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Abstract
1.	 Deciding when to protect threatened species habitat when complete knowl-

edge about the habitat extent is uncertain is a common problem in conserva-
tion. More accurate habitat mapping improves conservation outcomes once that 
habitat is protected. However, delaying protection to improve accuracy can lead 
to species decline or, at worst, local extinction when threats to that habitat con-
tinue unabated before protection is implemented. Hence, there is a trade-off 
between gaining knowledge and taking conservation action.

2.	 We quantified this trade-off and determined the optimal time to spend learning 
about a species' habitat before protecting that habitat. We used a range of hy-
pothetical learning curves to model improvements in the accuracy of predicted 
habitat over time, and receiver operating characteristic (ROC) curves to model 
the corresponding increase in the proportion of habitat protected. We used 
rates of habitat loss to model the impact of delaying habitat protection and de-
rived analytical solutions to the problem for different types of learning curves.

3.	 We illustrate our approach using two threatened species, the koala Phascolarctos ci-
nereus in Australia and northern abalone Haliotis kamtschatkana in Canada. Our ap-
proach confirms that when impacts of threatening processes are incurred rapidly, the 
need for timely protection is high, and the optimal time to spend learning is short for 
all learning curves. When the rate of habitat loss is low, we benefit from better habitat 
identification, and the optimal time to protect is sensitive to assumptions about how 
we learn and the proportion of non-habitat we are willing to protect unnecessarily.

4.	 Navigating the trade-off between information gain and timely action is a common 
problem in conservation. By optimizing the trade-off between the benefits of im-
proving mapping accuracy and the costs of delaying protection, we provide guide-
lines on the effective allocation of resources between habitat identification and 
habitat protection. Importantly, by explicitly modelling this trade-off with a range of 
learning curves and estimates of the rates of habitat loss or other threatening pro-
cesses, we can predict the optimal time to spend learning even when relatively little 
is known about a species and its habitat.
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1  |  INTRODUC TION

Protection of habitat from the impact of threatening processes is 
the single most important action for conserving species (Leclère 
et  al.,  2020). However, designating habitat for protection is difficult 
and controversial due to competing interests for land and natural 
resources. Ensuring that only areas critical to the recovery and per-
sistence of species are protected can help minimize conflict and reduce 
the costs of establishing and managing protected areas (Bohorquez 
et al., 2019). Greater accuracy of habitat identification can improve the 
effectiveness of habitat protection and reduce the likelihood of unnec-
essarily protecting the wrong places. However, delays in conservation 
action can have severe consequences, including the irreversible loss of 
species (Martin et al., 2012; Naujokaitis-Lewis et al., 2018).

Knowing when we have sufficient information on species or 
threats to switch focus to implementation of management actions 
is a common challenge in conservation. Additional knowledge to in-
form decision-making should be balanced with the need for timely re-
sponses to ensure improved outcomes for biodiversity (Lindenmayer 
et al., 2013; Martin et al., 2012). For management actions that can be 
easily changed, an adaptive management framework may be useful in 
balancing this trade-off (Williams, 2011). However, some actions are 
irreversible or cannot be easily changed with improved knowledge. 
Actions that require changes in policies or regulations, such as the es-
tablishment of protected areas, legal designation of critical habitats for 
listed species or adoption of financial incentive schemes for private 
land conservation, are difficult, costly to modify and often controver-
sial, and therefore potentially irreversible in practice (Pindyck, 2002). 
Furthermore, deciding not to protect an area may be irreversible 
once the area has been converted to other land uses (Perrings & 
Brock, 2009). Therefore, for those actions, striking the optimal balance 
between the need for better information and the need to act quickly is 
important for maximizing conservation outcomes and minimizing the 
potential political and economic costs of habitat protection.

Decision science can help optimize the trade-off between the need 
for accuracy and for timely action regarding the protection of species 
habitat, particularly for controversial decisions that are likely to be 
contested. Decision science approaches have been increasingly used 
by government agencies and conservation organizations to inform 
decisions about conservation and resource management (e.g. Chadès 
et al., 2019; Pascal et al., 2020; Runge et al., 2020). The application of 
decision science to determine when to prioritize information gain over 
management action has been explored within the context of detec-
tion and control of invasive species (Baxter & Possingham, 2011), land 
acquisition (McDonald-Madden et al., 2008), design of protected area 
networks (García-Barón et al., 2021; Grantham et al., 2009), threat-
ened species management (Chadès et al., 2008) and designation of 
critical habitats for listed threatened species (Martin et  al.,  2017). 

