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Abstract

Techniques to attain numerical solutions of Quantum Chromodynam-
ics have developed to the point of beginning to connect aspects of
nuclear physics to the underlying degrees of freedom of the Standard
Model. There remain deep physical and numerical challenges, in-
cluding a proliferation of possibilities for interpolating operators that
couple to low-energy states, factorial numerical resource scaling, poor
signal-to-noise scaling, and potentially dominating floating-point pre-
cision errors. The focus of this work is the computational resource
scaling associated with numerically evaluating the correlation func-
tion for an interpolating operator possessing the quantum numbers of
a multi-baryon system in the context of lattice QCD. The naïve compu-
tational cost required to compute nuclear correlation functions grows
factorially in the number of quarks, however this work develops a
set of novel approaches that reduce this cost by exploiting inherent
permutation symmetry. A selection of benchmarks demonstrate that
the new methods can offer between one and two orders of magnitude
in reduced calculation time (excluding hadron block expression evalu-
ation) for correlation functions of light nuclei when compared against
the hadron block method alone.
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Preface

The strong interaction plays a central role in high energy physics, and under-
standing its qualitatively varying behaviour over a vast set of regimes remains a
key challenge. Some regimes, such as low-energy nuclear few-body states, are well-
described by effective field theories, but the study of more exotic states is likely to
require access to the fundamental degrees of freedom of the strong interaction. The
principal aim of this work is to extend the feasible range of study of nuclear states via
the currently accepted fundamental theory — Quantum Chromodynamics (QCD).

Lattice QCD is a highly successful technique to numerically study the nonpertur-
bative regime of QCD using high-performance computing. A typical lattice QCD
calculation proceeds in four stages: gauge field configuration generation, propagator
calculation, correlation function calculation, and finally the extraction of physical
observables such as the low-lying mass spectrum. The past few decades have seen a
highly productive programme of work that has dramatically improved the numerical
performance of each of these stages.

The focus of this work is the numerical performance of correlation function calcu-
lations, which can dominate the computational budget in the case of many-hadron
states due in part to the factorial scaling of the required quark Wick contractions
in general. Other numerical challenges for many-hadron states, such as a prolifera-
tion of possibilities for interpolating operators that couple to low-energy states, and
poor signal-to-noise scaling, are directly impacted by the numerical performance of
correlation function calculations.

The primary contributions arising from this thesis are the proposal and evaluation
of two novel algorithms for the calculation of nuclear correlation functions, together
with a robust framework for the efficient numerical evaluation of tensor expressions
with permutation symmetry that arise in many other disciplines in physical science.
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Chapter 1.

Introduction

A key mathematical object in the execution of numerical quantum field theory calcu-
lations is the correlation function, which is constructed from time-ordered products of
field operators to reflect the quantum numbers of a state of interest. After providing a
fleeting snapshot of QCD and lattice QFT, Chapter 2 provides an introduction to the
construction of correlation functions for multi-hadron states through the application of
Wick’s Theorem to products of multi-hadron interpolating operators. It will be shown
in Chapter 2 that the direct approach to calculating correlation functions scales poorly
to the case of nuclear states of many quarks. A review of the algorithmic progress to
date will be presented in Chapter 3, which also includes numerical benchmarks that
form the foundation for the novel methods developed in the subsequent chapters.

The Standard Model rests upon the representation theory of Lie groups to encode
continuous physical symmetries. Permutation group theory is of a sibling mathemat-
ical lineage [1], stemming from the ‘original’ group theory of Jordan [2], Cayley [3],
and Galois [4] in the 19th century. Finite permutation group theory is concerned with
the groups Sym(Ω), with elements that permute a finite set Ω and group product
given by composition. It is common to select Ω = {1, . . . , n} for an integer n, in which
case Sym({1, . . . , n}) is denoted by the finite symmetric group Sn. The finite symmetric
group will play a recurring role throughout this thesis. In particular, study of the
group Sn forms the basis for tensor expression canonicalisation via graph canonicalisation,
as explored in Chapter 4. Tensor expression canonicalisation is applied directly to the
tensor expressions of nuclear correlators to remove redundant isomorphs and hence
reduce the computational work necessary to numerically evaluate the correlators.
Tensor expression canonicalisation is also a key process in the tensor e-graph method
developed in Chapter 6.

1



2 Introduction

The tensor expressions of nuclear correlators exhibit a high degree of permutation
symmetry, which can be exploited via structures developed in Chapter 5 referred to
as factor trees. The algorithm developed to evaluate factor trees is engineered so as to
optimise cache performance on modern CPU architectures, resulting in significantly
faster numerical evaluation of certain choices of nuclear correlation functions. The
construction of factor trees requires CPU time and memory that scales exponentially
in quark number, limiting the range of applicability and providing motivation for the
development of tensor e-graphs in Chapter 6.

E-graphs were originally developed in the 1970s to power automated theorem
provers [5] by efficiently exploring the space of all possible re-writes of expressions in
order to extract the ‘optimal’ expression via the minimisation of a cost function. Tensor
e-graphs are developed in Chapter 6 as a novel e-graph variant that extracts tensor
sub-expressions that are maximally re-used throughout the numerical evaluation of a
large set of tensor expressions. An exploration of the heuristic parameter space will
show that although speed-ups for nuclear correlators are attained from tensor e-graph
based optimisation, future work will be necessary to fine-tune the process.

Chapter 7 will present a potential pathway to extend a selection of the techniques
developed in Chapter 4 to adiabatic quantum devices. It will be shown that the
current maturation of quantum processing hardware is too primitive to execute nuclear
correlator calculations that are more performant than high-performance classical
computers. However, there is a productive programme of theoretical work that seeks
to determine the usefulness (or otherwise) of quantum devices for nuclear correlator
calculations, and Chapter 7 endeavours to begin that process.



Chapter 2.

Nuclear Correlation Functions

This chapter will provide a brief snapshot of Quantum Chromodynamics (§ 2.1) and
lattice Quantum Field Theory (§ 2.2). The unfamiliar reader is encouraged to consult
Refs. [6, 7] for a rigorous and comprehensive account of these broad and intricate
subjects. § 2.3 will discuss the construction of the multi-hadron interpolating operators
used throughout this thesis. § 2.4 will give a rigorous account of Wick’s Theorem,
which plays an essential role in the construction of the nuclear correlation functions in
§ 2.5. Finally § 2.6 will provide a concise selection of the approaches used to extract
physical observables from computed correlation functions.

2.1. The Strong Interaction and Quantum

Chromodynamics

The formulation of the Quantum Chromodynamics (QCD) lagrangian with a Yang-
Mills theory of colour octet gluons by Fritzsch, Gell-Mann, and Leutwyler [8] in 1973
marks an immense achievement that accumulated centuries of scientific triumphs
to assert the fundamental degrees of freedom of the strong interaction. The strong
interaction, for example, confines fundamental particles known as quarks into hadrons
that are further bound to form atomic nuclei amongst more exotic states. There are
several notable achievements along the journey to the QCD lagrangian, such as the
discovery of the strangeness quantum number through experimental evidence of the
K0 meson [9] and Λ baryon [10], the quantum mechanical description of the strong
force by Yukawa [11], the quark model of Gell-Mann [12] and Zweig [13, 14], as well
as the proposal of colour charge [15, 16].

3



4 Nuclear Correlation Functions

The particle content of QCD consists of quarks, which are spin-1
2 Dirac spinors,

and gluons, which are spin-1 gauge bosons. The ‘core’ QCD lagrangian (neglecting
CP-symmetry violating and gauge fixing terms for simplicity) is given by [17]:

LQCD = ∑
q

ψq
(
iγµDµ −mq

)
ψq −

1
4

Ga
µνGa,µν, (2.1)

where {γµ} are the Dirac matrices, mq is the quark mass, and each of the other symbols
are described as follows. ψc

q,α(x) are quark spinors at spacetime point x with colour
index c ∈ {1, 2, 3}, flavour q ∈ {u, d, s, c, b, t}, and spinor index α ∈ {1, 2, 3, 4} that
transform under the fundamental representation of SU(3)c as:

ψ(x)
Ω(x)∈SU(3)c−−−−−−−→ ψ′(x) = e−igθa(x)Ta ψ(x), (2.2)

where g is the strong coupling, θa(x) preserves local gauge invariance, and {Ta}8
a=1

are the generators of SU(3)c. The gluon field strength tensor is given by:

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ − g fabc Ab

µ Ac
ν, (2.3)

where fabc are the structure constants of SU(3)c, and Aµ =: Ta Aa
µ is the gluon field

that transforms under the adjoint representation of SU(3)c as:

Aµ(x)
Ω(x)∈SU(3)c−−−−−−−→ A′µ(x) = Ω(x)Aµ(x)Ω†(x) +

i
g
(
∂µΩ(x)

)
Ω†(x), (2.4)

so that the covariant derivative is Dµ = ∂µ + igTa Aa
µ.

Two characteristic properties of QCD are asymptotic freedom and colour confinement.
Asymptotic freedom was discovered by Gross, Wilczek [18], and Politzer [19] in 1973,
and describes the property whereby the strong coupling g is weak at short distances.
Colour confinement is the property that the strong coupling is large at large distances,
and necessitates that quarks and gluons are ‘confined’ to colour-singlet composite
objects such as hadrons. One consequence of colour confinement is that there are large
swaths of parameter space (where g ∼ O(1)) that are inaccessible to perturbation
theory. A solution is to use a non-perturbative technique such as lattice Quantum
Field Theory, as outlined in the next section.
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2.2. Lattice Quantum Field Theory

Lattice Quantum Field Theory (LQFT) is a powerful non-perturbative technique, as
pioneered by Wilson [20], to study field theories by harnessing large-scale computing
resources. Consider the path integral formalism [21] for the vacuum expectation value
of an operator Ô (using QCD as an example, but the generalisation is natural):

〈
Ô
〉
=

1
Z

∫
DψDψDAµÔeiSQCD , (2.5)

where Z =
∫
DψDψDAµeiSQCD is the partition function and SQCD =

∫
d4xLQCD is the

action. In order to resolve the highly oscillatory behaviour of eiSQCD for real SQCD,
one performs a Wick rotation [22] from (1 + 3)-dimensional Minkowski space to
4-dimensional Euclidean space, so that:

SQCD
Wick−−−−→

rotation
S(E)

QCD = −iSQCD, (2.6)

and therefore:

〈
Ô
〉
=

1
Z (E)

∫
DψDψDAµÔe−S(E)

QCD , (2.7)

where Z (E) =
∫
DψDψDAµe−S(E)

QCD . Eqn. 2.7 permits evaluation via importance sam-

pling by identifying e−S(E)
QCD as an (un-normalised) probability distribution, provided

that S(E)
QCD is real and well-behaved (see Refs. [23–26] for a selection of known issues

and potential solutions). In order to evaluate Eqn. 2.7 numerically and to introduce
an ultraviolet regular, one discretises the field theory using a hypercubic lattice with
lattice spacing a, such as the symmetric and isotropic lattice given by:

Λ = {(x1, x2, x3, t) | 0 ≤ x1, x2, x3 < L, 0 ≤ t < T} , (2.8)

for spatial volume V = L3, and temporal extent T.

After imposing a discrete hypercubic lattice such as in Eqn. 2.8, it remains to
discretise the action S(E)

QCD. This is a topic of rigorous debate that is too broad to relay
here, but there are a number of choices that each carry benefits and drawbacks [27].
The simplest (and least effective) approach is known as naive discretisation, whereby
one applies a finite difference approximation to the derivative together with a finite
approximation to the integral, such as for the quark terms of the action with a single



6 Nuclear Correlation Functions

quark field ψ(x):

Ŝ(E)
QCD =

∫
d4xψ(x)

(
γµ∂µ + m

)
ψ(x)

naive−−−−−−−→
discretisation

a4 ∑
x∈Λ

ψ(x)
[

γµ

(
ψ(x + µ̂)− ψ(x− µ̂)

2a

)
+ mψ(x)

]
, (2.9)

where µ̂ is the unit vector for µ ∈ {1, 2, 3, 4}. Discretisation according to Eqn. 2.9
introduces significant artifacts including 15 unphysical poles (known as doublers) in
the continuum limit. Many of the alternate discretisation methods in effect add terms
to Eqn. 2.9 that have advantageous behaviour in the limit a→ 0.

For the purposes of the remainder of this thesis, an LQFT calculation proceeds in
four stages:

(1) Gauge field configuration generation, by importance-sampling representative
configurations of the gauge field.

(2) (Quark) propagator calculation (as discussed in § 2.4) through inversion of the
Dirac operator using the calculated gauge field configurations.

(3) Correlation function calculation (as discussed in § 2.5, as well as the remainder
of the thesis) using the calculated propagators.

(4) Extraction of physical observables (as discussed in § 2.6) through physical point
extrapolation.

2.3. Hadronic Interpolating Operators

In order to construct nuclear correlation functions 〈O ′O〉, one must begin by constructing
quark-level interpolating operators O with the desired set of quantum numbers. The
primary focus here is multi-baryon states of A nucleons, but the techniques developed
work equivalently for other nuclear states. A convenient approach for multi-baryon
systems is to combine local baryon interpolating operators by tying together uncon-
tracted spinor indices and projecting to achieve the required state. Make a notation
change ψc

q,α → qc
α for quark fields q ∈ {u, d, s, c, b, t}, and consider the following set of

nucleon operators (examples of O) where u, d pairs have spinor indices contracted to
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form spin-0 diquarks:

pα(x) = εabc(uT
a (x)(Cγ5)db(x))uα

c (x) (proton)

nα(x) = εabc(dT
a (x)(Cγ5)ub(x))dα

c (x) (neutron)

pα
±(x) = εabc(uT

a (x)(Cγ5P±)db(x))uα
c (x) (non-relativistic proton)

nα
±(x) = εabc(dT

a (x)(Cγ5P±)ub(x))dα
c (x), (non-relativistic neutron)

(2.10)

where C is the charge conjugation operator and P± = 1
2(1±γ4) projects a 4-component

spinor onto a 2-component spinor in either the upper two (+) or lower two (−)
components of the 4-component spinor. From single baryon operators, construct a
selection of multi-baryon operators (examples of O):

DI(x) = nT(x)(Cγ3)p(x) (deuteron I)

DI I(x) =
1√
2

[
nT(x)(Cγ3)p(x)− pT(x)(Cγ3)n(x)

]
(deuteron II)

D̃I(x) = nT(x)(Cγ5)p(x) (dinucleon I)

D̃I I(x) =
1√
2

[
nT(x)(Cγ5)p(x)− pT(x)(Cγ5)n(x)

]
(dinucleon II)

3Hej
I(x) = pT

−(x)(Cγ5)n+(x)pj
+(x) (helium-3 I)

3Hej
I I(x) =

1√
6

[
pT
−(x)(Cγ5)n+(x)pj

+(x)− pT
+(x)(Cγ5)n+(x)pj

−(x)

+nT
+(x)(Cγ5)p+(x)pj

−(x)− nT
+(x)(Cγ5)p−(x)pj

+(x)

+pT
+(x)(Cγ5)p−(x)nj

+(x)− pT
−(x)(Cγ5)p+(x)nj

+(x)
]

(helium-3 II [28])
4HeI(x) = pT

+(Cγ5)n−(x)pT
+(x)(Cγ5)n−(x) (helium-4 I)

4HeI I(x) =
1

4
√

6
[χ̃η − χη̃] , (helium-4 II [28])

(2.11)
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where:

χ = [+−+−] + [−+−+]− [+−−+]− [−++−]
χ̃ = [+−+−] + [−+−+] + [+−−+] + [−++−]− 2[+ +−−]− 2[−−++]

η = [pnpn] + [npnp]− [pnnp]− [nppn]

η̃ = [pnpn] + [npnp] + [pnnp] + [nppn]− 2[ppnn]− 2[nnpp],

under a product structure such that [+ − +−][pnpn] = 4HeI(x). Note that DI(x),
3HeI(x), and 4HeI(x) are chosen to not project spin/isospin quantum numbers so as to
provide additional benchmark analysis opportunities in Chapter 4 – Chapter 6. DI(x),
DI I(x), D̃I(x), and D̃I I(x) are relativistic operators (using all four spinor components),
whereas the remaining 3Hej

I(x), 3Hej
I I(x), 4HeI(x), and 4HeI I(x) are non-relativistic.

2.4. Wick’s Theorem

The following will report Wick’s Theorem as applied to quark fields, and walk through
an example of its application in order to make an observation that will lead to the
more precise version of Wick’s Theorem used for the remainder of the thesis.

Theorem (Wick’s Theorem [29]). Given a collection of quark field operators {q(ai)},
{q(a′i)} where i = 1, . . . , nq, the time-ordered product may be evaluated as:

T
{

q(a1) . . . q(anq)q(a′1) . . . q(a′nq)
}

= : q(a1) . . . q(anq)q(a′1) . . . q(a′nq) + all possible contractions :, (2.12)

where : · · · : denotes normal-ordering, and ai (a′i) combine flavour fi ( f ′i ), colour index
ci (c′i), spinor index αi (α′i), and spacetime point xi (x′i).

In order to give a precise meaning to Wick’s Theorem, it remains to define “all
possible” and “contractions” . A contraction is the combination of adjacent quark

field operators q, q to form the quark propagator S(ai; a′j) := q(ai)q (a′j). Note that

q(ai)q (aj) = 0 = q(ai)q (aj), so will be excluded from the notation of “all pos-

sible contractions” for the purposes of Wick’s Theorem. Given that QCD interac-
tions conserve flavour quantum numbers, the contraction of distinct flavour quark
field operators will vanish, and hence it will be useful to introduce the notation
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S f ,cc′

αα′ (x, x′) := q f ,c
α (x)q f ,c′

α′ (x′) for explicit flavour f , colour indices c, c′, spinor indices
α, α′, and spacetime points x, x′. The results reported in Chapter 4 – Chapter 6 will use
the isospin symmetric limit where Su,cc′

αα′ (x, x′) = Sd,cc′
αα′ (x, x′), but this limit can only be

taken after Wick’s Theorem has been applied.

