 6.2: The synthetic two-component mixture of generalised hyperbolic distributions
dataset with the first 500 points coloured black and the second 500 coloured purple.

MFA MtFA MSLFA MCNFA
BIC 14938.9 14939.3 14935.8 14952.7
ARI 0.839 0.7644 0.7632 1.0
Time (seconds) 0.0342 0.5188 94.4417 0.5521
Inferred g 3 3 3 2

Table 6.3: The BIC, ARI, fitting time (in seconds) and inferred value of g for the best
MFA, MtFA, MSLFA and MCNFA models (according to the BIC) on the synthetic two-
component mixture of generalised hyperbolic distributions dataset.

Table 6.3 and Table 6.4 show the BIC, ARI, fitting time and inferred number of compo-
nents for the best model of each type, chosen according to the BIC. Since p = 3 again, no
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MFA MGHFA MFA-BS MFA-L
BIC 14938.9 14825.4 14813.5 14855.0
ARI 0.839 1.0 1.0 0.9766
Time (seconds) 0.0342 5.9934 1.3639 1.0793
Inferred g 3 2 2 3

Table 6.4: The BIC, ARI, fitting time (in seconds) and inferred value of g for the best
MFA, MGHFA, MFA-BS and MFA-L models (according to the BIC) on the synthetic
two-component mixture of generalised hyperbolic distributions dataset.

inference on q is required for this example either. In this case, we observe that all but the
MGHFA, MFA-BS and MCNFA models incorrectly inferred three components. The three
aforementioned models all correctly inferred two components and also achieved perfect
ARIs. In comparison, the MFA model inferred three components and obtained a much
lower ARI of 0.839.

Interestingly, the BIC of the best MFA model was actually lower than the BIC of the
best MCNFA model. However, the MCNFA model clearly describes the sub-population
structure of the dataset better than the MFA model, as it correctly inferred the number
of components where the MFA model did not, and also achieved a perfect ARI.

The BIC of the best MFA model was actually lower than the BIC of the best MtFA model
(although by less than 0.5), but the MFA model also achieved a considerably higher ARI,
which suggests that it describes the dataset better than the MtFA model. In addition,
while the best MSLFA model obtained a slightly lower BIC than the best MFA model,
this di↵erence was less than four, so it does not provide strong evidence to suggest that
the MSLFA model was superior. In addition, the ARI of the best MSLFA model was also
much lower than the ARI of the best MFA model, which in combination suggests that
the best MSLFA model is no better than the standard MFA model for this dataset.

However, we observe that the di↵erences in BIC between the best MGHFA, MFA-BS
and MFA-L models and the best MFA model were all greater than ten. The lowest BIC
overall was achieved by the MFA-BS model. In addition, of these three only the MFA-L
model incorrectly inferred a third component, but its ARI was still higher than that of the
best MFA model which also incorrectly inferred three components. The two best models
according to the BIC, the MFA-BS and MGHFA models, also both achieved perfect ARIs
of 1.0. Recalling that each of these three models can all capture multivariate skewness
whereas the former three cannot, these results are not altogether surprising. This example
shows that, as expected, the MMVMNFA models, and in particular the most general cases
where �i 6= 0, are more suitable than the standard MFA model for modelling multivariate
data with skewness and heavy tails.
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6.3 Seeds data

The next dataset which we will consider contains measurements of the geometrical prop-
erties of the seeds of three di↵erent wheat varieties [Charytanowicz et al., 2010]. The three
varieties of wheat are Kama, Rosa and Canadian. Seventy randomly selected seeds of each
variety were chosen and their geometrical properties measured. The dataset has seven
predictor variables: area (A), perimeter (P ), compactness (C = 4⇡A/P 2), the length
of the kernel, the width of the kernel, the kernel’s asymmetry coe�cient and finally the
length of the kernel’s groove. All of these variables are real-valued and continuous. For
this dataset, the Ledermann bound is qmax = 3, so each model searched over the range
1  q  3.