However, the modelling approaches used in these studies require 
substantive data inputs or high levels of technical expertise that may 
not be readily available (Field et al., 2007; Marescot et al., 2013). For 
example, Martin et al. (2017) used habitat suitability and population 
models to estimate the optimal time to identify critical habitat for 
northern abalone in Canada. Data required to develop such models 
are often not available for many species, hence the need to delay 
protection to collect more data. Simpler tools or decision rules are 
needed to assist managers in deciding how long to spend on learning 
before taking management action.

Here, we used a decision science approach to determine the op-
timal time to spend on research before taking action when the action 
is irreversible, either technically or in practice. We used a range of 
hypothetical learning curves and estimated rates of threatening pro-
cesses to predict the optimal amount of time to spend learning be-
fore designating protected habitat, and applied our approach to two 
species considered to be at risk of extinction: the koala Phascolarctos 
cinereus in Australia and the northern abalone Haliotis kamtschat-
kana in Canada. Our method estimates the optimal amount of time 
to allocate to primary data collection for habitat identification be-
fore protecting habitat when there is insufficient information to de-
velop habitat or population models, for example, at the start of a 
new research and conservation programme.

2  |  MATERIAL S AND METHODS

2.1  |  Problem definition

We consider the scenario wherein populations of a species in a given 
region are declining, and the relevant government agency has a legal 
responsibility to identify and designate the species' habitat for pro-
tection. The aim is to prevent declines by protecting as much of the 
species' habitat, and the populations within it, as possible. We as-
sume that the resources needed for designation will be made avail-
able to meet this legal requirement, and that once designated, the 
habitat and the populations within are protected against threats and 
no further action is necessary.

We modelled the area of species' habitat that is identified and pro-
tected at the time of designation as a response to the dynamics of two 
variables: (a) the amount of habitat available (xH) and (b) the accuracy (a) 
of the habitat model used for identification (Figure 1). Until designation 
occurs, the species and its habitat remain unprotected and vulnerable to 
threats, leading to a decrease in population or amount of habitat avail-
able for protection over time. Designating early helps prevent further 
declines and maximize the area of species' habitat protected. However, 
imperfect knowledge about species and their habitat requirements leads 
to errors in habitat identification, resulting in the unintended exclusion 

K E Y W O R D S
critical habitat, decision science, habitat loss, map accuracy, optimal timing, protected areas, 
threatened species, uncertainty



724  |   Methods in Ecology and Evolu
on CAMACLANG et al.

of portions of the species' habitat (i.e. false-negative errors) and/or the 
unnecessary inclusion of non-habitat areas (i.e. false-positive errors; 
Fielding & Bell, 1997). It may therefore be desirable to delay designation 
and collect more data to improve the accuracy of habitat models. As ac-
curacy improves with learning, the ability to correctly identify species' 
habitat increases, thus reducing false-negative and false-positive errors. 
Improved accuracy results in a greater proportion of the species' habitat 
that is correctly protected than if designation occurred immediately, and 
reduces the associated social or economic costs of unnecessary desig-
nation, which may be important considerations in the context of limited 
budgets and competing demands for space and natural resources.

2.2  |  State model and objective

Maximizing the area of a species' habitat that is protected requires 
determining the value of the control variable—the amount of time 
to spend learning—that optimizes the trade-off between improv-
ing accuracy and minimizing habitat loss. To determine the optimal 
time to spend learning (t*) before designating habitat, we consider a 
set of sites that are either habitat (H) or matrix (M) (Figure 1). Here, 
we define habitat as having the conditions and resources that allow 
a species to occupy a site or location (Hall et al., 1997)—that is, all 
areas that are suitable and are needed for the population to persist, 

F I G U R E  1  Effect of improved accuracy and habitat loss over time on the area of species' habitat protected at designation, expressed as a 
proportion of the initial habitat area available. To achieve the most benefits for conservation, we need to determine the optimal amount of 
time to spend learning that maximizes the area of habitat protected
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including areas required for connectivity between patches or to 
buffer against edge effects, are considered as part of the ‘habitat’ 
for that species, while the matrix consists of the surrounding non-
habitat areas that are unsuitable for the species (Fahrig, 2001).

