
Fuzz Driver Generation

Supun Jeevaka Dissanayake

A thesis submitted for the degree of
MASTER OF PHILOSOPHY

The University of Adelaide

June 27, 2022

iii

Contents

Abstract xi

Declaration of Authorship xiii

Acknowledgements xv

1 Introduction 1
1.1 What is fuzzing? . 1

1.1.1 Types of fuzzing . 2
1.1.2 Fuzzers . 2
1.1.3 Fuzzer performance metrics . 3

1.2 What is a fuzz driver? . 3
1.3 The relationship between the code complexity and the fuzzing campaign 4
1.4 Research objectives and questions . 5
1.5 Research methodology . 7
1.6 Thesis contributions . 8
1.7 Other contributions . 8

2 Fuzz driver generation for fuzz testing 11
2.1 Introduction . 11
2.2 Background on fuzz drivers . 14
2.3 Methodology . 15
2.4 Findings . 18

2.4.1 Context of fuzz driver mentions in fuzzing research 18
2.4.2 Fuzz driver requirements . 19
2.4.3 Fuzz driver development practices 19
2.4.4 Fuzzer and fuzz driver evaluation techniques 21

2.5 Context of fuzz driver mentions in fuzzing research 21
2.6 Requirements for fuzz driver development 22

2.6.1 Characteristics of a fuzz driver 22
2.6.2 Function identification . 23
2.6.3 Path identification . 23

Reaching hard to reach components of the code 23
2.6.4 Program state and control flow identification 24
2.6.5 Types of bugs . 24
2.6.6 Garbage collection in fuzzing 24
2.6.7 Importance of the seed corpus 25
2.6.8 Accommodating parallel fuzzing and multi-threading 25
2.6.9 Speed and timeouts . 25
2.6.10 Difficulties of manual fuzz driver development and the need for

automation . 25
2.7 Fuzz driver development . 26

2.7.1 Fuzz driver generation steps . 26

iv

2.7.2 Source code analysis for target selection 26
Human interference: target identification by a software developer 27
Annotations/code comments 27
Unit tests . 28
Abstract-syntax tree . 29
Program slicing . 29
Function signature monitoring 30

2.7.3 Function dependency identification and fuzz driver synthesis . . 31
Human interference: function dependency identification by a

software tester . 32
Program analysis . 32
Avoidance of function dependency identification 34

2.7.4 Interfaces fuzzed . 35
2.7.5 The use of fuzzers . 36
2.7.6 Availability of source code for research replication 36

2.8 Evaluation methods . 37
2.9 Fuzz driver development software that does not associate with a re-

search study . 38
2.10 Research gaps and future directions . 39
2.11 Limitations and threats to validity . 39
2.12 Summary . 40

3 What is the best fuzz driver generation strategy? 43
3.1 Introduction . 43
3.2 Background and related work . 44

3.2.1 Fuzz Target Generator (FTG) 45
3.2.2 FuzzGen . 48
3.2.3 Other fuzz driver generators . 51
3.2.4 Fuzzer metrics for LibFuzzer 52
3.2.5 Code complexity analysis . 53

Cyclomatic Complexity . 53
Halstead Metrics . 54

3.3 Methodology . 55
3.3.1 Collection of manually developed fuzz drivers 55
3.3.2 Generating fuzz drivers . 56

3.4 Findings . 57
3.4.1 Fuzzing . 57

Fuzz driver compatibility . 58
3.4.2 Analysis of bug identification 58
3.4.3 Analysis of code coverage . 60
3.4.4 Analysis of code complexity measures 61

Analysis of cyclomatic complexity 62
Analysis of Halstead metrics . 64

3.5 Limitations and threats to validity . 67
3.6 Summary . 67

4 Conclusion and future work 71
4.1 Conclusion . 71
4.2 Future directions . 72

4.2.1 Novel ways to improve information transfer from function sig-
natures to a fuzz driver . 72

v

4.2.2 Novel ways to automate unit test to fuzz driver conversion . . . 72
4.2.3 Minimising human effort in semi-automated fuzz driver devel-

opment . 72
4.2.4 Inclusion of single function fuzz driver generation capacity for

state of the art automatic fuzz driver generators 73
4.2.5 Development of fuzz drivers for multiple libraries 73
4.2.6 Comparison of micro fuzzing and fuzzing campaigns with fuzz

drivers . 73
4.2.7 Fuzz driver development automation for multiple programming

languages . 73
4.2.8 More applications of function importance ranking algorithms . 74

5 Appendix A: Selected studies in the systematic literature review 75

vii

List of Figures

2.1 Fuzz testing life-cycle. 12
2.2 Number of papers that mentions fuzz drivers vs the publication year. . 12
2.3 Distribution of papers along publication years. 13
2.4 Overview of the methodology. 15
2.5 Stages of fuzz driver development process. 27

3.1 Human involvement in semi-automated fuzz driver development. . . . 45
3.2 Fuzz driver development through FTG. 46
3.3 Fuzz driver development through FuzzGen. 50
3.4 Systematic collection of manually developed fuzz drivers. 56
3.5 Three sets of fuzz drivers from gathered target functions. 57
3.6 The number of target functions that are compatible with all three fuzz

driver development techniques. 61
3.7 Cyclomatic complexity vs code coverage of manually written fuzz drivers. 62
3.8 Cyclomatic complexity vs code coverage of FTG fuzz drivers. 63
3.9 Cyclomatic complexity vs code coverage of FuzzGen fuzz drivers. . . . 63
3.10 Halstead volume vs code coverage of manually written fuzz drivers. . . 65
3.11 Halstead volume vs code coverage of FTG fuzz drivers. 66
3.12 Halstead volume vs code coverage of FuzzGen fuzz drivers. 66

ix

List of Tables

2.1 Search terms and number of Google Scholar results. 17
2.2 Prioritisation of fuzz driver generation in research papers. 21
2.3 Fuzz driver development strategies. 26
2.4 Types of fuzzers. 36
2.5 Open-Source access to findings. 36
2.6 Fuzzer evaluation methods. 37
2.7 Fuzz driver evaluation methods. 38

3.1 Fuzz driver compatibility with target functions. 58
3.2 Number of crashes, false positives and bugs. 59
3.3 Percentage of bugs to projects. 59
3.4 Code coverage. 60
3.5 Percentage increase in average code coverage when cyclomatic complex-

ity (CC) of the target function goes beyond 50. 64

A Selected studies in the systematic literature review. 75

xi

University of Adelaide

Abstract

Fuzz Driver Generation

by Supun Jeevaka Dissanayake

Poor software quality has led to tremendous costs and safety disasters, thus, software
defects make the news with alarming regularity. Fuzzing is a bug detection technique.
In particular, it is a software testing method where a stream of random input is sent
to an application to stress the application and cause unexpected behaviour, resource
leaks or crashes. When it comes to fuzzing software libraries, a fuzz driver plays an
important role because it is the binder between the fuzzer and the target program.
Traditionally fuzzing was used in closed-source platforms and also it is used to find
vulnerabilities in kernels. However, recent developments show that fuzzing is now
applied to open-source libraries.

This research study analyses the role of a fuzz driver in the domain of fuzzing to
recognise its importance, applications, techniques, challenges and future directions.
This study intends to explore the state-of-the-art fuzz driver development strategies
and identify trends in research and areas of potential improvements. We identified
that fuzz driver generation is mainly seen as a minor activity in fuzzing research. It
was evident that the development of a fuzz driver is laborious and time-consuming in
nature but multiple innovative methodologies have been adopted in recent years to
ease this task

There are three main techniques to develop a fuzz driver: software developers
manually writing a fuzz driver, semi-automatic generation of a fuzz driver through
human-in-the-loop approaches and fully automatic generation of a fuzz driver. This
research study evaluates these techniques through case studies and empirical analysis
to recognise the best state-of-the-art fuzz driver generation strategy available for re-
searchers and software testers. Our results show that manually developed fuzz drivers
still outperform other methodologies in terms of performance but our results show how
other methodologies could surpass their performance levels. Furthermore, this study
analyses the effect of varying complexity levels of target functions on the performance
of the fuzzing campaigns initiated through multiple fuzz driver generation techniques.

http://www.adelaide.edu.au

xiii

Declaration of Authorship
I, Supun Dissanayake certify that this work contains no material which has been

accepted for the award of any other degree or diploma in my name, in any university
or other tertiary institution and, to the best of my knowledge and belief, contains no
material previously published or written by another person, except where due reference
has been made in the text. In addition, I certify that no part of this work will, in the
future, be used in a submission in my name, for any other degree or diploma in any
university or other tertiary institution without the prior approval of the University of
Adelaide and where applicable, any partner institution responsible for the joint-award
of this degree.

I acknowledge that copyright of published works contained within this thesis re-
sides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to
restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an University of Adelaide School of Computer Science Scholarship.

Supun Jeevaka Dissanayake

December 2021

xv

Acknowledgements
This study was made possible by the cooperation and assistance received from a num-
ber of people during my study at the University of Adelaide. My academic journey at
the University of Adelaide would not have been possible without my three supervisors,
Associate Professor Markus Wager, Dr Yuval Yarom and Dr Christoph Treude. It is
through their wisdom and encouragement that this work has come to fruition.

I would like to thank Associate Professor Markus Wagner for his useful comments
and guidance provided throughout my time at the University of Adelaide, and for his
valuable support, encouragement and strength during my studies.

I would like to thank Dr Yuval Yarom for constantly helping me through difficult
technical tasks that I carried out during my time at the University of Adelaide. It
was a great honour to work with such an inspiring and outstanding Cyber Security
research group headed by Yuval at the School of Computer Science. Furthermore, I
am grateful that my scholarship was covered through Yuval’s startup funding grant.

I would like to thank Dr Christoph Treude for the guidance, comments and kind
help provided during my research journey. I am most grateful to him for inviting me
to join him at the University of Adelaide. Also, his great support allowed me to carry
out collaborative studies with the Federal University of Pernambuco and publish a
very high-quality research paper.

My work was supported by the University of Adelaide School of Computer Science
scholarship, which I gratefully acknowledge. This Scholarship allowed me to focus on
my studies by covering all of my living expenses.

I also would like to thank my parents and my close friends in Adelaide for all their
kind support, love and care provided throughout my research journey.

1

Chapter 1

Introduction

Software Quality Assurance is one of the most significant aspects of the software
development process. There are a variety of quality assurance techniques adopted in
the industry to nullify modern security threats faced by software systems. Fuzzing is
regarded as one of the most effective software vulnerability identification techniques
to identify security and reliability issues in computer software.

Fuzzing was invented by Barton Miller at the University of Wisconsin [106].
Fuzzing is a technique for identifying software faults. The core concept behind fuzzing
is to send randomly generated input to a target program and check whether the pro-
gram behaves correctly. If the program crashes, the fuzzer knows that something is
wrong and it can provide the input that causes the problem and the location where
the problem occurred to the software tester for further analysis.

Fuzzing is widely used to identify software exploits in penetration testing. Software
testers and researchers use fuzzing as a technique to identify software vulnerabilities
before those vulnerabilities are identified by attackers. Therefore, defensive measures
can be taken to protect the software product. Software giants such as Adobe [1],
Cisco [26], Google [51], and Microsoft [104] use fuzzing as part of their secure devel-
opment practices. It is evident from recent research studies that both open-source
software developers [131] and security auditors [181] have adopted fuzzing to enhance
the security in their software and prevent vulnerabilities.

There are a variety of software projects that involve fuzzing that is available as
open-source products. For example, GitHub [45] itself contains thousands of projects
with fuzzing entities. Furthermore, fuzzing research is a common occurrence in soft-
ware engineering and security conferences. However, there are multiple areas of fuzzing
that are yet to be explored, hence the motivation behind this research thesis.

1.1 What is fuzzing?

The term “fuzz” comes from the work of Miller et al. [106], published in 1990. Following
that research study, fuzzing has appeared in a variety of research scenarios, including
in dynamic symbolic execution [150], complexity testing [174], kernel testing [77], GUI
testing [152], grammar-based test case generation [73] etc.

There is a range of terminology in fuzzing. The terms “Fuzzing” or “Fuzz Testing”
refers to the process of running the target program with a set of input that it might
not be expecting to receive. This process triggers behaviour that was not desired by
the developer of the target program. “Fuzzer” is the software that carries out fuzzing.
A “Fuzzing Campaign” is the execution of the fuzzer on the target function with a
specific correctness policy. The purpose of the fuzzing campaign is to identify bugs
that violate the correctness policy. Also, the terms “Seed Input” or “Seed Corpus”
refer to the initial set of inputs that serves at the start point of the fuzzing campaign.

2 Chapter 1. Introduction

1.1.1 Types of fuzzing

Fuzzing can be divided into black box fuzzing, white box fuzzing and grey box fuzzing.
Black box fuzzing does not consider any knowledge regarding the target program
when it generates input. Black box fuzzing further subdivides into generational and
mutational black box fuzzing. Inputs are generated from scratch for generational black
box fuzzing and on the other hand, mutational black box fuzzing takes one or more
seed inputs and modifies them to generate further inputs for the fuzzing campaign.
These modifications include processes such as flipping random bits in the seed input.
Peach fuzzer is a well known black box fuzzer [17].

White box fuzzing is based on a methodology called symbolic execution [18]. White
box fuzzing uses program analysis to systematically reach deeper parts of the program
by increasing the code coverage. On this occasion, the code coverage is the depth of
the source code covered by the fuzzer in its fuzzing campaign. White box fuzzing
practices have thorough knowledge regarding the target program that is under test.

Grey box fuzzing uses the instrumentation of the program to receive lightweight
feedback about the program and then uses that information for the fuzzing cam-
paign [17]. Grey box fuzzers will instrument all the branches in the target program
and send the initial seed corpus to the compiled target program. Then the fuzzer
mutates these seed inputs to generate new inputs. These generated inputs go on to
cover new locations of the code by increasing the code coverage. The fuzzer receives
code coverage feedback and then using this information the grey box fuzzer tries to
reach deeper parts of the code. Some grey box fuzzers use memory-related bug detec-
tion platforms which are called sanitizers that provide information regarding the bug.
LibFuzzer [94] is an example of a grey box fuzzer with AddressSanitizer [138] acting
as its sanitizer. Another name for grey box fuzzing is coverage-guided fuzzing. In this
study, we focus on grey box fuzzing.

1.1.2 Fuzzers

Fuzzer is the software that triggers fuzzing; fuzzers enable the fuzzing process for
software testers. LibFuzzer [94] and American Fuzzy Lop (AFL) [179] are examples of
fuzzers that are widely used by software testers. Both fuzzers give feedback to their
users in terms of code coverage, the number of bugs, executions per second etc.

LibFuzzer [94] is produced by Google and it is aligned with fuzz benchmarks
of FuzzBench [44] and OSS-Fuzz [140]. FuzzBench is a standard set by Google to
evaluate fuzzer performance; OSS-Fuzz is an open-source fuzzing platform from Google
that allows vulnerability detection in security-critical software. LibFuzzer fuzzes the
program till it crashes. A system crash is when the software system or an operating
system no longer works by stopping all of its functions. The fuzzing campaign of
LibFuzzer aborts when it finds a crash or when the fuzzer times out. The time out
can also be manually set by a software tester for the target program.

AFL [178] also allows software testers to carry out fuzzing campaigns for their
desired software library. Similar to LibFuzzer, AFL is a coverage-guided fuzzer; it
tries to maximise the code coverage to improve its fuzzing capacity. If it identifies
an input that exercises a new branch, this new input is added to the seed corpus to
improve the code coverage in its next cycle.

The advances in coverage guided fuzzing (i.e. grey box fuzzing) [99, 138, 178]
allowed the production of software tools with the ability to reach deeper sections of the
program code to identify significant bugs. Due to this reason, fuzzing is widely adopted
in commercial and open-source software. Google adopted multiple fuzzing platforms to
test security in C and C++ libraries in both their internal and external code bases [7,

1.2. What is a fuzz driver? 3

62]. Google offers OSS-Fuzz through its ClusterFuzz project and they managed to
find above 10000 bugs in over 200 open-source projects through fuzzing [140].

Programming languages C and C++ seem to be the most popular for fuzzing re-
lated activities. This is mainly due to these programming languages containing unsafe
characteristics in memory management, which makes them prone to vulnerabilities [7].
AddressSanitizer helps the identification of bugs by instrumenting source code with
multiple checks, which identifies undefined behaviour in the C/C++ code regarding
memory corruption [138].

1.1.3 Fuzzer performance metrics

The purpose of fuzzing is to identify vulnerabilities in the program code. Therefore,
the metric that indicates the vulnerability of a program code is the number of bugs
identified through fuzzing. A software bug is a flaw, error or fault in a computer
program that results in producing an unexpected/incorrect result or behaving in an
unintended manner compared to its intended action [157]. Some of the example
bugs identified through fuzzing are buffer-overflows, integer overflows, stack overflows,
uninitialised memory etc., which cause security vulnerabilities. Research studies that
focus on applying fuzzing for their program code, conclude on the effectiveness of the
fuzzing campaign based on the number of bugs identified [43, 129, 134, 164].

The code coverage is the degree to which the target program is executed during
the fuzzing campaign. One of the measures of code coverage is block coverage, which
is the covering of straight-line code sequences without any branches. Code coverage
is another measurement that identifies the effectiveness of fuzzing. In particular,
LibFuzzer [94] measures the block coverage of the target program, which is one of the
measurements that we considered in this thesis.

Similarly, other than identifying bugs and code coverage, there are other factors
to measure the effectiveness of the fuzzing campaign [40, 43, 129, 147]. These include
fuzzing time [83, 113], fuzzing speed [42], number of inputs per crash [162] etc.

1.2 What is a fuzz driver?

One of the steps in the fuzzing life cycle is the writing of a fuzz driver, which is
a testing harness designed to exercise the software library code by passing inputs
to the target program. The fuzz driver acts as the bridge between the fuzzer and
the target program by directing the input from the fuzzer into the target program.
Therefore, it plays an essential role in the quality of the fuzzing campaign. If the fuzz
driver manages to capture the required aspects of the target program for fuzzing, the
fuzzing campaign will have high code coverage and a high rate of bug identification
and vice versa.

Some research studies propose to keep the fuzz driver small and only target a
single function at a time [28, 73, 94]. On the other hand, some other studies promote
fuzzing the whole code base [7, 62, 183]. Writing a fuzz driver for a small project
does not take much effort since there is a low number of functions; only a few fuzz
drivers should be written by software testers. However, when the size of the project
increases to a large codebase, there are hundreds of locations in the code that could
be benefited from a fuzzing campaign. Some fuzz drivers are compatible with multiple
fuzzers such as LibFuzzer [94], AFL [178], HongFuzz [59] to run a fuzz test.

To develop a good fuzz driver, the software tester must have a good understanding
of the target code, fuzz driver writing methodology and the fuzzer. The research study
of Kelly et al. [73] claims that the organisation should aid software testers in teaching

4 Chapter 1. Introduction

to write accurate fuzz drivers for their existing code base. Writing an efficient fuzz
driver is a time consuming task that requires deep knowledge regarding the target
codebase according to multiple research studies [7, 23, 50, 62, 65, 73, 90, 91, 114, 135,
142, 147, 149, 182, 186]. The software tester should clearly understand the details
about the interface of the target program and how it functions. For example, let’s
say that the target function is an image format library. Then the software tester
should know the image content specifics, format parsing operations, configuration of
library calls etc. [7]. Furthermore, crashes such as function pre-condition violations
due to the lack of understanding of the target function are not helpful for the fuzzing
campaign [7]. The deterministic behaviour of a fuzz driver is important since once a
bug is identified, the fuzzer should have the ability to reproduce that bug for further
analysis with the exact malformed inputs that caused the crash in the first place.

There are multiple ways of developing a fuzz driver. On most occasions, soft-
ware testers write the fuzz driver manually by themselves to test the program code.
However, during recent times, many research studies try to automate this manual
task [7, 62, 73, 183]. Attempts were taken to generate fuzz drivers semi-automatically
with human-in-the-loop approaches. For example, the work done by Kelly et al. [73]
requires the software tester to comment on the function that requires fuzzing and then
generates a fuzz driver for that commented function. On other occasions, projects like
Fudge [7] scan the code, identifies functions, function dependencies, data flow etc. and
synthesise a fuzz driver automatically.

When fuzz drivers are developed through the above-mentioned methods, the iden-
tification of bugs and code coverage seems to indicate their effectiveness as mentioned
in Section 1.1.3. Results of research studies [7, 62, 73, 183] show that the number of
bugs and code coverage are the key metrics that show the effectiveness of the fuzz
drivers. On occasions, two of the fuzz driving methods have been compared with
each other on a static level [183]. However, no study shows the effectiveness of the
three different fuzz driver development strategies from multiple states of the art tools
compared against each other for the same code base, in identical environments with
dynamic analysis of their performance. Thus opening up a research area to be ex-
plored.

1.3 The relationship between the code complexity and the
fuzzing campaign

When it comes to identifying the effectiveness of the fuzz driver and the fuzzer per-
formance, research studies tend to only focus upon metrics of the fuzzer such as the
number of bugs, code coverage, and executions per second to explore the fuzzer ef-
fectiveness. Therefore, there is a requirement to analyse the effectiveness of external
factors such as the quality of the target program in terms of code complexity for
the performance of the fuzzing campaign. There is no research study carried out to
compare the fuzz driver performance along with the code complexities of the target
code. Therefore, we aim to explore whether external factors such as the quality of the
target code have any effects on fuzzing and whether multiple fuzz driver development
strategies have any effect on these external factors and vice versa.

One of the most widely discussed and explored research areas in software quality
assurance is code complexity analysis. Source code complexity analysis also appears
in fuzzing research. The research study from Shudrak and Zolotarev [146] propose
the use of complexity metrics to improve fuzzing. They use complexity assessment
metrics to analyse the binary code and come up with solutions to decrease the time

1.4. Research objectives and questions 5

cost of the fuzzing campaign. Code complexity measurement techniques such as cy-
clomatic complexity [100] measure the number of linearly independent paths through
the program to measure the stability and the program confidence. Similarly, Halstead
metrics [54] measure the programs module complexity by calculating the number of
operations and operands. The study from Shudrak and Zolotarev [146] claims that
Halstead metrics shows the best performance in terms of identifying vulnerable routes.

The work from Li et al. [88] proposes the use of static analysis to evaluate the
complexity of the function. Then they use function complexities to aid input seed
prioritisation when fuzzing a software program. On this occasion, they use cyclomatic
complexity [100] and Halstead metrics [54] to identify function code complexity. They
claim that depending on the code complexity, the seed input should be carefully
selected to improve the code coverage of the fuzzing campaign.

Therefore, it is evident that cyclomatic complexity [100] and Halstead metrics [54]
appear multiple times in fuzzing related studies. Furthermore, these two metrics are
used in other software testing methods such as unit testing to identify the complexity
and the maintainability of the source code before the code is tested with unit tests [3,
37, 64, 123].

1.4 Research objectives and questions

Fuzz drivers are an essential aspect of the fuzzing life-cycle. There are a variety
of reasoning behind fuzz driver development and similarly, there are a variety of
methodologies adopted by researchers and software testers to develop fuzz drivers. It
is evident [7, 62, 70, 91] that fuzz driver development largely requires deep knowledge
of the code and a manual effort to write fuzz drivers. This brings up multiple challenges
for software companies.

Since the introduction of open-source software such as AFL [178] and Lib-
Fuzzer [94], there are standardised methods for fuzz driver development. These fuzzers
are widely used in the software testing domain hence multiple studies are carried
out around these fuzzers and fuzz drivers. Furthermore, with the rise of open-source
fuzzers, research studies start to explore the automation of fuzz drivers which is rather
a manual task [62].

As mentioned in Section 1.2, fuzz drivers are written manually, generated semi-
automatically with human-in-the-loop approaches and generated fully automatically.
However, most of the semi-automatic and automatic fuzz driver development tools
are not available for industry usage nor available as open-source products with only
a few exceptions [7, 73]. Hence the replication of results in most of these studies is a
tall order.

Research studies that develop semi-automatic and automatic approaches show
their fuzzing prowess by comparing them against the manually developed fuzz drivers.
However, they all carry out these experiments in selected data sets to show their
effects, hence there is a lack of large scale studies with replicable results to implicate
their true effectiveness in an ideal scenario.

No study compares all automated fuzz driver development strategies from multi-
ple open-source fuzz driver development products to show their effectiveness against
manually developed fuzz drivers. Furthermore, all the studies that compare manually
developed fuzz drivers against automated methods contain human bias since manu-
ally developed fuzz drivers are developed by a single software tester for comparisons.
Therefore, depending on the domain knowledge and the ability of the programmer, the
results could vary, thus adding bias to the research outcomes. Hence, a research study

6 Chapter 1. Introduction

is required to compare these three fuzz driver development techniques by neglecting
human bias.

Code complexity analysis has been widely used to improve different aspects of
the fuzzing campaign [88, 146, 168]. As we identified in Section 1.3, code complexity
analysis appears as a sub-process when trying to improve path coverage by improving
the effectiveness of the input. Moreover, some studies focus on using complexity
metrics to identify the maintainability and the testability of the source code. However,
there is no study carried out to analyse code complexity metrics to aid or improve
fuzzing campaigns by identifying the effectiveness of fuzz drivers. A deep research
study is required to identify the effect of the complexity of the target code has on
fuzzing campaigns initiated by different types of fuzz drivers mentioned in Section 1.2.
Therefore, we formulate the following three research questions:

• RQ1: What are the fuzz driver generation practices adapted by researchers?

– Software testers follow multiple techniques and methodologies to develop
a fuzz driver. There are multiple requirements around fuzz driver devel-
opment. There are multiple applicability criteria and challenges around
fuzz driver development. There are guidelines that a tester should strictly
follow to develop an effective fuzz driver. Multiple studies explore the lit-
erature around fuzzing [89, 99, 102], however, such study is not dedicated
to fuzz drivers to explore all the themes around fuzz driver development to
understand the domain in a more clear light. Therefore, we aim to explore
the art of fuzz driver development and its practices. We aim to observe the
main objectives, challenges, common practices and strategies of developing
fuzz drivers in fuzzing campaigns. We aim to identify criteria and guide-
lines used in the industry to assess and evaluate the quality of a fuzz driver
and the availability of open-source tools to ease, enhance and generate fuzz
drivers.

• RQ2: How fuzz drivers generated through different strategies affect bug identi-
fication and code coverage?

– We aim to analyse the best performing fuzz driver development practices
that are available for a software tester. When it comes to fuzz driver devel-
opment, we identified that a fuzz driver could be developed manually by a
software tester, they could be developed via a semi-automatic methodology
with a human-in-the-loop approach and they could be generated automat-
ically through a fuzz driver generation software. We aim to compare these
three strategies and observe the best methodology for generating a fuzz
driver for the fuzzing campaign. We aim to explore and analyse how differ-
ent fuzz driver development methods affect the bug identification and code
coverage of the target program and propose the best fuzz driver develop-
ment technique for software testers with potential enhancement strategies.

• RQ3: Does the code complexity of the target code have any effect on the fuzz
driver performance?

– We aim to identify whether the code complexity of the target code has any
effect on different types of fuzz drivers and their fuzzing campaign perfor-
mance. We aim to analyse how these target code complexities would affect
the development of manually developed fuzz drivers, semi-automatically

1.5. Research methodology 7

developed fuzz drivers with human-in-the-loop approaches and fully auto-
matically developed fuzz drivers. Then using the results, we aim to identify
the effectiveness of the above-mentioned fuzz driver development techniques
when the code complexity increases and we propose strategies to improve
their current features to enhance their abilities to fuzz complex code.

1.5 Research methodology

This thesis explores and addresses different aspects of fuzz driver generation method-
ologies in the domain of fuzzing. Each chapter in this thesis has its contribution while
fulfilling the overall goal of addressing to improve fuzz driver development practices.
Therefore, each chapter contributes to different areas of research improvement. We
answer our three research questions in each of the chapters.

Chapter 2 follows a well-known systematic literature review (SLR) approach [80].
Subsequently, Chapter 3 contains a case study and an empirical study to investi-
gate key aspects related to fuzz drivers and to propose, implement and theorise new
methodologies and research directions.

We used multiple methodologies and technologies to answer these three research
questions. We used Google Scholar [136] as the search engine to gather research studies
for the SLR and Zotero [190] as the technology to extract and manage papers. We
carried out subsequent duplication removals, category identifications, simplification of
search structures and theme analysis for the SLR to come out with actionable outputs
for the fuzz driver development domain.