While testing the models on real data is important, it is worth noting that it introduces
an additional challenge. Namely, we no longer know the “correct” clustering of the data.
For example, if one of the seed varieties was a sub-species of another, it could happen that
these two sub-populations are not well separated. Hence, while the clusters produced by
the mixture models may be more representative of the observed sub-population structure
of the data, they may also be very di↵erent to those given by the variety labels. Figure 6.3
shows pairwise scatter plots for the variables in this dataset, coloured by seed type. In
this particular case, seeds of the same type appear to form clusters. Some of the variables
appear to be poorly separated, but there are also several which appear to be relatively
well separated. We therefore expect that a good model for the data should be able to
reconstruct the seed labels via the inferred clusterings relatively e↵ectively.

Table 6.5 and Table 6.6 show the BIC, ARI, fitting time, inferred number of components
and inferred number of factors for the best model of each type, chosen according to
the BIC. We see that in reality, the only model which correctly inferred the number of
components was the MGHFA model, which also achieved the highest ARI. The second
highest ARI was achieved by the MCNFA model, which inferred g = 4. The remaining
MMVMNFA models all inferred g = 2 and achieved equal or lower ARIs than the regular
MFA model, which also inferred g = 2. The MFA-L model achieved the lowest BIC for
this dataset, followed by the MCNFA model and then the MGHFA model. The di↵erences
in BIC between each of these models and the BIC of the best MFA model were all over
1,000, which provides very strong evidence that they are better models for this data than
the MFA model. Overall, we see that models from the MMVMNFA family are once again
able to outperform the MFA model in terms of overall model fit and clustering ability.

6.4 Australian Institute of Sport (AIS) data

The final dataset which we will consider is the Australian Institute of Sport (AIS) dataset
[Telford and Cunningham, 1991]. It contains 12 predictor variables for 102 male athletes
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Figure 6.3: Pairwise scatter plots of the seeds dataset. The plots are coloured by seed
type, purple points for Kama, blue for Rosa and black for Canadian.
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MFA MtFA MSLFA MCNFA
BIC -339.49 -332.308 -325.461 -1770.87
ARI 0.5299 0.5299 0.5299 0.6964
Time (seconds) 0.0062 0.1429 24.1094 0.2376
Inferred g 2 2 2 4
Inferred q 2 2 2 3

Table 6.5: The BIC, ARI, fitting time (in seconds), inferred value of g and inferred value
of q for the best MFA, MtFA, MSLFA and MCNFA models (according to the BIC) on
the seeds dataset.

MFA MGHFA MFA-BS MFA-L
BIC -339.49 -1477.42 -468.199 -1912.25
ARI 0.5299 0.7719 0.4902 0.4462
Time (seconds) 0.0062 2.1853 0.4047 0.0591
Inferred g 2 3 2 2
Inferred q 2 3 1 2

Table 6.6: The BIC, ARI, fitting time (in seconds), inferred value of g and inferred value
of q for the best MFA, MGHFA, MFA-BS and MFA-L models (according to the BIC) on
the seeds dataset.

and 100 female athletes from the Australian Institute of Sport. The data contains 13
variables in total, of which two are categorical. The first of these is the sex of the athlete
and the second is the sport which the athlete plays. The sport variable has ten levels:
basketball, field, gym, netball, rowing, swimming, track (> 400m), track (sprinting),
tennis and water polo. The remaining 11 predictors are all numeric: the athletes’ red
cell count, white cell count, Hematocrit, Hemoglobin, plasma ferritin concentration, body
mass index, sum of skin folds, body fat percentage, lean body mass, height (cm) and
weight (kg). For this dataset, the Ledermann bound is qmax = 6.

In our analysis, we will compare our model based cluster labels against the sex of the
athletes. However, as noted for the seeds data, the sex variable may not be representative
of the observed sub-population structure. In particular, the sport variable adds additional
complexity. For example, the observed sub-population structure could include one cluster
for each sex plus an additional cluster for one of the ten sports for which the body
composition of its athletes is very distinct from the body composition of the rest of the
athletes.

With this in mind, we will fit two sets of models on the AIS dataset. The first will have
g = 2 fixed in advance in an attempt to “force” the models to recover the sub-population
structure based on sex. The second will search over 1  g  5 as in the rest of the studies
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in this chapter, which will allow the models to choose the optimal number of components
according to the data, even if this is not equal to two.
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Figure 6.4: Pairwise scatter plots of the AIS dataset. The points are coloured by sex,
black points for females and purple for males.