When designation occurs, areas presumed to be habitat, based 
on information available at the time, are protected (P). The conser-
vation objective of maximizing the area of habitat protected at des-
ignation can be expressed as.

where xH∩P(t) represents the total area (x) of habitat that is correctly 
identified and protected (H∩P) if designation occurs at time t. The value 
of t that satisfies Equation 1 is the optimal time to spend learning before 
designating protected habitat (t*). To find this optimal time, we need to 
determine how xH∩P changes over time due to learning and habitat loss.

2.3  |  Model dynamics

2.3.1  |  Improved accuracy

We assumed that knowledge of the habitat of a species improves over 
time as more data are collected—that is, that the accuracy (a) of habi-
tat models improves over time with more research. In the absence of 
information about the rate at which we gain this knowledge, we used 
a range of hypothetical learning curves (Table 1; Figure 2a) to model 
the change in a as a function of the time spent learning. We used func-
tions similar in shape and value ranges as those in Martin et al. (2017), 
which were demonstrated to encompass empirical estimates of a for 
several bird and mammal species (Martin et al., 2017). We used a lin-
ear function to represent a proportional increase in model accuracy 
with the amount of time spent learning. We used hyperbolic curves to 
describe the rate of learning about species, such as habitat specialists, 
for which reasonably high model accuracy may be achieved quickly 
with relatively little investment (Franklin et  al.,  2009; Stockwell & 
Peterson, 2002). Finally, we used s-shaped or sigmoid curves to rep-
resent slow initial rates of learning followed by more rapid increase, 
which may occur once some threshold number of species observa-
tions has been reached. This may be more likely for widely distributed 
or more cryptic species for which evaluating habitat suitability may be 
more difficult or require more data (Franklin et al., 2009).

We used receiver operating characteristic (ROC) curves (Figure 2b) 
of the form δ = β1/a to model how map accuracy (a) influences the pro-
portion of the total habitat area correctly identified and protected 

(true-positive rate, δ), where β represents the proportion of non-habitat 
matrix incorrectly identified as habitat (false-positive rate). The total area 
of a species' habitat that is correctly protected at time t is determined by:

where xH is the total area of habitat available. We set the false-positive 
rate β to a constant value that represents the decision-maker's toler-
ance for the amount of non-habitat unnecessarily protected through 
designation. Setting higher β values will result in higher δ values for the 
same value of a and therefore greater conservation benefit, but poten-
tially at higher financial costs or other social or political consequences. 
In contrast, with low β values, greater map accuracy and therefore 
more time spent learning is required to achieve the same δ (Figure 2b). 
In this way, β acts as a constraint that represents the costs—including 
non-monetary costs—of incorrect designation that a decision-maker is 
willing to tolerate in the effort to protect the species and its habitat.

Receiver operating characteristic curves have been used to describe 
the accuracy of species habitat models, with the area under the ROC 
curve (AUC) as a relative measure of the predictive performance of the 
model (Pearce & Ferrier, 2000). AUC values range from 0.5 for a model 
that fails to discriminate between habitat and non-habitat areas (i.e. lit-
tle or no better than a random classification), to 1.0 for perfect discrim-
ination (Fielding & Bell, 1997; Pearce & Ferrier, 2000). The AUC for the 
ROC curves used here can be calculated as AUC(t)=a(t)/(a(t)+1) (Baxter 
& Possingham, 2011), which yields an AUC value of 0.5 when a(t) = 1. 
Therefore, to simulate a random habitat designation when little or no 
information is initially available, we defined the learning curve functions 
(Table 1) such that a = 1 at time t = 0, before any learning occurs.

2.3.2  |  Ongoing habitat loss

When protection is delayed to improve accuracy, the species and its 
habitat are vulnerable to ongoing threats. We used an exponential 
decay function to model habitat loss over time as proportional to the 
current area, according to:

where λ is the proportional rate of habitat loss (Figure 3). The total area 
of habitat available at the time of designation is therefore predicted by:

(1)max
t ∈ [0,T]

xH∩P (t) ,

(2)xH∩P (t) = � (t) ⋅ xH (t) ,

(3)dxH

dt
= − �xH ,

(4)xH (t) = xH (0) e−�t ,

General equation Curve type Shape parameters da

dt

a (t) = mt + 1 Linear m = 9∕50 m

a (t) =
bt

t + m
+ 1

Hyperbolic 1)m = 1, b = 9.25 2)m = 5, b = 10 bm

(t+m)
2

a (t) =
b

1 + (b − 1) e−mt
Sigmoid 1)m = 0.15, b = 10 

2)m = 0.10, b = 10.75

be−mt (b − 1)m
(

1+e−mt (b−1)
)2

TA B L E  1  Hypothetical learning curves 
that model the change in information 
accuracy (a) over time (t)
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where xH(0) is the area of species' habitat initially available (henceforth, 
‘initial habitat area’) at the time when the need to designate habitat is 
first recognized (i.e. t = 0).