In Wick’s Theorem, “all possible contractions” is defined as:

nq

∑
k=1
{ all contractions of k pairs of quark fields } , (2.13)

which necessitates the contraction of non-adjacent quark operators. For example,
suppose one needs to consider the contraction:

q1q2q1q 2, (2.14)

where the shorthand qi ≡ q(ai) and qi ≡ q(a′i) has been introduced for convenience.
In order to re-arrange Eqn. 2.14 such that q1 and q2 are adjacent, consider the anti-
commutation relations for i 6= j:

{qi, qj} = 0 = qiqj + qjqi (2.15)

{qi, qj} = 0 = qiqj + qjqi (2.16)

{qi, qj} = 0 = qiqj + qjqi. (2.17)

Applying q1q2 = −q2q1 from Eqn. 2.15 and q1q2 = −q2q1 from Eqn. 2.16 successively
to Eqn. 2.14 allows the evaluation:

q1q2q1q 2 = −q2 q1q1q 2

= (−)2q2 q1q 2q1

= S1,2 q2q1, (2.18)

where the shorthand Si,j := S(ai; a′j) = qiq j has been introduced.
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With the machinery to apply Wick’s Theorem, consider for example the case where
nq = 2:

T {q1q2q1q2}

= : q1q2q1q2 +
2

∑
k=1
{ all contractions of k pairs of quark fields } :

= : q1q2q1q2 + q1q2q 1q2 + q1 q2q1q 2 + q1q2q1q 2 + q1 q2q 1q2

+ q1 q2q1q 2 + q1 q2q 1q 2 :

= : q1q2q1q2 : − S1,1 : q2q2 : − S2,2 : q1q1 : + S1,2 : q2q1 : + S2,1 : q1q2 :

− S1,1S2,2 + S1,2S2,1, (2.19)

where the final line has used the linearity of normal-ordering. To compute correlators,
one is not actually interested in the time-ordered product T {q1q2q1q2}, but the vacuum
matrix element of the time-ordered product, 〈0| T {q1q2q1q2} |0〉. Vacuum matrix
elements of normal-ordered products of free fields vanish [29] since all annihilation
operators are pushed to the right, resulting in for example:

〈0| : q1q2q1q2 : |0〉 = 0 = 〈0| : q2q2 : |0〉 . (2.20)

Applying these identities to Eqn. 2.19 allows the construction of the vacuum matrix
element of the time-ordered product for nq = 2:

〈0| T {q1q2q1q2} |0〉 = S1,2S2,1 − S1,1S2,2. (2.21)

This observation generalises to all vacuum matrix elements of time-ordered products
of quark operators so that the only set of terms in Eqn. 2.13 that contribute are
where k = nq, allowing for a precise formulation of Wick’s Theorem that will be used
henceforth.

Theorem (Wick’s Theorem for Vacuum Matrix Elements). Given a collection of quark
field operators {qi}, {qi} where i = 1, . . . , nq, the vacuum matrix element of the
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time-ordered product may be evaluated as:

〈q1 . . . qnq q1 . . . qnq
〉 := 〈0| T

{
q1 . . . qnq q1 . . . qnq

}
|0〉

=

(nq−1

∏
l=1

(−)l

)
〈0| T

{
q1q1 . . . qnq qnq

}
|0〉

=

(nq−1

∏
l=1

(−)l

)
∑

~k∈Snq

εk1,...,knq S1,k1 . . . Snq,knq
, (2.22)

where Snq is the set of the nq! permutations of {1, . . . , nq}, and ε is the totally anti-
symmetric tensor.

2.5. Calculation of Two-point Correlation Functions

In the context of Quantum Field Theory, a correlation function (or correlator) C is a
vacuum expectation value of a time-ordered product of field operators constructed,
for example, so as to preserve the quantum numbers of a state of interest. After a
description of the general form, the following will walk through two examples of the
calculation of nuclear two-point correlators to demonstrate a selection of key features
and provide motivation for more advanced techniques developed subsequently.

For a given set of quantum numbers, a two-point correlation function takes the
form:

C = 〈O ′O〉 = ∑
(~a,~a′)∈I

W
a1,...,anq

a′1,...,a′nq

〈
q(a1) . . . q(anq)q(a′1) . . . q(a′nq)

〉
, (2.23)

where ~a = (a1, . . . , anq) combine flavour fi, colour indices ci, spinor indices αi, and

spacetime points xi of quark fields q(ai) ≡ q fi,ci
αi (xi); W

a1,...,anq

a′1,...,a′nq
combines tensors in O

which project onto the correct set of quantum numbers; and nq = nu + nd, where nu

(nd) denotes the number of up (down) quark fields in operator O . The set of values
over which ai, a′j range, given by I = {(~a,~a′) |W~a

~a′ 6= 0}, is referred to as the index set
and its cardinality |I| is referred to as the index size.

Consider the proton interpolating operator in Eqn. 2.10 given by:

pα(x) = εabc
(

uT
a (x)(Cγ5)db(x)

)
uα

c (x), (2.24)
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where the adjoint operator follows as:

pα′(x′) = εa′b′c′uα
c′(x′)

(
db′(x′)(Cγ5)uT

a′(x′)
)

. (2.25)

Construct the proton correlator with dangling source/sink spinor indices and definite
sink momentum ~p from source point x′:

Cαα′
P :=

〈
∑
x

e−i~p·(~x−~x′)pα(x)pα′(x′)

〉

=

〈
∑
x

e−i~p·(~x−~x′)εabc
(

uT
a (x)(Cγ5)db(x)

)
uα

c (x)εa′b′c′uα
c′(x′)

(
db′(x′)(Cγ5)uT

a′(x′)
)〉

= ∑
x

e−i~p·(~x−~x′)εabcεa′b′c′(Cγ5)βγ(Cγ5)β′γ′×

×
〈(

uβ
a (x)uα

c (x)uα′
c′ (x′)uγ′

a′ (x′)
) (

dγ
b (x)d

β′

b′ (x′)
)〉

= ∑
x

e−i~p·(~x−~x′)εabcεa′b′c′(Cγ5)βγ(Cγ5)β′γ′×

×
(

uβ
a (x) uα

c (x)uα′
c′ (x′)u γ′

a′ (x′) + uβ
a (x) uα

c (x)u α′
c′ (x′)u γ′

a′ (x′)
)(

dγ
b (x)d β′

b′ (x′)
)

= ∑
x

e−i~p·(~x−~x′)εabcεa′b′c′(Cγ5)βγ(Cγ5)β′γ′×

×
(
−Su,ac′

βα′ (x, x′)Su,ca′
αγ′ (x, x′) + Su,aa′

βγ′ (x, x′)Su,cc′
αα′ (x, x′)

)
Sd,bb′

γβ′ (x, x′). (2.26)

Next, consider the deuteron II interpolating operator in Eqn. 2.11 given by:

D(x) =
1√
2

[
nT(x)(Cγ3)p(x)− pT(x)(Cγ3)n(x)

]
, (2.27)

so that the adjoint is given by:

D(x′) =
1√
2

[
−p(x)(Cγ3)nT(x) + n(x)(Cγ3)pT(x)

]
. (2.28)

Construct the deuteron correlator with total sink momentum projected to ~p (note that
this is not projecting the individual nucleons to definite momentum as explored in
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Chapter 3) from source point x′:

CD =

〈
∑
x

e−i~p·(~x−~x′)D(x)D(x′)

〉

=
1
2 ∑

x
e−i~p·(~x−~x′)(Cγ3)αβ(Cγ3)α′β′×

×
[〈

nα(x)pβ(x)nα′(x′)pβ′(x′)
〉
−
〈

nα(x)pβ(x)pα′(x′)nβ′(x′)
〉

−
〈

pα(x)nβ(x)nα′(x′)pβ′(x′)
〉
+
〈

pα(x)nβ(x)pα′(x′)nβ′(x′)
〉]

. (2.29)

The first of the four terms in Eqn. 2.29 takes the form:〈
nα(x)pβ(x)nα′(x′)pβ′(x′)

〉
= εabcεde f εa′b′c′εd′e′ f ′(Cγ5)γδ(Cγ5)σρ(Cγ5)γ′δ′(Cγ5)σ′ρ′×

×
〈

dγ
a (x)uδ

b(x)dα
c (x)uσ

d(x)dρ
e (x)uβ

f (x)d
α′

c′ (x′)uγ′

b′ (x′)d
δ′

a′(x′)uβ′

f ′(x′)d
σ′

e′ (x′)uρ′

d′(x′)
〉

= −εabcεde f εa′b′c′εd′e′ f ′(Cγ5)γδ(Cγ5)σρ(Cγ5)γ′δ′(Cγ5)σ′ρ′×

×
〈(

uδ
b(x)uσ

d(x)uβ
f (x)uγ′

b′ (x′)uβ′

f ′(x′)uρ′

d′(x′)
)

×
(

dγ
a (x)dα

c (x)dρ
e (x)d

α′

c′ (x′)d
δ′

a′(x′)d
σ′

e′ (x′)
)〉

. (2.30)

Then each of the bracketed terms in Eqn. 2.30 requires 3! = 6 Wick contractions,
resulting in 62 × 4 = 144 terms in CD. Given the impracticality of this approach
to nuclear correlators of larger A, Chapter 3 and beyond will explore a set of more
efficient approaches.

2.6. Computing Nuclear Properties and Interactions

The purpose of this section is to give some insight into a brief selection of the method-
ologies used to extract nuclear physics observables from correlators as constructed in
§ 2.5. It can be shown [30] using the Hamiltonian evolution operator and an insertion
of a complete set of states {|k〉} that a correlator C at a fixed (sink) time t can be written
as:

C(t) := 〈O ′(t)O†(0)〉 = ∑
k
〈0| Ô ′ |k〉 〈k| Ô† |0〉 e−aEkt. (2.31)
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Progress by re-writing Eqn. 2.31 as:

C(t) = Ze−aEt
(

1 +O
(

e−a∆Et
))

, (2.32)

where Z is a constant, E is the lowest energy in Eqn. 2.31, and ∆E is the difference
between E and the next lowest energy in Eqn. 2.31. Using Eqn. 2.32, it is possible to
extract E by defining an effective energy function such as:

aEeff(t) := ln
(

C(t)
C(t + 1)

)
, (2.33)

and formally taking the limit E = limt→∞ Eeff(t), or in practice by (for example)
extracting the plateau value of Eeff(t). There are several ways to improve the effective
energy function for nuclear states. For example, baryon-baryon correlators (i.e. A = 2)
without parity projection have forward and backward propagating states with both
positive and negative parity, so one expects the correlator to take the form [31]:

C(t) = Z1e−aEAt + Z2e−aEA′ (T−t) + Z3e−aEN te−aEN′ (T−t)

+ Z4e−aEA(T−t) + Z5e−aEA′ t + . . . , (2.34)

where EA (EA′) is the energy of the positive-parity (negative-parity) A-baryon state,
EN (EN′) is the energy of the positive-parity (negative-parity) single baryon state, and
{Zi} are constant. By forming the ratio:

C(t− 1)− C(t + 1)
2C(t)

=
Z1e−aEA(t−1) − Z1e−aEA(t+1)

2Z1e−aEAt + contaminants

= sinh(aEA) + contaminants, (2.35)

one arrives at an improved effective energy function1:

aE′eff(t) = arcsinh
(

C(t− 1)− C(t + 1)
2C(t)

)
. (2.36)

1A similar process for meson correlators gives rise to:

aE′eff(t) = arccosh
(

C(t− 1) + C(t + 1)
2C(t)

)
.
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The interactions of baryons, such as (infinite volume) scattering phase shifts and
binding energies can be studied in lattice QCD using for example Lüscher’s finite
volume formula [32, 33], the HAL QCD method [34, 35], or the Matrix Hamiltonian
Model [36, 37]. There exist interesting binding energy tensions between Lüscher’s
formula and the HAL QCD method, as discussed in Ref. [38].

In order to extract the nuclear binding energy EB := EA − AEN, where EA is the
energy extracted from an A nucleon correlator CA(t) in the isospin symmetric limit
and EN is the energy extracted from a single nucleon correlator CN(t), one can consider
the ratio [38, 39]:

R(t) :=
CA(t)

[CN(t)]
A . (2.37)

The extraction via R(t) offers an improvement on systematic errors when compared
with the direct calculation from EA and EN as CA(t) and CN(t) are highly correlated
[38, 39]. An analogous effective energy function to extract the binding energy EB can
be defined as:

a∆E′′eff(t) := ln
(

R(t)
R(t + 1)

)
. (2.38)

Lüscher’s finite volume formula [32, 33] allows the calculation of, for example, the
A = 2 (S-wave) scattering phase shift δ(k) at momentum k using the formula [38]:

kcot {δ(k)} = 1
π(La) ∑

~n∈Z3

1
~n2 − q2 , (2.39)

where q = k(La)/(2π), and EA = 2
√

E2
N + k2 are computed at finite volume from the

lattice.

The Hamiltonian Matrix Model [36, 37] offers an alternate approach to calculating
the scattering phase shift from finite volume lattice data. Following the example of
∆→ Nπ decay from Ref. [36], the method constructs the Hamiltonian H = H0 + HI ,
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where [36]:

H0 =


∆0 0 0 . . .

0 ωπ(k1) 0 . . .

0 0 ωπ(k2)
...

... . . .

 , (2.40)

HI =


0 g f in

∆N(k1) g f in
∆N(k2) . . .

g f in
∆N(k1) 0 0 . . .

g f in
∆N(k2) 0 0 . . .

...
...

... . . .

 , (2.41)

with bare resonance energy ∆0, pion energy ωπ(kn) =
√

kn + m2
π, and g f in

∆N(kn) ob-
tained from χEFT. The on-shell t-matrix can then be related to the phase shift δ(k)
via [36]:

t(k, k; E+) = − 1
πkωπ(k)

eiδ(k) sin{δ(k)}. (2.42)

Solving Eqn. 2.42 allows the extraction of δ(k). A complete account of the Hamiltonian
Matrix Model can be found in Refs. [36, 37].



Chapter 3.

Review of Existing Algorithms

A great deal of algorithmic progress has been made on the subject of the numerical
evaluation of nuclear correlators over the preceding years. The purpose of this chapter
is to provide a survey of the major accomplishments and insight into the underlying
formulations. Some of the algorithms explored here, such as hadron blocks (§ 3.2)
and index lists (§ 3.3), will provide an essential bedrock for the algorithms developed
in later chapters. Some basic results will be provided of the performance of these
algorithms as applied to correlators of the nuclear operators introduced in Chapter 2.
The remaining algorithms will be presented as self-contained, and the reader is en-
couraged to consult the references for a full account of the results obtained using these
methods.

3.1. Matrix Determinant Formulation

The primary source for the matrix determinant formulation is Ref. [40], which presents
an algorithm to numerically evaluate the quark-level Wick contraction (as introduced
in Chapter 2): 〈

q(a1) . . . q(anq)q(a
′
1) . . . q(a

′
nq)
〉

, (3.1)

where ~a = (a1, . . . , anq) combine flavour fi, colour indices ci, spinor indices αi, and

spacetime points xi of quark fields q(ai) ≡ q fi,ci
αi (xi). The presentation of this method,

which follows Ref. [40] closely, begins with the general algebraic expression for the

17
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Wick contraction of quark fields (introduced in Chapter 2):

〈
q(a1) . . . q(anq)q(a

′
1) . . . q(a

′
nq)
〉
=

(nq−1

∏
l=1

(−)l

)
∑

~k∈Snq

εk1...knq S(a1; a
′
k1
) . . . S(anq ; a

′
knq

)

= (−)(nq−1)nq/2 ∑
~k∈Snq

εk1...knq

nq

∏
j=1

S(aj; a
′
kj
), (3.2)

where the relative sign is introduced by rearranging q(a1) . . . q(anq)q(a
′
1) . . . q(a

′
nq) =(

∏
nq−1
l=1 (−)l

)
q(a1)q(a

′
1) . . . q(anq)q(a

′
nq), and Snq is the set of all permutations of [nq] :=

{1, . . . , nq}. In accordance with Ref. [40], define an nq × nq matrix G~a,~a′ with elements
G~a,~a′

ij := S(ai; a
′
j) and therefore determinant:

det G~a,~a′ := ∑
~k∈Snq

εk1...knq

nq

∏
j=1

G~a,~a′
j,kj

, (3.3)

so that the Wick contractions may be written as:〈
q(a1) . . . q(anq)q(a

′
1) . . . q(a

′
nq)
〉
= (−)(nq−1)nq/2 det G~a,~a′ . (3.4)

As an example, consider the specific instantiation where nq = 3, with Wick contrac-
tions: 〈

q(a1)q(a2)q(a3)q(a
′
1)q(a

′
2)q(a

′
3)
〉

= −S(a1; a
′
1)S(a2; a

′
2)S(a3; a

′
3) + S(a1; a

′
1)S(a2; a

′
3)S(a3; a

′
2)

+ S(a1; a
′
2)S(a2; a

′
1)S(a3; a

′
3)− S(a1; a

′
2)S(a2; a

′
3)S(a3; a

′
1)

− S(a1; a
′
3)S(a2; a

′
1)S(a3; a

′
2) + S(a1; a

′
3)S(a2; a

′
2)S(a3; a

′
1). (3.5)

Construct G~a,~a′ in the case where nq = 3:

G~a,~a′ =


S(a1; a

′
1) S(a1; a

′
2) S(a1; a

′
3)

S(a2; a
′
1) S(a2; a

′
2) S(a2; a

′
3)

S(a3; a
′
1) S(a3; a

′
2) S(a3; a

′
3)

 , (3.6)
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so that the right-hand side of Eqn. 3.4 for nq = 3 is evaluated as:

(−)(nq−1)nq/2 det G~a,~a′

= −

∣∣∣∣∣∣∣∣∣
S(a1; a

′
1) S(a1; a

′
2) S(a1; a

′
3)

S(a2; a
′
1) S(a2; a

′
2) S(a2; a

′
3)

S(a3; a
′
1) S(a3; a

′
2) S(a3; a

′
3)

∣∣∣∣∣∣∣∣∣
= −

[
S(a1; a

′
1)
(

S(a2; a
′
2)S(a3; a

′
3)− S(a2; a

′
3)S(a3; a

′
2)
)

− S(a1; a
′
2)
(

S(a2; a
′
1)S(a3; a

′
3)− S(a2; a

′
3)S(a3; a

′
1)
)

+S(a1; a
′
3)
(

S(a2; a
′
1)S(a3; a

′
2)− S(a2; a

′
2)S(a3; a

′
1)
)]

, (3.7)

which agrees with Eqn. 3.5. The primary advantage of Eqn. 3.4 is that det G~a,~a′ may be
evaluated numerically for a particular gauge configuration using LU factorisation [41],
which uses O(n3

q) operations rather than O(nq!). One can further improve this result
by considering that interactions in QCD preserve flavour quantum numbers, and so
q f ,c

α (x)q f ′,c′

α′ (x′) vanishes for f 6= f ′. This leads to the factorisation the Wick contraction

(assuming two quark flavours, but it naturally generalises) as:〈
q(a1) . . . q(anq)q(a

′
1) . . . q(a

′
nq)
〉

(3.8)

=: s
〈(

u(au
1) . . . u(au

nu)u(au ′
1 ) . . . u(au ′

nu )
) (

d(ad
1) . . . d(ad

nd
)d(ad ′

1 ) . . . d(ad ′
nd
)
)〉

,

where s ∈ {−1, 1} depends on the anti-symmetric rearrangement of quark operators
(e.g.

〈
d1u1d2d1d2u1

〉
= −

〈
(u1u1)

(
d1d2d1d2

)〉
has s = −1). Then, by applying Eqn.