For all the fuzzing related experiments, we used LLVM LibFuzzer [94]. LibFuzzer
allowed us to fuzz software libraries for a given period to identify required metrics such
as the number of bugs, executions per second and code coverage for our experiments.

For code complexity analysis we used code complexity identification techniques
such as cyclomatic complexity [100] and Halstead metrics [54]. We used an open-
source code repository, GitHub [45] as the source to gather all the open-source code
to carry out our experimental studies in Chapters 3.

Chapters 2 and 3 of this thesis derive from each of the research studies that we
carried out. These research studies are carried out in collaboration with my supervi-
sors. I carried out the main components of this research study; this thesis uses the
standard pronoun “We” to report collaborative research in the domains of software
engineering, computer science and security. The chapters in this thesis are arranged
in the following manner.

• Chapter 1 describes the background of fuzzing, fuzzers, fuzz drivers, research
questions, problem statement, research methodology and contributions of the
thesis.

• Chapter 2 answers the first research question by reporting the results of our
SLR that identifies the background, methodologies and challenges of fuzz driver
development.

• Chapter 3 answers the second research question by carrying out a case study
to compare the performance of three different types of fuzz driver generation
techniques with open-source software products. Chapter 3 also answers the third
research question through an empirical analysis to explore how different types
of code complexities affect the fuzzing campaign and especially how different
types of fuzz drivers behave under different code complexities.

8 Chapter 1. Introduction

• Chapter 4 concludes the thesis with a summary and potential future directions

We are in the process of finalising a journal article submission based on Chapter 2.
Chapter 3 will form the basis for an upcoming workshop paper submission.

1.6 Thesis contributions

This thesis makes the following contributions,

• A Systematic Literature Review of the role of fuzz driver development in fuzzing
campaigns (Chapter 2).

– Identification and analysis of requirements behind fuzz driver development
and proposing the steps to develop a fuzz driver effectively.

– Analysis of different fuzz driver development practices and thorough explo-
ration of techniques adopted by the researchers to formulate the steps to
develop a fuzz driver for a maximised performance.

– Identification of fuzz driver evaluation techniques to identify the best prac-
tices that testers should follow for an effective fuzzing campaign.

• A case study to identify the best fuzz driver development strategy (Chapter 3).

– Design of a case study with a systematic experiment to explore the perfor-
mance of different fuzz driver generation strategies.

– Empirical analysis on fuzzer performance metrics during different fuzz
driver usage to identify the best state of the art fuzz driver development
technique available for software testers and researchers.

• An empirical study to identify the effect of the complexity of the target code on
fuzz drivers (Chapter 3).

– Design of an experimental study to explore how the performance of fuzz
drivers generated through multiple techniques fare when they are used
against target code of varying complexity.

– Identification, evaluation and recommendation of best approaches to de-
velop fuzz drivers and to run fuzzing campaigns when the code complexity
changes in the target code.

1.7 Other contributions

In addition to the research studies constituting the core of the thesis, I contributed as a
co-author for the research publication [130] during the first six months of my research
candidature. This research work is not directly related to my thesis, however, it is
still in the domain of software testing and software quality assurance. We explored
the flakiness (non-deterministic behaviour) of unit tests. We proposed a technique to
automatically classify tests as flaky or not based on their vocabulary. On this occasion,
I solved this problem using five different machine learning algorithms. I gathered
1000 flaky tests and 1000 non-flaky tests and used machine learning algorithms to

1.7. Other contributions 9

predict the flakiness of the test based on their features. My work achieved an F-
score (harmonic mean of precision and recall) of 0.95 for the identification of flaky
tests. Furthermore, my work on this research study identified that Random Forest
and Support Vector Machine machine learning algorithms give the best results for
flaky test prediction.

11

Chapter 2

Fuzz driver generation for fuzz
testing

2.1 Introduction

Due to the introduction of open-source automated fuzzing tools, both small-scale and
large-scale companies adopted fuzzing in their software development life-cycle. These
fuzzing tools can monitor crashes and collect the metrics related to the crash and the
fuzzing process. When it comes to fuzzing software products, a fuzz driver plays an
important role because it directs the fuzzer to fuzz certain parts of the code.

Despite the mentioning of fuzz drivers in multiple research studies, there is a lack
of deep analysis of its literature; consequently, the role of a fuzz driver is insufficiently
understood, as are techniques for its generation, challenges and future directions. This
chapter contributes a systematic literature review (SLR) on fuzz drivers.

We used Google Scholar to extract literature for this research study and we fil-
tered data systematically in multiple steps to arrive at 102 papers related to the fuzz
driver domain. We critically analysed all of these papers and categorised them into an
attribute matrix that consists of five categories. An attribute matrix is a representa-
tion of how different themes emerge from research and how different aspects identified
through research match these themes. The summaries of these attributes and their
subcategories formed the basis of this SLR that explored the importance, techniques,
new methodologies and challenges when developing fuzz drivers in fuzzing.

As explained in Chapter 1, a “Fuzz Driver” is the binder between the fuzzer and
the system under test. It accepts an array of fuzzed input coming from the fuzzer and
sends it to the target function for fuzzing. The fuzzing life-cycle consists of six main
steps and writing a fuzz driver is the second step of the fuzzing life-cycle as shown in
Figure 2.1.

The purpose of the fuzzer is to generate a set of fuzzed inputs to cause a crash
in the target program. General-purpose fuzzers generate unstructured input to carry
out this task, however, software libraries expect highly structured input. Software
libraries are the files that contain reusable code which can be invoked by another
library or an executable. If the unstructured input is sent to software libraries without
any mediation, it would generate crashes that would most likely be deemed as false
positives. In the context of fuzz testing, a false positive is an incorrect flagging of a
software defect that does not exist. Therefore, fuzz drivers fill this gap by acting as an
interface between the fuzzer and the target program in the software library to direct
the unstructured input correctly to relevant parts of the software library for fuzzing.

From the papers that we included in the SLR, Figure 2.2 shows the distribution of
research studies that mention fuzz drivers per year. Even though fuzzing has existed
since 1990 through Miller’s research [106], the first paper that mentions the concept
of fuzz driver appears in 2007 [36]. The number of papers remains relatively constant

12 Chapter 2. Fuzz driver generation for fuzz testing

Figure 2.1. Fuzz testing life-cycle.

Figure 2.2. Number of papers that mentions fuzz drivers vs the
publication year.

until 2017, after which it quickly increases to 29 papers in 2020. Our SLR found that
those research studies collected from 2018 show the use of fuzz drivers in multiple
fuzzing platforms and there is increased attention given to enhancing the practices of
fuzz driver development through automation. Hence, this SLR aims to explore this
expanding domain and to show its trends and research gaps.

Figure 2.3 shows all 102 research materials that we collected and how different
types of fuzz driver generation methods are distributed along with research publica-
tions. Papers that mention manually written fuzz drivers are shown in black, semi-
automatic methods shown in yellow and fully automatic methods shown in green.
Papers that show fuzz drivers that are built-in components (single harness/ driver
(sometimes a template) comes with the program), Use of existing fuzz drivers or
other materials (unit test) are shown in purple. Finally, papers that mention fuzz
drivers but do not contain the method of development are shown in red. It is clear
that manually writing the fuzz driver is the most common method for fuzz driver
development. Since, 2019, there is an interest in developing semi-automated methods
for fuzz driver generation, however, that interest nullifies when it comes to 2021. In
2021, the interest in fully automated fuzz driver development greatly rises compared to

2.1. Introduction 13

previous years, thus showing the current main attraction in fuzz driver research. The
complete list of our collected research materials is available in Table A in Appendix
A.

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

[36] [48] [57] [134]
[41]
[83]
[82]

[182]
[169]

[96] [160]
[109]

[19]
[47]

[154]
[78]
[111]
[25]

[159] [43]
[163]
[143]
[166]

[15]
[142]
[58]
[50]
[114]
[90]
[31]
[81]
[16]

[73]
[187]
[164]
[118]
[91]
[23]
[167]
[113]
[34]
[149]
[101]
[172]
[7]
[65]
[5]

[165]
[103]
[93]
[122]
[84]
[128]
[10]
[53]
[188]
[99]

[38]
[129]
[147]
[6]
[98]
[189]
[9]
[42]
[30]
[158]
[29]
[107]
[62]
[38]
[125]
[17]
[56]
[11]
[115]
[161]
[55]
[112]
[38]
[60]
[119]
[63]
[116]
[132]
[75]

[33]
[185]
[92]
[13]
[162]
[170]
[171]
[183]
[97]
[137]
[32]
[70]
[69]
[155]
[126]
[71]

Figure 2.3. Distribution of papers along publication years.

There are multiple SLRs written on fuzzing [89, 99, 102] but this is the first SLR
written about fuzz drivers. A systematic literature review of fuzz drivers allows re-
searchers and security experts to gain a deep understanding of the common practices
and the challenges and limitations of fuzz drivers. It provides a knowledge base in
terms of existing techniques in developing fuzz drivers, exploring the potential to au-
tomate or semi-automate the fuzz driver development and identification of evaluation
criteria for meaningful outcome generation. Furthermore, it gives insights regarding
patterns in research, development criteria and novel innovations associated with fuzz
driver generation by analysing 102 research papers relevant to this topic and provides
new research directions for the research community. Our key contributions are,

• Understanding the reason behind fuzz driver generation (Section 2.6).

• Classification of fuzz driver development practices (Section 2.7).

• Categorisation of fuzz driver evaluation methods (Section 2.8).

• Discussion of identified gaps in research that require enhancement through future
research (Section 2.10).

Among other, manually writing a fuzz driver is the most common occurrence
in nearly half of the research studies (50 research studies). However, since 2013,
there are novel automated and semi-automated methodologies proposed to generate
fuzz drivers. When developing fuzz drivers, the authors of scientific articles consider
the methods of reaching a bug, types of bugs, the effect of a seed corpus on a fuzz
driver, the effect of multi-threading, speed, timeouts, difficulties of manual fuzz driver
development and the requirement for automation of fuzz driver development.

Fuzz driver development life-cycle consists of target identification, program anal-
ysis and driver synthesis. When a fuzz driver is written manually, both function
identification and dependency analysis are done by the developer. However, when the

14 Chapter 2. Fuzz driver generation for fuzz testing

fuzz driver development is automatic or semi-automatic, researchers use methods such
as annotations, abstract syntax trees, header files, program slicing to identify func-
tions. They further use control flow graphs, data flow graphs, data dependency graphs
and project control graphs for function dependency identification. These provide the
order sequence of API calls for fuzz driver synthesis.

C, C++ and Java are the most commonly used languages. The most commonly
used metrics for fuzzer evaluation are the number of bugs, code coverage, fuzzing time,
fuzzing speed, identification of a certain bug and number of inputs per crash. The
most commonly used fuzz driver evaluation techniques are comparisons of manually
and automatically generated fuzz driver, interface model evaluations, the measure of
the number of APIs and the comparison with other automatic fuzz driver generators.

The rest of the chapter is organised in the following manner. Section 2.2 gives a
brief background on fuzz drivers and their usage. Section 3.3 describes the research
methodology followed for systematic data extraction for this research study. Sec-
tion 2.4 gives an overview of the most commonly used results and findings of the SLR.
Sections 2.5 to 2.9 explores these research findings in detail. In Section 2.10, we reflect
upon the research gaps and discuss potential future research directions. Section 2.11
explores the limitations and threats to validity and in Section 2.12, we summarise this
research study.

2.2 Background on fuzz drivers

The role of a fuzz driver is to send random input generated by the fuzzer to the specific
functionality of the code that requires fuzzing. Some of the literature refers to a fuzz
driver using the terms “fuzz target” or “fuzz harness”.1 It is not uncommon for fuzz
drivers to be linked with multiple fuzzers such as LibFuzzer [94], American Fuzzy Lop
(AFL) [179], HonggFuzz [59].

Researchers and software testers use different fuzzers to fuzz code. LibFuzzer
is one of the fuzzers that allow fuzzing software libraries [139]. When develop-
ing a fuzz driver for LibFuzzer, software testers should define a function called
LLVMFuzzerTestOneInput with a predefined signature, see the example in Listing 2.1.
On this occasion, the target function is an array function. This function accepts two
parameters to fuzz the target library. The first parameter is an address of a buffer
that accepts random data generated by the fuzzer. The second parameter is the size
of the data in the buffer.

It is the task of the software tester to write the body of this function according
to the functionality of the target program. When writing the fuzz driver, param-
eters of that particular function should be combined with library API functions.
To carry out this task, the developer has to initially select a target function
to pass input from the fuzzer to the library, which is a function that contains
instructions to load a value to the memory to be used by a library. Software
testers should use library functions to test multiple features of the library.

1From the data that we collected, “fuzz harness” is the most common term with 52% followed
by “fuzz driver” 38% and “fuzz target” 10%. However, the terms “fuzz harness” and “harness” are
similarly used to show test benches and testbeds. To avoid ambiguity, in this work, we consistently
use the term “fuzz driver”.

2.3. Methodology 15

Listing 2.1. Example LibFuzzer fuzz driver.

i n t LLVMFuzzerTestOneInput (uint8_t ∗ fuzz_input_data , s i z e_t
fuzz_data_size) {
s i ze_t fuzzer_input_min_size = 0 ;
i f (fuzz_data_size < fuzzer_input_min_size) re turn 0 ;
uint8_t ∗ fuzz_ptr = fuzz_input_data ;
i n t ∗ ar r = (i n t ∗) fuzz_ptr ;

i n t n = (fuzz_data_size − fuzzer_input_min_size) / s i z e o f (i n t) ;
(void) fun (arr , n) ;
r e turn 0 ;

}

Fuzz driver generation is a time-consuming process and requires intricate knowl-
edge of the codebase [7, 23, 50, 62, 65, 73, 90, 91, 114, 135, 142, 147, 149, 182, 186]. As
a result, starting from mid 2010s, multiple research studies started identifying ways
to automate this process. In the following sections, we report fuzz driver development
methods and techniques with insights in more detail.

2.3 Methodology

Figure 2.4. Overview of the methodology.

This section describes our surveying methodology for identifying publications and
extracting information. In a nutshell, we followed the systematic approach of Webster
and Watson [173] and Kitchenham [79]. In the rest of the section, we describe the
steps of our systematic approach: research questions, search strategy, paper filtration
criteria, snowballing and synthesis of results.

16 Chapter 2. Fuzz driver generation for fuzz testing

• Research question: What are the fuzz driver generation practices
adopted by researchers?

Through this research question, we intended to identify how fuzz drivers are
mentioned in research papers. We identified fuzz drivers in terms of their purpose and
how beneficial it is to the process of fuzzing. Similarly, other themes such as program
languages used in fuzz driver development, how fuzzers support fuzz drivers and the
coding practices involved when writing a fuzz driver emerged from our analysis of
papers. Furthermore, we categorised fuzz driver development strategies along with
their evaluation criteria.

Search strategy: Miller et al. [106] published the first-ever paper on fuzzing
in 1990, thus this was the starting point of our study collection. We used Google
Scholar to extract research material for this SLR since it provides full text and
metadata of scholarly literature across an array of publishing formats and disciplines.
There are multiple research databases available to extract research papers, however,
large scale searches on the metadata of research articles in multiple research databases
are different due to different search algorithms adopted by their online systems. We
ran an array of search terms to extract results, therefore we observed the consistency
in terms of returned results for the same search term across all the platforms. More-
over, for this research study, we included grey literature. Grey literature includes
unpublished studies (e.g. pre-prints) or literature published in non-commercial form
(e.g. PhD thesis). Grey literature is very important for an SLR to remove publication
bias during the paper extraction stage for any given topic [177].

According to Yasin et al. [177] Google Scholar is a great source to extract pri-
mary studies to include grey literature in the SLR compared to other research
databases. Furthermore, Google Scholar indexes research from multiple research
databases. Therefore, we gathered all the scholarly results related to fuzz drivers
including grey literature and this includes sources such as Pre-Prints, Masters and
PhD theses that would not appear in research databases such as “IEEE Xplore” if
they are not published at one of their sponsored events. However, these results were
available to us through Google Scholar. Hence, to include grey literature following
the work produced by Yasin et al. [177] and to keep the consistency, we used Google
Scholar to extract data sources for this SLR.

After reading a set of papers that were written post 2010 regarding fuzz drivers
and fuzz driver development [7, 11, 31, 60, 62, 65, 69, 71, 73, 91, 119, 129, 183], we
identified a set of terms that we would use to filter research papers in the domain of
fuzz drivers. As a result, we identified multiple search terms for the article retrieval
process. We further consulted the documentation [94], books [180], and literature
surveys [89, 99, 102] related to fuzzing to clarify these key terms.

We first identified the terms “fuzz driver” [7], “fuzz harness” [116] and “fuzz tar-
get” [73] as the most common terms that defined fuzz drivers. We then systematically
added possible extensions (Table 2.1) to each of these to identify further results.
Specifically, we identified the use of the term “fuzzing” as an alternative to “fuzz” [71];
that the words “test” or “testing” are sometimes added to the term [74, 148, 160]; and
that these are sometimes used as alternatives to “fuzz” or “fuzzing”. Therefore, after
processing these key terms, we identified 21 key terms to search Google Scholar to
extract relevant papers that would contain research related to fuzz drivers. Table 2.1
summarises the search term with identified keywords.

Google Scholar search strings produced a large number of duplicates due to
overlapping results. Hence, as the next step, we removed duplicates, reducing the

2.3. Methodology 17

Table 2.1. Search terms and number of Google Scholar results.

Term Results Term Results Term Results

“fuzz target" 63 “fuzz driver" 20 “fuzz harness" 8
“fuzz test target" 0 “fuzz test driver" 2 “fuzz test harness" 1
“fuzz testing target" 1 “fuzz testing driver" 0 “fuzz testing harness" 3
“fuzzing target" 120 “fuzzing harness" 19 “fuzzing driver" 17
“fuzzing test target" 1 “fuzzing test driver" 1 “fuzzing test harness" 0
“test target" fuzz 199 “test driver" fuzz 187 “test harness" fuzz 267
“testing target" fuzz 77 “testing driver" fuzz 15 “testing harness" fuzz 43

paper count to 885.

Paper filtration criteria: We used a set of inclusion and exclusion criteria
to filter out papers for this research study.
The inclusion criteria are,

• The research paper should be written about Fuzzing.
• At least one of the terms explained in Table 2.1 should be mentioned in the

research paper.
• The document should be written in English.

The exclusion criteria are,
• Different interpretation of the terms “fuzz driver”, “fuzz harness”, “fuzz target”.
• The research paper is not in the domain of Computer Science.
The assessment of the inclusion of the papers was mainly dependent upon

their capability to answer the research question and their usefulness in developing
conclusions for the literature survey [72]. When it comes to research papers, we
initially checked their relevance to the domain of fuzzing by reading the paper
abstracts of 885 papers. Then we checked whether it mentioned the use of fuzz
drivers by reading the aims and objectives, methodology and the conclusion parts of
the paper. If it is directly related to the fuzz drivers or if they mention the use of fuzz
drivers in the research study, we collected that paper from the pool of our sources.
Additionally, we read the parts of the papers where the above keywords appeared
to confirm their relevancy to the domains of fuzzing and fuzz drivers: if the paper
mentions fuzz drivers, it was kept. Otherwise, it was discarded. At the end of this
procedure, we reduced the paper count to 100 papers from the sample of 885 papers.

Snowballing: To expand the extracted research studies, we carried out both
forward and backward snowballing [176]. This process increased our paper count
by two papers [65], [99], increasing the final study count to 102. These 102 studies
contain conference papers, journal papers, book chapters, documentation, workshop
tutorials and Undergraduate, Masters, and PhD theses.

Synthesis of results: After the paper selection, we analysed and categorised
them in terms of information related to fuzz drivers and fuzz driver generation by
following the narrative of the research question. We went through multiple iterations
of discussions to identify the most commonly used themes and refine these and
develop the attribute matrix. Since our research question covers a broad area, we
initially started the research study analysis by looking at the importance and the
reasoning behind fuzz driver development.

We observed “Why” such a concept is required for fuzzing. The next step was
to identify fuzz driver development practices. We monitored “How” to develop fuzz

18 Chapter 2. Fuzz driver generation for fuzz testing

drivers for various circumstances and categorised those methodologies. In the next few
iterations, we further monitored systems that require fuzz drivers for fuzzing and the
programming languages required to develop these drivers. Furthermore, we extended
the categories to identify which percentage of papers made their code publicly available
for results replication and which percentage of papers included code snippets of fuzz
drivers within the text of the paper. Finally, we further extracted fuzzer and fuzz
driver evaluation metrics. When we read these collected papers, we observed common
themes. As we collected information regarding these themes, more directed themes
regarding fuzz drivers started to emerge from texts. These themes are,

• Context of fuzz driver mentions in fuzzing research (Section 2.5)

• Requirements for fuzz driver development (Section 2.6)

• Fuzz driver development practices (Section 2.7)

– Different methods of fuzz driver development

– Fuzz driver generation steps

– Source code analysis for target selection

– Function dependency identification

– Interfaces fuzzed

• Fuzzer and fuzz driver evaluation methods (Section 2.8)

Figure 2.4 shows the summary of the data gathering process that we followed out
systematically with the number of resulting research papers.

2.4 Findings

We present our findings in terms of the themes that emerge from the research studies.
They are the context of fuzz driver mentioned in fuzzing research, the requirement
behind fuzz driver development, fuzz driver development practices and fuzzer and fuzz
driver evaluation methods.

2.4.1 Context of fuzz driver mentions in fuzzing research

We identified the importance of fuzz drivers in terms of observing the depth in which
it is mentioned in research studies. Fuzz drivers are expressed in multiple ways. The
majority of the papers mention the development of a fuzz driver as a support activity
in fuzzing projects by giving it minor attention in a larger scope. A subset of these
papers show novel approaches while appearing as minor methods in papers that fuzz
drivers are not the main focus of research Conversely, other papers propose novel
methods that solely focus on fuzz driver development as the main direction of their
research studies. Another set of papers mentions fuzz drivers with no novelty but as
extensions of previous novel work. Furthermore, two papers introduce a method to
bypass the fuzz driver development process. These findings are explained in Table 2.4
and further explored in Section 2.5.

It was evident from Figure 2.1 that until 2018, there is less focus on fuzz drivers
in research compared to the period from 2018 to 2021. Until 2017, novel methods
are introduced only three times [47, 109, 134]. However, there is a rapid increase in
fuzzing research from 2018 with the development of novel methods to automate fuzz

2.4. Findings 19

driver generation, hence it could be regarded as one of the reasons for the increase
of papers mentioning fuzz drivers post-2018. According to our findings, two of the
highly used fuzzers in fuzz driver-related research are AFL and LibFuzzer. Before
2016, the majority of research studies show their fuzzers were developed to match
their research criteria rather than using a single open-source product for fuzzing. Both
of these fuzzers require fuzz drivers to function. AFL was introduced in 2014 [179]
and LibFuzzer was introduced in 2015 [94]. Our results show that the first paper that
mentioned AFL appeared in 2016 [159] and the first paper that mentioned LibFuzzer
appear in 2018 [15]. From 2018 onward, these two fuzzers make a high appearance in
research papers, hence it implies that the introduction of open-source software such
as AFL and LibFuzzer, increased research interest in fuzz driver research.

2.4.2 Fuzz driver requirements

Factors such as deterministic behaviour, fast operation and avoiding intentional
crashes are the main required behaviour of an efficient fuzz driver [9]. Identifying
the nature of the required input values to a function using its function signature plays
a major role in developing meaningful fuzz drivers [78]. The requirement to automate
the fuzz driver development is a recurring aspect in research studies as explained in
the previous section Section 2.4.1. SLRs on fuzzing showcase an exponential increase
in fuzzer related research over the years from 1990 [89, 99, 102]. However, the first
fuzz driver-related research appeared in 2007 [36] and our results do not show simi-
lar exponential growth in interest in fuzz drivers. It seems to be the highly focused
research around AFL [179] and LibFuzzer [94] initiated this rise since both of these
products rely on fuzz drivers and researchers tried to look for ways to make their
development process more user friendly.

It is important to have high code coverage to increase the chance of identifying
a bug when attempting to identify a bug through fuzzing [154]. We recognised the
importance of identifying as many paths as possible to cover hard-to-reach parts of
the code. It is also important to identify program states and control/data flow infor-
mation. The literature covers types of bugs such as buffer overflows, stack overflows,
and segmentation faults. Another research interest is the consideration of garbage
collection (Section 2.6.6) for memory management and its effect on fuzz driver to
maintain memory management [73]. More information about these aspects with ex-
ample results is given in Section 2.6. Using this information, we evaluated how these
identified factors affect the fuzz driver development process in Section 2.7.

2.4.3 Fuzz driver development practices

There are four methods of fuzz driver development in research. They are,

• Fuzz driver development as a manual activity that requires input from a software
developer.

• Fuzz driver development as a semi-automatic approach (automatic with human-
in-the-loop techniques).

• Fuzz driver development as an automatic approach.

• Fuzz driver development using approaches such as use of built-in-components,
pre-existing fuzz driver or a conversion of a unit test into a fuzz driver to aid
the fuzzing process.

20 Chapter 2. Fuzz driver generation for fuzz testing

Our results show that manually developing the fuzz driver is the most common
practice while fuzz driver automation seems to take high interest from researchers
during the last four years with research papers that are solely dedicated to fuzz driver
development being written to improve fuzz driver development methodologies [7, 62,
71, 73]. The breakdown of these methodologies is explained in Table 2.4 and we
explored these techniques in detail in Section 2.7.

The first step of the fuzz driver development process is to identify functions and
function signatures in the target program that require fuzzing. The software developer
has to identify the required functions and their dependencies to other functions to fuzz
using their domain knowledge when they write a fuzz driver. Human involvement
is required to identify target functions during the manual and semi-automatic fuzz
driver generation. It is important to identify function dependencies When multiple
functions require fuzzing through a single fuzz driver. Furthermore, there are occasions
where the reuse of fuzz drivers occurs. These multiple challenges are explained in
Section 2.6.10. It is evident from our results that writing a fuzz driver by a software
developer is a challenging task due to reasons such as time consumption, lacking a
deep understanding of the program domain and human error.

When research studies adopted automated methods, some carried out program
analysis to identify functions to fuzz using multiple methodologies. This involves tech-
niques such as the use of abstract syntax tree (AST) extraction [7, 109, 185], program
slicing [7, 58, 78], inclusion of annotations [73], unit test analysis [90, 91, 93], LLVM
IR generation [62] and type signature scanning [62, 186]. These function identification
techniques for fuzz driver generation will be explained further in Section 2.7.2.

After the function identification, function dependencies play a major role in iden-
tifying program flow for the function synthesis. The software developer plays the
role of identifying function dependencies for manually developed fuzz drivers. A large
amount of the papers (50 out of 102 papers) show function dependency identification as
a manual process. On some occasions, function dependency is not monitored for fuzz
driver generation. This applies on both occasions where one function is fuzzed [60]
or selected functions are fuzzed [73]. On some occasions [11] all the functions are
considered for fuzzing thinking that every function is a potential entry by ignoring
function dependency analysis.

Furthermore, when fuzz driver generation through unit tests [65] or the reuse of
existing drivers, researchers ignore dependencies since they already exist in reused
unit tests and fuzz drivers. Major trends in identifying function dependencies in
automated fuzz driver development are API dependency graphs, control flow graphs,
data flow graphs and project control graphs. Identification of function priority order
aids the function dependency identification. Techniques used to extract information
regarding function priorities are API call sequence extraction [68], trace capture [70]
and user-defined function (UDF) coverage [186]. We explain these ideologies in detail
in Section 2.7.3.

There are multiple programming languages and coding practices used in devel-
oping fuzz drivers. It is a recommended practice to make the source code used for
experiments publicly available since it promotes experiment replication [86, 127, 151].
From 102 research studies, only eight studies contain open source projects. All of
these eight open-source projects are from research studies carried out after 2018 and
five of those eight projects are based on AFL and LibFuzzer. This further solidifies
our argument from Section 2.4.2 that the introduction of AFL and LibFuzzer had an
effect to increase interest in fuzzing research and in particular increasing interest in
fuzz driver development. We explore the availability of open-source code, program-
ming languages and the availability of fuzz drivers in the text of the research studies

2.5. Context of fuzz driver mentions in fuzzing research 21

more thoroughly in Section 2.7.4.

