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Abstract 

There is a troubling trend regarding the competency of first-year university students in the 

subject of mathematics. Literature reflects a perspicuous disappointment in secondary school 

graduates’ ability to perform simple mathematical tasks for employers or to succeed in upper-

level mathematics courses in colleges/universities. The profoundness of inability is revealed, 

in part, by the proliferation of remedial mathematical courses at colleges/universities and the 

increase in elementary training programs implemented by employers so that employees can 

function at a minimum requirements level. 

This research investigates, via survey data collection, descriptive statistics, initial factor 

models (using SPSS v20.0), and confirmatory factor analysis and Structured Equation 

Modelling (via Mplus v7.1) the interaction of possible contributing causes to ascertain 

whether the absence of mathematical maturity in secondary school graduates can be linked to 

the trend of mathematical textbooks having a content and presentation inconsistent with the 

entrance requirements of the college/university sectors. Specifically, this work focuses on the 

preparation of year-12 precalculus students to succeed in their first-year university calculus 

course by analysis of precalculus textbook content, trust, and use. 

This study uses a mixed methods approach to integrate and optimize the affirming value of 

qualitative and quantitative data analysis. It uses a Likert scale questionnaire and demographic 

survey questions that included identification of the textbooks in use so they could be acquired 

and qualitatively analyzed through a rigor measuring tool developed as part of this project. 

This study suggests the applicability of Material Requirements Planning (MRP) to the 

academic environment as a tool for restoring tertiary institutions as the proper drivers for 

secondary mathematical exit requirements and for guiding development of secondary 
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mathematics curricula, syllabi, and textbook content. MRP has at its core a focus on customer 

requirements for a particular product; when applied to the mathematical education of inbound 

tertiary mathematics students, MRP can identify tertiary institutions’ minimum requirements 

of mathematical maturity as the customer requirements that secondary schools can then 

prioritize in their mathematics programs. 

This research demonstrates the solid connection between mathematical maturity and textbook 

content in that textbook completion influenced year-12 student and teacher confidence in 

student readiness for year-13 calculus. This finding prompted creation of a unique tool for 

measuring the rigor of precalculus textbooks designed to prepare secondary students for their 

university elementary calculus course. Rigor is defined as the extent to which a textbook 

facilitates student mastery of relevant mathematical concepts while simultaneously preparing 

them to master ever more complex concepts. Accordingly, the rigor tool described in this 

study assesses the extent to which a precalculus textbook presents core calculus prerequisite 

topics recursively, employing a cohesive continuum of topic introduction, topic relevance, 

topic theory, and topic practice while maintaining a maturing connection to previous topics. 

Using the rigor tool, year-12 precalculus textbook rigor was qualitatively analyzed into 

measurable quantitative data from which a rigor score was derived for selected textbooks. The 

level of misalignment between the year-13 calculus prerequisites and the year-12 targeted 

outcomes was made apparent through this process. 

 

  



x 
 

Declaration Page 

I certify that this work contains no material which has been accepted for the award of any 

other degree or diploma in my name in any university or other tertiary institution and, to the 

best of my knowledge and belief, contains no material previously published or written by 

another person, except where due reference has been made in the text. In addition, I certify 

that no part of this work will, in the future, be used in a submission in my name for any other 

degree or diploma in any university or other tertiary institution without the prior approval of 

the University of Adelaide and where applicable, any partner institution responsible for the 

joint award of this degree. 

I give permission for the digital version of my thesis to be made available on the web, via the 

University's digital research repository, the Library Search and also through web search 

engines, unless permission has been granted by the University to restrict access for a period of 

time. 

I acknowledge the support I have received for my research through the provision of an 

Australian Government Research Training Program Scholarship. 

Signed:  

Date: February 27, 2022 



xi 
 

Acknowledgements 

I gratefully acknowledge the unflagging support of Dr. Igusti Darmawan who offered me the 

opportunity to pursue my PhD and who provided outstanding encouragement, counsel, 

suggestions, inspiration, leading, and massive amounts of assistance, wisdom, and guidance 

along the entire way of this 10-year journey and who exercised compassion and patience well 

beyond ordinary expectations while I endured the sickness and death of my wife of 40 years in 

the midst of my studies. 

I also greatly appreciate the contributions of Dr. Edward Palmer who willingly stepped into 

the gap on short notice to “take me on” when we lost Dr. Peggy Lynch from the project. His 

inciteful comments, unswerving attention to detail, wisdom, and guidance in the re-wording of 

many awkwardly worded sentences were invaluable. 

Dr. Ian Greene, one of my graduate program professors, was complimentary of my research in 

mathematical textbook rigor and encouraged me to pursue a terminal degree. My sister, Susan 

Gold, aghast that I was planning to decline the proffered invitation from the University of 

Adelaide to complete my studies, helped motivate me to change my mind. A generous stipend 

from the University of Adelaide funded the initial stage of my work and Dr. Peggy Lynch’s 

mathematical input guided my preliminary steps. 

I could not have completed this work without the love and support of numerous family 

members, particularly my late wife, Tammy, whose love for me and practical disposition led 

me to finally decide to start this project. She was my chief sounding board and encourager 

until her death in June 2016. My sister and nieces, Ashley Geiger and Georgina Gold, 

supported me in the early phase of my project, as did my children, Mathilda and Daniel, along 

with my late wife. 



xii 
 

I am grateful to the mathematics professors at the University of Adelaide and the South 

Dakota School of Mines and Technology, and to the many mathematics teachers at secondary 

schools in the United States and Australia, for their advice on survey construction, 

encouragement of students to participate, and enduring patience for the classroom 

interruptions that were a part of the data collection process. I particularly appreciate their 

patience during the difficulties of my first wife’s illness and passing. I am thankful for the 

scores of principals and teachers who answered my queries about textbooks used in their 

schools; many of them provided encouragement that my project was important. 

To my beloved wife, Debra, who, in our betrothal, committed to be my encourager, colleague, 

and tireless sounding-board, and who, as the years have gone by, has exceeded expectations in 

all three, I give my solemn and sincere thank you. My dear Deb, this would not have happened 

without you. You are the reason for this finished product and my reason for life and happiness. 

Finally, to the Lord God of Heaven and Earth, in whom are all the treasures of wisdom and 

knowledge, my thanks, my praise, and my pledge to serve Him all the days of my life. 

 



1 
 

Chapter 1. Introduction 

1.1. Project Overview: Aims and Purpose 

There is a troubling trend regarding the competency of year-121 graduates in the subject of 

mathematics. Both the scholarly literature and popular media reflect disappointment in the 

preparedness of secondary school graduates to perform simple mathematical tasks for 

employers (Comrey & Lee, 1992, as cited in Flanagan, 2006, p. 203; Greene, 2000; Lester, 

2008) or to succeed in upper-level mathematics courses in colleges/universities (Higgins et al., 

2010; Van Rooij & Jansen, 2018). The lack of mathematical competency of incoming students 

has forced universities to provide remedial math courses to prepare students for upper-level 

courses; some have even begun offering credit toward baccalaureate completion for courses 

that used to be taught at the secondary school level (Bettinger & Long, 2009; Snead et al., 

2021; Zachry Rutschow, 2019). The purpose of this study was to explore the instructional 

centrality of the year-12 precalculus textbook on year-12 student readiness for year-13 

calculus and on student and teacher perception of student readiness, and to determine the 

extent to which the content of year-12 precalculus textbooks aligned with year-13 calculus 

requirements. The study describes the overarching architecture for data collection and 

processing that yields results that demonstrate a need for textbook reformation and the 

restoration of tertiary institutions as the proper drivers for secondary mathematical exit 

requirements. It introduces a unique tool based on Material Requirements Planning (MRP) 

principles for secondary school mathematics departments and teachers to use to assess the 

rigor of precalculus textbooks to better align their precalculus courses with year-13 calculus 

course requirements. 

                                                 
1 Throughout this study, the terms year-12 and year-13 will be used to designate the last year of secondary school and first year of university 
respectively. Alternatively, the terms secondary and tertiary will be used. 
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1.2. Problem Scope, Cause, and Ramifications 

There is widespread agreement in the literature among scholars and laypersons that year-13 

college students in the United States and Australia are often ill-prepared for success in upper-

level mathematics courses and that there is an academic misalignment between secondary exit 

standards and tertiary entrance standards in mathematics (Dos Reis et al., 2019; Gewertz, 

2018a; Mather & Tadros, 2014; Thomson, 2016; VOA Student Union, 2018; Wesley, 2008). 

While there are a number of reasons why this is the case, this project focuses on investigating 

the mathematical maturity of secondary school graduates and looked for influences connected 

to mathematical textbooks. 

1.2.1. Mathematical Maturity and Textbook Rigor  

Research indicates that the primacy of rigor in the mathematics textbook facilitates not only 

the mastery of mathematics, but also the learning of thinking (Schmidt et al., 2004). For the 

purposes of this study, rigor is defined as the extent to which a textbook facilitates student 

mastery of relevant mathematical concepts while simultaneously preparing them to master 

ever more complex concepts (Raubenheimer et al., 2010). Rigor is multi-faceted—addressing 

conceptual, methodological, and analytic factors (Houston, 2019). The conceptual, 

methodological, and analytic facets, applied to mathematical rigor, address the inclusion of 

proofs for elementary and mature concepts. Their omission could be considered a degrading of 

rigor in the mathematics textbook (Smoryński, 2017). A rigorous precalculus textbook is one 

that presents core calculus prerequisite topics recursively, employing a cohesive continuum of 

topic introduction, topic relevance, topic theory, and topic practice while maintaining a 

maturing connection to previous topics. A rigorous textbook will teach students to think 

mathematically (Mun & Hertzog, 2018) and mature them mathematically for subsequent 
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coursework (Faulkner et al., 2019). The uninterrupted, sequential format of the rigorous 

textbook, along with a comprehensive example, question, and review question bank, provide 

the necessary practice for the student in the area of mathematical sophistication and 

intellectual maturity (Heyneman, 2002; Kindle & Gentimis, 2018; Shield & Dole, 2013; 

Valverde, 2002). In the absence of this maturity, the student will fail to practice rational 

thinking that is foundational for any advanced study, particularly in the mathematical sciences 

(Rezat, 2009; Valverde, 2002). 

The primary function of a mathematics textbook is to facilitate student mastery of 

mathematical concepts that has been suggested can only be grasped through a gradual, 

systematic process (O'Keeffe & O'Donoghue, 2010; Sherman et al., 2020). Knowledge 

acquisition is “a complex, gradual process requiring both time and effort” (Wood & Kardash, 

2002, p. 250); it stands in stark contrast to technological innovation which is characterized by 

rapid change. The “Technology Progress” index (TPI) shows a doubling rate of 1.5 years 

(Roser & Ritchie, 2013). The speed of change of technology has posed a conflict for textbook 

writers/publishers who find themselves trying to simultaneously cement foundational 

mathematical concepts that never change while introducing students to the latest technological 

advances such as calculators, computers, and computer algebra systems (Fitriati, 2019; 

Howard, 2013). Educators and publishers understand that the exponential growth of 

information availability (Alhumaid, 2019; Hull, 2003) and information itself in the rapidly 

changing digital culture has established the need for the educated individual to be conceptually 

savvy with the underpinnings of the technology that now thread through most facets of both 

academic and non-academic environments (Hilbert, 2015). They also understand, from the 

degradation of mathematics and reading skills that has accompanied the infusion of 
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technology, that students cannot acquire and master knowledge as rapidly as technology 

changes (Alhumaid, 2019; Zheng, 1998). 

There are hundreds of studies in the pedagogy of the mathematics curriculum and the 

mathematics textbook and there are competing ideologies contained in these studies; however, 

by and large educators have continued to insert technology into their mathematics curricula 

and publishers have followed suit by incorporating it into textbooks. In so doing, they have 

precipitously dropped topics from the mathematical textbook (Gu, 2010). Additionally, while 

publishers have felt constrained to update textbooks to accommodate the various key stroke 

nuances of the latest electronic calculator versions, they have also felt compelled to appeal to 

the entertainment-oriented zeitgeist that prevails today. Consequently, mathematical 

textbooks: 

 have increased in size (Durkin et al., 2021; Gordon & Gordon, 2018) 

 have omitted core topics (Duffrin, 2005) 

 have computational emphasis with machine-specific calculator or computer 

instructions and exercises (Brown et al., 2007; Frank & Thompson, 2021) 

 have made cultural accommodation with visual effects (i.e., have included cartoons 

and colorful images) (Baker & Gilbey, 2016) 

The result of these changes is that many modern mathematical textbooks lack topic rigor 

(Duffrin, 2005) and are regarded by some as shallow—containing cursory topic coverage and 

minimal conceptual reinforcement. (Brown & LaVine Brown, 2007; Duffrin, 2005; Gu, 2010; 

Schmidt et al., 1997). Chapter 7 will describe the concept of textbook “rigor” in detail. 

1.2.2. Universities Forced to Address Declining Mathematical Maturity 

Ever since “new math” was introduced in the United States and other countries in the 1960s, 
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there has been an explicit recognition of the declining mathematical proficiency of secondary 

students among academicians (Chen, 2016; CUPM Panel, 1987; Ngo & Kwon, 2015; Zachry 

Rutschow, 2019). An increase in remedial education provided at universities is the least 

ambiguous indicator that the secondary student is less prepared than required. (See Chapter 2, 

Section 2.2. and Chapter 4, Section 4.3.2 for details.) Thus, universities must make efforts 

(through remedial course work) to bring the student to a level of maturity and sophistication 

such that the student will be able to complete the academic program. 

1.3. Using a Data-Driven Approach to Address the Cause of the Problem 

A proliferation of experimentation and publication by academicians eager to understand and 

solve the vexing problem of student mathematical readiness deficiency has yielded little 

agreement as to cause or solutions (Islam & Rouse, 2021; Melguizo & Ngo, 2020; Van den 

Broeck et al., 2020). See Chapter 2, sections 2.3 and 2.4 for details. A key factor underlying 

the plethora of causes and solutions is that the academic community has yet to develop and 

implement solutions based on a truly data-driven model of probable causality. A data-driven 

model holds out the very plausible outcome of minimum bias due to the questioning strategy 

invoked in the data-driven model scenarios (Anfara & Donhost, 2010). Chapter 3 provides 

details on the data-driven approach used to conduct this study. 

1.4. Putting Universities Back in the (Requirements) Driver’s Seat 

As the host for year-13 courses, it is imperative that universities drive strategic requirements 

for university student preparedness. The overarching aim of this research was not to assign 

blame but rather to identify strongly correlated (possibly causal) components that can be 

addressed, diagnosed, and repaired. The constructs identified by this research suggest a path to 

align tertiary entrance requirements with secondary exit standards. Additionally, this research 
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led to the development of a rigor measurement tool that secondary schools can use to assess 

alignment between entrance and exit requirements of precalculus and calculus courses to help 

them select the optimal textbooks for preparing secondary school students for their tertiary 

mathematics courses. Selective procurement of rigorous texts could, in turn, drive the 

requirement for textbook writers to tailor textbooks to incorporate a consistent minimum 

standard of rigor that satisfies both secondary school exit standards and university entrance 

standards. 

1.4.1. Universities as Customers—Material Requirements Planning (MRP) as an 

Alignment Tool 

The manufacturing sector offers a relevant model for aligning secondary school exit standards 

with tertiary school entrance standards. In the business world, customers establish 

requirements for products, and manufacturers strive to develop, produce, and deliver those 

products consumer-ready, at the agreed time, and with the advertised quantity and quality. The 

MRP process includes: 

 Creating a Bill of Materials (BOM). The BOM is a list of the raw materials, sub-

assemblies, intermediate assemblies, sub-components, parts, and the quantities of 

each needed to manufacture an end product. 

 Developing a Work Breakdown Structure (WBS). The WBS is a deliverable-

oriented, hierarchical decomposition of the work to be executed by the project team 

to accomplish the project objectives and create the required deliverables. The WBS 

organizes and defines the total scope of the project. Each descending level 
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represents an increasingly detailed definition of the project work. The deliverable 

orientation of the hierarchy includes both internal and external deliverables.2 

 Determining a Critical Path by identifying the longest stretch of dependent 

activities and measuring the time required to complete them from start to finish. 

So, the critical path is the, timewise, incompressible schedule. 

 Establishing a Production Schedule by using Backward Scheduling3—working 

backwards from the due date (or time) to the start date (or time) in order to 

compute the materials and time required at every operation or stage of production. 

 Compiling a Master Schedule (summary-level project schedule) that identifies the 

major deliverables and work breakdown structure components and key schedule 

milestones4. 

 Calculating Total Float. The amount of time that a scheduled activity can be 

delayed (less than the critical path) or extended without delaying the scheduled 

finish date (Wong, 1964; Tang, 2003). When the total float is exceeded, the 

schedule encounters a crash and producers must implement remedial contingencies 

(such as omitting processes) so that the delivery date is not compromised. 

Alternatively, the producer can slip the delivery date (Brooks, 1975) or arrange for 

requirements (such as software updates) to be incorporated into products after 

delivery. 

 
Applying the MRP process to the alignment of secondary school mathematical standards and 

university mathematical requirements provides a novel framework for measuring secondary 

                                                 
2 Work Breakdown Structure (WBS) as defined in Georgia Technology Authority, Glossary of Terms and Definitions Supporting Policies, 
Standards and Guidelines for Information Technology and Information Security. 
3 This definition of backward scheduling was retrieved from: http://www.businessdictionary.com/definition/backwards-scheduling.html. 
4 Master Schedule as defined in Georgia Technology Authority, Glossary of Terms and Definitions Supporting Policies, Standards and 
Guidelines for Information Technology and Information Security. https://gta-psg.georgia.gov/glossary-terms. 
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school effectiveness and determining corrective actions. In this construct, the university is the 

customer, and the required product is a student who is optimally prepared for tertiary level 

mathematics courses. Success in year-13 mathematical studies presupposes adequate 

preparation in year 12 which presupposes adequate preparation in year 11, and so on. The 

university provides high level requirements that can form the basis for creating a BOM that 

identifies prerequisite knowledge and pre-prerequisite courses that must occur in a 

chronologically succinct order—i.e., the Master Schedule. (For the purposes of this study, the 

general content of year-13 calculus textbooks became the driver for identifying the 

prerequisite preparation of year-12 precalculus students. This will be described in further 

detail in Chapter 7.) As the “customer,” the university dictates the orderly deliverable 

requirements by implementing the backward scheduling practice for timely deliverable 

product minimal requirements—that is; the incoming year-13 student trained, matured, and 

ready for tertiary work. Although the university is focused on the incoming (year-13) student 

and, thus, on student accomplishment in year 12, its hardened requirements will necessarily 

also drive the downstream secondary prerequisite content of year 10 and 11 in the secondary 

environment. Thus, not only will the university need its own backward schedule for timely 

and high-quality baccalaureate completion, but the secondary school will also need the 

comparable backward scheduling strategy for the timely and high-quality secondary diploma. 

The university, as the customer, dictates the deliverable requirements and that is the backward 

scheduling practice when it places time and requirements limitations on the program both for 

entry requirements (the secondary school graduate) and exit requirements (the bachelor’s 

degree). 

In the MRP process, allowances need to be made for corrective actions; however, this 
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presupposes that there is time in the schedule to do so. Thus, producers must calculate 

allowable slippage into the Master Schedule. Once all the allowable slippage has been 

calculated and subtracted from the schedule, what remains is the Critical Path—any further 

slippage directly affects deliverable timing and quality. Time that is built in for necessary 

slippage (holidays, sick-days, unplanned events etc.) constitute the Total Float in the backward 

schedule, so float is the maximum allowable schedule slippage. With time and requirements 

limitations, the backward scheduling model is forced to degrade the end product when the 

float is consumed. This degradation is a significant downward step in the quality of the degree 

and the quality of the end product (as evidenced in the literature). 

Figure 1.1 illustrates the application of the MRP process to the production of optimally 

prepared year-12 graduates for tertiary mathematical studies. It depicts how the secondary 

school can calculate float in the master schedule and can calculate the critical path (from Start 

to Drop Dead Delivery) with a recognition that if float is over-consumed, a crash will occur, 

and topics will have to be omitted. In other words, the corrective action is facilitated by the 

MRP strategy.  
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Figure 1.1 Application of MRP Process to Preparation of Year-12 Mathematics Students 

With correlation and causal constructs confirming a positive relationship between secondary 

mathematical textbook rigor and tertiary mathematical success, the university can re-acquire 

control of the incoming cohort of students by responsibly and analytically providing guidance 

and requirements to the secondary schools and testing agencies. Additionally, the MRP 

approach can provide tools to sensibly merge and manage tertiary entrance requirements with 

secondary exit standards. As an example, Chapters 7 and 8 describe a rigor algorithm based on 

MRP principles that could be used to assess the rigor of precalculus textbooks being used to 

prepare students for their year-13 calculus courses. 

1.5. Facilitating Mathematical Maturity 

This research project led to the development of a rigor algorithm for math educators to use to 

select the most desirable text which will, in turn, drive the requirements for textbook writers to 



11 
 

address the findings and better tailor the textbooks to both the secondary and the tertiary 

requirements. Merisotis and Phipps (2000) identified four overarching areas in programs that 

are underway to reduce the need for remediation in higher education. The first area they 

identify is the requirement for alignment between secondary exit requirements and tertiary 

entrance competencies. The gap in the alignment between secondary exit standards and 

tertiary entrance requirements is student maturity—both topic and intellectual. This 

misalignment is an indication that a rigorous, sequential flow of information and experience 

that constantly links the current topic with mastered prior experiences to facilitate the 

appropriation of more complex ideas is missing from many current mathematics textbooks. 

Maturity is the ability to continually synthesize and create new ideas by the effective use of 

old or mastered ones. For instance, the ability to grasp simple abstract concepts leads to the 

ability to master more complex abstractions. For the purposes of this study, the recursive 

approach to maturing mastery is the Core Cohesive Continuum (CCC). 

1.5.1. Core Cohesive Continuum (CCC) Described 

As mentioned earlier, as a naturally recursive discipline, mathematics is a good example of 

truly recursive concept acquisition; this can be illustrated via a concept map. Building on the 

work of Ausubel (1968) and Toulmin (1972), Novak and Gowin (1984), defined “concept” as 

“perceived regularity or patterns in events or objects, or records of events or objects, 

designated by a label” (Cañas & Novak, 2009, para. 2) and developed concept maps to 

graphically depict knowledge acquisition. In the diagram sequence that follows based on their 

work, the concept of “Bird” is never disenfranchised from the maturing understanding of the 

student studying the bird object. See Figures 1.2-1.5. 
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Figure 1.2 Elementary Identification of Bird Characteristics 

 

 

Figure 1.3 Primary Identification of Bird Characteristics 

 

Figure 1.4 Secondary Identification of Bird Characteristics 
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Figure 1.5 Conceptually Mature (Tertiary) Identification of Bird Characteristics 

Note that, as subject maturity develops, the proof of the concept is hardened, and the 

acquisition of the concept leads to intellectual corollaries that are all logically interconnected. 

Flavell (Flavell et al., 2002) defines a concept as a “mental grouping of different entities into a 

single category on the basis of some underlying similarity”—some way in which all the 

entities are alike, some common core that makes them all, in some sense, the same thing. The 

label for most concepts is a single word, although sometimes symbols such as + or % are used, 

and sometimes more than one word is used. 

Concepts, like mathematics are critically recursive in that, no matter on what branch of the 

map a person is located, the clarity of the original notion remains perspicuous, and its 

maturing understanding is always connected to the root; thus, the textbook should incorporate 

root concepts and previous topics into the next topic (Ausubel, 2000; Shin & Bryant, 2015). 

This dependent inter-connectedness of concepts closely tracks with the mathematics textbook 

as it defines, hardens, rehearses, builds, defines and so on (Valverde & Houang, 2002). Not 

only interconnected operationally but interconnected with two-way (more maturity or less 
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maturity) relevance. Mathematical relevance is critical. It must be maintained by a continuum 

of more mature concepts built on (not supplanting destructively) a less mature (but simple and 

solid) foundation (Balmaceda, 2020; Nathan & Walkington, 2017; Piesch et al., 2020). Note 

that current maturity sits on a foundation that is a recursive aggregation of earlier maturities. 

Thus, it is critical that a continuum be maintained as a concept matures so that the cement of 

the foundation is properly set. 

1.6. Research Schema 

1.6.1. Origin 

In 2012-2013, while relief teaching grade 12 Specialist Mathematics (secondary school 

calculus) at a college in South Australia, this researcher was presenting the Definite Integral to 

approximately 15 students and was surprised to learn that they had never been exposed to 

polynomial long division—a building block for the concept of factoring (reduction of 

operational complexity) and something they should have learned in grade 10 or grade 11. 

Thinking that, perhaps, they had simply forgotten this topic, follow up was made with teachers 

and a search in grade 10/11 textbooks was conducted which revealed that the topic was given 

minimal attention. This incident brought to mind a previous experience serving as a year 12 

Specialist Mathematics teacher at another South Australian college in 2010 where the 

textbook contained trivial, rather than rigorous, treatment of several topics, including limits 

and quadratic iterations. These two encounters helped shape this study to determine the 

reasons behind degraded mathematical maturity and readiness for year-13 calculus. 

1.6.2. Research Questions 

The general research question addressed in this thesis is  
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Is there a rigor level change in year-12 precalculus textbooks’ concept presentation 

that is negatively impacting students’ mathematical maturity and preparedness for 

their year-13 calculus course? 

In order to answer this question, the centrality of the mathematics textbook in the delivery of 

the year-12 curriculum needed to be measured as did the content of precalculus textbooks to 

include instruction format, appropriate topics, presentation order, reinforcement of topics 

(commitment to interleaving), and attention to a cohesive flow of maturing mathematical 

concepts consistent with year-13 calculus prerequisites. The specific research questions were: 

1. Is the textbook central to instruction and what is the relationship between factors 

such as year-12 student use, trust, and like of their year-12 textbook and year-13 

student like and confidence in their year-12 textbook and like and use of their year-

13 calculus textbook? 

2. What is the relationship of the textbook to factors relating to secondary student and 

teacher perception of student readiness and to students’ actual mathematical 

maturity? 

3. Can MRP-derived year-13 calculus prerequisites measure rigor adequacy of year-

12 precalculus textbooks? 

Question 1 was addressed through survey questions targeting: 

 Textbook Centrality (trust, like, and use) to: 

 Year-12 students 

 Year-12 teachers 

 Year-13 students (relating to their year-12 textbook) 

Question 2 was addressed through survey questions targeting: 

 Student Readiness 
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 Year-12 student perceived readiness 

 Year-12 teacher perception of student readiness for year-13 calculus 

 Actual year-13 student readiness from perspective of university professors 

Question 3 was addressed through development of an MRP-derived rigor algorithm targeting: 

 Textbook content (measuring the textbook rigor and adequacy) 

 Textbook content alignment with year-13 calculus prerequisites 

 Maintenance of a cohesive continuum 

 Recursive concept hardening 

An underlying hypothesis was that if the secondary mathematics textbook is central, 

trustworthy, liked, and useful to the secondary student and teacher, then the textbook (as the 

curriculum delivery device) could become the measure for successful completion of the 

curriculum and the basis for secondary student and teacher confidence in the student’s 

mathematical preparation for year-13 university calculus. 

1.6.3. Theoretical Significance 

If the research concludes that there is a positive connection between the precalculus textbook 

rigor and student mathematical maturity and readiness, this should elevate awareness of the 

importance of textbook rigor over other competing theories about poor student readiness and 

should drive efforts to address the content and sequencing of content within precalculus 

textbooks. 

1.6.4. Practical Significance 

If the research concludes that there is a positive connection between the precalculus textbook 

rigor and student mathematical maturity and readiness, the rigor algorithm proposed in 

Chapter 7 will provide a method that administrators, teachers, and publishers can apply to 
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determine the rigor of textbooks and whether additional resources need to be used to augment 

or modify the textbook presentation. 

1.6.5. Methodological Significance 

Finally, if the research concludes that there is a positive connection between the precalculus 

textbook rigor and student mathematical maturity and readiness, the rigor algorithm proposed 

will demonstrate the novel approach of applying Material Requirements Planning (MRP) 

techniques to solve the problem. College/university mathematics departments will be 

recognized as one of the “customers” of secondary mathematics departments who are seeking 

a “product” designed as they want it (in this case mathematically mature and prepared 

students), and who are prioritized as the appropriate drivers of standards for minimum content 

and proper sequencing of prerequisites in the secondary mathematics curriculum/textbooks. 

1.7. Research Strategy 

Student and professor/teacher surveys, detailed in Chapter 3, sought to investigate the 

centrality of the textbook in the year-12 precalculus experience. Centrality was measured in 

several different ways through questions asked of students and their teachers/professors. SPSS 

v20.0 was implemented for descriptive statistics and exploratory factor analysis (EFA) and 

Mplus v7.1 was used for confirmatory factor analysis (CFA) and the secondary and tertiary 

student Structured Equation models (SEM). Descriptive statistics were integrated with the 

models to provide further clarity of the year-12 textbook centrality detailed in Chapters 5 and 

6. When textbook centrality was affirmed, alignment of year-12 textbook outcomes and year-

13 calculus prerequisites were measured with an MRP-based strategy detailed in Chapters 7 

and 8. 



18 
 

1.8. Origin of the Rigor Algorithm 

After measuring and testing the centrality, acceptance, and trust of the year-12 precalculus 

textbook to affirm its centrality to student readiness for year-13 calculus, a rigor algorithm 

inspired by MRP principles of backward scheduling was developed by compiling the 

preponderance of topics contained in commonly used college/university calculus texts and 

synthesizing those into an empirical tool that can be applied to any precalculus textbook to 

determine whether minimum calculus prerequisites are effectively met. 

1.9. Project Overview 

The thesis is sectioned into nine chapters. Chapter 1 identifies the problem, potential likely 

causes, and the research questions and methodology used to address the problem. Chapter 2 

provides an overview of relevant scholarly literature on the problem and exposes gaps in that 

scholarship that this research addresses with an MRP construct. Chapter 3, Research 

Methodology and Survey Instrument Design, describes the research methodology and the 

development of the survey instruments used to collect the data that enabled analysis of the 

relationship between the rigor of secondary precalculus textbooks and the preparedness of 

year-12 graduates for their year-13 calculus course. This chapter explains how data-driven 

approaches and MRP backward scheduling can be employed to restore universities to their 

proper role as drivers of entrance requirements and, thus of mathematical textbook content. 

Chapter 4, Sampling Justification, explains the methodology used to validate that the 

experimental samples used for this study are representative of the universal population. 

Chapter 5 details the process used to do data screening and cleansing of year-12 and year-13 

student survey responses in preparation for exploratory and confirmatory factor analyses that, 

in turn, prepared the data for structured equation modeling (SEM). Chapter 6 details the 
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process used to derive and create a SEM that demonstrated a correlation between textbook 

rigor and student mathematical preparedness for course work. It also shows how the 

qualitative data and quantitative data were integrated to further reinforce this correlation. 

Chapter 7 describes the development of a unique textbook rigor tool that publishers and 

schools can use to determine the extent to which a textbook will or will not contribute to 

student mathematical readiness and demonstrates its use. Chapter 8 describes the application 

of the rigor tool to a sample set of 19 U.S. and Australian precalculus textbooks published 

over a span of six decades (1965 to 2012). Chapter 9 summarizes the results of the research. 
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Chapter 2. Literature Review 

2.1. Introduction 

This chapter will provide an overview of literature relating to the central problem addressed in 

this project and its proposed solution. Section 2.2 summarizes the literature addressing the 

question: why are year-13 university students in the United States and Australia often ill-

prepared for success in upper-level mathematics courses? Section 2.3 focuses on scholarship 

that presents a continuum of historic events describing how and why secondary mathematics 

curricula has undergone so many changes since the early 1900s. Section 2.4 highlights the 

literature addressing the degradation of mathematics textbooks over time—the key focus of 

this study. Section 2.5 summarizes scholarship relating to MRP and explains how it inspired a 

novel strategy to assess secondary mathematical textbook content. 