Figure 6.4 shows pairwise scatter plots of all of the numeric variables in the AIS dataset,
coloured by sex. We generally observe that the points often form clusters based on sex,
but that these clusters are often overlapping.

MFA MtFA MSLFA MCNFA
BIC 10080.8 9959.16 9951.67 9974.75
ARI 0.922 0.903 0.903 0.903
Time (seconds) 0.1154 0.202 20.0378 0.5204
g 2 2 2 2
Inferred q 4 4 4 4

Table 6.7: The BIC, ARI, fitting time (in seconds), value of g and inferred value of q for
the best MFA, MtFA, MSLFA and MCNFA models (according to the BIC) on the AIS
dataset when g = 2 is fixed in advance.
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MFA MGHFA MFA-BS MFA-L
BIC 10080.8 9985.45 9985.19 8998.11
ARI 0.922 0.922 0.8655 0.8289
Time (seconds) 0.1154 2.4583 1.0676 0.0903
g 2 2 2 2
Inferred q 4 4 4 6

Table 6.8: The BIC, ARI, fitting time (in seconds), value of g and inferred value of q for
the best MFA, MGHFA, MFA-BS and MFA-L models (according to the BIC) on the AIS
dataset when g = 2 is fixed in advance.

Table 6.7 and Table 6.8 show the BIC, ARI, fitting time, number of components and the
inferred number of factors for the best model of each type, chosen according to the BIC
when g = 2 is fixed in advance. We note that the MFA and MGHFA models obtain
the joint highest ARI, with the remaining models all obtaining lower ARIs. However,
the di↵erence in BIC between the best MFA model and the best of each MMVMNFA
model is greater than ten, indicating that they can still explain the observed data than
the original MFA model. In particular, the di↵erence between the BIC of the best MFA
model and the BIC of the best MGHFA model was almost 100 while their ARIs were
identical, which provides strong evidence to suggest that the MGHFA model is a superior
model compared to the MFA model in this case.

MFA MtFA MSLFA MCNFA
BIC 9981.9 9898.04 9892.52 9912.27
ARI 0.389 0.5326 0.543 0.4287
Time (seconds) 0.1196 0.4432 30.8393 0.3773
Inferred g 3 3 3 3
Inferred q 4 4 4 4

Table 6.9: The BIC, ARI, fitting time (in seconds), inferred value of g and inferred value
of q for the best MFA, MtFA, MSLFA and MCNFA models (according to the BIC) on
the AIS dataset when g is chosen via a näıve search between one and five.

Table 6.9 and Table 6.10, on the other hand, show the BIC, ARI, fitting time, inferred
number of components and the inferred number of factors for the best model of each
type, chosen according to the BIC when g is chosen via a näıve search between one and
five. In this case, we observe that all of the models inferred g = 3, except for the MFA-L
model which inferred g = 4. The ARIs of each model are all much lower than in the
previous analysis, but the same is also true of the BICs, as for each model the di↵erence
between its best restricted BIC and its best unrestricted BIC is greater than ten. This
suggests that while restricting the number of components to be equal to two causes the



120 Chapter 6. Applying MMVMNFA Models

MFA MGHFA MFA-BS MFA-L
BIC 9981.9 9960.81 9962.36 8905.62
ARI 0.389 0.4568 0.4522 0.3431
Time (seconds) 0.1196 2.1326 0.6872 0.0895
Inferred g 3 3 3 4
Inferred q 4 4 4 6

Table 6.10: The BIC, ARI, fitting time (in seconds), inferred value of g and inferred value
of q for the best MFA, MGHFA, MFA-BS and MFA-L models (according to the BIC) on
the AIS dataset when g is chosen via a näıve search between one and five.

inferred sub-population structure to align with the class labels based on the sex of the
athletes more closely, the data actually suggests that a three component model is more
appropriate. It is also worth noting that when the number of components is not fixed
at two in advance, the di↵erence in BIC between the best MFA model and the best of
each MMVMNFA model is greater than ten, which is strong evidence to suggest that the
MMVMNFA models are providing better model fits than the regular MFA model.