2.4  |  Trade-off between improving accuracy and 
minimizing habitat loss

When we account for both improved accuracy and habitat loss over 
time, the area of habitat designated at time t becomes:

Finding t* requires knowledge of the initial habitat area, xH(0), which 
we do not know. However, as xH(0) is a constant, maximizing the pro-
portion of the initial habitat area that is protected, or, xH∩P(t)/xH(0), also 

maximizes the value xH∩P(t). We can express the objective function in-
stead as:

where s(t)=xH∩P(t)/xH(0). The optimal time to spend learning (t*) can 
then be determined by:

for different functions of a(t), where values of λ and β reflect context-
specific estimates of the rate of habitat loss and the rate of false-
positive errors acceptable to the decision-maker, respectively.

2.5  |  Analytical solution

The optimal time (t*) can be determined numerically by calculating 
s(t) for each tϵ[0,T] to find the value of t that maximizes s(t) (Figure 3). 
For some learning curve functions, such as those used here (Table 1), 
t* may also be found analytically (Supporting Information). For each 
type of learning curve, a(t), and its derivative, da/dt, the optimal time 
to designate habitat for protection is:

(5)xH∩P (t) = �
1

a(t)
⋅ xH (0) e−�t .

(6)max
t ∈ [0,T]

s (t) = �
1

a(t)
⋅ e−�t ,

(7)t∗ = arg max
t ∈ [0,T]

�
1

a(t)
⋅ e−�t ,

Linear t∗ =

⎧

⎪

⎪
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⎪

⎪

⎩

�

−
mln𝛽

𝜆
−1

m
, 0<𝜆< −mln𝛽

0, 𝜆≥ −mln𝛽

T , 𝜆≤0

,

F I G U R E  2  Hypothetical curves modelling (a) the increase in the 
accuracy, a, of habitat identification over time as learning occurs, 
and (b) the rate of true positives, δ, relative to the rate of false 
positives, β, for different values of a, based on ROC curves of the 
form δ = β1/a
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F I G U R E  3  Proportion of initial habitat area correctly identified 
and protected over time when no habitat loss is occurring (black 
solid line) and when habitat area is decreasing by λ = 0.02 (red 
solid line), assuming a linear learning curve and false-positive 
rate β = 0.5. The optimal time, t*, is the amount of time to spend 
learning that maximizes the proportion of initial habitat area that is 
correctly identified and protected
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where b and m are parameters that determine the shape of the learning 
curve (Table 1).

2.6  |  Accounting for uncertainty in how we learn 
about habitat

So far, we have determined the optimal amount of time to spend 
learning for a range of plausible learning curves. However, in prac-
tice, determining which learning curve best represents the increase 
in accuracy of our habitat model over time can be difficult with-
out prior knowledge about the species and its habitat use. When 
we use the wrong learning curve to determine the optimal time to 
spend learning—for example, if we used a sigmoid curve to esti-
mate t* when the true learning curve is hyperbolic—designation of 
habitat for protection may occur too early or too late, resulting in a 
lower proportion of initial habitat area correctly designated due to 
lower map accuracy or habitat loss. To account for this uncertainty, 
we propose the use of the minimax regret decision rule (Kouvelis 
& Yu, 1997) to identify which learning curve minimizes the worst 
possible consequence, or regret, of using the wrong learning curve. 
Here, we define regret (Δsij) as the proportion of species' habitat 
we might fail to protect when we assume learning occurs following 
curve j when the true learning curve (a(t)) is i, relative to what we 
could protect when we know the true learning curve. That is,

where t*
i and t*

j are the optimal time to spend learning before desig-
nating habitat for each learning curve i or j, respectively. The function 
s(t*

i | a(t) = i) gives the proportion of initial habitat area that would be 
protected when we designate at the optimal time for the correct learn-
ing curve i, while s(t*

j | a(t) =  i) is the proportion protected when we 
designate at the optimal time for learning curve j instead.