2.2. Ill-prepared High School Graduates 

2.2.1. U.S. Graduates Ill-Prepared for Higher Education 

Since the function of the secondary school is to prepare graduates for tertiary education or for 

employment, evaluation of incoming students to each of these sectors should reveal whether 

educational strategies have been successful. It is clear from the literature that serious 

shortcomings have been evident for some time. Universities and employers have observed a 

lack of mathematical readiness in the typical secondary school graduate (Cogan et al., 2001; 

Corbishley & Truxaw, 2010; Greene, 2000). Recognition of academic competency 

shortcomings is available empirically from tertiary institutions in the form of test scores, first-

year university attrition data and, notably, the proliferation of remedial university course 

offerings for first-year students (Bettinger & Long, 2009; Cipra, 1988; Froese, 2019; Hieb et 

al., 2015). Almost seventy years ago, Williams (1954) reported that 17% of U.S. universities 
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offered remedial mathematics courses. Bettinger and Long (2009) found that 98% of 

community (two-year colleges) and 80% of public four-year colleges were providing remedial 

courses in 2006, many of which were integrated into curricula whereas in years past, remedial 

course work had not be awarded credits. Boser and Burd (2009) noted that 99% of public two-

year colleges were offering remedial courses and cited an alarming study that found that only 

34% of graduating students actually met minimum qualifications for admission to a four-year 

postsecondary institution. A more recent study reported that almost 70% of incoming students 

at two-year colleges and 40% of incoming students at four-year colleges were enrolled in 

remedial classes. Of those in two-year colleges, 59% were taking mathematics remediation 

(including some multi-year courses) while 33% of the students in remedial programs at four-

year universities were enrolled in remedial math courses (Zachry Rutschow, 2019). While the 

tenfold increase in student enrollment in higher education between 1954 and 2019 (National 

Center for Education Statistics, 2020a, 2020b) explains some of this increase in remedial 

course offerings, it does not explain all of it. The irony of the statistics about remedial course 

offerings is the high level of confidence secondary school graduates have in their readiness for 

university studies. In one study, more than 80% of students enrolled in remedial courses in 

universities were surprised by their lack of preparation (Boser & Burd, 2009; Zachry 

Rutschow, 2019). Secondary schools had prepared students in accordance with secondary 

curriculum and standards but some of the skills and mastery required to succeed in university 

courses, such as good cognitive strategies, discipline, thinking skills, foundational concept 

understanding, and topic mastery, “are not an explicit part of the high school curriculum” 

(Van Rooij & Jansen, 2018). 
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2.2.2. Australian Graduates Ill-Prepared for Higher Education 

Scholars have noted a similar problem with lack of readiness of secondary students for higher 

education in Australia. In 2003, Cuthbert and MacGillvray identified a decades-long decline in 

foundational mathematical skills in Australia that they attributed to “a widespread lack of 

understanding of the pivotal and underpinning roles of specific and generic mathematical 

skills, the time necessary for their development, the need to provide nurturing across the full 

spectrum of mathematical capabilities, and the interdependence of mathematics and 

technology” (Cuthbert & MacGillivray, 2003, p. 360). Higgins et al., (2010) identified “a 

significant drop in the abilities of students entering first year mathematics at James Cook 

University” over the previous 20 years (pp. C641-C642). Galligan and Hobohm (2015) cited 

the “maths crisis” identified by the Australian Mathematical Sciences Institute in a 2012 

report. They described lack of required skills, few graduates, and fewer incoming students 

with adequate preparation such that the universities were faced with two choices: remedial 

programs or lowering of the standards. Snead et al., (2021) reported that, in order to keep 

students enrolled, some mathematics programs in Australia have been redesigned to make the 

first-year mathematics classes easier to pass—that is, the standard has been lowered. Scholars 

agree on the worldwide nature of the problem of ill-prepared students for tertiary mathematics 

(Croft et al., 2009; Higgins et al.; Snead et al.; Van Rooij & Jansen). There is a well-

documented mismatch between what is being taught in secondary curricula versus what is 

needed for success in tertiary mathematics courses (Clark & Lovric, 2009; CUPM Panel, 

1987; Hourigan & O'Donoghue, 2007; Nortvedt & Siqveland, 2019). 



23 
 

2.2.3. U.S. and Australian Graduates Ill-Prepared for Employment 

The business sector has also consistently highlighted competency shortcomings in the 

apprentice/entry level work-force market, further reflecting that secondary exit skills fall 

woefully short of requirements. Flanagan (2006) states that “More than 60 percent of 

employers report that high school graduates have poor math skills” (p. 12). The costs incurred 

by businesses and institutions of higher learning to address deficient academic skills was 

estimated at $601 million per year for Michigan alone in 2000 and at approximately $16.6 

billion per year for the United States as a whole (Greene, 2000). Greene added that “in 

addition to these monetary costs, the human costs are incalculable” (p. 1). Bertonneau (2000) 

explained this human cost as the “human tragedy” of students’ lack of knowledge of grammar 

and their poor vocabulary skills. He blamed the “unchallenging textbooks” of their high 

school curriculum, noting that textbooks train students in subjective responses; that is, they do 

not reinforce the practice of using intellect to solve problems (p. 21). When confronted with 

societal problems, students’ lack of intellectual training results in emotional responses only. 

They have a general inability for rational thought. Bertonneau concluded that educational 

failure had “cheated” thousands of students and was scandalous (p. 27). 

The U.S. government took notice of the downward trend in high school student readiness in 

mathematics and science, appointing a special commission headed by Senator John Glenn in 

1999 to study the problem. In its report, titled “Before It’s Too Late,” the commission noted 

that “it is abundantly clear from the evidence already at hand that we are not doing the job that 

we should do—or can do—in teaching our children to understand and use ideas from these 

fields. Our children are falling behind; they are simply not ‘world-class learners’ when it 

comes to mathematics and science” (National Commission on Mathematics and Science 
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Teaching for the 21st Century, 2000, p. 4). The commission reported that the Third 

International Mathematics and Science Study (TIMSS) had tested the students of 41 nations 

and that, while U.S. children were “among the leaders in the fourth-grade assessment,” by the 

time they graduated from high school “they were almost last” (NCMST, 2000, p. 4). 

Commission members recognized that a century earlier the nation’s schools had risen to the 

challenge of educating students to meet the demands of an industrializing economy but cited a 

“scary” Midwest think tank statistic that “60% of all new jobs in the early 21st century will 

require skills that are possessed by only 20% of the current workforce” (NCMST, 2000, p. 6 & 

13). 

The negative trends identified by Glenn’s commission continued. In 2005, assessments of 

students across the world indicated that U.S. students still lagged their peers in other 

industrialized nations in mathematics scores (Gropp, 2005). Five years later, a report from the 

Corporate Voices for Working Families highlighted the continuing disconnect between 

employers’ need for qualified workers and the deficient skills of high school graduates. The 

report noted that “employers in need of better prepared workers and educational systems that 

fail to produce an adequate supply of skilled graduates have been on a collision course, 

creating a growing skills gap in the marketplace” (CVWF, 2010, p. 3). As recently as 2018, 

Gewertz (2018b) noted that employers are saying that high school graduates have not been 

adequately trained to read, write, or have conversational skills. 

In Australia, Thomas et al., (2009) linked the shortage of mathematics teachers in the country 

to a sharp decline in enrollment in mathematical studies and had observed that the lack of 

mathematicians was impacting industry such that Eastern European and Asian mathematicians 

were being invited to immigrate to Australia to fill the gap. Ten years later, Wilkie and Tan 
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(2019) described continued declining enrollment in year-11 and year-12 advanced 

mathematics courses leading to mathematically-intensive higher level studies (university 

mathematics) that was depleting the employment sector of qualified Science, Technology, 

Engineering, and Mathematics (STEM) graduates and also impacting the quantity and quality 

of students seeking to become mathematics teachers. 

2.2.4. Defining Readiness 

There is no “industry standard” definition for university readiness. McCormick and Lucas 

(2011) note that there are several perspectives on how to measure and define it including, but 

not limited to: “high school courses completed, high school grade point average, mathematics 

content and procedural standards, scores on national tests and college placement exams, and 

success in first year college courses” (p. 5). Van Rooij and Jansen (2018) point out that the 

definition of readiness often differs between secondary school teachers and university 

professors with the former believing that graduating from secondary school implies readiness 

for college whereas the university professor defines readiness as students who have mastered 

the content taught in high school and who “possess sufficient learning skills, such as an ability 

to deal with large amounts of content” (p. 10). Conley’s statement that “college readiness can 

be defined operationally as the level of preparation a student needs in order to enroll and 

succeed—without remediation—in a credit-bearing general education course at a 

postsecondary institution that offers a baccalaureate degree or transfer to a baccalaureate 

program” offers a helpful summary of perspectives (Conley, 2007, p. 5). Conley’s definition, 

in the presence of data identifying inadequacies in readiness, has led the educational 

community to infer that secondary rigor and/or testing is suspect, and/or that the university 

standards are mismatched with the incoming cohort skill level, and/or that university entrance 



26 
 

qualifications fall short of predicting the level of mastery necessary for student university 

success. This coupled with universities lowering mathematical standards for engineering and 

science studies is evidence that university preparedness in mathematics is degrading with 

solutions still elusive (Prince, 2016; Zietara, 2016). 

While definitions of readiness have differed, scholarly literature about the proliferation of 

remedial courses indicates that there is a serious disconnect between secondary school 

teachers and university professors on what constitutes readiness. Much weighting of university 

readiness is judged by the scores on institutional placement exams or, in the case of the U.S., 

on nationally recognized college entrance exams like the American College Test (ACT) (Kaye 

et al., 2006) . Recognizing the deficiencies in student performance, many U.S. states sought to 

align their high school exit requirements with university prerequisites (Boser & Burd, 2009). 

Yet the 2015 ACT Key Findings Report showed that just 31% of students who took the test 

met any of the four key benchmarks (English, Reading, Mathematics, Science). It reported a 

downward trend for mathematics achievement between 2011 and 2015, with only 42% of 

students meeting the mathematics benchmark standard (ACT, 2015). More concerning was 

that even in the rarified classroom climate of STEM students, only 53% met the ACT 

mathematical benchmark. Just 3 years later, Education Week reported that ACT scores had 

dipped to a 20-year low where only 4 of 10 scored well enough to meet the mathematics 

benchmark (Gewertz, 2018a). 

2.3. Fighting Over Solutions—The “Math Wars” 

The problem of ill-prepared secondary school graduates is an old one and there has been no 

consensus as to the cause. Many secondary mathematics curriculum changes have been 

implemented over the decades and battles to decide “how much” and “when” were gathering 
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inertia as early as 1915 (Klein, 2003). It was during these initial controversies that the idea 

that lasting and valuable knowledge is supported by self-discovery was pressed into the 

development of the mathematics curriculum by the educational community. Osborne and 

Crosswhite reported that, by 1920, battle lines were drawn between the mathematical 

community and educational elites over control of secondary mathematical requirements. These 

battle lines pitted mathematicians promoting traditional teaching practices against mainstream 

progressive educators promoting student-centric, discovery forms of learning (Klein, 2003). 

When Professor William Heard Kilpatrick of the Teachers College at Columbia University 

was asked in 1915 to chair the National Education Association’s commission to study 

problems associated with teaching mathematics in the secondary schools, there were no 

mathematicians on his committee. Kilpatrick considered mathematics education “harmful” to 

thinking normally in society (Kilpatrick, quoted in, Klein, 2003, p. 7). His committee’s report, 

titled The Problem of Mathematics in Secondary Education, recommended that nothing in the 

mathematics curriculum be included in schools unless a “probable value” could be attached 

and, even then, only for selected students. This report met with resistance from the 

mathematical community. In 1916, the Mathematical Association of America (MAA) 

appointed its own National Committee on Mathematical Readiness as a counter to the NEA’s 

commission. The committee’s report, completed in 1921, included vigorous opposition to the 

Kilpatrick report (Bureau of Education, 1922; National Committee on Mathematical 

Requirements, 1923). 

The battle for leadership of steering secondary mathematics curriculums that Klein labelled, 

“Math Wars,” was lost by the mathematicians when, in 1999, amid the protests of 200 

university mathematicians, Fields Medal winners, Nobel Laureates and math department 
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chairs, the U.S. Department of Education recommended to 15,000 school districts a list of 

mathematics textbook to be considered for adoption in the secondary schools that had, in the 

opinion of the mathematicians, “radically diminished content and a dearth of basic skills” 

(Klein, p. 3). 

Despite pushback from mathematicians, the educational community continued to gain ground 

in controlling the mathematics curriculum. Educational theorists, fueled in large measure by 

Jean Piaget’s “stages of learning” and Lev Semenovich Vygotsky’s “Zone of Proximal 

Development (ZPD),” increasingly became the authorized providers of the content of the 

mathematics curriculum. Piaget was a psychological constructivist; in his view, learning 

proceeded by the interplay of assimilation (adjusting new experiences to fit prior concepts) 

and accommodation (adjusting concepts to fit new experiences) now labelled “discovery” or 

“experiential” learning (Thompson, 2019, p. 9). Vygotsky developed ZPD to argue against the 

use of academic, knowledge-based tests as a means to gauge students’ intelligence (Wass & 

Golding, 2014). Piaget’s and Vygotsky’s educational theories provided the arguments that 

widened the gap between the textbook development done by the mathematical community and 

that done by the secondary educational community (Wass & Golding, 2014). Notably, ZPD 

conceptually is a procedural approach of achieving topic mastery in any subject, but perhaps 

more in a subject that represents step by step concept maturation (Silalahi, 2019). That is, the 

teaching of mathematics that is intended to develop stepwise mastery might be well suited to 

ZPD and the scaffolding approach, provided the mathematics teacher’s content knowledge is 

rigorous and comprehensive (Kim et al., 2011). The student in the classroom of such a teacher 

is likely to be assigned in-class and out-of-class assignments to fully acquire the concept 

presented so that, in addition to the resident master in the form of the fully-competent teacher, 
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the textbook must support the rigorous lesson once the student has left the classroom (Hu, 

1993; Valverde, 2002). The requirement for content relevance, rigor, and topic perspicuity in 

textbooks inspired this research into textbook rigor. 

2.4. Degraded Mathematical Maturity—The Source  

Intellectual maturity is the ability to continually synthesize and create new ideas by the 

effective use of old or mastered ones. It is not achieved through the conventional strategy of 

“thinking outside the box,” but rather by increasing the dimensions of the “box” to encompass 

and include more processes and a maturing understanding (Cowan, 2007). It is through this 

expanding the box process that mastery is approached and the confidence garnered in mastery 

allows for the maturing of the student (Insurance Newslink, 2013; Pickett et al., 2006). When 

mathematical concepts are ordered logically in a textbook, presented clearly, and reinforced 

systematically, the “box” Cowan addresses will expand inclusively for students and, “as 

collective intelligence emerges, collective wisdom becomes possible” (Adams & Anderson, 

2015, p. 62). Mastery, which can be measured with any number of investigations, becomes the 

measure of maturity. So, the target for maturing the student is mastery in the subject (Bardach 

et al., 2019). Mathematically mature students have the self-confidence to continue to move 

forward in their studies and the ownership (mastery) of each new topic promotes self-

confidence and the perception of success which in turn provides the enjoyment that compels 

students to keep moving along in their coursework (Tapia, 1996). 

Student maturity is promoted by rigor in academic coursework but since mathematics 

standards have measurably dropped over the years the inclination has been to blame the 

curriculum and academic standards. Taylor (2018) places the blame on the fact that the 

“secondary school mathematics curriculum is narrow in scope and technical in character; this 
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is quite different from the nature of the discipline itself” (p. 1). In 2004, the American 

Diploma Project (2004) found that “nearly half the states require students to pass exit exams to 

graduate, but these exams are generally pegged to 8th and 9th grade material, rather than 

reflecting the knowledge and skills students must acquire by the time they complete high 

school” (p. 7). McCormick and Lucas (2011), citing a 2006 report prepared by the National 

Math Panel of the ACT, noted “an actual loss of momentum in students’ progress toward 

college readiness during their high school years” and attributed it to “a lack of direction on the 

part of the states in establishing and defining specific course standards and expectations for 

mathematics achievement in high schools” (p. 12). They further noted: “While more than two 

thirds of high school teachers surveyed believe they are meeting state standards for preparing 

students for college-level mathematics, approximately the same ratio of post-secondary 

educators believe students are coming to college unprepared” (p. 12). 

Maturity can be impacted by “teaching to the test” (Zakharov & Carnoy, 2021) and often these 

tests are “not well aligned with postsecondary learning” (Conley, 2007, p. 9). Teachers at the 

secondary level tend to assume that they need to cover a broad range of topics in advanced 

mathematics courses while teachers at the post-secondary level are more concerned that high 

school students have a proper grounding in math fundamentals (Chait & Venezia, 2009). 

2.4.1. Taking Student Maturity Into Account in Survey Design 

Formal mathematical structures and concepts presented in the proper rigorous context (usually 

in a textbook) help develop, foster, and enhance a student’s intellectual maturity (Hadar, 2017; 

Pirie & Schwarzenberger, 1988; Wijaya et al., 2015), and the proper rigorous context can be 

fashioned into survey question criteria or steps (Khoukhi, 2013) that are listed and defined in 

the maturity steps described below: 
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2.4.1.1. Maturity Step 0: Pre-Year-12 and Campus Influences 

If the secondary student believes that the teacher is trustworthy and believable, the student 

then becomes attentive to the curriculum (i.e., matures in the subject area) and its delivery via 

the textbook (Jukic Matic, 2019; Shield & Dole, 2013). As a result of the textbook and teacher 

engagement, the textbook is afforded a value to the student which becomes the inertia needed 

for the student to mature in the concepts being taught (Hughes, 2011; Vincent & Stacey, 2008; 

Walker, 2008). 

2.4.1.2. Maturity Step 1: Socio-Mental Maturity as a Catalyst for Academic Maturity 

Thomas Arena notes: “Mental maturity is probably the best single predictor of academic 

achievement available…” (Arena, 1970, p. 21). Arena did not connect mental maturity to 

social maturity but the meta-analysis by Ma indicates a connection between social and mental 

maturity (Ma, 1999). Additionally, Steinberg demonstrated that the connections between 

formal expectations of the parent, teacher, and delivery method of mathematics (the textbook 

for one) are significant in the social and mental maturing of the student (Steinberg et al., 

1989). Maturity (as opposed to gender or culture or promotion of self-esteem) blossoms as a 

predictor of academic achievement—notably in Mathematics (Steinberg et al.; Zenkl, 2021). 

2.4.1.3. Maturity Step 2: Transitional Maturity 

Transitional maturity recursively develops the student from mental maturity to intellectual 

maturity. The existence of the transitional maturity becomes stark when one sees students who 

are highly intelligent and intellectually mature and others who are highly intelligent yet 

intellectually immature (Eckert, 1934; Klafter, 2020). Students must face the problems which 

are brought about by environmental factors like school atmosphere, family atmosphere, peer 

group relationship, and gang influence, etc. The unhealthy atmospheres of family, school, and 
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poor peer group relationships cast a bad influence upon the social behavior of adolescents 

(Klafter). Naturally, the converse is true as well (Lawrence & Jesudoss, 2011). This likely 

factored into one of the many reasons for the differentiation noted by Eckert in her “Traits 

Listed” section that included “sense of values,” organizational skills, and ability to apply 

principles to social settings as characteristics of intellectually mature students (Eckert, p. 479). 

2.4.1.4. Maturity Step 3: From Social to Intellectual Maturity 

“Man is basically a social animal. His existence without social structure can hardly be 

imagined. He is born in a society, develops in a society, and works and progresses in a 

society” (Lawrence, p. 244). As individuals age, society expects that their behaviors will 

change too (Auyang, 2009; Kaur, 2020). Under normal conditions, “social” maturity increases 

over time, in the form of selflessness and other expected norms of behavior commensurate 

with age. Individuals learn to be in a group, share, care for others, and respect the norms and 

values of the society (Nadaf & Patil, 2020). Intellectual maturity develops according to 

normal, predictable situations that the student encounters (Talebi BahmanBeigloo & Khosravi, 

2021; Yani et al., 2019). Lawrence adds, “As adolescence is the age for an individual to 

express mature behavior, education should inculcate noble human values through various 

activities along with the normal curriculum” (Lawrence & Jesudoss, 2011, p. 244). There is an 

expectation that intellectual maturity grows recursively through continued immersion in social 

and academic challenges that exercise acquired maturity. A formal approach in training, 

instruction, remediation, encouragement, admonition, and critical thinking will foster the 

overall process of social and intellectual maturity and the rehearsing of these will then lead to 

the balanced and mature approach to mathematics and thinking in general. Thus, with a formal 

and rigorous mathematics textbook, the student will have the advantage of rehearsing these 
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maturing disciplines in the form of a structured approach to learning mathematics (Hurlock, 

1967; Kelly & Kotthoff, 2016; Ma, 1999; Steinberg et al., 1989). 

2.4.2. Convergence Toward the Target of a Mathematically Mature Student 

The following progression results in a mathematically mature student:  

 Successful preparation permits a healthy self-awareness (Jones et al., 2016; 

Schoenfeld, 2016) that promotes teacher acceptance and environmental 

agnosticism so that teacher acceptance promotes interest in studying the text.  

 When the text is rigorous it challenges the students in a healthy way (Gupta & 

Elby, 2011; Redish & Smith, 2008) to think conceptually (Ferguson, 2012; Ganter 

& Barker, 2004). 

 A rigorous textbook promotes systematic progress and maturity (Niss & Højgaard, 

2011) that enhances the student’s capability to better utilize the rigorous textbook 

(Jones et al., 2016) so that maturing instructor interaction promotes trust in the 

textbook (Gainsburg, 2012) such that the student is prepared for the tertiary 

experience (European Society for Engineering Education (SEFI), 2013). 

Figure 2.1 depicts the chronological flow of the secondary student’s mathematical exposure 

and experience. It highlights the fact that mathematical maturity is multifaceted, linked to the 

student, environment, and teacher and influenced by the rigor of a sequentially well-presented 

year-12 mathematical textbook that has, as its focus, the successful acquisition of competency 

to be measured in this research by success in the year-13 calculus examinations. 
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Figure 2.1 Maturity Flow and Mathematical Mastery Progression by Categories 

The looping enhancement of skill and maturity has at its center a rigorous textbook (Hadar, 

2017; Wijaya et al., 2015). The rigorous textbook is the central resource that competently 

presents cohesive topics with varying maturity levels of examples and problems, thus allowing 

the student to continuously review and move toward topic mastery (Rohrer et al., 2020; Shield 

& Dole, 2013) . In fact, the rigorous textbook gives the student the confidence of having 

acquired mastery which itself enhances mathematical maturity leading to the development of 

new ideas (Prabawanto, 2018; Steen, 1983). Accordingly, it was determined that the survey 

instrument design had to solicit answers to survey questions that would reveal whether the 

textbook experience had promoted maturity and demanded mastery (Redish & Smith, 2008). 

2.5. Drivers of Readiness 

While the core requirements of the student, the environment, and the teacher are all valuable 

considerations for developing mathematically mature students (Shield & Dole, 2013), they 

meet, in a sense, in the textbook. That is, the intersection of the three core components are not 
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detached from the textbook as seen in the Rezat tetrahedron model, Figure 2.2 below (Rezat, 

2009, p. 1261). 

 

Figure 2.2 Rezat's Tetrahedron Model 

With this intersection, the textbook may act as the resource that provides for the student’s 

need for guided, maturing tasks (Glasnovic Gracin, 2018; Rezat, 2009); it can also provide the 

direction of lessons and order for the teacher (Usiskin, 2013; Wijaya et al., 2015) and the 

associated cosmos (environment) which may be expressed as a contributor to the acquisition 

of mathematical knowledge (Hadar, 2017; Wijaya et al.). Thus, the mathematics textbook’s 

centrality emerges as a key driver enhancing or degrading the student, the environment, and 

the teacher effectivity (Lin, 1983). 

2.6. Textbooks as Key Driver of Readiness 

Scholars have noted that a rigorous textbook can be a teacher by itself—serving a highly 

influential role in the mathematical education of the secondary student. In fact, instructional 

materials are found repeatedly to influence between 75 and 90 percent of instruction decisions 

made in the classroom (Shield & Dole, 2013; Squire, 1985). Rezat (2009) describes the 

intrinsic value of the textbook, and in particular the mathematics textbook, as one of the most 

important tools in the teaching of mathematics while Shield and Dole (2013) observe that the 

textbook and its environment contribute measurably to providing “rich and connected 

mathematics knowledge” to students (p. 195). Glasnovic Gracin (2018) emphasizes the 
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important role textbooks play in mathematics education and promoting mathematical maturity 

in students, citing studies by Howson (2013) and Usiskin (2013) that show that teachers use 

the textbook as the tool of lesson preparation even more so than curriculum outlines. Pellerin 

(2005) states that high schools play a role as “socializing agents” (p. 283) and, in this capacity 

are responsible for setting the direction and commitment to academic standards and emphasis. 

Selecting appropriate textbooks would be one of those commitments and, in fact, at least one 

scholar has characterized the adoption of inadequate textbooks as “professional misconduct” 

in the education community (Heyneman, 2002, p. 1664). 

2.6.1. How Students Use Textbooks  

Valverde (2002) argues that the structure of mathematics textbooks advances a distinct 

pedagogical model and is likely to have an impact on actual classroom instruction. Rezat 

(2009) emphasizes that the mathematics textbook is foundational to the teaching of 

mathematics and adds that, in order to utilize the textbook content (building mathematical skill 

and maturity) the textbook must be structured so that a cohesive continuum of topics order, 

topic rehearsal, and topic utilization be clearly in place throughout the material presented. 

Rezat’s study concluded that students do not only use the mathematics textbook when they are 

told to by the teacher; they also use the textbook in a self-directed manner. He observed that 

mathematics students practice complexity reduction and problem solving, deliberately pursue 

increasing their mathematical knowledge base, and even research interesting mathematical 

activities as part of their textbook use. 

2.6.2. Optimal Topic Order 

A rigorous approach to learning is one that is distinctly different from an experiential (ZPD) 

approach (Dean & Kuhn, 2007; Kirschner et al., 2006; Mayer, 2004). Mathematical topic rigor 
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in the textbook requires directed (or guided) emphasis on the theoretical constructs that 

demand student mastery and that reinforce theory and practice by diligently and systematically 

exercising previously presented material while addressing the minimum mastery prerequisites 

for the sequential, next course which, in the case of this study, is year-13 calculus. The 

rigorous approach deemphasizes the experiential or discovery approach on the grounds that 

the precalculus student is beyond the concrete (non-abstract) stage of knowledge acquisition; 

but, even in the concrete stage, directed (or guided) instruction is measurably more effective 

and should be emphasized in the mathematics curriculum and textbook (Ausubel, 1964; 

Colliver, 2000; Klahr & Nigam, 2004). Directed (or guided) and formal theoretical discussions 

should be sequential for each topic and the order of topics presented should be consistent with 

the intent of the coursework (Goonatilake & Chappa, 2010; Kindle & Gentimis, 2018). 

The rubric for the order of topics in any mathematics textbook would be, first, a brief review 

of what the student is expected to already know, followed by a structured, precept upon 

precept, topic presentation (Kindle & Gentimis, 2018). Therefore, to analytically examine 

rigor (a textbook implementation of directed or guided topic presentation), the textbook will 

need to be assessed on compliance with the maintenance of a recognized and approved order 

of topics presented, an uninterrupted and relevant continuum within the overarching topic 

order, and a commitment to recursively acknowledging previous topics by relevant integration 

into the current topic (now labelled as interleaving). As an example, there is common 

agreement among mathematicians and mathematics teachers that polynomials and advanced 

factoring be presented as the necessary launching to the topic of the reduction of operational 

complexity and of foundational value in calculus (Wagner et al., 2015; Weiss, 2016) followed 

by the ability to understand core attributes of analyzing functions. Additionally, the integration 
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of function specifications, definitions and operations with the study of exponents and 

logarithms are considered to be critically important in calculus readiness and, as a result of the 

need for function inverse for the successful study of exponents and logarithms, a chapter order 

begins to come into view (Carlson et al., 2015). 

Topic order, or instructional sequencing, has been characterized as “vital” to successful 

learning progression (Fonger et al., 2018); so vital, in fact, that when a curriculum demanded 

an order of topics that was not sequenced according to the needed mathematical topic 

maturity, Choppin (2011) reported negative student effects were measurable in student 

concept acquisition. In a sampling of students by Carlson, deficiencies were identified in 

trigonometry course work by test scores reflecting that the textbook did not adequately explain 

the foundational concept that trigonometric functions are circular functions. Test results also 

indicated that the necessary preparation in polynomial and rational functions had not been 

addressed, indicating a probable failure in topic order maintenance (Walsh et al., 2017). 

Chapter 7 describes development of an algorithm designed to facilitate the assessment of rigor 

in year-12 precalculus textbooks. 

2.6.3. Textbook Content Shifting While Prerequisites Remain Static 

Topic order in the precalculus textbook is important, and following the order suggested in the 

scholarly literature is likely to be instrumental in the mathematical maturing of the secondary 

student. Yet, precalculus textbooks are constantly changing with little regard for maintaining 

content order. 

Precalculus textbook content change has been dynamic as evidenced by constant course 

redesign (Gruber et al., 2021; Jones & Lanaghan, 2021). For example, STEM is influencing 

course content toward a graphing and algebraic logic calculator basis and emphasis (Usiskin, 
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2013). Electronic calculators have systematically replaced some laborious mathematical 

operations, such as looking up information in assorted mathematical tables (Bates, 2021; 

Cipra, 1988; Hieb et al., 2015), and have even displaced some core operations, such as 

addition and subtraction, in the lower grades (Fischer et al., 2019). Reliance on calculators has 

impacted student awareness of the correctness of final solutions (LaCour et al., 2019). The 

integration of calculators into the textbook, and the deemphasis of mathematical tables and 

their associated mathematics, has necessarily transformed the textbook into a concept-

deprived, yet calculator-rich, rapidly changing curriculum delivery system such that the 

exclusion of needed arithmetic skills deprives the student of a key factor positively influencing 

mathematical achievement (Kaeley, 1993). 

Imagery inclusion is being used for concept reinforcement and problem solving in 

mathematics classes (Baker & Gilbey, 2016) and is implemented in many precalculus book 

chapters. The damaging effect of trivializing concepts by user-friendly presentations (Clark & 

Lovric, 2008; Ghedamsi & Lecorre, 2021) has adversely affected the students, the classroom, 

and the community (Geisler & Rolka, 2020) and thereby negatively impacted student 

satisfaction that is linked to mathematical skill and success (Rezat, 2009; Valverde, 2002). 

Henningsen and Stein (1997) measured conceptual acquisition degradation in the presence of 

irrelevant discussions and distractions in the form of activities, stories, and illustrations that 

were not concept specific and concept building. Careless illustrations effectively collapsed the 

acquisition of the concept being presented (Henningsen & Stein, 1997). Durkin et al., (2021) 

note that an increased emphasis on group work (discussion forums) in mathematics 

classrooms has resulted in an increase in the number of pages devoted to examples to promote 

and support these discussions. 
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While nations like Singapore are purposely limiting the number of topics introduced to 

students in mathematics courses (Close-up Media, 2011), scholars have commented on the 

detrimental addition of new topics into the mathematics curricula and textbooks in Australia 

and the United States (Hurst, 2015; Sherman et al., 2020). For example, due to massive 

enrollment in undergraduate statistics classes, one or more chapters dealing with various 

statistical topics have been incorporated into many precalculus textbooks (Gordon & Gordon, 

2018). Often, topics are presented as a smorgasbord of delicacies for students and instructors 

to choose from based on whatever the current prevailing trend happens to be (Usiskin, 2013). 

It is no surprise that some scholars caption modern mathematical curricula and textbooks as “a 

mile wide and an inch deep” (Brown & LaVine Brown, 2007; Duffrin, 2005; Gu, 2010; 

Schmidt et al., 1997). Gu (2010) noted that the U.S. mathematics textbooks are 800-900 pages 

in length as compared to 200-300 pages in China and Singapore where, he notes, the students 

are more proficient in mathematics. The additional pages contain non-conceptual ideas such as 

pictures, calculator exercises, and computer games which interfere with the textbook as the 

trainer for rational thinking (Gu, 2010). 

The problem with constantly changing precalculus textbooks is that the essential content and 

style of year-13 calculus courses/textbooks have not change markedly for decades (Sofronas et 

al., 2015; Tucker, 2013). Some have even expressed concern that the calculus texts are not 

keeping up with trends and technology (Sevimli, 2016). Because precalculus textbooks are 

constantly changing and presenting more topics at a superficial level with technology and 

imagery and group discussions while calculus texts have remained somewhat static (by 

professor preference according to Sevimli), a mismatch in necessary knowledge and skills is 

occurring between the standard secondary school precalculus course and the standard 
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university calculus course (Schoen & Hirsch, 2003; Sevimli, 2016). Scholars have 

documented the difficulty secondary students are having transitioning from the informal 

presentations of concepts in secondary precalculus textbooks to the formal presentation of 

concepts via axiom, definition, theorem, and corollary sequences common to university 

calculus textbooks (Frank & Thompson, 2021; Ghedamsi & Lecorre, 2021). 

2.7. Realigning Secondary and Tertiary Mathematics Requirements Through MRP 

Because prerequisites for elementary calculus have remained relatively static, alterations to 

precalculus curricula and textbooks have caused a misalignment between secondary exit 

standards and tertiary entrance requirements. This project asserts that by considering the 

calculus-ready graduate of secondary school as the “product” required by university calculus 

professors, one can employ the backward scheduling approach integral to the business world’s 

MRP approach as a plausible strategy to examine, diagnose, prescribe, and, if needed, 

remediate the readiness of incoming students to year-13 calculus courses. 

2.7.1. History of MRP 

MRP as a concept for inventory management emerged as early as 1913 as a procedure 

discovered and implemented by Ford Whitman Harris to structure inventory such that a 

factory would store just enough components needed for projected factory operations so as not 

to incur storage costs (Essex, 2020). In the 1960s and 1970s, with the increased availability of 

main-frame and personal computing, MRP evolved into an automated process whereby 

efficiency measures could be implemented, monitored, and optimized for use in the 

manufacturing sector (Bogataj & Bogataj, 2019; Lambert et al., 2017; McCue, 2020). The 

advent of the mainframe implementation of MRP paved the way to advance from managing 

very simple production needs to managing complex component- and resource-laden products. 
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Miller and Sprague (1975) emphasized how the MRP process, by providing visibility to the 

deliverable (i.e., the end product or finished goods), necessarily drove the demand for the 

ordered acquisition of component parts and their assembling into those finished goods. 