6.5 Summary

In this chapter, we used our Julia package FactorMixtures to demonstrate that the
MMVMNFA models developed in Chapter 5 outperform the standard MFA model when
the data exhibits heavy tails and/or skewness. We fitted the MFA model and each of the
six instances of MMVMNFA models from Chapter 5 to two synthetic datasets and two real
world datasets. We found that in each case, models from the MMVMNFA model family
outperformed the standard MFA model in terms of model fit and clustering accuracy.
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Conclusion

This thesis had three main goals: to produce a systematic comparison of the currently
available methods for fitting the MFA model in the case where its hyperparameters are
unknown, to release a software package for the statistical software R which contains im-
plementations of the automatic inference techniques for the MFA model for which no
publicly available R implementations exist, and to examine the possibility of extending
the MFA model. It achieved these aims by:

I Producing an R package which contains implementations of five methods for fitting
the MFA model when its hyperparameters are unknown. The package, autoMFA, is
publicly available on CRAN.

II Performing a systematic comparison of the current methods for automatically fitting
the MFA model. This included the five methods from the autoMFA package and two
additional methods from the IMIFA package.

III Extending the MFA model to enable parsimonious modelling of multidimensional
data with heavy tails and/or multivariate skewness via the MMVMNFAmodel family.
A new EM-type algorithm for this family was produced, and six specific instances
of the family were given along with complete EM-type algorithms for each instance.
Implementations of each of the EM-type algorithms are available in our Julia package
FactorMixtures.

7.1 Summary

This work reviewed seven methods for fitting the MFA model when its two hyperparam-
eters, g (the number of components) and q (the number of factors per component) are
unknown. The seven methods are a näıve grid search over both hyperparameters, the

121
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AMoFA algorithm from Kaya and Salah [2015], the VBMFA algorithm from Ghahramani
and Beal [1999], two implementations of the AMFA algorithm from Wang and Lin [2020],
and the OMIFA and IMIFA algorithms from Murphy et al. [2020].

To facilitate a comparison between the methods, the autoMFA package for the statistical
programming language R was created. This package contains implementations of each of
the methods mentioned above, except for OMIFA and IMIFA, for which R implementations
were already available via the IMIFA package [Murphy et al., 2021].

The methods were compared based on their ability to infer the two hyperparameters g and
q, as well as general model fit, the clustering accuracy of the fitted models and the amount
of time the models take to fit. The näıve grid search (implemented as the MFA ECM method
in autoMFA) achieved the highest overall mean ARI and BIC among the MFA methods.
It also had the highest Rasch model ability estimates for inferring g and q correctly, as
well as for inferring g with an error of within ±2. However, as the grid search needs to
search over a range of values for both g and q, it had the longest mean fitting time for
any of the methods. The IMIFA algorithm from the IMIFA package also performed well,
generally achieving results which were comparable with the näıve search. It also obtained
the joint highest ability estimate for inferring the number of factors to within an error of
±2. However, it is based on MCMC inference and therein shares the same weakness as the
näıve search, being the second slowest method, on average, in the comparison. The AMFA
algorithm (implemented as the AMFA method in autoMFA) is a reasonable alternative to
the aforementioned methods when computation time is a limiting factor. It also generally
managed to achieve comparable results to the näıve search method, but took less than
half the time to fit its models, on average.

Finally, the MFA model was extended to the MMVMNFA model family, which preserves
the parsimonious mixture model formulation of the MFA model whilst allowing the com-
ponent densities to belong to the more general MVMN family. A general ECM algorithm
for parameter estimation of this model family was derived, and the AMFA algorithm was
extended to this family as well. Six specific instances of the MMVMNFA model family
were provided, with full ECM algorithms provided for each instance. The examples were
demonstrated on two synthetic datasets and two real world datasets, where their superior
ability to model heavy-tailed data and data exhibiting multivariate skewness was demon-
strated in comparison to the standard MFA model. The Julia package FactorMixtures
is provided as a computationally e�cient way of fitting models from the MMVMNFA
family.
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7.2 Future Work