3.4 to each factor, conclude that:〈
q(a1) . . . q(anq)q(a

′
1) . . . q(a

′
nq)
〉
= s(−)(nu−1)nu/2+(nd−1)nd/2 det G~a,~a′

u det G~a,~a′
d , (3.9)

where G~a,~a′
u (G~a,~a′

d ) is an nu × nu (nd × nd) matrix with elements G~a,~a′
u;ij := S(au

i ; au ′
j )(

G~a,~a′
d;ij := S(ad

i ; ad ′
j )
)

. Through the factorisation in Eqn. 3.9, the number of opera-

tions required to compute
〈

q(a1) . . . q(anq)q(a
′
1) . . . q(a

′
nq)
〉

is reduced from O(n3
q) to

O(n3
un3

d).
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Consider the general case for a correlation function given by:

C = 〈O ′O†〉 = ∑
(~a,~a′)∈I

W
a1,...,anq

a′1,...,a′nq

〈
q(a1) . . . q(anq)q(a′1) . . . q(a′nq)

〉
, (3.10)

where W
a1,...,anq

a′1,...,a′nq
combines tensors in O that project onto the correct set of quantum

numbers; nq = nu + nd, where nu (nd) denotes the number of up (down) quark fields
in operator O ; I = {(~a,~a′) |W~a

~a′ 6= 0} is referred to as the index set with cardinality, |I|,
referred to as the index size. In Eqn. 3.10, one must sum over I as well as evaluate the
Wick contractions of the quark fields. The determinant method of Ref. [40] reduces the
number of operations required to evaluate Eqn. 3.10 from O(|I|nu!nd!) to O(|I|n3

un3
d).

The nu!nd! factor grows faster than |I|, but |I| dominates nu!nd! for light nuclei.

3.2. Hadron Blocks

The formulation of multi-hadron correlation function contractions in terms of single
hadron building blocks has been explored in Refs. [40, 42–44]. A hadron block is a
tensor, f h

~p (x′,~ξ), constructed from the constituent quarks of a hadron h with colour

and spinor indices bundled into ~ξ, created at a fixed source spacetime location x′1 and
annihilated as a colour/spinor contracted hadron with definite momentum ~p at the
sink. Consider the example case of a single proton block with operator given by:

pα(x) = εabc
(

uT
a (x)(Cγ5)db(x)

)
uα

c (x), (3.11)

where the adjoint operator follows as:

pα′(x′) = εa′b′c′uα
c′(x′)

(
db′(x′)(Cγ5)uT

a′(x′)
)

. (3.12)

Compute the necessary Wick contractions using explicit colour and spinor indices
for both the hadron block, f P

~p (x′,~ξ) with ~ξ = (a′, β′, b′, γ′, c′, α′, α), and the quark

1One could have each quark at a distinct source spacetime point, but that case won’t be considered
here.
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propagator
(

S f ,cc′

αα′ (x, x′) ≡ q f ,c
α (x)q f ,c′

α′ (x′)
)

via:

f P
~p (x′,~ξ) ≡ f P

~p (x′, a′, β′, b′, γ′, c′, α′)α

:=

〈
∑
x

e−i~p·~x pα(x)ua′
β′(x′)d

b′
γ′(x′)uc′

α′(x′)

〉
= ∑

x
e−i~p·~xεabc(Cγ5)βγ

〈
ua

β(x)db
γ(x)uc

α(x)ua′
β′(x′)d

b′
γ′(x′)uc′

α′(x′)
〉

= ∑
x

e−i~p·~xεabc(Cγ5)βγ

[
Su,ac′

βα′ (x, x′)Su,ca′
αβ′ (x, x′)− Su,aa′

ββ′ (x, x′)Su,cc′
αα′ (x, x′)

]
Sd,bb′

γγ′ (x, x′).

(3.13)

Figure 3.1.: Hadron block benchmark, measuring wall-clock time in milliseconds on a single
core of an Intel Xeon Scalable Cascade Lake processor. The helium-4 (I) correlator
without hadron blocks was too costly to perform here, but an upper bound on the
number of operations required is 1022 (equivalent to∼ 7× 1019 ms by extrapolating
the dinucleon II result).

The general form (as will become useful later) for a nuclear correlator of A baryons
using hadron blocks is given by:

C =
Nw

∑
k=1

wkεa1b1c1 . . . εaAbAcA Γ(1,k)
α1β1

. . . Γ(NΓ,k)
αNΓ βNΓ

f h1
~p(1,k)

(
x
′
(1,k),~ξ(1,k)

)
. . . f hA

~p(A,k)

(
x
′
(A,k),~ξ(A,k)

)
,

(3.14)
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where wk ∈ C, NΓ is the number of gamma matrices subject to A ≤ NΓ ≤ 2A, Nw is the
number of terms in the contracted expression for C,

{
f h
~p (x′,~ξ)

}
are sink-momentum

projected hadron block functions, {hi} are hadrons determined from the nuclear
interpolating operator O ,

{
x
′
i,k

}
are the (possibly different) source spacetime points

for the kth term in the correlator, and
{
~ξ(i,k)

}
are functions of {ai}, {bi}, {ci}, {αi},

{βi} so that
{

f h
~p (x′,~ξ)

}
are fully contracted with {εabc} ∪ {Γαβ}.

The primary advantage of this construction is that block expressions are typically
re-used many times during the course of evaluating particular choices of multi-hadron
correlators. The factorial number of Wick contractions in the correlator is suppressed
by a factor of 2A for A nucleons, but without block expression re-use this computation
cost is merely transferred to the hadron block evaluation. To measure the perfor-
mance improvement associated with using hadron blocks for atomic nuclei, Figure
3.1 compares wall-clock time for the correlator computation (excluding propagator
computation) in the isospin symmetric limit on a 643 volume using the dinucleon II
and helium-4 I operators defined in Chapter 2. Figure 3.1 demonstrates that hadron
blocks offer a clear performance improvement, even for A = 2 systems. Note that the
cost to compute the block expressions (shown in blue) remains constant2 in baryon
number, whilst the cost to contract these blocks to form the multi-hadron correlator
(shown in brown) scales factorially. For light nuclei (A . 4), the cost to compute the
hadron blocks (shown in blue) dominates the cost the evaluate the correlator (shown in
brown) as a result of the momentum projection cost dependence on the lattice volume.
Ref. [39] seeks to reduce this cost using sparse sub-lattices, as explored in § 3.5.

3.3. Index Lists and the Unified Contraction Algorithm

The Unified Contraction Algorithm devised in Ref. [42] pre-computes an index list,
which is the minimal subset of the index set I (the set over which one has to sum
in order to contract all internal indices) of a numerically expensive tensor that has
non-vanishing contribution to the correlator. This section will explore two applications
to nuclear correlators: the first as presented in Ref. [42], and the second to minimise
the cost of evaluating the hadron block tensors as introduced in § 3.2.

2Hadron Block cost differs between relativistic (e.g. dinucleon II) and non-relativistic (e.g. helium-4 I)
forms
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Thus far, correlation functions have been presented such that the Wick contrac-
tions permute the contracted indices of the hadron blocks. Equivalently, one may
formulate correlation functions where the Wick contractions permute the indices of
the colour/spinor projection tensors. For example, a dinucleon I correlator may be
written as:

C = ∑
σ∈G

εcσ(1)cσ(2)cσ(3)εcσ(4)cσ(5)cσ(6)(Cγ5)ασ(1)ασ(2)(Cγ5)ασ(4)ασ(5)(Cγ5)ασ(3)ασ(6)×

× f N
~p (x′, c1, α1, c2, α2, c3, α3)µ(Cγ5)µν f P

~p (x′, c4, α4, c5, α5, c6, α6)ν, (3.15)

where G ⊂ S6 permutes the six source quarks according to the hadron block formula-
tion, beginning with the arrangement (dud)(udu). Define a rank-12 tensor T{ci}

{αi}
with

components:

T{ci}
{αi}

= ∑
σ∈G

εcσ(1)cσ(2)cσ(3)εcσ(4)cσ(5)cσ(6)(Cγ5)ασ(1)ασ(2)(Cγ5)ασ(4)ασ(5)(Cγ5)ασ(3)ασ(6) . (3.16)

Since T{ci}
{αi}

is independent of gauge configuration, any properties may be pre-computed
and then re-used for many gauge configurations. The particular property of interest is
the index list of T{ci}

{αi}
, which is defined as follows.

Definition (Index List). Let Ti1,...,ir be a tensor in a fixed basis with index set I =:
I1 × · · · × Ir (i.e. each ik ∈ Ik) that is contracted within the tensor expressions for a
correlator C. An index list for T is a set L ⊆ {(j1, . . . , jr) ∈ I1 × · · · × Ir} such that
(j1, . . . , jr) ∈ L if and only if Tj1,...,jr has a non-vanishing contribution to the correlator
(for example, if Tj1,...,jr 6= 0). Represent L efficiently on a computer by constructing
bijections Mk : Ik → {0, . . . |Ik| − 1} so that index list elements (j1, . . . , jr) ∈ L are
represented by:

j = M1(j1) + (|I1| − 1)(M2(j2) + (|I2| − 1)(. . . (Mr−1(jr−1) + (|Ir−1| − 1)Mr(jr)) . . . )).

By constructing an index list L of all non-vanishing elements of T{ci}
{αi}

in Eqn. 3.16,
the correlator for dinucleon I may be evaluated as:

C = ∑
({ci},{αi})∈L

T{ci}
{αi}

f N
~p (x′, c1, α1, c2, α2, c3, α3)µ(Cγ5)µν f P

~p (x′, c4, α4, c5, α5, c6, α6)ν.

(3.17)
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The computational savings associated with evaluating Eqn. 3.17 rather than Eqn. 3.15
are proportional to the ratio of the cardinality of L with the number of elements of T{ci}

{αi}
.

This technique may be extended to larger nuclear systems, as presented in Ref. [42],
with the caveat that one may have to construct distinct index lists for each of the terms
in the correlator that have distinct hadron block factors (for example, different sink
momenta or spacetime points). The rank of the tensor T{ci}

{αi}
grows exponentially in

the number of hadrons, so the memory requirement for the index lists restricts the
application to light nuclei with current hardware [42].

Next, apply the method of index lists to minimise the cost of evaluating hadron
block tensors. Consider a general nuclear correlator after summation over the colour
and spinor projection operators from Eqn. 3.14:

C =
Ñw

∑
k=1

w̃k f h1
~q(1,k)

(
x̃
′
(1,k),~η(1,k)

)
. . . f hA

~q(A,k)

(
x̃
′
(A,k),~η(A,k)

)
, (3.18)

where~ηi,k are bundles of fixed colour/spinor values (note the notation change~ξ → ~η to
differentiate contracted and fixed index bundles), w̃k are the new weights after expan-
sion, Ñw is the number of terms in the expanded expression for C, and

{
x̃
′

i,k

}
({~qi,k})

are the source spacetime points (sink momenta) of the expanded expression (noting
that x̃

′
i,k 6= x

′
i,k (~qi,k 6= ~pi,k) in general). For each distinct f h

~p , construct an index list Lh
~p

of the elements of f h
~p that have non-vanishing contributions to the correlator. Here,

that corresponds to tabulating all distinct
(

x̃
′
(i,k),~η(i,k)

)
that appear as an argument

to any f h
~p in Eqn. 3.18. Once each distinct Lh

~p has been constructed (independently of
gauge configuration), only the elements of f h

~p that appear in Lh
~p need to be evaluated

for each gauge configuration in order to calculate C.

3.4. Recursive Formulations

Ref. [43] builds on the Unified Contraction Algorithm presented in § 3.3 by developing
an efficient recursive method to evaluate products of sparse anti-symmetric tensors.
In this method, unique elements of a totally antisymmetric tensor Ti1,...,ir are repre-
sented by tuples ~A ({ik}) = (n(1), . . . , n(l)), where n(ik) ∈ {0, 1} is the number of
occurrences of the value ik amongst the indices i1, . . . , ir. The many-to-one relationship
is canonicalised by asserting that each ~A ({ik}) corresponds to the element Ti1,...,ir
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where ik1 ≤ ik2 whenever k1 ≤ k2. Through this notational change, Ref. [43] presents a
method to efficiently calculate the antisymmetric product Z = X •Y, where X (Y) has
r1 (r2) indices, as [43]:

Z(z) = ∑
x,y

x+y=z

X(x)Y(y)sgn(x | y), (3.19)

where x = ~A(i1, . . . , ir1), y = ~A(ir1+1, . . . , ir1+r2), z = ~A(i1, . . . , ir1+r2), and

sgn(x | y) = ∏
i>j

yj=1

(−)xi . (3.20)

Through recursive application of Eqn. 3.19, Ref. [43] computes chains of anti-symmetric
tensors, X(n) = Y1 • Y2 • · · · • Yn. By computing an index list for X(n), only a sparse
selection of its elements need to be evaluated. Through the repeated application of
Eqn. 3.19, the index list is ‘propagated’ from X(n) to the individual tensors Y1, . . . , Yn.
Ref. [43] applies this recursive algorithm to construct correlators for atomic nuclei by
adding nucleons iteratively to the correlator tensors. The total number of operations
needed to calculate these correlators was reported in Ref. [43] to depend on the con-
struction path (e.g. the chain NNNNPPP was much more efficient than NPPNPNN
for P (N) a proton (neutron) [43]).

Refs. [45, 46] present a comprehensive and general approach for computing correla-
tion functions of multi-meson systems via recursion relations. The full extent of this
work is too broad to present here, but it is worth presenting the core ideas applied to a
simple case. Consider the correlation function for a system of n ≤ 12 π+ mesons:

Cnπ+(t) =

〈(
∑
~x

π+(~x, t)

)n (
π−(~0, 0)

)n
〉

, (3.21)

where π+(~x, t) = d(~x, t)γ5u(~x, t) and the restriction n ≤ 12 arises due to the Pauli
Exclusion Principle (with Nc = 3 colour indices and Ns = 4 spinor indices) [46].
Naïvely, the number of Wick contractions required to compute Cnπ+ is nd!nu! = (n!)2,
however many of these are redundant. To proceed, define a colour-spinor matrix (in
the isospin symmetric limit with degenerate propagators Su = Sd =: S):

Aij(t) = ∑
~x

S(~x, t;~0, 0)ikS†(~x, t;~0, 0)kj, (3.22)
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where i, j = 1, . . . , 12 are combined colour-spinor indices. Consider the following
identities (derived in Ref. [46]):

det(1 + λA) =
12

∑
j=1

(−)j
(

1
j!

)
λjCjπ+ , (3.23)

det(1 + λA) =
12

∑
j=1

1
j!

λjtrC,S
[
Rj(t)

]
, (3.24)

where λ is a scalar variable, trC,S is the trace over combined colour-spinor indices, and
Rn(t) is a partially contracted object that obeys a number of recursion relations. In
particular, Rn(t) obeys the relation (derived in Ref. [46]):

Rn+1(t) = trC,S [Rn(t)] A(t)− nRn(t)A(t), (3.25)

with the boundary case R1(t) = A(t). By computing Rn(t) through repeated applica-
tion of the recursion relation in Eqn. 3.25, and by matching coefficients of powers of λ

in Eqns. 3.23 and 3.24, one can compute Cnπ+ for any n ≤ 12. Ref. [46] reports that
the number of calculations required to evaluate C12π+ using this approach is ∼ 103, as
opposed to the naïve approach, which uses (n!)2 ≈ 2.3× 1017 calculations3. Ref. [46]
extends the recursive approach to various mesonic systems, including for an arbitrary
number of mesons.

3.5. Sparsening Algorithm

As noted in § 3.2, the dominant scaling factor in the cost to evaluate hadron block ex-
pressions is the projection onto definite sink momentum, which requires a summation
over all lattice sites. Ref. [39] presents an algorithm that exploits the local coherence of
QCD by using a sink momentum projection over a sparse lattice. The following will
explain briefly the algorithm of Ref. [39], as well as how it has been applied to reduce
the cost of computing correlators for multi-hadron states.

For an L3 spatial lattice, denote the set of lattice sites by:

Λ3 := {(n1, n2, n3) | 0 ≤ ni < L} . (3.26)

3It is straightforward to re-use the up/down quark contractions in the isospin symmetric limit,
resulting in n! ≈ 4.8× 108 calculations [46].
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The sites corresponding to the N3 sub-lattice for some N ∈ {1, . . . , L− 1} is defined
by:

Λ̃3(N) := {(ñ1, ñ2, ñ3) | 0 ≤ ñi < L ; ñi ≡ 0 (mod N)} . (3.27)

Then, for example, the ‘full’ proton block (derived in § 3.2):

f P
~p (x′, a′, β′, b′, γ′, c′, α′)α

= ∑
~x∈Λ3

e−i~p·~xεabcΓβγ×

×
[
Su,ac′

βα′ (x, x′)Su,ca′
αβ′ (x, x′)− Su,aa′

ββ′ (x, x′)Su,cc′
αα′ (x, x′)

]
Sd,bb′

γγ′ (x, x′), (3.28)

may be contrasted with the ‘sparsened’ proton block of sparsening factor N:

f̃ P
~p (x′, a′, β′, b′, γ′, c′, α′)α

= ∑
~x∈Λ̃3(N)

e−i~p·~xεabcΓβγ×

×
[
Su,ac′

βα′ (x, x′)Su,ca′
αβ′ (x, x′)− Su,aa′

ββ′ (x, x′)Su,cc′
αα′ (x, x′)

]
Sd,bb′

γγ′ (x, x′). (3.29)

The computational cost required to compute Eqn. 3.29 is reduced by a factor of L3/N3

in comparison to Eqn. 3.28.

The sparsening process modifies the structure of the interpolating operator at
the sink, while maintaining the quantum numbers of the given state. The extracted
physical observables in the relevant limits are guaranteed to be independent of the
choice of N, but the relative overlap factors are subject to change. Ref. [39] presents a
comprehensive set of results in order to verify this claim.
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Chapter 4.

Tensor Expression Canonicalisation

When computing nuclear correlation functions by-hand, there are often algebraic
simplifications that greatly reduce complexity. To extend this reduction in complex-
ity to systems for which by-hand calculation is impractical, it is useful to formalise
the notion of ‘algebraic simplification’ in order to automate the process. One aspect
of algebraic simplification for nuclear correlators is tensor expression canonicalisation,
whereby contractions of tensors are manipulated into standard forms such that equiv-
alent expressions (i.e. equal expressions up to permutation and relative sign) become
equal, so that they may be accumulated. To demonstrate the challenge of this task,
consider two expressions: εijkεlmnTikmTjln and εijkεlmnTnmiTlkj, where ε is the totally
anti-symmetric tensor and T is any rank-3 tensor. These expressions are equivalent,
but it would be a non-trivial task to write a set of explicit rules that one could follow
to establish that fact. The difficulty arises because there are three interacting permuta-
tion symmetries: label symmetries (the fact that one can replace the labels i ↔ j), slot
symmetries (the fact that one can replace εijk ↔ εkij), and tensor order symmetries (the
fact that one can replace εijkεlmn ↔ εlmnεijk). Canonicalising with respect to any of
these symmetries independently is trivial, but canonicalisation with respect to the
intertwined symmetries is highly non-trivial.