For each learning curve under consideration, we used the ana-
lytical solutions to determine t* for a given λ and β. For each learning 
curve j, we then identified the maximum regret of using that curve 
across the different scenarios of true learning curve i, and deter-
mined which learning curve j will result in the least maximum regret:

2.7  |  Designating protected habitat areas for 
koalas and northern abalone

We demonstrate the use of the analytical solutions to determine 
the optimal time to spend learning before protecting habitat for two 
threatened species, the koala in South East Queensland, Australia, 
and the northern abalone in the west coast of Canada. Given the lack 
of information about the rates of learning for either species or the 
rates of false-positive errors considered acceptable, we used a range 
of hypothetical learning curves (Table 1) and β values of 0.2 and 0.5.

The koala is a charismatic marsupial endemic to eastern Australia, 
and is currently listed as vulnerable in Australia. Declines in koala 
populations have been attributed primarily to habitat loss and frag-
mentation, either directly through the loss of food resources or indi-
rectly through higher incidences of vehicle strikes and dog attacks at 
higher land-use intensities (Natural Resource Management Ministerial 
Council, 2009). There is also some evidence to suggest that disease 
mortality in koalas may be partially attributed to increased physiolog-
ical stress and reduced body condition resulting from habitat loss and 
fragmentation (McAlpine et al., 2017). We looked at identifying and 
designating protected habitat areas for koala populations in the Koala 
Coast, an area in southeast Queensland with a high concentration of 
koalas (Rhodes et al., 2011). The Koala Coast is currently under threat 
from habitat loss and urbanization (Rhodes et  al.,  2011); between 
1997 and 2003, an estimated 4.7% of koala habitat within this area 
was lost (Preece, 2007). Surveys conducted between 1996 and 2008 
also indicate a decline in the koala populations in this region. We de-
rived a value of λ = 0.008 from the estimated rate of habitat loss, and 
used this value to determine the optimal amount of time that could be 
spent learning before identifying habitat areas for protection.

The northern abalone is a marine mollusc found along the west 
coast of North America, and is listed as endangered in Canada. The 
northern abalone has suffered considerable population declines due to 
commercial fishing during the last century, resulting in fishery closures 
in the 1990s (Sloan & Breen, 1988). However, populations continue to 
decline due to illegal harvest, or poaching, with instantaneous poach-
ing mortality estimated to range from 0.1 to 0.7 (Campbell,  2000), 
corresponding to about 10%–50% mortality per year. Here, we as-
sumed that (a) poaching mortality is directly proportional to the area 
poached and (b) designating abalone habitat as protected will result 
in successful prevention of further poaching at that site due to an in-
crease in monitoring and other anti-poaching activities, thus resulting 
in a corresponding decrease in poaching mortality. Therefore, we used 
poaching mortality estimates of 0.1–0.5 as λ to simulate habitat loss.

3  |  RESULTS

3.1  |  General trends

We used three variables to predict the optimal time to spend learning 
(t*) before designating protected habitat: (a) the rate of habitat loss (λ); 
(b) the rate of false-positive errors (β) considered as acceptable; and (c) 
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the change in accuracy over time (a(t)) due to learning (i.e. the shape 
of the learning curves). When no habitat loss or other threatening pro-
cesses are occurring (i.e. λ ≤ 0), there is no cost to waiting and the op-
timal strategy is to delay designation until the maximum possible map 
accuracy is achieved or until a specified maximum time period T. As the 
rate of habitat loss increases, t* decreases (Figures 4 and 5). Accepting 
higher threshold β values in habitat mapping also results in lower t* val-
ues (Figures 4 and 5), as the level of accuracy required is lower and can 
be achieved sooner. Finally, t* is shorter when initial learning rates are 
fast, as in hyperbolic curves, than when initial learning rates are slow, 
as in the sigmoid or linear learning curves. Moreover, earlier habitat 
designation means less opportunity for habitat loss to continue, re-
sulting in a higher s(t*) when learning rates are fast.