Further study in these areas could include the following topics. In the ECM algorithm for
the MMVMNFA model family, we assume that S̃i from Equation (2.40) has at least one
eigenvalue greater than unity, so that Equation (2.39) provides a real-valued update of the
factor loading matrix. In practice, this assumption doesn’t always hold, which can lead
to complex factor loading matrix updates. Further study should be conducted to find a
condition under which at least one eigenvalue is guaranteed to be greater than unity. The
introduction of the MMVMNFA family also poses a new question, namely which model
to choose from the family for a particular dataset. Further study could also be conducted
here to help choose an appropriate MMVMNFA model without having to fit several of
each type of model and then choose a final model according to a model selection criterion.
In addition, more special cases of the MMVMNFA family could be investigated. Another
possible direction for future work is the investigation of automated methods for fitting
the Mixtures of Common Factor Analyzers (MCFA) model [Baek et al., 2010], which is
an even more parsimonious variant of the MFA model where all of the factor loading
matrices are the same.

The Julia package FactorMixtures will be expanded upon in the future. As well as
e�ciency improvements, support for the generalisation of the AMFA algorithm (Algo-
rithm 3.1) for the MMVMNFA family (as proposed in Chapter 5) will be added. Another
potential addition is the ability for users to specify their own scaling density function with
corresponding E-step and M-step estimates.
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Appendix A

Mathematical details

A.1 The number of parameters required by the Gaus-
sian model and FA model

Recall the Gaussian model for the data Yj is

Yj ⇠ Np(µ,⌃),

independently for j = 1, . . . , n. Under this model, we need to estimate the p ⇥ 1 mean
vector µ and the p ⇥ p covariance matrix ⌃. The estimation of µ requires p scalar
parameters. Since ⌃ is symmetrical, we only need to estimate the elements of its upper
triangle (including those along the diagonal), which contains a total of

Pp
i=1

i = p(p+1)/2
scalar parameters. Hence,

k⇤
G
= p+

p(p� 1)

2
.

For the FA model, we need to estimate p scalar parameters for both the p ⇥ 1 mean
vector µ and the diagonal p ⇥ p error-variance matrix D. The estimation of the p ⇥ q
loading matrix B requires pq�q(q�1)/2 scalar parameters, since we need to apply exactly
q(q�1)/2 constraints to B to guarantee identifiability, as discussed in Section 2.2. Hence,

k⇤
FA
(p, q) = pq � q(q � 1)

2
+ 2p.
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A.2 Derivation of Equation (2.36)

In Equation (2.36), we want to find the log-likelihood of the parameters in ✓2. We assume
that we have the updated k+1st-step estimates for the parameters in ✓1, but un-updated
k-step estimates for the parameters in ✓2. We define

⇥(k+1/2) := (✓(k+1)

1
,✓(k)

2
)

to be the vector of partially updated k-step estimates. For notational convenience, define

l1 := `
⇣
✓2 | Y,Z;⇥(k+1/2)

⌘
,

to be the log-likelihood function of the parameters in ✓2, given the k+1st step estimates
of the parameters in ✓1. To evaluate l1, we begin as usual, breaking up the joint density
into a product of conditional densities.

l1 = log
nY

j=1

f
⇣
yj, zj | ✓2;✓1(k)

⌘

= log
nY

j=1

f
⇣
yj | zj,✓2;✓1(k)

⌘
f
⇣
zj | ✓2;✓1(k)

⌘

/ �1

2

nX

j=1

gX

i=1

zij
⇣
log |BiB

>
i +Di|+ (yj � µi

(k+1))>
�
BiB

>
i +Di

��1

(yj � µ(k+1)

i )
⌘
.
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Noticing that the Mahalanobis distance term is a scalar, by definition it must be equal to
its own trace. Accordingly,

l1 = �1

2

nX

j=1

gX

i=1

✓
zij log |BiB

>
i +Di|

+ zij tr
n
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.