By the 1980’s, the MRP process was firmly entrenched in the manufacturing sector and 

hundreds of commercial and home-grown versions of MRP automated systems were 

emerging, modeled on the computer program introduced in 1964 by IBM engineer, Joseph 

Orlicky, who incorporated the efficiency scheme from the Toyota Production System (Essex). 

2.7.2. Evolution of MRP  

The efficiency levels attained through an automated MRP system sparked interest as to how 

such a system could be applied when the end item, or finished good, was something other than 

devices or material goods. That is, since MRP was providing an automated capability to 

efficiently process and schedule the manufacture of components through bills of material 

(BOM) and critical path method (CPM) to manage order and timing of assembly, could it also 

promote efficient management when the BOM were not simply components but, instead, 

resources or even services? In 1983, an extension of MRP called MRP II (manufacturing 

resource planning) enlarged MRP beyond the BOM-centric system to include resources, 

services, and even capacity planning. By 1990, MRP II had further developed into enterprise 

resource planning (ERP) to manage things like accounting, human resources, supply chains, 

and higher educational settings (Essex, 2020; Kumar et al., 2021; Zhao & Tu, 2021). 

For those industries that remained component and product assembly centric, the move to the 

ERP to manage other business processes did not eliminate the core MRP logic. That is, the 

ERP system had in no wise divorced MRP and, although MRP is a predecessor of ERP, it 

remains a necessary and important part in the ERP implementations (Salimi et al., 2006). For 
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those industries that do not support a manufacturing environment, ERP implementation, with 

its concomitant MRP, contains, by virtue of BOM logic, the logic construct called the critical 

path. CPM is simply the identification of the longest time stretch of dependent tasks that are 

inseparably involved in the producing of the finished goods (Kim, 2009; Kotani et al., 1987; 

Tawanda, 2018). 

2.7.3. Applying MRP Processes to Higher Education 

The CPM component of MRP has also been applied globally in the higher education 

environment for myriad purposes to include scheduling classes, forecasting and managing 

supporting resources like classrooms, laboratories, equipment, and professors (Cox & Jesse Jr, 

1981; Habeeb & Alsabaj, 2011; Noaman & Ahmed, 2015), and even for streamlining the 

collection of data used to document accreditation standards (Budiman et al., 2021). Abugabah 

and Sanzogni (2010) report that: “ERP systems have become a standard feature of most 

Australian higher education institutions” (p. 396). 

2.7.4. Applying MRP Processes to Calculus Students 

While MRP and ERP are employed on higher education campuses worldwide, absent from 

scholarly literature is any indication that they have been used to drive requirements planning 

for student course readiness (preparedness). Accordingly, this thesis will theorize a strategic 

implementation of an MRP solution that facilitates designing of a set of course prerequisites to 

drive needed mathematical material mastery and mapping of those prerequisites into 

secondary school curriculum that is implemented via the textbook (Hadar, 2017). 

The precalculus textbook is the target of this experiment and the minimum requirements (end 

product or deliverables) will be determined in a BOM and CPM analysis of the mastery 

expectation identified via a survey of year-13 calculus textbooks. The precalculus textbook 
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target is eminently suitable because, as scholars have noted, textbooks provide order and 

structure (Hadar, 2017; Palló, 2006), drive curriculum (Usiskin, 2013), and provide classroom 

focus as teachers move through the textbook in a particular sequence of topic presentation 

(Fan et al., 2013; Hadar, 2017). The sequencing and content of topics can be evaluated against 

calculus prerequisites using MRP processes. MRP’s critical path strategy applies aptly to the 

entire secondary mathematics curriculum, but when the calculus prerequisites are defined as 

the BOM for incoming calculus students, the CPM succinctly defines the individual skills 

within the topics that must be present and ordered to ensure timely student success. 

MRP applied to mathematical competency for university mathematics appears to be absent in 

the literature as a strategy for course preparation and this paper will suggest that MRP is a 

useful and straight forward way to address prerequisites in any setting. This thesis thus fills a 

gap in existing literature (and practice) as it suggests the use of MRP as the optimal way to 

drive calculus prerequisites from the university down to the secondary school so that 

university mathematics departments, as the “customers” of secondary schools, can become the 

rightful drivers of secondary mathematics curricula. 

2.8. Summary 

Secondary mathematical student testing from several countries demonstrates inadequate 

preparation for tertiary mathematics. Additionally, literary evidence supports the existence of 

mathematical inadequacies for students moving from their last year of secondary mathematics 

into their first year of tertiary mathematics. Educational research is prolific with affirmations 

of this problem and there are many proposed, implemented, and documented solutions. 

However, very few look to the tertiary mathematics prerequisites as the driver for secondary 

mathematical outcomes. The misalignment of year-12 mathematical exit requirements and 
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year-13 mathematical prerequisites, calls for a deliberate focus on tooling designed to enable 

alignment and subsequent on-time delivery of the finished product—the adequately prepared 

year-12 student for year-13 calculus. 
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Chapter 3. Research Methodology and Survey Instrument Design 

3.1. Chapter Overview 

The design and delivery of the survey instruments described in this chapter sought to uncover 

correlated and potentially causal components for student mathematical readiness deficiencies 

as described in Chapters 1 and 2, particularly as they relate to mathematics textbooks. This 

chapter describes the research methodology and the development of the pilot and final surveys 

used to collect data to enable analysis of the relationship between the rigor of secondary 

mathematical textbooks and the preparedness of year-12 graduates for their year-13 

mathematics courses by a determination of the academic centrality of the year-12 precalculus 

textbook; with this in mind, the use and confidence in the secondary precalculus textbook was 

the objective in the survey questions. 

3.2. Research Methodology 

The data collection design for this study was based on a mixed methods approach (mixing of 

qualitative and quantitative data) because the study combined quantitative and qualitative 

research into a systematic view (Hong et al., 2020). Data collected at both secondary and 

tertiary institutions included student and teacher demographics, student and teacher textbook 

experiences, teacher appraisal of student readiness, and a list of textbooks in use by the 

surveyed students and teachers at the time. While survey data (demographic and Likert) were 

entirely quantitative, mixed methods was brought to bear when architecting the methodology 

for textbook rigor assessment with the belief that this approach to building a rigor algorithm 

helps develop rich insights into various phenomena of interest that could not have been fully 

understood using only a quantitative or a qualitative method (Venkatesh et al., 2013). Saldaña 

supports this: 
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Mixed methods research has been present for several decades, but only recently has the 
genre emerged as an approach that brings the once-separated quantitative and 
qualitative paradigms together to form a new epistemological, theoretical, and 
methodological way of working, when appropriate for the research purpose and 
questions (Saldaña, 2011, p. 11). 

The mixed method approach applied a Convergent Triangulation Design as depicted in Figure 

3.1 (Creswell et al., 2003, p. 226) in that Calculus textbooks were gathered and qualitatively 

analyzed for common content across several decades so that a prerequisite model could be 

defined. This model was implemented as a pattern to discern quantitatively whether the year-

12 precalculus textbook content and presentation aligned with the year-13 calculus 

prerequisites which led to a quantitative rating of conformity. This strategy allowed for 

corroboration of quantitative results and qualitative findings as developed in the structured 

models that followed the Factor Analyses in chapters 5 and 6 and the building and 

implementation of the rigor algorithm described in Chapters 7 and 8. 

QUAN
Data Collection

QUAL
Data Collection

QUAN
Data Analysis

QUAN
Results

QUAL
Data Analysis

QUAN
Results

Compare 
and Contrast

Interpretation 
QUAN + QUAL

 

Figure 3.1 Mixed Methods Concurrent/Convergent Triangulation Design 

Qualitative research, a generic term for investigative methodologies (Mishra, 2016) must 

complement information sources and provide data-driven conclusions that minimize and 

control both researcher and participant bias. When information sources drive the questions that 

are asked, the questions will yield answers already indicated by other data sources, enabling 

the researcher to deductively formulate highly probably causal components with minimal 
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researcher and participant bias. In so doing they can provide theory that is holistic and 

consistent with the information collected. This study uses an integrated approach to maintain a 

data-driven paradigm, to mix qualitative and quantitative data elements—commonly called 

convergent (parallel) design, to provide greater data reliability (Klassen et al., 2012). 

3.2.1. Data Collection Focus 

Student readiness for tertiary study is a product of more than one factor. Researchers have 

routinely cited three overarching factors. Ranked in order of influence, they are the student, 

the environment (campus and non-campus), and the teacher (Elliott & Healy, 2001; Guffey & 

Slater, 2020; Hartman & Schmidt, 1995; Hill et al., 2005; Nye et al., 2001; Yin et al., 2020). 

The research methodology had to account for the broad nature of these factors and the 

multiple common threads connecting them. In this case, it was determined that survey 

instruments targeting the three most cited overarching factors was the optimal approach for 

addressing the problem of ill-prepared secondary school graduates. Thus, survey design 

sought to intersect the mathematics textbook with the student, the environment, and the 

teacher. 

Additionally, the survey design stressed the importance of constructing, connecting, and 

comparing categories of maturity, textbook rigor, and mathematical skill with these three 

factors as shown in Figure 3.2 and to apply emerging theories from the data collected to 

enable identification of the relationships between categories (Glaser, 1992). R denotes the 

rigor of year-12 mathematics textbooks, an independent (experimental) variable. T denotes 

test success in year-13 mathematics, a dependent variable. Independent variable E represents 

uncontrolled/error or spurious variables, and independent variable C represents those variables 

that are controlled and can be made constant or eliminated by virtue of design. 
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Figure 3.2 Depiction of Relationship Between Variables 

The surveys also sought to measure and test the centrality, acceptance, and trust of the year-12 

precalculus textbook with the understanding that, if the textbook was demonstrated to be 

central, then its adequacy would also need to be examined. This was done via the MRP-

derived alignment analysis of the year-12 precalculus textbook with the year-13 university 

calculus requirements detailed in Chapters 7 and 8. 

3.3. Data Collection—Survey Instruments 

Four surveys were developed to collect research data. The first survey targeted students in 

their final year of secondary school who were enrolled in precalculus courses designed to 

prepare them for college/university calculus courses. The second survey targeted these 

students’ teachers. The third survey targeted year-13 calculus students and the fourth survey 

targeted their professors. 

The secondary school survey instrument was fashioned so that question emphasis was on the 

year-12 student’s view of the value and usability of the mathematics textbook and confidence 

in their mathematical knowledge. The secondary teacher survey targeted the year-12 teacher’s 

view of the textbook’s value and its usability, the year-12 teacher’s environmental views, to 

include the year-12 teacher’s appraisal of the level of student mathematical knowledge 

implied by the satisfactory completion of the textbook-prescribed curriculum requirements. 

The year-13 student surveys intentionally targeted students’ self-perception of their 

mathematical readiness at the commencement of the school year and their evaluation their 
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year-12 precalculus textbook, while the professor surveys targeted professors’ appraisal of 

actual student readiness for the course. 

3.3.1. Establishing the Scope 

To narrow the scope of the research geographically, the secondary school survey instruments 

targeted precalculus students and teachers at selected schools in South Australia and South 

Dakota. The tertiary surveys collected data from students and their professors at the University 

of Adelaide in Adelaide, South Australia and at the South Dakota School of Mines and 

Technology in Rapid City, South Dakota. The overall intent of the survey instruments was to 

answer the overarching research question concerning whether rigor level changes in year-12 

precalculus textbooks are negatively impacting students’ mathematical maturity and 

preparedness for their year-13 calculus course at the two universities in Australia and the 

United States. Both universities are respected institutions of higher learning ("South Dakota 

Mines again receives top rankings in state and nation," 2020; Times Higher Education, 2021) 

and both had thousands of students enrolled in programs that require calculus for first-year 

students, thus providing a large pool of students to take the year-13 student survey. There 

were, on average, 10,475 students enrolled annually in mathematics and sciences programs at 

UA between 2014-2016 and 2,800 students enrolled at SDSM&T (South Dakota Board of 

Regents, 2017; The University of Adelaide, 2017). 

To narrow the scope of research to a manageable subset of secondary and tertiary students, it 

was decided to target the surveys at year-12 and year-13 mathematics students who were 

already predisposed as mathematically adept by selecting those who were studying precalculus 

and calculus because their academic path required them to do so. Thus, the pilot surveys and 
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final surveys were delivered in year-12 precalculus classrooms and year-13 engineering 

mathematics classrooms. 

3.4. Pilot Survey Creation, Delivery, and Modification 

The flow of main tasks and outputs of this phase of the research project are represented in 

Figure 3.3, which is explained in more detail below. 

 

Figure 3.3 Flow of Main Tasks and Output 

3.4.1. Selecting a Survey Model 

The pilot survey utilized the five major rationales for mixed-method research validation 

identified by Hayvaert, et al. and Greene, et al. (Greene et al., 1989; Heyvaert et al., 2018) to 

help determine the containers and the questions within the categories: 

i. Triangulation - Seeking convergence and corroboration of results from different 

methods and designs studying the same phenomenon. 

ii. Complementarity - Seeking elaboration, enhancement, illustration, and clarification 

of the results from one method with results from the other method. 

iii. Initiation - Discovering paradoxes and contradictions that lead to a reframing of the 

research question. 
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iv. Development - Using the findings from one method to help inform the other 

method. 

v. Expansion - Seeking to expand the breadth and range of research by using different 

methods for different inquiry components. 

Each of these rationales were needed to attempt to determine and reduce influential causality 

that was not textbook specific. Initiation, the negative approach of Triangulation, affirming 

controversy rather than congruence, and Triangulation were implemented by virtue of the use 

of a comparing/contrasting strategy in a two-pronged approach: First, the surveys were 

designed in such a way that questions were asked that were repetitive in meaning but distinct 

in wording so that each response could be compared against other responses to similar 

questions asked in a different way. For example, secondary student survey questions number 5 

(“The year 12 textbook is too complicated”), number 16 (“There is enough detail in the 

textbook to master the topics”), and number 19 (“Without the teacher, the textbook would be 

useless”). A student who answered “Disagree” to question 16 would most likely answer 

“Agree” to questions 5 and 19. Conversely, a student who answered “Agree” to question 16 

would most likely answer “Disagree” to questions 5 and 19. This technique of survey 

construction helped identify students who were providing random answers on the survey. 

Appendix A illustrates how questions were grouped to help facilitate this data-driven survey 

reliability process.  Second, the year-13 survey questions were designed to compare and 

contrast the year-12 student and teacher perceptions of mathematical readiness from the 

context of textbook use (Greene et al., 1989; Heyvaert et al., 2018). Based on data-driven, 

mixed method strategy, twelve groups were developed and molded into survey containers with 

appropriate validation overlap using questions based on items i, ii, and iii above. 
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3.4.2. Framing Survey Questions 

To guide framing of survey questions relating to principles of textbook rigor and student 

mathematical maturity, they were grouped into containers (Dolnicar, 2013). The container 

specifications were guided by evidence and information from the literature and provided 

verbally from students and teachers in interviews and pilot survey discussions. 

The first eight containers reflect the proposition that textbook rigor is connected to tertiary 

mathematical success. The last four containers deal with the proposition that textbook rigor 

promotes maturity both academically and socially. 

3.4.2.1. Textbook Rigor Question Containers 

The following questions related to textbook rigor guided survey instrument design: 

1. What are the relationships between prior math influences and textbook rigor and 

between prior math influences and environmental/teacher textbook engagement? 

2. What relationships exist between year-12 preparedness from prior math influences, 

and year-12 math preparedness with regard to teacher and student textbook 

engagement? 

3. What relationship exists between math textbook rigor and the student use of the math 

textbook? 

4. What are the connections between the student textbook engagement and the math 

teacher textbook engagement and between the student and environmental/teacher 

textbook engagement to the student progress? 

5. What is the relationship between the math textbook engagement and the outcome of 

the year-12 math terminal examinations? 
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6. What relationships exist between year-12 preparation and secondary and terminal 

progress/success? 

7. What relationship exists between year-12 examination outcomes and year-13 

examination outcomes? 

8. What relationship exists between textbook rigor and secondary progress and textbook 

rigor and terminal outcome? 

3.4.2.2. Student Maturity Question Containers 

The following questions related to student maturity guided survey instrument design: 

9. What relationship exists between student satisfaction with the secondary math teacher 

and the student textbook engagement? 

10. What relationship exists between student satisfaction with the secondary math teacher 

and the teacher textbook engagement? 

11. What relationships exist between the year-12 math textbook rigor and the year-13 

math professor and university math textbook? 

12. What relationship exists between the university professor, the university textbook, and 

the year-13 examination outcomes? 

3.4.2.2.1. Framework for Maturity Question Crafting 

As documented in the Literature review sections 2.4.1.1 - 2.4.1.4, the four steps of student 

maturity (Maturity Step 0 – Maturity Step 4) provided the framework for the questions that 

needed to be answered and placed onto the Pilot Survey. The survey instruments examine the 

Maturity Steps by assessing: 

Maturity Step 0 Pre-Year-12 and Campus Influences 
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 Prior Preparation: Questions address general readiness and cross examines to 

determine whether preparation is adequate. 

 Previous Staff Exposure: Questions address the effect of positive and negative 

experience with the year-12 math teacher. 

Maturity Step 1 Socio-Mental Maturity as a Catalyst for Academic Maturity 

 Interaction with Teachers: Questions address student/teacher interaction (i.e., 

whether the student requests assistance from teacher, whether they see the teacher 

as a necessary addition to the textbook, etc.). 

 Homework: Questions address how much homework is assigned, how much 

homework is done, and how much extra homework is done. 

Maturity Step 2 - Transitional Maturity 

 Student Self-opinion: Questions address students’ general opinion of themselves 

and their perception of how they are doing academically. 

 Actual Status: Questions ascertain how students are actually doing. 

 Work Habits: Questions address students’ changes in homework habits and habits 

related to extra work. 

Maturity Step 3 - From Social to Intellectual Maturity 

 Student Self-opinion: Questions address students’ general opinion of themselves 

and their perception of how they are doing academically. 

 Actual Status: Questions ascertain how students are actually doing. 
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 Work Habits: Questions address students’ changes in homework habits and habits 

related to extra work. 

 Teacher and Professor Opinions: Questions address convergence and divergence of 

opinion of year-12 teachers and year-13 professors regarding students’ readiness 

for year-13 calculus. 

3.4.3. Crafting Questions for the Pilot Survey 

The crafting of specific questions on the pilot survey was supported by the author’s experience 

as a licensed mathematics teacher and considered these four factors: (1) how to define what is 

being measured, (2) how many questions to ask, (3) how to ask each question, and (4) how to 

collect the responses to each question (Dolnicar, 2013). The survey questions related to 

textbook use and student maturity solicited answers based on a Likert5 scale to determine both 

student and instructor sentiments and concerns about the textbook in use. A Likert scale 

enables the researcher to “answer questions that have been raised, to solve problems that have 

been posed or observed, to assess needs and set goals, to determine whether or not specific 

objectives have been met, to establish baselines against which future comparisons can be 

made, to analyze trends across time, and generally, to describe what exists, in what amount, 

and in what context” (Isaac & Michael, 1997, p. 136). The remaining questions (those related 

to demographics) collected non-Likert responses. Figures B-1, B-3, B-5, and B-7 in Appendix 

B show the secondary and tertiary pilot surveys. 

                                                 
5 A Likert scale is an ordered scale from which respondents choose one option that best aligns with their view. It is often used to measure 
respondents' attitudes by asking the extent to which they agree or disagree with a particular question or statement. A typical scale might be 
“Strongly disagree, Disagree, Neutral, Agree, Strongly agree.” https://www.cdc.gov/dhdsp/pubs/docs/cb_february_14_2012.pdf> 
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3.5. Pilot Survey Instrument Delivery 

To examine the face validity of the pilot surveys, they were given at one secondary school in 

Australia and one tertiary institution in the United States. The secondary student and teacher 

pilot surveys were given to 54 students and 7 teachers at Tatachilla College in Australia. The 

tertiary student and professor pilot surveys were proctored in the United States at the South 

Dakota School of Mines and Technology (SDSM&T) for 375 students by 6 professors. 

3.6. Soliciting Feedback on the Pilot Survey 

Since the purpose of the pilot survey was to help refine the survey instrument into its final 

form, each pilot survey provided space for participants to provide feedback on format (survey 

length) and on the perceived effectiveness of questions to potentially validate the research 

thesis. To solicit additional feedback, discussion groups comprised of five teachers at 

Tatachilla and eight professors at SDSM&T were held. Though informal, the discussion 

groups were set up to resemble the Nominal Group Technique (Claxton et al., 1980) for the 

purpose of developing and refining the survey questions associated with year-12 mathematics 

textbook rigor. This technique allowed the review participants to discuss their own classroom 

experiences and issues rather than defining the problem based on extant literature. This 

approach was the catalyst to understanding how a rigorous text and curriculum promote (or 

degrade when absent) the mathematical and social maturity of students. The interviews at 

SDSM&T revealed a perception among professors that the incoming engineering students 

were poorly prepared for their elementary calculus courses. 

Discussion group interviews and this author’s experience as a teacher indicated that the 

omission from the modern textbook of fundamental mathematical concepts and the lack of 

practice options in the text (the topic examples) were primary factors in the lack of 
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mathematical maturity of year-12 graduates. One important and unexpected finding was that 

many university professors have had to create their own remedial teaching materials to address 

topics the students had not learned in their precalculus course. This information pointed to the 

need to identify the textbooks used by students so that these textbooks could be acquired and 

analyzed. 

3.7. Building the Final Survey Instrument 

Questions in the final survey were framed to incorporate feedback from survey participants 

and interviews with teachers and professors. These interviews revealed unambiguous 

intersections of concerns and comments when the questions were specific to mathematical 

maturity. Feedback from the discussion groups and participants validated the selected survey 

containers but highlighted the need for some changes to final survey instrument design. The 

following modifications were incorporated into the final survey instruments as shown in 

Appendix B, Figures B-2, B-4, B-6, and B-8: 

 Reduced length of each survey to 1 page so that they could be taken in 

approximately 10 minutes. This was accomplished by modifying spacing and by 

removing feedback sections and administrative comments. 

 Deleted certain questions (such as name of country and school) since these could 

be recorded by the proctor. 

 Reduced number of questions targeting how teachers/professors use textbooks. 

 Changed verbiage of some questions to enhance universal understanding. 

In crafting the final survey instrument, steps were taken to address the possibility that students 

might simply check boxes at random or check boxes with a pattern of their choice. Questions 
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were crafted so that student responses were affirmed via like questions with different wording 

as described in section 3.3. That is, the survey incorporated multiple strategies to address the 

multi-faceted aspect of students’ sociological maturity. Additionally, survey questions were 

crafted so that diversity (or lack thereof) of individual responses would reveal the 

mathematical maturity of students and provide insights into whether their responses to 

questions about their textbook were valid. The instructor surveys provided validation of 

student responses. 

3.8. Data-Driven Conceptual Model 

With maturity data and textbook data, the multiple items or questions to measure a construct 

gave rise to a conceptual dependency model. The dependency framework depicted in Figure 

3.4 (with inferred causation) was the basis for survey question verbiage, order, and repetition 

for secondary and tertiary student and teacher survey instruments. The framework was 

constructed with the concurrent/convergent triangulation from Greene (1989) and Creswell 

(Creswell & Plano Clark, 2011). In Figure 3.4 the connections inferred, and the data-driven 

categories discovered in the research questions, are linked to provide a visual conceptual 

model for the survey content and are constructed using triangulation and then 

complementarity strategies. The diagram shows the progression of influences from prior-to-

year-12, year-12, and year-13 connected events. These connections hypothesize the cause-and-

effect hierarchies and the latent variable constructs that the survey instrument has been 

designed to collect and that the subsequent CFA in Chapter 6 will help to confirm. The 

numerals on the diagram lines refer to the twelve questions listed in sections 3.4.2.1 and 

3.4.2.2.  
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Figure 3.4 Data-Driven Conceptual Model 

Note that in this model, the numbered arrows relate to the survey containers addressing 

textbook rigor and student maturity detailed in sections 3.4.2.1 and 3.4.2.2. 

3.8.1. Determining Causality 

The selected survey approach recognized that designs contain implicit assumptions about 

causal links and causal processes (Oppenheim, 1966). While good use can be made of proven 

techniques like replicability or data disaggregation, there must be an analytic process that 

avoids a derivation of causal relationships. The analytic relation survey is set up specifically to 

explore the associations between particular variables (Oppenheim) as illustrated in Figure 3.2 

above and integrated in the causal flow in Figure 3.5 below. 
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The surveys for this project needed to answer the following: Given independent 

(experimental) variable R [rigor of 12th grade mathematics textbook], dependent variable T 

[test success in year-13 calculus], independent variable E [uncontrolled/error or spurious 

variables], and independent variable C [controlled and can be made constant or eliminated by 

virtue of design], how are T, E and C to be solely influenced by R? Figure 3.2 illustrates the 

logic just mentioned with the understanding that numerous variables contribute to math test 

scores. 

The survey design had to address T, E and C in such a way that R was the predominant 

contributor to T. This design was necessarily iterative (including questions that would validate 

other questions) and would, when complete, resemble the impression diagrammed in Figure 

3.5 where the size of the circle is proportional to the influence of the variables: 

 

Figure 3.5 Depiction of Systematic Reduction of Influential Causality from E and Effective 
Removal of C (Made a Constant) 

3.8.2. Triangulation as Validation 

The data-driven conceptual model in Figure 3.4 uses triangulation as validation. Triangulation 

has been used as a validation enhancer in mixed methods data analysis (Caudle, 1994; Guba & 

Lincoln, 1994). Additionally, according to Caudle: “Qualitative evaluation measurements 

generally are very personal and reflect the evaluator’s perceptions, values, and professional 

training” (1994, p. 85). Thus, she recommends the use of triangulation as a means of 
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improving the credibility of qualitative research. She defines triangulation even more broadly, 

as “the combining of methods, data sources, and other factors in examining what is under 

study” (1994, p. 89). Caudle further notes that congruence and/or complementarity of results 

from each method is the goal of triangulation. She defines congruence as similarity, 

consistency, or convergence of results, and explains that complementarity refers to one set of 

results expanding upon, clarifying, or illustrating the other. If done properly, Caudle asserts, 

triangulation should rely on independent assessments with offsetting kinds of bias and 

measurement errors (1994, pp. 89-90; Rhineberger et al., 2005). In the case of this research 

study, the triangulation from the teacher/professor data and the year-12/year-13 student data, 

provide a rich analysis of survey responses that effectively mix survey answers across 

surveyed groups to provide clarity for the potential influential factors that are exploited in 

chapters 5, 6 and 7 as Likert and demographic responses converged with textbook analysis 

techniques (Smith, 2018). 

Thus, triangulation across survey responses, mixed with textbook appraisal decisions and the 

literature, has provided the mixed method approach criterion that will enhance data 

interpretation, sensitivity to rigor considerations, and centrality of the mathematics textbook in 

the teaching of year-12 precalculus. The data collected from the year-12 surveys is that which 

indicates the student’s and teacher’s appraisal of the value and use of the year-12 textbook for 

year-13 elementary calculus preparedness, while the data from the year-13 surveys is that 

which reflects the student’s and professor’s appraisal of mathematical preparedness for 

elementary calculus. Additional data was collected through demographic questions relating to 

student and teacher age, teaching experience, whether the year-13 student was placed into the 

course by a selection process, and which textbook students had used in the year-12 precalculus 
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class. It should also be noted that additional quantitative findings are derived or embedded in 

the combining of the qualitative and quantitative data under triangulation (Dzekoe, 2013; 

Haidar et al., 2020). These embedded connections provided insight for refining the subsequent 

factor analyses (Dzekoe, 2013; Haidar et al., 2020). So, the embedded quantitative data that is 

indicative of a well-defined and well-documented actuality (mathematical preparedness), is 

understood quantitatively from the merging and analyzing of the qualitative data (Tunarosa & 

Glynn, 2017) such that the analysis of the university calculus textbooks described in Chapter 7 

provided the qualitative foundation to quantitatively measure secondary precalculus textbook 

rigor, and the triangulation component mentioned above is implemented in the survey design 

and the rigor algorithm. 

3.8.3. Parameter Summary for Factor Analytic Possibilities: Theoretical Influence Model 

The Data-Driven Conceptual Model (Figure 3.4) showing the relationships between containers 

#1 through #12, coupled with the Maturity Flow and Mathematical Mastery Progression 

Model (Figure 2.1) showing the recursive value of the rigorous textbook, leads to the 

Theoretical Influence Model depicted in Figure 3.6. This summary model will provide an 

initial basis for factor analytic statistics in chapters 5 and 6. In this model, the following 

influence model specifications are identified and operationalized: 

 Prior Math Influences and Year-12 Preparation as Mathematical Readiness. 

Reflects students’ perceptions of readiness for year-12 precalculus based on 

confidence in their year-11 preparation. Also reflects confidence in a good exam 

outcome as affirmed by mid-term exam results. 

 Environmental and Teacher Satisfaction as Mathematical Enjoyment. Reflects 

year-12 student opinion that the textbook presents topics in a non-complicated way 
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and that textbook explanations align with teacher explanations. Students prefer 

their textbook over handouts and believe that the textbook could stand alone if the 

teacher was absent. Note: As the experiment progressed, this variable was replaced 

by Student Textbook Dislike (Section 5.4.1.1) which was reversed to become 

Student Textbook Like (Section 6.3.1). This variable combined with Student 

Textbook Trust to become Student Textbook Comfort (Section 6.3.1). 

 Teacher/Textbook Engagement as Textbook Use. Reflects year-12 student practice 

of taking the textbook home regularly and their opinion that if the book had more 

work problems, they would spend more time using the textbook. 

 Textbook Rigor and Textbook Engagement as Textbook Trust. Reflects year-12 

students’ observation that the teacher uses and refers to the textbook in class, that 

the textbook examples help them understand the topics, that textbook chapters 

follow a logical sequence, that the teacher values the textbook, and that the 

textbook contains sufficient detail to help students master topics. Note: This 

variable later combines with Student Textbook Like to present a second-level latent 

variable called Student Textbook Comfort (Section 6.3.1). 

 Teacher/Textbook Engagement, Secondary Progress and Textbook Rigor as 

Textbook Enjoyment. Like, Mathematical Enjoyment, this variable reflects year-12 

student preference for textbooks over handouts and their opinion that textbook 

explanations align with teacher explanations. As the experiment progressed, this 

variable, like Mathematical Enjoyment, was later absorbed into the more 

descriptive latent variable, Student Textbook Comfort (Section 6.3.1). 
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 Secondary Terminal Examinations as Student Maturity. Reflects year-12 students’ 

opinion that they did not need help with their homework and that their textbook 

could stand alone without the teacher such that they did not need to ask their 

teacher for help. 

 

Figure 3.6 Theoretical Influence Model 

The influences listed above cannot speak to the use of the university textbook or the university 

professor although we theorize that a successful exposure to a rigorous mathematical textbook 

will likely enhance successful university textbook use and allow the student to have a mature 

connection with the university professor. 

3.9. Final Survey Instrument Delivery 

3.9.1. Delivery Strategy 

Surveys were implemented early in the midterm of the first semester of the Fall (called 

Autumn in Australia) so that maturity questions and midterm outcome questions were timely. 

The Fall (or first semester) term occurs in the February to May timeframe in the southern 

hemisphere and August to November in the northern hemisphere. 
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3.9.2. Total Surveys Delivered 

The final survey instrument was delivered in 2014, 2015, and 2016 to 2,836 students, teachers, 

principals, and professors. Forty-four percent of the student surveys were proctored by a 

teacher or professor, 13 percent were proctored by a surveyor (the researcher or his late wife), 

and the remaining 43 percent of surveys were delivered and completed via the internet. 

Chapter 4 provides demographics on secondary and tertiary student and teacher/professor 

survey respondents. 

3.10. Conclusion 

This chapter has presented the research methodology and survey strategy used to collect data 

to enable analysis of the relationship between the rigor of secondary mathematical textbooks 

and the preparedness of year-12 graduates for their year-13 calculus course. It has 

demonstrated that, just as focus interviews about student readiness and textbook use 

(qualitative), allowed for question and survey layout input strategy, the mixed methodology 

approach permitted the qualitative data to integrate with the quantitative data so that survey 

answer reliability could be improved while also providing essential insights into textbook 

rigor measurement procedures. 

The data-driven survey instrument described in this chapter framed the response context by: 

 Student gender, age, and how they valued the text 

 Teacher validation 

 Student response consistency within the individual survey 

 Student maturity 

 Teacher experience 

 Textbook value to teacher and student 
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The next chapter will provide demographic details on survey respondents and statistically 

validate that survey respondents are representative of the universal population.  



68 
 

Chapter 4. Sampling Justification (Preamble for Data Analysis) 

4.1. Introduction 

This chapter will describe the demographics of survey respondents (secondary and tertiary 

students and teachers) and will demonstrate the methodology used to validate that the data 

elements acquired for this study are representative of the universal population. Ideally, the 

universal population of tertiary students would be all the students in Australian and U.S. 

universities who studied calculus in their first year of university immediately following 

advanced mathematics coursework in their secondary schools. Since it is infeasible to survey 

this population, it was necessary to select a representative sample so that variance, without a 

“true” population, could be calculated. This process is described below. 