2.4.4 Fuzzer and fuzz driver evaluation techniques

We explored the evaluation metrics of fuzzers and fuzz drivers. We explored fuzzer
evaluation on this occasion since the fuzz driver is a component of the fuzzing pro-
cess. The most commonly used fuzzing evaluation metrics are measuring the number
of bugs, code coverage, fuzzing time, fuzzing speed, identification of a certain bug
and number of inputs per crash. When it comes to fuzz drivers, researchers compare
manually and automatically generated fuzz drivers, interface models, a measure of
the number of identified APIs and comparisons with other automatic fuzz driver gen-
erators. The number of bugs and the code coverage are the two main metrics used
to identify the effectiveness of fuzz drivers of these multiple fuzz driver generation
techniques. We explain these methodologies in detail in Section 2.8.

2.5 Context of fuzz driver mentions in fuzzing research

Researchers mention fuzz drivers in multiple contexts in their research papers. When
it comes to the development of fuzz drivers from various projects since 1990 [106],
they discuss fuzz drivers in multiple ways. We categorised those into five categories
(Table 2.2),

Table 2.2. Prioritisation of fuzz driver generation in research papers.

Prioritisation Count

Minor task in a larger scope (developed by software testers) 79
Novel method but not the main focus of the study (fuzz driver developed as a sub process) 8
Introduces a novel method directly focusing on fuzz driver development 7
Extension from previous work for fuzz driver generation 6
Novel method to avoid fuzz driver generation (bypassing fuzz drivers) 2

There are 79 papers that discuss fuzz drivers as a small part of a large fuzzing
project. This means that their focus is on a different aspect of fuzzing and they discuss
the use of fuzz drivers developed by software testers as a minor part of their research.
These papers mention the manual input required by software testers and the need for
a fuzz driver written by a developer for fuzzing. For example, Cai et al. [19] explores
writing fuzz drivers by software testers for C binaries. Ding and Goues [33] focuses on
empirical analysis of OSS-Fuzz bugs and they briefly mention the use of fuzz drivers
as entry points for the fuzzing process. Frighetto et al. [42] talks about software
testers writing fuzz drivers for C and C++ programs and fuzzing those programs
through LibFuzzer to identify important vulnerabilities. Furthermore, Pham et al.
[129] discusses the use of fuzz drivers to Fuzz C programs using AFL as the Fuzzer of
choice.

Similarly, eight papers [11, 58, 65, 70, 93, 109, 118, 185] show the process of
generating fuzz drivers through a novel method but fuzz driver generation is not
the main focus of these papers. Holland [58] proposes the use of the Mockingbird
framework [108], which can enable targeted dynamic analysis of the code base through
the use of binary inputs. It focuses on Java programs and by using the Mockingbird
framework, binary inputs can be transformed into relevant object types. Mockingbird
allows the automated generation of fuzz drivers.

Similarly, Zhang et al. [185] proposes a tool called BigFuzz which uses fuzz drivers
in Java program fuzzing. BigFuzz subdivides the program into six sections based on

22 Chapter 2. Fuzz driver generation for fuzz testing

User Defined Functions (UDF) which contain the name of the operator and the order of
the execution. BigFuzz automatically generates a fuzz driver to aid the fuzzing process
using the execution specifications of these Java classes. Furthermore, FuzzBuilder [65]
automatically generates fuzz drivers by carrying out static and dynamic analysis of
already existing unit tests written for the codebase by automating the fuzz driver
generation process. Note that all of these papers discuss fuzz drivers as a minor
process to support the main topic and findings of the research study.

Seven papers [7, 62, 69, 71, 73, 81, 183] introduce novel methods that aid the
process of developing a fuzz driver. These studies focus on enhancing the state-of-
the-art development methods by automating manual practices carried out by software
testers. They have a direct focus on finding a novel way to enhance the fuzz driver
generation process. Research studies such as FuzzGen [62], Fudge [7], Intelligen [183],
Fuzz Target Generator (FTG) [73] describe automating the fuzz driver development
by minimising human input. Some of these research studies automate the development
of fuzz drivers entirely [7, 62, 183] while others follow a hybrid approach [73]. We will
explain these techniques in detail in Section 2.7.

Moreover, another six papers [25, 30, 63, 78, 107, 155] discuss the fuzz driver
generation process as an extension of the work that they have done previously. Miyaki
et al. [107] mentions the reuse of AFL fuzz drivers to evaluate their project and,
similarly, Cummins [30] shows the reuse of fuzz driver generation method for kernel
fuzzing.

Finally, two papers [11, 47] proposed novel methods to avoid fuzz driver generation.
These papers are trying to find ways to bypass the creation of fuzz driver generation.
Godefroid [47] promotes micro executions to avoid the use of fuzz drivers and then later
Blair et al. [11] extends on this work. This will be further analysed in Section 2.7.3.
Fuzz Driver generation is characterised through this categorisation, which allows us
to understand its context in this research. Those papers that solely propose a novel
approach to minimise or nullify the manual development of fuzz drivers discuss the
development of fuzz drivers as its main focus. On the other hand, those who develop
fuzz drivers manually give it minimal attention.

2.6 Requirements for fuzz driver development

We explored the motivation behind fuzz driver development and the challenges that
they implicate in its development process and how they would affect fuzzing.

2.6.1 Characteristics of a fuzz driver

In this section, we describe our findings related to the characteristics that a fuzz
driver needs to have to work effectively with the target program.

Deterministic behaviour: When fuzzers such as LibFuzzer and AFL are
carrying out the fuzzing campaign, the goal is to execute the target program as
quickly as possible with a help of a fuzz driver and a good seed corpus. There are cer-
tain characteristics that fuzz drivers should avoid to increase the speed of the fuzzing
campaign and to create reproducible crashes. First of all, a fuzz driver should be de-
terministic [9]. To promote this behaviour, the fuzz driver should not rely on specific
multi-threading behaviour or random number generators; it should have the ability
to replicate the same crash multiple times consistently for the same input. When fuzz
driver in DeepState is created for testing binaries, they build the constructs using
variadic templates [50]. They claim that this allows the execution of code chunks in

2.6. Requirements for fuzz driver development 23

a deterministic manner to reach the fuzzing standards. Furthermore, the work done
by Fioraldi et al. [39] proposes modifications of fuzz drivers to set an environment
variable to preload the run time to deal with the deterministic behaviour of the fuzzer.

Fast operations: Fuzz drivers should also avoid slow operations [9]. Software
testers should focus on developing memory-based file systems and fuzzer-friendly
builds that avoid and disable these slow operations. Chen [23] explains that writing
a fuzz driver is a manual task. when there is a lack of source code, there is a high
overhead caused by dynamic emulation, which affects the speed.

Avoiding intentional crashes: Moreover, there is a requirement to write
fuzz drivers in a way that they avoid intentional crashes [9]. This is because the main
goal of fuzzing is to identify unknown vulnerabilities and vulnerabilities that the
developer did not purposely intend to have at the programming phase rather than
observing known vulnerabilities.

2.6.2 Function identification

To identify which functions to fuzz, it is imperative to identify types of function sig-
natures since the functionality of the fuzz driver should match the function signature
types of the target function. This is because the function signature shows the accept-
able input to the target function. Most papers follow a methodology where the de-
veloper manually finds the function signature and writes the fuzz driver as mentioned
in [15, 103, 113]. However, some papers introduce human in the loop approaches
such as annotations [73]. Also, there are other methods such as the generation of
configuration files by analysing code [58] and scanning through C header files [62] to
identify function signatures. We will explain these techniques further in Section 2.7.2.

2.6.3 Path identification

It is important to identify the paths of the program when writing a fuzz driver.
Knowing multiple paths will make it easy to reach multiple parts of the program.
Maier et al. [98] explains the triggering of multiple paths when the fuzzing in the target
program. Wang et al. [171] says that the difficulty of path identification increases
when the lines of code increase. They claim that manually developed fuzz drivers
in Google’s fuzzer-test-suite are designed by recognising and identifying this aspect
along with other important factors, hence it can trigger the known CVE when the
fuzzer provides correct input.

According to Oleksenko et al. [119], when an assumption is made for the maximum
depth of the speculative execution to become 250 instructions, the number of spec-
ulative paths increase up to 30 million for an average conditional branch. However,
they suggest that the number of actual branches is lower in value due to imbalance in
the tree or the shallowness in the tree due to serialisation instructions (e.g. System
Calls). Oleksenko et al. [119] believe that serialisation instructions cause the fuzz
driver to slow down by order of magnitude. They claim if it is a small fuzz driver for a
single function in the library, this problem is not an issue, however, if the fuzz driver
is targeting a larger library, then it requires rectifications by the software tester.

Reaching hard to reach components of the code

Fuzz drivers allow the input seed to reach multiple sections of the code for fuzzing; fuzz
drivers guide the input seed to hard to reach sections of the code [154]. The research

24 Chapter 2. Fuzz driver generation for fuzz testing

from Shastry [142] claims the difficulty to achieve 100% API coverage through fuzz
drivers and the requirement to adopt static analysis to enhance the code coverage
metrics.

Furthermore, Ognawala et al. [118] also mentions that fuzz drivers should target
isolated functions. When fuzzing using the DeepFuzzer [91], it fails to identify a known
memory leak vulnerability due to the lacking of system knowledge when developing the
fuzz driver. Similarly, AssetFuzzer [83] fails to identify certain bugs due to its failure
to detect all atomic-set serializability violations in programs that are multi-threaded.
Similarly, SpecFuzz [119] fails to reach all the code paths with the existence of the fuzz
driver. Hence, these study results entail the requirement for further improvements to
increase code coverage to aid the bug identification process.

2.6.4 Program state and control flow identification

The program state and the control flow are important when it comes to fuzz driver
generation. The program state is communicated to the appropriate function through
the stack memory by using function parameters and return values or through the use
of heap memory that contains information regarding the reads and writes to the global
variables [58]. Static analysis promotes the identification of the flow of the program [5].
Jung et al. [71] entail that the identification of program flow through the call sequences,
control flow and data flow graphs are vital processes in the fuzz driver development
process in their proposed tool, Winnie. Furthermore, it was evident about the use of
control/data flow graphs for program flow identification when generating fuzz drivers.
We analyse these further in Section 2.7.3.

Enhancing the code coverage in fuzzing is directly related to path identification,
reaching hard to reach aspects of the code, program state and control/data flow graph
identification. The quality of the fuzz driver plays a potent role in this process and
this has repeatedly been mentioned in research papers along with fuzz driver creation.
Our results show that 27 papers discussed the requirement to increase code coverage
along with fuzz driver creation.

2.6.5 Types of bugs

Fuzzing identifies many types of bugs. In particular, commonly mentioned bugs are
buffer overflows, heap overflows, stack overflows, segmentation faults, deadlocks and
other memory corruption bugs. Many research studies such as [5, 36, 91, 163] specif-
ically talk about the prevention of memory leakage issues in the code using fuzzing
and the use of a fuzz driver to achieve these criteria.

2.6.6 Garbage collection in fuzzing

Garbage collection is a way of automatic memory management where it focuses on
the process of reclamation of allocated computer memory. Memory that is no longer
referenced is defined as garbage in this instance. Memory management is closely
monitored with fuzz driver generation since fuzz drivers sometimes tend to deal with
malloc functions and other memory-related matters. When researchers discuss fuzz
driver generation, the process of garbage collection also appears in research along
with memory management. Kelly et al. [73] proposes the garbage collection feature
in their semi-automatic fuzz driver generation method through a specially defined
annotation that would generate code in the fuzz driver to do garbage collection and
carry out automatic memory management. Maier et al. [98] mentions the use of
garbage collection through their tool to aid the fuzzing process and Liang et al. [91]

2.6. Requirements for fuzz driver development 25

shows that garbage collection is an important aspect of memory management for fuzz
driver generation.

2.6.7 Importance of the seed corpus

Furthermore, the process of creating an input seed for fuzzing should closely monitor
the nature of the fuzz driver. The method of feeding the seed to the system under
test solely relies on the identification of the system interface, hence the importance
of a good fuzz driver to drive the fuzzer loop. Moreover, the seed corpus should
trigger relevant crashes to identify malicious bugs rather than produce false positives.
Furthermore, the seed corpus must accommodate the conditions defined in the fuzz
driver to prevent false positives [15, 73, 91, 129].

2.6.8 Accommodating parallel fuzzing and multi-threading

Fuzzing done by LibFuzzer is single-threaded, however, it recommends running mul-
tiple fuzzing processes parallel with a shared corpus directory since this would allow
sharing of any input from one fuzzing process to be available to multiple other fuzzing
processes [94]. Therefore, the use of multiple CPU cores quickens bug identifica-
tion. The fuzzer itself can control parallel fuzzing or multi-threading. Many research
discussing fuzz drivers discuss multi-threading and parallel fuzzing to quicken the bug-
finding through fuzzing [30, 40, 82, 83]. However, it is important to note that fuzz
drivers have no effect on enhancing the multi-threading and parallel fuzzing and it is
solely dependent on the type of fuzzer.

2.6.9 Speed and timeouts

Research studies discuss the fuzzing speed mainly in terms of executions per sec-
onds [9]. The quality of the fuzz driver would affect the executions per second for
a Fuzzer and the efficiency of the fuzzing process. Also, the speed is related to the
coverage of the fuzzer and we explore this further in Section 2.8.

The work from Van Looy [165] shows the fuzzing of software libraries using AFL
with a help of a fuzz driver. On this occasion, they have set a timeout limit to one
hour; they claim that this is the effective upper bound of time to identify a bug in this
library using AFL. Also, it is important to identify the difference between a timeout
or an actual crash on some fuzzers. For example, another study proposes a JavaScript
driver to aid LangFuzz; they assume one of the reasons for the termination of the
fuzzing process is caused by a timeout when waiting for a crash caused by a bug [48].
Hence, it is an important factor to identify a timeout from a crash to recognise a bug
in a system.

2.6.10 Difficulties of manual fuzz driver development and the need
for automation

Our findings show that 20 papers directly quote the difficulty of manually writing fuzz
drivers. These 20 papers claim that the writing of a fuzz driver is a time-consuming
task and the need for high expertise from software testers with good domain knowl-
edge.

There are 26 papers directly quoting the requirement for automating the fuzz
driver generation by minimising manual efforts. Furthermore, the simplification of
fuzz driver writing is another proposal since the manual analysis of the system under
test to write a fuzz driver is a rather tedious process [111, 158]. On most occasions,

26 Chapter 2. Fuzz driver generation for fuzz testing

fuzz drivers target a single fuzzer or programming language. However, it is possible to
write a fuzz driver that can be compatible with multiple fuzzers [9, 30, 92]. Moreover,
Louridas [96] discusses a method of targeting code from ten programming languages
using a single driver.

Furthermore, the practice of reusing fuzz drivers is existent in research. Google’s
fuzzer-test-suite contain real-world libraries of twenty-eight practical projects [153].
The fuzzer-test-suite contains carefully developed fuzz drivers for each project to trig-
ger the required bug for the correct malformed input. Hence, multiple projects reuse
these open-source fuzz drivers to replicate known bugs (e.g. HeartBleed bug).

There are 20 research papers that portray automated and semi-automated method-
ologies to generate fuzz drivers; we explore these further in Section 2.7. Hence, it is
evident that manually developing a fuzz driver is the most common practice; however,
there are attempts to automate this task by making it less of a burden on software
testers. In the next sections, we will explore these ideologies in intricate detail.

2.7 Fuzz driver development

Since 1990, starting with Miller et al. [106], a wide variety of research has been carried
out in the domain of fuzzing and fuzz drivers. Our results implicate that the first paper
that mentions the use of fuzz drivers is written in 2007 [36]. It is evident that the
first attempt at the automation of the fuzz driver generation process took place in
2013 [109] and as a result, there are multiple papers with automation approaches for
fuzz driver generation from 2013 to 2021. This section explains the methodologies
adopted by researchers and practitioners to develop fuzz drivers in manual, automatic
and hybrid techniques (Table 2.3).

Table 2.3. Fuzz driver development strategies.

Technique Paper Count

Manual development of fuzz drivers by software testers 50
Automatic generation of fuzz drivers 15
Hybrid Method (manual and automatic) 5
Built in Component- single harness or template 18
Unknown 14

2.7.1 Fuzz driver generation steps

Our results show that there are three most commonly used steps to follow when it
comes to creating a fuzz driver. The first step is to identify which functions require
fuzzing from all the functions in the target program. After identifying the list of
functions, the next step is understanding the logic and flow of the program and selected
functions. Then using this information, we can synthesise a fuzz driver (Figure 2.5).
The following sections show multiple ways of achieving this set of steps in detail.

2.7.2 Source code analysis for target selection

In this section, we attempt to evaluate the initial process of fuzz driver development:
the target function identification. Research studies that we gathered show multiple
methods for source code analysis. We categorise this process in terms of function

2.7. Fuzz driver development 27

Figure 2.5. Stages of fuzz driver development process.

selection by a developer, use of annotations, use of existing unit tests, abstract-syntax
tree (AST) extraction, program slicing and function signature monitoring.

Human interference: target identification by a software developer

A large number of research studies show the development of fuzz drivers as a manual
process done by software testers (50 research studies) (Table 2.3). Our results showed
that 58 studies carries out function identification through a software tester. This
shows a further increase from fifty research studies, which shows that certain semi-
automated fuzz development methods [73] still relied on careful analysis of the target
code by a software tester. These studies require the development of fuzz drivers in
various contexts and on multiple programming languages such as C [75], C++ [188],
Java [115] and across multiple fuzzers. Deep domain knowledge is required when
manually identifying functions [55, 113, 142] and it is a time-consuming process [62, 65,
73, 90]. However, those fuzz drivers with human input show better performance when
compared with automated or semi-automated methods except on two occasions [62,
183].

Annotations/code comments

Annotations/code comments aid function identification. This was evident in the re-
search study of Kelly et al. [73] that carries out semi-automatic fuzz driver generation.
Only this research study shows the use of annotations for target identification in the
fuzzing process, however, annotations do appear for fuzzing related activities in other
contexts [115].

The research work by Kelly et al. [73] involves a human tester writing spec-
ified annotations on top of the function. This annotation technique appears in
automatic unit test generation, Randoop [121]. We believe that Randoop is

28 Chapter 2. Fuzz driver generation for fuzz testing

the inspiration behind the study of [73]. The tool uses the commented text of
@fuzztest to generate the fuzz driver. Furthermore, the tool uses additional direc-
tives such as Array (array-ptr, array-len), Value (parameter, value), Output
(parameter), Cleanup (condition, function, [params]) to modify the behaviour
of the fuzz driver.

Another similar study that uses annotations is FAST [49]. FAST produces test
drivers to measure test coverage and not fuzz drivers, hence it is not in the domain
of fuzzing. However, this approach has some similarities to Kelly et al. [73] work.
It uses ANSI C Specification Language (ACSL) specification, which is a Behavioral
Interface Specification Language (BISL) for annotations. It follows the concept of
design by contract through the annotations of pre/post conditions, assertions and
invariants [49]. These ACSL annotations contain formal first-order logic formulas.
Furthermore, these ACSL comments appear in a form of special comments such as
/*@ and */ [49].

HyDiff by Noller [114] uses annotations along with fuzz drivers but those two
processes are not interconnected. They develop the fuzz driver manually with human
input and annotations to drive a symbolic execution process, which is part of the
testing process without any effect on the fuzz driver.

Unit tests

Unit tests aid in identifying target functions that need fuzzing. These unit tests are
test cases developed by software testers to test the code. Five papers [65, 90, 91, 93,
109] propose the use of unit tests to generate fuzz drivers. These studies propose both
manual and semi-automatic approaches. On some occasions, the fuzz drivers would
be developed automatically by converting a unit test, however, the unit test itself has
to be developed by a software tester. These studies claim that a unit test does have
a similar interface compared to a fuzz driver and therefore unit tests can identify the
function signature of the target program. Hence the unit test could be modified to be
reused for fuzzing in a form of a fuzz driver.

The research work of Liang et al. [90] discusses the requirement of a fuzz driver
for an open-source software library called “libmsg”, which allows message exchanges.
However, the lack of training to develop fuzz drivers in software testers causes this to
be a difficult task even though they have domain-specific knowledge. The fuzz driver
for libmsg should have the ability to initialise the library and register callbacks to
exercise interfaces. The main component required is a simple request sender to send
data from the fuzzer to the library. Hence, Liang et al. [90] believe that the conversion
of unit tests and sample code snippets into a fuzz driver takes less effort compared to
building a fuzz driver from scratch. Liang et al. [90] claim that they only need less
than 10 lines of code for their unit tests for this conversion. However, it is important to
note that this conversion is done by a software tester and no automation is mentioned
for this method. This concept comes up again in their later work [91], which proposes
fuzzing using DeepFuzzer with fuzz drivers developed by software testers. The study
of Liang et al. [91] propose the use of unit tests as part of their future work; they claim
that the conversion of unit tests to create a fuzz driver would be a more convenient
method rather than writing their fuzz drivers.

The research study of Lioy et al. [93] also proposes a method to reuse unit tests
and convert them to fuzz drivers to fuzz IWD (Inet Wireless Deamon) architectures
with AFL. The focus here is to identify software and protocol level vulnerabilities.
This unit test to fuzz driver conversion process is done manually by software testers
using existing unit tests. Furthermore, the work done by Myllylahti [109] also shows

2.7. Fuzz driver development 29

a method where they scrape information from the Abstract Syntax Tree (AST) re-
garding all the functions to identify function parameters. Using this information, unit
tests are mutated to aid the fuzzing process. This mutation process does follow an
automatic approach compared to the previously mentioned methods in generating a
fuzz driver from a unit test.

One of the main problems that developers of FuzzBuilder had was the time con-
sumption for the developer to understand the library API [65]. The lack of in-depth
knowledge of the library API causes the products of low code coverage. Moreover, the
labour-intensive nature of manually writing the fuzz driver has also been a problem
as explained in Section 2.6.10. Therefore, Jang and Kim [65] proposes a method to
carry out static and dynamic analysis of unit tests in projects and generates an “ex-
ecutable” automatically to support grey box fuzzers such as AFL. The Fuzzbuilder
takes the unit test file and the Fuzzable API; the unit test file comes as an LLVM
bitcode file. Inputting this information into the FuzzBuilder requires human inter-
vention since it needs to know which target functions require fuzzing. If the unit test
follows a well-known specification, it knows how to identify the test function, however,
on occasions where the unit test has no convention, a developer should intervene to
provide information about the target function.

Furthermore, it gives freedom to the software testers to skip certain functions if
necessary; this is mainly because certain functions (functions with excessive loops) can
affect the execution speed of the fuzzer negatively. It observes two conditions to be
satisfied to proceed with fuzz driver generation from unit tests: unit tests implemented
as functions and unit tests are independent of each other. Then FuzzBuilder processes
the API and unit tests to identify relevant functions, identifies required parameter
modifications, removes unnecessary test functions and stores instrumented functions
in bitcode functions.

Abstract-syntax tree

The use of AST promotes the identification of the structure of methods and classes.
AST is the tree representation of the source code of the computer program [110]. AST
identifies target functions to develop fuzz drivers. BigFuzz [185] uses the AST along
with Direct Acyclic Graph (DAG) and user-defined functions (UDF) to understand
the core program structure and identify relevant target functions. Babić et al. [7] used
AST to extract the core code structure; they further used this information in program
slicing. The work by Myllylahti [109] also uses AST to identify functions and function
calls. In all these research studies, AST acts as a means to explore the structure
of the code with functions and function calls. It allows the clear identification of
relationships and structure of the code.

Program slicing

Program slicing is another approach that aids in identifying target functions. It is
a technique used by software developers for abstracting for software programs [175].
It starts with a subset of program behaviour and then the process of slicing reduces
that same program to its minimal form with the ability to still produce its original
behaviour [175]. Therefore, the slice is an independent program that meticulously
represents the original program in the same domain of the specified set of behaviour.

The research study of Kiss et al. [78] uses program slicing to identify relevant
functions using a plugin called FRAMA-C. FRAMA-C identifies program statements,
information about reading and writes access to relevant variables, logical annotations

30 Chapter 2. Fuzz driver generation for fuzz testing

and functions calls and returns. The work of Kiss et al. [78] applied slicing to identify
HeartBleed vulnerability. Initially, the code base contained eight functions and fifty-
one lines of code, however, after the application of code slicing this was reduced down
to two functions and thirty-eight lines of code with the same behaviour as the original
code base. The researchers monitor function dependencies when using functions for
slicing. Function dependencies are further explained in Section 2.7.3.

Similarly, Holland [58] shows the use of control flow graphs (CFG) and data flow
graphs (DFG) to produce program dependence graphs. Then these graphs act as
the information source to slice the program to collect relevant components of target
functions. Furthermore, Fudge [7] uses program slicing in function extraction phase
for fuzz driver generation. Fudge slices C++ code. Fudge slices the AST to identify
appropriate statements that need extraction for fuzz driver development. A function
is considered for slicing if there are one or more calls to the target library that is
a parsing API. The slicing mode extract snippets of code from the target program.
Then this snippet acts as the base of the fuzz driver.

Function signature monitoring

The final step of the target identification is function signature monitoring regardless
of the technique followed to identify functions to fuzz. Function signature defines
the inputs and outputs of methods and functions. It is also known as method signa-
tures and type signatures. Function signature monitoring is very important since the
fuzz driver should have information regarding the type of input to send for fuzzing.
There are multiple ways that research studies propose the identification of function
signatures.

The work from Kelly et al. [73] uses annotations by software testers to classify
the correct function signature type as explained in Section 2.7.2. Ognawala et al.
[118] expresses the requirement of distinguishing function parameters from pointer
types and non-pointer types. They ignore functions with double or more pointers
saying that it is a limitation in their framework. Their program distinguishes between
pointers and their sizes to identify the input characteristics of generated fuzz drivers
through an automatic procedure that involves function signature scanning.

As explained in Section 2.7.2, Fudge uses AST to identify the program structure
and then relevant functions [7]. It generates multiple fuzz drivers even for each func-
tion and then requests the software developer to choose the fuzz driver that suits the
most to fuzz the target program. The fuzz driver is automatically generated with the
extracted function signatures, however, there is human involvement in identifying the
optimum driver for the task.

The research from Myllylahti [109] identifies the function signatures through the
information gathered by the AST (Section 2.7.2). This work investigates the param-
eter types of the function calls to determine the function type. On the other hand,
the tool of RULF [69] gathers all the API signatures to identify function signatures.
The work of Jiang et al. [69] uses this technique further to extract dependencies but
we explain this further in Section 2.7.3.

Intelligen by Zhang et al. [183] proposes a unique strategy to identify functions
and extract appropriate function signatures for fuzz driver development. Intelligen is
an automatic fuzz driver generation software. It identifies functions for fuzz driver
development by evaluating the function priority. It counts statements that dereference
a pointer or those that call other functions for memory processing. It uses LLVM IR
that contains load and store instructions regarding memory interactions of reading and
writing through pointers and call instructions that call functions. This information

2.7. Fuzz driver development 31

helps to trace back and identify the priority of any function. The Intelligen locates
entry functions and proposes multiple entry functions with recommendations. The
user can pick the function that they want to fuzz; so they can either let Intelligen
recommend functions automatically or manually intervene and change the function
selection.

Intelligen scans the function intermediate representation (IR) to search and iden-
tify comparison instructions. It would further generate more code to check if the
relevant value is assigned to the argument. Furthermore, Intelligen adopts memory
allocation and deallocation functions to prevent memory leaks in the fuzz driver. In-
telligen uses an algorithm to sort the entry function locator. Then it picks those
functions with high priorities as its entry functions for the fuzzer.

The experiments of Zhang et al. [183] claims that compared to the pattern match-
ing in Fudge [7] and API function searching in FuzzGen [62], Intelligen can identify
vulnerable functions more effectively through its adapted ranking algorithms. In the
case of FuzzGen [62], the function signatures are gathered by monitoring C/C++
header files. It produces a meta file with all the functions exiting the program, and
then it extracts all the type signatures from the header files and extracts their signa-
tures. Then this information aids to synthesise the fuzz driver. The order of appear-
ance for function calls inside the fuzz driver is dependent upon the API dependencies
(Section 2.7.3).

The research study of Blair et al. [11] proposes HotFuzz, which considers every
single function as an entry point without discarding functions. HotFuzz tries to fuzz
every single function presented in the input by extracting function information in-
spired by the micro-fuzzing proposed by Godefroid [47]. Micro execution proposes a
methodology to execute fragments of code without user-provided input data and a
test-driver [11] by identifying the location of the functions or code in the executable
(exe) file or the dynamic link library (dll). For the testing purpose, a customised
run-time virtual machine (VM) starts the code execution at the target location. It
catches all the memory operations and carries out memory allocation on the fly to
perform read/write memory operations. Furthermore, it provides input values accord-
ing to a customisable memory policy. The first VM prototype that offers this is called
MicroX, which allows micro executions to be carried out in x86 binary code. This
process only requires the dll or exe and it does not require the source code, input data,
debug symbols and a fuzz driver. MicroX automatically identifies the input and out-
put interfaces of the program. Hence, MicroX does not need to identify functions and
function signatures and as a result, it bypasses the fuzz driver generation altogether.