This chapter will develop the group-theoretic notions required to reason rigorously
and efficiently about canonical forms of tensor expressions, and then apply that
knowledge to the task of speeding up nuclear correlator calculations. § 4.1 will define
graph canonicalisation, and explore its subtleties through McKay’s Individualisation-
Refinement Algorithm. § 4.2 will build on McKay’s algorithm to develop a method
that uses graph canonicalisation for tensor expression canonicalisation, and then § 4.3

29
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will apply the developed methodology to provide results of the algebraic properties of
a selection of nuclear correlators.

This chapter will rely upon a selection of techniques from Permutation Group
Theory, for which Ref. [1] provides an excellent introduction. A particularly useful
tool from Permutation Group Theory is the representation of permutations using
cycle notation, where each cycle, (n1 n2 . . . nk), represents the permutation where
n1 7→ n2, n2 7→ n3, ..., nk 7→ n1. Any permutation can be written as a product of cycles,
where the cycles act right-to-left. For example, the permutation σ = (1 5)(1 7 9)
represents the map where 1 7→ 5, 5 7→ 1 7→ 7, 7 7→ 9, and 9 7→ 1. A permutation σ may
be applied to an object ω via a group action (i.e. a function that preserves the finite
symmetric group product structure). For example, the permutation σ = (1 5)(1 7 9)
applied to the integer tuple (1, 5, 7, 9) can be computed as:

(1, 5, 7, 9)(1 5)(1 7 9) = (5, 1, 7, 9)(1 7 9) = (5, 7, 9, 1), (4.1)

from which it can be seen that an equivalent cycle notation expression for σ is given
by (1 5 7 9).

4.1. Graph Canonicalisation

4.1.1. Notation, Definitions, and Examples

Graph canonicalisation will play an essential role in tensor expression canonicalisation,
which will be explored in the next section. This section will walk through some of the
high-level details of the algorithm for graph canonicalisation as developed by McKay
in Refs. [47,48]. The primary interest in McKay’s algorithm, referred to here as McKay’s
Individualisation-Refinement Algorithm, is his seminal software package nauty [48], which
was later upgraded to Traces [48, 49]. An excellent secondary source that provides
greater insight into nauty’s internals can be found in Ref. [50]. The following will
define graph isomorphism (GI), graph canonicalisation (GC), and the surrounding notation
of ordered partitions.
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Definition (Coloured Graph Isomorphism). Given a vertex set V isomorphic to [n] :=
{1, 2, . . . , n}, define graphs:

G(V)

:= {labelled simple (unweighted, undirected, single edge, no loops) graphs on V},

and ordered partitions (i.e. colourings of graphs in G(V)):

Π(V) := {[V1, . . . , Vr] | ∪̇jVj = V} =: {ordered partitions of V},

so that the pair (G, π) ∈ G(V)×Π(V) is referred to as a coloured graph. Two coloured
graphs (G1, π1), (G2, π2) ∈ G(V)×Π(V) are isomorphic if ∃γ ∈ Sn such that Gγ

1 = G2

and π
γ
1 = π2, where the action of γ on G1 (π1), denoted by Gγ

1 (πγ
1 ), permutes the labels

of G1 (π1). Note that (non-coloured) graph isomorphism is the special case where one
takes the trivial partition π = [V]. If π = [V1, . . . , Vr], π′ = [V′1, . . . , V′r′ ] ∈ Π(V), then:

(1) Vi is referred to as a cell of π

(2) if |Vi| = 1, then Vi is referred to as a singleton cell of π

(3) if all the cells of π are singleton cells, then π is referred to as a discrete partition

(4) if r = 1 (i.e. π = [V]), then π is referred to as the trivial partition

(5) if every cell of π is contained in a cell of π′ and the cell ordering is consistent (i.e.
∀Vi, Vj ∈ π with i ≤ j, if V′k , V′l ∈ π′ such that Vi ⊆ V′k and Vj ⊆ V′l then k ≤ l)
then π is said to be finer than π′ and π′ is coarser than π

(6) π is strictly finer (strictly coarser) than π′ if π is finer (coarser) than π′ and π 6= π′.

Definition (Graph Canonicalisation Map). A graph canonicalisation map

C : G(V)×Π(V)→ G(V)

satisfies the property that for any G1, G2 ∈ G(V), and π1, π2 ∈ Π(V), it is the case that
C(G1, π1) = C(G2, π2) if and only if (G1, π1) and (G2, π2) are isomorphic.

To provide an example of the graph canonicalisation map as provided by the
nauty package [47], consider the two coloured graphs in Figure 4.1. Under nauty’s
canonicalisation map C, the two graphs in Figure 4.1 are mapped to the graph in Figure
4.2. According to the definition of the graph canonicalisation map, G1 and G2 must
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G1 =

0

1

2

3

4

5

π1 = [0, 1, 2 | 3, 4, 5]

G2 =

0

1

2

3

4

5

π2 = [3, 4, 5 | 0, 1, 2]

Figure 4.1.: Two coloured graphs (G1, π1) and (G2, π2). For visual clarity, the colouring of π1
(π2) has been applied to G1 (G2), but formally G1 (G2) has no colouring.

C(G1, π1) =

0

1

2

3

4

5

= C(G2, π2)

Figure 4.2.: (G1, π1) and (G2, π2) from Figure 4.1 after canonicalisation map C.

be isomorphic, and indeed they are since one can construct δ = (0 4)(1 3)(2 5) using
cycle notation (0↔ 4, 1↔ 3, 2↔ 5) so that Gδ

1 = G2 and πδ
1 = [4, 3, 5 | 1, 0, 2] = π2.

Many applications of graph canonicalisation algorithms (including in the following
sections) involve removing redundant isomorphs from a collection of N graphs. Using
only isomorphism testing, one has to compare each graph against the remaining
collection1, resulting in O(N2) total isomorphism tests. In comparison, one may
canonicalise each graph and then use a standard data structure such as a hash map to
remove duplicates, requiring only O(N) canonicalisations2.

1One could minimise the number of total comparisons using a union-find data structure [51], but the
computational complexity is certainly still superlinear in all but the trivial case.

2Isomorphism tests and canonicalisations are not strictly comparable, but one could reasonably
conjecture that they both belong to the same computational complexity class, although it remains an
open problem.
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4.1.2. McKay’s Individualisation-Refinement Algorithm

The following will use McKay’s Individualisation-Refinement Algorithm [48] to canon-
icalise the example coloured graph in Figure 4.3. The general contour of the approach

G =
0 2

1

4

3 5

π0 = [0, 2, 4 | 1, 3, 5]

Figure 4.3.: Example coloured graph (G, π0) to be canonicalised. For visual clarity, the colour-
ing of π has been applied to G, but formally G has no colouring.

is to build a search tree by iteratively refining the ordered partition π0 until one
produces a set of discrete partitions which correspond to isomorphic relabellings of
(G, π0). The search tree for the example graph in Figure 4.3, as constructed throughout
this section, is shown in Figure 4.4. Search tree pruning and final branch selection are
performed by placing a canonical total ordering on the nodes of the search tree.

π0

π1 π2 π3

π4 π5

π0 = [0, 2, 4 | 1, 3, 5]
π1 = [0 | 4 | 2 | 5 | 3 | 1]
π2 = [2 | 4 | 0 | 3 | 5 | 1]
π3 = [4 | 0, 2 | 3, 5 | 1]
π4 = [4 | 0 | 2 | 5 | 3 | 1]
π5 = [4 | 2 | 0 | 3 | 5 | 1]

Figure 4.4.: Individualisation-refinement algorithm search tree for example graph (G, π0) in
Figure 4.3.

The first stage of building down the search tree from a tree element πi = [V1, . . . , Vr]

is individualisation, whereby a non-singleton cell Vl of πi is chosen by the target cell
selector.
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Definition (Target Cell Selector). A target cell selector (adapted from Ref. [48]) is a
function:

T : G(V)×Π(V)×Π(V)→ P(V) := {V′ | V′ ⊂ V},

such that given any G ∈ G(V), π0 ∈ Π(V), πi ∈ Π(V):

(a) if πi is discrete, then T(G, π0, πi) = ∅

(b) if πi is not discrete, then T(G, π0, πi) is a non-singleton cell of πi

(c) T(Gγ, π
γ
0 , π

γ
i ) = T(G, π0, πi)

γ.

A simple (yet perhaps sub-optimal) choice of target cell selector is to select the
first smallest non-singleton cell of πi. Using the running example, one would choose
T(G, π0, π0) = {0, 2, 4}. The procedure is then to create a candidate child tree element
for each vertex in the target cell where that vertex becomes a singleton cell. In the
example, there would be three candidate child tree elements: [0 | 2, 4 | 1, 3, 5],
[2 | 0, 4 | 1, 3, 5], and [4 | 0, 2 | 1, 3, 5]. The next step is to refine each child partition
into its coarsest equitable refinement, which is defined as follows.

Definition (Equitable Partition). An ordered partition π = [V1, . . . , Vr] ∈ Π(V) is an
equitable partition (adapted from Ref. [50]) w.r.t G ∈ G(V) if deg(v, Vj) = deg(w, Vj)

∀v, w ∈ Vi ∀i, j ∈ [r] := {1, 2, . . . , r}. Note that deg(v, Vj) is the number of edges from
the vertex v to any vertex in the set Vj. An equitable partition π′ is the coarsest equitable
refinement of π if π′ is finer than π and there doesn’t exist an equitable partition which
is finer than π and strictly coarser than π′.

i
Dij 1 2 3 4

j

1 { 0 } { 0 } { 1 } {1, 1, 0}
2 { 0 } { 0 } { 0 } {1, 0, 0}
3 { 1 } { 0 } { 0 } {1, 0, 1}
4 { 2 } { 1 } { 2 } { 0, 0, 0 }

Table 4.1.: Partition degree consistency table for τ′ = [0 | 4 | 2 | 1, 3, 5] = [V ′1, V ′2, V ′3, V ′4].
Boxes correspond to |Dij| > 1⇔ (i, j) ∈ B.

There are several options to produce the coarsest equitable refinement from an
inequitable partition, but presented here is Algorithm 1 as adapted from Ref. [50].
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i
Dij 1 2 3 4 5

j

1 { 0 } { 0 } { 1 } { 0 } { 1,1 }
2 { 0 } { 0 } { 0 } { 0 } {1, 0}
3 { 1 } { 0 } { 0 } { 1 } {1, 0}
4 { 0 } { 0 } { 1 } { 0 } { 0, 0 }
5 { 2 } { 1 } { 1 } { 0 } { 0, 0 }

Table 4.2.: Partition degree consistency table for τ′ = [0 | 4 | 2 | 5 | 1, 3] = [V ′1, V ′2, V ′3, V ′4, V ′5].
Boxes correspond to |Dij| > 1⇔ (i, j) ∈ B.

For conciseness, introduce for a partition τ′ = [V′1, . . . , V′r′ ] the set Dij := {deg(v, V′j ) |
v ∈ V′i } such that (i, j) ∈ B ⇔ |Dij| > 1 for B as in Algorithm 1. For illustrative
purposes, apply Algorithm 1 to the first child of π0. First set τ′ = [0 | 2, 4 | 1, 3, 5] =
[V′1, V′2, V′3], and compute B = {(2, 1), (2, 3), (3, 1), (3, 2)} by computing Dij in Table
4.3. Then by selecting (k, l) = (2, 1) (the minimal element of B by lexicographic
order), conclude that [X1, X2] = [4 | 2], and so update τ′ = [0 | 4 | 2 | 1, 3, 5].
Next update B = {(4, 1), (4, 2), (4, 3)} by computing Dij in Table 4.1, and by selecting
(k, l) = (4, 1) conclude [X1, X2] = [5 | 1, 3]. By updating τ′ = [0 | 4 | 2 | 5 | 1, 3],
one can update B = {(5, 2), (5, 3)} from Table 4.2, set X = [3, 1], and finally update
τ′ = [0 | 4 | 2 | 5 | 3 | 1]. As τ′ has arrived at a discrete partition (which is equitable
by necessity), the process terminates and one concludes that the coarsest equitable
refinement of [0 | 2, 4 | 1, 3, 5] is π1 = [0 | 4 | 2 | 5 | 3 | 1]. The remainder of the
worked example to build the search tree in Figure 4.4 can be found in Appendix A.

Algorithm 1: Coarsest Equitable Refinement Procedure [50]
Input: G ∈ G(V), τ = [V1, . . . , Vr] ∈ Π(V)
Output: τ′ ∈ Π(V) (coarsest equitable refinement of τ)
τ′ = τ
B := {(i, j) | Vj ‘shatters’ Vi} = {(i, j) | ∃v, w ∈ Vi : deg(v, Vj) 6= deg(w, Vj)}
while B 6= ∅ do
(k, l) := min

4
(B) (4 denotes lexicographic order)

[X1, . . . , Xt] ∈ Π(Vk) such that:
if v ∈ Xa, w ∈ Xb then a < b⇔ deg(v, Vl) < deg(w, Vl)

τ′ = [V1, . . . , Vk−1, X1, . . . , Xt, Vk+1, . . . , Vr] =: [V′1, . . . , V′r′ ]
B = {(i, j) | V′j ‘shatters’ V′i }
= {(i, j) | ∃v, w ∈ V′i : deg(v, V′j ) 6= deg(w, V′j )}
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i
Dij 1 2 3

j
1 { 0 } {1, 0} {1, 1, 0}
2 { 1 } { 0, 0 } {2, 0, 1}
3 { 2 } {2, 1} { 0, 0, 0 }

Table 4.3.: Partition degree consistency table for τ′ = [0 | 2, 4 | 1, 3, 5] = [V ′1, V ′2, V ′3]. Boxes
correspond to |Dij| > 1⇔ (i, j) ∈ B.

Gσπ1 =
0 2

5

1

4 3

Gσπ2 =
2 0

5

1

3 4

Gσπ4 =
1 2

5

0

4 3

Gσπ5 =
2 1

5

0

3 4

Figure 4.5.: Candidate canonical coloured graphs Gσπ1 , Gσπ2 , Gσπ4 , and Gσπ5 , where Gσπ1 =
Gσπ2 and Gσπ4 = Gσπ5 .

The four leaves of the search tree in Figure 4.4, π1, π2, π4, π5, correspond to the four
permutations σπ1 = (4 1 5 3), σπ2 = (2 0)(4 1 5), σπ4 = (4 0 1 5 3), σπ5 = (4 0 2 1 5).
Figure 4.5 shows the original graph G under the four permutations. It can be seen from
Figure 4.5 that Gσπ1 = Gσπ2 and Gσπ4 = Gσπ5 , so it remains to canonicalically select
one of these two options by placing a total ordering on G(V). Using the proposal from
Ref. [50], consider lexicographic ordering on graph binary sequences.

Definition (Graph Binary Sequence). Let G ∈ G(V) with |V| = n and adjacency
matrix A with elements Aij = Aji ∈ {0, 1} such that Aij = 1 if nodes i and j share an
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edge, and Aij = 0 otherwise. The graph binary sequence,

i(G) := [A12A13 . . . A1n A23A24 . . . A(n−1)n],

is the binary sequence of length (n
2) of adjacency matrix elements Aij with i < j,

ordered lexicographically on (i, j). For example, if n = 6 then:

i(G) = [A12A13A14A15A16A23A24A25A26A34A35A36A45A46A56].

Continuing the running example, the graph binary sequences for {Gσπk} are given
by:

i(Gπ1) = [010110001101000] = i(Gπ2),

i(Gπ4) = [000011011101000] = i(Gπ5).

Under lexicographic order, i(Gσπ4 ) = i(Gσπ5 ) 4 i(Gσπ1 ) = i(Gσπ2 ), so by selecting the
maximal candidate graph one may conclude that the canonical isomorph of G under
C is Gσπ1 .

4.2. Tensor Expression Canonicalisation via Graph

Canonicalisation

4.2.1. Tensor Network Notation

In order to use the techniques developed for graph canonicalisation in the previous
section for tensor expressions, one must encode the structural information of tensor
expressions into graphs such that tensor expression isomorphism is equivalent to the
corresponding graph isomorphism. A satisfying presentation of such an encoding
uses tensor network notation as an initial step. A succinct introduction to tensor network
notation is provided here, but an excellent complete presentation can be found in
Ref. [52].

In tensor network notation, each tensor is represented in a fixed basis by a geometric
shape (circles are used here) with legs corresponding to indices. Figure 4.6 (a) depicts
the rank-3 tensor εijk in tensor network notation. When particular care must be taken
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about whether basis vectors belong in the tensor’s Hilbert space or the corresponding
dual space, it is customary to adopt a convention on leg direction, but here consider
it to be implicit. There are several graphical operations used to combine tensors:
contraction, tensor product, and index grouping/splitting. Figure 4.6 (b) depicts the
contraction with implicit summation of two rank-3 tensors by connecting the legs.
Tensor rank is fluid in tensor network notation, so legs contracting common tensors
may be ‘fused’ into a single leg (known as index grouping). The ‘fused’ version of the
tensor network in Figure 4.6 (b) is shown in Figure 4.6 (c). Conversely, single legs may
be ‘expanded’ into multiple legs (known as index splitting). There is freedom in the
choice of basis for index grouping/splitting, but there are several standard choices
that can be adopted to make the operation well-defined. The graphical contraction
notation extends to the partial trace of a tensor by connecting a leg to itself, as shown
in Figure 4.6 (d). The tensor product is represented implicitly by placing tensors next
to each other without contraction, as depicted in Figure 4.6 (e).

εijk ←→
i

j

k

ε (a)

εijkεijk ←→ ε ε :=
3

∑
i,j,k=1

i

j

k

ε

i

j

k

ε (b)

←→ ε ε (c)

Tikk ←→ T := ∑
k

k

k

T (d)

AijBkl ←→ A B := A⊗ B (e)

Figure 4.6.: Example algebraic tensor expression (left) and corresponding tensor network
representation (right) for single tensor (a), contracted tensors (b), contracted tensors
with ‘fused’ legs (c), partial trace (d), and tensor product (e).
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4.2.2. Tensor Expressions as (Coloured) Graphs

In order to harness the machinery of graph canonicalisation, one must work with
simple graphs, which are unweighted, undirected, single-edge graphs with no loops.
Tensor network notation uses multi-edge graphs, so follow a similar presentation to
that found in Ref. [53] to transform tensor networks into colour-partitioned simple
graphs. Consider ‘single-edge’ tensor network notation, whereby each tensor is
represented by a collection of nodes: one for each index slot. Examples of this notation
for common tensor network operations are depicted in Figure 4.7, where dotted
rectangles are used to keep track of which nodes (corresponding to index slots) belong
to which tensors. Note that this representation does indeed satisfy all the requirements
for a simple graph.

εijk ←→
i

j

k

ε ←→
ε

(a)

εijkεijk ←→ ε ε ←→
ε ε

(b)

Tikk ←→ T ←→
T

(c)

Figure 4.7.: Example algebraic tensor expression (left), tensor network notation (middle),
and ‘single-edge’ tensor network notation (right) for single tensor (a), contracted
tensors (b), and partial trace (c).