4.2. Survey Respondent Demographics 

The survey instrument was designed to collect data (demographic and Likert scale) that could 

be used to assemble a model, or models, that would demonstrate the centrality of mathematics 

textbook rigor as an essential component in the readiness of year-12 students to successfully 

complete their year-13 elementary calculus course. This section provides demographic 

information about survey respondents.6 

4.2.1. Secondary Student Demographics 

The secondary student survey was given to 566 year-12 students in the United States and 

Australia. The students who took this survey are representative students in the sense that they 

attended a variety of different types of schools, were the age of typical year-12 students, and 

comprised a gender ratio consistent with worldwide averages. The U.S. and Australian 

secondary schools were all co-educational and a mix of private, public, religious, and secular 

                                                 
6 The total of 2,836 survey respondents included nine secondary school principals who took the survey—six in Australia and three in the 
United States. The demographic data below does not address these respondents. 
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schools. The U.S. schools ranged in size from 214 students to 800 students and catered to 

grades 8-12 and 10-12. The Australian schools were all private schools and were a mixture of 

religious and secular. The student population ranged from 700 to nearly 1,500 and catered to a 

mix of K-12 and 8-12. 

The mean age of secondary students who completed the survey was 17.5. This is consistent 

with the fact that secondary schools have grade level age consistency. Of the 544 students who 

answered the question about gender, 307 (56%) were male and 237 (44%) were female. By 

way of comparison, females comprised 45.19% of secondary school students in Australia in 

2016 and 48.79% of students in the United States in 2016 (Global Change Data Lab, 2021). 

The small difference in gender ratio between the representative survey sample and the overall 

secondary student population in the U.S. and Australia is explained by a fewer number of 

female students enrolled in advanced secondary mathematics (Lubienski et al., 2021; Mejía-

Roíguez et al., 2020; Perez Mejias et al., 2021). 

Table 4.1 shows the number of students who completed the survey by year. 

Table 4.1 Secondary Student Year of Survey Completion 

Year of 
Survey 

Completion 

U.S. 
Students 

Aust. 
Students 

Total # 
of 

Students 
2014 60 111 171 
2015 59 177 236 
2016 73 86 159 

TOTALS 192 374 566 

4.2.2. Tertiary Student Demographics 

The tertiary student survey was completed by 2,195 year-13 students in the United States and 

Australia. The tertiary students in the United States were attending the South Dakota School of 
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Mines & Technology. The tertiary students in Australia were attending the University of 

Adelaide. Table 4.2 shows the number of students who completed the survey by year. 

Table 4.2 Tertiary Student Year of Survey Completion 

Year of 
Survey 

Completion 

U.S. 
Students 

Aust. 
Students 

Total # 
of 

Students 
2014 867 352 1,219 
2015 457 194 651 
2016 75 250 325 

TOTALS 1,399 796 2,195 

 
The mean age of tertiary students who completed the survey was 19.5. The oldest student was 

72 years old and the youngest students (dual enrolled for college credit while still in high 

school) were 16 and 17 years old. Table 4.3 shows the year of graduation from secondary 

school for the 2,154 tertiary students for whom year of graduation was successfully collected 

from the survey answers. Seventy-two percent (n=1,581) of the students who completed the 

survey were in their first year of college. The proximity of the dates when tertiary students 

completed the survey and when they had graduated from high school affirms useful data 

consistency regarding year-12 and year-13 transitional considerations. 

Table 4.3 Tertiary Student Year of Secondary School Graduation 

Year of 
Graduation 

# of 
Students 

% of 
Total 

1960s 1 0.05 
1970s 0 0.00 
1980s 10 0.46 
1990s 23 1.07 
2000s 105 4.87 
2010 24 1.11 
2011 42 1.95 
2012 126 5.85 
2013 565 26.23 
2014 625 29.01 
2015 509 23.63 
2016 81 3.76 

2017* 2 0.10 
2018* 2 0.10 

Missing 41 1.81 
Total 2,154 100.00 
* Dual Enrollment Students 
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Note that Table 4.3 also indicates an 83% drop in the number of students completing the 

survey in 2016. This can be explained by the fact that, in 2016, the survey that had previously 

been administered via a written questionnaire was converted to an online survey containing 

the same questions. U.S. professors had predicted that there would be a decrease in survey 

participation at their school due to the number on online surveys their students were subjected 

to each year. Their prediction proved to be correct. 

Of the 2,147 tertiary students who answered the question about gender, 1,602 were male and 

545 were female. The proportion of females (25.38%) is consistent with the U.S. Census 

report of 2011 showing that females comprise 26% of engineering majors in the United States 

(Sax et al., 2016) and with the Australian Bureau of Statistics showing 19% for female 

engineering majors in 2010-2011 (Broadley, 2015). The percentage of tertiary students who 

entered their year-13 mathematics class by placement test was 44.7% (n=982 students). Table 

4.4 shows the courses into which they were placed. 

Table 4.4 Tertiary Student Placement Into Mathematical Courses 

Course 
# of 

Students 
% of 
Total 

Calculus I 358 36.4 
TrigonometryR 509 51.8 

AlgebraR 115 11.8 
R Remedial 

 
The remaining 55.3% of students (n=1,213) entered their year-13 mathematics class via valid 

university transfers or College-Level Examination Program (CLEP) results that met or 

exceeded entrance requirements. 

4.2.3. Secondary Teacher Demographics 

The secondary school teacher survey was completed by 41 teachers in the United States and 

Australia. Thirty-two percent (n=13) of the teachers took the survey in the United States and 
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68% (n=28) took it in Australia. The average age of the teachers who responded to the survey 

instrument was 41.2 years. Their average teaching time was 18.2 years. Their education level 

was as follows: 80.5% (n=33) had a bachelor’s degree, 14.6% (n=6) had a master’s degree and 

2.4% (n=1) had a doctoral degree. (See Tables 4.5 through 4.7). 

Table 4.5 Secondary Teacher Age in Years at Year End 

Age Frequency Percent 
Cumulative 

Percent 
27 2 4.9 4.9 
30 1 2.4 7.3 
35 11 26.8 34.1 
40 1 2.4 36.6 
42 2 4.9 41.5 
44 1 2.4 43.9 
45 22 53.7 97.6 
61 1 2.4 100.0 

Total 41 100.0 
 

Average Age = 41.17 

The number of 45-year-old teachers was double the number of 35-year-olds. This spike 

coincides with a national initiative in the 1990s to put credentialed mathematics teachers into 

classrooms (National Commission on Excellence in Education, 1983). Teachers who earned 

credentials during that initiative would have been in their 40s when they took the secondary 

teacher survey. 

Table 4.6 Secondary Teacher Years Teaching Experience 

Years 
Exp. 

Frequency Percent 
Cumulative 

Percent 
1 2 4.9 4.9 
5 1 2.4 7.3 
6 1 2.4 9.8 
7 2 4.9 14.6 
8 4 9.8 24.4 

11 1 2.4 26.8 
13 1 2.4 29.3 
14 5 12.2 41.5 
15 2 4.9 46.3 
20 1 2.4 48.8 
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Table 4.6 (continued) 
 

Years 
Exp. 

Frequency Percent 
Cumulative 

Percent 
21 2 4.9 53.7 
22 1 2.4 56.1 
24 6 14.6 70.7 
25 9 22.0 92.7 
32 1 2.4 95.1 
38 1 2.4 97.6 
40 1 2.4 100.0 

Total 41 100.0 
 

Average Teaching Experience = 18.2 years 

 The same spike is evident in Table 4.6 where the largest number of teachers had 25 years of 

teaching experience. 

Table 4.7 Secondary Teacher Educational Level 

Education 
Level* 

Frequency Percent 
Cumulative 

Percent 
1 1 2.4 2.4 
2 33 80.5 82.9 
3 6 14.6 97.6 
4 1 2.4 100.0 

Total 41 100.0 
 

* 1=Diploma, 2=Bachelor, 3=Master, 4=Doctorate) 
Average educational level = 2.17 (Bachelor and above) 

The push for teachers with a college degree in mathematics rather than just diplomas during 

the 1990s likely explains the large percentage of teachers with a least a bachelor’s degree who 

took the survey. 

4.2.4. Tertiary Teacher Demographics 

The tertiary teacher survey was completed by 17 teachers in the United States and Australia. 

Seventy-one percent (n=12) of the teachers took the survey in the United States and 29% 

(n=5) took it in Australia. The average age of the tertiary teachers who responded to the 

survey instrument was 45.3 years. Their average teaching time was 17.8 years. Their 
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education level was as follows: 17.6% (n=3) had a bachelor’s degree, 47.1% (n=8) had a 

master’s degree and 35.3% (n=6) had a doctoral degree. (See Tables 4.8 through 4.10). 

Table 4.8 Tertiary Teacher Age in Years at Year End 

Age Frequency Percent 
Cumulative 

Percent 
30 3 17.6 17.6 
40 3 17.6 35.3 
50 9 52.9 88.2 
55 2 11.8 100.0 

Total 17 100.0 
 

Average Age = 45.29 

The majority of tertiary teachers were at least 50 years old.  

Table 4.9 Tertiary Teacher Years of Teaching Experience 

Years 
Exp. 

Frequency Percent 
Cumulative 

Percent 
3 1 5.9 5.9 
5 1 5.9 11.8 
8 2 11.8 23.5 
9 1 5.9 29.4 

20 6 35.3 64.7 
25 6 35.3 100.0 

Total 17 100.0 
 

Average/Median Teaching Experience = 17.82/20.0 years 

Over 70% of the tertiary teacher survey respondents had at least 20 years of teaching 

experience. 

Table 4.10 Tertiary Teacher Education Level 

Education 
Level* 

Frequency Percent 
Cumulative 

Percent 
1 3 17.6 17.6 
2 8 47.1 64.7 
3 6 35.3 100.0 

Total 17 100.0 
 

*1= Bachelor, 2=Master, 3=Doctorate 
Average educational level = 2.8 (Master and above) 
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The large percentage of tertiary teachers with at least a master’s degree reflects the 

expectation that college/university professors will have higher degrees than secondary school 

teachers. 

The remainder of the chapter describes how the survey population was validated as being 

representative of the universal population. 

4.3. Sample Validation Methodology 

The methodology applied to build a population representation so that variance, without a 

“true” population, could be calculated merged multiple validation schemes to generate a 

generalizability index score, β, that reflected the extent to which the sample population that 

responded to the survey instrument represented the population at large. The methodology 

included the following steps (Johnson & Bell, 1985): 

 Minimizing the confounding variables in the survey via sample stratification. 

 Validating equivalency by comparison with existing research data. 

 Validating representative sample with survey responses. 

 Calculating the generalizability index score, β, such that 0 ≤ β ≤ 1. 

4.3.1. Minimizing Confounding Variables via Sample Stratification.  

The sample population was stratified into two population sets: secondary students and tertiary 

students. 

4.3.1.1. Secondary Students 

The sampling consisted of male and female students who were studying elective mathematical 

courses in year 11 and year 12; that is, the survey targets were students whose superior 

mathematical aptitude was already established. In simple random sampling, the probability of 

selection of any of the C(N, n) possible combinations of n out of N sampling units is a function 
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solely of the probabilities of selection assigned to each of the n units. With stratified random 

sampling, on the other hand, the selection of units is partially controlled in that the probability 

of selection of the combination depends on the strata with which the n units are associated 

(Goodman et al., 1950, as cited in Pruhs & Manber, 1991). Stratification introduces 

restrictions or controls in the process of selection (Wirkala & Kuhn, 2011). 

In this study, sampling stratification was controlled so that there was a positive probability that 

the student had interest in further mathematical study and a zero probability that the student 

had no interest in further mathematical study. Due to the smaller class sizes in the secondary 

schools (common in the elective mathematics courses) the sampling stratification was further 

controlled by minimizing the effect of confounding classroom variables. For example, as 

demonstrated in the validation below, the smaller class size permits, in any classroom 

meeting, a much higher probability for (1) students’ questions to be answered, (2) individual 

tutoring to be provided, and (3) more detailed topic presentation to be given. Table 4.11 

illustrates the influence of smaller class size on student-teacher interaction based on 560 

respondents. Note that for tables in this chapter, 1=strongly agree, 3.5=neutral, 6=strongly 

disagree. An average > 3.5 indicates a mild to strong general disagreement. Mode is the 

indicator of tendency in the average. 

Table 4.11 Influence of Smaller Class Size on Secondary Student/Teacher Interaction 

SPSS / 
Question 
Number 

Question Verbiage Average Mode 
Standard 
Deviation 

Variance State 

V22/18 
I prefer the notes from the teacher than 
the textbook 

2.24 1.0 1.28 1.64 Agree 

V23/19 
Without the teacher, the 
textbook/written materials would be 
useless 

2.71 2 1.39 1.95 Agree 

V24/20 
With textbook only (no teacher) I 
could understand the topics clearly 

3.89 4 1.22 1.49 Disagree 
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The surveyed students, all of whom were in smaller class sizes, were able to interact with the 

teacher, get their questions answered, and receive detailed explanations of topics. Although 

early studies suggested that class size reduction is principally beneficial only for academically 

lower-level students (Boozer & Rouse, 2001; Nye et al., 2001), more recent studies indicate 

that, with regard to science and mathematics (usually academically higher students), the 

smaller class size in the secondary school also influenced the performance of students who go 

on to take science and mathematics courses in college/university (Wyss et al., 2007). The 

availability of interaction between the teacher and students in this setting provides validation 

for the secondary teacher’s confidence in the student’s capabilities relative to the material 

being presented in the secondary mathematics textbook, since the opportunity for personal 

interaction as well as assessment results, are much more available in the smaller class settings 

(Cann, 2009; Krueger, 1999). 

4.3.1.2. Tertiary Students 

The sampling consisted of male and female students who were studying elementary calculus 

in year 13; that is, the survey targeted students whose superior mathematical aptitude was 

already established and whose chosen study emphasis included higher level mathematics. 

These students were sampled near the beginning of the midterm so that they could better self-

assess their preparedness for the course based on perception of readiness. Additionally, both 

universities selected were and are world-renowned science and engineering schools so that the 

tertiary student sample was controlled to minimize the spurious correlations that can occur 

with confounding variables issues in larger and subject decentralized cohorts (Tilaki, 2012). 

By virtue of the controls on the sample data (i.e., stratification of year-12 public and private 

school students and advanced mathematics and engineering school year-13 calculus students), 
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the variance commonly caused by confounding variables has been minimized (Gallaher, 

1973). 

4.3.2. Validating Equivalency Using Existing Research Data.  

As noted in Chapter 1, year-13 students are generally unprepared for university mathematics. 

Declining test scores, increasing attrition rates, and the proliferation of remedial mathematics 

courses, all reflect this diminished preparedness of year-13 students for higher level 

mathematics. The literature suggests: 

 Secondary students experience problems transitioning to college calculus due to 

inadequate maturity in elementary concepts (Clark & Lovric, 2009; CUPM Panel, 

1987; Hourigan & O'Donoghue, 2007; Nortvedt & Siqveland, 2019). 

 Universities are redesigning precalculus courses because incoming students who were 

supposedly ready for calculus were not even ready for precalculus (Jones & Lanaghan, 

2021). 

 There is a 50% failure and/or dropout rate from freshman calculus courses at the 

University of Manitoba despite students believing they were ready for the course; these 

same students were quite surprised when they could not pass (Froese, 2019), and 90% 

of the identified (yet supposedly prepared) high-risk students at the University of 

Victoria, British Columbia were unsuccessful (Dame, 2012). 

 Scholars see a crisis looming for calculus readiness as electronic tools and computer 

programs are emphasized over concept acquisition (Cipra, 1988; Hieb et al., 2015). 

 Over 60% of U.S. community college students taking mathematics placement tests are 

placed in remedial or developmental courses (Ngo & Kwon, 2015). 
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 Countries with high student mathematics confidence had low student mathematics 

scores and vice versa in the TIMSS 2007 (Yoshino, 2012). See section 4.3.3.2 for 

details. 

 Further evidence of declining mathematical skills has been the proliferation of 

remedial mathematical coursework at both two- and four-year institutions in the United 

States. In 1975 there were 245,000 students enrolled in remedial courses at two-year 

colleges and 141,000 students enrolled in remedial courses at four-year institutions 

(Mathematical Association of America, 1981). In 2019, a workshop of the National 

Academies of Sciences, Engineering, and Medicine addressing the success and failure 

of students in developmental mathematics reported that 70% of incoming students at 

two-year colleges and 40% of incoming students at four-year institutions had to take 

remedial mathematics classes (Zachry Rutschow, 2019) and that incoming engineering 

students have greater mathematics deficiencies than students in the past (Hall et al., 

2015).  

Based in part on the evidence above, the survey questions were designed to inquire as to 

secondary student and teacher perception for university calculus preparedness. Additionally, 

the survey questions attempted to determine the influence of the textbook on these 

perceptions. The tertiary student survey questions were designed to confirm perceptions of 

incoming students. The tertiary professor survey questions inquired as to the actual student 

preparedness for the university calculus course. 

4.3.3. Validating the Representative Sample with Survey Responses 

Two separate analyses were conducted—one using survey results from this study and the other 

using the 2007 TIMSS survey results. Based on the consensus of research data cited above, it 
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was expected that a representative sample of students and instructors would be the set in 

which: 

 Secondary student math confidence is a positive score. 

 Tertiary teacher math capability appraisal of student is a negative score. 

4.3.3.1. Analysis using Survey Results 

Table 4.12 illustrates secondary students’ positive mathematical confidence. Table 4.13 

reflects secondary teachers’ neutral to positive assessment of secondary student confidence 

and an acknowledgement of possible lack of skill due to frequency of help needed. Table 4.14 

illustrates tertiary students’ neutral to positive math confidence while Table 4.15 reflects 

university professors’ assessment that tertiary students had a lack of mathematical maturity 

and skill. 

Table 4.12 Secondary Students’ Mathematical Confidence 

SPSS/ 
Question 
Number 

Question Verbiage Average Mode 
Standard 
Deviation 

Variance State 

V5/1 I was ready for Year 12 math 2.254 2 1.012 1.024 Agree 

V6/2 
I am going to do well in the final 
exams 

2.515 3 0.996 0.992 Agree 

 

Table 4.13 Secondary Teachers’ Assessment of Student Maturity and Skill 

SPSS/ 
Question 
Number 

Question Verbiage Average Mode 
Standard 
Deviation 

Variance State 

V4/4 
Students generally lack 
confidence in mathematics 

3.25 4 1.05 1.12 Disagree 

V6/6 
Students ask for help with 
homework often 

2.62 2 0.96 0.92 Agree 

V8/8 
Students are more mature this 
year than last year 

3.09 3 1.24 1.54 Agree 

V9/9 
Students are more academically ready for math 
this year than last year 

3 2 1.28 1.65 Agree 
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Table 4.14 Tertiary Students’ Mathematical Confidence 

SPSS / 
Question 
Number 

Question Verbiage Average Mode 
Standard 
Deviation 

Variance State 

V11/11 
My progress so far is better than I 
expected 

3.15 3 1.21 1.46 Agree 

V15/15 
I am going to do very well in 
terminal exams 

2.98 3 1.83 1.40 Agree 

 

Table 4.15 University Professors’ Assessment of Tertiary Student Maturity and Skill 

SPSS / 
Question 
Number 

Question Verbiage Average Mode 
Standard 
Deviation 

Variance State 

V1/1 
Students believe the textbook/written 
material is valuable to them 

3.625 5.0 1.54 2.257 Disagree 

V3/3 
Students are disciplined and make 
mature use of the text/written material 

4.533 5.0 0.618 1.195 Disagree 

V9/9 
Students are more academically ready 
for math this year than last year 

3.687 4.0 0.704 0.492 Disagree 

4.3.3.2. Analysis using TIMSS 2007 Data Findings 

The Trends in International Mathematics and Science Study (TIMSS) for 2007 assessed 

Japanese and North American middle school mathematics student confidence and 

mathematics maturity (Mullis et al., 2007). While not necessarily given in the same cultural 

context, the questions on the TIMSS study were similar to those used in Tables 4.12 and 4.14 

to appraise U.S. and Australian secondary and tertiary student mathematical maturity and 

confidence and, thus, the TIMSS survey is useful for validating the methodology and 

conclusions of this study. The list below is a sampling of the types of questions used in 

multiple TIMSS to ascertain a mathematical “self-concept” score based on two indices: 

“Students’ Positive Affect Toward Mathematics” and “Students’ Self-Confidence in Learning 

Mathematics”: 
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 I enjoy learning mathematics. 

 Mathematics is boring. 

 I like mathematics. 

 I usually do well in mathematics. 

 I would like to take more mathematics in school. 

 Mathematics is more difficult for me than for many of my classmates. 

 Mathematics is not one of my strengths. 

 I learn things quickly in mathematics (Mullis et al., 2016). 

The TIMSS survey found that Japanese students, though lacking confidence in mathematics, 

were far more mature in their mathematical skills than their North American counterparts 

(Yoshino, 2012). The 8th grade students who took the 2007 TIMSS survey would have been 

year-13 students in 2012; thus, they are closely representative of the year-12 and year-13 

students who took the survey for this study in 2013-2016. In an earlier study of mathematics 

across Australian, American, and Japanese 7th and 8th grade mathematics students, it was 

noted that the Japanese students had lower confidence scores but higher spatial relationship 

skills than their Australian and American counterparts (Iben, 1991). Thus, both the survey 

instrument and TIMSS affirm that sample data are logically representative of the universal 

population in that at both U.S. and Australian schools: 

 Student math confidence is a positive score 

 Student math skill is a negative score. 

4.3.4. Calculating the Generalizability Index Score, β 

This section details the algorithm used to compare known population data with data gathered 

from the survey instrument used for this study. The resulting generalizability index score 
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measures the extent to which the sample set for this study represents the “true” population of 

all students in Australian and U.S. universities who studied calculus in their first year of 

university following advanced mathematics coursework in their secondary schools. 

4.3.4.1. Definition 

Rentz’s observations on generalizability form the basis for algorithm construction: 

“Generalizability, then, refers to the extent to which one can generalize from the observations 

in hand to a universe of generalization.” (1987, p. 20). For the purposes of this study, what has 

been done to facilitate a sample that is representative of the universal population is to target, or 

focus, the sample and the survey questions so that there would be a positive probability of 

truthful maturity inferences and a zero probability of interest lack in mathematics. Because 

outliers and unwanted variation can confound results, Rentz notes that “the measurement 

instrument should minimize variance arising from these sources” (1987, p. 20). Steps were 

taken to do this. 

In the algorithm applied below: 

 The scores calculated as 0 will indicate NOT representative of the population. 

 The scores calculated as 1 will indicate FULLY representative of the population. 

 The score (generalizability index score), β, is such that 0 ≤ β ≤ 1 (Tipton, 2014). 

 β will be evaluated as 𝑠
ଶ

𝜎ଶൗ  or the (sample variance/population variance) (Tipton, 

2014). 

 Therefore, 𝑠ଶ and 𝜎ଶ will need to be calculated and derived respectively. 
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4.3.4.2. Specifications and Considerations 

The need to derive a representative population variance 𝜎2 is due to the shortage of available 

data on secondary to tertiary transition for mathematics students. In fact, such studies are quite 

rare (Clark & Lovric, 2008, p. 34). Thus, in developing a generalizable index score, this study 

uses summarized, available data for the population calculations and the collected survey data 

as the sample population. 

To enhance the accuracy and validity of the derived population variance, student performance 

data from the United Kingdom (UK) was also used since the UK is a Western nation that 

exhibits positive student math confidence and negative math skill like her Australian and U.S. 

counterparts. That data included the following observations: 

 USA. According to the MAA study of college calculus, 25-40% of students enrolled in 

Calculus I failed to achieve a grade that allowed entrance to Calculus II (Bressoud, 2015). 

 USA. Community colleges reported that 60% of students were enrolled in remedial Math 

and English courses (Redden, 2010). 

 AUS. According to the International Journal of Innovation in Science and Mathematics 

Education, 30% of students enrolled in a tertiary elementary calculus class failed to 

acquire passing grades (Nicholas et al., 2015). 

 UK. According to a report, “Tackling the Mathematics Problem,” prepared by the London 

Mathematical Society, the Institute of Mathematics and its Applications, and the Royal 

Statistical Society: 

There is unprecedented concern…about the mathematical preparedness of new 
undergraduates…The serious problems perceived by those in higher education are: (i) 
a serious lack of essential technical facility—the ability to undertake numerical and 
algebraic calculation with fluency and accuracy; (ii) a marked decline in analytical 
powers when faced with simple problems requiring more than one step; (iii) a changed 
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perception of what mathematics is—in particular of the essential place within it of 
precision and proof (1995, p. 3). 

 According to Darlington and Bowyer, the mathematical sciences had a 24% dropout rate 

in year 13 (Darlington & Bowyer, 2017). 

4.3.4.3. Determining the Sample Calculus Failure Statistic (SFc) 

When the failure rate is averaged between the U.S. population and the Australian population, 

the Population Calculus Failure rate (PFc) is 27.5% ≤ PFc ≤ 35% (assumed population 

statistic). Note that 27.5% is the average of the U.S. lowest failure rate and the Australian 

failure rate. Likewise, 35% is the average of the U.S. highest failure rate and the Australian 

failure rate. Also note that if the U.S. community college data were taken into consideration, 

the interval for the PFc would move 29.1% such that the “umbrella” interval would become 

36% ≤ PFc ≤ 46%. Nevertheless, the expected Sample Calculus Failure statistic (SFc) should 

be in the PFc interval of 27.5% ≤ SFc ≤ 35% since surveys did not include any U.S. 

community colleges. 

SFc was calculated using tertiary teacher responses to survey questions V3 and V9. SFc will be 

the aggregation of university professors that believe students are unprepared in skill and 

necessary maturity in both Australia and the United States as seen in Table 4.16. In this table, 

question V3 assesses student maturity while question V9 assesses evidence of mathematical 

skills. 

Table 4.16 Calculating SFc 

Tertiary Teacher Survey Questions 
Mean Survey 

Answer (MSA)* 

MSA Ratio (MSAR) 
(MSA*0.171 ) 

 

Agreement 
(1-MSAR) 

V3. Students are self-driven, disciplined and 
make mature use of the textbook 

4.44 0.75 0.25 
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Table 4.16 (continued) 
 

Tertiary Teacher Survey Questions 
Mean Survey 

Answer (MSA)* 

MSA Ratio (MSAR) 
(MSA*0.171 ) 

 

Agreement 
(1-MSAR) 

V.9 Students are more academically ready for 
math this year than last year 

3.64 0.61 0.39 

Calculated SFc (mean)   0.32 

*1=Strongly Agree, 2 = Agree, 3 = Neutral Agree, 4 =Neutral Disagree, 5 =, Disagree, 6=Strongly Disagree 
See tables C-1 and C-2 in Appendix C for MSAR supporting data and computations. 

SFc = 0.32 (or 32%) is in the interval 27.5% ≤ PFc ≤ 35%; thus, the SFc (student maturity and 

student mathematical readiness) is in the acceptable range of the calculated population 

calculus failure rate. 

Alternatively, a broad agreement on the percentage of professors responding to V3 with 1, 2, 

or 3 and to V9 with 1, 2, or 3 yielded 17.6% and 47.1% respectively. The average of these two 

statistics is 32.3% which is in agreement with the MSA and MSAR calculations for SFc. 

In Table 4.16, MSA is the average of the university professors’ answers for the questions 

while MSAR is the ratio of the MSA and the denominator constant that is calculated as an 

authentication score based on the professor’s sex, credentials, age, and experience using the 

four criteria below: 

1. Sex Differentiated Considerations: 

i. Female dispersal for V3 is the product of the proportion of female respondents and the 

average of the female responses. 

ii. Male dispersal for V3 is the product of the proportion of male respondents and the 

average of the male responses. 

iii. Due to multiple studies that debunk real cognitive differences between male and female 

(Hyde, 2005; Hyde & Linn, 2006), the gender coefficients are merged by calculating the 
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absolute value of the difference between the male and female dispersal score. That is, 

rather than calculating and assigning a statistical weight to professor gender, equivalence 

is assumed. 

2. Credential Differentiated Considerations: 

i. Male and female responses though accumulated distinctly were processed as i and ii 

above and for the same reasons. 

3. Experience Differentiated Considerations: 

i. Male and female responses though accumulated distinctly were processed as i and ii 

above and for the same reasons. 

ii. The Experience Factor is calculated by the product of the gender proportion and the ratio 

of the sum of the gender segregated ages and the gender segregated experience. Research 

indicates that this factor has a non-linear relationship with the Credential factor hence the 

calculation distinction (Avolio et al., 1990). 

4. Age Differentiated Considerations: 

i. The V3 and V9 coefficients are the mean of the gender, credential, and experience data. 

V3, a more character-based question included Gender Dispersal and Experience/Age 

factor and omitted Credential factor whereas V9, skill assessment, used Gender Dispersal 

and Credential Factor and omitted Experience/Age factor as it was determined that age 

and experience tend to make better character judgment calls and Credential and 

knowledge a better empirical (actual skill measurement) call (Hill et al., 2005). 

Final Calculation: The mean of the V3 and V9 coefficients were averaged for the Averaged 

Coefficient of 0.171 as noted in Table 4.16 and Table C.2 in Appendix C. 
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4.3.4.4. Generalizability Index Score 

Generalizability of the tertiary data has been established by the calculated sample and 

population calculus failure rate mean and interval, respectively. Nevertheless, to further 

qualify SFc, we will compute β, as mentioned above, the generalizability index score, such that 

0 ≤ β ≤ 1 where a value of zero (0) indicates the sample is NOT representative and a value of 

one (1) indicates equivalence to the population (Tipton, 2014). 

β = (Sample Variance) ÷ (Population Variance). 

To calculate the generalizability index score, we calculate the ratio of the sample variance to 

the population variance across the calculated intervals in Table 4.17. 

Table 4.17 Ratio of Sample Variance to Population Variance 

 Population Sample Ratio= β 

Low 
Overall 

25 26.0 
 

High 
Overall 

40 39.0 
 

Variance 56.25 (𝜎ଶ) 42.25 (𝑠ଶ) 0.751 (𝑠
ଶ

𝜎ଶൗ ) 

 

 Data collected for the interval construction was used to arrive at the variance for the 

Population, PFc. 

 Using PFc, the following data points are both provided and derived: 25, 27.5, 35, 36, 

40 and 46 (see Table C-3 in Appendix C). 

 There were 17 contributing surveyed university math professors, so 11 filler data 

points were inserted in linear order and labelled, “filler.” (See Table C-3 in Appendix 

C). 

 V3 and V9 were row-wise (from the same professor) added together and the missing 

data were left blank. 
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 Mean and Variance were calculated for the Population and the Sample with the 

assumption that all data points have equal weight. 

Initial Result (summarized from Table C-3 in Appendix C): 

Population variance of 32.67 and sample variance of 2.86 resulted in the generalizability score 

(Sample Variance/ Population variance or β) as 0.0871 which is not considered a favorable 

score (Tipton, 2014) so MSAR mitigations were implemented in an effort to determine sample 

validity for continued analysis. 

 As noted from the MSAR, professor education showed the Degree factor of 2.13 for 

female and 2.33 for male with an overall weighting of 2.24 (See Tables C-2 and C-5 in 

Appendix C). 

 Sample data was weighted for the professors’ educational level, as seen in Table C-4 

of Appendix C. 

Final Result: 

Population variance of 32.67 and sample variance of 14.23 resulted in the weighted 

generalizability score (βw) of 0.439. Further weightings are not required as the MSAR coupled 

with βw=0.439 is adequate (Tipton, 2014). 

4.4. Conclusions and Concerns 

The methodology implemented multiple strategies for validating that the sample population 

used in this study was representative of the “true” population of all students in Australian and 

U.S. universities who studied calculus in their first year of university following advanced 

mathematics coursework in their secondary school. Each of the measurements presented 

provide a valid basis to accept the sample set with population affinity. This was accomplished 

in that: 



90 
 

 the data sample set was stratified. 

 the data sample set was shown to be representative of existing research with 

MSAR=0.32. 

 the generalizability index score was ∈ [0,1]. 

With a favorable ratio of the variances, reported student mathematics skills being consistent 

between the population and the sample, student confidence, and a stratification scheme to 

minimize confounding variables, it is established that the sample set used in this study 

adequately represents the population. 
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Chapter 5. Survey Data Analysis – Exploratory Factor Analysis  

5.1. Introduction 

This chapter will demonstrate the methodology used to screen, cleanse, and analyze the data 

collected through the survey instrument described in Chapter 3 and will present the results of 

an Exploratory Factor Analysis (EFA) run on secondary and tertiary student survey responses 

in preparation for doing a Confirmatory Factor Analysis (CFA) and Structured Equation 

Model (SEM) described in Chapter 6. EFA is the tool of choice for identifying latent factors in 

preparation for CFA and SEM even though the a priori model already identified theoretical 

latent variables for secondary student data (Anderson et al., 1988, as cited in Hu & Li, 2015). 

EFA was used to further refine the latent constructs (i.e., to provide a covariance matrix for 

later comparison) to enable a more refined initial CFA. 

The survey instrument was designed to collect data that could be used to assemble a model or 

models that would investigate mathematics textbook rigor as an essential component in the 

readiness of year-12 students to successfully complete their year-13 calculus course. The 

survey was completed by 560 secondary students answering 27 survey questions and 2,154 

tertiary students answering 32 survey questions over the course of three years. 

One of the difficulties inherent in surveys is that they cannot directly quantify attitudes or 

indirect actions in the lives and livelihood of participants. Because the underlying perceptions 

and beliefs that cause recipients to answer certain questions in certain ways are generally 

latent personality traits in the targeted survey recipients, they must be mined from within the 

data using various tools available to social scientists. That is, an investigation of the common 

implied links between the survey answers must be designed and implemented in order to 

discover such links or any meaningful commonality in the set of variables (DeCoster, 1998). 
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Factor analysis is a method that may be used to estimate possible latent connections in survey 

data and, for this reason, was the method selected to analyze data commonality links, to test 

the linking, to test the existence of any latent commonality between survey responses, to 

investigate the theoretical model presented in Chapter 3. 