2.7.3 Function dependency identification and fuzz driver synthesis

When a fuzz driver is synthesised, it is important to have an understanding of the
core of the target program. If the fuzz driver is sending a stream of data to multiple
functions, it should know the order in which those functions are to be called to avoid
crashes occurring in the fuzz driver itself that can cause false positives.

Section 2.7.2 implicated methods which researchers followed to identify the pro-
gram structure, and functions for the fuzz driver development process. The next
step is to identify the flow of these functions and synthesize the fuzz driver. Hence,
we explored these techniques in this section in terms of manual function dependency
identification, API dependency analysis, control flow graphs, data flow graphs, project
control graphs and the avoidance of function dependency.

32 Chapter 2. Fuzz driver generation for fuzz testing

Human interference: function dependency identification by a software
tester

The software tester identifies function dependencies on the majority of occasions. As
explained in Table 2.3, 50 research studies showed the writing of fuzz drivers manually.
Similarly, 52 research studies show that software testers manually identify function
dependencies. This process interconnects with Section 2.7.2 expressing the human
involvement in fuzz driver identification.

Function dependency identification requires a good understanding of the target
program and the programming language [6, 33, 129]. Function dependencies become
important when the fuzz driver targets multiple functions [62, 183]. However, if the
requirement is to build a fuzz driver for a single function, function dependencies
are irrelevant. We further explore such occurrences in Section 2.7.3. Our results
show that researchers follow programming analysis techniques to recognise function
dependencies.

Program analysis

Program analysis involves the monitoring of the control and the data flow of the
program. The information it extracts helps to maintain reliability, correctness and
security. Control flow monitors the order of statements in the program while the data
flow monitors the correctness of data value in its execution [4]. The control flow of
the program is the workflow of the methods that the program executes in an orderly
manner. It is the flow of operations or tasks in the program.

The data flow of a program is the flow of data from the source to the destination.
This includes information regarding data transformations in this process. Both the
control flow and data flow are directly related to each other since they both drive the
program execution. A common method followed by researchers to model these two
concepts is through the use of CFG and DFG. For example, the research technique
adapted by Allen [4] proposes the use of CFG, which gives information regarding
program paths and their execution information.

Our studies show that multiple research studies use CFG and DFG for program-
ming analysis. This includes both automatic and semi-automatic methods that de-
velop fuzz drivers. The study done by Kiss et al. [78] explains the importance of iden-
tifying the functions with taintable data flow when observing vulnerabilities through
data flow analysis. BugFuzz by Zhang et al. [185] shows the combined use of the
control flow analysis and data flow analysis. They extract the behaviour of the data
flow of user-defined functions (UDF) in the program while monitoring its control flow
coverage. They name this process joint data flow and user-defined function coverage
(JDU coverage). They use JDU information to identify dependencies and aid the fuzz
driver development process.

As it shows in Section 2.7.2, Fudge uses a slicer to analyse AST to determine
appropriate functions for fuzz driver generation. The next step of its fuzz driver
synthesis process is to identify function dependencies; it fulfils this task by collecting
dependant statements through a control flow graph [7]. Fudge uses an algorithm
on a given AST function to explore both forward and backward dependencies. If it
contains a function with a library call that requires fuzzing, then it collects all the
calls of that particular library as seed statements. Once Fudge collects these seed
statements, they check all their dependencies until it reaches a fixed point. Fudge
explores these transitively relevant statements using both data flow and control flow
dependencies.

2.7. Fuzz driver development 33

FuzzGen [62] collects functions that infer the API. Then it generates an Abstract
API Dependence Graph (A2DG graph) through this information. This explores the
function dependencies within the code base that requires fuzzing. A2DG extracts
dependencies and interactions between API calls. Moreover, it expresses the order
of function invocation in ascending order and those functions that depend on each
other. A2DG graph implicates information regarding control dependencies and data
dependencies.

Control dependencies show how to call APIs and on the other hand, data depen-
dencies show connections between arguments and return values in the API calls. This
clarifies if a return value of one API call is an argument in another API call [62].
Therefore, it is evident that A2DG graph consists of sequences of valid API calls
similar to a control flow graph. The edges in the A2DG represent the control flow
between API calls while its nodes represent calls from the API function.

To build an A2DG graph, initially, it is required to generate an A2DG for each
root function in every consumer. Secondly, these A2DG are coalesced into a single
A2DG [62]. If the target function is a library, FuzzGen develops control flow graphs
for all the exported API functions, otherwise, it takes the main function as a starting
point. After the A2DG development, nodes of the graph represent APIs. After this
process, FuzzGen merges multiple A2DG into a single A2DG and this process involves
the migration of children, sub-trees and other common nodes [62].

Furthermore, FuzzGen carries out argument flow analysis, which involves data flow
dependency identification [62]. It identifies these data flow dependencies by analysing
libraries for arguments and their return values across API calls through static per-
function alias analysis. Secondly, it checks dependencies across functions to identify
their dependability. After gathering information about the control flow and the data
flow of the sliced functions, FuzzGen finally uses this information to synthesise a single
fuzz driver that can fuzz all the relevant functions in the target program.

A tool called HyDiff proposes a manual process in which to develop fuzz
driver [115]. However, this research study explores the topic of software analysis
by identifying the flow of the program functions. To carry out these criteria, the
researchers rely upon control flow graphs. In particular, Noller et al. [115] discuss the
construction of inter-procedural-control-flow-graph as a part of their fuzzing compo-
nent to identify function dependencies. This study focuses on this concept to aid the
symbolic execution rather than aiding the fuzz driver generation; fuzz driver genera-
tion is a rather manual task in this research study.

RFuzz proposes a technique to generate fuzz drivers for AFL and the develop-
ment process of these fuzz drivers is reliant on the function dependency identification
through a control flow graph [81].

RULF developed by Jiang et al. [69] proposes a technique to automatically generate
fuzz drivers for software written for Rust libraries. The process of developing a fuzz
driver using RULF is heavily dependent upon the use of an API dependency graph
similar to the A2DG approach followed by FuzzGen. The generated fuzz drivers
through RULF take the form of a sequence of API calls. They use the technique of
breadth-first search of sequences of API calls under the length threshold on the graph.
Then they do a backward search for each collected API due to length limitations.
After this, it refines the sequence of the minimum subset that would cover the same
APIs [69]. The first step to generating this API dependency graph is the extraction
of all the public API signatures from the system under test.

RULF relies on an external tool called rustdoc to generate this API documentation
based on Rust code base [69]. Then RULF extracts these API signatures and generates
a dependency graph by defining and modifying call types according to their needs.

34 Chapter 2. Fuzz driver generation for fuzz testing

Using the API dependency graph, RULF generates API sequences and subsequently,
this information gives the order of API calls in the fuzz driver synthesis process.

Similarly, Winnie [71] focuses upon API call monitoring, control and data flow
monitoring when it comes to function dependency analysis. After Winnie identifies
relevant functions to develop fuzz drivers, it starts the process of reproducing a set of
API sequences that would reach the required functions that need fuzzing. They call
this the harness skeleton. It includes function calls that connect to the system under
test, function prototypes identified through static analysis and auxiliary code such as
main, helper functions and forward declaration. to propagate the fuzz driver.

Furthermore, it identifies situations where there are multiple threads and only
keeps threads that trigger file-related APIs and remove others to maintain the fuzz
driver correctness [71]. Then Winnie explores both control and data flow dependencies
to make sure the fuzz driver is built within the correct program logic. It uses static
analysis for this task and observes the control flow within API call paths in terms of
invoking the function, returns values and termination. However, the current product
cannot analyse complex flows that contain multiple variable operands and assignments
inside conditional statements. Winnie relies upon human intervention to sort out such
situations. Winnie also processes data flow dependencies to identify relationships
that are between arguments and return values in functions. Winnie checks flow from
return values, argument retrieval from memory using pointers and repeated uses of
the variables on these occasions and map all the data dependencies. Then using this
information, Winnie generates the order of logic of API sequences in the fuzz driver
for its synthesis.

The work proposed by Holland [58] uses a platform called Mockingbird to aid the
fuzz driver generation process. Similar to other research studies, they also rely on
control flow graphs and data flow graphs to understand the function dependencies.
Mockingbird framework initially constructs the control flow graph and the data flow
graph of the target program. They generate a control flow graph with nodes and edges
that represents program statements and transitions of control flow. The behaviours
of functions represent paths from roots to their leaf. Similarly, a data flow graph is
in use to model the data relationships in the program. It identifies dependencies by
checking operator nodes, variables, primitive values and other assignments.

Furthermore, Holland [58] proposes the analysis of inter-procedural control flow
through the use of a call graph. Call graphs represent inter and intra-procedural
nesting structures of loops and how they climb up the chain of commands [58]. Fur-
thermore, they propose a methodology called a projected control graph for further
analysis of the program and for the simplification of the control flow graph with a
control dependency graph which shows the dependencies of statements within the
program. A projected control graph is a simplified version of the control flow graph
that only contains branches from a set of events of interest along with the control
dependent branches [156].

Above mentioned processes implicate how program analysis aids the fuzz driver
synthesis by recognising the order of function calls. Our results show that 15 studies
use control flow graphs, data flow graphs, project control graphs and API depen-
dency graphs to recognise program logic for fuzz driver synthesis. However, on some
occasions, the function dependency is irrelevant for fuzz driver synthesis.

Avoidance of function dependency identification

According to our results, seven research studies [11, 38, 47, 65, 73, 84, 183] show
that there is no requirement to identify function dependencies when developing fuzz

2.7. Fuzz driver development 35

drivers. It is important to note that they are all combinations of manual, automatic
and semi-automatic fuzz driver generation methodologies and they express this idea
due to a variety of circumstances. The work by Kelly et al. [73] only produces a fuzz
driver per one function at a time. If the user annotates multiple functions, it picks the
function which has the last annotation and generates a fuzz driver for that particular
function. The purpose of this tool is to create a fuzz driver for a single function that
the user wants to fuzz rather than fuzzing the whole codebase at once. Therefore,
function dependency identification is not a requirement for this study.

FuzzBuilder [65] builds fuzz drivers by converting existing unit tests into fuzz
drivers. Therefore, Fuzzbuilder takes information regarding function dependencies
from unit tests and build the fuzz driver accordingly. The identification of function
dependencies is not a priority in studies that promote the reuse of fuzz drivers.

The research done by Fioraldi [38] reuses an OSS-Fuzz fuzz driver, which does not
require the function dependency analysis. Similarly, the work done by Le [84] shows
the reuse of the same LibFuzzer fuzz driver for the fuzzing engine Kluzzer for the
same code base, thus no requirement to modify function dependency. Intelligen uses a
special algorithm as explained in Section 2.7.2 and identifies the function prioritisation
to synthesise the fuzz driver accordingly [183]. Micro execution proposed through
MicroX by Godefroid [47] follows a method where all the functions are fuzzed without
the use of a fuzz driver by directly invoking the functions. It is later adopted in the
work by Blair et al. [11] and the function dependency analysis is not mentioned in
both of these studies.

2.7.4 Interfaces fuzzed

Our identified 102 research studies focus on fuzzing a variety of software systems using
fuzz drivers. We categorised these fuzzed interfaces in terms of the programming
language. It is important to note that some fuzzers and fuzz drivers can fuzz more
than one programming language. For example, a fuzz driver created for LibFuzzer
can fuzz programs written in both C and C++ with minor modifications to the fuzz
driver. This is explained in research studies such as Huang et al. [60], Fioraldi [38],
Heelan [56], Jang and Kim [65] and they show some of the prime examples for this
paradigm.

Our results show that from 102 papers, the majority of research studies fuzzed
C interfaces (65 research studies) using a fuzz driver. Secondly, 34 studies focused
on C++ programs. It is evident that 22 research studies focused on both of these
languages implicating the high amount of research done for those programming lan-
guages. Comparatively, the third-highest focus is on Java with 15 studies. Four
studies [57, 70, 71, 96] focused on fuzzing C#/.NET interfaces. Out of these four
studies, two studies by Jung et al. [71] and Jung [70] both talked about the same
study: Winnie. This is because the research paper publication [71] is inspired by
Jung’s thesis [70].

Another four studies [36, 96, 97, 109] focused on fuzzing Python programs while
three studies [34, 48, 96] focused on fuzzing JavaScript programs. Two studies [96, 134]
fuzzed programs written in Ruby while languages such as Rust [69], Haskell [96],
Perl [96] and OCaml [134] only appeared once. This implicates the distribution of
interfaces fuzzed by multiple fuzzers in this research domain. More focus is given
to C and C++ fuzzing with fuzz drivers. Java receives a moderate amount of focus
but we do believe that there is certainly room for improvement (Section 2.11). Minor
attention is given to technologies such as .Net, Python and JavaScript, but they require
further research studies to explore more interesting and potential topics in this area.

36 Chapter 2. Fuzz driver generation for fuzz testing

2.7.5 The use of fuzzers

Our research study shows the use of multiple fuzzers across this domain for fuzzing
(Table 2.4). The generation of fuzz drivers has to accommodate the conditions of
these fuzzers. There are some studies that use multiple fuzzers for evaluation [17, 65,
75, 116, 158]. It is evident that 51 research studies propose their own fuzzer along
with fuzz driver/s to fuzz the target program. On the other hand, 51 studies propose
the use of LibFuzzer and AFL (or a variation of AFL such as AFL++, AFLFast and
AFLNET). In particular, 29 research studies propose AFL or an AFL variation while
22 research studies propose the use of LibFuzzer. It implicates the popularity of AFL
and LibFuzzer as fuzzers since half of the research studies used this software. The
high focus on these two software is mainly due to their offer of standardised structure
for fuzz drivers and fuzzing. Furthermore, LibFuzzer and AFL are widely used for
automated or semi-automated attempts at fuzz driver generation while using C and
C++ as programming languages. This explains the high number of fuzzing interfaces
written in those two languages compared to others as explained in Section 2.7.4.

Table 2.4. Types of fuzzers.

Fuzzer Count

AFL (or one of its variations) 29
LibFuzzer 22
Other 51

2.7.6 Availability of source code for research replication

It is a recommended practice to make the source code used for experimentation pub-
licly available since it allows other researchers to replicate the experiments. From 102
research papers, only 30 papers made their source code open source. According to our
findings, the most commonly used languages to develop software are C, C++, Java and
Python. As explained in Section 2.5, the topic of fuzz drivers shows varying in-depth
in each research paper. This means that while some papers solely focus on fuzz driver
development, other papers only mildly mention the existence of a fuzz driver. Their
research is written in the domain of fuzzing with supporting open-source code but on
occasions, that code is not relevant to fuzz drivers nor fuzz driver development. As
a result, only eight research studies have source code available that is related to fuzz
driver development from these 30 studies. Some research studies depict fuzz drivers
in the main text of their research paper. Out of 102 papers, 25 papers showcase a
fuzz driver in the main text while explaining its usage. Table 2.5 shows the summary
of these results.

Table 2.5. Open-Source access to findings.

Availability Count

Open-source code available 30
Open-source code is built for (full/partial) automatic fuzz driver generation 8
Showcase of a fuzz driver in the text 25

2.8. Evaluation methods 37

2.8 Evaluation methods

There are multiple methods used by researchers to evaluate the fuzzing campaigns
that use a fuzz driver. We will first observe the most common occurrence of evalua-
tion methods in research papers related to fuzzing and then move on to fuzz driver
evaluation. The most commonly used evaluation criteria in these research papers are
the effectiveness of the fuzzer. Our results show that the identification of a number
of bugs is the most common fuzzer evaluation method followed by code coverage and
the duration of the fuzzing. It is important to note that these papers do not stick to
one evaluation method; they try to evaluate their target functions with a variety of
metrics to validate their results.

The speed of the fuzzing such as executions per second was also measured as a
metric for evaluation; furthermore, certain projects purely focused upon identifying a
known bug (e.g. Heartbleed Bug) [78] rather than trying to identify an array of bugs.
When they identify a known bug, they further evaluate these bug identification process
through other methods such as the duration for the bug identification, code coverage
before the bug identification or the number of inputs before the crash. Then this
information is used to enhance the fuzzing process by improving those value metrics
to identify that particular bug in a quicker time, less coverage or with less seed input.
Table 2.6 shows the summary of these results.

Table 2.6. Fuzzer evaluation methods.

Method Count

Number of Bugs 68
Code Coverage 49
Fuzzing time 22
Fuzzing speed 12
identification of a certain bug 7
Number of inputs per crash 1
Not Stated 23

Those research studies that purely focus on fuzz driver development introduce
further evaluation metrics while following above mentioned methods. On occasions
where the fuzz driver development is automated, those studies compare automatically
developed fuzz drivers with manually developed fuzz drivers [7, 62, 73, 183]. Fur-
thermore, on some occasions, they carry out comparisons with fuzz drivers that are
built automatically from a similar automatic fuzz driver generation software [183].
On these occasions, they try to compare the claims of their effectiveness against each
other by measuring factors such as the number of bugs, code coverage and fuzzing
speed. Furthermore, there is an identification of other metrics such as the number
of APIs, interfaces and interface models [65] to solidify the claims of the product
effectiveness.

It is clear that metrics explained in Table 2.6 are the most commonly used metrics
for evaluating the fuzzer performance according to our findings. Those studies that
focused on automatic/semi-automatic fuzz driver development also proposed these
metrics in their studies. However, in addition, they further proposed metrics explained
in Table 2.7 to compare fuzz driver effectiveness.

38 Chapter 2. Fuzz driver generation for fuzz testing

Table 2.7. Fuzz driver evaluation methods.

Method Count

Comparison with manually built fuzz drivers 4
Interface model evaluation 1
Number of interfaces/API functions identified 1
Comparison with other automatic fuzz driver generators 1

2.9 Fuzz driver development software that does not asso-
ciate with a research study

When we designed this study and developed the attribute matrix, we focused thor-
oughly on research studies rather than software products. However, it has come to our
attention that there are software tools that could also aid the fuzz driver development
process but lack research studies. These tools did not appear as results of our search
strategy on Google Scholar (Section 3.3), however, since we intend to cover all the
aspects of fuzz driver development in this research study to satisfy the first research
question, we mention these tools in this section. It is important to note that these
studies are not associated with our synthesis of results (Section 3.3) since they do not
satisfy the search strategy (Section 3.3) and paper filtration criteria (Section 3.3).

Code Intelligence is a software security company with the primary goal of providing
fuzzing solutions for software. They provide two products: Jazzer and CI Fuzz [28].
Jazzer is a coverage guided fuzzer developed to fuzz Java Virtual Machine (JVM)
platform and it is based on LibFuzzer [67]. It is a Java fuzzer and it requires a fuzz
driver to reach the target program. Their Github repository documentation provides
information regarding step by step processes to develop a fuzz driver [67]. On this
occasion, a software developer needs to write the fuzz driver.

Code Intelligence [28] also has a product called CI Fuzz, which is focusing on
fuzzing multiple languages. This is not a released product yet, however, their demo
material shows its capability to automatically generate a fuzz driver when a soft-
ware developer selects a particular function [27]. This is somewhat similar to the
annotation-based fuzz driver generated proposed by Kelly et al. [73], however, CI
Fuzz seems to come with their own graphical user interface for function selection ac-
cording to their demo [27]. As of this moment, they only issued a demo video and a
brief description of this product and no code or further information is available.

Microsoft proposes their fuzzing tool called OneFuzz [105] that uses LibFuzzer
LLVMFuzzerTestOneInput function prototype for fuzz driver development. The de-
veloper has to manually write the driver program for the fuzzing process compared to
the automated method proposed in Winnie [71] for Microsoft products. This product
is available through GitHub as an open-source tool to be integrated with Microsoft
products for fuzzing [105].

Bogenberger [14] proposes a concept to automatically generate fuzz drivers for code
written in C language. Similar to FuzzGen [62], they carry out automatic parsing and
analysis of the header file of the library to identify functions and their signatures.
Using this information, their tool generates a fuzz driver to fuzz C programs. They
measure its performance by comparing the coverage of the automatically generated
fuzz drivers with handwritten fuzz drivers from a developer for the same code base.
They claim that false positives among the automatically generated fuzz drivers were
high compared to hand-written fuzz drivers and they had to face limitations on the

2.10. Research gaps and future directions 39

amount of fuzzable libraries due to relying only upon C specific features and using
header files to extract function information [14]. This product is not available open-
source nor its research findings are available publicly for further evaluation.

2.10 Research gaps and future directions

We derived future directions by thoroughly analysing the results explained in the above
sections. In particular, we analysed future directions of research papers and compared
the techniques that each of the studies proposed to identify gaps in research and
potential future research studies. A summary of a few future directions are available
in this Section, however, these methods are thoroughly explained in Chapter 4.

Our results show that fuzz driver generation research is highly focused on C, C++
and Java. Hence, further research studies should be carried out to expand fuzz driver
research to other programming languages. From multiple research studies [65, 109],
we identified that unit test to fuzz driver conversion is a manual task. Thus this
conversion process could be automated. The function importance ranking technique
proposed by Zhang et al. [183] could be expanded to programming languages other
than C and C++. The work of Godefroid [47] proposes Micro fuzzing as an alternate
strategy to fuzz driver development. The efficiency of these two methodologies could
be analysed to find the most effective vulnerable detection strategy. Furthermore,
when identifying information about the target function, observation on documentation
files and existing comments would help recognise function types and their features
more effectively. More details about these future directions with explanations are
available in Chapter 4.

2.11 Limitations and threats to validity

We used Google Scholar [136] to extract results for this study rather than extracting
results from research libraries such as dblp, IEEE, and ACM Digital Library. Our
goal is to explore all the content related to fuzz driver development in this study.
Therefore, if we were to explore those libraries, we must search multiple libraries for a
complete set of results. All of these libraries have multiple search algorithms hence the
same search string will not return consistent results. Since Google Scholar indexes a
vast amount of research papers from multiple libraries, we used it for the paper search
by keeping the consistency of the search results.

We did not consider the ranking of the conferences when extracting papers. There-
fore, we extracted all the research materials written in this domain for analysis without
discarding research materials based on ranking levels. Also, we gathered sources such
as undergraduate, Masters and PhD thesis written in this domain, which is otherwise
not captured if we followed a certain ranking based resource extraction. However, to
maintain the quality and the relevancy of this study, we carried out our own quality
assessment criteria as described in Section 3.3.

Since we used Google Scholar [136] as our resource base, there are software prod-
ucts with no research studies that are not identified through our methodology. How-
ever, we did extract information regarding software tools that aid fuzz driver devel-
opment through Google and GitHub by systematically searching identified keywords
identified in Section 3.3 and included that information in Section 2.9. It is important
to note that since we collected these sources outside of our research methodology (Sec-
tion 3.3) and since they do not have an attached research study, we did not include

40 Chapter 2. Fuzz driver generation for fuzz testing

them in the attribute matrix. However, their existence is explained in this study to
answer our first research question (Section 3.3).

2.12 Summary

In this chapter, we report on our systematic literature review on fuzz drivers that aid
fuzzing. We designed an attribute matrix by categorising the role of fuzz drivers in
the fuzzing life cycle into multiple major areas. Based on a thorough analysis of 102
research studies, we summarise,

• The fuzz driver development life-cycle consists of target identification, program
analysis and driver synthesis. When a fuzz driver is written manually, both func-
tion identification and dependency analysis are done by the developer. However,
when the fuzz driver development is automatic or semi-automatic, researchers
use methods such as annotations, AST extractions, header file monitoring and
program slicing to identify functions. They further use control flow graphs, data
flow graphs, data dependency graphs and project control graphs for function de-
pendency identification. These methods provide the order sequence of API calls
for fuzz driver synthesis.

• Nearly half of the research studies showcase the manual writing of fuzz drivers.
However, there are novel automated and semi-automated methodologies pro-
posed to generate fuzz drivers published from 2013 onwards.

• The most commonly demonstrated fuzz driver evaluation techniques are the
comparisons of manually and automatically generated fuzz drivers, interface
model evaluations, the measure of the number of APIs and the comparison with
other automatic fuzz driver generators.

• The most commonly explained metrics for fuzzer evaluation are the number of
bugs, code coverage, fuzzing time, fuzzing speed, identification of a certain bug
and number of inputs per crash.

• When it comes to fuzz driver development, the most commonly explained aspects
of exploration by the authors of the surveyed articles are the methods of reaching
a bug, types of bugs, the effect of seed corpus on a fuzz driver, the effect of multi-
threading, speed, timeouts, difficulties of manual fuzz driver development and
the requirement for automation of fuzz driver development process.

• The majority of research studies (78%) showed fuzz driver development as a
minor activity in research studies. It is important to note that these studies
proposed fuzz driver development as a manual task done by a software developer.
7% of papers proposed novel approaches in developing fuzz drivers as the main
contribution while further 8% proposed novel methods while not being the main
contribution of the paper. 6% of papers showed extensions from previous novel
work while 2% of papers proposed new techniques to bypass the fuzz driver
generation process from the fuzzing life-cycle.

• C, C++ and Java are the most commonly used languages in fuzz driver gener-
ation.

Overall, we explored the importance of fuzz drivers in the domain of fuzzing while
analysing its development methods and the life cycle. We mapped programming

2.12. Summary 41

languages used for fuzz driver development with available source code and we analysed
potential evaluation criteria in terms of fuzzing and the role that fuzz drivers play in
the domain of fuzzing. Therefore, we successfully answered our first research question
by carrying out this empirical research study.

43

Chapter 3

What is the best fuzz driver
generation strategy?

3.1 Introduction

There are multiple ways of developing a fuzz driver as we identified in Section 2.4.3.
These identified techniques for fuzz driver development are manually writing a fuzz
driver, fuzz driver generation semi-automatically with human-in-the-loop approaches,
fully automated fuzz driver generation techniques and fuzz driver existing as a built-
in-component in a software product.

Our results from Table 2.3 show that manually writing a fuzz driver is the most
common practice among researchers and software testers. However, Figure 2.3 depicts
that post-2018, there is high interest in developing automated and semi-automated
methods to generate fuzz drivers. Thus, in this chapter, our first motivation is to
identify the best semi-automated and automated fuzz driver developing tools that are
available as open-source products and compare their effectiveness against manually
written fuzz drivers. We did not analyse the fourth technique where fuzz driver exists
as a built-in component as mentioned in Section 2.4.3 due to the lack of open-source
tools for results replication.

The results from Table 2.7 show that there are studies that compare different
fuzz driver development tools against each other, which follow the same fuzz driver
development strategy. There are four attempts [7, 62, 73, 183] taken to compare two
fuzz driver development techniques (manually developed fuzz drivers compared with
one other technique). However, according to the findings in Chapter 2, no study has
been carried out since 1990 to compare fuzz driver generation techniques from multiple
open-source products to identify the best state of the art fuzz driver development
strategy. Therefore, we explore this research gap in this study to answer the second
research question.

Our results from Section 2.7.4 show that C is the most common programming
language in fuzzing research, hence we focus this study on C programming language
fuzzing. Moreover, we identified that LibFuzzer [94] is a widely used C programming
language fuzzer (Section 2.7.5), hence we use this open-source tool as the fuzzer in
our case study. As shown in Table 2.6, identification of the number of bugs and
code coverage are the most popular metrics in recognising the effectiveness of the
fuzzing campaign; thus they are our evaluation metrics. Furthermore, we analyse
the development strategies of multiple fuzz driver generation tools and explore poten-
tial improvements for their current standards. Thus, answering the second research
question.

There is no mention of any external factors that could affect the fuzz driver per-
formance in Section 2.8. From the majority of the studies we explored, it is clear that
their conclusions focus thoroughly on the performance metrics of the fuzzer such as

44 Chapter 3. What is the best fuzz driver generation strategy?

the number of bugs, code coverage, fuzzing time, and fuzzing speed. Code complexity
analysis exists in the software testing domain to recognise the maintainability and
the efficiency of the code base [145]. Thus, our second motivation is to explore the
effect of the varying code complexity in the target code on fuzz drivers and the fuzzing
campaign.

The inspiration for this idea comes from research studies carried out in another
software quality assurance domain called unit testing. Unit testing is a testing method-
ology where testers have to write a function to mimic the target function and verify
whether the program component works accordingly with expected input [133]. The
software tester has to put their manual effort and write this function for a target pro-
gram function similar to writing a fuzz driver for fuzzing. There are multiple studies
carried out to check the correlation between the complexity of the source code and
the effectiveness of unit tests [2, 8, 141].