The next notational transformation is to encode the slot symmetry properties
of the individual tensors into the colour partition of the simple graph given by the
corresponding ‘single-edge’ tensor network. Each group of symmetric/anti-symmetric
slots (or in fact any set of slots such that any slot permutation yields the same tensor,
up to a multiplicative constant) is assigned its own cell in the colour partition. Slots
that have no symmetry properties are assigned singleton cells. For example, the tensor
εijk is assigned the colour partition [0, 1, 2], whereas the rank-3 tensor Tijk with no
slot symmetry is assigned [0 | 1 | 2]. Figure 4.8 depicts examples of the full graphical
evolution of algebraic tensor expressions to simple graphs with colour partitions such
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εijkεijk −→ ε ε −→
ε ε

−→
0
1
2

3
4
5

(a)

εijkεlmnTikmTjln −→
ε

ε

T

T

−→

ε

ε

T

T −→

0
1
2
3
4
5

6
7
8
9
10
11

(b)

Figure 4.8.: Notational transformation from algebraic tensor expression (left) to tensor network
notation (middle left) to ‘single-edge’ tensor network notation (middle right) to
tensor expression graph (simple graph with colour partition) (right) for example
expressions (a) and (b), where T is a rank-3 tensor with no slot symmetries.

εijkεlmnTikmTjln −→

0
1
2
3
4
5

6
7
8
9
10
11

nauty−−−→

0
1
2
3
4
5

6
7
8
9
10
11

−→ εijkεlmnTijlTkmn

Figure 4.9.: Example tensor expression canonicalisation via graph canonicalisation (GC) using
nauty [48] for GC. The tensor expression is the same as in Figure 4.8 (b).

that graph isomorphism is equivalent to tensor expression isomorphism3. Figure 4.9
depicts a summary of tensor expression canonicalisation via graph canonicalisation
using nauty [48] for an example tensor expression.

4.2.3. Identical Tensor Ordering

The tensor expression canonicalisation methodology developed in the previous section
canonicalises tensor expressions with respect to both label symmetries and slot sym-
metries, but fails to completely canonicalise tensor order. To demonstrate the failure
mode, consider the following two tensor expressions:

3Up to identical tensor ordering, as explored and resolved in the next section.
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E1 −→

0
1
2
3
4
5

6
7
8
9
10
11

nauty−−−→

0
1
2
3
4
5

6
7
8
9
10
11

E2 −→

0
1
2
3
4
5

6
7
8
9
10
11

nauty−−−→

0
1
2
3
4
5

6
7
8
9
10
11

Figure 4.10.: Tensor expressions from Equations 4.2 and 4.3, converted into coloured graphs,
and canonicalised using nauty.

E1
nauty−−−→
SDO

0
1
2
3
4
5

6
7
8
9
10
11

nauty←−−−
SDO

E2

Figure 4.11.: Tensor expressions from Equations 4.2 and 4.3, converted into coloured graphs,
and canonicalised using nauty and slot distance order (SDO).

E1 = εijkεlmnTikmTjln, (4.2)

E2 = εijkεlmnTlnjTmik. (4.3)

The two expressions in Eqns. 4.2, 4.3 are equivalent, but their canonicalised graphs
could be non-identical, as depicted in Figure 4.10. The tensor expression graphs that
are supplied to nauty carry no information about the underlying tensors — only
their underlying slot symmetry. In the example, εijk in E1 plays the structural role
of εlmn in E2, so exchanging i, j, k ↔ l, m, n would resolve the failure to match after
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canonicalisation. Note that for non-identical tensors, it is straightforward to place a
total ordering on tensors, for example by asserting that ε < T. It remains to order
identical tensors using a procedure that doesn’t depend on the given tensor order.
Here use a method referred to as slot distance ordering, where for each index slot of a
tensor expression, define the slot distance ds to be the maximum number of index slots
to the slot of the repeated index (i.e. distance after re-ordering the left (right) slot’s
tensor maximally left (right) in its identical tensor group), or zero if no such repeated
index occurs. A canonical tensor order may be enforced by sorting identical tensors by
lexicographic order on slot distances for slots belonging to each tensor. In the case of
E1, the slot distances (grouped by tensors) are given by:

ε ε T T

(i j k) (l m n) (i k m) (j l n)

(9 8 8) (10 10 9) (9 8 10) (8 10 9),

(4.4)

and the slot distances for E2 are:

ε ε T T

(i j k) (l m n) (l n j) (m i k)

(10 10 9) (9 8 8) (9 8 10) (8 10 9).

(4.5)

In the case of Eqn. 4.4, slot distance order dictates that the third and fourth tensors
are swapped, resulting in E1 → εijkεlmnTjlnTikm. In the case of Eqn. 4.5, slot distance
order dictates that first and second tensors are swapped, and that the third and
fourth tensors are swapped, resulting in E2 → εlmnεijkTmikTlnj = εijkεlmnTjlnTikm after
relabelling from the left. Both E1 and E2 are canonicalised to the same expression, as
depicted in Figure 4.11.

4.3. Application to Nuclear Correlation Functions

4.3.1. Software Package for Computing Nuclear Wick Contractions

This chapter has thus far developed techniques to canonicalise tensor expressions
through graph canonicalisation. This section will apply tensor expression canonicalisa-
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tion to correlators of a selection of nuclear interpolating operators. In order to present
the results, a symbolic manipulation program has been written in C++ that generates
the tensor expressions (in symbolic form) for a nuclear correlation function given its
operator. The program accepts a list of operator terms in one of two operator input
modes:

(1) An external tensor expression with a list of source and sink quark operators
(specifying colour indices, spinor indices, spacetime indices) that contract with
the external tensor expression. The input for a proton operator could be given by

the expression εabcΓβγεa′b′c′Γβ′γ′ , the source quarks ua′
β′(x′), d

b′
γ′(x′), uc′

1 (x′), and
the sink quarks ua

β(x), db
γ(x), uc

1(x).

(2) An external tensor expression with a list of source quark operators and a list
of sink hadron blocks. The input for a proton operator could be given by the

expression εa′b′c′Γβ′γ′ , the source quarks ua′
β′(x′), d

b′
γ′(x′), uc′

1 (x′), and the sink block
expression f P

~0
as defined in Chapter 3.

There are three modes to generate tensor expressions from operator terms: without
hadron blocks, with hadron blocks, and with ‘half nucleon’ blocks (as explained in the
next sub-section).

4.3.2. ‘Half Nucleon’ Blocks

Nucleon blocks were introduced in Chapter 3, where the proton block was given by:

f P
~p (x′, a′, β′, b′, γ′, c′, α′)α

= ∑
x

e−i~p·~xεabcΓβγ

[
Su,ac′

βα′ (x, x′)Su,ca′
αβ′ (x, x′)− Su,aa′

ββ′ (x, x′)Su,cc′
αα′ (x, x′)

]
Sd,bb′

γγ′ (x, x′).

(4.6)

Similarly, the neutron block is given by:

f P
~p (x′, a′, β′, b′, γ′, c′, α′)α

= ∑
x

e−i~p·~xεabcΓβγ

[
Sd,ac′

βα′ (x, x′)Sd,ca′
αβ′ (x, x′)− Sd,aa′

ββ′ (x, x′)Sd,cc′
αα′ (x, x′)

]
Su,bb′

γγ′ (x, x′).

(4.7)
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The calculations here will work in the isospin symmetric limit, where the quark
propagators are degenerate: Sd → Su =: S. Denote by f̃ h the hadron block for the
hadron h under isospin symmetry. It’s clear from Eqns. 4.6 and 4.7 that f̃ P = f̃ N. It
remains to argue that in the isospin symmetric limit, it is sensible to define the (sink
momentum projected) ‘half nucleon’ block:

B̃~p(x′, a′, β′, b′, γ′, c′, α′)α := ∑
x

e−i~p·~xεabcΓβγSaa′
ββ′(x, x′)Sbb′

γγ′(x, x′)Scc′
αα′(x, x′), (4.8)

so that the nucleon hadron block may be written in two pieces:

f̃ P/N
~p (x′, a′, β′, b′, γ′, c′, α′)α = B̃~p(x′, c′, α′, b′, γ′, a′, β′)α − B̃~p(x′, a′, β′, b′, γ′, c′, α′)α.

(4.9)

The consequences are two-fold. First, the cost to compute the full set of ‘half nucleon’
block expressions is reduced by one-half compared to the full set of isospin symmetric
nucleon block expressions. The cost reduction comes at the expense of increasing the
number of terms in the correlator by 2A, which for light nuclei at reasonable lattice
volumes is an attractive trade-off since the nucleon block cost dominates the total
correlator calculation cost in that regime. Second, there’s a much greater propensity for
tensor expressions in the correlator to be isomorphic, leading to greater cost savings
using tensor expression canonicalisation. This second consequence will be explored
numerically in the next sub-section.

4.3.3. Tensor Expression Statistics for Nuclear Operators

The following will explore the number of tensor expressions before and after canonical-
isation for a selection of nuclear operators under the three modes of operation: without
hadron blocks, with hadron blocks, and with ‘half nucleon’ blocks. Reported here
are five data for each operator: the operator term count, the Wick contraction count
(mode-dependent), the uncanonicalised expression count, the canonicalised expression
count (output of the symbolic manipulation program), and the ratio of canonicalised
and uncanonicalised expression counts (denoted R). The uncanonicalised expression
count is always given by c2

OcW , where cO is the operator term count and cW is the Wick
contraction count.
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Operator Operator
Term Count

Wick
Contraction

Count

Uncanonicalised
Expession Count

Canonicalised
Expression
Count (R)

Proton 1 2 2 2 (1)
Dinucleon I 1 36 36 36 (1)
Dinucleon II 2 36 144 72 (0.5)
Helium-3 I 1 2,880 2,880 2,880 (1)

Table 4.4.: Nuclear correlator tensor expression statistics assuming isospin symmetry, and
without hadron blocks. Canonicalisation performed via nauty [48].

Without hadron blocks, the Wick contraction count for a multi-nucleon state is
given by nu!nd!, where nq is the number of flavour q quarks in the operator. Table 4.4
reports the canonicalised expression count for a selection of operators. Note that the
Wick contraction count grows factorially, restricting the regime of computable nuclear
correlators with currently available hardware.

Operator Operator
Term Count

Wick
Contraction

Count

Uncanonicalised
Expession Count

Canonicalised
Expression
Count (R)

Proton 1 1 1 1 (1)
Dinucleon I 1 9 9 9 (1)
Dinucleon II 2 9 36 14 (0.39)

Triton I 1 720 720 360 (0.5)
3 Protons 6 540 19,440 4,260 (0.22)

Helium-3 I 1 360 360 360 (1)
Helium-3 II 6 360 12,960 10,622 (0.82)
Helium-4 I 1 32,400 32,400 32,292 (0.997)

Table 4.5.: Nuclear correlator tensor expression statistics assuming isospin symmetry, and
with hadron blocks. Wick contraction count is given by Eqn. 4.10. Canonicalisation
is performed via nauty [48]. Triton I (3 Protons) are constructed via appropriate nu-
cleon substitution of Helium-3 I (Helium-3 II) operators. The ‘3 Protons’ correlator
vanishes (non-trivially) by the Pauli Exclusion Principle.

With hadron blocks, the Wick contraction count is given by:

∏
q=u,d

(
nq

N1
q

)(
nq − N1

q

N2
q

)
. . .
(

nq − N1
q − · · · − NA−1

q

NA
q

)
(4.10)
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where Ni
q is the number of flavour q quarks in the ith hadron block, nq is the total

number of flavour q quarks, and A is the number of nucleons. Note that Eqn. 4.10 is
symmetric under the re-ordering of blocks. For concreteness, in the case of Helium-3
(with nucleons Proton, Neutron, Proton), it is the case that A = 3, nu = 5, nd = 4,
N1

u = 2, N2
u = 1, N3

u = 2, N1
d = 1, N2

d = 2, N3
d = 1, so the Wick contraction count is:(

5
2

)(
3
1

)(
2
2

)(
4
1

)(
3
2

)(
1
1

)
= 360.

Table 4.5 reports the canonicalised expression count for a selection of operators. Note
here that R tends to be smaller when the operator term count is large.

Operator Operator
Term Count

Wick
Contraction

Count

Uncanonicalised
Expession Count

Canonicalised
Expression
Count (R)

Proton 1 2 2 2 (1)
Dinucleon I 1 36 36 28 (0.78)
Dinucleon II 2 36 144 37 (0.26)

Triton I 1 5,760 5,760 2,592 (0.45)
3 Protons 6 4,320 155,520 20,550 (0.13)

Helium-3 I 1 2,880 2,880 1,312 (0.46)
Helium-3 II 6 2,880 103,680 37,664 (0.36)
Helium-4 I 1 518,400 518,400 256,832 (0.495)

Table 4.6.: Nuclear correlator tensor expression statistics assuming isospin symmetry, and with
‘half’ hadron blocks. Wick contraction count is given by Eqn. 4.11. Canonicalisation
is performed via nauty [48]. Triton I (3 Protons) are constructed via appropriate nu-
cleon substitution of Helium-3 I (Helium-3 II) operators. The ‘3 Protons’ correlator
vanishes (non-trivially) by the Pauli Exclusion Principle.

With ‘half nucleon’ blocks, the Wick contraction count is given by4:

2A ∏
q=u,d

(
nq

N1
q

)(
nq − N1

q

N2
q

)
. . .
(

nq − N1
q − · · · − NA−1

q

NA
q

)
, (4.11)

which is a factor of 2A greater than the contraction count for hadron blocks in Eqn. 4.10.
Table 4.6 reports the canonicalised expression count for a selection of operators. Note
that R is significantly lower in Table 4.6 than for regular hadron blocks, as reported in

4This expression is of course equivalent to ∏q=u,d nq!, but the reported form gives a clearer picture of
the actual computational process.
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Table 4.5, indicating that ‘half nucleon’ blocks provide computational benefit beyond
the reduced cost to compute the block expressions.
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Chapter 5.

Factor Trees

This chapter will present a novel method for computing nuclear correlators through
the construction of factor trees, which optimally store a ‘factorised’ gauge configuration
independent form of the correlator’s tensor expressions. § 5.1 will explore a selection
of the permutation symmetry properties of nuclear correlators to motivate the con-
struction of abstract factor trees in § 5.2. Linearised factor trees, as explored in § 5.3, are an
efficient representation of abstract factor trees that are optimised for evaluation using
modern CPU architectures. § 5.4 presents a selection of benchmarks of evaluation
using linearised factor trees in comparison to the hadron block method as explored in
Chapter 3.

5.1. Empirical Symmetry of Nuclear Correlators

Under the hadron block construction for nuclear correlators, the number of inde-
pendent components of the gauge configuration dependent tensors,

{
f h
~p

}
, remains

constant1, while the number of combining operations grows exponentially in hadron
number. A natural empirical question arises — how is the re-use of

{
f h
~p

}
components

distributed?

1The Pauli Exclusion Principle does necessitate that multi-hadron states are constructed with an
increasing number of distinct hadron definite momenta, which increases the number of independent
components of

{
f h
~p

}
at a rate not relevant to the discussion here.
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Begin with the general form for nuclear correlators of A baryons:

C =
Nw

∑
k=1

wkεa1b1c1 . . . εaAbAcA Γ(1,k)
α1β1

. . . Γ(NΓ,k)
αNΓ βNΓ

f h1
~p(1,k)

(
x
′
(1,k),~ξ(1,k)

)
. . . f hA

~p(A,k)

(
x
′
(A,k),~ξ(A,k)

)
,

(5.1)

where wk ∈ C, NΓ is the number of gamma matrices subject to A ≤ NΓ ≤ 2A, Nw

is the number of terms in the contracted expression for C,
{

f h
~p (x′,~ξ)

}
are the sink-

momentum projected hadron block functions as constructed in Chapter 3, {hi} are
baryons determined from the nuclear interpolating operator O ,

{
x
′
i,k

}
are the (possibly

different) source spacetime points for the kth term in the correlator, and
{
~ξ(i,k)

}
are

functions of {ai}, {bi}, {ci}, {αi}, {βi} so that
{

f h
~p (x′,~ξ)

}
are fully contracted with

{εabc} ∪ {Γαβ}. When all internal indices {ai}, {bi}, {ci}, {αi}, {βi} are summed over,
one is left with strings of f h

~q (x̃
′
,~η) factors:

C =
Ñw

∑
k=1

w̃k f h1
~q(1,k)

(
x̃
′
(1,k),~η(1,k)

)
. . . f hA

~q(A,k)

(
x̃
′
(A,k),~η(A,k)

)
, (5.2)

where ~ηi,k are bundles of fixed colour/spinor values (note the notation change ~ξ → ~η

to differentiate contracted and fixed index bundles), w̃k are the new weights after
expansion, Ñw is the number of terms in the expanded expression for C, and

{
x̃
′

i,k

}
({~qi,k}) are the source spacetime points (sink momenta) of the expanded expression
(noting that x̃

′
i,k 6= x

′
i,k (~qi,k 6= ~pi,k) in general). For example, the correlator for dinucleon

I has the k = 1 term for Eqn. 5.2 given by:

f P
~p=~0(x′, a′ = 1, β′ = 1, b′ = 2, γ′ = 2, c′ = 3, α′ = 1)α=1×

× f N
~p=~0(x′, a′ = 1, β′ = 1, b′ = 2, γ′ = 2, c′ = 3, α′ = 2)α=2. (5.3)

In order to investigate the distribution of strings of f h
~q (x̃

′
,~η) factors, canonically order

the factors in Eqn. 5.2 using lexicographic order on (h,~q, x̃
′
,~η) tuples, and assign

multiplicities to identical terms. Figure 5.1 plots these multiplicities for dinucleon
I/II and helium-3 I/II. The power-law relationship as depicted in Figure 5.1 suggests
that computational savings could be made by computing each degenerate term once,
and adjusting the coefficients by multiplicity. Factors trees, as developed throughout
the remainder of this chapter, provide an efficient structure to compute correlators by
exploiting this symmetry.
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Figure 5.1.: Multiplicity histograms for dinucleon I/II and helium-3 I/II operators, where
multiplicities are computed as the number of identical terms in the expansion of
Eq. (5.1) after canonical ordering of terms.

5.2. Abstract Factor Trees

In order to walk through some of the developmental details for abstract factor trees as
well as provide a basis for their computation, begin with the general expression for a
nuclear correlator using hadron blocks after summation as in Eqn. 5.2, and arrange the
hadron block factors in an Ñw× A matrix with weights w̃k annotated on the right-hand
side: 

f h1
~q(1,1)

(
x̃
′
(1,1),~η(1,1)

)
. . . f hA

~q(A,1)

(
x̃
′
(A,1),~η(A,1)

)
...

...

f h1
~q(1,Ñw)

(
x̃
′

(1,Ñw)
,~η(1,Ñw)

)
. . . f hA

~q(A,Ñw)

(
x̃
′

(A,Ñw)
,~η(A,Ñw)

)


w̃1
...

w̃Ñw
.