5.2. Organization 

Section 5.3 is organized so that general data quality and suitability for factor analysis is 

detailed using the following steps: 

1. Sample size considerations. Determining whether the stability of the latent 

variables derived by the EFA and CFA will be affected by sample size. 

2. Data screening. Removing non-reflective variables (column removal). 

3. Data cleaning. Removing spurious or unengaged responses (row removal). 

4. Missing data replacement. Determining which algorithm to use and when to use it 

based on data type and randomness of the missing data (MCAR). 

5. Validating data normality. Addressing skewness, kurtosis, and outliers. 

6. Statistical Tests After Missing Data Replacement. Determining whether missing 

data replacement has statistically significantly altered the data sets. 

Section 5.4 describes the factor analysis process (EFA), to include selection and naming of 

factors and the summary analysis of the application of reverse coding where the need to do so 

was revealed in the factor analysis procedures. 

5.3. Assessing General Data Quality and Suitability for Factor Analysis 

5.3.1. Sample Size Considerations 

There is no exact parametric model for sample sizing, but the general consensus is 5-10 

observations per estimated parameters (Bentler & Chou, 1987; Schreiber et al., 2006). For this 



93 
 

study there are 55 parameters (6 proposed factors, 20 Likert variable error terms, and 15 

possible covariances between the factors and 14 factor loadings). With the secondary student 

dataset at 560 observations and the tertiary student dataset at 2,154 observations, this provides 

a quotient of 10.18 for secondary and 39.16 for tertiary, both of which are greater than 10. 

The scores for the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy and the 

Bartlett’s test for homogeneity of variances in the collected survey data indicate that the data 

samples are adequate for factor analysis. (See Table 5.1). The secondary student data KMO 

score of 0.757 and the tertiary student data score of 0.755 both exceed the minimum 

acceptable adequacy score of > 0.60 (Hair et al., 2017). The Bartlett score of 0.00 for 

secondary and tertiary student data indicates there was no reason to assume unequal variances. 

Table 5.1 KMO and Bartlett’s Adequacy Scores for Secondary and Tertiary Student Data 
 

  Secondary 
Student Data 

Tertiary 
Student Data 

Kaiser-Meyer-Olkin 
Measure of Sampling 
Adequacy 

 
.757 .755 

Bartlett’s Test of Sphericity 
Approx. Chi-Square 2367.986 9929.056 
df 190 190 
Sig. 0.000 0.000 

 

5.3.2. Data Screening 

Because factor analysis is focused on deriving latent variables from Likert scale variables, 

demographic data was omitted from processing because it is not used for factor analysis. Refer 

to chapter 4, Section 4.2, for demographic details. 

5.3.3. Data Cleaning 

Row removal may be done where clearly spurious or unengaged responses are present. 

Spurious responses are those in which students purposely answer questions in a pattern of 
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their own choosing or when students inadvertently mark their answers in the wrong order. 

Unengaged responses are those in which a student answers all the questions the same or agrees 

to conflicting statements. The secondary and tertiary surveys were written so that some 

questions were asked in the negative and the positive. For example, the secondary student 

survey question 5 states “The year 12 math textbook is too complicated” and question 16 

states, “There is enough detail in the textbook to master the topics.” The tertiary student 

survey question 2 states “12th grade mathematics textbook needed more depth” and question 

16 states “There is enough detail in the textbook to master the topics.” Students who answered 

“Agree,” to both conflicting statements were likely unengaged, so their records were removed 

(Slater et al., 2017). 

To determine which rows to delete, the standard deviation was calculated for each row—that 

is, the measure of individual consistency within a single respondent’s survey answers. 

Standard deviation and variance may detect patterned and/or unengaged responses (Curran, 

2016). Unengaged responses typically yield a variance of 0.00 ≤ V ≤ 0.50 so that no variance 

demonstrated, given a small survey, indicate the same response for each question (Huang et 

al., 2015) and when the variance was ≤ 0.50 it was observed that students had answered 

questions in a pattern such as 1, 1, 1, 6, 6, 6, 2, 2, 2, 5, 5, 5, etc. (Marjanovic et al., 2015). Data 

cleaning resulted in removal of five secondary student and twenty-two tertiary student 

responses (i.e., rows of data) for spurious and unengaged responses. 

5.3.4. Missing Data Replacement 

Prior to analysis, the data was analyzed to determine a methodology for handling missing data 

(Rubin, 1996). Even though missing data is directly proportional to a good quality statistical 

inference, scholars have not reached a consensus on an acceptable percentage of missing data 
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(Dong & Peng, 2013; Schafer, 1999). Dong states that Schafer “asserted 5% or less was 

inconsequential,” while others, like Bennett holding to 10% (Bennett, 2001) have varied 

criteria (2013, p. 2). Prior to choosing a missing data post-processing procedure, missing data 

elements were counted and Little’s Missing Completely At Random (MCAR) test (Little, 

1988) was run to determine whether the missing data was randomly distributed. These steps 

are detailed below. 

5.3.4.1. Counting Missing Data 

Missing data quantities/proportions must be under certain rule-of-thumb thresholds to 

facilitate appropriate analysis (Clavel et al., 2014). Although gender and age were not used for 

the EFA and CFA preparation for the SEM, they were retained for the missing data analysis 

and for potential validation of student maturity findings (a hypothesized latent variable), and 

for possible corroboration with teacher and professor survey responses. 

5.3.4.1.1. Secondary Student Missing Data 

There were 22 total questions on the secondary student survey taken by 560 students. Thus, 

there were 12,320 responses possible if all questions had been answered by all students. Data 

analysis revealed that the secondary students provided 12,249 (99%) responses, (total number 

of questions multiplied by total students) leaving approximately 1% of the data elements 

missing. Table 5.2 shows the missing data of the secondary students indicating percentage and 

variables where data is missing. There is missing data in all the variables except V17 and v23, 

but in all the data the percentage of missing data was well within acceptable limits according 

to the literature (Abir et al., 2021; Bennett, 2001; Dong & Peng, 2013). The question about 

gender had the highest level of missing data on the secondary student survey. This contrasted 

with the tertiary student survey which had no missing gender data, leading to interest in why 



96 
 

so many secondary students had omitted it. In the final analysis, however, since gender carried 

no weight in the calculation of student mathematical maturity (Steinberg et al., 1989; Zenkl, 

2021), the anomaly was not pursued. A similar anomaly was also seen in the secondary and 

tertiary response to age with no tertiary students omitting age and 1.8% of secondary students 

omitting it. Since age was of no statistical value in secondary school data because it is 

controlled (by grade level), this anomaly was also ignored for further data processing. 

Question V21, “My parents like the math textbook,” which had 2% missing responses was 

probably due to students’ parents having inadequate knowledge to personally assist with the 

mathematics homework—a speculation reinforced by responses to Question V13, “My parents 

are/have been able to help me with my year 12 math homework,” showing that the majority of 

students disagreed with the statement (see discussion in Section 5.3.5.1). 

Table 5.2 Secondary Student Missing Data Statistics 

Variables Survey Questions N 
Missing 

Count Percent 
Gender  544 16 2.9 

Age  550 10 1.8 

V5 I was ready for year 12 math  559 1 0.2 

V6 
I am going to do well in the final 
exams 

559 1 0.2 

V7 
My mid-year progress was better 
than I expected 

559 1 0.2 

V8 
Year 11 math prepared me very well 
for year 12 math 

556 4 0.7 

V9 
The year 12 textbook is too 
complicated 

558 2 0.4 

V10 
Handouts were better, sometimes, 
than the textbook 

554 6 1.1 

V11 
My year 12 math teacher uses the 
textbook and refers to it in class 

558 2 0.4 

V12 
My year 12 math textbook examples 
helped me understand the topic 

559 1 0.2 

V13 
My parents are/have been able to 
help me with my year 12 math 
homework 

558 2 0.4 

V14 
The chapters in the textbook follow 
each other pretty well 

557 3 0.5 
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Table 5.2 (continued) 
 

Variables Survey Questions N 
Missing 

Count Percent 
V15 My teacher likes the textbook 559 1 0.2 

V16 
I have regular help with my math 
homework 

559 1 0.2 

V17 
I often bring the mathematics 
textbook/written materials home or 
to my study location 

560 0 0 

V18 
If there were more problems in the 
textbook, I would practice more 

559 1 0.2 

V19 
I do not need to ask the teacher for 
homework help 

559 1 0.2 

V20 
There is enough detail in the 
textbook to master the topics 

556 4 0.7 

V21 My parents like the math textbook 549 11 2 

V22 
I prefer the notes from the teacher 
than from the textbook 

558 2 0.4 

V23 
Without the teacher, the textbook 
would be useless 

560 0 0 

V24 
With textbook only (no teacher) I 
could understand the topics clearly 

559 1 0.2 

 
5.3.4.1.2. Tertiary Student Missing Data 

Statistical analysis was done on 22 questions answered by 2,154 tertiary students. There were 

47,388 responses possible if all questions had been answered by all students. Data analysis 

revealed that the tertiary students provided 46,307 (97.7%) responses, leaving 2.3% of the data 

elements missing. Table 5.3 shows the missing data of the tertiary students indicating 

percentage and variables where data is missing. Only gender and age questions had no missing 

data. 

Table 5.3 Tertiary Student Missing Data Statistics 

Variables Survey Questions N 
Missing 

Count Percent 
Gender  2154 0 0 

Age  2154 0 0 

V1 
Year 12 mathematics was very good 
preparation for this course 

2109 45 2.1 

V2 
12th grade mathematics textbook 
needed more depth 

1624 530 24.6 

V3 
Without the teacher, my 12th grade 
textbook would have been useless 

2101 53 2.5 
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Table 5.3 (continued) 
 

Variables Survey Questions N 
Missing 

Count Percent 

V4 
There was too much homework in my 
12th grade mathematics class 

2098 56 2.6 

V5 
There were enough exercises in 12th 
grade textbook for me to be well 
practiced 

2103 51 2.4 

V6 
12th grade Handouts were better, 
sometimes, than the textbook 

2100 54 2.5 

V7 
My 12th grade math teacher used the 
textbook and referred to it in class 

2102 52 2.4 

V8 
My 12th grade math book examples 
helped me understand the topic 

2099 55 2.6 

V9 
The textbook/written material 
examples help me understand the topic 

2138 16 0.7 

V10 
The chapters in the textbook/written 
materials follow each other pretty well 

2137 17 0.8 

V11 
My progress so far is better than I 
expected 

2134 20 0.9 

V12 
I have regular help with my 
mathematics 

2145 9 0.4 

V13 
I often bring the mathematics 
textbook/written materials home or to 
my study location 

2142 12 0.6 

V14 
The teacher uses the textbook/written 
materials and refers to it in class 

2140 14 0.6 

V15 
I am going to do very well in the 
terminal exams 

2143 11 0.5 

V16 
There is enough detail in the 
textbook/written materials to master the 
topics 

2137 17 0.8 

V17 I was ready for mathematics this year 2140 14 0.6 

V18 
Extra handouts are sometimes better 
than the textbook/written materials 

2128 26 1.2 

V19 
Without the teacher, the 
textbook/written materials would be 
useless 

2138 16 0.7 

V20 
With textbook/written materials only 
(no lectures) I could understand the 
topics clearly 

2141 13 0.6 

 
The missing data percentages for secondary and tertiary surveys are well within the limits 

prescribed for appropriate application of a missing data algorithm and data replacement (Dong 

& Peng, 2013) with the possible exception of tertiary student question V2 (“12th grade 

mathematics textbook needed more depth”) which has 530 missing responses—well above the 

5% threshold. The large number of missing responses to V2 was of interest as a possible error 
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on coding responses but was determined to be most likely related to the fact that university 

students (unlike secondary students) could have taken the survey many years after graduating. 

Table 4.3 indicates that 139 tertiary students had graduated from high school in the 1960s 

through 2000s (from 4 years to 44 years before they took the survey). Additionally, numerous 

tertiary student paper and pencil survey sheets contained comments relating to the fact that 

they had graduated many years earlier and could not remember their year-12 textbook. 

5.3.4.2. Determining Missing Data Randomness with MCAR 

When data is missing completely at random, there are numerous procedures for replacing it. 

To determine whether missing data was completely at random, Little’s MCAR test was run 

against both the secondary and tertiary student data. Under Little’s MCAR rubric, if Chi 

Square significance is less than .05, then we reject the NULL hypothesis that the missing data 

is random (Little, 1988). When Little’s MCAR was run against all the secondary student 

variables (Table 5.4), it was discovered that the Estimated Marginal (EM) Means indicated the 

Chi Square significance was 0.000; thus, it was determined that the missing data in the 

secondary student responses is not random. 

Table 5.4 Little’s MCAR Results for Secondary Student Data 

V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 

2.3 2.5 3.0 2.7 3.7 2.8 1.8 2.6 4.7 3.2 

 
V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 
2.9 3.9 2.0 3.7 3.8 3.5 3.7 2.2 2.7 3.9 

Little's MCAR test: Chi-Square = 651.971, DF = 509, Sig. = .000 
 
 

When Little’s MCAR was run against all the tertiary student variables (Table 5.5), it was 

discovered that the EM Means indicated the Chi Square significance was 0.000; thus, it was 

determined that the missing data in the tertiary student responses was not random. 
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Table 5.5 Little’s MCAR Results for Tertiary Student Data 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

2.6 3.2 2.9 3.8 2.6 2.6 2.4 2.7 2.8 2.7 

 
V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 
3.1 3.5 3.0 3.3 2.9 3.1 2.7 2.5 2.7 3.9 

Little's MCAR test: Chi-Square = 1635.204, DF = 891, Sig. = .000 
 

5.3.4.3. Selecting the Missing Data Algorithm 

Because the secondary and tertiary student data was not missing completely at random, it was 

determined that a multiple imputation (MI) procedure was likely optimal for replacing the 

missing data (Jakobsen et al., 2017). However, it was first necessary to ensure that the missing 

data did not conform to adjacent groupings (i.e., were non-monotonic) (Zhang, 2003). By 

using the data imputation analysis tools, it was possible to determine that the missing data 

values as seen in Figures 5.1 and 5.2 below were non-monotonic for both secondary and 

tertiary data. 

 

Figure 5.1 Non-Monotonic Secondary Student Missing Data Patterns 
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Figure 5.2 Non-Monotonic Tertiary Student Missing Data Patterns 

Since the data is non-monotonic, the utilization of a Markov Chain Monte Carlo (MCMC) 

method of multiple imputation is warranted (Gilks et al, (Eds.) 1996, as cited in Zhang, 2003). 

SPSS v20.0 was selected as the tool for implementing multiple imputation on these data sets. 

5.3.4.4. Missing Data Replacement 

Table 5.6 illustrates the secondary student data after data cleaning and prior to missing data 

replacement. 

Table 5.6 Secondary Student Cleaned Data Before Missing Data Replacement 

 
Gender Age V5 V6 V7 V8 V9  V10 V11 V12 V13 

 
Valid 539 545 552 552 552 549 551  547 551 553 551 

 
Missing 14 8 1 1 1 4 2  6 2 0 2 

 

        
 

     

 
V14 V15 V16 V17 V18 V19 V20  V21 V22 V23 V24 ∆ 

Valid 550 552 552 553 552 552 549  542 551 553 552 12100 
Missing 3 1 1 0 1 1 4  11 2 0 1 66 

Table 5.7 illustrates the tertiary student data after data cleaning and prior to missing data 

replacement. 
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Table 5.7 Tertiary Student Cleaned Data Before Missing Data Replacement 

 
Gender Age V1 V2 V3 V4 V5 V6 V7 V8 V9 

 
Valid 2132 213 208 160 207 207 208 207 208 207 211 

 
Missing 0 0 45 526 53 56 51 54 52 55 16 

 

             

 
V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 ∆ 

Valid 2115 211 212 212 211 212 211 211 210 211 211 4582 
Missing 17 20 9 12 14 11 17 14 26 16 13 1077 

5.3.4.5. Missing Data Replaced 

Five imputation data sets were created during MCMC Multiple Imputation procedure (MCMC 

MI) and Cronbach’s Alpha statistic computed for each as shown in 5.4.1 and 5.4.2, the result 

being one imputation dataset with the highest Cronbach’s Alpha selected from the individual 

imputed datasets of secondary and tertiary student data. 

5.3.5. Statistical Data Analysis 

After data replacement and imputation choices were completed for the secondary and tertiary 

students, the data was analyzed for normality using skewness and kurtosis. Per Hair and 

Byrne, skewness in a range of -2 to +2 and kurtosis in a range of -7 to +7 indicates data 

normality (Byrne, 2010; Hair et al., 2010). Data was also analyzed for centrality and spread. 

Per Triola (2010), for standard normal distribution, 68% of the scores need to be to be within 

±1 standard deviation  of the mean (1SD) and 95% of the scores need to be within ± 2 

standard deviations of the mean (2SD). 

5.3.5.1. Secondary Student Data 

Table 5.8 shows that skewness and kurtosis for all variables on the secondary student survey 

were within acceptable ranges. With the exception of gender (a binary response) and age, the 

rest of the analyzed student responses were collected via a Likert, 6-gradation scale, where 

1=“Strongly Agree” and 6=“Strongly Disagree.” This permitted an interpretation of the 
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average (centrality) of these scores to exhibit a tendency for agreement or disagreement where 

less than 3.5 indicates agreement and greater than 3.5 indicates disagreement. For variables 

(questions) V5 – V24 on Table 5.8, the Mean column indicated a mixture of agreement and 

disagreement with some sharp distinction. For example, question V13, “My parents are/have 

been able to help me with my year 12 math homework” showed strong disagreement at 4.67 

and question V11, “My year 12 math teacher uses the textbook and refers to it in class” 

showed sharp agreement at 1.83. The spread of these scores was small, with a normalized 

score of 57% within 1SD and 94.7% within 2SD, and this is consistent with data that is 

distributed normally. 

Table 5.8 Pre-MI Secondary Student Descriptive Statistics 

Variables 
N Minimum Maximum Mean 

Std. 
Deviation 

Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic 
Std. 

Error 
Statistic 

Std. 
Error 

Gender 544 0 1 .56 .496 -.260 .105 -1.939 .209 
Age 550 17 18 17.51 .500 -.058 .104 -2.004 .208 
V5 559 1 6 2.25 1.012 .733 .103 .609 .206 
V6 559 1 6 2.52 .996 .258 .103 -.270 .206 
V7 559 1 6 2.99 1.083 .189 .103 -.116 .206 
V8 556 1 6 2.68 1.184 .486 .104 -.240 .207 
V9 558 1 6 3.72 1.260 -.430 .103 -.468 .206 

V10 554 1 6 2.77 1.346 .391 .104 -.723 .207 
V11 558 1 6 1.83 .996 1.340 .103 1.761 .206 
V12 559 1 6 2.59 1.228 .736 .103 .110 .206 
V13 558 1 6 4.67 1.304 -1.125 .103 .759 .206 
V14 557 1 6 3.17 1.121 .222 .104 -.568 .207 
V15 559 1 6 2.89 1.374 .624 .103 -.280 .206 
V16 559 1 6 3.13 1.325 .207 .103 -.589 .206 
V17 560 1 6 1.97 1.283 1.499 .103 1.715 .206 
V18 559 1 6 3.65 1.448 -.160 .103 -.888 .206 
V19 559 1 6 3.81 1.269 -.277 .103 -.464 .206 
V20 556 1 6 3.46 1.256 .016 .104 -.555 .207 
V21 549 1 6 3.71 1.171 .304 .104 -.072 .208 
V22 558 1 6 2.24 1.279 .929 .103 .228 .206 
V23 560 1 6 2.71 1.397 .501 .103 -.693 .206 
V24 559 1 6 3.89 1.222 -.281 .103 -.469 .206 

Valid N 
(listwise) 

510 
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5.3.5.2. Tertiary Student Data 

Table 5.9 shows that skewness and kurtosis for all variables on the tertiary student survey 

were within acceptable ranges. With the exception of gender (a binary response) and age, the 

rest of the analyzed student responses were collected via a Likert, 6-gradation scale, where 

1=“Strongly Agree” and 6=“Strongly Disagree.” This permitted an interpretation of the 

average (centrality) of these scores to exhibit a tendency for agreement or disagreement where 

less than 3.5 indicates agreement and greater than 3.5 indicates disagreement. As in the 

secondary student data, the Mean column in Table 5.9 indicates a mixture of agreement and 

disagreement, however the differences are less distinct, ranging from 2.48 (agreement) to 3.99 

(disagreement). Throughout the responses the spread of these scores was smaller than the 

secondary data with a normalized score of 70% within 1SD and 90% within 2SD; this is also 

consistent with data that is distributed normally. 

Table 5.9 Skewness and Kurtosis for Tertiary Student Data 

Variables 
N Minimum Maximum Mean 

Std. 
Deviation 

Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic 
Std. 

Error 
Statistic 

Std. 
Error 

Gender 2154 0 8 .77 .599 5.215 .053 66.683 .105 

Age 2154 8 18 17.85 1.121 -8.516 .053 71.866 .105 

V1 2109 1 6 2.66 1.373 .636 .053 -.337 .107 

V2 1624 1 6 3.24 1.212 .150 .061 -.370 .121 

V3 2101 1 6 2.97 1.407 .305 .053 -.756 .107 

V4 2098 1 6 3.88 1.179 -.250 .053 -.131 .107 

V5 2103 1 6 2.63 1.253 .651 .053 -.196 .107 

V6 2100 1 6 2.66 1.267 .545 .053 -.306 .107 

V7 2102 1 6 2.48 1.378 .819 .053 -.167 .107 

V8 2099 1 6 2.76 1.340 .526 .053 -.431 .107 

V9 2138 1 6 2.89 1.197 .499 .053 -.195 .106 

V10 2137 1 6 2.72 1.079 .619 .053 .220 .106 

V11 2134 1 6 3.15 1.208 .309 .053 -.388 .106 

V12 2145 1 6 3.52 1.393 -.100 .053 -.905 .106 
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Table 5.9 (continued) 

Variables 
N Minimum Maximum Mean 

Std. 
Deviation 

Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic 
Std. 

Error 
Statistic 

Std. 
Error 

V13 2142 1 6 3.02 1.648 .416 .053 -1.113 .106 

V14 2140 1 6 3.30 1.616 .173 .053 -1.183 .106 

V15 2143 1 6 2.98 1.183 .370 .053 -.162 .106 

V16 2137 1 6 3.18 1.228 .292 .053 -.477 .106 

V17 2140 1 6 2.79 1.349 .553 .053 -.420 .106 

V18 2128 1 6 2.54 1.150 .530 .053 -.121 .106 

V19 2138 1 6 2.72 1.384 .522 .053 -.542 .106 

V20 2141 1 6 3.99 1.331 -.329 .053 -.603 .106 

Valid N 
(listwise) 

1514 
        

5.3.6. Assessing Outliers 

Part of the process of validating data normality is to apply a standard Z-Score to the data and 

then look for Z-scores that fall outside a prescribed interval with the outlier Z-Score at 95% 

two-tailed, meaning 0.4750 or z=1.96. Thus, any scores less than -1.96 or greater than 1.96 

indicated an outlier (Liu, 2011). In the secondary data, only one outlier record was identified 

and removed; in that case, 7 of 20 questions fell outside the 1.96 limit. In the tertiary data, no 

outliers were found. 

5.3.7. Statistical Tests after Missing Data Replacement 

Once missing data has been replaced, it is necessary to ensure that additions have not 

statistically significantly altered the original data sets. Table 5.10 shows Independent Samples 

t-test results comparing means and variances before and after missing data replacement for the 

secondary student survey. Each variable is shown with “Equal Variance Assumed” (EVA) and 

“Equal Variance Not Assumed” (EVNA). 
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Table 5.10 Secondary Student Survey Independent Samples T-Test Results 

 Variables 

Levene's Test  t-test for Equality of Means 

F Sig. t df 
Sig. 
(2-

tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 

Interval of Diff. 
Lower Upper 

V5 
EVA .000 .993 .026 1117 .980 .002 .061 -.117 .120 

EVNA 
  

.026 1116.995 .980 .002 .061 -.117 .120 

V6 
EVA .001 .978 .040 1117 .968 .002 .060 -.115 .119 

EVNA 
  

.040 1116.999 .968 .002 .060 -.115 .119 

V7 
EVA .005 .946 .050 1117 .960 .003 .065 -.124 .130 

EVNA 
  

.050 1117.000 .960 .003 .065 -.124 .130 

V8 
EVA .000 .994 .070 1114 .945 .005 .071 -.134 .144 

EVNA 
  

.070 1113.944 .945 .005 .071 -.134 .144 

V9 
EVA .000 .993 -.006 1116 .996 .000 .075 -.148 .147 

EVNA 
  

-.006 1115.984 .996 .000 .075 -.148 .147 

V10 
EVA .005 .941 -.017 1112 .986 -.001 .081 -.160 .157 

EVNA 
  

-.017 1111.818 .986 -.001 .081 -.160 .157 

V11 
EVA .020 .888 -.034 1116 .973 -.002 .060 -.119 .115 

EVNA 
  

-.034 1115.977 .973 -.002 .060 -.119 .115 

V12 
EVA .000 .998 .025 1117 .980 .002 .073 -.142 .146 

EVNA 
  

.025 1116.995 .980 .002 .073 -.142 .146 

V13 
EVA .000 .983 .025 1116 .980 .002 .078 -.151 .155 

EVNA 
  

.025 1115.972 .980 .002 .078 -.151 .155 

V14 
EVA .000 .998 .003 1115 .998 .000 .067 -.131 .132 

EVNA 
  

.003 1114.967 .998 .000 .067 -.131 .132 

V15 
EVA .001 .973 -.002 1117 .998 .000 .082 -.161 .161 

EVNA 
  

-.002 1116.992 .998 .000 .082 -.161 .161 

V16 
EVA .000 .985 .017 1117 .986 .001 .079 -.154 .157 

EVNA 
  

.017 1116.994 .986 .001 .079 -.154 .157 

V17 
EVA .000 1.000 0.000 1118 1.000 0.000 .077 -.150 .150 

EVNA 
  

0.000 1118.000 1.000 0.000 .077 -.150 .150 

V18 
EVA .001 .978 -.012 1117 .991 -.001 .087 -.171 .169 

EVNA 
  

-.012 1116.993 .991 -.001 .087 -.171 .169 

V19 
EVA .009 .925 .065 1117 .948 .005 .076 -.144 .154 

EVNA 
  

.065 1116.997 .948 .005 .076 -.144 .154 

V20 
EVA .006 .936 -.109 1114 .913 -.008 .075 -.156 .139 

EVNA 
  

-.109 1113.971 .913 -.008 .075 -.156 .139 

V21 
EVA .024 .876 -.003 1107 .998 .000 .070 -.138 .137 

EVNA 
  

-.003 1106.266 .998 .000 .070 -.138 .137 

V22 
EVA .003 .958 .021 1116 .983 .002 .076 -.148 .152 

EVNA 
  

.021 1115.974 .983 .002 .076 -.148 .152 
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Table 5.10 (continued) 

 

 Variables 

Levene's Test  t-test for Equality of Means 

F Sig. t df 
Sig. 
(2-

tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 

Interval of Diff. 
Lower Upper 

V23 
EVA .000 1.000 0.000 1118 1.000 0.000 .083 -.164 .164 

EVNA 
  

0.000 1118.000 1.000 0.000 .083 -.164 .164 

V24 
EVA .001 .981 .030 1117 .976 .002 .073 -.141 .146 

EVNA 
  

.030 1116.996 .976 .002 .073 -.141 .146 

Note that the dataset indicates that the Levene’s significance for V5-V24 is all > 0.05 and the 

Significance values for V5-V24 for the means are all greater than 0.05. 

Table 5.11 shows Independent Samples t-test results comparing means and variances before 

and after missing data replacement for the tertiary student survey. Each variable is shown with 

“Equal Variance Assumed” (EVA) and “Equal Variance Not Assumed” (EVNA). 

Table 5.11 Tertiary Student Survey Independent Samples T-Test Results 

Variables 

Levene's Test  t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of Diff. 

Lower Upper 

V1 
EVA .029 .864 .142 4261 .887 .006 .042 -.076 .088 

EVNA 
  

.142 4258.794 .887 .006 .042 -.076 .088 

V2 
EVA .147 .702 -.959 3776 .338 -.038 .040 -.116 .040 

EVNA 
  

-.958 3480.285 .338 -.038 .040 -.116 .040 

V3 
EVA .017 .897 -.264 4253 .791 -.011 .043 -.096 .073 

EVNA 
  

-.264 4250.208 .791 -.011 .043 -.096 .073 

V4 
EVA .000 .993 .015 4250 .988 .001 .036 -.070 .071 

EVNA 
  

.015 4246.952 .988 .001 .036 -.070 .071 

V5 
EVA .027 .871 -.082 4255 .934 -.003 .038 -.078 .072 

EVNA 
  

-.082 4251.887 .934 -.003 .038 -.078 .072 

V6 
EVA .006 .936 .086 4252 .932 .003 .039 -.073 .080 

EVNA 
  

.086 4249.388 .932 .003 .039 -.073 .080 

V7 
EVA .018 .893 -.131 4254 .896 -.006 .042 -.088 .077 

EVNA 
  

-.131 4251.010 .896 -.006 .042 -.088 .077 

V8 
EVA .005 .942 -.208 4251 .835 -.009 .041 -.089 .072 

EVNA 
  

-.208 4248.240 .835 -.009 .041 -.089 .072 
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Table 5.11 (continued) 

Variables 

Levene's Test  t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of Diff. 

Lower Upper 

V9 
EVA .002 .964 .022 4290 .982 .001 .037 -.071 .072 

EVNA 
  

.022 4289.716 .982 .001 .037 -.071 .072 

V10 
EVA .001 .978 .034 4289 .973 .001 .033 -.063 .066 

EVNA 
  

.034 4288.681 .973 .001 .033 -.063 .066 

V11 
EVA .005 .945 .008 4286 .994 .000 .037 -.072 .073 

EVNA 
  

.008 4285.728 .994 .000 .037 -.072 .073 

V12 
EVA .017 .896 -.022 4297 .983 -.001 .042 -.084 .082 

EVNA 
  

-.022 4296.856 .983 -.001 .042 -.084 .082 

V13 
EVA .000 .990 .085 4294 .933 .004 .050 -.094 .103 

EVNA 
  

.085 4293.906 .933 .004 .050 -.094 .103 

V14 
EVA .002 .964 .105 4292 .916 .005 .049 -.092 .102 

EVNA 
  

.105 4291.899 .916 .005 .049 -.092 .102 

V15 
EVA .002 .967 .027 4295 .979 .001 .036 -.070 .072 

EVNA 
  

.027 4294.903 .979 .001 .036 -.070 .072 

V16 
EVA .004 .948 .053 4289 .957 .002 .037 -.071 .075 

EVNA 
  

.053 4288.682 .957 .002 .037 -.071 .075 

V17 
EVA .001 .975 -.088 4292 .930 -.004 .041 -.084 .077 

EVNA 
  

-.088 4291.890 .930 -.004 .041 -.084 .077 

V18 
EVA .002 .962 -.039 4280 .969 -.001 .035 -.070 .068 

EVNA 
  

-.039 4279.529 .969 -.001 .035 -.070 .068 

V19 
EVA .005 .946 -.103 4290 .918 -.004 .042 -.087 .079 

EVNA 
  

-.103 4289.841 .918 -.004 .042 -.087 .079 

V20 
EVA .000 .991 .046 4293 .963 .002 .041 -.078 .081 

EVNA 
  

.046 4292.831 .963 .002 .041 -.078 .081 

Note that the dataset indicates that the Levene’s significance for V1-V20 is all > 0.05 and the 

significance values for V5-V24 for the means are all greater than 0.05. It was concluded that 

the data replacement via MI had not significantly changed the secondary or tertiary student 

data and that, therefore, the MI dataset could be used for EFA. 
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5.4. Exploratory Factor Analysis (EFA) 

EFA is intended to mine through data to locate a set of latent factors that identify connections 

implied (but not expressed) in the observed data. EFA is, in a sense, data analysis exploration. 

The EFA procedure reveals the need for variable elimination and/or reverse coding that are 

done in preparation for Confirmatory Factor Analysis (CFA) which confirms commonality of 

latent factors and necessary preparation for Structured Equation Modelling (SEM) that enables 

a theoretical model to be tested. 

Chapter 3 detailed the development of the survey instrument constructed to validate the 

theoretical model developed to explain why year-12 students, despite being confident that they 

were ready for advanced mathematical studies, were unprepared to succeed in year-13 

university calculus courses. The remainder of this chapter details the EFA conducted to 

explore whether the six factors proposed in the theoretical model shown in Figure 3.6 can 

explain at least 50% of the common variation in the observed factors. It should be noted that 

the theoretical model was based on secondary student data only; however, because the tertiary 

student survey responses will be helpful in analyzing the factor connections between the latent 

secondary and latent tertiary factors, the chapter also includes details on the EFA conducted 

on tertiary student data. 

Secondary Student EFA 

SPSS Reliability was run against the cleansed secondary student data set described in 5.3 

above to determine the best Alpha valued imputation. This data set uses the multiple 

imputation iterations (0,5). 