Taking the conditional expectation of l1 given the observed data and then multiplying
and dividing the trace term by n⇡(k+1)

i shows that the Q-function is given by

Q
⇣
✓2;⇥

(k+1/2)
⌘
/ �n

2

gX

i=1

⇡(k+1)

i

h
log |BiB

>
i +Di|+ tr

n�
BiB

>
i +Di

��1

S(k)
i

oi
,

as desired, where

S(k)
i :=

1

n⇡(k+1)

i

nX

j=1

⌧ (k)ij (yj � µ(k+1)

i )(yj � µ(k+1)

i )>.
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Consider the expression

Qi / �n

2
⇡i

�
log |⌃i|+ tr

�
⌃�1

i Si

 �
,
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where as usual ⌃i = BiB
>
i +Di. Then

@Qi

@⌃i
= �n

2
⇡i

⇥
⌃�1

i �⌃�1

i Si⌃
�1

i

⇤
,

which we obtain by applying Identities 57 and 124 from Petersen and Pedersen [2012].

Noting that when viewed as a function of Di, ⌃i is just Di plus a constant, it follows
immediately that

@Qi

@Di
= �n

2
⇡i

⇥
⌃�1

i �⌃�1

i Si⌃
�1

i

⇤
,

as desired.

To find @Qi

@Bi
, we will use the matrix chain rule, which states that

@Qi

@bkj
=

nX

i0=1

nX

j0=1

@Qi

@⌃i0j0

@⌃i0j0

@bkj
,

where we are using the shorthand ⌃i0j0 to mean [⌃i]i0j0 and bkj = [Bi]kj. For convenience,
define Fi = �n

2
⇡i(⌃

�1

i �⌃�1

i Si⌃
�1

i ). Then we know that

@Qi

@⌃i0j0
= [Fi]i0j0 := fi0j0 .

With respect to Bi, ⌃i is just BiB
>
i plus a constant. If we define b̃m,l =

Pn
h=1

bmhblh,
then ⌃i is proportional to the following matrix (here we have assumed, without loss of
generality, that k  j.

2

66666666666666666664
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Suppose for the moment that we were interested in di↵erentiating Qi with respect to bkj.
We need to know which elements of ⌃i depend on bkj, because these will be the only
elements where @⌃i0j0/@bkj is not equal to zero.
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Notice that b̃m,l will depend on bkj only if one or both of m and l is equal to k. So we are
only interested in the entries of ⌃i of the form [⌃i]kx or [⌃i]xk, where x 2 {1, . . . , n}. In
other words, we see that the only entries of ⌃i which depend on bkj occur in the kth row

or column of ⌃i. So we know that
@⌃i0j0

@bkj
will be zero except for in row or column k. In

other words, we can write

@Qi

@bkj
=

nX

r=1

fkr
@⌃kr

@bkj
+

nX

r=1
r 6=k

frk
@⌃rk

@bkj
.

Also,

@⌃kr

@bkj
=

@

@bkj

 
nX

h=1

brhbkh

!

= brj + I{r=k}brj.

Because of the symmetry of ⌃i and Si, we know that fkr = frk and ⌃kr = ⌃rk. So it
follows that

@Qi

@bkj
=

nX

r=1
r 6=k

fkr
@⌃kr

@bkj
+

nX

r=1
r 6=k

frk
@⌃rk

@bkj
+ 2

nX

r=1

fkkbkj

= 2
nX

r=1

fkrbrj,

which is just the (k, j)th element of

�n⇡i

�
⌃�1

i Bi �⌃�1

i Si⌃
�1

i Bi

�
.

So we can conclude that

@Qi

@Bi
= �n⇡i(⌃

�1

i Bi �⌃�1

i Si⌃
�1

i Bi),

as desired.

A.4 Derivation of Equation (2.41)

We can derive Equation (2.41) using the following argument. For notational convenience,
define

c1 :=

����
h
D(k)

i

i� 1
2

���� ·
����B̂

(k+1)

imi

h
B̂

(k+1)

imi

i>
+D(k)

i

���� ·
����
h
D(k)

i

i� 1
2

���� .