Code quality metrics indicate information regarding design flaws in the software
code [124]. There are studies done involving code quality metrics and fuzzing [21,
61, 146]. However, such a study has never been carried out to identify the effect of
fuzzing along with fuzz drivers. Thus, opening up a research gap to explore. As a
result, we use source code quality metrics to explore, how the complexity of the target
code compares to the metrics gathered through fuzzing (code coverage) for fuzz drivers
developed through multiple techniques. Our intention is to identify what requirements
are needed in a fuzz driver to fuzz highly complex code efficiently. Through this
experimentation, we intend to answer the third research question.

3.2 Background and related work

The Fuzz driver contains two parameters. The first parameter carries the buffer
address by storing a random value generated by the fuzzer [65]. The second pa-
rameter stores information regarding the size of the buffer address. It is the task
of the tester to write the body of this function according to the functionality of the
target program. There are characteristics that a fuzz driver should possess to be
a LibFuzzer fuzz driver [94]. When using LibFuzzer, software testers should create
the LLVMFuzzerTestOneInput to act as the interface between the target library and
the fuzzer. Hence, it is the fuzz driver for the LibFuzzer to fuzz the corresponding
target code. One of the issues with manual fuzz driver development is that it is a
time-consuming process as we identified in Section 2.6.10. However, there were recent
attempts taken to automate this process as explained in Section 2.4.3.

There are three steps for fuzz driver development as we identified in Section 2.7.1.
They are target identification, program analysis and fuzz driver synthesis. There are
different levels of human involvement in semi-automated fuzz driver development ap-
proaches. Information that we gathered from Chapter 2, shows that semi-automated
methods contain human involvement either in the target identification process or in
the fuzz driver synthesis process (Figure 3.1). For example, Fudge [7] requires soft-
ware tester involvement after the synthesis of the fuzz driver to identify the most
effective fuzz driver generated from Fudge. This is because Fudge generates multiple
fuzz drivers for the same function.

3.2. Background and related work 45

Figure 3.1. Human involvement in semi-automated fuzz driver de-
velopment.

For this research study, our focus is on human involvement at the target function
identification step because this process involves the identification of functions, function
signatures and function features for a good quality fuzz driver generation as explained
in Section 2.7.2. The function signature is the definition of the input and output of a
method or a function. The first step in the fuzz driver development life cycle is more
important to develop an effective fuzz driver compared to the process of figuring out
which fuzz driver is best after it has already been generated according to our findings
in Chapter 2,

From all the studies we analysed in Chapter 2, Fuzz Target Generator (FTG) [73]
is the only semi-automated fuzz driver generation method that aids the first step of
the fuzz driver development life-cycle. Therefore, we decided to use FTG for fuzz
driver development in this research study as our semi-automatic approach. FTG is
further explained in Section 3.2.1.

Multiple research studies [62, 183] propose techniques to generate fuzz drivers
automatically. However, from all these approaches, only FuzzGen [62] is available as
an open-source product for researchers and software testers to generate fuzz drivers
automatically for target code. The authors, Ispoglou et al. [62] claim that FuzzGen can
surpass the performance of manually developed fuzz drivers. Therefore, we decided
to use FuzzGen as the fully automated approach for fuzz driver development in this
research study. FuzzGen is further explained in Section 3.2.2.

3.2.1 Fuzz Target Generator (FTG)

FTG is a semi-automatic fuzz driver generation method proposed by Kelly et al. [73]
that aids fuzz driver generation for LibFuzzer. As explained in Section 2.6.10, manu-
ally writing a fuzz driver is time-consuming and requires a lot of domain knowledge.
However, FTG proposes a methodology to produce the fuzz driver directly with minor

46 Chapter 3. What is the best fuzz driver generation strategy?

inputs from the software tester. FTG is a software tool that is specifically designed
for C.

The software tester input is in the form of annotations that are pre-defined
code comments. These code comments are @fuzztest, Array (array-ptr,
array-len), Value (parameter, value), Output (parameter), Cleanup
(condition, function, [params]). This process was thoroughly explained
in Section 2.7.2.

Firstly, the software tester has to identify which target function they want to fuzz.
Then the tester should comment on top of that function using the appropriate pre-
defined annotation to scan the target function. FTG reads the annotation, recognises
the function signature, identifies relevant parameters and generates a fuzz driver that
is compatible with LibFuzzer. Figure 3.2 shows this process diagrammatically.

Figure 3.2. Fuzz driver development through FTG.

The research study of Kelly et al. [73] compares the effectiveness of the semi-
automatic fuzz driver generation by comparing the fuzzing results of FTG against
manually written fuzz drivers. The results show that manually written fuzz drivers
still outperform FTG fuzz drivers in terms of identifying the number of bugs and
producing fewer false positives. FTG is tested and evaluated by collaborating with
an organisation called Cohda Wireless to identify its effectiveness [73]. Their tested

3.2. Background and related work 47

target code is not open-source, hence their results cannot be replicated. However, we
will carry out experiments on FTG in open-source software products.

Furthermore, Kelly et al. [73] do not measure the code coverage in their experi-
ments to show the effectiveness of the fuzz driver in terms of how many code blocks or
branches it can cover in a given period. As we identified in Section 2.8, code coverage
is an important metric in validating the effectiveness of the fuzzing campaign. Hence,
we focus on measuring both code coverage and the number of bugs in our research
study to compare the effectiveness of FTG with automatic fuzz driver generators
(FuzzGen [62]) and manually written fuzz drivers.

The following Listing 3.1 shows an example of a simple C function. On this
occasion, the target function consists of three integers; it swaps them around. It
contains the @fuzztest comment, which informs FTG to generate a fuzz driver for
this particular function.

Listing 3.1. Target C function.

// @ fu z z t e s t
void swap (i n t ∗a , i n t ∗b , i n t ∗c)
{

i n t tmp ;
tmp = ∗a ;
∗a = ∗b ;
∗b = ∗c ;
∗c = ∗a ;
∗c = tmp ;

}

The following Listing 3.2 shows the fuzz driver for Listing 3.1 generated through FTG.
This function accepts two parameters to fuzz the target library. The first parameter
receives a buffer with random data generated by the fuzzer. The second parameter is
the size of the data in the buffer. This fuzz driver uses memcpy to copy characters of
the size of the input integers to the address. Then these values are sent to the swap
function for fuzzing.

On this occasion, @fuzztest comment on the target function initiates FTG, where
it reads the function signature of the swap function and identified three integer point-
ers. Using this information, an appropriate fuzz driver is generated as depicted in
Listing 3.2.

48 Chapter 3. What is the best fuzz driver generation strategy?

Listing 3.2. Example FTG fuzz driver.

i n t LLVMFuzzerTestOneInput (uint8_t ∗ fuzz_input_data , s i z e_t
fuzz_data_size) {

s i ze_t fuzzer_input_min_size = s i z e o f (i n t) + s i z e o f (i n t) +
s i z e o f (i n t) ;

i f (fuzz_data_size < fuzzer_input_min_size) re turn 0 ;
uint8_t ∗ fuzz_ptr = fuzz_input_data ;

i n t a ;
i n t b ;
i n t c ;

memcpy(&a , fuzz_ptr , s i z e o f (i n t)) ;
fuzz_ptr += s i z e o f (i n t) ;
memcpy(&b , fuzz_ptr , s i z e o f (i n t)) ;
fuzz_ptr += s i z e o f (i n t) ;
memcpy(&c , fuzz_ptr , s i z e o f (i n t)) ;
fuzz_ptr += s i z e o f (i n t) ;
(void) swap (a , b , c) ;
r e turn 0 ;

}

3.2.2 FuzzGen

FuzzGen allows the development of fully automatic fuzz drivers for LibFuzzer [62].
Application programming interface (API) is a software intermediary with a set of
functions, protocols and definitions that allows the development of software that can
access features of other services, applications or operating systems [117]. FuzzGen
collects functions from the target program that are part of the API.

An API dependency graph is a representation of all the required dependencies
of function interactions using the API [184]. After gathering this API information,
FuzzGen generates an Abstract API Dependence Graph (A2DG graph) to capture all
API interactions from the target program. This process was thoroughly explained in
Section 2.7.3.

FuzzGen carries out argument flow analysis, which involves data flow dependency
identification [62]. FuzzGen generates a file (called meta file) with information re-
garding functions that include arguments and their return values across API calls.
Listing 3.3 shows the meta file for Listing 3.1.

3.2. Background and related work 49

Listing 3.3. Meta file.

================ #1 FUNCTIONS ================
@funct ionhdrs
swap ex t e rna l / c func /swap/swap . h

================ #1 PARAMETERS ================
@params
swap a b c

================ #1 SIGNED PARAMETERS ================
@signedparams
swap $RETVAL$ a b c

================ #1 FUNCTIONS ================
@funct ionhdrs
swap ex t e rna l / c func /swap/swap . h

================ #1 PARAMETERS ================
@params
swap a b c a b c

================ #1 INCLUDES ================
@includedeps
ex t e rna l / c func /swap/swap . c swap . h

================ #2 SIGNED PARAMETERS ================
@signedparams
main $RETVAL$
swap $RETVAL$ a b c

Low-Level Virtual Machine (LLVM) is the compiler and LLVM IR is the assembly
format of the source code in the form of independent intermediate representation
(IR) [95]. FuzzGen takes input in an assembly format called LLVM IR assembly.
Therefore, the C files should be converted to LLVM IR files. If there are multiple
LLVM IR files, they are linked up to generate one LLVM IR file input. Then the
LLVM IR file is used as the input along with the meta file for the generation of fuzz
drivers.

After gathering information about the control flow and the data flow of the func-
tions, FuzzGen finally uses this information to synthesise a single fuzz driver that can
fuzz all the relevant functions in the target program. Figure 3.3 shows a simplified
version of FuzzGen fuzz driver development process diagrammatically.

50 Chapter 3. What is the best fuzz driver generation strategy?

Figure 3.3. Fuzz driver development through FuzzGen.

Ispoglou et al. [62] evaluates fuzz drivers developed from FuzzGen with manually
developed fuzz drivers. They use Debian and Android Open-Source Projects (AOSP)
as target programs and identify 17 new bugs that weren’t identified through manually
developed fuzz drivers. Furthermore, Ispoglou et al. [62] shows that FuzzGen fuzz
drivers can surpass the code coverage of manually developed fuzz drivers by 6.94%.
They made FuzzGen source code available open-source for results replication purposes,
hence we intend on testing the validity of their results in our experiments.

Listing 3.4 shows the FuzzGen fuzz driver for Listing 3.1. Similar to Listing 3.2,
it identifies three inputs and sends data to the target function. However, on this
occasion, it calls a method called EatData. The purpose of EatData is to make mod-
ifications to the random input generated by the fuzzer to improve the code coverage.
Ispoglou et al. [62] claims that the beginning sections of the random input from the
fuzzer have a high likelihood of being a valid frame or a buffer that would cause high
coverage. Therefore, this frame will be destroyed unnecessarily if it is used for path
selection or variable fuzzing. To avoid this, FuzzGen splits the incoming input from
the fuzzer. If it is a buffer, it eats bytes from the beginning of the random input, oth-
erwise, it eats from the end. Following this technique, FuzzGen manages to preserve
the corpus and useful frames to achieve higher coverage.

3.2. Background and related work 51

Listing 3.4. Example FuzzGen fuzz driver.

i n t LLVMFuzzerTestOneInput (const uint8_t ∗data , s i z e_t s i z e) {
i f (s i z e < 13 | | s i z e > 1037) re turn 0 ;

EatData E(data , s i z e , ninp) ;

bu f l en = (s i z e − ninp) / nbufs − 1 ;

perm = kperm (2 , E. eatIntBw (NBYTES_FOR_FACTORIAL(2))) ;

// i n i t i a l i z i n g argument ’a_bSY ’
int32_t a_bSY_0 = E. eat4 () ;
int32_t ∗a_bSY_1 = &a_bSY_0 ;

// i n i t i a l i z i n g argument ’b_XBn ’
int32_t b_XBn_0 = E. eat4 () ;
int32_t ∗b_XBn_1 = &b_XBn_0;

// i n i t i a l i z i n g argument ’c_hBZ ’
int32_t c_hBZ_0 = E. eat4 () ;
int32_t ∗c_hBZ_1 = &c_hBZ_0 ;

f o r (i n t i =0; i <2; ++i) {
i f (0) { }
e l s e i f (perm [i] == 0) {

swap (a_bSY_1, b_XBn_1, c_hBZ_1) ;
}

}
return 0 ;

}

3.2.3 Other fuzz driver generators

Fudge is another automatic fuzz driver generation method with minor human-in-the-
loop involvement [7]. It uses an abstract syntax tree (AST) to determine relevant
statements. It slices functions identified from the AST; if that function has at least
one call to the target library in a form of a parsing API. Then it uses a control flow
and data flow information for the target code base and collects all the dependencies
of the identified function. Using this information, Fudge synthesises the fuzz driver.

Fudge creates multiple fuzz drivers for the same code base; then these fuzz drivers
are presented to the software testers through an interface, where they choose an ap-
propriate fuzz driver, thus including minor human-in-the-loop actions. Babić et al. [7]
tests Fudge on open-source projects such as Leptonica [85] and OpenCV [120]. The
authors claim that they identified unique bugs in these projects, however, there is no
comparison of these identified bugs and their code coverage with manually developed
fuzz drivers or other fuzz driver development techniques. Furthermore, its source code
is not made available for results replication, hence we could not use this tool and its
techniques in our experiments.

Intelligen [183] compares automatically generated fuzz drivers with their manual
counterparts. The authors, Zhang et al. [183] propose Intelligen which is also an
automated fuzz driver development method. It calculates vulnerability priority for all
the functions by counting the number of statements that dereference pointers or call

52 Chapter 3. What is the best fuzz driver generation strategy?

memory processing functions. Then it takes high priority functions as entry functions
compared to taking all the functions similar to FuzzGen [62].

The study from Zhang et al. [183] compares Intelligen against Fudge [7] and Fuz-
zGen [62] using the code from open-source Android projects on Google’s fuzzer-test-
suite [44]. Their results show that IntelliGen outperforms FuzzGen by covering 2.03
times more code blocks and also it outperforms Fudge by covering 1.08 times more
code blocks in terms of code coverage. As a result, IntelliGen identified ten more
bugs compared to FuzzGen and Fudge. However, Zhang et al. [183] does not make
their source code available for further studies similar to FuzzGen, hence their results
cannot be replicated and we cannot use this software product in our study to validate
its effectiveness.

The research by Jung et al. [71] introduces Winnie, which is another automated
fuzz driver generation tool. Their results show that they outperform manually de-
veloped fuzz drivers in terms of code coverage and bug identification, however, it is
developed for fuzzing Windows applications and therefore, it is out of scope for our
study.

3.2.4 Fuzzer metrics for LibFuzzer

To analyse the performance of the fuzzing campaigns with fuzz drivers, we used soft-
ware bugs and code coverage as metrics since they are the most popular metrics used
in the fuzzing domain (Section 2.8).

A software bug is a flaw, error or fault in the computer program [52]. The purpose
of fuzzing is to recognise unexpected stopping of the fuzzing campaign due to a crash
in the target program and identify whether it is a result of a software bug. A “crash”
identified by the fuzzer is not necessarily a bug. When a fuzzing campaign is run on
a fuzzer like LibFuzzer, it can identify multiple software crashes that could be either
actual bugs or false positives. A false positive software bug is a wrong indication of a
software bug that should not exist in the given scenario [24]. Therefore, it is important
to recognise and discard false positives from the identified software crashes from the
LibFuzzer crash outputs.

Code coverage is used as a metric in this chapter to identify the depth of code
reached through fuzzing. It measures the amount of executed code during the testing
process [22]. This allows the software tester to know how much of the code is tested
by the fuzzer and which parts of the program are not reached during the fuzzing
campaign. The higher the code coverage the better the fuzzer performance.

The code coverage is measured in multiple ways such as statement coverage, line
coverage, function coverage, basic block coverage, edge coverage and path cover-
age [22]. Statement coverage is the executed statements in the software divided by
the total statements. Similarly, line coverage is the number of executed lines divided
by the total number of lines in the target program. Function coverage is the number
of functions called by the fuzzer during the test. Block coverage is the execution of
lines of code within basic blocks (parts of the code without branches). Edge coverage
is the edges in the control flow graph that are covered divided by all the edges in the
target program. Path coverage is the number of paths executed by the fuzzer divided
by the total number of paths in the target program.

Fuzzers use multiple techniques to measure the code coverage during the fuzzing
process and they could differ compared to the nature of each fuzzer. Fuzzers use a
technique called instrumentation by adding markers in code blocks to identify the
code coverage. All the fuzzers have their unique ways of injecting instrumentation
to the target function, however, the basic steps of carrying out these criteria are

3.2. Background and related work 53

identical. Sanitizers are used to detect certain behaviours of the compiler during its
instrumentation; fuzzers use sanitizers to identify code coverage information in target
programs.

LibFuzzer [94] provides block coverage of the target code. LibFuzzer inserts call-
back functions during the compiling process. One of these callback functions contains
a coverage counter that gives information regarding the number of blocks covered dur-
ing the fuzzing process [94]. When a new state transition of the program is generated
through mutation of the input by reaching a new block, the coverage is incremented.
Then the mutated input is added to the input queue and used as the starting point
for the next fuzzing cycle. If the input does not reach a new block, that input is
discarded. Thus, by analysing number of bugs and code coverage, we analysed the
performance of fuzzing campaigns under different fuzz drivers in this research study.

3.2.5 Code complexity analysis

One of the key aspects that a software system should have is its good quality to satisfy
its stakeholders and consumers. Software quality is the degree to which the software
promotes maintainability, testability, reliability, interoperability, low complexity etc.
The quality of the software is measured by measuring the complexity of the program
code. There are multiple metrics that depict the complexity of the code such as cyclo-
matic complexity [100] and Halstead metrics [54]. When we fuzzed target programs
with three different sets of fuzz drivers, we identified bugs and we measured code
coverage 3.3.2. We wanted to further explore whether the complexity of the target
code has any effect on the fuzzing and different types of fuzz drivers.

Cyclomatic Complexity

Cyclomatic complexity is a software complexity measurement introduced by Thomas
McCabe to identify the maximum number of linearly independent paths in the pro-
gram [100]. These linear paths promote the potential number of test cases. A program
with low cyclomatic complexity is defined as a less complex program with greater
maintainability. If the cyclomatic complexity of a program is high, it tends to be
high error-prone and difficult to detect these errors. Control flow graphs (CFG) are a
representation of paths in the software program. Cyclomatic complexity is measured
using the help of a CFG. Using the CFG, the programmer can measure the number
of edges E, the number of nodes N and the number of nodes that have exit points P .
The commands or decisions in the program are nodes and the connections between
those commands and decisions are edges. The cyclomatic complexity is calculated
using the following equation proposed by McCabe [100].

CC = E −N + 2P

The ideal cyclomatic complexity should be less than 10 and no more than 20. If
the cyclomatic complexity goes beyond 50, the program is deemed too complex, high
risk and difficult to test [76, 144]. Thus, the high threshold for the complex code.

In Chapter 2 (Section 2.7), we identified that when manually writing a fuzz driver,
the quality of the fuzz driver is dependent upon software tester’s ability to understand
the target program. We want to analyse whether semi-automated and automated
methodologies provide a solution to this problem by recognising complex functions
better than software testers.

Initially, we want to evaluate the correlation between the cyclomatic complex-
ity and the code coverage resulting from three different fuzz driver types (manual,

54 Chapter 3. What is the best fuzz driver generation strategy?

semi-automatic and fully automatic). Then We want to evaluate how the code cov-
erage resulting from three types of fuzz drivers will be affected when the cyclomatic
complexity goes beyond high complexity levels (beyond 50).

These experiments will give us an indication of how the increase in complexity of
the target code would affect the fuzzing campaigns for our three different fuzz driver
development techniques. We intend to identify whether automated methods have the
ability to outperform human-centric methods.

Halstead Metrics

Our intention is to recognise whether the static features of the target code have any
effect on the fuzzing campaign initiated by our identified three types of fuzz drivers.
Operators and operands in a program code define actions and operations to perform.
They have an effect on the data flow within the function. When fuzzing a target
program, it is important to have a good understanding of the actions of the operations
and operands within a function.

We want to check whether our three types of fuzz drivers have the ability to identify
parameters within functions that aid the data flow as the size and the complexity of
the target code increase. Also, we want to check whether the number of operators and
operands has any effect on the fuzzing campaign. Therefore by calculating Halstead
metrics [54], we try to statically analyse the data elements in the target program that
aids the data flow and try to analyse whether this would have any effect on the fuzzing
campaign.

Halstead metrics were proposed by Maurice Halstead in 1977 [54] to determine the
program module complexity straight from the source code through program operators
and operands. These metrics statically measure the features of the code. Initially,
it extracts four different measures from the code. They are the number of distinct
operators (n1), the number of distinct operands (n2), the total number of operators
(N1) and the total number of operands (N2). Then using these measures, it calculates,
Halstead Length, Halstead Vocabulary, Halstead Volume, Halstead Difficulty Level,
Halstead Program Level etc. Halstead program length (N) measures the sum of all
the operators and operands in the target program.

N = N1 +N2

Halstead vocabulary size (n) is the sum of unique operators and operands.

n = n1 + n2

However, for this research study, we focus on measuring the Halstead volume of the
target code. Halstead volume (V) is the size of the algorithm implementation and (V)
is measured using the number of operators and operands in the target program [54].
Halstead volume is measured by multiplying the Halstead program length by the 2-
base logarithm of Halstead vocabulary. The Halstead volume of a function should be
between 20 and 1000 and the Halstead volume of a file should be between 100 and
8000. If they are above their upper limits, then the complexity is too high in those
corresponding target functions and target files. Halstead Volume (V) is calculated
using the following equation.

V = N ∗ log2(n)

The measuring of the Halstead volume would give the size of the program based
on the number of operators and operands. If the fuzz driver has the ability to identify

3.3. Methodology 55

the full functioning of the operators and operands within the target function along
with program paths, it would be able to reach deep parts of the code. Moreover, it
would indicate the depth of data operations required for an ideal data flow for the
target function. Hence, we observe the capacity of the fuzz driver to handle the data
flow within the function.

In this study, our motivation is to compare how fuzz drivers that are devel-
oped manually, semi-automatically and fully automatically would perform for the
same target functions under the same conditions. We would like to see how manually
generated fuzz drivers fare in performance compared to their automated counterparts
to answer the second research question of this thesis.

Our analysis of cyclomatic complexity would give us an understanding of the
control flow of the target program and how its changes affect different fuzz drivers
for the fuzzing campaign. Similarly, the measurement of the Halstead volume gives
us an indication of how well the fuzz drivers will be able to understand the data flow
of the program through its operations and operands. Hence by understanding the
correlation between the target code complexity and the fuzz driver performance, we
answer the third research question of this thesis.

3.3 Methodology

To carry out comparisons between the performance of fuzz drivers, we needed three
sets of fuzz drivers: manually developed fuzz drivers, semi-automatically generated
fuzz drivers and automatically generated fuzz drivers. GitHub is a hosting platform for
source code that allows version control and collaboration with more than 190 million
repositories [46]. We systematically gathered a collection of manually developed fuzz
drivers through open-source projects stored in GitHub that were developed for fuzzing
through LibFuzzer [94].

3.3.1 Collection of manually developed fuzz drivers

To collect C fuzz drivers, we searched the term “int LLVMFuzzerTestOneInput(”
on the GitHub search with the C language filter added to the search filtration. “int
LLVMFuzzerTestOneInput(” is how the fuzz driver is written in C language as depicted
in Listing 3.2 and Listing 3.4. This search returned 27,328 results. For this research,
we extracted results from the first 100 pages. We downloaded all the repositories
from the first 100 pages where the above term appears with a fuzz driver. As a result,
we ended up with 690 projects. All these projects contained a fuzz driver written
by a software tester that targets a C function in the project. We compiled and ran
these 690 fuzz drivers to check their functionality. This process showed that from
690 samples, only 148 fuzz drivers compiled and others gave multiple errors such as
missing functions, classes, files and various other bugs in the source code. Therefore,
this set of 148 results became our sample of manually developed fuzz drivers. The
summary of this process is shown in Figure 3.4.

56 Chapter 3. What is the best fuzz driver generation strategy?

Figure 3.4. Systematic collection of manually developed fuzz drivers.

3.3.2 Generating fuzz drivers

Once the manually developed fuzz drivers are collected through GitHub, we auto-
matically generated fuzz drivers for the same target functions using FTG [73] and
FuzzGen [62]. When we used FTG, we first identified the function signature that we
wanted to fuzz and then added a pre-defined comment as suggested by Kelly et al.
[73] on top of the function. If the function signature is an array, we used the modified
comment, as explained in Section 3.2.1. At the end of this process, we had 148 fuzz
drivers from FTG to fuzz our collected target functions.

The next step was to develop similar fuzz drivers using FuzzGen. However, there
was an issue with this process. FuzzGen is developed to fuzz the whole software
product at once and not to fuzz a single function at a time. When a fuzz driver
is written manually by a software tester, the tester can fuzz a single function, few
functions or call multiple functions that are related to that original target function
using the same fuzz driver. When a fuzz driver is generated through FTG, it focuses on
fuzzing one function. However, FuzzGen considers all the functions that are mentioned
in the header files, all across the project folder to generate fuzz drivers along with their
function dependencies. If we build a fuzz driver using FuzzGen for the whole project,
it cannot be compared with results gathered from manually developed fuzz drivers
and semi-automatically generated fuzz drivers since these two techniques do not focus
on fuzzing the whole project at once. Therefore, to rectify these issues, we made slight
modifications to the fuzz driver generation process followed by FuzzGen.

As explained in Section 3.2.2, FuzzGen generates a meta file (Listing 3.3) with
all the information in header files. Therefore, when developing the meta file, we only
included header files with functions that relate to the target function. On occasions,
where these functions exist in multiple header files with other functions, we created
a header file with the relevant function signatures to avoid FuzzGen selecting un-
necessary functions that are unrelated to our desired target function. Following this
process, we generated fuzz drivers for the same set of functions as software testers

3.4. Findings 57

and FTG. As a result, three sets of fuzz drivers (manually developed by the software
tester, fuzz drivers generated through FTG and fuzz drivers generated through Fuz-
zGen) were created to focus on the same set of functions in the collected projects to
compare their effectiveness. The summary of this process is shown in Figure 3.5.

Figure 3.5. Three sets of fuzz drivers from gathered target functions.

3.4 Findings

In this section, we analyse how three types of fuzz driver development techniques
perform in terms of identifying bugs and code coverage under the same experimental
conditions. Furthermore, we analyse whether the characteristics of the target code
have any effect on fuzz drivers and the fuzzing campaign. Our findings in this section
help us answer the second and third research questions.

3.4.1 Fuzzing

We fuzzed each target function for an equal amount of time using the three types of
fuzz drivers separately under the same conditions. We fuzzed each target function for
30 minutes. The experiments done by Ispoglou et al. [62] for FuzzGen shows that after
30 minutes the code coverage stabilises. Hence, the reason we decided the duration
to be 30 minutes for our experiments. All the experiments were run on an Ubuntu
20.04 with Quad-Core Intel i7-8565U and eight GB of RAM. We built the code using
Clang 9.0 with the help of AddressSanatizer [138].

We calculated the number of bugs, code coverage and false positives (if any) for
each fuzz driver to compare these three fuzz driver development methods. Some open-
source projects made their seed input files available for fuzzing and for those that did
not offer seed input files, we manually created them for experiments. We kept the
seed input consistent for all three fuzz drivers for each project by keeping it as the
control variable. Therefore, the code coverage results are purely based on the effect
of the fuzz driver without any external factors affecting its functionality.

Once the fuzz target fuzzes the target function for 30 minutes, we manually in-
spected all the identified crashes with their outputs and fuzzer input data to recognise
whether each of the crashes is an actual software bug or a false positive. Once the

58 Chapter 3. What is the best fuzz driver generation strategy?

fuzzing campaign is run and bugs were identified, those bugs very verified by re-
running the campaign two more times to ensure that the crash is replicable. We took
this precaution to further validate our results.

One of the features of LibFuzzer when identifying bugs was that when LibFuzzer
identifies a bug, it stops before the given time limit. Thus, the fuzzing campaign should
be restarted when it stops. However, this restart re-performs all the initialisation
processes. It is important to note that this is not a limitation of the fuzz driver but
a limitation of the LibFuzzer. To rectify this, we ran the fuzzer in multiple parallel
workers [94], so if one worker stops, others are still running for the given period.