Cronbach’s Alpha for Imputations 1-5 

Imputation 1: 0.752 
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Imputation 2: 0.754 

Imputation 3: 0.757 

Imputation 4: 0.754 

Imputation 5: 0.756 

Imputation 0 does not have MI data replacement: Alpha = 0.750. Imputation 3 has the highest 

Alpha Value and is best suited to the next steps in the factor definitions. Moreover, as seen 

from Table 5.1, reliability has improved through data cleansing and missing data replacement. 

Therefore, Imputation 3 is chosen for EFA. Appendix D details the iteration strategy through 

ProMax and Varimax rotation schemes to systematically hone the EFA such that variable 

cross-loading was minimized, and high probability factors would present themselves. By 

increasing the suppression of coefficients from <0.33 to < 0.41, all cross-loadings were 

hidden. Table 5.12 displays those loadings. 

Table 5.12 Imputation 3 Pattern Matrix by ProMax Rotation Coefficient Suppression < 0.41 

Variables 
Component 

1 2 3 4 5 6 
V5 

  
.836 

   
V6 

  
.691 

   
V7 

  
.599 

   
V8 

  
.662 

   
V9 .552 

     
V10 .756 

     
V11 

 
.706 

    
V12 

 
.470 

    
V13 

    
.876 

 
V14 

 
.423 

    
V15 

 
.779 

    
V16R 

   
.663 

  
V17 

     
.628 

V18 
     

.848 
V19 

   
.891 

  
V20 

 
.412 

    
V21 

    
.721 

 
V22 .861 

     
V23 .698 

     
V24 

   
.517 
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After removing from view the cross-loaded variables, the following six factors were more 

clearly presented: 

 Factor 1: V9, V10, V22, V23 

 Factor 2: V11, V12, V14, V15, V20 

 Factor 3: V5, V6, V7, V8 

 Factor 4: V16R, V19, V24 

 Factor 5: V13, V21 

 Factor 6: V17, V18 

5.4.1.1. Secondary Student EFA-Directed Latent Variable Operationalization 

The secondary student factors with their associated variables derived from the EFA are: 

Factor 1: Student Textbook Dislike (STD) 

V9/Q5. The year 12 textbook is too complicated. 

V10/Q6. Handouts were better, sometimes, than the textbook. 

V22/Q18. I prefer the notes from the teacher than from the textbook. 

V23/Q19. Without the teacher, the textbook would be useless. 

As the experiment progressed, this variable was reversed to Student Textbook Like and 

combined with Student Textbook Trust to become Student Textbook Comfort (Section 6.3.1). 

Factor 2: Student Textbook Trust (STT) 

V11/Q7. My year 12 math teacher uses the textbook and refers to it in class. 

V12/Q8. My year 12 math textbook examples helped me understand the topic. 

V14/Q10. The chapters in the textbook follow each other pretty well. 

V15/Q11. My teacher likes the textbook. 

V20/Q16. There is enough detail in the textbook to master the topics. 



112 
 

The concept implied by this grouping of questions is that students trust their textbook. In cases 

where students are using rigorous textbooks, this would be a positive factor; where textbooks 

are not rigorous, students are given a false sense of readiness for year-13 calculus. As the 

experiment progressed, this variable was combined with Student Textbook Like to become 

Student Textbook Comfort (Section 6.3.1). 

Factor 3: Student Perceived Readiness (SPR) 

V5/Q1. I was ready for year 12 math. 

V6/Q2. I am going to do well in the final exams. 

V7/Q3. My mid-year progress was better than I expected. 

V8/Q4. Year 11 math prepared me very well for year 12 math. 

This latent variable emerges from questions relating to year-12 students’ perceptions of their 

readiness for year-12 mathematics. In cases where students’ year-11 preparation was rigorous, 

this would be a positive factor; where it was not rigorous, students would have a false sense of 

readiness for year-12 precalculus. 

Factor 4: Student Mathematical Maturity (SMM) 

V16R/Q12R. I (do not) have regular help with my math homework. 

V19/Q15. I do not need to ask the teacher for homework help. 

V24/Q20. With textbook only (no teacher) I could understand the topics clearly. 

This latent variable emerges from questions relating to year-12 students’ mathematical 

maturity as measured by the extent to which they needed external help beyond their textbook 

to complete homework and master topics. 
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Factor 5: Student Parental Involvement (SPI) 

V13/Q9. My parents are/have been able to help me with my year 12 math homework. 

V21/Q17. My parents like the math textbook. 

The underlying assumption behind these questions was that even a parent without a strong 

mathematical background would be able to help their child if the textbook was rigorous 

enough. 

Factor 6: Student Textbook Use (STU) 

V17/Q13. I often bring the mathematics textbook/written materials home or to my  

study location. 

V18/Q14. If there were more problems in the textbook, I would practice more. 

This variable also indirectly reflects students’ valuing of, trust in, and comfort with their 

textbook. 

The secondary student EFA reveals potential latent variables that are derived from the 

observed data. This derivation, or construct, serves as the shared (EFA vs. a priori 6 factor 

model) starting point for the secondary student CFA detailed in Chapter 6. 

5.4.2. Tertiary Student EFA 

Though secondary and tertiary student survey questions were similar, the expectation of a 

model distinction between secondary and tertiary students based on literature highlighting the 

disparity between perceived readiness and actual readiness of first-year mathematical students, 

led to running a tertiary EFA to assist affirmation of secondary textbook centrality. 

SPSS Reliability was run against the cleansed tertiary student data set to determine the best 

Alpha valued imputation. This data set uses the multiple imputation iterations (0,5). 
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Cronbach’s Alpha for Imputations 1-5 

Imputation 1: 0.754 

Imputation 2: 0.754 

Imputation 3: 0.752 

Imputation 4: 0.753 

Imputation 5: 0.755 

Imputation 0 does not have MI data replacement: Alpha = 0.740. Imputation 5 has the highest 

Alpha Value and is likely best suited to the next steps in the factor definitions. Moreover, 

when compared to Table 5.1, reliability has improved through data cleansing and missing data 

replacement. The EFA on the Imputation 5 dataset indicates a possible 7-factor model as seen 

in Table 5.13. 

Table 5.13 Tertiary Student Data Imputation 5 Rotated Component Matrix 

Variables 
Component 

MAX SD 
1 2 3 4 5 6 7 

V1 .588 -.015 .521 .023 -.011 .114 .043 0.59 0.24 
V2 -.333 .174 -.330 .097 -.037 .068 .557 0.56 0.29 
V3 .131 -.065 -.005 .492 .003 .187 .507 0.51 0.22 
V4 .036 -.080 .162 -.103 .071 -.006 .789 0.79 0.28 
V5 .378 -.066 .657 -.010 .047 .173 .058 0.66 0.24 
V6 .042 -.066 -.026 .042 .015 .810 .199 0.81 0.28 
V7 -.061 .133 .758 .086 -.056 -.032 .039 0.76 0.27 
V8 .021 .169 .825 -.052 .029 -.082 -.050 0.83 0.30 
V9 .105 .799 .144 -.128 .100 -.016 -.015 0.80 0.28 

V10 .121 .776 .122 -.049 .138 .048 -.015 0.78 0.26 
V11 .513 .527 .019 .219 -.090 -.122 .039 0.53 0.25 
V12 -.295 .341 .032 .314 .315 .100 .077 0.34 0.21 
V13 -.086 .158 .060 .020 .822 .000 .019 0.82 0.29 
V14 .127 .099 -.067 -.014 .830 .008 .026 0.83 0.29 
V15 .743 .350 -.056 -.009 .030 .019 -.005 0.74 0.27 
V16 .357 .598 -.037 -.250 .216 .036 -.054 0.60 0.27 
V17 .764 .159 .158 -.069 .022 .108 -.056 0.76 0.26 
V18 .064 .095 .042 .123 .007 .814 -.096 0.81 0.28 
V19 .116 -.014 .044 .789 .089 .081 .063 0.79 0.26 
V20 .232 .216 .025 -.699 .103 -.029 .146 0.23 0.30 
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V3 (“Without the teacher, my 12th grade textbook would have been useless”) and V12 (“I 

have regular help with my mathematics”) had the lowest standard deviation (loading evenly 

across all factors). Models were re-run with V3 and V12 removed. Removing V12 did not 

enhance the model whereas elimination of V3 yielded an improved Alpha = 0.759 and a 6-

factor model. Table 5.14 shows the Cronbach’s Alpha value with V3 removed and Table 5.15 

shows the resulting 6-factor model with V3 removed and Variance Explained. 

Table 5.14 KMO and Bartlett’s Test without V3 

Kaiser-Meyer-Olkin Measure 
of Sampling Adequacy. 

.759 

Bartlett's 
Test of 
Sphericity 

Approximate 
Chi-Square 

9399.968 

df 171 
Sig. 0.000 

 

Table 5.15 Tertiary Student Data Imputation 5, Total Variance Explained Without V3 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% 
Total % of 

Variance 
Cumulative 

% Total % of 
Variance 

Cumulative 
% 

1 3.786 19.929 19.929 3.786 19.929 19.929 3.004 15.812 15.812 
2 2.116 11.136 31.064 2.116 11.136 31.064 2.350 12.366 28.178 
3 1.768 9.304 40.368 1.768 9.304 40.368 1.732 9.118 37.297 
4 1.525 8.029 48.397 1.525 8.029 48.397 1.613 8.488 45.785 
5 1.211 6.374 54.772 1.211 6.374 54.772 1.490 7.841 53.625 
6 1.086 5.716 60.488 1.086 5.716 60.488 1.304 6.862 60.488 
7 .997 5.249 65.737 

      
8 .807 4.248 69.985 

      
9 .772 4.064 74.048 

      
10 .689 3.627 77.675 

      
11 .615 3.237 80.912 

      
12 .560 2.948 83.860 

      
13 .532 2.801 86.661 

      
14 .505 2.656 89.316 

      
15 .466 2.453 91.770 

      
16 .441 2.319 94.089 

      
17 .403 2.123 96.212 

      
18 .395 2.079 98.291 

      
19 .325 1.709 100.000 
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With a Mean of 2.9, a Median of 3, a Mode of 3, a Maximum of 6, and a Minimum of 1, it 

was determined that the removal of V3 is justified as a non-decisive contributor. Table 5.16 

shows the Varimax Rotated Component Matrix for the 6-factor model.  

 
Table 5.16 Tertiary Student Data Varimax Rotated Component Matrix 

Variables 
Component 

1 2 3 4 5 6 
V1 

 
.601 

    
V2 

     
.668 

V4 
     

.665 
V5 

 
.706 

    
V6 

   
.758 

  
V7 

 
.737 

    
V8 

 
.810 

    
V9 .689 

     
V10 .675 

     
V11 .743 

     
V12 

  
.398 

   
V13 

  
.821 

   
V14 

  
.769 

   
V15 .720 

     
V16 .677 

     
V17 .556 

     
V18 

   
.687 

  
V19 

    
.748 

 
V20 

    
-.734 

 

Appendix D details the iteration strategy through Varimax rotation schemes to systematically 

hone the EFA such that cross-loading was minimized and high probability factors would 

present themselves. Additionally, different variables were removed and/or reversed during the 

rotations which continued to improve the factor loadings as seen in Table 5.17. 

Table 5.17 Imputation 5 Pattern Matrix by Varimax Rotation with Coefficient Suppression < 
0.395  

Variables 
Component 

1 2 3 4 5 6 
V1 

 
.601 

    
V2 

     
.668 

V4 
     

.665 
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Table 5.17 (continued) 

Variables 
Component 

1 2 3 4 5 6 
V5 

 
.706 

    
V6 

   
.758 

  
V7 

 
.737 

    
V8 

 
.810 

    
V9 .689 

     
V10 .675 

     
V11 .743 

     
V12 

  
.398 

   
V13 

  
.821 

   
V14 

  
.769 

   
V15 .720 

     
V16 .677 

     
V17 .556 

     
V18 

   
.687 

  
V19 

    
.748 

 
V20R 

    
.734 

 

The following six factors were derived from the tertiary student data EFA with cross-loading 

coefficient suppression < 0.395: 

 Factor 1: V9, V10, V11, V15, V16, V17  

 Factor 2: V1, V5, V7, V8  

 Factor 3: V12, V13, V14  

 Factor 4: V6, V18 

 Factor 5: V19, V20R 

 Factor 6: V2, V4 

5.4.2.1. Contrary Initial Tertiary Student EFA Analytics 

The initial EFA analysis revealed that Factor 4 posed a problem in the initial tertiary student 

EFA because its variables referred to both year-12 and year-13 handouts. V6 (“12th grade 

handouts were better, sometimes, than the textbook”) is a question asked in the secondary 

experience section of the tertiary student survey while V18 (“13th grade extra handouts are 
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sometimes better than the textbook/written materials”) refers to the tertiary experience. 

Because the experiences are not logically related in this model, either V6 or V18 needed to be 

omitted from the EFA. The details of the iterations of rotations, variable removals, and 

reversals are located in Appendix D where the final model is shown in Table 5.18. 

Table 5.18 Rotated Component Matrix with Additional Reverse Coding and Loading 
Adjustments 

Variables 
Component 

1 2 3 4 5 6 
V1 .607 

     
V2R 

     
.611 

V4R 
     

.855 
V5 

  
.650 

   
V7 

  
.766 

   
V8 

  
.822 

   
V9 

 
.820 

    
V10 

 
.799 

    
V11 .533 

     
V13 

   
.820 

  
V14 

   
.841 

  
V15 .753 

     
V16 

 
.595 

    
V17 .791 

     
V19R 

    
.822 

 
V20 

    
.759 

 
 

5.4.2.2. Tertiary Student EFA-Directed Latent Variable Operationalization  

Here are the tertiary student factors with their associated variables derived from the EFA: 

(Note that, in the tertiary student data, variable numbers and question numbers are the same. 

V1=Q1, etc.). 

Factor 1: Perceived Readiness (PR) 

V1. 12th grade math was very good preparation for college mathematics. 

V11. My progress so far is better than I expected. 

V15. I am going to do very well in the terminal exams. 
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V17. I was ready for mathematics this year. 

In cases where students’ year-12 preparation was rigorous, this would be a positive factor; 

where it was not rigorous, students would have a false sense of readiness for year-13 calculus. 

Factor 2: Tertiary Student Like of Year 13 Textbook (L13T) 

 V9.  The textbook/written material examples help me understand the topic. 

V10. The chapters in the textbook/written materials follow each other pretty well. 

V16. There is enough detail in the textbook/written materials to master the topics. 

This latent variable emerges from questions relating to the extent to which year-13 students 

value their textbook. 

Factor 3: Tertiary Student Like Y12 Textbook (L12T) 

V5. There were enough exercises in the Y12 textbook for me to be well practiced. 

V7. My 12th grade math teacher used the textbook & referred to it in class. 

V8. My 12th grade math book examples helped me understand the topic. 

The logic behind these questions was to explore the relationship between year-13 students’ 

perceptions of their year-12 and year-13 textbooks. 

Factor 4: Tertiary Student Y13 Textbook Use (U13T) 

V13. I often bring the mathematics textbook home or to my study location. 

V14. The teacher uses the textbook and refers to it in class. 

This variable also indirectly reflects students’ valuing of, trust in, and comfort with their 

textbook. 

Factor 5: Tertiary Student Mathematical Maturity (M13M) 

V19R. Without the teacher, the textbook would NOT be useless. 

V20. With textbook only (no lectures) I could understand the topics clearly. 
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(Note: V19 and V20R were reversed so that the factor was positively named.) 

This latent variable emerges from questions relating to year-13 students’ mathematical 

maturity as measured by the extent to which they needed external help beyond their textbook 

to complete homework and master topics. 

Factor 6: Tertiary Student Confidence in the Year-12 Textbook (C12T) 

V2R. 12-grade mathematics textbook DID NOT need more depth. 

V4R. There was NOT too much homework in my 12th-grade mathematics class. 

(Note: V2 and V4 were reversed so that the factor is positively named.) 

This variable indirectly measures the perceived readiness of year-13 students based on their 

experience with their year-12 textbook. 

The tertiary student EFA has revealed potential latent variables that are derived from the 

observed data. This derivation, or construct, will serve as the starting point for the tertiary 

student CFA in Chapter 6. 

5.5. Conclusion 

This chapter identified six factors for both the secondary (the theoretical modeled) and tertiary 

(not previously modeled) student data through EFA. The following chapter will present the 

CFA and SEM for this data. It will also compare and contrast data from secondary 

students/teachers with tertiary students/professors regarding their perception of students’ 

mathematical readiness. 
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Chapter 6. Survey Data Analysis – Confirmatory Factor Analysis and 
Structured Equation Modeling 

6.1. Introduction 

The chapter will explain how CFA and SEM were employed to refine the theoretical model 

described in Chapter 3. SEM is a multivariate statistical analysis technique that is used to test 

and evaluate multivariate causal relationships (Brandmaier et al., 2013; Tarka, 2017). This 

technique is the combination of factor analysis and multiple regression analysis. A SEM has 

two components. It is initialized with the CFA which yields the measurement model depicting 

the relationship between the latent variables and their measures. SEM is finalized with the 

structural equation model (path analysis) which shows how the survey data and constructs are 

related. In addition to explaining how CFA and SEM were used to model the survey data, this 

chapter also includes a section on descriptive statistics used to amplify connections between 

student perceived readiness and year-12 mathematical textbooks. 

6.2. Chapter Organization 

This chapter is divided into six sections. The first section describes the process through which 

CFA was applied to the secondary student data to build a measurement model and to refine the 

proposed model pictured in Figure 6.1. The second section details how the CFA-generated 

(measurement model) factor loadings and correlation coefficients were applied to the 

secondary student SEM. The third and fourth sections describe the same process applied to the 

tertiary student data. The fifth section uses descriptive statistics to highlight students’ opinion 

of their year-12 textbook and to link secondary teacher and tertiary professor survey responses 

to the secondary and tertiary models. The final section details how the above processes drove 

alterations to the theoretical model originally proposed in Chapter 3. 
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6.3. Secondary Student Confirmatory Factor Analysis 

CFA is a technique that is designed to confirm the validity of a theoretical model. In the CFAs 

to follow, the theoretical model developed for secondary student data was used to estimate a 

population covariance matrix and to compare that to the observed covariance matrix with the 

objective of minimizing the difference between the estimated and the observed covariance 

matrices (Schreiber et al., 2006). Figure 6.1 shows the proposed CFA model for secondary 

student data that will be used to confirm the theoretical model. The latent variables (i.e., 

unobserved variables) are designated with ellipses and the observed variables (i.e., survey 

answers) are designated with rectangles. 

 
Figure 6.1 Proposed Secondary Student Data Confirmatory Factor Analysis Model 

 
Multiple iterations of the model were experimented with in order build a confirmatory 

measurement model suitable for SEM analytics. 

6.3.1. Development of the Measurement Model Through CFA  

In preparation for SEM, multiple CFAs were run in Mplus v7.1 for measurement modeling. In 

the tables below, the model fit indices (Table 6.1), factor loadings (Table 6.2) and latent 

constructs correlations and significances (Table 6.3) are identified. Good model fit is when the 

Root Mean Squared Error of Approximation (RMSEA) is less than 0.08, when the 

Comparative Fit Index (CFI) and Tucker Lewis Index (TLI) are greater than .90, and when 

Standardized Root Mean Square Residual (SRMSR) is less than 0.08 (Browne & Cudeck, 

1992; Hu & Bentler, 1999; Kline, 2015). 



123 
 

Table 6.1 Secondary Student Initial Measurement Model Fit Indices 

RMSEA 
 

Estimate 0.06   
90% C.I. 0.05 0.07 
Prob. RMSEA <= 
.05 

0.01   

CFI/TLI 
 

CFI 0.87   
TLI 0.83   

SRMR Value 0.06   

 
Note: STD (Student Textbook Dislike) negatively correlated with STT (Student Textbook 

Trust) in the initial CFA and, as a result, the proposed model was modified to reverse code 

STD as STL (Student Textbook Like) so that each scale would be positive. 

Table 6.2 Secondary Student Initial Measurement Model Factor Loadings 

Latent 
Variable 

Indicator 
Variable 

Est. 
Cor. 

S.E. 
2-Tailed 
P-Value 

STL 

V9R 0.65 0.04 0.00 

V10R 0.54 0.04 0.00 

V22R 0.79 0.04 0.00 

V23R 0.55 0.04 0.00 

STT 

V11 0.32 0.05 0.00 

V12 0.73 0.03 0.00 

V14 0.51 0.04 0.00 

V15 0.40 0.04 0.00 

V20 0.63 0.03 0.00 

SPR 

V5 0.68 0.06 0.00 

V6 0.73 0.06 0.00 

V7 0.25 0.05 0.00 

V8 0.76 0.07 0.00 

SPI 
V13 0.34 0.06 0.00 

V21 0.98 0.12 0.00 

STU 
V17 0.64 0.08 0.00 

V18 0.50 0.07 0.00 

SMM 

V16R 0.28 0.06 0.00 

V19 0.47 0.05 0.00 

V24 0.74 0.06 0.00 

Indicator (manifest) variables with factor loadings > 0.45 are considered fair and over 0.71 as 

excellent (Comrey & Lee, 1992, as cited in Davies et al., 2010). This meant that V11 and V15 

loading onto STT at 0.32 and 0.40 and V13 loading onto SPI at 0.34 needed justification for 
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retention in the model. Nevertheless, the P-value < 0.05 for all factor loadings in Table 6.2 

indicate that the factor loadings, including those < 0.45, were statistically significant. 

Table 6.3 Secondary Student Initial Measurement Model Latent Variable Correlations and 
Significances 

Regressed 
On 

Regressed Est. Cor. S.E. 
2-Tailed 
P-Value 

STT STL 0.63 0.04 0.00 

SPR 
STL 0.14 0.05 0.01 

STT 0.33 0.05 0.00 

SPI 

STL 0.03 0.05 0.52 

STT 0.45 0.07 0.00 

SPR 0.25 0.05 0.00 

STU 

STL 0.01 0.07 0.94 

STT 0.36 0.07 0.00 

SPR 0.15 0.07 0.02 

SPI 0.24 0.07 0.00 

SMM 

STL 0.53 0.05 0.00 

STT 0.51 0.06 0.00 

SPR 0.23 0.07 0.00 

SPI 0.25 0.06 0.00 

STU 0.06 0.08 0.49 

 
Note in Table 6.3 that STL is highly correlated with STT. In other words, it is apparent that 

STL and STT are strongly connected (r=.63), but it is unclear if Like loads onto Trust or Trust 

loads onto Like. It is also observed that STL and STT are loading on Student Mathematical 

Maturity (SMM) as comparable descriptors. Hair et al. (2017) recommends r >=.80 to drive 

combining variables and, while this was a consideration, the lack of clarity as to loading as 

stated above  led to the development of a second level latent construct reflected by STL and 

STT. The added benefit, in spite of the lower r value helped to avoid possible multicollinearity 

problems when both STL and STT are included in the SEM. The second level latent construct 

was labelled Student Textbook Comfort (STC). In this case, “comfort” connotes the student’s 

level of liking and trusting the textbook content to the degree that the student is able to answer 

the questions, understand the examples, and follow how the teacher uses the textbook. Student 
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Parental Influence (SPI) and Student Perceived Readiness (SPR) are also correlated 

moderately and similarly with SMM. Figure 6.2 shows the secondary student modified 

measurement model to be used for SEM with the addition of the second level latent construct, 

STC. 

 
Figure 6.2 Secondary Student Modified Measurement Model 

The next step in SEM preparation was to examine the constructs validity. Reliability needed to 

be investigated with regard to the constructs in the measurement model and this was 

accomplished by calculating the average variance extracted to determine Convergent Validity 

(CV) and then taking the square root of these averages to determine Discriminant Validity 

(DV). CV refers to the degree to which two measures of constructs that theoretically should be 

related are, in fact, related. DV tests whether concepts or measurements that are supposed to 

be unrelated are, in fact, unrelated (Campbell & Fiske, 1959). CV and DV were used to 

validate that the factors defined by the observed variables are distinct (i.e., discriminating) and 

that the observed variables fairly converge on the defined unobserved (or latent factors). 

Applying the Campbell algorithm and analytics to all the variables in the measurement model 

revealed that CV was fair. The second level latent variable, STC, derived from STL and STT 

was omitted from the CV analysis in favor of the variables with observed variables. See Table 

6.4. 
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Table 6.4 Secondary Student Convergent and Discriminant Validity 

Indicator 
Variables 

Latent 
Variables 

Standardized 
Factor 

Loadings 
(Correlations) 

Square of 
Standardized 

Loadings 

Sum of the 
Squared 

Standardized 
Loadings 

Number 
of 

Indicators 

Average 
variance 

Extracted = 
Convergent 

Validity 
(CV) 

Square Root 
Average = 

Discriminant 
Validity 

(DV) 

Largest 
Correlation 

Between 
Latent 

Variables 
(BC) 

DV-
BC 
(>0) 

V9R 

STL 

0.65 0.42 
      

V10R 0.54 0.29 
      

V22R 0.79 0.62 
      

V23R 0.55 0.31 1.63 4 0.41 0.64 0.63 0.01 

V11 

STT 

0.32 0.10 
      

V12 0.73 0.53 
      

V14 0.51 0.26 
      

V15 0.40 0.16 
      

V20 0.63 0.40 1.44 5 0.29 0.54 0.63 -
0.09 V5 

SPR 

0.68 0.46 
      

V6 0.73 0.53 
      

V7 0.25 0.06 
      

V8 0.76 0.57 1.63 4 0.41 0.64 0.25 0.39 

V16R 

SMM 

0.28 0.08 
      

V19 0.47 0.22 
      

V24 0.74 0.54 0.84 3 0.28 0.53 0.25 0.28 

V13 
SPI 

0.34 0.11 
      

V21 0.98 0.95 1.07 2 0.53 0.73 0.24 0.49 

V17 
STU 

0.64 0.40 
      

V18 0.50 0.25 0.65 2 0.33 0.57 0.36 0.21 

6.3.2. Further Modifications to the Secondary Student Measurement Model 

Note in Table 6.4 that V7 and V16R loaded at only 0.25 and 0.28 respectively. They were 

removed from the model. Table 6.5 records the CV and DV after this step.  

Table 6.5 Secondary Student CV and DV with V7 and V16R Removed 

Indicator 
Variables 

Latent 
Variables 

Standardized 
Factor 

Loadings 
(Correlations) 

Square of 
Standardized 

Loadings 

Sum of the 
Squared 

Standardized 
Loadings 

Number 
of 

Indicators 

Average 
variance 

Extracted = 
Convergent 

Validity 
(CV) 

Square Root 
Average  = 

Discriminant 
Validity 

(DV) 

Largest 
Correlation 

Between 
Latent  

Variables 
(BC) 

DV-
BC 
(>0) 

V9R 

STL 

0.65 0.43 
      

V10R 0.53 0.28 
      

V22R 0.80 0.64 
      

V23R 0.55 0.30 1.65 4 0.41 0.64 0.63 0.0 
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Table 6.5 (continued) 
 

Indicator 
Variables 

Latent 
Variables 

Standardized 
Factor 

Loadings 
(Correlations) 

Square of 
Standardized 

Loadings 

Sum of the 
Squared 

Standardized 
Loadings 

Number 
of 

Indicators 

Average 
variance 

Extracted = 
Convergent 

Validity 
(CV) 

Square Root 
Average  = 

Discriminant 
Validity 

(DV) 

Largest 
Correlation 

Between 
Latent  

Variables 
(BC) 

DV-
BC 
(>0) 

V11 

STT 

0.32 0.10 
      

V12 0.73 0.53 
      

V14 0.51 0.26 
      

V15 0.41 0.16 
      

V20 0.62 0.39 1.44 5 0.29 0.54 0.63 - 
 V5 

SPR 

0.54 0.29 
      

V6 0.87 0.75 
      

V8 0.98 0.96 2.00 3 0.67 0.82 0.25 0.5 

V19 
SMM 

0.38 0.14 
      

V24 0.91 0.82 0.96 2 0.48 0.69 0.25 0.4 

V13 
SPI 

0.36 0.13 
      

V21 0.93 0.86 0.98 2 0.49 0.70 0.24 0.4 

V17 
STU 

0.62 0.39 
      

V18 0.51 0.26 0.65 2 0.32 0.57 0.36 0.2 

Though CV is not as high as the preferred ideal model, the DV is well within acceptable 

range. This acceptability is based on the expectation that lower factor loadings mathematically 

affect the CV and, following Hand et al. (2018), factor loadings ≥0.32 are expected and 

considered to be acceptable. Thus, the modified measurement model does have fair CV 

(Fornell & Larcker, 1981). 

Tables 6.6 and 6.7 show the model fit indices and factor loadings for the modified 

measurement model with V7 and V16R removed. The modifications have brought the CFI and 

the TLI into the fully acceptable range for model fit. 
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Table 6.6 Secondary Student Modified Measurement Model Fit Indices

RMSEA 
 

Estimate 0.05   
90% C.I. 0.04 0.06 
Prob. RMSEA <= 
.05 

0.65   

CFI/TLI 
 

CFI 0.93   
TLI 0.90   

SRMR Value 0.05   
 

 

Table 6.7 Secondary Student Modified Measurement Model Factor Loadings 

Latent 
Variable 

Indicator 
Variable 

Factor 
Loadings 

S.E. 
2-Tailed 
P-Value 

STL by 

V9R 0.65 0.04 0.00 

V10R 0.53 0.04 0.00 

V22R 0.80 0.04 0.00 

V23R 0.55 0.04 0.00 

STT by 

V11 0.32 0.05 0.00 

V12 0.73 0.03 0.00 

V14 0.51 0.04 0.00 

V15 0.41 0.04 0.00 

V20 0.62 0.03 0.00 

SPR by 

V5 0.54 0.08 0.00 

V6 0.87 0.12 0.00 

V8 0.98 0.14 0.00 

SPI by 
V13 0.36 0.05 0.00 

V21 0.93 0.10 0.00 

STU by 
V17 0.62 0.08 0.00 

V18 0.51 0.07 0.00 

SMM by 
V19 0.38 0.05 0.00 

V24 0.91 0.09 0.00 

Factor loadings for V11 and V15 loading onto STT at 0.32 and 0.41, and V13 loading onto 

SPI at 0.36, and V19 loading onto SMM at 0.38 needed justification for retention in the 

model. The P-value < 0.05 for all factor loadings in Table 6.7 indicate that the factor loadings, 

including those < 0.45, were statistically significant. The justification for the retention fell into 

the realm of the Latent Variable and the loaded variables and the literature. V24 (With 

textbook only (no teacher) I could understand the topics clearly) loaded strongly (0.91) onto 

SMM. V19 (I do not need to ask the teacher for homework help) used different wording to ask 
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a similar thing and, thus, the average of these factor loadings (0.645) could be used and is 

considered by Comrey and Lee to be very good (Comrey & Lee, 1992, as cited in Davies et 

al., 2010). Per (Hand et al., 2018), even factor loadings >= 0.32 can be considered significant. 

Using either criterion (averaging factor loadings or factor loadings ≥ 0.32), the modified 

measurement model is valid for subsequent use and analysis. 

6.4. Secondary Student Structured Equation Model 

Table 6.8 records the initial structured equation model path coefficients and significances 

showing that several of the regressions were not significant. 

Table 6.8 Secondary Student Initial SEM Path Coefficients and Significances 

Regressed 
On 

Regressed 
Path 

Coefficients 
S.E. 

2-Tailed 
P-Value 

STT STL 0.62 0.04 0.00 

SPR 
STL 0.09 0.05 0.05 

STT 0.29 0.06 0.00 

SPI 

STL 0.03 0.05 0.52 

STT 0.47 0.06 0.00 

SPR 0.22 0.06 0.00 

STU 

STL 0.01 0.07 0.85 

STT 0.37 0.07 0.00 

SPR 0.15 0.06 0.01 

SPI 0.26 0.07 0.00 

SMM 

STL 0.44 0.06 0.00 

STT 0.47 0.07 0.00 

SPR 0.08 0.06 0.20 

SPI 0.26 0.06 0.00 

STU 0.12 0.07 0.07 

 

The path coefficients that were not significant (p>0.05) were removed. The SEM fit results are 

shown in Table 6.9. 
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Table 6.9 Final Secondary Student Measurement Model Fit 

RMSEA 
 

Estimate 0.05   
90% C.I. 0.46 0.6 
Prob. RMSEA <= 
.05 

0.24   

CFI/TLI 
 

CFI 0.91   
TLI 0.89   

SRMR Value 0.05   
 

Table 6.10 lists the remaining regressions that are significant. 

Table 6.10 Final Secondary Student Structural Model Results 

Regressed 
On 

Regressed Est. Cor. S.E. 
2-Tailed 
P-Value 

STU 
SPI 0.18 0.06 0.00 

SPR 0.15 0.07 0.03 

STC 

SPR 0.24 0.06 0.00 

SPI 0.33 0.05 0.00 

STU 0.15 0.07 0.03 

SMM STC 0.57 0.07 0.00 

 

As seen in Table 6.10, Student Parental Influence (SPI) and Student Perceived Readiness 

(SPR) are influencing Student Textbook Use (STU). Together these three latent variables are 

influencing Student Textbook Comfort (STC) which is influencing Student Mathematical 

Maturity (SMM). The paths all had significance < 0.05 and path coefficient > 0.10. This 

indicates that the paths are significant for asserting influential relationships between the latent 

(unobserved) variables. With the regressions in Tables 6.7 and 6.10 the SEM takes on the 

form shown in Figure 6.3. 
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Figure 6.3 Final Secondary Student SEM diagram 

 

Tables 6.11 and 6.12 provide the STDYX details for Figure 6.3 in tabular format. 