130 Appendix A. Mathematical details

It follows immediately that
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Next, consider the general block partitioned matrix
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where A and D are square invertible sub-matrices. Then
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For proof of this result, see Zhang [2005]. We will apply this result to the block partitioned
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A.5 Derivation of Equation (2.44)

We wish to show that
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so

t1 = tr
n
S̃i

o
� tr

⇢h
D(k)

i

i� 1
2
B̂

(k+1)

imi
⇤mi⇤

�1

mi

h
B̂

(k+1)

imi

i> h
D(k)

i

i� 1
2

�

= tr
n
S̃i

o
� tr

⇢h
D(k)

i

i� 1
2
B̂

(k+1)

imi

h
B̂

(k+1)

imi

i> h
D(k)

i

i� 1
2

�

= tr
n
S̃i

o
� tr

⇢h
B̂

(k+1)

imi

i> h
D(k)

i

i�1

B̂
(k+1)

imi

�

= tr
n
S̃i

o
� tr {⇤mi � Imi}

=
pX

l=1

�l �
miX

l=1

(�l � 1).

The second to last step is justified in Appendix A.4.

A.6 Derivation of Equation (2.45)

Define
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Equation (2.45) follows from Equation (2.44)
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using Equation (2.41) and Equation (2.44). Recall that we want to find the optimal value
of mi, and the sums which run from 1 to p are clearly constant with respect to mi, so
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A.7 Derivation of Equation (2.50)

Recall Equation (2.48),
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and Equation (2.49),
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�1

il

� (!il + !2

ile
>
l C

�1

il el)C
�1

il ŜC
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After premultiplying both sides by e>l and postmultiplying both sides by el, all but the
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A.8 Joint Density of the MSMNFA Family With Dis-
crete Scaling Variables

The following argument derives the expression in Equation (5.10), which we use to justify
that the ECM algorithm for the MSMNFA model with continuous scaling variables also
applies in the case where the scaling variables are discrete. We begin by breaking up the
joint density into a product of conditional densities.

Then, because we now have a PMF for the scaling variables instead of a PDF, we introduce
an additional 25indicator variable for which realisation of Wj has occurred. This allows
us to condition on the outcome of Wj without introducing a sum over m 2 W , which we
would have obtained by applying the Law of Total Probability.

f(x;⇥) =
nY

j=1

f(xj;⇥)

=
nY

j=1

f(yj | Zj,Wj;⇥)f(wj | Zj;⇥)f(zj;⇥)

=
nY

j=1

gY

i=1

�
⇡if(yj | Zij = 1,Wj;⇥)f(wj | Zij = 1;⇥)

 zij

=
nY

j=1

gY

i=1

⇢
⇡i

Y

m2W

�
f(yj | zij = 1, wj = m;⇥)⇥

Pr(Wj = m | Zij = 1;⇥)
 I{Wj=m}

�zij

=
nY

j=1

gY

i=1

⇢
⇡i

Y

m2W

⇢
�p

✓
yj;µi,

1

m
(BiB

>
i +Di)

◆
⇥

Pr(Wj = m | Zij = 1;⇥)

�I{Wj=m}
�zij

.

Taking the natural logarithm of both sides gives the desired result, that is
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A.9 Marginal Density for the MtFA Model

The marginal density of the MtFA model can be obtained by applying the following
marginalisation argument.
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After noticing that this is the integral of the kernel of a Gamma((p+⌫i)/2, (�i(yi)+⌫i)/2)
random variable over its support, it is clear that
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where dij = (yj � µi)
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>
i +Di)�1(yj � µi) is the Mahalanobis distance. This is the

density function of the tp distribution with parameters µi, BiB
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marginal distribution of Yj | Zij = 1 is
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A.10 Posterior Distribution of MtFA Scaling Vari-
ables

To derive the posterior distribution of the scaling variables for the MtFA model, consider
the following Bayesian argument.
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Appendix B

Systematic Comparison Figures

This appendix contains histograms of the inferred number of components and the inferred
number of factors for each model and for each experiment group.
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Appendix C

R Code

C.1 Simple EM example

The following R code shows an implementation of the simple EM algorithm derived in
Example 3.