Fuzz driver compatibility

We fuzzed all 148 target functions with three corresponding fuzz drivers with Lib-
Fuzzer [94]. As explained in Section 3.3.1, the 148 target functions that we collected
are compatible with all 148 manually developed fuzz drivers. However, due to differ-
ent capacities to identify function signatures, all of these 148 target functions were
not compatible with FTG and FuzzGen. As shown in Table 2.1, only 95 out of 148
projects were compiled with FTG. Similarly, target functions from certain projects
had problems compiling with fuzz drivers generated using FuzzGen. As a result, only
116 projects out of 148 were compiled with FuzzGen. The results in the Table 3.1
show the summary of fuzz driver compatibility with target functions.

Table 3.1. Fuzz driver compatibility with target functions.

Fuzz Driver Development Method Compatible projects

Manually Developed Fuzz Driver 148
FTG 95
FuzzGen 116

When it comes to developing fuzz drivers using FTG and FuzzGen, their ability
to function signature identification varies in comparison. Our findings show that they
both identify simple parameters in the function signature such as integers and strings.
However, when pointers are included in the function signature, their performance
starts to change compared to each other in terms of developing valid fuzz drivers.
When there is a character pointer in the function signature, both FTG and FuzzGen
identify the character pointer but fail to convert the use of the character pointer
correctly in the fuzz driver, thus resulting in a faulty fuzz driver. This is the same
for function pointers for FTG where it fails to identify them while FuzzGen identifies
and generates valid fuzz drivers for function pointers. FuzzGen and FTG seem to
be compatible in recognising other function signature types such as arrays, multiple
integer pointers, and void pointers. Particularly, FTG is effective with its special
commenting style for function signatures for arrays while FuzzGen identifies arrays
automatically without any external aid. FTG only grabs a function signature of
the annotated target function without identifying any related functions and FuzzGen
identifies the function signature of the target function and all its dependant functions.

3.4.2 Analysis of bug identification

The results in the Table 3.2 show that manually written fuzz drivers found the most
number of crashes through LibFuzzer followed by FTG and FuzzGen. Moreover,
manually written fuzz drivers identify the most number of unique bugs (29) followed

3.4. Findings 59

by FuzzGen (21) and FTG (5) when we subtracted false positives from the number
of crashes we identified through the fuzzing campaign. This implies that manually
developed fuzz drivers are the most effective in identifying bugs closely followed by
the fully automated method by identifying 8 more bugs for the given period. The
semi-automated method of FTG largely underperforms against their counterparts.
Our results implicate that manually developed fuzz drivers find 5.8 times more bugs
than FTG and FuzzGen finds 4.2 times more bugs compared to FTG.

Table 3.2. Number of crashes, false positives and bugs.

Fuzz Driver Development Method Number of crashes False positives Number of bugs

Manually Developed Fuzz Driver 79 50 29
FTG 76 71 5
FuzzGen 33 12 21

Then we considered the results from Table 3.1, which showed the number of com-
patible projects for each fuzz driver. Using this data, we calculated the percentage of
the bug to project ratio in Table 3.3. The information in Table 3.3 shows that manu-
ally developed fuzz drivers identify the highest percentage of unique bugs considering
the number of target functions. However, it is closely followed by the fully automatic
method of FuzzGen with only a 1.5% difference. Once again, the performance of the
semi-automated approach of FTG is lacklustre compared to the other two methods
in terms of identifying bugs and it shows approximately four times less effectiveness
compared to its counterparts.

Table 3.3. Percentage of bugs to projects.

Fuzz driver development method Compatible projects Number of bugs Percentage bugs to projects ratio

Manually Developed Fuzz Driver 148 29 19.6%
FTG 95 5 5.3%
FuzzGen 116 21 18.1%

As we identified in Chapter 2 (Section 2.6.10), manually developing a fuzz driver
is a time-consuming process that requires deep knowledge about the target codebase.
Our results showed that the fully automated approach of FuzzGen nearly matched
the performance of manually developed fuzz drivers in terms of identifying bugs with
only 1.5% less performance. Of all three methods, the fully automated method takes
the least time to implement (it takes a few seconds to generate a fuzz driver through
FuzzGen). Therefore, it is clear that the fully automated methodology of FuzzGen
gives a higher success rate per effort compared to manually developed fuzz drivers even
though manually developed fuzz drivers outperformed the fully automated method-
ology on the number of bugs identified and the bugs to target ratio percentage. On
the other hand, the semi-automated method of FTG largely underperforms compared
to manual methods and fully automated methods even with the only minor effort
required by the software tester.

Measurement of false positives is another metric that we gathered during this
experiment. The semi-automated method of FTG showed the most number of false
positives (71) followed by manually developed fuzz drivers (50) and fully automatically
generated fuzz drivers (12). The high false-positive rate of FTG is largely due to its
inability to correctly identify the function signature of the target function. This was
the same for the other two fuzz driver development techniques but they are not as
much affected as FTG in terms of the results they performed in this experiment.

60 Chapter 3. What is the best fuzz driver generation strategy?

Our analysis shows that false positives occur due to incorrect memory allocation and
incorrect identification of parameters and their sizes. As a result, memory violation
errors occurred on the fuzz driver itself, thus, causing crashes.

In the case of manually written fuzz drivers, false positives occur due to the soft-
ware tester’s lack of deep knowledge of certain techniques or simply down to human
error. This result validates our findings in Section 2.6.10, where we identified that
lack of domain knowledge causes faulty fuzz drivers.

For the semi-automated technique of FTG, false positives occur mainly due to
@fuzztest directive not being able to correctly inform the fuzz driver generation
process about the correct functionality of the target function. The authors Kelly
et al. [73] propose clean up parameters (Section 3.2.1) to manage memory, however, if
the complexity of the function is not correctly identified or if FTG does not recognise
the function signature correctly, the effort provided by cleanup parameters are not as
effective, as we identified through a high number of false positives for FTG.

The false positives from FuzzGen fuzz drivers are also due to FuzzGen not identi-
fying function signatures correctly. However, false positives of FuzzGen are five times
less than manually developed fuzz drivers and six times less than semi-automatically
generated fuzz drivers through FTG. This makes the fully automated fuzz driver gen-
eration method the most effective in terms of not producing false positives.

Overall, the bug identification results entail that manually developed fuzz drivers
perform best in terms of identifying bugs but the fully automated method of FuzzGen
is remarkably close with less false positive generation. The fully automated method of
FuzzGen has the most success rate per effort compared to the other two methods. On
the other hand, the semi-automated method of FTG largely underperforms in terms
of identifying bugs and producing extremely high levels of false positives.

3.4.3 Analysis of code coverage

Similar to the bug identification, we analysed the code coverage of target functions
when they are fuzzed using all three fuzz driver development methods (Table 3.4).

Table 3.4. Code coverage.

Fuzz Driver Development Method Average Code Coverage

Manually Developed Fuzz Driver 152.25
FTG 11.31
FuzzGen 131.85

It is evident from our results that on average, manually developed fuzz drivers
cover more blocks of code compared to fuzz drivers generated through FTG and Fuz-
zGen. Both manually developed fuzz drivers and fully automatically generated fuzz
drivers greatly outperform the semi-automatic method by showing more than ten
times greater code coverage. Manually developed fuzz drivers show slightly more code
coverage compared to fully automatic fuzz drivers. In the research work of Ispoglou
et al. [62], they claim that the fully automatic method of FuzzGen outperforms man-
ually developed fuzz drivers by 6.94%. However, our findings indicate that FuzzGen
shows 15.5% less code coverage compared to fully manual techniques. These results
implicate that writing a fuzz driver manually with the knowledge regarding the code-
base helps to outperform the semi-automated and automated fuzz driver generation
techniques in terms of code coverage.

3.4. Findings 61

The fully automated techniques of FuzzGen outperform semi-automatic techniques
of FTG by 11.66 times. This is mainly due to the adoption of A2DG graph for
path identification and function dependency identification in FuzzGen as explained
in Section 3.2.2. FTG only identifies the function signature and it does not identify
any information regarding the internal structure of the target function similar to the
fuzz drivers generated through FuzzGen or software testers’ knowledge in the target
code such as in manually developed fuzz drivers. Thus, the low code coverage of
FTG. Furthermore, FTG only seems to identify one function to fuzz while FuzzGen
and manually developed fuzz drivers have the capacity to identify further functions
that are connected to the target functions, thus showcasing another reason why FTG
underperforms in terms of code coverage.

When comparing the code coverage results with bug identification, it is clear that
manually developed fuzz drivers outperform fully automated fuzz driver development
methods and semi-automated fuzz driver development methods. Semi-automated
methods of FTG show the worst results for both bug identification and code cov-
erage due to its lack of function signature identification and lack of internal function
structure identification (control flow and data flow). When it comes to the code
coverage, we can see in Table 3.4 that manual methods outperform fully automated
methods by 15.5%, however, when it comes to bug identification, there is only 1.5%
increase in performance in manually developed fuzz drivers compared to the fully au-
tomated method. This implicates that even with lower code coverage, FuzzGen (fully
automated) closely matches manually developed fuzz drivers.

3.4.4 Analysis of code complexity measures

After the evaluation of fuzzer performance, we analysed how the cyclomatic complexity
and the Halstead volume of the target program affect the performance of three different
types of fuzz drivers in the fuzzing campaign. In this step of the experiment, we made
a slight modification to our sample of 148 results. To directly compare these three sets
of fuzz drivers, we had to make sure that we select a sample where all three drivers
are compatible with the same target programs to nullify any biases or errors due to
a different number of compatible projects. Therefore, once we applied this filter, our
sample of 148 projects was reduced to 87 projects (Figure 3.6). The results in the
following sections are based on these 87 projects.

Figure 3.6. The number of target functions that are compatible with
all three fuzz driver development techniques.

62 Chapter 3. What is the best fuzz driver generation strategy?

Analysis of cyclomatic complexity

Initially, we analysed how the code coverage is affected when the cyclomatic com-
plexity increases. Therefore, we measured the cyclomatic complexity of all 87 target
functions and we compared the correlation between the code coverage and the cy-
clomatic complexity for fuzzing campaigns of manually developed fuzz drivers, semi-
automatically developed fuzz drivers (FTG) and fully automatic fuzz drivers (Fuz-
zGen).

Our results show that the semi-automated method of FTG does not correlate
with an increase in cyclomatic complexity (Figure 3.8). This is mainly due to its
limitation of only targeting one function and not identifying related functions and
function dependencies in a file. However, there is a positive correlation between the
code coverage and cyclomatic complexity for both manually developed fuzz drivers
(Figure 3.7) and fully automatically generated fuzz drivers (FuzzGen) (Figure 3.9).
The slope value of Figure 3.7 for manually developed fuzz drivers is 1.77 compared to
the slope value of 1.76 for fully automatically developed fuzz drivers. However, the 0.01
difference in slope values suggests that the fully automated method of FuzzGen has a
similar rate of increase in code coverage compared to manual techniques considering
the effort factor that takes to write a fuzz driver for highly complex code. Moreover,
there is a positive correlation coefficient and coefficient of determination for both
manually developed fuzz drivers (p = 0.77, r2 = 0.59) and automatically generated
fuzz drivers through FuzzGen (p = 0.92, r2 = 0.84) when comparing with cyclomatic
complexity and the results show that strength of the correlation is much higher for
FuzzGen fuzz drivers for this sample data set.

Figure 3.7. Cyclomatic complexity vs code coverage of manually
written fuzz drivers.

3.4. Findings 63

Figure 3.8. Cyclomatic complexity vs code coverage of FTG fuzz
drivers.

Figure 3.9. Cyclomatic complexity vs code coverage of FuzzGen fuzz
drivers.

64 Chapter 3. What is the best fuzz driver generation strategy?

As we identified in Section 3.2.5, multiple research studies [76, 144] show that when
the cyclomatic complexity is above 50, the code is too complex and difficult to test.
We tried to evaluate this concept with our results by checking how the average code
coverage change when the cyclomatic complexity goes above 50 for target functions.

Table 3.5. Percentage increase in average code coverage when cyclo-
matic complexity (CC) of the target function goes beyond 50.

Fuzz driver type Code coverage when CC < 50 Code coverage when CC > 50 Percentage increase

Manual 164.53 444.70 170.30%
FTG 11.52 12.85 11.55%
FuzzGen 81.57 357.11 337.62%

The results in Table 3.5 show average code coverage of fuzz drivers when the
cyclomatic complexity of the target code is less than 50 and more than 50. Also, we
calculated the percentage increase.

In general, the average code coverage due to manually developed fuzz drivers is
greater than both automatic fuzz driver development techniques and semi-automatic
fuzz driver development techniques. This implies that human input in identifying
program paths and dependencies still slightly outperforms the automatic program
path identification of FuzzGen through the construction of A2DG graph to aid code
coverage against the cyclomatic complexity.

The percentage increase in code coverage in the fully automated method of Fuz-
zGen shows the largest increase in code coverage by 337.62% when the cyclomatic
complexity of the target code goes beyond 50. We identified the reason for this
through an experimentation process. The work of Ispoglou et al. [62] proposes Fuz-
zGen for large codebases with multiple functions. Therefore, for large codebases, it
generates A2DG graph and analyses the API structure as explained in Section 3.2.2.
However, when the target program is only a single function or very few functions, the
process of control flow and dependency analysis is ignored, thus, the low code coverage
when the cyclomatic complexity is low. This means that when the target code size
is low, the improvements in code coverage are only dependent on the seed modifica-
tion technique of EatData function as explained in Section 3.2.2. Hence, measures
should be taken to improve the quality of the fuzz driver developed by FuzzGen for
less complex or smaller functions for better code coverage.

Analysis of Halstead metrics

There is no correlation between the code coverage of FTG fuzz drivers and Halstead
volume (Figure 3.11). The answer to this phenomenon lies within the way how FTG
is programmed to function. When the software tester selects a function with the pre-
defined comment as explained in Section 3.2.1, the tester does not give any information
regarding the internal parameters (which would become operands) nor their types to
FTG. FTG is programmed only to identify the content in the function declaration and
their types; it does not identify other parameters or content within the target function.
Since it does not know parameters within the function, it shows no correlation to
Halstead volume. As a result, it lacks a thorough knowledge regarding the data
flow within the function, hence resulting in low code coverage compared to manually
developed fuzz drivers and automatically developed fuzz drivers.

To improve FTG code coverage performance on this occasion, it should be modified
to identify parameters within the body of the function when developing fuzz drivers.
Parameters in the function can be identified by scanning the whole function rather

3.4. Findings 65

than stopping scanning at the function signature to develop the fuzz driver. This
process will allow the fuzz driver to get a good understanding of all the operands
and their types, thus enhancing its knowledge regarding the operation and data flow
within the function. As a result, the code coverage will improve.

There is a positive correlation between the increase in Halstead volume and code
coverage for both manually developed fuzz drivers (Figure 3.10) and automatically
developed fuzz drivers (Figure 3.12). Our results show that the slope value of Fuz-
zGen in Figure 3.12, which is 0.0027 is very similar to or slightly higher than the slope
value of manually developed fuzz drivers in Figure 3.10 (0.0026). This result is quite
remarkable since it shows that the fully automated method matches or has a slightly
higher rate of data flow understanding regarding the parameters within the target
code. Moreover, there is a positive correlation coefficient and coefficient of determina-
tion for both manually developed fuzz drivers (p = 0.74, r2 = 0.55) and automatically
generated fuzz drivers through FuzzGen (p = 0.90, r2 = 0.82) when comparing with
Halstead Volume and the results show that strength of the correlation is much higher
for FuzzGen fuzz drivers for this sample data set.

Figure 3.10. Halstead volume vs code coverage of manually written
fuzz drivers.

66 Chapter 3. What is the best fuzz driver generation strategy?

Figure 3.11. Halstead volume vs code coverage of FTG fuzz drivers.

Figure 3.12. Halstead volume vs code coverage of FuzzGen fuzz
drivers.

This is potentially due to the automatic generation of an information file called
“meta file” (Section 3.2.2) by FuzzGen. FuzzGen scans all the files of the target
project and creates a file with information including the names of all the functions,
parameters, signed parameters, includes etc. Through this file, FuzzGen understands
all the information regarding potential parameters and in which functions they appear
and the order in which they would appear within a function. The automatic generation
of meta files largely reduces the time consuming human effort of trying to recognise
parameters and their types in the target code.

The average code coverage of the manually written fuzz drivers is higher than the
code coverage from the fully automatic fuzz drivers from FuzzGen as we can see from
the Y axis in Figure 3.10 and Figure 3.12. Also, as we identified in Section 3.4.3,
manually written fuzz drivers outperform fully automatically developed fuzz drivers
by 15.5%. Therefore, it can be argued that on average human input still surpasses

3.5. Limitations and threats to validity 67

automatic scanning of the code when it comes to understanding the operations and
data flow within the function.

However, as we identified in Section 3.4.2, the percentage of the target to bug ratio
of fully automated methods from FuzzGen is closely matched with manually written
fuzz drivers. This implies the efficiency of FuzzGen in identifying a high amount of
bugs for lesser code coverage. Halstead volume results clearly implicate the reasoning
behind this phenomenon by proving that FuzzGen has the ability to outperform other
techniques through the better identification of the program data flow. Thus, giving it
an advantage in recognising bug locations compared to the other two techniques.

From the above results, it is clear that if FuzzGen can cover more code with further
improvements; it can outperform manually written fuzz drivers. In Section 3.4.2
and Section 3.4.1, we recognised that a reason behind the reduced code coverage of
FuzzGen is due to its lack of understanding to convert all types of function signatures
into valid fuzz drivers. Therefore, improvements in function signature identification
in FuzzGen will guarantee better code coverage and an increased amount of bug
identification, thus, surpassing the performance of both manually written fuzz drivers
and semi-automatically generated fuzz drivers.

3.5 Limitations and threats to validity

We used GitHub to collect open-source projects that already had manually written
fuzz drivers. These fuzz drivers are not written by a single software engineer, hence
when using these fuzz drivers we deal with source code that is written by testers with
multiple levels of domain knowledge. Hence, we collected fuzz drivers that were well
written and also poorly written by software testers with varying abilities. All the
other studies that have done comparisons [7, 62, 73, 183] had a single software tester
writing the fuzz driver. However, we believe that this would introduce human bias to
results. On the other hand, our sample depicts a clear representation of how software
testers with varying abilities would write fuzz drivers for target functions by nullifying
human bias.

There were a high amount of false positives and compilation errors when running
some of the open-source projects on GitHub. This may be due to the lack of qual-
ity control mechanisms of GitHub when accepting projects. We only ran software
products that compiled correctly with fuzz drivers.

Two other research studies that boast to have similar results to FuzzGen or better
results to FuzzGen are Fudge [7] and Intelligen [183]. We discussed their functionality
in Section 3.2.3, however, we could not test these two tools since they are not available
as open-source projects for results replication. As a result, we only used FuzzGen to
generate fuzz drivers automatically. Of all the state of the art projects that propose
automatic fuzz driver generation, FuzzGen is the only open-source project that is
available for research purposes. Therefore, to measure the effectiveness of automatic
fuzz driver generation against manually developed fuzz drivers, we are restricted to
one open-source project.

3.6 Summary

In this chapter, we report on the case study and the empirical analysis that we car-
ried out to identify the effectiveness of three different fuzz driver development strate-
gies: manually developed fuzz drivers, semi-automatically generated fuzz drivers with
human-in-the-loop approaches and fully automatically generated fuzz drivers. We

68 Chapter 3. What is the best fuzz driver generation strategy?

used 148 open-source software projects for this experimental analysis and we sum-
marise,

• Manually developed fuzz drivers outperform semi-automatically developed fuzz
drivers with human-in-the-loop approaches and automatically developed fuzz
drivers in terms of bug identification. Manually developed fuzz drivers find
8 more bugs compared to the fully automated method from FuzzGen. It is
important to note that the semi-automated fuzz driver development technique
largely underperforms against the other two techniques by identifying more than
four times fewer bugs.

• Fully automated fuzz driver generation of FuzzGen gives a higher success rate
per effort in identifying bugs compared to manually developed fuzz drivers and
semi-automatic fuzz driver generation of FTG.

• Fully automated fuzz driver generation of FuzzGen identifies the least number
of false positives (12) followed by manually developed fuzz drivers (50) and the
semi-automated method of FTG (71).

• Manually developed fuzz drivers have the highest code coverage followed by fully
automated fuzz driver development methods and semi-automated fuzz driver
development methods

• Manually developed fuzz drivers show higher code coverage as the cyclomatic
complexity increases followed by fully automated fuzz driver generation. Semi-
automated fuzz driver generation of FTG shows no effect on an increase in
cyclomatic complexity.

• When the cyclomatic complexity of the target code goes beyond its acceptable
threshold (beyond 50), fully automated fuzz driver generation of FuzzGen per-
forms better in code coverage compared to manually developed fuzz drivers due
to the adoption of control flow analysis and data flow analysis of FuzzGen.

• The code coverage of the semi-automated method of FTG shows no correlation
to the increase in Halstead volume due to its lack of ability to identify the data
flow within target functions.

• Fully automated fuzz driver generation has a slightly higher rate of increase in
code coverage when the Halstead volume increases compared to manually devel-
oped fuzz drivers. This is due to the generation of the “meta file” (Section 3.2.2)
by FuzzGen with information regarding code parameters and function depen-
dencies.

• Fully automated fuzz driver generation of FuzzGen shows a higher level of bug
identification for lower code coverage. However, its overall performance is still
less than manually developed fuzz drivers in terms of the total number of bugs
identified and code coverage.

Overall, in this chapter, we designed a replicable systematic case study to identify
the best state of the art fuzz driver generation method. We tested three state of the
art fuzz driver development methods and carried out an empirical analysis to moni-
tor their performance. We recognised, evaluated and reported the reasoning behind
performance fluctuations in bug identification and code coverage, thus answering the
second research question.

3.6. Summary 69

Furthermore, we empirically analysed the effect of the increase in code complexity
of the target code and fuzz driver performance in the fuzzing campaign. We moni-
tored how three different types of fuzz drivers perform under different code complexity
levels. Then we recognised the reasoning behind their performance by statically and
experimentally analysing the development strategies of fuzz driver development meth-
ods. Finally, we recognised multiple strategies to improve the state of the art fuzz
driver development techniques for better results. Thus, we answered the third research
question of this thesis.

71

Chapter 4

Conclusion and future work

4.1 Conclusion

Fuzz driver development is an integral part of the fuzzing campaign because it acts
as the binder between the fuzzer and the target program. When the fuzzer sends
random input, the fuzz driver should have the ability to efficiently direct that input
to relevant sections of the target code to identify software vulnerabilities. In this
thesis, our motivation was to analyse, the role of fuzz driver development in fuzzing
campaigns, state of the art fuzz driver generation strategies and the changes in the
target code complexity on the fuzz driver performance.

A systematic literature review (SLR) was carried out to analyse and evaluate the
state of the art in fuzz driver development. Through this study, we answered the first
research question by observing the main challenges, strategies and common practices of
fuzz driver development. We critically analysed how fuzz drivers appeared in research
studies since 1990 and how they gradually evolved over time with the invention of new
techniques and methodologies. This study explored the importance of fuzz drivers in
the domain of fuzzing, fuzz driver life cycle, fuzz driver generation techniques, fuzz
driver evaluation methodologies and tools to aid the fuzz driver development process.

A case study was carried out to compare the performance of three fuzz driver devel-
opment techniques: manually written fuzz drivers, semi-automatically developed fuzz
drivers with human-in-the-loop approaches and automatically developed fuzz drivers.
We implemented a replicable systematic process to collect relevant manually writ-
ten fuzz drivers from open-source repositories on GitHub. Through data gathering,
148 manually generated fuzz drivers were collected from open-source projects. Then,
we generated subsequent semi-automatic and automatic fuzz drivers using FTG [73]
and FuzzGen [62]. The case study analysed the performance of multiple fuzz driver
techniques in terms of bug identification and code coverage. This study allowed the
identification of the best state of the art fuzz driver generation strategy for a successful
fuzzing campaign that is available for software testers and researchers as open-source
products. Through this study, we successfully answered our second research question.

An empirical study was carried out to identify the change in behaviour of fuzzing
campaigns through different fuzz drivers when the code complexities increase in the
target program. We explored the effect of the increase in cyclomatic complexity [100]
and Halstead volume [54] of the target code on the code coverage of the fuzzing
campaign. A thorough analysis was carried out to explore how different types of
fuzz drivers would fare with the increase in code complexities. Hence, the reasoning
behind the performance levels of fuzz drivers was identified when fuzzing complex
code. Furthermore, areas of improvement for the state of the art fuzz driver generators
were identified to enhance their performance in fuzzing campaigns for complex code.
Through this study, we successfully answered our third research question.

72 Chapter 4. Conclusion and future work

4.2 Future directions

We believe that this thesis contributes to identifying the impact of fuzz drivers in
fuzzing research. We also identified multiple areas in the field of fuzz drivers that can
be explored in the future, which are listed below.

4.2.1 Novel ways to improve information transfer from function sig-
natures to a fuzz driver

Our results in Chapter 3 prove that most tools can identify all types of function
signatures but they cannot convert all the identified function signatures into valid fuzz
drivers [62, 73, 183]. For example, when there are multiple pointers in the function
signature, both FTG and FuzzGen fails to generate valid fuzz drivers. Hence, there
is a gap for further research in this area.

FTG is only compatible with simple function signatures and it has good coverage
within those functions. Therefore, the ability to identify complex function signatures
and the ability to convert those into fuzz drivers will further enhance the code coverage
and bug identification of FTG. The inclusion of AST monitoring of the source code
would improve function identification for FTG.

The requirement is slightly different for automatically developed fuzz drivers of
FuzzGen. Our results from Chapter 3 clearly show that if FuzzGen could convert all
the function signatures that it identifies into valid fuzz drivers, it would have had the
ability to outperform manually developed fuzz drivers in bug identification and code
coverage due to its less false positives ratio per target. Therefore, measures should be
taken to improve the conversion of identified function signature to a valid fuzz driver
in FuzzGen.

There is room for improvement by observing areas such as documentation files and
code comments when extracting information about a specific method or a function.
For example, the use of standardised documentation generators such as JavaDoc [66]
for Java programs and DoxyGen [35] for C, and C++ programs and then using the
documentation information to gather further information regarding functions when
generating the fuzz driver. If more intricate details of the function are available, then
there is a high chance of correctness in the fuzz driver output.

4.2.2 Novel ways to automate unit test to fuzz driver conversion

The automation of the conversion of unit tests to fuzz drivers is an area that needs
more novelty. This is still a manual task in many research studies except for the work
proposed by Jang and Kim [65] and Myllylahti [109]. The methodologies proposed by
these two studies scan the unit test, identify elements of the target code through the
content of the unit test and generate the fuzz driver. This strategy could be further
improved by gathering the AST of the target code and using program slicing to recog-
nise the exact features of the code that requires fuzzing similar to the methodology
followed by Babić et al. [7]. Thus, the use of gathered information about the target
code along with features identified from unit tests will generate a valid fuzz driver.

4.2.3 Minimising human effort in semi-automated fuzz driver devel-
opment

There is still a requirement to have domain knowledge about the codebase when
the fuzz driver generation process is semi-automatic. In Kelly et al. [73] work of
FTG, which comments on top of the target function, the tester has to manually give

4.2. Future directions 73

information regarding the function declaration types and features (e.g. when it is an
array) in the comment as the complexity of the target function increases. There is also
the requirement to provide garbage collection information to FTG. The commenting
of @fuzztest would only work on simple function signatures and when the function
signatures get complex, the commenting requires a certain level of knowledge regarding
the codebase. Therefore, measures should be taken to improve this scenario, hence
only the commenting of @fuzztest is enough to generate a fuzz driver for any type
of function signature.

4.2.4 Inclusion of single function fuzz driver generation capacity for
state of the art automatic fuzz driver generators

Automatic fuzz driver generators such as FuzzGen [62], Fudge [7] and Intelligen [183]
focus on generating fuzz drivers to all the functions in the target codebase. However,
if the developer wants to fuzz a single function or a handful of functions, the service is
not available from these three fuzz driver generators. This service is available through
FTG [73] but it is not as efficient in identifying bugs or code coverage as it was
identified in Chapter 3. Therefore, modifications should be made for automatic fuzz
driver generators such as FuzzGen, Intelligen and Fudge to allow the developer to
point at a single function, multiple functions or a single source code file to generate
fuzz drivers. Normally, the motivation of fuzzing is to test as many code of the target
program as much as possible, however, with the introduction of FTG [73] and proposed
software projects such as CodeIntelligence [28] and Jazzer [67], single program fuzzing
is taking a new leap in research focus. Therefore, this direction of adoption could
enhance the appeal of the state of the art fuzz driver generators.