The optimal time to spend learning was more sensitive to 
the shape of the learning curve and the false-positive rate at 
low rates of habitat loss compared to high rates of habitat loss. 
At low rates of habitat loss, setting a lower threshold for false-
positive error rate, for example, β  =  0.2, resulted in a wider 
range of optimal learning periods for the different learning 
curves (Figures 4 and 5). However, at high rates of habitat loss 
(e.g. λ ≥ 0.5), t* tends to converge to 0 years regardless of either 
the learning curve or β value (Figure  5). Specifically, the ana-
lytical solutions indicate that the optimal decision is to protect 
habitats immediately when the rate of habitat loss exceeds a 
value determined by the initial rate of learning (i.e. da/dt at t = 0) 
and the amount of time needed to reduce the risk of protecting 

non-habitat unnecessarily (i.e. the false-positive error rate) to an 
acceptable rate (i.e. ln β).

The wide range in t* for different learning curves (Figure  4) 
means that using the incorrect learning curve leads to a suboptimal 
outcome: a lower proportion of the initial habitat area that is cor-
rectly identified and protected, relative to the maximum that could 
be protected when we use the true learning curve to determine t* 
(Table 2). At low λ values, the proportion of habitat missed is lower 
when we incorrectly assume a slow learning curve than in the con-
verse scenario (Table 2). However, at higher λ, the opposite is true—
the proportion of habitat missed is lower when we assume a fast 
learning curve when the true rate is slow (Table 2).

Based on the minimax regret decision rule, the best strategy at 
lower rates of habitat loss (λ = 0.01) is to use a Sigmoid 1 curve, which 
results in a maximum of 0.102 proportion of habitat missed (Table 2). 
With higher rates of habitat loss (λ = 0.1), however, the best strategy 
is to assume a Hyperbolic 2 curve, resulting in a maximum proportion 
missed of 0.032 (Table 2). When we are uncertain about both learning 
curves and the rate of habitat loss, assuming a linear curve will mini-
mize the proportion of habitat missed across all possible scenarios.

3.2  |  Example 1: Koala

Based on the range of learning curves specified in Table 1 and the 
estimated rate of habitat loss in the Koala Coast in 2003, the optimal 

F I G U R E  4  (a) Optimal amount of 
time to spend learning before protecting 
habitat for the koala at different rates 
of habitat loss for five different learning 
curves and for false-positive rates β = 0.5 
and β = 0.2, and (b) the corresponding 
proportion of the initial habitat area 
protected when the optimal amount of 
time is spent learning before designation
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time to spend learning before protecting koala habitat may vary 
from 0 to 35 years (Figure 4). Assuming β = 0.2, and without prior 
knowledge about the rate at which we learn about koala habitat, the 
minimax regret strategy for λ = 0.008 would be to use a Sigmoid 1 
learning curve, which predicts an optimal time of 29 years and result 
in up to around 71% of initial habitat area correctly designated, with 
a maximum regret (Δsij) of 0.09 if the true learning curve is different. 

Given that the koala is a specialist folivore (Phillips et  al.,  2000), 
however, the shape of the learning curve is more likely to be hyper-
bolic, which predicts much shorter optimal learning times—around 
6 years or less when β = 0.5, or <10 years when β = 0.2 (Figure 4). 
Constraining the range of possible learning curves to the two hy-
perbolic curves, the minimax regret strategy at β = 0.2 would be to 
assume a Hyperbolic 2 learning curve. This reduces the maximum 

F I G U R E  5  (a) Optimal amount of 
time to spend learning before protecting 
habitat for the northern abalone at 
different rates of poaching for five 
different learning curves and for false-
positive rates β = 0.5 and β = 0.2, and (b) 
the corresponding proportion of the initial 
habitat area protected when the optimal 
amount of time is spent learning before 
designation
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TA B L E  2  The proportion of habitat missed (Δsij), given the true learning curve (i, rows) and β = 0.2, when the wrong learning curve ( j, 
columns) is assumed, relative to the maximum proportion that could have been protected when the true learning curve is used (values along 
the diagonal, in parentheses). For a given λ, values in bold face indicate the worst outcome (maximum regret) of assuming curve j, while bold 
italicized values indicate the best of the worst outcomes across all possible learning curves (the minimum maximum regret)

λ True curve, i

Assumed, j

Hyperbolic 1 Hyperbolic 2 Sigmoid 1 Sigmoid 2 Linear

0.01 Hyperbolic 1 (0.793) 0.016 0.102 0.143 0.127

Hyperbolic 2 0.029 (0.737) 0.056 0.092 0.078

Sigmoid 1 0.293 0.149 (0.649) 0.014 0.006

Sigmoid 2 0.294 0.190 0.014 (0.596) 0.002

Linear 0.216 0.110 0.003 0.001 (0.581)