Table 6.11 Residual Variances 

Residual 
Variances 

Est. S.E. 
2-Tailed 
P-Value 

V5 0.68 0.07 0.00 

V6 0.87 0.04 0.00 

V8 0.23 0.15 0.12 

V9R 0.53 0.06 0.00 

V10R 0.73 0.04 0.00 

V11 0.90 0.03 0.00 

V12 0.49 0.04 0.00 

V13 0.89 0.03 0.00 

V14 0.74 0.04 0.00 

V15 0.83 0.03 0.00 

V17 0.59 0.14 0.00 

V18 0.76 0.08 0.00 

V19 0.86 0.04 0.00 

V20 0.56 0.04 0.00 

V21 0.01 0.00 0.00 

V22R 0.38 0.06 0.00 
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Table 6.11 (continued) 

Residual 
Variances 

Est. S.E. 
2-Tailed 
P-Value 

V23R 0.74 0.04 0.00 

V24 0.27 0.15 0.08 

STL 0.60 0.06 0.00 

STT 0.10 0.03 0.00 

STU 0.93 0.03 0.00 

SMM 0.67 0.08 0.00 

STC 0.74 0.05 0.00 

 
Table 6.12 CFA Measurement Model Factor Loadings 

Latent 
Variable 

Observed 
Variables 

Factor 
Loadings 

S.E. 
2-Tailed 
P-Value 

STL by 

V9R 0.68 0.04 0.00 

V10R 0.52 0.04 0.00 

V22R 0.79 0.04 0.00 

V23R 0.51 0.04 0.00 

STT by 

V11 0.32 0.04 0.00 

V12 0.71 0.03 0.00 

V14 0.51 0.04 0.00 

V15 0.41 0.04 0.00 

V20 0.67 0.03 0.00 

SPR by 

V5 0.57 0.06 0.00 

V6 0.36 0.06 0.00 

V8 0.88 0.08 0.00 

SPI by 
V13 0.34 0.04 0.00 

V21 1.00 0.00 0.00 

STU by 
V17 0.64 0.11 0.00 

V18 0.49 0.09 0.00 

SMM by 
V19 0.38 0.05 0.00 

V24 0.86 0.09 0.00 

STC by 
STL 0.63 0.05 0.00 

STT 0.95 0.01 0.00 

 

As seen in Table 6.12, Student Textbook Like (STL) is strongly supported by the reverse 

coded variables seen in the table above as are all the other latent variables. The factor loadings 

all had significance < 0.05 and correlations > 0.30 and this is the statistical assurance that the 
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correlations are reliable and that the factor loadings are suitable for use as seen in Table 6.13 

(Cohen, 1992). 

Table 6.13 Pearson Correlation Coefficient r 

Effect Size r 
Small 0.10 
Medium 0.30 
Large 0.50 

 

This led to the final first and second level latent variables for the structural model in Table 

6.14 demonstrating the R-Square of the latent variables with the observed variables. 

Table 6.14 Secondary Student SEM R-Square Results 

Latent Variable R-Square 
Std. Err. Sig. 

SE p 

STL 0.396 0.056 0.000 

STT 0.899 0.026 0.000 

STU 0.067 0.031 0.032 

SMM 0.330 0.079 0.000 

STC 0.264 0.047 0.000 

Notice that all R-Square values have p < 0.05 indicating that R-Square values have statistical 

significance with regard to the factor loadings seen in Table 6.12. 

6.4.1. Secondary Student SEM Summary 

The analysis of secondary student data revealed that all the indices (textbook use, textbook 

trust, parental influence, and students’ perception of readiness) flowed into textbook comfort 

(the student use and trust of the textbook) which flowed into student mathematical maturity. 

Thus, it is concluded that the textbook is a positive contributor to a general mathematical 
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maturity (i.e., the better the textbook, the better the students’ mathematical maturity). Figure 

6.4 shows the final secondary student path diagram with associated path coefficients.  

 
Figure 6.4 Final Secondary Student Path Diagram with Path Coefficients 

 

The secondary path diagram (Figure 6.4) displays how latent variables are related (i.e., how 

they influence, or are influenced by, each other) based on the data in Table 6.10. Moving from 

left to right, Student Perceived Readiness (SPR) influences both Student Textbook Use (STU) 

and Student Textbook Comfort (STC). The path coefficient between SPR and STU is 0.15 and 

between SPR and STC is 0.24, indicating the comfort or trust in the textbook is influenced by 

the students’ perceived readiness and the perceived readiness influenced the use of the 

textbook. STU also influenced STC with a path coefficient of 0.15 while being influenced by 

the student’s parental involvement (SPI) at 0.18. SPI influenced STC with a path coefficient of 

0.33, likely indicating that parental influence and perceived readiness influence on textbook 

use are catalysts for trust in the textbook as shown by the textbook comfort. This suggests 

textbook centrality in the mathematical experience of the student at home and in the 

classroom. As presented, the education of mathematics students includes the necessary 

mathematical topics, content, structure, and theory, and an implementation of those 

characteristics must include recursive building and maturing of those characteristics as the 
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data and diagram suggest. With student mathematical maturity (SMM) influenced strongly by 

STC (0.57), student mathematical maturity becomes a key goal and, coupled with textbook 

centrality, the textbook has the responsibility to mature the student. Moreover, secondary 

student textbook centrality in the secondary students’ curriculum is statistically significant, 

whether rigorous or not, is clear from the data and its graphical representation in Figure 6.4. 

Thus, it is concluded that the textbook is a statistically significant influencer to a general 

mathematical maturity (i.e., the better the textbook, the better the students’ mathematical 

maturity and vice-versa). When textbook rigor and content presentation are out of alignment 

with year-13 university calculus prerequisites, the secondary student will have acquired (false) 

confidence (from using the non-rigorous textbook) and maturity (consistent with the textbook 

presentation and assessments). Parental involvement will affirm and agree with the teacher 

that the student is mastering the textbook material and is being rigorously prepared and made 

ready when, in actuality, as Chapter 7 demonstrates, many secondary textbooks give a false 

sense of adequate preparation because the mastery of non-rigorous textbook content does not 

equate to subject mastery. 

Having finalized the SEM for secondary students, the next step was to analyze tertiary student 

data to determine whether year-12 student mathematical maturity was a contributor to tertiary 

student readiness for success in year-13 elementary calculus. 

6.5. Tertiary Student Confirmatory Factor Analysis 

6.5.1. Preparation for CFA 

There was no a priori model for tertiary student data. The conclusion of the EFA yielded the 

skeleton factor configuration for the Mplus CFA. The tertiary student EFA was completed 

with SPSS v20.0. The final EFA model had communalities seen in Table 6.15. 
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Table 6.15 Tertiary Student Variable Communalities Using Principal Components Analysis 
Extraction 

OV Initial Extraction 

V1 1.00 0.63 

V2R 1.00 0.60 

V4R 1.00 0.80 

V5 1.00 0.61 

V7 1.00 0.62 

V8 1.00 0.71 

V9 1.00 0.73 

V10 1.00 0.69 

V11 1.00 0.59 

V13 1.00 0.71 

V14 1.00 0.74 

V15 1.00 0.69 

V16 1.00 0.60 

V17 1.00 0.67 

V19R 1.00 0.72 

V20 1.00 0.68 

 

The final tertiary student EFA shows the six factor loadings with 67.44% of the variance 

accounted for in those loadings as shown in Table 6.16. 

Table 6.16 Tertiary Student Total Variance Explained Using Principal Components Analysis 
Extraction 

Comp. 
Initial Eigenvalues 

Extraction Sums of Squared 
Loadings 

Rotation Sums of Squared 
Loadings 

Total 
% 

Variance 
Cumulative 

% 
Total 

% 
Variance 

Cumulative 
% 

Total 
% 

Variance 
Cumulative 

% 
1 3.76 23.49 23.49 3.76 23.49 23.49 2.34 14.63 14.63 

2 2.05 12.83 36.32 2.05 12.83 36.32 2.23 13.96 28.59 

3 1.48 9.24 45.55 1.48 9.24 45.55 2.15 13.44 42.03 

4 1.33 8.29 53.84 1.33 8.29 53.84 1.52 9.49 51.52 

5 1.10 6.88 60.73 1.10 6.88 60.73 1.41 8.80 60.32 

6 1.07 6.71 67.44 1.07 6.71 67.44 1.14 7.12 67.44 

7 0.78 4.89 72.32 
      

8 0.65 4.08 76.41 
      

9 0.61 3.79 80.20 
      

10 0.56 3.47 83.67 
      

11 0.54 3.35 87.02 
      

12 0.49 3.05 90.08 
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Table 6.16 (continued) 

Comp. 
Initial Eigenvalues 

Extraction Sums of Squared 
Loadings 

Rotation Sums of Squared 
Loadings 

Total 
% 

Variance 
Cumulative 

% 
Total 

% 
Variance 

Cumulative 
% 

Total 
% 

Variance 
Cumulative 

% 
13 0.45 2.81 92.89 

      
14 0.41 2.55 95.44 

      
15 0.40 2.51 97.94 

      
16 0.33 2.06 100.00 

      

Table 6.17 shows the EFA factor loadings with small coefficient suppression set to 0.525. 

Varimax with Kaiser Normalization was used. The rotation converged in eight iterations. 

Table 6.17 Tertiary Student Rotated Component Matrix Using Principal Components Analysis 
Extraction 

Observed 
Variables 

Component 
1 2 3 4 5 6 

V1 0.61 
     

V2R 
     

0.61 

V4R 
     

0.85 

V5 
  

0.65 
   

V7 
  

0.77 
   

V8 
  

0.82 
   

V9 
 

0.82 
    

V10 
 

0.80 
    

V11 0.53 
     

V13 
   

0.82 
  

V14 
   

0.84 
  

V15 0.75 
     

V16 
 

0.60 
    

V17 0.79 
     

V19R 
    

0.82 
 

V20 
    

0.76 
 

 
6.5.2. Tertiary Student EFA Factor (Latent Variable) Naming 

The six factors (latent variables) yielded by the tertiary student EFA are shown in Table 6.18 

along with their associated observed variables and loadings. (Note: V2, V4, V19 and V20R 

were reversed so that the factor was positively named.) 
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Table 6.18 Tertiary Student EFA Mplus Factor Loadings 

Factor 
Code 

Factor Name 
Observed 
Variables 

Survey Question Loadings 

PR Perceived Readiness (PR) 

V1 
12th grade math was very good 
preparation for college 
mathematics 

0.58 

V11 
My progress so far is better than 
I expected 

0.51 

V15 
I am going to do very well in the 
terminal exams 

0.72 

V17 
I was ready for mathematics this 
year 

0.77 

L13T 
Tertiary Student Like of Year 13 
Textbook (L13T) 

V9 
The textbook/written material 
examples help me understand the 
topic 

0.64 

V10 
The chapters in the 
textbook/written materials follow 
each other pretty well 

0.58 

V16 
There is enough detail in the 
textbook/written materials to 
master the topics 

0.79 

L12T 
Tertiary Student Like Y12 Textbook 
(L12T) 

V5 
There were enough exercises in 
the Y12 textbook for me to be 
well practiced 

0.72 

V7 
My 12th grade math teacher used 
the textbook & referred to it in 
class 

0.36 

V8 
My 12th grade math book 
examples helped me understand 
the topic 

0.54 

U13T 
Tertiary Student Y13 Textbook Use 
(U13T) 

V13 
I often bring the mathematics 
textbook home or to my study 
location 

0.99 

V14 
The teacher uses the textbook 
and refers to it in class 

0.47 

M13M 
Tertiary Student Mathematical 
Maturity (M13M) 

V19R 
Without the teacher, the textbook 
would (NOT) be useless 

0.34 

V20 
With textbook only (no lectures) 
I could understand the topics 
clearly 

0.99 

C12T 
Tertiary Student Confidence in the 
Year-12 Textbook (C12T) 

V2R 
12-grade mathematics textbook 
(DID NOT) need more depth 

0.99 

V4R 
There was (NOT) too much 
homework in my 12th-grade 
mathematics class 

0.14 
 

 

6.5.3. Development of the Initial Tertiary Student Measurement Model 

When the SPSS v20.0 EFA was imported into Mplus v7.1, the initial fit indices were as shown 

in Table 6.19. 
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Table 6.19 Tertiary Student Initial Fit Indices 

RMSEA 
 

Estimate 0.07   
90% C.I. 0.06 0.07 
Prob. RMSEA <= 
.05 

0   

CFI/TLI 
 

CFI 0.90   
TLI 0.86   

SRMR Value 0.06   

Initial Fit indices indicate a fair to good model to data fit since a good model fit is when the 

Root Mean Squared Error of Approximation (RMSEA) is less than 0.08, when the 

Comparative Fit Index (CFI) and Tucker Lewis Index (TLI) are greater than .90, and when 

Standardized Root Mean Square Residual (SRMSR) is less than 0.08 (Browne & Cudeck, 

1992; Hu & Bentler, 1999; Kline, 2015). As seen in Tables 6.22 and 6.28, subsequent 

improvements made iteratively brought RMSEA, CFI, TLI, and SRMR values to the point 

where the model and the data show an adequate fit (Tóth-Király et al., 2019) with RMSEA ≤ 

0.6, SRMR ≤ 0.05, CFI ≥ 0.90, and TLI ≥ 0.90. 

The standardized model results from the initial tertiary student EFA model imported to Mplus 

are shown in Table 6.20 while the initial measurement model diagram is shown in Figure 6.5. 

Table 6.20 Tertiary Student Initial Measurement Model Factor Loadings 

 
Latent 

Variable 
Observed 
Variables 

Factor 
Loadings 

S.E. 
2-Tailed 
P-Value 

PR by 

V1 0.55 0.02 0.00 
V11 0.58 0.02 0.00 
V15 0.72 0.02 0.00 
V17 0.74 0.02 0.00 

L13T by 
V9 0.79 0.02 0.00 

V10 0.74 0.02 0.00 

V16 0.66 0.02 0.00 

L12T by 
V5 0.57 0.03 0.00 

V7 0.61 0.27 0.00 

V8 0.79 0.26 0.00 
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Table 6.20 (continued) 
 

Latent 
Variable 

Observed 
Variables 

Factor 
Loadings 

S.E. 
2-Tailed 
P-Value 

U13T by 
V13 1.00 0.00 0.00 

V14 0.46 0.02 0.00 

M13M by 
V20 1.00 0.00 0.00 

V19R 0.34 0.02 0.00 

C12T by 
V2R 1.00 0.00 0.00 

V4R 0.14 0.02 0.00 

 

 
Figure 6.5 Tertiary Student Initial Measurement Model Factor Loadings Diagram 

Multiple iterations of this model were experimented with in order build a confirmatory 

measurement model suitable for SEM analytics. For the initial measurement model, most 

factor loadings are ≥ 0.45 and average factor loadings onto a latent variable, as noted above in 

6.3.2., may be considered significant. When coupled with the P values <0.05, the initial 

measurement model results demonstrate that the tertiary students’ answers to questions V1, 

V11, V15 and V17 show a solid perception of readiness for the year-13 university calculus 

course while responses to V2R and V4R supported the tertiary student confidence in the year-
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12 textbook for course preparation such that the completion, use and liking of the year-12 

mathematics textbook was sufficient for the tertiary student to be confident of mathematical 

skill and mathematical maturity commensurate with year-13 calculus requirements. Noted was 

the use and liking for the year-13 textbook (although some of the university professors used 

only handouts or a combination of handouts and textbook) was partially predicted by the year-

12 textbook use and liking. Based on the informal interviews and focus group comments, the 

university professors saw need for instructional resources other than the unchanging, standard 

year-13 calculus textbook but, since the year-13 textbook was identified in the curriculum, the 

students answered survey questions on the textbook/handouts content that may be the reason 

students used and liked the year-13 text/handouts as they were more closely aligned to the 

student readiness. The data supports this initial model with a good fit. 

6.5.4. Analysis for Tertiary Student Measurement Model 

Analysis of correlation coefficients and latent variable interactions did not reveal any need for 

modifying the SPSS-computed EFA factor loadings. 

6.5.5. Tertiary Student Measurement Model Construct(s) Validity 

The next step in SEM preparation for the tertiary student data was to examine constructs 

validity. Reliability needed to be investigated with regard to the constructs in the initial 

measurement model and this was accomplished by calculating the average variance extracted 

to determine Convergent Validity (CV) and then taking the square root of these averages to 

determine Discriminant Validity (DV). respectively. 

Applying the Campbell algorithm and analytics to all the variables in the initial measurement 

model revealed that CV was fair to poor. Table 6.21 records the CV and DV. 
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Table 6.21 Tertiary Student Convergent and Discriminant Validity 

Indicator 
Variables 

Latent 
Variables 

Standardized 
Factor 

Loadings 
(Correlations) 

Square of 
Standardized 

Loadings 

Sum of 
Squared 

Standardized 
Loadings 

Number 
of 

Indicators 

Average 
variance 

Extracted = 
Convergent 

Validity 
(CV) 

Square Root 
Average= 

Discriminant 
Validity 

(DV) 

Largest 
Correlation 

Between 
Latent 

Variables 
(BC) 

DV-
BC 
(>0) 

V1 

PR 

0.55 0.30 
      

V11 0.58 0.34 
      

V15 0.72 0.52 
      

V17 0.74 0.55 1.70 4 0.43 0.65 0.51 0.14 

V9 

L13T 

0.79 0.62 
      

V10 0.74 0.55 
      

V16 0.66 0.44 1.61 3 0.54 0.73 0.51 0.22 

V5 

L12T 

0.57 0.32 
      

V7 0.61 0.37 
      

V8 0.79 0.62 1.32 3 0.44 0.66 0.50 0.16 

V13 
U13T 

1.00 1.00 
      

V14 0.46 0.21 1.21 2 0.61 0.78 0.38 0.40 

V20 
M13M 

1.00 1.00 
      

V19R 0.34 0.12 1.12 2 0.56 0.75 0.26 0.49 

V2R 
C12T 

1.00 1.00 
      

V4R 0.14 0.02 1.02 2 0.51 0.71 -0.09 0.80 

The preference for CV will ideally be 0.5 or greater and the preference for DV is that each 

measure is greater than the largest correlation between the latent variables (Fornell & Larcker, 

1981). CV is only low in PR and L12T and the DV is well within acceptable range. Thus, the 

initial measurement model does have fair CV. 

6.5.6. Tertiary Student Data Model Fit Indices 

When the RMSEA, CFI, TLI, and SRMR were analyzed for the tertiary student measurement 

model by co-varying the necessary modification indices, it was determined that the model had 

a good fit on RMSEA and SRMR and a fair fit on CFI and TLI. Table 6.22 displays results of 

the analysis. 
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Table 6.22 Initial Tertiary Student CFA Model Fit 

RMSEA 
 

Estimate 0.06   
90% C.I. 0.06 0.07 
Prob. RMSEA <= 
.05 

0   

CFI/TLI 
 

CFI 0.92   
TLI 0.88   

SRMR Value 0.05   

 
6.6. Tertiary Student Structured Equation Model 

Table 6.23 depicts the initial SEM configuration from the measurement model output. It 

contains the syntax used to regress the variables as per the measurement model in Mplus and 

Figure 6.6. 

Table 6.23 Tertiary Student Initial Mplus Regressed On Syntax 

Regressed 
On 

Regressed 

PR L12T 

C12T L12T, PR 

M13M L12T, PR, C12T 

L13T L12T, PR, C12T, M13M 

U13T L12T, PR, C12T, M13M, L13T 

 
Figure 6.6 depicts the structural model with path coefficients derived from the Tertiary 

Student Initial SEM data shown in Table 6.24. 

 
Figure 6.6 Tertiary Student Initial Latent Variable Path Diagram 
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Table 6.24 Tertiary Student Initial Structural Model Results 

Regressed 
On 

Regressed 
Path 

Coefficients 
S.E. 

2-Tailed 
P-Value 

PR L12T 0.50 0.03 0.00 

C12T 
L12T 0.30 0.03 0.00 

PR 0.10 0.03 0.00 

M13M 

L12T -0.01 0.03 0.72 

PR 0.28 0.03 0.00 

C12T 0.00 0.02 0.97 

L13T 

L12T 0.07 0.04 0.06 

PR 0.51 0.03 0.00 

C12T -0.08 0.03 0.00 

M13M 0.26 0.02 0.00 

U13T 

L12T 0.12 0.03 0.00 

PR -0.23 0.04 0.00 

C12T -0.09 0.02 0.00 

M13M -0.02 0.02 0.36 

L13T 0.38 0.04 0.00 

Figure 6.7 displays the Modification Indices-altered tertiary student SEM diagram. 
 

 
Figure 6.7 Tertiary Student Modified SEM Showing STDYX Standardized Results 
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Tables 6.25, 6.26, and 6.27 are the indices of the diagram in Figure 6.7. Any p-value over 0.05 

indicates a non-significant loading. These were targets of removal for the final model. The 

highlighted (*) P-Values in the table indicate a non-significant correlation. 

Table 6.25 Tertiary Student Measurement Model Factor Loadings 

Latent 
Variable 

Observed 
Variable 

Influenced By 

Factor 
Loadings 

S.E. Sig. 

PR 

V1 0.56 0.02 0.00 
V11 0.50 0.02 0.00 
V15 0.69 0.02 0.00 
V17 0.80 0.02 0.00 

L13T 

V9 0.65 0.02 0.00 
V10 0.59 0.02 0.00 
V16 0.77 0.02 0.00 

L12T 

V5 0.78 0.03 0.00 
V7 0.38 0.03 0.00 
V8 0.54 0.03 0.00 

U13T 
V13 0.99 0.00 0.00 
V14 0.46 0.02 0.00 

M13M 
V20 0.99 0.00 0.00 

V19R 0.34 0.02 0.00 

C12T 
V2R 0.99 0.00 0.00 

V4R 0.14 0.02 0.00 

 
Table 6.26 Tertiary Student Modified Structural Model Results 

Latent 
Variable 

Latent Variable 
Regressed On 

Path 
Coefficients 

S.E. Sig. 

PR L12T 0.46 0.03 0.00 

C12T 
PR 0.14 0.03 0.00 

L12T 0.25 0.03 0.00 

M13M 
L12T -0.01 0.02 0.70* 
PR 0.27 0.03 0.00 

C12T 0.00 0.02 0.98* 

L13T 

L12T 0.08 0.03 0.01 
PR 0.47 0.03 0.00 

C12T -0.06 0.03 0.01 
M13M 0.27 0.02 0.00 

U13T 

L12T 0.09 0.03 0.00 
PR -0.19 0.04 0.00 

C12T -0.09 0.02 0.00 
M13M -0.02 0.02 0.49* 
L13T 0.36 0.04 0.00 
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Table 6.27 Tertiary Student Correlated Error Terms 

Observed 
Variable 

Observed 
Variable 

Co-Varied 
With 

Estimate S.E. Sig. 

V5 
V4R -0.19 0.03 0.00 
V1 0.55 0.04 0.00 

V7 V1 0.22 0.02 0.00 

V8 
V1 0.35 0.03 0.00 
V7 0.40 0.02 0.00 

V9 
V8 

V10 
0.13 0.02 0.00 

0.38 0.03 0.00 

V15 
V1 -0.04 0.03 0.10 

V11 0.23 0.03 0.00 
V16 V15 0.23 0.03 0.00 

The initial and modified latent variable correlated error terms indicated a strategy for 

removing non-significant regressions. This was done in an iterative process to retain paths of 

statistical significance. The final SEM fit results are show in Table 6.28. 

Table 6.28 Tertiary Student Final SEM Fit 

RMSEA 

Estimate 0.06   
90% C.I. 0.06 0.06 
Prob. RMSEA <= 
.05 

0   

CFI/TLI 
CFI 0.92   
TLI 0.89   

SRMR Value 0.05   

 
Figure 6.8 is the final Mplus diagrammatical illustration of the independent and dependent 

relationship between the latent variables. 
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Figure 6.8 Tertiary Student Final SEM Diagram 

 
Tables 6.29, 6.30, and 6.31 are the indices of the diagram in Figure 6.8. Table 6.29 shows the 

loading of each of the observed variables onto the latent constructs. Perceived Readiness (PR) 

is strongly supported by the variables as are Tertiary Student Like of Year 13 Textbook 

(L13T) and Tertiary Student Like Y12 Textbook (L12T). Tertiary Student Y13 Textbook Use 

(U13T) and Tertiary Student Mathematical Maturity (M13M) were supported solidly and 

though Tertiary Student Confidence in the Year-12 Textbook (C12T) had weaker support in 

one of the observed variables, all factor loadings had significance < 0.05 and all but C12T 

with reversed V4R loading, had correlations > 0.30, giving the statistical assurance that the 

correlations are reliable and that the factor loadings are suitable for use (Cohen, 1992). 

 



148 
 

Table 6.29 Tertiary Student CFA Measurement Model Factor Loadings 

Latent 
Variable 

Observed Variable 
 

Factor 
Loadings 

S.E. Sig. 

PR 

V1 0.55 0.02 0.00 
V11 0.50 0.02 0.00 
V15 0.68 0.02 0.00 
V17 0.80 0.02 0.00 

L13T 

V9 0.65 0.02 0.00 
V10 0.59 0.02 0.00 
V16 0.77 0.02 0.00 

L12T 

V5 0.77 0.03 0.00 
V7 0.39 0.03 0.00 
V8 0.54 0.03 0.00 

U13T 
V13 0.99 0.00 0.00 
V14 0.46 0.02 0.00 

M13M 
V20 0.99 0.00 0.00 

V19R 0.34 0.02 0.00 

C12T 
V2R 0.99 0.00 0.00 

V4R 0.14 0.02 0.00 

 
Table 6.30 demonstrates that L12T is influencing the student’s PR and this was consistent 

with the literature that the year-13 university student was confident in their preparation based 

on the successful completion of the year-12 precalculus textbook. Similarly, student PR and 

L12T influenced C12T. PR influencing M13M may be understood as the tertiary student who 

was influenced to the perception of readiness was similarly influenced to believe that 

readiness was a measure of maturity in the level to which they had been taught and the rigor of 

the year-12 precalculus textbook (i.e., maturity in subject matter that was simple and likely 

inadequate). PR and L12T and M13M were influencing L13T, indicating a likelihood that the 

confidence gained as a result of the successful completion of the year-12 precalculus textbook 

coursework was influential for the student to be disposed to like their year-13 calculus 

textbook. Lastly, L12T and L13T are positively influencing U13T which seems intuitive 

whereas PR and C12T are negatively influencing U13T, indicating an increase in complexity 

in material presentation or that textbooks were being replaced by handouts as discussed earlier 
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which may further the lack of readiness of the student after all. All paths had significance 

<0.05 and almost all the path coefficients are either greater than 0.10 or less than -0.10, 

indicating that the paths are significant for asserting influential relationships between the 

latent (unobserved) variables. 

Table 6.30 Tertiary Student Final Structural Model Results 

Latent 
Variable 

Latent Variable 
Regressed On 

Path 
Coefficient 

S.E. Sig. 

PR L12T 0.46 0.03 0.00 

C12T 
PR 0.13 0.03 0.00 

L12T 0.25 0.03 0.00 
M13M PR 0.27 0.02 0.00 

L13T 

PR 0.47 0.03 0.00 

L12T 0.08 0.03 0.52 

C12T -0.06 0.03 0.02 

M13M 0.26 0.02 0.00 

U13T 

PR -0.19 0.04 0.00 

L12T 0.10 0.03 0.00 

C12T -0.09 0.02 0.00 

L13T 0.35 0.03 0.00 

 

Table 6.31 shows the correlated error terms, (or disturbances) remaining after the index 

modifications (Mplus modification of indices) were performed to optimize the model fit 

shown in Table 6.28. The correlations, if strong enough, may suggest information yet to be 

exploited in the model. 

Table 6.31 Tertiary Student Final SEM Results Correlated Error Terms 

Observed 
Variable 

Observed 
Variable 

Co-Varied With 
Estimate S.E. Sig. 

V5 
V4R -0.19 0.03 0.00 
V1 0.55 0.04 0.00 

V7 V1 0.22 0.02 0.00 

V8 
V1 0.35 0.03 0.00 
V7 0.40 0.02 0.00 
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Table 6.31 (continued) 

Observed 
Variable 

Observed 
Variable 

Co-Varied With 
Estimate S.E. Sig. 

V9 
V8 

V10 
0.13 0.02 0.00 

0.38 0.03 0.00 
V15 V11 0.24 0.03 0.00 
V16 V15 0.23 0.03 0.00 

 

As shown in Table 6.32, all latent variable R-Square values have p < 0.05 indicating statistical  

significance with regard to the observed variables seen in Table 6.29.  

Table 6.32 Tertiary Student SEM R-Square Results 

Latent Variable 
R-Squared Std. Err. Sig. 

 
S.E. p 

PR 0.243 0.028 0.000 

L13T 0.421 0.027 0.000 

U13T 0.110 0.017 0.000 

M13M 0.074 0.013 0.000 

C12T 0.127 0.017 0.000 

6.6.1. Tertiary Student SEM Summary 

Figure 6.9 shows the final path diagram for the tertiary student data.  

 
Figure 6.9 Final Tertiary Student Path Diagram with Path Coefficients 
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The tertiary student path diagram graphically displays how latent variables are related (i.e., 

how they influence, or are influenced by, each other). Moving from left to right, L12T 

influences both student PR and C12T. The path coefficient between L12T and PR is 0.46 and 

the path coefficient between L12T and C12T is 0.25 indicating that the tertiary students’ 

appreciation of the year-12 textbook was influential in the tertiary students’ perceived 

readiness for year-13 mathematics and the students’ confidence in the year-12 textbook as 

adequate preparation for year 13. Table 6.30 shows that those influences are statistically 

significant. 

C12T is also influenced by PR with a path coefficient of 0.13 which is also statistically 

significant. That is, student perceived readiness influences the student confidence in the value 

of the textbook. Yet, as chapter 7 indicates, the textbooks in use by the secondary students (as 

reflected by the tertiary student data) were textbooks with insufficient rigor standards. The 

lack of rigor made the textbooks easier to use which likely explains tertiary students’ 

confidence in their year-12 textbooks and perceived readiness for year-13 mathematics. 

In Sections 6.8 and 6.9 below, the secondary and tertiary teacher data affirm the consensus of 

perceived readiness in the secondary setting but not in the tertiary setting. Both year-12 

students and secondary teachers believe students are ready for year-13 calculus, but tertiary 

professors report a lack of readiness in the incoming year-13 students even though year-13 

students believe they are ready for year-13 mathematics. 

The model goes on to show a path coefficient between L12T and L13T of 0.08 and a non-

significant p value of 0.052, probably affirming that the year-13 student memory of liking 

their year-12 textbook is not likely to influence their liking of their year-13 textbook (or 

handouts), but their perceived readiness for year-13 calculus is significantly influencing their 
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liking of the year-13 textbook (or handouts) with a p < 0.05. It is interesting to note that the 

tertiary students’ confidence in the year-12 textbook (C12T) has a negative influence on the 

tertiary students’ liking of the year-13 textbook with a path coefficient value of -0.06. In other 

words, the confidence that the year-13 student had in the year-12 textbook failed to positively 

influence the liking of the year-13 textbook. This also may indicate that the tertiary students’ 

experience with the year-12 textbook inadequately prepared them for using and liking the 

year-13 calculus textbook. As the general rigor of the year-13 calculus textbooks has remained 

somewhat static (see chapter 7), the general dislike of the year-13 textbooks by tertiary 

students may very well be associated with the ease of use and trivial (non-rigorous) approach 

to mastery learning and concept acquisition in many modern year-12 precalculus textbooks. 

The diagram also indicates a path coefficient between tertiary student mathematical maturity 

(M13M) and their liking of their year-13 textbook (L13T) of 0.26. This positive correlation 

likely reflects the fact that a mathematically mature student would appreciate a rigorous 

textbook while a less mathematically mature student would not appreciate a rigorous textbook. 

There is also a path coefficient between PR and M13M of 0.27 because students who perceive 

themselves to be ready for higher level mathematics will demonstrate mathematical maturity 

by confidence in their textbooks and their ability to learn independently of their teacher. Note, 

however, that a mistaken perceived readiness will result in a lack of mathematical maturity. 

The diagram further shows that the tertiary students’ use of the year-13 textbook (U13T) is 

positively influenced by L12T (0.10) and L13T (0.35), but negatively influenced by C12T   (-

0.09) and PR (-.19). The positive correlation is logical since students who like their textbooks 

are likely to use them. The negative correlation can be explained by the fact that the year-12 

textbook confidence and their perceived readiness for year-13 mathematics did not in fact 
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prepare the students to use the more rigorous year-13 calculus textbooks. This was affirmed by 

the fact that many calculus professors did not use a textbook in the first-semester university 

calculus but rather their own notes and handouts to present mathematical material. As shown 

in Chapter 7, rigor was not absent from calculus textbooks; thus, the professors’ decision to 

use notes and handouts was not due to any insufficiency of the year-13 calculus textbook. 