4.2.5 Development of fuzz drivers for multiple libraries

Automatic fuzz drivers such as FuzzGen [62] focus on fuzzing single libraries and do
not account for the interaction between multiple libraries. There is room to extend
FuzzGen to build fuzz drivers for multiple libraries that are connected. Therefore,
complex inter-dependencies between libraries should be explored through the auto-
mated fuzz driver development tool.

4.2.6 Comparison of micro fuzzing and fuzzing campaigns with fuzz
drivers

Micro Executions is a testing strategy proposed by Godefroid [47] as mentioned in
section Section 2.7.2. Micro execution allows the execution of the code without a test
driver or input data. The software tester should identify the location to be tested in
dll or exe. Then the code executes for testing purposes at that location using a run
time virtual machine. This technique further appears in fuzzing research in the tool
HotFuzz [11] as micro-fuzzing. As a result, micro fuzzing carries out fuzzing campaigns
without using fuzz drivers. There is no comparison between the effectiveness of this
strategy and a fuzzing campaign through fuzz drivers according to our findings in
Chapter 2, thus it is a new area of research to be explored.

4.2.7 Fuzz driver development automation for multiple program-
ming languages

All of the research studies that automated fuzz driver development focused on a single
programming language. Therefore, there is potential to develop a research study

74 Chapter 4. Conclusion and future work

with a tool that would automatically generate fuzz drivers for multiple languages and
multiple fuzzers. CI Fuzz claims to have this ability in Section 2.9 but there is no
supporting evidence or results for this process other than a demo video. Furthermore,
this tool is not part of our attribute matrix as explained in Section 2.9. Therefore,
more research should be carried out in such research areas to improve existing tools
available for fuzz driver development automation. However, it could be a challenge
to develop a single product that is compatible with multiple programming languages
due to the different structures and features that these different languages possess.
Therefore, to successfully achieve this feature, a language-independent specification
approach [12, 20, 87] could be adopted by researchers.

4.2.8 More applications of function importance ranking algorithms

Intelligen [183] proposes an algorithm to identify function importance and discard
less important functions when developing fuzz driver as we identified in Section 2.7.2.
Intelligen only focuses on C and C++. Therefore, a similar approach could be applied
when generating fuzz drivers for other programming languages to recognise relevant
function signatures and to promote efficient code coverage.

75

Chapter 5

Appendix A: Selected studies in
the systematic literature review

Table A. Selected studies in the systematic literature review.

Title Authors Year Reference

Flayer: Exposing application internals Drewry, Will; Ormandy,
Tavis 2007 [36]

Grammar-based whitebox fuzzing Godefroid, Patrice; Kiezun,
Adam; Levin, Michael Y. 2008 [48]

Configuring resource managers using model
fuzzing: A case study of the. NET thread pool Hellerstein, Joseph L. 2009 [57]

A symbolic execution framework for javascript

Saxena, Prateek; Akhawe,
Devdatta; Hanna, Steve;
Mao, Feng; McCamant,
Stephen; Song, Dawn

2010 [134]

D4. 3 Final report on inspection methods and
prototype vulnerability recognition tools

Fraunh, Get; Liu, M. I.; Per
H; Meland, SINTEF; Rai-
teri, Fabio

2010 [41]

Detecting atomic-set serializability violations in
multithreaded programs through active random-
ized testing

Fraunh, Get; Liu, M. I.;
Per H; Lai, Zhifeng; Che-
ung, Shing-Chi; Chan, Wing
Kwong

2010 [83]

Effective detection of atomic-set serializability vi-
olations in multithreaded programs Lai, Zhifeng 2010 [82]

Detect Program Vulnerabilities Using Trace-based
Security Testing Zhang, Dazhi 2011 [182]

Effective code coverage in compositional system-
atic dynamic testing Wan, Zhiyuan; Zhou, Bo 2011 [169]

Comparative Language Fuzz Testing Louridas, Diomidis Spinellis
Vassilios Karakoidas Panos 2012 [96]

Implementation and testing of a blackbox and a
whitebox fuzzer for file compression routines Tobkin, Toby 2013 [160]

Incorporating fuzz testing to unit testing regime Myllylahti, Juho 2013 [109]
A Smart Fuzzing Approach for Integer Overflow
Detection

Cai, Jun; Zou, Peng; He,
Jun; Ma, Jinxin 2014 [19]

Micro execution Godefroid, Patrice 2014 [47]

Analyzing Distributed Multi-platform Java and
Android Applications with ShadowVM

Sun, Haiyang; Zheng,
Yudi; Bulej, Lubomír; Kell,
Stephen; Binder, Walter

2015 [154]

Combining static and dynamic analyses for vul-
nerability detection: Illustration on heartbleed

Kiss, Balázs; Kosmatov,
Nikolai; Pariente, Dillon;
Puccetti, Armand

2015 [78]

Generating Succinct Test Cases Using Don’t Care
Analysis

Nguyen, Cuong; Yoshida,
Hiroaki; Prasad, Mukul;
Ghosh, Indradeep; Sen,
Koushik

2015 [111]

Continued on next page

76 Chapter 5. Appendix A: Selected studies in the systematic literature review

Appendix A – continued from previous page
Title Authors Venue Year

Proving memory safety of the ANI Windows im-
age parser using compositional exhaustive testing

Christakis, Maria; Gode-
froid, Patrice 2015 [25]

Reins to the Cloud: Compromising Cloud Sys-
tems via the Data Plane

Thimmaraju, Kashyap;
Shastry, Bhargava; Fiebig,
Tobias; Hetzelt, Felici-
tas; Seifert, Jean-Pierre;
Feldmann, Anja; Schmid,
Stefan

2016 [159]

Achieving High Coverage for Floating-point Code
via Unconstrained Programming (Extended Ver-
sion)

Fu, Zhoulai; Su, Zhendong 2017 [43]

Exploitability assessment with TEASER Ulrich, Frederick 2017 [163]

Static Exploration of Taint-Style Vulnerabilities
Found by Fuzzing

Shastry, Bhargava; Maggi,
Federico; Yamaguchi,
Fabian; Rieck, Konrad;
Seifert, Jean-Pierre

2017 [143]

WiFuzz: detecting and exploiting logical flaws in
the Wi-Fi cryptographic handshake Vanhoef, Mathy 2017 [166]

Automatically testing implementations of numer-
ical abstract domains

Bugariu, Alexandra;
Wüstholz, Valentin; Chris-
takis, Maria; Müller, Peter

2018 [15]

Compiler assisted vulnerability assessment Shastry, Bhargava 2018 [142]
Computing homomorphic program invariants Holland, Benjamin Robert 2018 [58]

DeepState: Symbolic unit testing for C and C++ Goodman, Peter; Groce,
Alex 2018 [50]

Differential program analysis with fuzzing and
symbolic execution Noller, Yannic 2018 [114]

Fuzz testing in practice: Obstacles and solutions
Liang, Jie; Wang, Mingzhe;
Chen, Yuanliang; Jiang, Yu;
Zhang, Renwei

2018 [90]

rev. ng: A multi-architecture framework for re-
verse engineering and vulnerability discovery

Di Federico, Alessandro;
Fezzardi, Pietro; Agosta,
Giovanni

2018 [31]

RFUZZ: Coverage-directed fuzz testing of RTL on
FPGAs

Laeufer, Kevin; Koenig,
Jack; Kim, Donggyu;
Bachrach, Jonathan; Sen,
Koushik

2018 [81]

STADS: Software testing as species discovery Böhme, Marcel 2018 [16]
A Case Study on Automated Fuzz Target Gener-
ation for Large Codebases

Kelly, Matthew; Treude,
Christoph; Murray, Alex 2019 [73]

An Efficient Greybox Fuzzing Scheme for Linux-
based IoT Programs Through Binary Static Anal-
ysis

Zheng, Yaowen; Song, Zhan-
wei; Sun, Yuyan; Cheng,
Kai; Zhu, Hongsong; Sun,
Limin

2019 [187]

Analysing the Signal Protocol van Dam, Dion 2019 [164]

Compositional fuzzing aided by targeted symbolic
execution

Ognawala, Saahil; Kilger,
Fabian; Pretschner, Alexan-
der

2019 [118]

Deepfuzzer: Accelerated deep greybox fuzzing

Liang, Jie; Jiang, Yu; Wang,
Mingzhe; Jiao, Xun; Chen,
Yuanliang; Song, Houb-
ing; Choo, Kim-Kwang Ray-
mond

2019 [91]

Defending In-process Memory Abuse with Mitiga-
tion and Testing Chen, Yaohui 2019 [23]

Deterring attackers by Injecting Unexploitable
Bugs Vijtiuk, Juraj 2019 [167]

Continued on next page

Chapter 5. Appendix A: Selected studies in the systematic literature review 77

Appendix A – continued from previous page
Title Authors Venue Year

DifFuzz: differential fuzzing for side-channel anal-
ysis

Nilizadeh, Shirin; Noller,
Yannic; Pasareanu, Corina
S.

2019 [113]

Efficient approach to fuzzing interpreters Dominiak, Marcin; Rauner,
Wojciech. 2019 [34]

FirmFuzz: automated IoT firmware introspection
and analysis

Srivastava, Prashast; Peng,
Hui; Li, Jiahao; Okhravi,
Hamed; Shrobe, Howard;
Payer, Mathias

2019 [149]

Formal specification and testing of QUIC McMillan, Kenneth L.;
Zuck, Lenore D. 2019 [101]

From proof-of-concept to exploitable
Wang, Yan; Wu, Wei;
Zhang, Chao; Xing, Xinyu;
Gong, Xiaorui; Zou, Wei

2019 [172]

Fudge: fuzz driver generation at scale

Babić, Domagoj; Bucur,
Stefan; Chen, Yaohui;
Ivančić, Franjo; King, Tim;
Kusano, Markus; Lemieux,
Caroline; Szekeres, László;
Wang, Wei

2019 [7]

FuzzBuilder: automated building greybox fuzzing
environment for C/C++ library

Jang, Joonun; Kim, Huy
Kang 2019 [65]

Fuzzing Janus for Fun and Profit

Amirante, Alessandro;
Castaldi, Tobia; Miniero,
Lorenzo; Romano, Simon
Pietro; Saviano, Paolo;
Toppi, A.

2019 [5]

Fuzzing Universal Plug and Play Van Looy, Eleanor 2019 [165]
Fuzzing Universal Plug and Play (UPnP) Mestdagh, Steven 2019 [103]

Identifying Software and Protocol Vulnerabilities
in WPA2 Implementations through Fuzzing

Lioy, Antonio; Müehlberg,
Jan Tobias; Vanhoef,
Mathy; Marallo, Graziano

2019 [93]

JQF: coverage-guided property-based testing in
Java

Padhye, Rohan; Lemieux,
Caroline; Sen, Koushik 2019 [122]

KLUZZER: Whitebox Fuzzing on Top of LLVM Le, Hoang M. 2019 [84]

Smart greybox fuzzing

Pham, Van-Thuan; Böhme,
Marcel; Santosa, An-
drew Edward; Caciulescu,
Alexandru Razvan; Roy-
choudhury, Abhik

2019 [128]

TestCov: Robust test-suite execution and cover-
age measurement

Beyer, Dirk; Lemberger,
Thomas 2019 [10]

Toward the analysis of embedded firmware
through automated re-hosting

Gustafson, Eric; Muench,
Marius; Spensky, Chad; Re-
dini, Nilo; Machiry, Ar-
avind; Fratantonio, Yanick;
Balzarotti, Davide; Francil-
lon, Aurélien; Choe, Yung
Ryn; Kruegel, Christophe

2019 [53]

VisFuzz: understanding and intervening fuzzing
with interactive visualization

Zhou, Chijin; Wang,
Mingzhe; Liang, Jie; Liu,
Zhe; Sun, Chengnian; Jiang,
Yu

2019 [188]

The Art, Science, and Engineering of Fuzzing: A
Survey

Valentin J.M. Manes,
HyungSeok Han, Choong-
woo Han, Sang Kil Cha,
Manuel Egele, Edward J.
Schwartz, Maverick Woo

2019 [99]

Continued on next page

78 Chapter 5. Appendix A: Selected studies in the systematic literature review

Appendix A – continued from previous page
Title Authors Venue Year

AFL++: Combining incremental steps of fuzzing
research

Fioraldi, Andrea; Maier,
Dominik; Eißfeldt, Heiko;
Heuse, Marc

2020 [40]

AFLNet: a greybox fuzzer for network protocols
Pham, Van-Thuan; Böhme,
Marcel; Roychoudhury, Ab-
hik

2020 [129]

Agamotto: Accelerating Kernel Driver Fuzzing
with Lightweight Virtual Machine Checkpoints

Song, Dokyung; Hetzelt,
Felicitas; Kim, Jonghwan;
Kang, Brent Byunghoon;
Seifert, Jean-Pierre; Franz,
Michael

2020 [147]

Algorithmic improvements for feedback-driven
fuzzing Aschermann, Cornelius 2020 [6]

BaseSAFE: baseband sanitized fuzzing through
emulation

Maier, Dominik; Seidel,
Lukas; Park, Shinjo 2020 [98]

Better Robustness Testing for Autonomy Systems Zizyte, Milda 2020 [189]
Building Secure and Reliable Systems Beyer, Betsy 2020 [9]

Coverage-guided binary fuzzing with rev. ng and
llvm libfuzzer

Frighetto, Antonio; Agosta,
Giovanni; Di Federico, Ph
D. Alessandro; Gussoni, M.
Sc Andrea

2020 [42]

Deep learning for compilers Cummins, Christopher Ed-
ward 2020 [30]

Edge of the Art in Vulnerability Research Tenaglia, Scott; Adams,
Perri 2020 [158]

Efficient Dependability Assessment of Systems
Software Coppik, Nicolas 2020 [29]

Fuzz4B: a front-end to AFL not only for fuzzing
experts

Miyaki, Ryu; Yoshida, Nori-
hiro; Tsuzuki, Natsuki; Ya-
mamoto, Ryota; Takada, Hi-
roaki

2020 [107]

Fuzzgen: Automatic fuzzer generation
Ispoglou, Kyriakos; Austin,
Daniel; Mohan, Vishwath;
Payer, Mathias

2020 [62]

Fuzzing binaries for memory safety errors with
QASan

Fioraldi, Andrea; D’Elia,
Daniele Cono; Querzoni,
Leonardo

2020 [40]

Fuzzing JavaScript Engines with Aspect-
preserving Mutation

Park, Soyeon; Xu, Wen;
Yun, Insu; Jang, Daehee;
Kim, Taesoo

2020 [125]

Fuzzing: On the exponential cost of vulnerability
discovery

Böhme, Marcel; Falk, Bran-
don 2020 [17]

Greybox Automatic Exploit Generation for Heap
Overflows in Language Interpreters Heelan, Sean 2020 [56]

HotFuzz: Discovering Algorithmic Denial-of-
Service Vulnerabilities Through Guided Micro-
Fuzzing

Blair, William; Mambretti,
Andrea; Arshad, Sajjad;
Weissbacher, Michael;
Robertson, William; Kirda,
Engin; Egele, Manuel

2020 [11]

HyDiff: Hybrid differential software analysis

Noller, Yannic; Păsăreanu,
Corina S.; Böhme, Mar-
cel; Sun, Youcheng; Nguyen,
Hoang Lam; Grunske, Lars

2020 [115]

IFFSET: in-field fuzzing of industrial control sys-
tems using system emulation

Tychalas, Dimitrios; Mani-
atakos, Michail 2020 [162]

Magma: A Ground-Truth Fuzzing Benchmark Hazimeh, Ahmad; Herrera,
Adrian; Payer, Mathias 2020 [55]

Continued on next page

Chapter 5. Appendix A: Selected studies in the systematic literature review 79

Appendix A – continued from previous page
Title Authors Venue Year

MoFuzz: A Fuzzer Suite for Testing Model-Driven
Software Engineering Tools

Nguyen, Hoang Lam; Nas-
sar, Nebras; Kehrer, Timo;
Grunske, Lars

2020 [112]

Program State Abstraction for Feedback-Driven
Fuzz Testing using Likely Invariants Fioraldi, Andrea 2020 [38]

Property-oriented Model-Based Testing With
Fuzzing–Technical Report

Huang, Wen-ling; Krafczyk,
Niklas; Le, Hoang M.; Pe-
leska, Jan

2020 [60]

SpecFuzz: Bringing Spectre-type vulnerabilities
to the surface

Oleksenko, Oleksii; Trach,
Bohdan; Silberstein, Mark;
Fetzer, Christof

2020 [119]

SunDew: Systematic Automated Security Testing Ivančić, Franjo 2020 [63]

The Industrial Age of Hacking

Nosco, Timothy; Ziegler,
Jared; Clark, Zechariah;
Marrero, Davy; Finkler,
Todd; Barbarello, Andrew;
Petullo, W. Michael

2020 [116]

Towards making formal methods normal: meeting
developers where they are

Reid, Alastair; Church,
Luke; Flur, Shaked; de
Haas, Sarah; Johnson,
Maritza; Laurie, Ben

2020 [132]

Web Protocol Fuzzing of the TLS/SSL Protocol
with Focus on the OpenSSL Library Khalaf, Fouad Nouri 2020 [75]

An Empirical Study of OSS-Fuzz Bugs Ding, Zhen Yu; Goues,
Claire Le 2021 [33]

Efficient Fuzz Testing for Apache Spark Using
Framework Abstraction

Zhang, Qian; Wang, Jiyuan;
Gulzar, Muhammad Ali;
Padhye, Rohan; Kim,
Miryung

2021 [185]

Exposing bugs in JavaScript engines through test
transplantation and differential testing

Lima, Igor; Silva, Jef-
ferson; Miranda, Breno;
Pinto, Gustavo; d’Amorim,
Marcelo

2021 [92]

Fuzzing: Challenges and Reflections
Boehme, Marcel; Cadar,
Cristian; Roychoudhury,
Abhik

2021 [13]

ICSFuzz: Manipulating I/Os and Repurposing Bi-
nary Code to Enable Instrumented Fuzzing in ICS
Control Applications

Tychalas, Dimitrios;
Benkraouda, Hadjer; Mani-
atakos, Michail

2021 [162]

Industrial Oriented Evaluation of Fuzzing Tech-
niques

Wang, Mingzhe; Liang, Jie;
Zhou, Chijin; Chen, Yuan-
liang; Wu, Zhiyong; Jiang,
Yu

2021 [170]

Industry Practice of Coverage-Guided Enterprise-
Level DBMS Fuzzing

Wang, Mingzhe; Wu, Zhiy-
ong; Xu, Xinyi; Liang,
Jie; Zhou, Chijin; Zhang,
Huafeng; Jiang, Yu

2021 [171]

IntelliGen: Automatic Driver Synthesis for Fuzz
Testing

Zhang, Mingrui; Liu,
Jianzhong; Ma, Fuchen;
Zhang, Huafeng; Jiang, Yu

2021 [183]

JMPscare: Introspection for Binary-Only Fuzzing Maier, Dominik; Seidel,
Lukas 2021 [97]

Nyx: Greybox hypervisor fuzzing using fast snap-
shots and affine types

Schumilo, Sergej; Ascher-
mann, Cornelius; Abbasi,
Ali; Wörner, Simon; Holz,
Thorsten

2021 [137]

Performant Software Hardening under Hardware
Support Ding, Ren 2021 [32]

Continued on next page

80 Chapter 5. Appendix A: Selected studies in the systematic literature review

Appendix A – continued from previous page
Title Authors Venue Year

Practical Systems For Strengthening And Weak-
ening Binary Analysis Frameworks Jung, Jinho 2021 [70]

RULF: Rust Library Fuzzing via API Dependency
Graph Traversal

Jiang, Jianfeng; Xu, Hui;
Zhou, Yangfan 2021 [69]

SyRust: Automatic Testing of Rust Libraries with
Semantic-Aware Program Synthesis–Technical
Report

Takashima, Yoshiki;
Goncalves Martins, Ruben
Carlos; Jia, Limin; Pasare-
anu, Corina

2021 [155]

Test Automation Peleska, Jan; Huang, Wen-
ling 2021 [126]

WINNIE: Fuzzing Windows Applications with
Harness Synthesis and Fast Cloning

Jung, Jinho; Tong, Stephen;
Hu, Hong; Lim, Jungwon;
Jin, Yonghwi; Kim, Taesoo

2021 [71]

81

Bibliography

[1] Adobe. Binspector: Evolving a security tool. https://blogs.adobe.com/security/2015/05/
binspector-evolving-a-security-tool.html/, 2021. Accessed: 2021-11-06.

[2] Md Abdullah Al Mamun, Christian Berger, and Jörgen Hansson. Effects of measurements on
correlations of software code metrics. Empirical Software Engineering, 24(4):2764–2818, 2019.

[3] Mahmoud Alfadel, Armin Kobilica, and Jameleddine Hassine. Evaluation of halstead and
cyclomatic complexity metrics in measuring defect density. In 2017 9th IEEE-GCC Conference
and Exhibition (GCCCE), pages 1–9. IEEE, 2017.

[4] Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, 1970.

[5] Alessandro Amirante, Tobia Castaldi, Lorenzo Miniero, Simon Pietro Romano, Paolo Saviano,
and A. Toppi. Fuzzing Janus for Fun and Profit. In 2019 Principles, Systems and Applications
of IP Telecommunications (IPTComm), pages 1–7. IEEE, 2019.

[6] Cornelius Aschermann. Algorithmic improvements for feedback-driven fuzzing. PhD Thesis,
Ruhr-Universität Bochum, 2020.

[7] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King, Markus Kusano, Car-
oline Lemieux, László Szekeres, and Wei Wang. Fudge: fuzz driver generation at scale. In
2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 975–985, 2019.

[8] Mourad Badri and Fadel Toure. Empirical analysis of object-oriented design metrics for pre-
dicting unit testing effort of classes. 2012.

[9] Betsy Beyer. Building Secure and Reliable Systems. O’Reilly Media, 2020.

[10] Dirk Beyer and Thomas Lemberger. TestCov: Robust test-suite execution and coverage mea-
surement. In 2019 34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 1074–1077. IEEE, 2019.

[11] William Blair, Andrea Mambretti, Sajjad Arshad, Michael Weissbacher, William Robertson,
Engin Kirda, and Manuel Egele. HotFuzz: Discovering Algorithmic Denial-of-Service Vulner-
abilities Through Guided Micro-Fuzzing. arXiv preprint arXiv:2002.03416, 2020.

[12] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. Pisa—a platform and
programming language independent interface for search algorithms. In International Conference
on Evolutionary Multi-Criterion Optimization, pages 494–508. Springer, 2003.

[13] Marcel Boehme, Cristian Cadar, and Abhik Roychoudhury. Fuzzing: Challenges and Reflec-
tions. IEEE Softw., 38(3):79–86, 2021.

[14] Jonas Bogenberger. Automated fuzz target generation for c libraries. https://www.sec.in.
tum.de/i20/student-work/automated-fuzz-target-generation-for-c-libraries, 2021.
Accessed: 2021-08-06.

[15] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller. Automatically
testing implementations of numerical abstract domains. In 33rd ACM/IEEE International
Conference on Automated Software Engineering, pages 768–778, 2018.

[16] Marcel Böhme. STADS: Software testing as species discovery. ACM Transactions on Software
Engineering and Methodology (TOSEM), 27(2):1–52, 2018. Publisher: ACM.

https://blogs.adobe.com/security/2015/05/binspector-evolving-a-security-tool.html/
https://blogs.adobe.com/security/2015/05/binspector-evolving-a-security-tool.html/
https://www.sec.in.tum.de/i20/student-work/automated-fuzz-target-generation-for-c-libraries
https://www.sec.in.tum.de/i20/student-work/automated-fuzz-target-generation-for-c-libraries

82 BIBLIOGRAPHY

[17] Marcel Böhme and Brandon Falk. Fuzzing: On the exponential cost of vulnerability discovery.
In 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 713–724, 2020.

[18] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades later.
Communications of the ACM, 56(2):82–90, 2013.

[19] Jun Cai, Peng Zou, Jun He, and Jinxin Ma. A Smart Fuzzing Approach for Integer Overflow
Detection. Information Technology in Industry, 2(3):98–103, 2014.

[20] Laura M Castro and Miguel A Francisco. A language-independent approach to black-box
testing using erlang as test specification language. Journal of Systems and Software, 86(12):
3109–3122, 2013.

[21] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li, Haijun Wang,
and Yang Liu. {MUZZ}: Thread-aware grey-box fuzzing for effective bug hunting in multi-
threaded programs. In 29th {USENIX} Security Symposium ({USENIX} Security 20), pages
2325–2342, 2020.

[22] M-H Chen, Michael R Lyu, and W Eric Wong. Effect of code coverage on software reliability
measurement. IEEE Transactions on reliability, 50(2):165–170, 2001.

[23] Yaohui Chen. Defending In-process Memory Abuse with Mitigation and Testing. Northeastern
University, 2019.

[24] Bharti Chimdyalwar and Shrawan Kumar. Effective false positive filtering for evolving software.
In Proceedings of the 4th India Software Engineering Conference, pages 103–106, 2011.

[25] Maria Christakis and Patrice Godefroid. Proving memory safety of the ANI Windows image
parser using compositional exhaustive testing. In International Workshop on Verification,
Model Checking, and Abstract Interpretation, pages 373–392. Springer, 2015.

[26] Cisco. Cisco secure development lifecycle. https://www.cisco.com/c/en/us/about/
security-center/security-programs/secure-development-lifecycle/sdl-process/
validate.html, 2021. Accessed: 2021-08-06.

[27] Code-Intelligence. Ci fuzz software. https://page.code-intelligence.com/sign-up-demo?
hsLang=en, 2021. Accessed: 2021-08-06.

[28] Code-Intelligence. Code intelligence software tools. https://www.code-intelligence.com/,
2021. Accessed: 2021-08-06.

[29] Nicolas Coppik. Efficient Dependability Assessment of Systems Software. 2020. Publisher:
Technische Universität Darmstadt.

[30] Christopher Edward Cummins. Deep learning for compilers. PhD thesis, The University of
Edinburgh, 2020.

[31] Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta. rev. ng: A multi-architecture
framework for reverse engineering and vulnerability discovery. In 2018 International Carnahan
Conference on Security Technology (ICCST), pages 1–5. IEEE, 2018.

[32] Ren Ding. Performant Software Hardening under Hardware Support. PhD Thesis, Georgia
Institute of Technology, 2021.

[33] Zhen Yu Ding and Claire Le Goues. An Empirical Study of OSS-Fuzz Bugs. arXiv preprint
arXiv:2103.11518, 2021.

[34] Marcin Dominiak and Wojciech Rauner. Efficient approach to fuzzing interpreters. BlackHat
Asia, 2019.

[35] DoxyGen. Doxygen software. https://www.doxygen.nl/index.html, 2021. Accessed: 2021-
08-06.

[36] Will Drewry and Tavis Ormandy. Flayer: Exposing application internals. USENIX Security
Symposium, 2007.

https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html
https://page.code-intelligence.com/sign-up-demo?hsLang=en
https://page.code-intelligence.com/sign-up-demo?hsLang=en
https://www.code-intelligence.com/
https://www.doxygen.nl/index.html

BIBLIOGRAPHY 83

[37] KO Emergy and Brenda K Mitchell. Multi-level software testing based on cyclomatic complex-
ity. In IEEE National Aerospace and Electronics Conference, pages 500–507. IEEE, 1989.

[38] Andrea Fioraldi. Program State Abstraction for Feedback-Driven Fuzz Testing using Likely
Invariants. arXiv preprint arXiv:2012.11182, 2020.

[39] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. Fuzzing binaries for memory
safety errors with QASan. In 2020 IEEE Secure Development (SecDev), pages 23–30. IEEE,
2020.

[40] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++: Combining in-
cremental steps of fuzzing research. In 14th USENIX Workshop on Offensive Technologies
(WOOT 20), 2020.

[41] GET Fraunh, M. I. Liu, Sintef Per Haakon Meland, and Fabio Raiteri. D4. 3 Final report on
inspection methods and prototype vulnerability recognition tools. 2010. Publisher: Citeseer.