0.1 Hyperbolic 1 (0.680) 0.032 0.184 0.116 0.122

Hyperbolic 2 0.036 (0.540) 0.082 0.034 0.038

Sigmoid 1 0.037 0.020 (0.261) 0.004 0.003

Sigmoid 2 0.008 0.003 0.002 (0.217) 0.000

Linear 0.029 0.011 0.004 0.000 (0.263)
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regret to around 0.015 if the true learning curve is Hyperbolic 1, and 
results in the designation of up to 78% of initial habitat area.

3.3  |  Example 2: Northern abalone

When poaching mortalities were used directly as a measure of habi-
tat loss, the optimal time to spend learning about northern abalone 
at low poaching levels, λ = 0.1, varied from 0 to around 6 years, de-
pending on the chosen false-positive rate β value and learning curve 
(Figure 5). At this poaching rate, the minimax regret strategy when 
β = 0.2 would be to assume a Hyperbolic 2 curve and designate after 
2 years, resulting in the correct designation of up to 65% of the ini-
tial habitat area, and a maximum of around 0.03 of habitat missed if 
Hyperbolic 2 is not the true learning curve. The range in the optimal 
learning period decreased rapidly to between 0 and 2 years at λ = 0.3 
and to between 0 and 1 year at high poaching levels, λ = 0.5. At these 
higher levels of poaching, the minimax regret strategy would be to 
assume a Hyperbolic 1 learning curve, and designate as quickly as 
possible—around 1 year or less.

4  |  DISCUSSION

Once enacted, making substantive changes to the designation of 
protected habitat can be challenging due to the amount of effort 
and financial cost involved in designation, and potential opposi-
tion from various stakeholders. This provides a strong incentive to 
get it right the first time. However, we can rarely afford to wait for 
perfect information before protecting habitats. Determining the 
optimal timing for habitat protection is important in maximizing 
the effectiveness of protection in the long term. Here, we demon-
strated the use of estimated rates of habitat loss and hypothetical 
learning curves to determine the amount of time we can afford to 
spend learning, before learning no longer results in better protection 
because too much habitat has been lost, or the threats within the 
habitat have left the population perilously low. Our results corrobo-
rate those of Martin et al.  (2017), with the added advantages that 
our model is particularly useful when little information is currently 
known about species and their habitat use or preferences, and that 
it can be solved analytically. Furthermore, by explicit consideration 
of the trade-off between the benefit of better accuracy and the cost 
of waiting, our approach contributes to improving the transparency 
and defensibility of decisions regarding habitat protection.

4.1  |  Rates of learning

Given the variation in the optimal time to spend learning for different 
learning curves, particularly at lower rates of habitat loss or popula-
tion decline, quantifying the rate in which we learn about habitat, for 
instance, by evaluating the improvements in the accuracy of species 
distribution maps as a result of increased survey effort (Grantham 

et al., 2009; Stockwell & Peterson, 2002) can improve our models of 
initial learning over time. When uncertainties over the correct form 
of the learning curve cannot be resolved, we could apply a minimax 
regret decision rule to identify which learning curve would minimize 
the maximum amount of habitat that we might ‘miss’, or fail to desig-
nate, by making the wrong assumption about the learning curve. At 
lower rates of habitat loss, the minimax regret strategy is to assume 
a slower initial rate of learning, such as in a linear or sigmoidal curve. 
However, at high rates of habitat loss, the minimax regret strategy 
would be to use a fast learning curve, such as the hyperbolic curves 
considered here and to direct effort towards learning as much and as 
quickly as possible until designation occurs.

The functional forms used to model the change in accuracy over 
time all assume that no prior knowledge about habitat exist, that is, 
that a = 1 when t = 0 (Figure 4). These functions can be modified, or 
different ones can be used, to reflect scenarios where some infor-
mation is already available to accurately identify habitat with greater 
than random probability, or when a > 1 at t = 0. Such scenarios will 
likely predict shorter optimal times for learning. At high rates of hab-
itat loss, however, the shape of the learning curve no longer has a 
strong influence on the optimal time to spend learning; therefore, 
having prior information about species and their habitat is unlikely 
to change the predictions significantly.