(5.4)

Next, impose a canonical ordering on rows of the matrix in Eqn. 5.4 by sorting factors
according to lexicographic order on

(
hi,~q(i,k), x̃

′
(i,k),~η(i,k)

)
tuples. Denote by σk ∈ SA
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the permutation induced by this sorting, so that the matrix in Eqn. 5.4 takes the form:
f

hσ1(1)

~q(σ1(1),1)

(
x̃
′
(σ1(1),1)

,~η(σ1(1),1)

)
. . . f

hσ1(A)

~q(σ1(A),1)

(
x̃
′
(σ1(A),1),~η(σ1(A),1)

)
...

...

f
hσÑw

(1)

~q(σÑw
(1),Ñw)

(
x̃
′

(σÑw
(1),Ñw)

,~η(σÑw
(1),Ñw)

)
. . . f

hσÑw
(A)

~q(σÑw
(A),Ñw)

(
x̃
′

(σÑw
(A),Ñw)

,~η(σÑw
(A),Ñw)

)


w̃1
...

w̃Ñw
.

(5.5)

Next, sort the rows of Eqn. 5.5 by recursive lexicographic order (i.e. the order imposed
by comparing each element lexicographically in turn) on((

hi,~q(i,k), x̃
′
(i,k),~η(i,k)

)
| k = 1, . . . , Ñw

)
(5.6)

tuples so that the identical factors are maximally vertically aligned. Denote by ρ ∈ SÑw

the permutation induced by this sorting, so that the matrix in Eqn. 5.5 takes the form:


f

hσρ(1)(1)

~q(σρ(1)(1),ρ(1))

(
x̃
′
(σρ(1)(1),ρ(1))

,~η(σρ(1)(1),ρ(1))

)
. . . f

hσρ(1)(A)

~q(σρ(1)(A),ρ(1))

(
x̃
′
(σρ(1)(A),ρ(1)),~η(σρ(1)(A),ρ(1))

)
...

...

f
hσ

ρ(Ñw)
(1)

~q(σ
ρ(Ñw)

(1),ρ(Ñw))

(
x̃
′

(σρ(Ñw)(1),ρ(Ñw))
,~η(σρ(Ñw)(1),ρ(Ñw))

)
. . . f

hσ
ρ(Ñw)

(A)

~q(σ
ρ(Ñw)

(A),ρ(Ñw))

(
x̃
′

(σρ(Ñw)(A),ρ(Ñw))
,~η(σρ(Ñw)(A),ρ(Ñw))

)


w̃ρ(1)
...

w̃ρ(Ñw)
.

(5.7)

Next, omit any string of factors beginning in the first column that is repeated vertically
and introduce parent-child arrows between factors that are multiplied to arrive at the
abstract factor tree for the correlator C. As an example of the process from Eqns. 5.4 –
5.7, consider the following three terms from the correlator for helium-3 II:

C3 := f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 1, 1, 1, 2, 2, 1)1 f N+

~p (x′, 2, 1, 3, 2, 3, 2)2

+ f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 2, 1, 1, 2, 2, 1)1 f N+

~p (x′, 1, 2, 3, 2, 3, 3)2

− f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f N+

~p (x′, 1, 1, 3, 2, 3, 2)2 f P−
~p (x′, 2, 1, 1, 2, 2, 1)1. (5.8)

In the case of C3, Eqn. 5.4 takes the form:
f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 1, 1, 1, 2, 2, 1)1 f N+

~p (x′, 2, 1, 3, 2, 3, 2)2

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 2, 1, 1, 2, 2, 1)1 f N+

~p (x′, 1, 2, 3, 2, 3, 3)2

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f N+

~p (x′, 1, 1, 3, 2, 3, 2)2 f P−
~p (x′, 2, 1, 1, 2, 2, 1)1


1

1

−1.

(5.9)
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f P+
~p (x′, 1, 1, 2, 2, 3, 1)1

f P−
~p (x′, 1, 1, 1, 2, 2, 1)1 f N+

~p (x′, 2, 1, 3, 2, 3, 2)2 1

f P−
~p (x′, 2, 1, 1, 2, 2, 1)1

f N+

~p (x′, 1, 1, 3, 2, 3, 2)2 −1

f N+

~p (x′, 1, 2, 3, 2, 3, 3)2 1

Figure 5.2.: Abstract factor tree for C3 in Eqn. 5.8 after construction in Eqns. 5.9 – 5.12.

Sorting the factors row-wise in Eqn. 5.9 with hadron order P+ < P− < N+ < N−
swaps the second and third elements of the third row, resulting in:

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 1, 1, 1, 2, 2, 1)1 f N+

~p (x′, 2, 1, 3, 2, 3, 2)2

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 2, 1, 1, 2, 2, 1)1 f N+

~p (x′, 1, 2, 3, 2, 3, 3)2

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 2, 1, 1, 2, 2, 1)1 f N+

~p (x′, 1, 1, 3, 2, 3, 2)2


1

1

−1.

(5.10)

Next, sort the rows in Eqn. 5.10 by interchanging the second and third rows:
f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 1, 1, 1, 2, 2, 1)1 f N+

~p (x′, 2, 1, 3, 2, 3, 2)2

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 2, 1, 1, 2, 2, 1)1 f N+

~p (x′, 1, 1, 3, 2, 3, 2)2

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 2, 1, 1, 2, 2, 1)1 f N+

~p (x′, 1, 2, 3, 2, 3, 3)2


1

−1

1.

(5.11)

Omitting repeated factor strings yields:
f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 f P−

~p (x′, 1, 1, 1, 2, 2, 1)1 f N+

~p (x′, 2, 1, 3, 2, 3, 2)2

f P−
~p (x′, 2, 1, 1, 2, 2, 1)1 f N+

~p (x′, 1, 1, 3, 2, 3, 2)2

f N+

~p (x′, 1, 2, 3, 2, 3, 3)2


1

−1

1,

(5.12)

so that one may now form the abstract factor tree for C3 as depicted in Figure 5.2. To
evaluate Figure 5.2, one traverses the tree in depth-first order, which corresponds in
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the case of C3 to:

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 → f P−

~p (x′, 1, 1, 1, 2, 2, 1)1 → f N+

~p (x′, 2, 1, 3, 2, 3, 2)2 →

→ f P−
~p (x′, 2, 1, 1, 2, 2, 1)1 → f N+

~p (x′, 1, 1, 3, 2, 3, 2)2 → f N+

~p (x′, 1, 2, 3, 2, 3, 3)2.

To evaluate an abstract factor tree, one follows a procedure where upon right traversal,
one multiplies by the encountered factor, and upon left traversal, one divides by the
encountered factor2. Upon reaching a leaf, one multiplies by the annotated coefficient
and adds the cumulative sum to the overall total. In the case of C3, this amounts to
computing the correlator in the factorised form:

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1

[
f P−
~p (x′, 1, 1, 1, 2, 2, 1)1 f N+

~p (x′, 2, 1, 3, 2, 3, 2)2+

+ f P−
~p (x′, 2, 1, 1, 2, 2, 1)1

(
− f N+

~p (x′, 1, 1, 3, 2, 3, 2)2 + f N+

~p (x′, 1, 2, 3, 2, 3, 3)2

)]
. (5.13)

A natural way to represent an abstract factor tree that corresponds to the tensor expres-
sion C3 as in Figure 5.2 on a computer might be to represent each node as a structure
and to form links between the nodes using pointers. This would be highly inefficient in
two senses: first, it doesn’t exploit the predictable access pattern (depth-first traversal)
that evaluation of the factor trees entails and would as a result be significantly memory
access bound; and second, it would have a large memory footprint, taken up almost
entirely by pointers representing parent→ child relationships. A representation that is
much more efficient on both counts is given by a linearised factor tree, which is explored
in the next section.

5.3. Linearised Factor Trees

As shown in Figure 5.3 for the example in Figure 5.2, a linearised factor tree is repre-
sented by three arrays: factors, children, and coefficients. The factors array is given by
the depth-first traversal of the vertices of the abstract factor tree. The children array
is given by the number of children of the vertices in depth-first traversal order. The
coefficients array is the list of leaf coefficients in depth-first traversal order. Note here
that one may construct Figure 5.3 directly from Eqn. 5.12 without the intermediate
construction of the abstract factor tree in Figure 5.2.

2In fact, due to the mechanics of floating-point arithmetic, it’s much safer (and more efficient) to return
to a previously stored value upon left traversal rather than perform a division.
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factors =
[

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1, f P−

~p (x′, 1, 1, 1, 2, 2, 1)1, f N+

~p (x′, 2, 1, 3, 2, 3, 2)2,

f P−
~p (x′, 2, 1, 1, 2, 2, 1)1, f N+

~p (x′, 1, 1, 3, 2, 3, 2)2, f N+

~p (x′, 1, 2, 3, 2, 3, 3)2

]
children = [2, 1, 0, 2, 0, 0]

coefficients = [1,−1, 1]

Figure 5.3.: Linearised factor tree representation for abstract factor tree for C3 as depicted in
Figure 5.2.

In order to traverse a linearised factor tree, one must maintain three state variables:
position, index, and leafIdx. The position array maintains the current path (in terms of
locations in the factors/children array) within the tree, such that if one is located at for
example the second leaf node in Figure 5.2, then the path is:

f P+
~p (x′, 1, 1, 2, 2, 3, 1)1 → f P−

~p (x′, 2, 1, 1, 2, 2, 1)1 → f N+

~p (x′, 1, 1, 3, 2, 3, 2)2, (5.14)

and hence, position = [0, 3, 4] (i.e. the positions of those three factors in the factors
array in Figure 5.3). The index array keeps track of the child number (i.e. the order
ranking of a node in its parent’s children). In Figure 5.2, take again the example of the
second leaf, which has index = [1, 0] (i.e. the second factor in Eqn. 5.14 is the second
child of the first factor; and the third factor is the first child of the second factor). The
leafIdx keeps track of the current row in the matrix given in Eqn. 5.7 so that the current
position along the coeffs array is maintained.

Algorithm 2 evaluates a linearised factor tree given a set of values, which in this
case is the set of hadron block elements

{
f h
~p

}
for a particular gauge configuration.

From Algorithm 2, it can be seen that the number of floating-point operations required
to evaluate a factor tree of NF factors and NL leaves is 2NL + NF. There are of course
additional computational resources required to maintain the traversal state, but the
evaluation time scales as O(2NL + NF). A key motivating feature of the linearised
factor tree design is its cache efficiency. Since the tree variables are stored in traversal
order, the L1-cache hit-rate is high, as confirmed using the hardware performance
counters as provided by PAPI [54] using the C++ codebase developed in order to
obtain the results presented in § 5.4.
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Algorithm 2: Linearised Factor Tree Evaluation
Input: tree{ factors, children, coeffs }
Output: sum := 0
Data: values
index := [ ]
position := [ tree→factors[0] ]
cumulativeProd := [ values[ position[0] ] ]
leafIdx := 0
while True do

nextPos := position[-1] + 1
if tree→children[ position[-1] ] == 0 then

sum += tree→coeffs[leafIdx] × cumulativeProd[-1]
leafIdx += 1
success := false
while ! index→empty() do

index[-1] += 1
if index[-1] < tree→children[ position[-2] ] then

success = true
position[-1] = nextPos
cumulativeProd[-1] = cumulativeProd[-2] ×

values[ tree→factors[nextPos] ]
break

else
position = position[:-1]
index = index[:-1]
cumulativeProd = cumulativeProd[:-1]
termValues = termValues[:-1]

if ! success then
done

else
position.append( nextPos )
index.append( 0 )
cumulativeProd.append( cumulativeProd[-1] ×

values[ tree→factors[nextPos] ] )

5.4. Results for Nuclear Correlators

The following presents a set of results of the linearised factor tree method applied to
a selection of nuclear correlators. Table 5.1 reports computed factor tree statistics for
the nucleon, dinucleon I/II, and Helium-3 I/II operators. Also reported is the number
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of operations required to evaluate the corresponding linearised factor tree using
Algorithm 2. The ratio NL/NF gives an indication of the amount of factorisation the
factor tree achieves, where a higher ratio corresponds to more factorisation and hence a
larger potential speed-up beyond the inherent speed-up of the degeneracy elimination
of the factor tree construction. In the limit of no common factors, NL/NF = 1/A for A
baryons. Table 5.1 reports the ratio NL/NF to be substantially larger than 1/A for all
cases but A = 1.

Operator NF NL NL/NF Num. Operations (NF + 2NL)

Nucleon 25 24 0.96 73
Dinucleon I 42,037 37,104 0.88 116,245
Dinucleon II 53,105 48,096 0.91 149,297
Helium-3 I 945,745 722,688 0.76 2,391,121
Helium-3 II 3,765,835 3,296,184 0.87 10,358,203

Table 5.1.: Factor tree statistics for a selection of nuclear operators. The number of operations
is given by NF + 2NL, where NF is the number of factors (i.e. nodes) in the tree and
NL is the number of terms (i.e. distinct factor strings) in the tree.

To measure the performance improvement associated with using linearised factor
trees as evaluated by Algorithm 2, Figure 5.4 compares wall-clock time for correlator
computation (excluding propagator and hadron block calculation) using dinucleon
I/II and helium-3 I/II operators. Figure 5.4 demonstrates that factor trees offer be-
tween one and two orders of magnitude improvement over unoptimised correlator
computations for light nuclei using hadron blocks (as explored in Chapter 3). An
up-front computational cost for constructing the factor tree, not included in Figure
5.4, is required and scales with the unoptimised correlator computational cost. The
extra calculation, however, is only required before the first configuration is analysed
and hence the cost may be amortised over the full set of configurations. Although the
factor tree method shows promising speed-ups for small nuclei, it should be noted
that the memory used will become prohibitive for large nuclei3.

3Constructing factor trees directly to hard-disk could extend the method to larger nuclei. Using
MMap [55] would be a particularly efficient approach, but is left for future work.
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Figure 5.4.: Linearised factor tree benchmark, measuring wall-clock time in milliseconds on a
single core of an Intel Xeon Scalable Cascade Lake processor; lattice volume 643.



Chapter 6.

Tensor E-graphs

E-graphs (equality graphs) compactly represent and efficiently compute a congruence
relation (defined in § 6.2) over a set of expressions. E-graphs were originally developed
for automated theorem provers [56, 57], and have seen successful recent application to
program optimisation [5], deep learning optimisation [58–60], and improving floating-
point accuracy [61].

A key predecessor and core component of e-graphs is the union-find structure as
explored in § 6.1. The generic e-graph formulation will be presented in § 6.2, and
then § 6.3 will present tensor e-graphs, which is a novel application of the e-graph
formulation to tensor expression optimisation. § 6.4 will walk through a selection of
the implementation details of tensor e-graphs, and finally § 6.5 will present a set of
results for nuclear correlation functions as optimised by tensor e-graphs.

6.1. Equivalence Relations via Union-Find Structures

One of the core components of an e-graph is a union-find data structure, as originally
devised in Ref. [51], which efficiently computes and represents an equivalence relation
(defined below) on a set [51]. The following will explore the process as developed in
Ref. [51] and then § 6.2 will apply it to the process of building e-graphs.

Definition (Equivalence Relation). Let X be a set, and define an equivalence relation ∼
to be a binary relation on X such that ∀x, y, z ∈ X:

(a) x ∼ x (Reflexivity)

59
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(b) x ∼ y if and only if y ∼ x (Symmetry)

(c) if x ∼ y and y ∼ z, then x ∼ z (Transitivity)

Further define the equivalence class of x ∈ X under ∼ to be [x] := {y ∈ X | y ∼ x}. The
set of all equivalence classes partition X (i.e. X =

⊔
[x][x] where

⊔
denotes disjoint

union).

A union-find structure consists of a node for each element in X such that each
node points to exactly one node (including possibly itself). Initially, all nodes point
to themselves, and represent the the trivial relation where no distinct elements are
equivalent. To query whether two elements are members of the same equivalence class,
one follows the links of both nodes until they either reach the same node, or terminate
at different nodes. To union two equivalence classes, one finds the representative
nodes (nodes with terminating links), which are the same for each element of the
equivalence class, and adjusts the pointer of one to the other. To provide a worked
example, consider X = {1, . . . , 8}, and construct the initial state with no equivalent
elements as:

1 2 3 4 5 6 7 8 .

Suppose that 1 ∼ 2, so find the representative nodes of the equivalence classes
containing the elements 1 and 2, which are the nodes 1 and 2 respectively, and connect
one to the other:

1 2 3 4 5 6 7 8 .

Next suppose 5 ∼ 6, so follow the links and connect 5→ 6:

1 2 3 4 5 6 7 8 .
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Next suppose 1 ∼ 5, so traverse the chain beginning at 1 to arrive at 2 and traverse the
chain beginning at 5 to arrive at 6, and then connect 2 to 6:

1 2 3 4 5 6 7 8

.

Finally, suppose 4 ∼ 7 ∼ 8, so select any element (choose 7 for example) to follow to
find the representative, and then connect the other nodes (4 and 8) to this representative
element:

1 2 3 4 5 6 7 8

,

which represents the set of equivalence classes given by:

{[3], [6], [7]} = {{3}, {1, 2, 5, 6}, {4, 7, 8}}. (6.1)

There are many benefits to this computational approach to equivalence relations, but
in particular to add a single element, one doesn’t need to compare each element
against all other elements in X, but only find a single equivalent element. The process
isn’t linear, since one has to follow the links, but it’s asymptotically approximately
linear (see Ref. [51] for the precise asymptotic bounds). The next section will explore
e-graphs, which rely heavily on this property.

6.2. Congruence Relations via E-graphs

Intuitively, a congruence relation is a binary relation ≡ f defined by a function f on an
algebraic space such that a ≡ f b if and only if f (a) = f (b). The formal definition will
vary depending on the particular algebraic space. In the context of an e-graph, a and
b are directed acyclic graphs (DAGs) of e-nodes (equality nodes), as defined below,
representing expressions and f is the evaluation of those expressions. A congruence
relation is by necessity an equivalence relation, so is symmetric (i.e. a ≡ f b⇔ b ≡ f a),
but in order to give directionality to e-graph construction, that symmetry is broken
through the introduction of a re-write rule. A re-write rule is a procedure where for a
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(a) DAG. (b) DAG with hash-consing. (c) E-graph.

(d) E-graph after (x × y)/z →
x× (y/z) re-write.

(e) E-graph after x/x → 1 re-
write.

(f) E-graph after x× 1→ x re-write.

Figure 6.1.: E-graph construction for expression (a× 2)/2, where e-nodes are represented by
circles and e-classes are represented by dashed rectangles.

subset of pairs related by the congruence relation a ≡ f b, one selects either a 7→ b or
b 7→ a.

Definition (DAG). A Directed Acyclic Graph (DAG) is a graph where edges are direc-
tional (i.e. they have arrows) and no contiguous path of arrows may be followed to
return to the same node (i.e. there are no loops). Note that an e-graph is not a DAG
due to hash consing.
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(a) E-graph after (trivial) e-node
selection in single e-node e-
classes.