#First we define a function to perform the E-steps for us

Estep <- function(Y, mu, s, pivec ){

#Simple function to calculate the E-step of the EM algorithm for

#a univariate Gaussian Mixture model. Y is an nxp data matrix ,

#mu is a vector of component means , s is a vector of component

#variances , pivec is a vector of mixing proportions. The length

#of these vectors , g, is the number of components.

g <- ncol(pivec)

if (!is.matrix(Y))

Y <- as.matrix(Y)

p <- ncol(Y)

n <- nrow(Y)

Fji <- array(NA , c(n, g))

for (i in 1:g) {

Fji[, i] <- dnorm(Y,mean = mu[i], sd = sqrt(s[i]),

log = TRUE)

}

Fji <- sweep(Fji , 2, log(pivec), "+")

Fjmax <- apply(Fji , 1, max)

Fji <- sweep(Fji , 1, Fjmax , "-")

loglike <- sum(Fjmax , log(rowSums(exp(Fji ))))
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Fji <- exp(Fji)

tau <- sweep(Fji , 1, rowSums(Fji), "/")

return(list(logL = loglike , tau = tau))

}

#Next we set a seed and generate some synthetic data

set.seed (123)

data <- c(rnorm (500,0,1), rnorm (1000 ,3 ,.4))

#We can plot a histogram of this data and compare it to the

#density function of the true underlying mixture model as well

#as the density of the model defined by the initial EM estimates

hist(data , breaks = 28, freq = FALSE , col="skyblue2",

xlab = "Value", main = "")

curve(1/3*dnorm(x,0,sqrt (1))+2/3*dnorm(x,3,sqrt (.4^2)) ,

add=T, lwd=3)

curve(1/2*dnorm(x,1 ,1)+1/2*dnorm(x,2,1),

add=T, lwd=3, col = 'red')
#Next we initialise the containers for the EM variables

pi = matrix(c(0.5 ,0.5) , nrow = 1)

mu = matrix(c(1,2), ncol = 1)

sigma = matrix(c(1,1),ncol = 1)

#Performing the first E-step and then the first M-step

#outside of loop

Y <- matrix(data ,ncol = 1)

estep <- Estep(Y,mu ,sigma ,pi)

n <- nrow(Y)

pi <- matrix (1/n * colSums(estep$tau), nrow = 1)

for(i in 1:2){

Ymu <- Y - matrix(rep(mu[i], n), nrow = n)

sigma[i] <- 1/sum(estep$tau[,i])*
sum(sweep(Ymu^2,1,estep$tau[,i],'*'))

mu[i] <- 1/sum(estep$tau[,i])*
sum(sweep(Y,1,estep$tau[,i],'*'))

}

#Plotting the densities after one EM iteration

hist(data , breaks = 28, freq = FALSE , col="skyblue2",

xlab = "Value", main = "")

curve(1/3*dnorm(x,0,sqrt (1))+2/3*dnorm(x,3,sqrt (.4^2)) ,

add=T,lwd=3)

curve(pi[1]*dnorm(x,mu[1],sqrt(sigma [1]))+

pi[2]*dnorm(x,mu[2],sqrt(sigma [2])),

add=T,lwd=3, col = 'red')
#Performing nine more EM steps in a loop

estep <- Estep(Y,mu ,sigma ,pi)
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for(k in 2:10){

pi <- matrix (1/n * colSums(estep$tau), nrow = 1)

for(i in 1:2){

Ymu <- Y - matrix(rep(mu[i], n), nrow = n)

sigma[i] <- 1/sum(estep$tau[,i])*
sum(sweep(Ymu^2,1,estep$tau[,i],'*'))

mu[i] <- 1/sum(estep$tau[,i])*
sum(sweep(Y,1,estep$tau[,i],'*'))

}

estep <- Estep(Y,mu,sigma ,pi)

#Plotting the results after each iteration

hist(data , breaks = 28, freq = FALSE , col="skyblue2",

xlab = "Value", main = "")

curve (1/3*dnorm(x,0,sqrt (1))+2/3*dnorm(x,3,sqrt (.4^2)) ,

add=T,lwd=3)

curve(pi[1]*dnorm(x,mu[1],sqrt(sigma [1]))+

pi[2]*dnorm(x,mu[2],sqrt (sigma [2])),

add=T,lwd=3, col = 'red')
}
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