The functional forms also assume that learning can occur—that 
is, that the will and the capacity to conduct additional research 
exists. When the ability to conduct research is constrained, for in-
stance, due to mandatory timelines or limited research budgets, the 
amount of time to spend on research can be optimized subject to the 
constraint—by setting the maximum length of time (T) that can be 
spent on research based on the specified timelines or the amount of 
money available for research. However, when additional research is 
not feasible, no improvement in accuracy over time can be expected, 
and there is no benefit of delaying habitat protection.

4.2  |  False-positive errors

Our approach requires the specification of the rate of false-positive 
errors (β)—that is, the proportion of non-habitat we are willing to 
protect unnecessarily in exchange for an earlier designation. When 
a high β value can be tolerated, habitat protection can occur sooner. 
In this scenario, the level of accuracy required is lower and may be 
achieved faster. In contrast, if a low β value is required, a higher level 
of accuracy is needed to correctly identify the same proportion of 
species habitat (δ), thus requiring a longer learning period.

Despite a number of studies on evaluating the accuracy of pre-
dictive maps, and particularly of maps that predict species occur-
rences (Allouche et al., 2006), there are no prescriptive guidelines 
for selecting acceptable error rates. Instead, decisions depend 
on the intended purpose of mapping and the relative costs of the 
two types of errors (Fielding & Bell, 1997). For instance, when the 
consequences of losing habitat and species are deemed unaccept-
able, a decision-maker may be willing to allow a higher proportion 
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of non-habitat to be included in the designation (i.e. a higher β) in 
exchange for protecting habitats sooner. In contrast, one who is 
averse to incurring potential economic and political costs of inaccu-
rate designation may choose to set a lower β. Our approach makes 
the selection of a false-positive error threshold explicit, which helps 
encourage greater consideration of the costs of different types of 
errors and associated preferences of decision-makers for different 
outcomes.

4.3  |  Rates of habitat loss

We used estimated rates of habitat loss or other threatening pro-
cesses to simulate the impact of these threats over time on the 
long-term persistence of a given species or population. The main as-
sumptions are as follows: that all habitat areas are of equal quality; 
that unprotected habitat areas are equally likely to be lost, regard-
less of the type or quality; and that a decrease in habitat area will 
result in a proportional decrease in the probability of persistence of 
the species. However, the relationship between the amount of habi-
tat available and the long-term persistence of species may not be 
as straightforward—the effect of habitat loss on persistence, for in-
stance, may be greater as the amount of habitat remaining to support 
the species becomes smaller (Fahrig, 2001; Swift & Hannon, 2010). 
Similarly, the loss of a given habitat area may have a greater nega-
tive impact on species persistence if that habitat is of higher quality 
(Heinrichs et al., 2010; Thomas et al., 2001). Furthermore, our model 
does not evaluate whether the resulting area of habitat protected at 
the time of designation will be of sufficient size and quality to allow 
for the long-term persistence of the species. When possible, quanti-
fying the impact of habitat loss or other threats on population per-
sistence can help provide a more accurate estimate of the optimal 
time to spend on learning, as well as the total amount and quality of 
habitat that should be protected, that will maximize the probability 
of species persistence.

5  |  CONCLUSIONS

Our work confirms that timely decisions about conservation in-
terventions can save species from extinction (Martin et al., 2012). 
Recently, there has been growing recognition of the implicit trade-
off that occurs when conservation interventions are delayed due 
to calls for more data. We demonstrate that while delaying habitat 
protection may sometimes be beneficial, it is often better to pro-
tect habitats immediately rather than wait for more information 
when rates of habitat loss are high. The optimization approach 
presented here predicts the optimal time to spend learning before 
protecting habitat by using habitat loss as the cost of learning and 
a threshold false-positive rate as a constraint on the amount of 
non-habitat included in designation. In particular, the use of sim-
ple functional forms to model the rates of learning and habitat 
loss makes it possible to do so when little information is available 

to develop more complex models. Moreover, this approach can 
easily be generalized to address the impact of other threatening 
processes, such as harvesting or the invasion of a species with 
negative impacts on a species of conservation concern, provided 
that the same metric is used for both the costs and the benefits 
of learning. Our method explicitly acknowledges the trade-off be-
tween the benefit of delaying protection to improve accuracy and 
the costs of such delays, and provides evidence to support timely 
decisions to protect habitat, despite potential uncertainty about 
what constitutes that habitat.
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