(b) E-graph after lower right e-
class selection.

(c) E-graph
after final
e-class
selection.

Figure 6.2.: E-graph extraction for e-graph as constructed in Figure 6.1. E-classes before
selection are depicted by dashed rectangles.

The general procedure is that an e-graph is constructed by successive application
of the re-write rules, and then an optimised expression is extracted using a supplied
cost function. To elucidate this procedure before the formal definition, consider the
worked example used throughout Ref. [5] given by the simple expression (a× 2)/2,
which may be represented by the DAG in Figure 6.1 (a). A key feature of e-graphs
is hash consing, whereby sub-graphs are maximally re-used as shown in Figure 6.1
(b). Note that sub-graph identification is performed on the basis of e-nodes, which
includes both the nodes and their emanating edges (e.g. a× 4 wouldn’t re-use the ×
node but would re-use the a node). In order to perform re-writes, the notion of e-classes
(equivalence classes) is introduced so that all e-nodes within an e-class are congruent.
Figure 6.1 (c) depicts e-nodes within e-classes, noting that edges are from e-nodes to
e-classes so that re-writes can be cascaded. Figure 6.1 (d) – (f) depicts the e-graph after
successive re-writes have been applied.

Figure 6.2 depicts the extraction process of an optimised expression from the e-
graph as constructed in Figure 6.1. Extraction is performed by recursively selecting
the e-node within each e-class that has the minimum number of sub-DAG nodes.
Figure 6.2 (a) shows that selection within single e-node e-classes is trivial. Figure 6.2
(b) – (c) depicts the selection of childless e-nodes to extract the optimal expression
(a× 2)/2 = a. Of course, this simple example does little to demonstrate the power
of e-graphs, which presents itself where there are many competing and interacting
optimisation paths.

Definition (E-graph). Formally, an e-graph is a tuple (U, M, H) where:
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• U is a union-find data structure (see § 6.1) storing an equivalence relation over
e-class ids (an e-class is a set of equivalent e-nodes; an e-node is a function symbol
paired with a list of children e-classes),

• M is a map from e-class ids to e-classes; all equivalent e-class ids map to the same
e-class,

• H is a hash-cons (see Ref. [5]) mapping e-nodes to e-class ids.

A full set of optimised algorithms for working with e-graphs in this formal representa-
tion can be found in Ref. [5].

6.3. Tensor E-graphs

The following will introduce tensor e-graphs, which is an e-graph variant whereby each
e-node is a tensor expression E and the initial e-graph is the set of tensor expressions
representing the correlator C. The full tensor e-graph is built by repeatedly applying
to each e-node E the re-write rule given in Figure 6.3 to produce candidate common
subexpressions Ẽ1, Ẽ2.

Figure 6.3.: Tensor e-graph re-write rule for a tensor expression E, with σ ∈ S±|E| (signed

symmetric group1) permuting the index slots of E through action Eσ = E1E2 for
subexpressions E1, E2 related to child e-nodes through tensor expression canoni-
calisation Ek → Ẽk (see Chapter 4). E-nodes are notated by circles and e-classes are
notated by dashed rectangles.

In order to restrict the rather large class of possible re-writes E σ−→ Eσ = E1E2 to
sub-expressions that are likely to result in the identification of redundant operations,
introduce two conditions:

1. Both E1 and E2 must contain at least one summed index

1S±|E| is defined by the external wreath product Z2 o S|E| for symmetric group S|E|; see Ref. [62].
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2. At least one of E1 or E2 must contain at least one fully summed tensor.

For example, take E = εijkεlmnTijlTnmk for any rank-3 tensor T and consider the
sub-expressions E1 = εijkTijl and E2 = εlmnTnmk. The canonical forms of these sub-
expressions are Ẽ1 = εijkTijl = Ẽ2, noting that E2 → Ẽ2 introduces a relative minus sign
from the exchange of anti-symmetric indices, εlmn = −εnml. The signed permutation
σ keeps track of both the rearrangement of tensors εεTT → εTεT and the relative
sign induced by the tensor expression canonicalisation process. In this case, σ =

−(4 7)(5 8)(6 9)(7 9) using (signed) cycle notation. This re-write, as depicted in Figure
6.4, can be used to extract a common sub-expression Bkl = εijkTijl so that by permuting
the index slots of E by σ (i.e. ijklmnijlnmk→ −ijkijlnmlnmk) and discarding the index
slots summed in B, one may express E = −BklBlk.

Figure 6.4.: Tensor e-graph re-write rule for tensor expression E = εijkεlmnTijlTnmk with a rank-
3 tensor T. Common sub-expression Ẽ1 = εijkTijl only appears once in the e-graph,
enabling its re-use.

A tensor e-graph is constructed by repeated application of the re-write rule until
the saturation limit, where no further non-redundant re-writes may be performed, is
reached. Often, it is not computationally feasible to reach the saturation limit, and
the tensor e-graph construction process terminates after a set e-node limit has been
reached, or Algorithm 3 is employed.

After a tensor e-graph has been constructed, it remains to extract the optimal sub-
expression decomposition scheme (i.e. the desired computational strategy). One could
calculate the number of evaluation operations for each possible sub-expression de-
composition scheme, but the computational resources required is formally unbounded
(due to loops) and in practice far too large even for correlators of light nuclei. In order
to obtain an approximately optimal sub-expression decomposition scheme, consider
the cost function parameterised by (P ,S) for an e-node of sub-expression E:

cost(E ;P ,S) = −Ne max
{

Np −P − SNs
}

, (6.2)
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where Ne is the number of operations to evaluate E, Np is the number of e-node parents
from distinct e-classes, Ns is the number of external spinor indices of E, P is the parent
penalty, and S is the spinor penalty. To provide some justification for this choice of
cost function, consider the tensor e-graph fragment depicted in Figure 6.5, whereby
the expressions E and F have been re-written to use the common sub-expressions
Ẽ1, Ẽ2, F̃1, and F̃2. From Figure 6.5, this occurs when the number of excess parents
from distinct e-classes (Np − 1) of an e-node is maximised. In order to incentivise
further re-use, § 6.5 investigates the use of a generalised Np −P term for parameter
P that filters out e-nodes with only P parents from distinct e-classes. Further, the
cost function in Eqn. 6.2 is sensitive to the number of operations required to evaluate
a sub-expressions, since the total operation number savings scales as the product of
the number of times a sub-expression is re-used and how many operations it takes
to evaluate that sub-expressions. Finally, tensor expressions for correlators of non-
relativistic operators may have spinor indices ranging over only two values, rather
than four. In this case, the extraction process may ‘over-match’ a sub-expression with
an external spinor index given that the re-use could be using non-overlapping spinor
index values. To compensate for this issue, the cost function in Eqn. 6.2 introduces an
optional factor S that penalises any sub-expression with external spinor indices by
an amount controlled by S . For relativistic operators, one would assume that S = 0
produces the best results.

Figure 6.5.: Example e-graph fragment consisting of tensor expressions E and F.
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6.4. Tensor E-graph Implementation

The basis for the exploration of e-graphs is Ref. [5] and its corresponding open-source
software package written in the programming language Rust. Ref. [5] presents al-
gorithmic improvements over the traditional formulation of e-graphs in the context
of re-write driven compiler optimisations and program synthesis, but the software
package is extensible to many applications of e-graphs. An implementation of ten-
sor e-graphs has been written in order to obtain the results in § 6.5 using the Rust
programming language and linked to the existing C++ codebase using FFI (foreign
function interface). Initially, the implementation was written on top of the codebase of
Ref. [5], however it was later found that a direct implementation based on the same
design could produce higher performance tensor e-graph constructions. It is the latter
approach that was used to obtain the results in § 6.5.

It is typically infeasible to construct tensor e-graphs to the saturation limit for
all but the lightest nuclei due to computational resource constraints (CPU time and
memory). Using the conventional e-graph algorithm, a restriction such as an e-node
number limit is enforced so that the e-graph construction process terminates after a set
amount of computational resources has been exhausted. Since it is difficult to predict
the e-graph size (measured in the number of e-nodes) required to obtain a certain
quality of optimised expression, the following proposes an extension to the e-graph
algorithm referred to as the iterated e-graph algorithm (Algorithm 3).

In particular, Algorithm 3 would allow ‘interactive’ construction of e-graphs, where
a decision of computational resource investment could be made on the basis of the
cost function derivative, for example. It is also essential for efficiently obtaining the
results exploring (P ,S) space in § 6.5.

6.5. Results for Nuclear Correlators

The following explores a few basic results for the application of tensor e-graphs to
nuclear correlators. In particular, to provide a concrete example of the output of the
tensor e-graph process, consider the e-graph built from the dinucleon II operator until
the saturation limit. The extraction process using the cost function in Eqn 6.2 with
P = 1 and S = 0 (since dinucleon II is relativistic) yields for example the following
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Algorithm 3: Iterated E-graph Algorithm (Pseudo-code)
Input: Initial expression E
Output: Optimal extracted expression Ê
Data: Nodes per generation Gnodes, Max generations Gmax, Acceptable cost ĉ
egraph := construct_initial_egraph(E)
next_stop := Gnodes
for i = 1, . . . , Gmax do

while True do
perform_rewrite(egraph)
if is_saturated(egraph) then

Ê = extract(egraph)
stop

if size(egraph) ≥ next_stop then
Ê = extract(egraph)
if cost(Ê) ≤ ĉ then

stop

break

next_stop += Gnodes

two common sub-expressions:

B1(α
′, β′, γ′, δ′) = εabcεde f (Cγ5)αβ(Cγ5)γδ f P

α,~0(
~0, a, α′, d, β′, b, γ′) f N

β,~0
(~0, e, γ, c, δ′, f , δ),

(6.3)

B2(a′, b′, c′, d′, e′, f ′)

= (Cγ5)αβ(Cγ5)γδ(Cγ5)σρ(Cγ5)µν f P
α,~0(

~0, a′, γ, b′, σ, c′, ρ) f N
β,~0
(~0, d′, µ, e′, δ, f ′, ν).

(6.4)

Note that both B1 and B2 satisfy the two re-write restrictions since they both contain
the fully summed tensor (Cγ5)αβ, for example. The correlator for the dinucleon II
operator is optimally computed by first computing B1 and B2, and then contracting
the remaining indices.

To provide an illustration of some of the generic features of e-graph construction
using Algorithm 3, consider the construction of the tensor e-graph for the Helium-3
correlator. By extracting the optimal sub-expression decomposition scheme at each
generation, the number of operations to compute the e-graph optimised expressions is
plotted in Figure 6.6. A key feature of the tensor e-graph process as shown in Figure
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Figure 6.6.: Total correlator operations for Helium-3 as a function of generation using Algo-
rithm 3. Total correlator operations is given by the sum of the number of operations
required to compute the e-graph blocks (i.e. the extracted sub-expressions) and
the number of operations required to compute the overall correlator using these
extracted blocks. The number of operations required to compute the correlator for
Helium-3 without e-graphs (i.e. computing the tensor expressions given by the
hadron block formulation directly) is shown by the horizontal line as 881, 031, 168
operations.

6.6 is that the ratio of e-graph block operations to total correlator operations increases
with generation (i.e. with e-graph size) as more re-usable sub-expressions are found.

Figure 6.7 depicts the variation in performance for a selection of values in (P ,S)
space. Note here that there are only a limited number of ‘reasonable’ values for P
and S without filtering out all potential re-usable sub-expressions. One would expect
that the optimal choice of (P ,S) is relatively stable over a wide selection of nuclear
correlators, but it is left to future work to demonstrate this rigorously.
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Figure 6.7.: Total correlator operations for Helium-3 as a function of e-graph size at each
generation using Algorithm 3 for various (P ,S) values (see Eqn. 6.2). The number
of operations required to compute the correlator for Helium-3 without e-graphs
(i.e. computing the tensor expressions given by the hadron block formulation
directly) is shown by the horizontal line as 881, 031, 168 operations.



Chapter 7.

Prospects for Quantum Algorithms

This chapter offers a perspective on the potential applications of quantum combinato-
rial optimisation to accelerate nuclear correlation function calculations. The purpose is
certainly not to provide a complete algorithmic solution, but to provide some modest
improvements to the existing literature that may inspire future work. Quantum com-
binatorial optimisation uses quantum information processing to minimise functions
of combinatorial decision variables. The reader unfamiliar with quantum information
processing is encouraged to consult Refs. [63, 64]. The three primary analog quantum
frameworks used to solve optimisation problems are quantum annealing (QA) [65],
quantum adiabatic optimisation (QAO) [66], and the quantum approximate opti-
misation algorithm (QAOA) [67]. All of these frameworks are closely related (see
Ref. [68]), and algorithms within one framework can sometimes be formulated in
another without redesign.

The approach proposed here is an extension of Chapter 4 that uses a novel QAO
algorithm to perform redundant isomorph elimination of tensor expressions (or tensor
sub-expressions in the context of tensor e-graphs). § 7.1 provides a brief introduction
to quantum adiabatic optimisation and a general approach to formulate classical
combinatorial optimisation problems as QAO problems. § 7.2 walks through two
formulations of QAO for coloured graph isomorphism, and evaluates their relative
strengths and weaknesses. § 7.3 adapts the formulations in § 7.2 to address the
additional requirements of tensor expression isomorphism as discussed in Chapter 4.
Finally § 7.4 provides a pathway for applications to nuclear correlators, as well as
raises some concerns about resourcing and fidelity issues.

71
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7.1. Quantum Adiabatic Optimisation (QAO)

Adiabatic quantum computation has a lineage somewhat distinct from ‘circuit model’
unitary gate evolution quantum computation, with the first paper of Apolloni, et
al. appearing in 1989 [65] (i.e. the same year as Deutsch’s ‘circuit model’ paper
[69]). It should be noted that, for example, non-‘stoquastic’ adiabatic evolution (i.e.
Hamiltonians with only non-positive elements in the computational basis) can be
simulated in the ‘circuit model’ with only polynomial overhead [70].

Consider states in a d-dimensional Hilbert spaceH with d < ∞ and take H(t) to be
a slowly varying Hamiltonian. At each fixed t, there are d energy eigenstates of H(t),
{|Ek(t)〉}d−1

k=0 , such that:

H(t) |Ek(t)〉 = Ek(t) |Ek(t)〉 , (7.1)

where E0(t) ≤ · · · ≤ Ed−1(t). The quantum adiabatic theorem [70] roughly states
that under adiabatic evolution, an initial state |Ek(0)〉 evolves to the energy eigenstate
|Ek(T)〉 of the ‘final’ Hamiltonian H(T) in the limit as T → ∞. A more precise
statement of this fact can be found in Ref. [70]. One typically chooses k = 0 since the
convergence rate of an algorithm such as QAO will depend on the energy gap [71]:

min {|Ek(t)− Ek+1(t)|, |Ek(t)− Ek−1(t)|} . (7.2)

Under QAO, one engineers a slowly time-varying Hamiltonian:

H(s) = (1− s)H0 + sHT, (7.3)

where s : [0, T] → [0, 1] is monotonic such that s(0) = 0, s(T) = 1 (i.e. so that
H(s(0)) = H0 and H(s(T)) = HT). H0 is chosen to be an easily preparable state, and
HT is chosen to have groundstate corresponding to the minimum of a (classical) cost
function C. The decision variables of C are encoded into the computational basis states
ofH so that the measurement in the computational basis of the prepared state at s = 1
allows the argument minimising C to be read-off directly.
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7.2. QAO for (Coloured) Graph Isomorphism

As discussed in Chapter 4, coloured graph isomorphism is defined as follows.

Definition (Coloured Graph Isomorphism). Given a vertex set V isomorphic to [n] :=
{1, 2, . . . , n}, define graphs:

G(V)

:= {labelled simple (unweighted, undirected, single edge, no loops) graphs on V},

and ordered partitions (i.e. colourings of graphs in G(V)):

Π(V) := {[V1, . . . , Vr] | ∪̇jVj = V} =: {ordered partitions of V},

so that the pair (G, π) ∈ G(V)×Π(V) is referred to as a coloured graph. Two coloured
graphs (G1, π1), (G2, π2) ∈ G(V)×Π(V) are isomorphic if ∃γ ∈ Sn such that Gγ

1 = G2

and π
γ
1 = π2, where the action of γ on G1 (π1), denoted by Gγ

1 (πγ
1 ), permutes the

labels of G1 (π1). Note that (non-coloured) graph isomorphism is the special case
where one takes the trivial partition π = [V].

There is a significant body of work [71–77] that has explored quantum algorithms
for (non-coloured) graph isomorphism. The following will report the results of the
Refs. [71, 72] for (non-coloured) graph isomorphism, and then provide an adaption for
coloured graph isomorphism in each case.

In order to formulate an optimisation problem as a QAO problem, there are two
central choices: a qubit encoding of the classical decision variables, and a target
Hamiltonian HT with ground-state corresponding to the classical optimum through the
qubit encoding. In the case of (coloured or non-coloured) graph isomorphism testing
between graphs G1, G2, the classical decision variables correspond to a permutation
σ ∈ Sn such that Gσ

1 = G2 if G1 ∼ G2. Two possible qubit encodings of σ are explored
in Refs. [71, 72].

The encoding in Ref. [71] begins with the tuple σ = (σ1, . . . , σn) representing the
permutation where i→ σi ∈ {1, . . . , n}. Each element of the tuple is transformed into



74 Prospects for Quantum Algorithms

its corresponding binary string via:

σi =:
dlog2 ne

∑
j=1

σij2j. (7.4)

By promoting each element σij to a computational basis state, one arrives at the tuple
encoding of σ ∈ Sn in terms of ndlog2 ne qubits.

Alternatively, the encoding in Ref. [72] uses binary variables xi,j ∈ {0, 1} for
i, j ∈ {1, . . . , n} such that xi,j = 1 if iσ = j, and xi,j = 0 otherwise. This simpler, but
less efficient encoding of σ ∈ Sn uses n2 qubits1. After the promotion of each xi,j to a
computational basis state, this encoding will be referred to as the binary encoding.

Following Ref. [71] and the tuple encoding, a classical cost function, CG1,G2(σ), may
be written in terms of the tuple representation of σ ∈ Sn such that min{CG1,G2(σ)} = 0
iff. G1 ∼ G2 [71]:

CG1,G2(σ) =
n

∑
i=1

M

∑
j=n

δσi,j +
n−1

∑
i=1

n

∑
j=i+1

δσi,σj + ‖ρ(σ)AρT(σ)− A′‖p, (7.5)

where M = 2dlog2 ne, A (A′) is the adjacency matrix of G1 (G2), and ρ(σ) is the per-
mutation matrix of σ ∈ Sn with elements ρij(σ) = δi,σj . The entry-wise matrix p-norm

is defined by ‖L‖p :=
{

∑n
i=1 ∑n

l=1 Lp
il

}1/p
for an n × n matrix L with elements Lil.