[42] Antonio Frighetto, Giovanni Agosta, Ph D. Alessandro Di Federico, and M. Sc Andrea Gussoni.
Coverage-guided binary fuzzing with rev.ng and llvm libfuzzer. Master’s thesis, Master’s thesis,
Dipartimento di Elettronica, Politecnico Milano, 2020.

[43] Zhoulai Fu and Zhendong Su. Achieving High Coverage for Floating-point Code via Uncon-
strained Programming (Extended Version). arXiv preprint arXiv:1704.03394, 2017.

[44] FuzzBench. Fuzzbench repository. https://github.com/google/fuzzer-test-suite, 2021.
Accessed: 2021-08-06.

[45] GitHub. Github, public fuzzers. https://github.com/search?q=fuzzing&type=
Repositories, 2021. Accessed: 2021-11-06.

[46] Github. Open-source repositories. https://github.com, 2021. Accessed: 2021-08-06.

[47] Patrice Godefroid. Micro execution. In 36th International Conference on Software Engineering,
pages 539–549, 2014.

[48] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based whitebox fuzzing.
In 29th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 206–215, 2008.

[49] Jiong Gong, Yun Wang, Haihao Shen, Xu Deng, Wei Wang, and Xiangning Ma. FAST: Formal
specification driven test harness generation. In Tenth ACM/IEEE International Conference on
Formal Methods and Models for Codesign (MEMCODE2012), pages 33–42. IEEE, 2012.

[50] Peter Goodman and Alex Groce. DeepState: Symbolic unit testing for C and C++. In NDSS
Workshop on Binary Analysis Research, 2018.

[51] Google. Google chromium security. https://www.chromium.org/Home/chromium-security/
bugs, 2021. Accessed: 2021-11-06.

[52] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. " not my
bug!" and other reasons for software bug report reassignments. In Proceedings of the ACM
2011 conference on Computer supported cooperative work, pages 395–404, 2011.

[53] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry, Yanick Fratan-
tonio, Davide Balzarotti, Aurélien Francillon, Yung Ryn Choe, and Christophe Kruegel. To-
ward the analysis of embedded firmware through automated re-hosting. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), pages 135–150,
2019.

[54] Maurice H Halstead. Elements of Software Science (Operating and programming systems se-
ries). Elsevier Science Inc., 1977.

[55] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A Ground-Truth Fuzzing
Benchmark. ACM on Measurement and Analysis of Computing Systems, 4(3):1–29, 2020.
Publisher: ACM.

https://github.com/google/fuzzer-test-suite
https://github.com/search?q=fuzzing&type=Repositories
https://github.com/search?q=fuzzing&type=Repositories
https://github.com
https://www.chromium.org/Home/chromium-security/bugs
https://www.chromium.org/Home/chromium-security/bugs

84 BIBLIOGRAPHY

[56] Sean Heelan. Greybox Automatic Exploit Generation for Heap Overflows in Language Inter-
preters. PhD thesis, University of Oxford, 2020.

[57] Joseph L. Hellerstein. Configuring resource managers using model fuzzing: A case study of
the. NET thread pool. In 2009 IFIP/IEEE International Symposium on Integrated Network
Management, pages 1–8. IEEE, 2009.

[58] Benjamin Robert Holland. Computing homomorphic program invariants. PhD thesis, Iowa
State University, 2018.

[59] HongFuzz. Honggfuzz software. https://github.com/google/honggfuzz, 2021. Accessed:
2021-08-06.

[60] Wen-ling Huang, Niklas Krafczyk, Hoang M. Le, and Jan Peleska. Property-oriented Model-
Based Testing With Fuzzing–Technical Report 09/2020–. Technical report, Department of
Mathematics and Computer Science, University of Bremen, 2020.

[61] Vincenzo Iozzo. 0-knowledge fuzzing. Black Hat USA, 2010.

[62] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. Fuzzgen: Automatic
fuzzer generation. In 29th USENIX Security Symposium (USENIX Security 20), pages 2271–
2287, 2020.

[63] Franjo Ivančić. SunDew: Systematic Automated Security Testing. In 2020 IEEE 13th Interna-
tional Conference on Software Testing, Validation and Verification (ICST), pages 3–3. IEEE,
2020.

[64] Pankaj Jalote. Coding and unit testing. In A Concise Introduction to Software Engineering,
pages 1–43. Springer, 2008.

[65] Joonun Jang and Huy Kang Kim. FuzzBuilder: automated building greybox fuzzing environ-
ment for C/C++ library. In 35th Annual Computer Security Applications Conference, pages
627–637, 2019.

[66] JavaDoc. Javadoc software. https://docs.oracle.com/javase/8/docs/technotes/tools/
windows/javadoc.html, 2021. Accessed: 2021-08-06.

[67] Jazzer. Jazzer software. https://github.com/CodeIntelligenceTesting/jazzer/, 2021. Ac-
cessed: 2021-08-06.

[68] Fan Jiang, Cen Zhang, and Shaoyin Cheng. FFFuzzer: Filter Your Fuzz to Get Accuracy,
Efficiency and Schedulability. In Australasian Conference on Information Security and Privacy,
pages 61–79. Springer, 2017.

[69] Jianfeng Jiang, Hui Xu, and Yangfan Zhou. RULF: Rust Library Fuzzing via API Dependency
Graph Traversal. arXiv preprint arXiv:2104.12064, 2021.

[70] Jinho Jung. Practical Systems For Strengthening And Weakening Binary Analysis Frameworks.
PhD Thesis, Georgia Institute of Technology, 2021.

[71] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo Kim. WINNIE:
Fuzzing Windows Applications with Harness Synthesis and Fast Cloning. In 2021 Annual
Network and Distributed System Security Symposium (NDSS), Virtual, 2021.

[72] Staffs Keele et al. Guidelines for performing systematic literature reviews in software engineer-
ing. Technical report, Citeseer, 2007.

[73] Matthew Kelly, Christoph Treude, and Alex Murray. A Case Study on Automated Fuzz Target
Generation for Large Codebases. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 1–6. IEEE, 2019.

[74] Atte Kettunen. Test harness for web browser fuzz testing. Master’s thesis, University of Oulu,
2014.

[75] Fouad Nouri Khalaf. Web Protocol Fuzzing of the TLS/SSL Protocol with Focus on the
OpenSSL Library. Bachelor’s thesis, University of Queensland, 2020.

https://github.com/google/honggfuzz
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://github.com/CodeIntelligenceTesting/jazzer/

BIBLIOGRAPHY 85

[76] Jee-Hyun Kim. Relevance of the cyclomatic complexity threshold for the web programming.
Journal of the Korea Society of Computer and Information, 17(6):153–161, 2012.

[77] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and Byoungyoung
Lee. Hfl: Hybrid fuzzing on the linux kernel. In NDSS, 2020.

[78] Balázs Kiss, Nikolai Kosmatov, Dillon Pariente, and Armand Puccetti. Combining static and
dynamic analyses for vulnerability detection: Illustration on heartbleed. In Haifa Verification
Conference, pages 39–50. Springer, 2015.

[79] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele Uni-
versity, 33(2004):1–26, 2004.

[80] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic literature
reviews in software engineering. 2007.

[81] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen. RFUZZ:
Coverage-directed fuzz testing of RTL on FPGAs. In 2018 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[82] Zhifeng Lai. Effective detection of atomic-set serializability violations in multithreaded pro-
grams. Hong Kong University of Science and Technology (Hong Kong), 2010.

[83] Zhifeng Lai, Shing-Chi Cheung, and Wing Kwong Chan. Detecting atomic-set serializability
violations in multithreaded programs through active randomized testing. In 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 235–244, 2010.

[84] Hoang M. Le. KLUZZER: Whitebox Fuzzing on Top of LLVM. In International Symposium
on Automated Technology for Verification and Analysis, pages 246–252. Springer, 2019.

[85] Leptonica. Leptonica software. http://www.leptonica.org/, 2021. Accessed: 2021-08-06.

[86] Randall J LeVeque, Ian M Mitchell, and Victoria Stodden. Reproducible research for scientific
computing: Tools and strategies for changing the culture. Computing in Science & Engineering,
14(04):13–17, 2012.

[87] Nicole Lévy and G Smith. A language-independent approach to specification construction.
ACM SIGSOFT Software Engineering Notes, 19(5):76–86, 1994.

[88] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie, Haijun Wang,
and Yang Liu. Cerebro: context-aware adaptive fuzzing for effective vulnerability detection. In
2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 533–544, 2019.

[89] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. Fuzzing: State of
the art. IEEE Transactions on Reliability, 67(3):1199–1218, 2018. Publisher: IEEE.

[90] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. Fuzz testing in
practice: Obstacles and solutions. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 562–566. IEEE, 2018.

[91] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang Chen, Houbing Song, and Kim-
Kwang Raymond Choo. Deepfuzzer: Accelerated deep greybox fuzzing. IEEE Transactions on
Dependable and Secure Computing, 2019. Publisher: IEEE.

[92] Igor Lima, Jefferson Silva, Breno Miranda, Gustavo Pinto, and Marcelo d’Amorim. Expos-
ing bugs in JavaScript engines through test transplantation and differential testing. Software
Quality Journal, 29(1):129–158, 2021. Publisher: Springer.

[93] Antonio Lioy, Jan Tobias Müehlberg, Mathy Vanhoef, and Graziano Marallo. Identifying
Software and Protocol Vulnerabilities in WPA2 Implementations through Fuzzing. Master’s
thesis, Politecnico di Torino, 2019.

[94] LLVM. libfuzzer – a library for coverage-guided fuzz testing. https://llvm.org/docs/
LibFuzzer.html, 2021. Accessed: 2020-12-04.

http://www.leptonica.org/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

86 BIBLIOGRAPHY

[95] LLVM. Llvm documentation. https://llvm.org/docs/LangRef.html, 2021. Accessed: 2021-
08-06.

[96] Diomidis Spinellis Vassilios Karakoidas Panos Louridas. Comparative Language Fuzz Testing.
Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU),
2012.

[97] Dominik Maier and Lukas Seidel. JMPscare: Introspection for Binary-Only Fuzzing. In Work-
shop on Binary Analysis Research (BAR), volume 2021, page 21, 2021.

[98] Dominik Maier, Lukas Seidel, and Shinjo Park. BaseSAFE: baseband sanitized fuzzing through
emulation. In 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
pages 122–132, 2020.

[99] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J Schwartz, and Maverick Woo. The art, science, and engineering of fuzzing: A survey.
IEEE Transactions on Software Engineering, 2019.

[100] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):
308–320, 1976.

[101] Kenneth L. McMillan and Lenore D. Zuck. Formal specification and testing of QUIC. In ACM
Special Interest Group on Data Communication, pages 227–240. 2019.

[102] Richard McNally, Ken Yiu, Duncan Grove, and Damien Gerhardy. Fuzzing: the state of the
art. Technical report, Defence SCience and Technology Organisation (Australia), 2012.

[103] Steven Mestdagh. Fuzzing Universal Plug and Play (UPnP). Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU), 2019.

[104] Microsoft. Microsoft security development lifecycle, verification phase. https://www.
microsoft.com/en-us/sdl/process/verification.aspx, 2021. Accessed: 2021-11-06.

[105] Microsoft. One fuzz. https://www.microsoft.com/security/blog/2020/09/15/
microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/, 2021. Accessed:
2021-08-06.

[106] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of unix
utilities. Communications of the ACM, 33(12):32–44, 1990.

[107] Ryu Miyaki, Norihiro Yoshida, Natsuki Tsuzuki, Ryota Yamamoto, and Hiroaki Takada.
Fuzz4B: a front-end to AFL not only for fuzzing experts. In 11th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation, pages 17–20, 2020.

[108] Mockingbird. Mockingbird framework. https://github.com/kcsl/Mockingbird, 2021. Ac-
cessed: 2021-08-06.

[109] Juho Myllylahti. Incorporating fuzz testing to unit testing regime. PhD Thesis, Master’s thesis,
University of Oulu, Oulu, Finland, 2013.

[110] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Understanding source code evolution using
abstract syntax tree matching. In 2005 international workshop on Mining software repositories,
pages 1–5, 2005.

[111] Cuong Nguyen, Hiroaki Yoshida, Mukul Prasad, Indradeep Ghosh, and Koushik Sen. Generat-
ing Succinct Test Cases Using Don’t Care Analysis. In 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pages 1–10. IEEE, 2015.

[112] Hoang Lam Nguyen, Nebras Nassar, Timo Kehrer, and Lars Grunske. MoFuzz: A Fuzzer Suite
for Testing Model-Driven Software Engineering Tools. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1103–1115. IEEE, 2020.

[113] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. DifFuzz: differential fuzzing for side-
channel analysis. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 176–187. IEEE, 2019.

https://llvm.org/docs/LangRef.html
https://www.microsoft.com/en-us/ sdl/process/verification.aspx
https://www.microsoft.com/en-us/ sdl/process/verification.aspx
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://github.com/kcsl/Mockingbird

BIBLIOGRAPHY 87

[114] Yannic Noller. Differential program analysis with fuzzing and symbolic execution. In 33rd
ACM/IEEE International Conference on Automated Software Engineering, pages 944–947,
2018.

[115] Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and
Lars Grunske. HyDiff: Hybrid differential software analysis. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE), pages 1273–1285. IEEE, 2020.

[116] Timothy Nosco, Jared Ziegler, Zechariah Clark, Davy Marrero, Todd Finkler, Andrew Bar-
barello, and W. Michael Petullo. The Industrial Age of Hacking. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1129–1146, 2020.

[117] Joshua Ofoeda, Richard Boateng, and John Effah. Application programming interface (api)
research: A review of the past to inform the future. International Journal of Enterprise
Information Systems (IJEIS), 15(3):76–95, 2019.

[118] Saahil Ognawala, Fabian Kilger, and Alexander Pretschner. Compositional fuzzing aided by
targeted symbolic execution. arXiv preprint arXiv:1903.02981, 2019.

[119] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. SpecFuzz: Bringing
Spectre-type vulnerabilities to the surface. In 29th USENIX Security Symposium (USENIX
Security 20), pages 1481–1498, 2020.

[120] OpenCV. Opencv software. https://opencv.org/, 2021. Accessed: 2021-08-06.

[121] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing for java. In
Companion to the 22nd ACM SIGPLAN conference on Object-oriented programming systems
and applications companion, pages 815–816, 2007.

[122] Rohan Padhye, Caroline Lemieux, and Koushik Sen. JQF: coverage-guided property-based
testing in Java. In 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 398–401, 2019.

[123] Annibale Panichella and Urko Rueda Molina. Java unit testing tool competition-fifth round.
In 2017 IEEE/ACM 10th International Workshop on Search-Based Software Testing (SBST),
pages 32–38. IEEE, 2017.

[124] Jevgenija Pantiuchina, Michele Lanza, and Gabriele Bavota. Improving code: The (mis) per-
ception of quality metrics. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 80–91. IEEE, 2018.

[125] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing javascript engines
with aspect-preserving mutation. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1629–1642. IEEE, 2020.

[126] Jan Peleska and Wen-ling Huang. Test Automation. 2021.

[127] Roger D Peng. Reproducible research in computational science. Science, 334(6060):1226–1227,
2011.

[128] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Razvan Caciulescu,
and Abhik Roychoudhury. Smart greybox fuzzing. IEEE Transactions on Software Engineering,
2019. Publisher: IEEE.

[129] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. AFLNet: a greybox fuzzer for
network protocols. In 2020 IEEE 13th International Conference on Software Testing, Validation
and Verification (ICST), pages 460–465. IEEE, 2020.

[130] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim, Christoph Treude, and
Antonia Bertolino. What is the vocabulary of flaky tests? In 17th International Conference
on Mining Software Repositories, pages 492–502, 2020.

[131] Fuzzing Project. Fuzzing project software. https://fuzzing-project.org/software.htm,
2021. Accessed: 2021-11-06.

https://opencv.org/
https://fuzzing-project.org/software.htm

88 BIBLIOGRAPHY

[132] Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza Johnson, and Ben Laurie.
Towards making formal methods normal: meeting developers where they are. arXiv preprint
arXiv:2010.16345, 2020.

[133] Per Runeson. A survey of unit testing practices. IEEE software, 23(4):22–29, 2006.

[134] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn
Song. A symbolic execution framework for javascript. In 2010 IEEE Symposium on Security
and Privacy, pages 513–528. IEEE, 2010.

[135] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. FLAX: Systematic Dis-
covery of Client-side Validation Vulnerabilities in Rich Web Applications. In NDss, 2010.

[136] Google Scholar. Google scholar search engine. https://scholar.google.com.au/, 2021. Ac-
cessed: 2021-08-06.

[137] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and Thorsten Holz. Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[138] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. Ad-
dresssanitizer: A fast address sanity checker. In 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), pages 309–318, 2012.

[139] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In 2016 IEEE
Cybersecurity Development (SecDev), pages 157–157. IEEE, 2016.

[140] Kostya Serebryany. Oss-fuzz-google’s continuous fuzzing service for open source software. 2017.

[141] Muhammad Rabee Shaheen and Lydie Du Bousquet. Survey of source code metrics for evalu-
ating testability of object oriented systems. 2010.

[142] Bhargava Shastry. Compiler assisted vulnerability assessment. PhD thesis, Technische Univer-
sität Berlin, 2018.

[143] Bhargava Shastry, Federico Maggi, Fabian Yamaguchi, Konrad Rieck, and Jean-Pierre Seifert.
Static Exploration of Taint-Style Vulnerabilities Found by Fuzzing. In WOOT, 2017.

[144] Martin Shepperd. A critique of cyclomatic complexity as a software metric. Software Engi-
neering Journal, 3(2):30–36, 1988.

[145] Yonghee Shin and Laurie Williams. An empirical model to predict security vulnerabilities using
code complexity metrics. In Proceedings of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement, pages 315–317, 2008.

[146] Maksim O Shudrak and Vyacheslav V Zolotarev. Improving fuzzing using software complexity
metrics. In ICISC 2015, pages 246–261. Springer, 2015.

[147] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent Byunghoon Kang, Jean-Pierre Seifert,
and Michael Franz. Agamotto: Accelerating Kernel Driver Fuzzing with Lightweight Virtual
Machine Checkpoints. In 29th USENIX Security Symposium (USENIX Security 20), pages
2541–2557, 2020.

[148] Saija Sorsa. Protocol fuzz testing as a part of secure software development life cycle. Master’s
thesis, Tampere University of Technology, 2018.

[149] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard Shrobe, and Mathias Payer.
FirmFuzz: automated IoT firmware introspection and analysis. In 2nd International ACM
Workshop on Security and Privacy for the Internet-of-Things, pages 15–21, 2019.

[150] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Cor-
betta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS, volume 16, pages 1–16, 2016.

[151] Victoria C Stodden. Reproducible research: Addressing the need for data and code sharing in
computational science. 2010.

https://scholar.google.com.au/

BIBLIOGRAPHY 89

[152] Ting Su, Yichen Yan, Jue Wang, Jingling Sun, Yiheng Xiong, Geguang Pu, Ke Wang, and
Zhendong Su. Fully automated functional fuzzing of android apps for detecting non-crashing
logic bugs. Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–31, 2021.

[153] Fuzzer Test Suite. Google fuzzer-test-suite repository. https://github.com/google/
fuzzer-test-suite/tree/51356066dc70c43c9da0ad98e887684a0394860f, 2021. Accessed:
2021-08-06.

[154] Haiyang Sun, Yudi Zheng, Lubomír Bulej, Stephen Kell, and Walter Binder. Analyzing Dis-
tributed Multi-platform Java and Android Applications with ShadowVM. In Asian Symposium
on Programming Languages and Systems, pages 356–365. Springer, 2015.

[155] Yoshiki Takashima, Ruben Carlos Goncalves Martins, Limin Jia, and Corina Pasare-
anu. SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthe-
sis–Technical Report. 2021. Publisher: Carnegie Mellon University.

[156] Ahmed Tamrawi and Suresh Kothari. Projected control graph for computing relevant program
behaviors. Science of Computer Programming, 163:93–114, 2018.

[157] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. Bug
characteristics in open source software. Empirical software engineering, 19(6):1665–1705, 2014.

[158] Scott Tenaglia and Perri Adams. Edge of the Art in Vulnerability Research. Technical report,
Two Six Labs Arlington United States, 2020.

[159] Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert,
Anja Feldmann, and Stefan Schmid. Reins to the Cloud: Compromising Cloud Systems via
the Data Plane. arXiv preprint arXiv:1610.08717, 2016.

[160] Toby Tobkin. Implementation and testing of a blackbox and a whitebox fuzzer for file com-
pression routines. HIM 1990-2015. 1475., 2013.

[161] Dimitrios Tychalas and Michail Maniatakos. IFFSET: in-field fuzzing of industrial control
systems using system emulation. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 662–665. IEEE, 2020.

[162] Dimitrios Tychalas, Hadjer Benkraouda, and Michail Maniatakos. ICSFuzz: Manipulating I/Os
and Repurposing Binary Code to Enable Instrumented Fuzzing in ICS Control Applications.
In 30th USENIX Security Symposium (USENIX Security 21), 2021.

[163] Frederick Ulrich. Exploitability assessment with TEASER. PhD thesis, Northeastern University
Boston, 2017.

[164] Dion Van Dam. Analysing the signal protocol. Master’s thesis, Radboud University, 2019.

[165] Eleanor Van Looy. Fuzzing Universal Plug and Play. Master’s thesis, KU Leuven Faculty of
Engineering, 2019.

[166] Mathy Vanhoef. WiFuzz: detecting and exploiting logical flaws in the Wi-Fi cryptographic
handshake. In Black Hat US Briefings, Location: Las Vegas, USA, 2017.

[167] Juraj Vijtiuk. Deterring attackers by injecting unexploitable bugs. Master’s thesis, University
of Zagreb, 2009.

[168] James Walden. The impact of a major security event on an open source project: The case
of openssl. In 17th International Conference on Mining Software Repositories, pages 409–419,
2020.

[169] Zhiyuan Wan and Bo Zhou. Effective code coverage in compositional systematic dynamic
testing. In 2011 6th IEEE Joint international information technology and artificial intelligence
conference, volume 1, pages 173–176. IEEE, 2011.

[170] Mingzhe Wang, Jie Liang, Chijin Zhou, Yuanliang Chen, Zhiyong Wu, and Yu Jiang. Industrial
Oriented Evaluation of Fuzzing Techniques. In 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST), pages 306–317. IEEE, 2021.

https://github.com/google/fuzzer-test-suite/tree/51356066dc70c43c9da0ad98e887684a0394860f
https://github.com/google/fuzzer-test-suite/tree/51356066dc70c43c9da0ad98e887684a0394860f

90 BIBLIOGRAPHY

[171] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang, and Yu Jiang.
Industry Practice of Coverage-Guided Enterprise-Level DBMS Fuzzing. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 328–337. IEEE, 2021.

[172] Yan Wang, Wei Wu, Chao Zhang, Xinyu Xing, Xiaorui Gong, and Wei Zou. From proof-of-
concept to exploitable. Cybersecurity, 2(1):1–25, 2019.

[173] Jane Webster and Richard T Watson. Analyzing the past to prepare for the future: Writing a
literature review. MIS quarterly, pages xiii–xxiii, 2002.

[174] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. Singularity: Pattern fuzzing
for worst case complexity. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 213–223, 2018.

[175] Mark Weiser. Program slicing. IEEE Transactions on software engineering, pages 352–357,
1984.

[176] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In 18th international conference on evaluation and assessment in software
engineering, pages 1–10, 2014.

[177] Affan Yasin, Rubia Fatima, Lijie Wen, Wasif Afzal, Muhammad Azhar, and Richard Torkar. On
using grey literature and google scholar in systematic literature reviews in software engineering.
IEEE Access, 8:36226–36243, 2020.

[178] Michal Zalewski. American fuzzy lop, 2014.

[179] Michal Zalewski. Technical “whitepaper” for afl-fuzz. URl: http://lcamtuf. coredump.
cx/afl/technical details. txt, 2014.

[180] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. The
fuzzing book, 2019.

[181] K Zetter. A famed hacker is grading thousands of programs—and may revolutionize software
in the process, 2016.

[182] Dazhi Zhang. Detect Program Vulnerabilities Using Trace-based Security Testing. PhD thesis,
The University of Texas, 2011. Publisher: Computer Science & Engineering.

[183] Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng Zhang, and Yu Jiang. IntelliGen: Auto-
matic Driver Synthesis for Fuzz Testing. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 318–327. IEEE,
2021.

[184] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware android malware clas-
sification using weighted contextual api dependency graphs. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, pages 1105–1116, 2014.

[185] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and Miryung Kim. Efficient
Fuzz Testing for Apache Spark Using Framework Abstraction. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 61–64. IEEE, 2021.

[186] Yu Zhang, Wenlong Feng, and Mengxing Huang. Automatic generation of high-coverage tests
for RTL designs using software techniques and tools. In 2016 IEEE 11th Conference on Indus-
trial Electronics and Applications (ICIEA), pages 856–861. IEEE, 2016.

[187] Yaowen Zheng, Zhanwei Song, Yuyan Sun, Kai Cheng, Hongsong Zhu, and Limin Sun. An Effi-
cient Greybox Fuzzing Scheme for Linux-based IoT Programs Through Binary Static Analysis.
In 2019 IEEE 38th International Performance Computing and Communications Conference
(IPCCC), pages 1–8. IEEE, 2019.

BIBLIOGRAPHY 91

[188] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, Chengnian Sun, and Yu Jiang. VisFuzz:
understanding and intervening fuzzing with interactive visualization. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 1078–1081. IEEE,
2019.

[189] Milda Zizyte. Better Robustness Testing for Autonomy Systems. PhD Thesis, Carnegie Mellon
University, 2020.

[190] Zotero. Zotero software. https://www.zotero.org/, 2021. Accessed: 2021-08-06.

https://www.zotero.org/

	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	What is fuzzing?
	Types of fuzzing
	Fuzzers
	Fuzzer performance metrics

	What is a fuzz driver?
	The relationship between the code complexity and the fuzzing campaign
	Research objectives and questions
	Research methodology
	Thesis contributions
	Other contributions

	Fuzz driver generation for fuzz testing
	Introduction
	Background on fuzz drivers
	Methodology
	Findings
	Context of fuzz driver mentions in fuzzing research
	Fuzz driver requirements
	Fuzz driver development practices
	Fuzzer and fuzz driver evaluation techniques

	Context of fuzz driver mentions in fuzzing research
	Requirements for fuzz driver development
	Characteristics of a fuzz driver
	Function identification
	Path identification
	Reaching hard to reach components of the code

	Program state and control flow identification
	Types of bugs
	Garbage collection in fuzzing
	Importance of the seed corpus
	Accommodating parallel fuzzing and multi-threading
	Speed and timeouts
	Difficulties of manual fuzz driver development and the need for automation

	Fuzz driver development
	Fuzz driver generation steps
	Source code analysis for target selection
	Human interference: target identification by a software developer
	Annotations/code comments
	Unit tests
	Abstract-syntax tree
	Program slicing
	Function signature monitoring

	Function dependency identification and fuzz driver synthesis
	Human interference: function dependency identification by a software tester
	Program analysis
	Avoidance of function dependency identification

	Interfaces fuzzed
	The use of fuzzers
	Availability of source code for research replication

	Evaluation methods
	Fuzz driver development software that does not associate with a research study
	Research gaps and future directions
	Limitations and threats to validity
	Summary

	What is the best fuzz driver generation strategy?
	Introduction
	Background and related work
	Fuzz Target Generator (FTG)
	FuzzGen
	Other fuzz driver generators
	Fuzzer metrics for LibFuzzer
	Code complexity analysis
	Cyclomatic Complexity
	Halstead Metrics

	Methodology
	Collection of manually developed fuzz drivers
	Generating fuzz drivers

	Findings
	Fuzzing
	Fuzz driver compatibility

	Analysis of bug identification
	Analysis of code coverage
	Analysis of code complexity measures
	Analysis of cyclomatic complexity
	Analysis of Halstead metrics

	Limitations and threats to validity
	Summary

	Conclusion and future work
	Conclusion
	Future directions
	Novel ways to improve information transfer from function signatures to a fuzz driver
	Novel ways to automate unit test to fuzz driver conversion
	Minimising human effort in semi-automated fuzz driver development
	Inclusion of single function fuzz driver generation capacity for state of the art automatic fuzz driver generators
	Development of fuzz drivers for multiple libraries
	Comparison of micro fuzzing and fuzzing campaigns with fuzz drivers
	Fuzz driver development automation for multiple programming languages
	More applications of function importance ranking algorithms

	Appendix A: Selected studies in the systematic literature review