The first term penalises σ 6∈ {1, . . . , n}n, the second term penalises σ 6∈ Sn, and the
third term penalises Gσ

1 6= G2. In order to be able to write down an explicit target
Hamiltonian, perform the algebraic re-writes:

δσi,σj =
dlog2 ne

∏
k=1

[
1− (σik − σjk)

2
]

, where σi =:
dlog2 ne

∑
k=1

σik2k (7.6)

δi,σj =
dlog2 ne

∏
k=1

[
1− (ik − σjk)

2
]

, where i =:
dlog2 ne

∑
k=1

ik2k, (7.7)

1The tuple encoding is still quite far away from an optimally parsimonious encoding given that the set
of all tuples has cardinality nn but the set of all permutations has cardinality only n!.



Prospects for Quantum Algorithms 75

so that:[
ρ(σ)AρT(σ)

]
il
= ρij(σ)AjkρT

kl(σ)

= ρij(σ)Ajkρlk(σ)

= δiσj Ajkδlσk

=
dlog2 ne

∏
m=1

[
1− (im − σjm)

2
]

Ajk

dlog2 ne

∏
m′=1

[
1− (lm′ − σkm′)

2
]

, (7.8)

and therefore:

‖ρ(σ)AρT(σ)− A′‖p

=

{
n

∑
i=1

n

∑
l=1

∣∣∣[ρ(σ)AρT(σ)
]

il
− A′il

∣∣∣p} 1
p

=

 n

∑
i=1

n

∑
l=1

∣∣∣∣∣∣
dlog2 ne

∏
m=1

[
1− (im − σjm)

2
]

Ajk

dlog2 ne

∏
m′=1

[
1− (lm′ − σkm′)

2
]
− A′il

∣∣∣∣∣∣
p

1
p

.

(7.9)

An additional modification required to make the Hamiltonian realisable on quan-
tum hardware is to select p = 2 and transform ‖·‖p → ‖·‖p

p (i.e. remove the
pth root to use ‖L‖p

p = ∑n
i=1 ∑n

l=1 Lp
il) such that the third term of the cost func-

tion reads ‖ρ(σ)AρT(σ) − A′‖2
2. The target Hamiltonian therefore takes the form

HT = HA + HB + HC, where:

HA = A
n

∑
i=1

M

∑
j=n

dlog2 ne

∏
k=1

[
1− (σik − jk)2

]
(7.10)

HB = B
n−1

∑
i=1

n

∑
j=i+1

dlog2 ne

∏
k=1

[
1− (σik − σjk)

2
]

(7.11)

HC = C
n

∑
i=1

n

∑
l=1

dlog2 ne

∏
m=1

[
1− (im − σjm)

2
]

Ajk

dlog2 ne

∏
m′=1

[
1− (lm′ − σkm′)

2
]
− A′il

2

.

(7.12)

The constants A,B, C provide some control over the energy spectrum of HT, as dis-
cussed in § 7.4. Alternatively, using the binary encoding described in Ref. [72], it is
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straightforward to write down an explicit quadratic cost function [72]:

CG1,G2(x) =
n

∑
i=1

(
1−

n

∑
j=1

xij

)2

+
n

∑
j=1

(
1−

n

∑
i=1

xij

)2

+ ∑
(i,j) 6∈E1

∑
(k,l)∈E2

xikxjl + ∑
(i,j)∈E1

∑
(k,l) 6∈E2

xikxjl, (7.13)

where E1 (E2) is the edge set for G1 (G2). The first two terms penalise x if it doesn’t
correspond to a permutation matrix, the third term adds a penalty if the permutation
maps edges not in G1 onto G2, and the final term adds a penalty if the permutation
doesn’t map edges from G1 onto G2. It’s then straightforward to write down an explicit
Hamiltonian H̃T = H̃A + H̃B, where:

H̃A = A
n

∑
i=1

(
1−

n

∑
j=1

xij

)2

+A
n

∑
j=1

(
1−

n

∑
i=1

xij

)2

(7.14)

H̃B = B ∑
(i,j) 6∈E1

∑
(k,l)∈E2

xikxjl + B ∑
(i,j)∈E1

∑
(k,l) 6∈E2

xikxjl. (7.15)

The motivation for including two distinct qubit encodings is that there is a trade-off
between qubit resources and target Hamiltonian complexity. The binary encoding uses
n2 qubits and has a quadratic Hamiltonian, whereas the tuple encoding uses ndlog2 ne
qubits and has a target Hamiltonian of degree 2dlog2 ne > 2.

Coloured graph isomorphism is a generalisation of non-coloured graph isomor-
phism where as well as preserving edge structure in mapping G1 →σ G2, there is
also a requirement to preserve colour structure: π1 →σ π2. Using the two previously
discussed formulations of (non-coloured) graph isomorphism for QAO, it is straight-
forward to generalise to coloured graph isomorphism by judicious additions to the
target Hamiltonians.
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For the tuple encoding, consider adding an extra term to the cost function given by:

Cπ1,π2
G1,G2

(σ)colour = ‖πσ
1 − π2‖

p
p

=
n

∑
i=1
|[ρ(σ)π1]i − [π2]i|

p

=
n

∑
i=1

∣∣ρij(σ)π1j − π2i
∣∣p

=
n

∑
i=1

∣∣∣δi,σj π1j − π2i

∣∣∣p
=

n

∑
i=1

∣∣∣∣∣∣
dlog2 ne

∏
k=1

[
1− (ik − σjk)

]
π1j − π2i

∣∣∣∣∣∣
p

, (7.16)

which penalises all σ ∈ Sn such that πσ
1 6= π2. By making the same choice p = 2, the

fourth term in the tuple target Hamiltonian can be written as:

HD = D
n

∑
i=1

dlog2 ne

∏
k=1

[
1− (ik − σjk)

]
π1j − π2i

2

. (7.17)

For the binary encoding, consider adding an extra term to the cost function given by:

Cπ1,π2
G1,G2

(x)colour =
n

∑
i=1

(
π2i −

n

∑
j=1

xijπ1j

)2

, (7.18)

which again penalises all σ ∈ Sn such that πσ
1 6= π2. This straightforwardly leads to

an additional term in the binary target Hamiltonian given by:

H̃C = C
n

∑
i=1

(
π2i −

n

∑
j=1

xijπ1j

)2

. (7.19)

7.3. QAO for Tensor Expression Isomorphism

Tensor expression isomorphism is equivalent to a restriction of coloured graph iso-
morphism where edge structure is preserved from G1 →σ G̃2, and colour structure is
preserved from π1 →σ π̃2, and G̃2 (π̃2) is related to G2 (π2) by at most the exchange
of identical tensors (see Chapter 4 for further details). Consider for example tensor
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expressions given by E1 = εijkεlmnTikmTjln and E2 = εijkεlmnTlnjTmik. Transform each
into their corresponding coloured graph using the process outlined in Chapter 4:

E1 −→ (G1, π1) =

0
1
2
3
4
5

6
7
8
9
10
11

(7.20)

E2 −→ (G2, π2) =

0
1
2
3
4
5

6
7
8
9
10
11 .

(7.21)

Define the tensor equivalence tuple, T ∈ {1, . . . , T}T, such that Ti = Tj iff. the ith and
jth tensor are identical. In the above example, T = (0, 0, 1, 1). Define the tensor index
tuple, I ∈ ∏t{1, . . . , n}|It|, where Ii is the set of vertices associated with the ith tensor
of E1. In the above example, I = ((0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11)). For the binary
encoding, define the following extra term in the target Hamiltonian:

H̃tensor = −B
T

∑
t=1

T

∑
t′=t+1

δTt,Tt′
|It|

|It|

∏
i=1

xIti,It′ i
. (7.22)

This set of Hamiltonian terms is chosen to precisely cancel the terms in H̃B (Eqn. 7.15)
that penalise G2 → G̃2 where G̃2 is related to G2 by the exchange of identical tensors.
In the example above, H̃tensor = −3B[x0,3x1,4x2,5 + x6,9x7,10x8,11].

7.4. Application to Nuclear Correlation Functions and

Open Questions

Sections § 7.2 – § 7.3 have proposed an approach to perform tensor expression isomor-
phism testing using quantum adiabatic optimisation, with qubit resource scaling that
is quadratic in the number of index slots in each expression. For reference, there are
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47 index slots in the tensor expressions for helium-3, so the resource requirements
are well beyond currently available hardware [78]. One of the key indicators of QAO
performance is the density of energy levels of the target Hamiltonian, with sparse
energy levels allowing smaller T (or equivalently coarser s discretisation) to achieve
the same preparation fidelity. One could conjecture that the inherent permutation
symmetry contained in the target Hamiltonians in Eqns. 7.10 – 7.15 will result in highly
degenerate energy spectra and hence poor adiabatic performance. Constants A, B, C,
and D offer limited control over energy spectrum density, but it may be possible to
engineer degeneracy breaking terms to improve performance. It should be noted that
this approach to isomorphism testing is resilient to both preparation and measurement
errors since σ ∈ Sn measured in the computational basis can be checked efficiently by
computing Gσ

1 .

One possible application to nuclear correlators is to follow the procedure proposed
in Chapter 4 to perform redundant isomorph elimination on nuclear correlator tensor
expressions, however that procedure doesn’t present a significant bottleneck in the nu-
clear correlator pre-processing stage. Algorithmic modification would be required to
perform canonicalisation as opposed to isomorphism testing. Tensor e-graph construc-
tion, as discussed in Chapter 6, is dominated by tensor expression canonicalisation, so
quantum information processing has the potential to accelerate this process, provided
that the resource and energy spectrum density issues are resolved.
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Chapter 8.

Summary and Outlook

This thesis has explored a number of approaches to accelerate the numerical evalu-
ation of correlation functions of multi-hadron systems in the context of lattice QCD.
Chapter 2 introduced a set of multi-nucleon interpolating operators that were used
as benchmarks in subsequent chapters. Chapter 3 presented a number of algorithms
from the literature, of which the hadron block method and index list technique form
a foundation for the novel methods developed subsequently. A set of benchmarks
of the hadron block method against the naïve approach of Chapter 2 showed a clear
performance benefit for A ≥ 2, as well as demonstrating that the block expression
evaluation time dominates the correlator evaluation CPU time for A / 4 on a 643

lattice volume.

Chapter 4 developed a general approach for removing redundant isomorphs from
a large collection of tensor expressions through graph canonicalisation. A high-level
overview of McKay’s Individualisation-Refinement Algorithm is presented, followed
by a general procedure for the transformation of tensor expressions into coloured
graphs via tensor network notation. Also described was a software package developed
to symbolically canonicalise tensor expressions using graph canonicalisation provided
by McKay’s nauty software package. The notion of ‘half nucleon’ blocks, which is the
decomposition of nucleon block expressions into two definite-momentum pieces, was
proposed and its consequences explored through a presentation of tensor expression
statistics.

Chapter 5 presented factor trees, which optimally store a ‘factorised’ and degeneracy-
free form of a nuclear correlator’s tensor expressions. Linearised factor trees were
presented as a representation of (abstract) factor trees that is optimised for cache
performance. A selection of benchmarks was presented for light nuclei that showed
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between one and two orders of magnitude improvement over correlator calculation
via (only) hadron blocks. Memory usage limits the applicability of this method to
heavier nuclei, although future work could extend the current domain significantly.

Chapter 6 developed the tensor e-graph method, which is a novel adaption of
e-graph techniques to efficiently extract frequently-used sub-expressions from a large
collection of tensor expressions. After a demonstration of the approach used for generic
e-graphs, the tensor re-write rule was developed with a set of heuristic restrictions
that improve the efficiency of e-graph construction. A parameterised cost function is
asserted with motivation, and its extraction performance is measured over a patch
of parameter space for a helium-3 correlator. In general, the pre-processing stage for
tensor e-graphs requires fewer computational resources in comparison to factor trees,
but thus far offers more limited performance improvements for correlator calculations.
Future work on extraction heuristics is likely to offer further correlator speed-ups.

Chapter 7 presented a prospective programme of work that endeavours to establish
the usefulness (or otherwise) of adiabatic quantum algorithms for nuclear correlator
calculations. An algorithm for tensor expression isomorphism testing using quantum
adiabatic optimisation was presented. It is left to future work to extend this algorithm
to isomorphism partitioning and canonicalisation so that it may be used in, for example,
tensor e-graph construction. Basic resource estimates determined that no current
hardware would be able to execute the adiabatic tensor expression isomorphism
algorithm for nuclear correlator expressions of A ≥ 3 nucleons.



Appendix A.

Coarsest Equitable Refinements

Continue the worked example in Chapter 4 by applying Algorithm 1 to the second
child of π0. First set τ′ = [2 | 0, 4 | 1, 3, 5] = [V′1, V′2, V′3], and compute B =

{(2, 1), (2, 3), (3, 1), (3, 2)} by computing Dij in Table A.1. Then by selecting (k, l) =
(2, 1) (the minimal element of B by lexicographic order), conclude [X1, X2] = [4 | 0],
and so update τ′ = [2 | 4 | 0 | 1, 3, 5]. Next update B = {(4, 1), (4, 2), (4, 3)} by
computing Dij in Table A.2, and by selecting (k, l) = (4, 1) conclude [X1, X2] = [3 |
1, 5]. By updating τ′ = [2 | 4 | 0 | 3 | 1, 5], update B = {(5, 2), (5, 3)} from Table A.3,
set X = [5, 1], and update τ′ = [2 | 4 | 0 | 3 | 5 | 1]. Since the process has arrived at a
discrete partition, the algorithm terminates by concluding that the coarsest equitable
refinement of [2 | 0, 4 | 1, 3, 5] is π2 = [2 | 4 | 0 | 3 | 5 | 1].

i
Dij 1 2 3

j
1 { 0 } {1, 0} {1, 0, 1}
2 { 1 } { 0, 0 } {2, 1, 0}
3 { 2 } {2, 1} { 0, 0, 0 }

Table A.1.: Partition degree consistency table for τ′ = [2 | 0, 4 | 1, 3, 5] = [V ′1, V ′2, V ′3]. Boxes
correspond to |Dij| > 1⇔ (i, j) ∈ B.

Next, apply Algorithm 1 to the third child of π0. First set τ′ = [4 | 0, 2 | 1, 3, 5] =
[V′1, V′2, V′3], and compute B = {(3, 1), (3, 2)} by computing Dij in Table A.4. Then by
selecting (k, l) = (3, 1) (the minimal element of B by lexicographic order), conclude
[X1, X2] = [3, 5 | 1], and so update τ′ = [4 | 0, 2 | 3, 5 | 1]. Next update B = ∅
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i
Dij 1 2 3 4

j

1 { 0 } { 0 } { 1 } {1, 0, 1}
2 { 0 } { 0 } { 0 } {1, 0, 0}
3 { 1 } { 0 } { 0 } {1, 1, 0}
4 { 2 } { 1 } { 2 } { 0, 0, 0 }

Table A.2.: Partition degree consistency table for τ′ = [2 | 4 | 0 | 1, 3, 5] = [V ′1, V ′2, V ′3, V ′4].
Boxes correspond to |Dij| > 1⇔ (i, j) ∈ B.

i
Dij 1 2 3 4 5

j

1 { 0 } { 0 } { 1 } { 0 } { 1,1 }
2 { 0 } { 0 } { 0 } { 0 } {1, 0}
3 { 1 } { 0 } { 0 } { 1 } {1, 0}
4 { 0 } { 0 } { 1 } { 0 } { 0, 0 }
5 { 0 } { 1 } { 1 } { 0 } { 0, 0 }

Table A.3.: Partition degree consistency table for τ′ = [2 | 4 | 0 | 3 | 1, 5] = [V ′1, V ′2, V ′3, V ′4, V ′5].
Boxes correspond to |Dij| > 1⇔ (i, j) ∈ B.

by computing Dij in Table A.5, and hence terminate and conclude that the coarsest
equitable refinement of [4 | 0, 2 | 1, 3, 5] is π3 = [4 | 0, 2 | 3, 5 | 1].

i
Dij 1 2 3

j
1 { 0 } {1, 0} {1, 0, 1}
2 { 1 } { 0, 0 } {2, 1, 0}
3 { 2 } {2, 1} { 0, 0, 0 }

Table A.4.: Partition degree consistency table for τ′ = [4 | 0, 2 | 1, 3, 5] = [V ′1, V ′2, V ′3]. Boxes
correspond to |Dij| > 1⇔ (i, j) ∈ B.

Next, compute the child nodes of pi3 = [4 | 0, 2 | 3, 5 | 1] (the only non-discrete
child of π0). Applying the target cell selector to π3 yields T(G, π0, π3) = [0, 2], and so
the candidate child nodes for π3 are [4 | 0 | 2 | 3, 5 | 1], and [4 | 2 | 0 | 3, 5 | 1]. Apply
Algorithm 1 to the first child τ′ = [4 | 0 | 2 | 3, 5 | 1] by computing B = {(4, 2), (4, 3)}
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i
Dij 1 2 3 4

j

1 { 0 } { 0, 0 } { 0, 0 } { 1 }
2 { 0 } { 1, 1 } { 1, 1 } { 2 }
3 { 0 } { 1, 1 } { 0, 0 } { 0 }
4 { 1 } { 1, 1 } { 0, 0 } { 0 }

Table A.5.: Partition degree consistency table for τ′ = [4 | 0 | 2 | 3, 5 | 1] = [V ′1, V ′2, V ′3, V ′4].
Boxes correspond to |Dij| > 1⇔ (i, j) ∈ B.

from Table A.6, and then use X = [5 | 3] to conclude that π4 = [4 | 0 | 2 | 5 | 3 | 1].
Finally, apply Algorithm 1 to the second child τ′ = [4 | 2 | 0 | 3, 5 | 1] by computing
B = {(4, 2), (4, 3)} from Table A.7, and then use X = [3 | 5] to conclude that π5 = [4 |
2 | 0 | 3 | 5 | 1].

i
Dij 1 2 3 4 5

j

1 { 0 } { 0 } { 0 } { 0, 0 } { 1 }
2 { 0 } { 0 } { 1 } {1, 0} { 1 }

3 { 0 } { 1 } { 0 } {0, 1} { 1 }

4 { 0 } { 1 } { 1 } { 0, 0 } { 0 }
5 { 1 } { 1 } { 1 } { 0, 0 } { 0 }

Table A.6.: Partition degree consistency table for τ′ = [4 | 0 | 2 | 3, 5 | 1] = [V ′1, V ′2, V ′3, V ′4, V ′5].
Boxes correspond to |Dij| > 1⇔ (i, j) ∈ B.

i
Dij 1 2 3 4 5

j

1 { 0 } { 0 } { 0 } { 0, 0 } { 1 }
2 { 0 } { 0 } { 1 } {0, 1} { 1 }

3 { 0 } { 1 } { 0 } {1, 0} { 1 }

4 { 0 } { 1 } { 1 } { 0, 0 } { 0 }
5 { 1 } { 1 } { 1 } { 0, 0 } { 0 }

Table A.7.: Partition degree consistency table for τ′ = [4 | 2 | 0 | 3, 5 | 1] = [V ′1, V ′2, V ′3, V ′4, V ′5].
Boxes correspond to |Dij| > 1⇔ (i, j) ∈ B.
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