6.7. Summary of Results for Secondary and Tertiary Students 

Year-12 students believe they are prepared for year-13 calculus and the year-12 teachers 

believe the same. This is logically connected since the teacher and the student use, like, and 

trust the year-12 precalculus textbook. Moreover, the year-13 students, confident of skill and 

maturity for their year-13 calculus course, not surprisingly at the early part of the term recalled 

liking and using the year-12 textbook (the previous year for most) and were confident in their 

use and like of the year-13 textbook/handouts. Yet, the overwhelming consensus of the 

university professors was that their students lacked both skill and mathematical maturity. The 

next section examines and formally integrates descriptive statistics into the conclusions of this 

chapter. 

6.8. Linking the Descriptive Results to SEM Results 

Secondary student CFA and SEM provide a basis for the assertion that the content of the year-

12 precalculus textbook, coupled with use, trust, parental influence and students’ perception of 

readiness are contributors to a general mathematical maturity and that this maturity will 

increase (improve) according to the listed influences. That is, the more rigorous the year-12 

textbook, the greater will be the mathematical maturity in preparation for year-13 

mathematics; additionally, the maturity of the incoming year-13 mathematics students will 

present itself by the student embracing the year-13 textbook and using it in a mature way. It is 
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recognized, however, that there are some limitations to conclusions that can be drawn from 

data modeling because of certain limitations in survey design and limitations on data 

collection. In the case of this study, privacy issues prevented linking specific year-12 students 

with specific outcomes in year-13 mathematics courses. Additionally, because data was 

collected in early- to mid-semester, end-of-year results were not available to include in 

models. This section employs descriptive statistics relating to tertiary student assessment of 

their year-13 textbook and of secondary teacher and tertiary professor responses to survey 

questions relating to textbooks, student confidence, and student readiness. 

The descriptive statistics below indicate that the year-13 mathematical textbook is neither 

highly used nor preferred by students or teachers. This confirms the argument that there is a 

deficiency in year-12 mathematical textbooks since, had year-12 mathematical textbooks been 

of equivalent maturity and rigor as the year-13 mathematical textbooks, a smooth transition 

from year-12 mathematical textbook use to year-13 mathematical textbook use likely would 

have occurred. 

6.8.1. Descriptive Statistics Related to Tertiary Student Opinion of Y13 Textbook 

This section draws conclusions using descriptive statistics applied to V18, V19R and V20 of 

the tertiary student survey: 

V18. Extra handouts are sometimes better than the textbook/written materials. * 

V19R. Without the teacher, the textbook/written materials would (NOT) be useless. 

V20. With textbook/written materials only (no lectures) I could understand the topics clearly. 

*Dropped from the EFA since factor loadings were inadequate for modelling use but included 
for analyzing descriptive statistics. 
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These questions queried student comfort with their year-13 textbook. Figure 6.10 is an 

abbreviated scatter plot of survey responses to these questions. Table 6.33 shows the statistics 

for these responses. 

 
Figure 6.10 Abbreviated Scatter Plot of Tertiary Student Responses to V18, V19R and V20 

 
Table 6.33 Statistics Relating to Tertiary Student Responses to V18, V19R and V20 

 
N Mode Mean 

Std. 
Deviation 

V18 2132 2 2.54 1.151 

V19R 2132 2 2.73 1.392 

V20 2132 4 4.00 1.337 
Valid N 

(listwise) 
2132 

   

Tables 6.34, 6.35, and 6.36 indicate that year-13 textbooks were not well liked over the 

teacher explanations and the teacher handouts. Table 6.34 addresses how students responded 

to V18. Clearly, the preponderance of responses falls into the agreement side of neutral on the 

question of whether extra handouts are sometimes better than the textbook/written materials. 

Table 6.34 Tertiary Student Responses to V18 

 
Frequency Percent 

Valid 
Percent 

Cumulative 
Percent 

Valid 

1 419 19.7 19.7 19.7 

2 702 32.9 32.9 52.6 

3 586 27.5 27.5 80.1 

4 312 14.6 14.6 94.7 

5 87 4.1 4.1 98.8 

6 26 1.2 1.2 100.0 

Total 2132 100.0 100.0 
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Table 6.35 addresses how students responded to V19R. In this case, the preponderance of 

responses falls into the disagreement side of neutral on the question of the effectiveness of 

textbooks/written materials without the teacher. That is, most students believed that the 

textbook/written materials alone are inadequate. (“Written materials” was included in the 

survey because a number of professors indicated that they had abandoned use of textbooks.) 

Table 6.35 Tertiary Student Responses to V19R 

 
Frequency Percent 

Valid 
Percent 

Cumulative 
Percent 

Valid 

1 80 3.8 3.8 3.8 

2 190 8.9 8.9 12.7 

3 323 15.2 15.2 27.8 

4 495 23.2 23.2 51.0 

5 564 26.5 26.5 77.5 

6 480 22.5 22.5 100.0 

Total 2132 100.0 100.0 
 

Table 6.36 addresses how students responded to V20, which is simply a summated scale check 

of responses to V19R. The preponderance of responses falls into the disagree side of neutral 

on the question of whether the teacher was unnecessary. 

Table 6.36 Tertiary Student Responses to V20 

 
Frequency Percent 

Valid 
Percent 

Cumulative 
Percent 

Valid 

1 88 4.1 4.1 4.1 
2 224 10.5 10.5 14.6 
3 421 19.7 19.7 34.4 
4 561 26.3 26.3 60.7 
5 553 25.9 25.9 86.6 
6 285 13.4 13.4 100.0 

Total 2132 100.0 100.0 
 

6.8.2. Secondary and Tertiary Teacher/Professor Descriptive Statistics 

Although the study cannot supply a statistical connection from the tertiary student SEM to the 

secondary student SEM, connections may be extracted descriptively from scholarly literature 
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and anecdotally from the survey data collected. In this section, descriptive statistics are 

employed to analyze secondary and tertiary teacher survey responses in order to demonstrate a 

causal flow as depicted in Figure 6.11. 

 
Figure 6.11 Causal Flow Chart 

 
6.8.2.1. Secondary Teacher Survey Response Analysis 

Based on secondary teachers’ average age (41.17) when they responded to the survey and their 

assumed age at secondary school graduation (18-19 years), it was determined that most would 

have used mathematics textbooks published between 1991 and 1994 when they were in 

school. Their experience with these textbooks would have influenced their responses to survey 

questions relating to their and their students’ perception of year-12 textbooks. 

Table 6.37 shows how secondary teachers responded to questions related to year-12 textbooks 

and student confidence, maturity, and perception of those textbooks. The table key is: 

 1 <= Agree (A)<=3.25 
 3.25 < Neutral (N) < 3.75 
 <= 3.75 Disagree (D) <= 6 

Table 6.37 Secondary Teacher Survey Instrument Responses 

Question 
Number 

Question 
Mean 

Answer 
Response 

 
Agreement 

(A/N/D) 

1 Students Believe the textbook is valuable 2.44 A 

2 A good textbook is valuable to the teacher 1.59 A 

3 Students are self-driven, disciplined and make mature use of the textbook 2.76 A 

4 Students generally lack confidence 3.28 N 

5 Students generally complete assignments 2.32 A 

6 Students ask for help often 2.75 A 
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Table 6.37 (continued) 
 

Question 
Number 

Question 
Mean 

Answer 
Response 

 
Agreement 

(A/N/D) 

7 Very little textbook material is remedial in content 2.24 A 

8 Students are more mature this year than last year 3.10 A 

9 Students are more academically ready for math this year than last year 3.00 A 

10 Section and chapter exercises reinforce the current topic 2.02 A 

11 I am very satisfied with the current textbook 2.76 A 

12 Textbook is taken home and used by the student on a regular basis 1.95 A 

13 Students that are academically mature use the textbook as a focus for study 1.90 A 

14 Sample questions in the textbook are very helpful in explaining the concept 2.37 A 

15 Textbook has concept explanations that are very good 2.63 A 

16 The year 11 math textbook flows coherently into the year 12 math textbook 2.76 A 

17 Textbook is thorough and mastery oriented 2.93 A 

18 Section and chapter exercises range from simple to difficult 2.63 A 

19 I have used a better textbook than the current textbook 4.00 D 

20 Section and chapter exercises utilize previously learned topics 2.63 A 

21 Textbook is used as a focus in the classroom for topic presentation 2.90 A 

 
Secondary teacher appraisal of student confidence, mathematical readiness, textbook value 

and textbook use indicate an overall understanding by the teachers that what they are teaching 

the student from the textbook is fundamentally sound, concept-building, and sufficient 

preparation for the next mathematical course(s). Moreover, for the average time of teaching 

(18.2 years), the teachers agree that the current textbook (published between 1998 and 2016) 

is the best they have used, indicating that prior years of textbooks had been less satisfactory. It 

is quite likely that prior year textbooks, being more rigorous, were considered more difficult to 

use by teachers and students. 

6.8.2.2. Tertiary Teacher Survey Response Analysis 

Based on tertiary teachers’ average age (45.29) when they responded to the survey and their 

assumed age at secondary school graduation (18-19 years), it was determined that most would 

have used mathematics textbooks published between 1984 and 1989 when they were in 
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school. Their experience with these textbooks would have influenced their responses to survey 

questions relating to their and their students’ perception of year-13 textbooks. 

Table 6.38 shows how tertiary teachers responded to questions related to year-13 textbooks 

and student confidence, maturity, and perception of those textbooks. The table key is: 

 1 <= Agree (A)<=3.25 
 3.25 < Neutral (N) < 3.75 
 <= 3.75 Disagree (D) <= 6 

Table 6.38 Tertiary Teacher Survey Instrument Responses 

Question 
Number 

Question 
Mean 

Answer 
Response 

Agreement 
(A/N/D) 

1 Students believe the textbook/written material is valuable to them 3.59 N 

2 The textbook is valuable to the teacher 2.00 A 

3 Students are self-driven disciplined and make mature use of textbook 4.51 D 

4 Students generally lack confidence in mathematics 3.00 A 

5 Students generally complete their assignments 3.24 A 

6 Students ask for help with homework often 3.59 N 

7 Very little textbook/written material is remedial in content 2.47 A 

8 Students are more mature this year than last year 3.44 N 

9 Students are more academically ready for math this year than last year  3.65 N 

10 Students are less prepared for mathematics this year than ever before 3.50 N 

 

6.8.2.3. Analysis of Secondary and Tertiary Teacher Responses 

The common questions and answers were matched up to determine if the experiences and 

opinions of the secondary and tertiary teachers differed. In table 6.39 the trend in the answers 

to the common questions between the tertiary and secondary teacher responses are shown in 

the trend column as to whether the experiences of the teachers are static or degrading. (-1 = 

degraded, 0 = unchanged, 1 = improved). 
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Table 6.39 Comparison of Secondary and Tertiary Teacher Survey Responses to Common 
Questions 

Common Questions 
Secondary 
Response 

Tertiary 
Response 

Trend 

Students believe the textbook is valuable A N -1 

A good textbook is valuable to the teacher A A 0 

Students are self-driven, disciplined and make mature use of the 
textbook 

A D -1 

Students generally lack confidence  N A 1 

Students generally complete assignments  A A 0 

Students ask for help often  A N -1 

Very little textbook material is remedial in content  A A 0 

Students are more mature this year than last year  A N -1 

Students are more academically ready for math this year than last year  A N -1 

 
In general, secondary teacher survey answers indicate that textbook confidence, student 

maturity, confidence, willingness to ask for help, academic readiness and study-related self-

discipline are acceptable in year 12 students, while tertiary teachers noted decline or 

degradation in these categories in year-13 students. 

The following conclusions were drawn from the secondary and tertiary teacher responses: 

First, teacher evaluation of student textbook value (like, trust, confidence) degrades from the 

secondary to the tertiary level which may indicate that students are either unwilling or unable 

to use the tertiary textbook. (Refer back to Tables 6.34 through 6.37 which indicate student 

inability to use the textbook to understand the topic.) Second, if the difference in rigor 

between year-12 and year-13 textbooks is great, this may explain student inability to use the 

year-13 textbook by virtue of being trained to use less rigorous textbooks in year 12 and prior. 

Third, the differing opinion of secondary and tertiary teachers with regard to student maturity 

and mature use of the textbook indicate a student inability or reluctance to use the more 

rigorous year-13 textbook. (Chapter 7 describes the static nature of year-13 calculus textbooks 

over time and chapter 8 demonstrates the systematic degradation of secondary precalculus 
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textbook rigor.). Fourth, teacher evaluation of mathematical confidence shows the secondary 

teacher reporting that students were mathematically confident whereas year-13 teachers did 

not report mathematical confidence. Finally, teacher evaluation of students’ mathematical 

maturity and readiness indicate the secondary teacher believes strongly that students are ready 

and equipped for year-13 mathematics, whereas the tertiary teacher is neutral to negative in 

this matter. 

6.8.3. Confirmation of Tertiary Teacher Observations Regarding Student Readiness 

Statistical data regarding placement of tertiary student survey respondents in first-year 

mathematics courses supports tertiary teacher observations regarding mathematical maturity 

and readiness of these students. The tertiary survey instrument included data indicating if 

students were in their first university semester, whether they had been placed into a 

mathematics class and, if so, into which class they had been placed. In the tertiary survey 

given in the United States and Australia, 88.5% (n=1,906) of the 2,154 year-13 students who 

provided their year of graduation had graduated from high school between 2012 and 2016. See 

Table 4.3. During those years, 72.0% (n=1,581) of the students had completed high school the 

previous year and were enrolled in their first semester at university. Regarding placement 

tests, 44.7% (n=982) of tertiary survey respondents indicated that they were placed into their 

year-13 mathematics course via placement test and, of those, 34.4% (n=358) were placed into 

Calculus, 11.8% (n=115) into Algebra, and 51.8% (n=509) into Trigonometry (Table 4.4). 

The descriptive statistics above, coupled with scholarly studies reporting a high failure and 

drop-out rate for year-13 calculus students (See chapter 2), reinforce the argument of this 

study that year-12 students are ill-prepared for their year-13 calculus course. 
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6.9. Professor and Teacher Discussion Groups 

As mentioned in Section 3.6, informal discussion groups were conducted with secondary 

teachers and university professors. While the primary purpose of the groups was to develop 

and refine survey questions, the discussions about teacher and professor classroom 

experiences provided affirmation of the findings articulated above that there is disagreement 

between secondary teachers and university professors on the readiness of students for their 

year-13 calculus course. Additionally, the discussion groups reinforced the finding that 

textbooks are considered central to the learning of mathematics by secondary teachers so 

much so that they considered completion of textbook-prescribed coursework an indication that 

students were prepared for year-13 calculus. Lastly, those informal discussions also revealed 

that many university professors had created remedial material (in place of the textbook) for 

their year-13 calculus students, affirming the survey findings that students were either not 

ready for their year-13 calculus course or unable to use the year-13 textbook due to its higher 

rigor level and demanding pace, or both. 

6.10. Conclusion 

Secondary teachers and students and tertiary students have generally concurred with one 

another as to the adequacy of preparation of students for year-13 mathematics based on the 

completion of the year-12 curriculum and textbook choice for that year. Tertiary teachers have 

not generally agreed with this conclusion. If year-12 precalculus textbooks used by survey 

respondents had been adequately rigorous to have covered the necessary year-13 calculus 

prerequisites, degradation in mathematical skill or degradation in mathematical maturity could 

logically be attributed to other factors such as the teacher, classroom size, and physical 

amenities. But, as chapters 7 and 8 will demonstrate, though the prerequisites for elementary 
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calculus in year-13 have not changed (as evidenced by the static nature of year-13 textbooks), 

year-12 precalculus textbooks have degraded over time to the extent that they can be identified 

as the primary cause of lack of general competence of secondary students for their year-13 

elementary calculus course. Year-12 textbooks no longer maintain the alignment of topics and 

presentation format necessary to ensure that tertiary calculus requirements are addressed in a 

systematic and effective way. 
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Chapter 7. Rigor Algorithm Development  

7.1. Introduction 

Considering the results expressed in the secondary and tertiary SEMs showing the centrality of 

the secondary mathematics textbooks as a key element in the mathematical maturity of year-

12 students and their mathematical readiness for year-13 calculus, the next consideration was 

to determine whether a method could be devised for secondary teachers and mathematics 

departments to use to assess the existence of misalignment between year-12 exit and year-13 

entrance standards in their secondary precalculus textbooks. This chapter describes the 

development of a unique tool, based on MRP principles of Bills of Material and Critical Path, 

for assessing the rigor of mathematical textbooks designed to prepare year-12 students for 

their year-13 calculus course. Identifying the university mathematics department as “the 

customer,” the MRP approach acquired, from multiple calculus textbooks published over 

multiple years, an assessment of “build requirements” that were fashioned into a list of 

minimum topics and rigor standards needed to complete the built product (mathematically 

mature year-12 students ready for their year-13 calculus course). This chapter details how the 

textbook rigor algorithm was developed and explains its component parts. 

7.2. Developing Mathematical Maturity in Students 

The typical mathematics student is both taught and exposed to practical mathematical skills. 

The order in which the student is introduced to mathematical concepts and computational 

techniques is a critical indicator of how quickly the student will be able to master relevant 

concepts and how prepared the student will be to apply that mathematical maturity to master 

more complex concepts and computational techniques (Raubenheimer et al., 2010). For 

example, suppose a student is told to fetch a certain number of certain objects from a certain 
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location. If understood, the student may comply with this request by advancing to the location 

of the objects, sorting for the specified objects, and then counting the objects to verify 

compliance. To successfully complete the task, the student must exercise elementary 

reasoning, to include object identification and arithmetic order. Suppose that the student is 

then asked to acquire a certain number of different types of objects from certain locations. The 

diligent student will ponder the request, develop a strategic plan, and implement the plan. That 

is, the student will take that which was experientially acquired in previous endeavors and 

apply relevant knowledge to the more complicated request. Nevertheless, at some point, the 

requests will become sufficiently complex that previous experience alone will not enable 

successful compliance; the student will then have to research alternatives or abandon the 

activity (Miller & Maellaro, 2016). 

The same iterative process holds true for mathematics students striving to prepare for the 

complexities of calculus. As students tackle mathematical exercises, they apply previous 

experience and mathematical maturity to successfully master more complex exercises until 

such time as the computational strategies they are employing become too unwieldy or simply 

inadequate for the level of complexity presented. While concept mastery promotes further 

sophistication of computational techniques, computational/procedural sophistication does not 

necessarily promote concept mastery (Siegler & Lortie-Forgues, 2015) and may even hinder it 

(Havard et al., 2018; Mao et al., 2017; OECD, 2015; Saxon, 1986; Siegler & Lortie-Forgues, 

2015). Thus, concepts, not computational techniques, should introduce topics because, in the 

absence of the proper order of presentation (i.e., teaching students to rely on computational 

techniques without grasping underlying concepts), computational techniques inhibit the 

necessary conceptual appropriation and, as a result, contribute to the interruption of the 
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cohesive continuum and dilution of rigor needed in mathematics education (Bergsten et al., 

2015; Clement et al., 1981; Klymchuk et al., 2010; Pollatsek et al., 1981; Siegler & 

Oppenzato, 2021). An optimally rigorous mathematical textbook is one that balances concept 

mastery and computational techniques, introducing them recursively and in the proper order. 

Pollatsek et al. (1981) wrote: “Learning a computational formula is a poor substitute for 

gaining an understanding of the basic underlying concept” (p. 191). As an example, they note 

that for many students, “dealing with the mean is a computational rather than a conceptual act. 

Knowledge of the mean seems to begin and end with an impoverished computational formula” 

(p. 191). They concluded: 

The source of the difficulty appears to be that students’ knowledge often 
seems limited to computational formulas, and many simple problems (such 
as weighted mean problems) require more general, relational, knowledge of 
concepts. One pedagogical point seems clear. In many introductory courses, 
students are taught to use formulas in a rote manner with the justification 
that thorough understanding of the material can wait until the second course 
(or later). While it is undeniably true that students can solve some problems 
with this approach, our data suggest that the range of problems that can be 
solved with only instrumental knowledge is vanishingly small (Pollatsek et 
al., p. 202). 

As detailed in Section 2.4.2, mathematical maturity is promoted when concepts are presented 

recursively in a logical sequence of interconnected and relevant concepts (Choppin, 2011; 

Fonger et al., 2018; Henningsen & Stein, 1997). It is imperative that a continuum be 

maintained as new concepts mature and the cement of the foundation of previously mastered 

concepts properly sets. In fact, the properly ordered presentation of precalculus material and 

the increasingly challenging exercises presented in a rigorous course are what are needed for 

maturing mathematics students and preparing them to be successful in tertiary elementary 

calculus (Lorch, 1977). 
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The remainder of this chapter will describe the rigor tool development for measuring the rigor 

of mathematical textbooks designed to prepare year-12 students for the year-13 calculus 

course. 

7.3. Method—Designing the Rigor Algorithm 

This section of the chapter describes the process through which a unique tool—the rigor 

algorithm—was designed to determine a rigor “score” for precalculus textbooks. 

7.3.1. Data Collection and Textbook Acquisition 

Surveys were designed and distributed to collect data about students’ experience with their 

textbook and about professors’ experience with the students using those textbooks. Two of the 

data elements collected were the name of the high school where the year-12 students took their 

calculus preparation class and the year that students graduated. Subsequently, high schools 

were contacted, and mathematics departments were queried as to the textbook in use in each 

graduation year that students identified on the survey instrument. A statistical sampling of 

precalculus textbooks from several eras (1965-1985, 1986-2003, and 2004-2012) was acquired 

in preparation for calculating a rigor score for each. 

7.3.2. Identifying Elementary Calculus Prerequisite Topics 

The first step in developing the rigor measurement tool was to identify the list of attributes to 

be measured. The MRP approach (a.k.a. backward scheduling) places the focus for defining 

requirements on the deliverable—the end product—in this case, the “calculus-ready” student. 

MRP defined the requirements needed to produce the desired deliverable and was the driver 

for the analysis of year-13 calculus textbooks to determine what common topics they included.  

The following eight college/university calculus textbooks published between 1965 and 2003 

were selected as a representative sampling of year-13 textbooks, then analyzed to identify the 
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similar and dissimilar, and expressed and implied, recommended requirements that formed the 

prerequisite minimum for successful course completion. Whether the textbooks were ranked 

as exemplar samples was not the focus of the selection, rather, the criterion was whether they 

were in common use across the years listed so that their contents could form the basis of the 

MRP-inspired “build requirements” used to develop the algorithm tool for assessing how well 

year-12 precalculus textbooks were preparing secondary students for their year-13 calculus 

courses. Though “goodness” was not the criteria for selection of exemplar books, their 

contents were in alignment with Michael Spivak’s Calculus (1994), heralded by one reviewer 

as “in the running for the best calculus book ever written (Terrell, 2003, p. 69). Spivak 

included eighty-nine pages of prerequisite topics in the “Prologue” and “Foundations” sections 

of his book that included number properties, analytic geometry, graphing, functions, 

inequalities, proofs, factoring and trigonometry—the same foundational material assumed by 

the exemplar books used to create the rigor algorithm. 

Books are listed in chronological order of publication. 

i. John F. Randolph, Calculus and Analytic Geometry, 2d ed., (Belmont, CA: 

Wadsworth Publ. Co., 1965), LOCCCN: 65-11579. 

ii. Richard E. Johnson and Fred L. Kiokemeister, Calculus with Analytic Geometry, 4th 

ed., (Boston: Allyn and Bacon, Inc., 1969), LOCCCN: 75-78925. 

iii. Louis Leithold, The Calculus with Analytic Geometry, 2d ed., (New York: Harper & 

Row, Publ., 1972), LOCCCN: 74-168364. 

iv. Lipman Bers and Frank Karal, Calculus, 2d ed., (New York: Holt, Rinehart and 

Winston, 1976), ISBN: 0-03-089268-6. 
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v. Howard Anton, Calculus with Analytic Geometry, 1st ed., (New York: John Wiley 

and Sons, 1980), ISBN: 0-471-03248-4. 

vi. C.H. Edwards, Jr. and David E. Penney, Calculus and Analytic Geometry, 3rd ed., 

(Englewood Cliffs, NJ: Prentice Hall, 1990), ISBN: 0-13-111253-8. 

vii. Roland E. Larson, Robert P. Hostetler, and Bruce Edwards, Calculus with Analytic 

Geometry, 4th ed., (Lexington: D.C. Heath & Co., 1990), ISBN: 0-669-16406-2. 

viii. James Stewart, Calculus, 5th ed., Belmont, CA: Brooks/Cole-Thomson Learning, 

2003), ISBN: 0-534-39339-X. 

Given that limits are universally understood to be the central topic that defines the calculus 

(Adams, 2013; Boyer, 1959; Strang et al., 2016), the analysis of the selected textbooks 

focused on topics (algebraic and trigonometric) that were introduced prior to limits (or in an 

appendix). These topics, by definition, comprise the prerequisites for the study of calculus and 

formed part of the framework used to devise the rigor algorithm described later in the chapter. 

Tables 7.1 and 7.2 contain the raw data from the textbook analysis showing which algebraic 

and trigonometric topics were covered in each of the eight calculus textbooks. The analysis 

identified 14 topics. 

7.3.2.1. Algebraic Topics Included in the Textbooks 

Table 7.1 uses a binary key (1=true, 0=false) to indicate whether a textbook covered a topic 

either before limits or in an appendix. The columns are as follows: 

Book Numbers i-viii, (as listed above)  

Topic 1 Real Number Systems, to include axioms, number line, operations, theorems 

Topic 2 Cartesian Systems, to include coordinate systems, linear and non-linear 
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graphs on the coordinate systems, linear and non-linear inequalities on 

coordinate systems 

Topic 3 Equations Methods, to include solving linear and non-linear equations of 

degree 2 and 3 graphically and algebraically 

Topic 4 Factoring (including polynomial long division) and Paper & Pencil (P&P) 

Graphing Solutions, to include zeros (real factors factor and 

imaginary/complex number factoring), polar representations of real and 

imaginary zeros (x=rcosθ, y=rsinθ and eix=cosx+isinx or cisx), and 

orientations and concavities (tangential slope changes over the domain) 

Topic 5 Function Analytics & Applications, to include domain, range, composition, 

inverse (exponential and logarithmic) 

Topic 6 Analytic Geometry, to include factoring and general equations for the conic 

circle, parabola, ellipse, hyperbola (asymptotes)  

Topic 7 Algebraic Proofs, to include proofs and derivations for elementary theorems 

(rational root, quadratic, Pythagorean, and binomial) 

Table 7.1 Algebraic Topics 

 
Book 

Number 

1. 
Real 

Number 
Systems 

2. 
Cartesian 
Systems 

 

3. 
Equations 
of Degree 

0-2 

4. 
Factoring 

& 
Graphing 

5. 
Function 

Analytics & 
Applications 

6. 
Analytic 

Geometry 
 

7. 
Algebraic 

Proofs 
 

i. 1 1 1 1 1 1 1 
ii. 1 1 1 1 1 1 1 
iii. 1 1 1 1 1 1 1 
iv. 1 1 1 1 1 1 1 
v. 1 1 1 1 1 1 1 
vi. 1 1 1 0 0 0 1 
vii. 1 1 1 0 0 0 0 
viii. 1 0 1 0 1 0 0 

Total 8 7 8 5 6 5 6 
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7.3.2.2. Trigonometric Topics Included in the Textbooks 

The eight textbooks vary in how they introduce prerequisite trigonometric topics. Some cover 

them in a ‘chapter 0’ review section, some include them in appendices, and others lace 

remedial trigonometry into various chapters on an as-needed basis before, during, and after 

introducing derivatives of the trigonometric functions. Table 7.2 uses a binary key (1=true, 

0=false) to indicate whether a textbook covered a topic either in a review section, a chapter, or 

an appendix. The columns are as follows: 

Book Numbers i-viii, (as listed above)  

Topic 8 Angles, Arcs & Unit Circle, to include definitions and theorems (degrees 

and radians), identification of rectangular quadrants (rotation), significance 

of the unit circle (trigonometric function evaluation and trigonometric 

function behavior) 

Topic 9 Trigonometric Functions, to include sine, cosine, tangent and their inverses, 

domain, range, and asymptotic behavior 

Topic 10 Exact Value Triangles, to include degree and radian measure for the sine, 

cosine, tangent and inverses of 30º, 60º, 90º triangles and 45º, 45º, 90º 

triangles 

Topic 11 Algebraic Factoring and Paper & Pencil (P&P) Graphing, to include 

orientations and characteristics of sine, cosine, and tangent and their 

inverses (on the Cartesians system and in the unit circle), amplitude, and 

frequency 

Topic 12 Identities, Equations and Laws, to include sine, cosine, tangent and inverses 

identities (simplify trigonometric equations and solve trigonometric 



172 
 

equations), and implement identities to simplify and solve trigonometric 

equations 

Topic 13 Paper & Pencil Graphing, to include representation of periodicity of sine, 

cosine, and tangent (calculation of asymptotes for tangents and calculation 

of sine-1, cosine-1, and tangent-1) and representation of periodicity of sine-1, 

cosine-1, and tangent-1 

Topic 14 Trigonometric Proofs, to include proofs of theorems and laws (Pythagorean 

theorem, Law of Sines, and Law of Cosines) 

Table 7.2 Trigonometric Topics 

 
Book 

Number 

8.  
Angles, 
Arcs & 

Unit Circle 

9. 
Functions 

& 
Application  

10. 
 Exact 
Value 

Triangle 

11. 
Factoring & 

Graphing 
(Algebraic) 

12. 
Identities & 
Equations 

13.  
Graphing 

(Trig.) 

14. 
Trig. 

Proofs  

i. 0 0 1 0 1 0 1 
ii. 0 1 0 0 0 0 0 
iii. 1 0 1 0 1 0 0 
iv. 0 1 1 0 0 0 1 
v. 1 1 1 1 1 1 1 
vi. 1 0 1 0 0 0 0 
vii. 0 1 1 1 0 1 0 
viii. 0 1 1 0 1 1 0 

Total 3 5 7 2 4 3 3 

 

7.3.3. Refining Prerequisite Topic List through Statistical Analysis 

The next step in determining which calculus prerequisite deliverables to include in the rigor 

algorithm was to statistically derive whether any of the topics not included in all eight books 

should be discarded. Sample average and sample standard deviation were collected in order to 

calculate a test statistic based on a population mean (μ=1) that reflects each topic being in each 

book. The Student t-test was implemented since n, the number of books used in the test, was 

less than 30 and because inclusion of topics 1 through 14 were distributed normally (Triola, 

2010). No test statistic was needed for topics 1 and 3 since they appeared in all eight 

textbooks. 
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7.3.3.1. Student t – test Analysis of Algebraic Topics 

The test statistic for the Student t-test is given by Triola (p. 356) as: 

(𝑡 =
௫̅ିఓ

ೞ

√

 ) where,  

𝑡 is the test statistic,  
�̅� is the sample mean,  
𝜇 is the claimed population mean,  
𝑠 is the sample standard deviation and 
𝑛 is the number of books 

The test involves two tails since H0 : μ = 1 and H1: μ ≠1, where the null hypothesis of H0: μ = 1 

is that each topic in each book (using 1=true and 0=false) as logged in table 7.3 below, the 

Degrees of Freedom is equal to 7 (t(𝑑𝑓) 𝑛 − 1 = 7), with Significance of α = 0.05 (two-

tailed) gives a Critical t = ± 2.365. 

Table 7.3 Algebraic Topic Analysis 

 
Book 

Number 

1. 
Real 

Number 
Systems 

2. 
Cartesian 
Systems 

 

3. 
Equations 
of Degree 

0-2 

4. 
Factoring 

& 
Graphing 

5. 
Function 

Analytics & 
Applications 

6. 
Analytic 

Geometry 
 

7. 
Algebraic 

Proofs 
 

i. 1 1 1 1 1 1 1 
ii. 1 1 1 1 1 1 1 
iii. 1 1 1 1 1 1 1 
iv. 1 1 1 1 1 1 1 
v. 1 1 1 1 1 1 1 
vi. 1 1 1 0 0 0 1 
vii. 1 1 1 0 0 0 0 
viii. 1 0 1 0 1 0 0 

Total 8 7 8 5 6 5 6 
-(�̅�) 1.000 0.875 1.000 0.625 0.750 0.625 0.750 

Sample σ 0.000 0.354 0.000 0.518 0.463 0.518 0.463 
n 8.000 8.000 8.000 8.000 8.000 8.000 8.000 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑡 n/a -1.000 n/a -2.049 -1.528 -2.049 -1.528 
𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡 n/a ±2.365 n/a ±2.365 ±2.365 ±2.365 ±2.365 

 

Table 7.3 shows that the Student t score is not within the Critical t region. This is also 

illustrated in Figure 7.1. 



174 
 

 
Figure 7.1 Algebraic Topic Analysis 

The sample means (-1.000, -2.049, -1.528) for the five algebraic topics analyzed are all larger 

than ±2.365, so the forecast population mean (μ = 1) is supported by the data. In other words, 

“fail to reject the null hypothesis” is concluded since the test statistics are not in the critical 

region. Thus, there is insufficient evidence to reject the claim that the five prerequisite topic 

selections be excluded simply because they do not appear in all eight textbooks. All seven 

topics listed in Table 7.1 were retained for the purposes of designing the rigor algorithm. 

7.3.3.2. Student t – test Analysis of Trigonometric Topics 

The same type of analysis was done for the seven trigonometric topics identified in the 

calculus textbooks—none of which appeared in all eight textbooks. As noted in Table 7.4 and 

Figure 7.2, all but one of the sample means for the seven trigonometric topics were larger than 

-2.365 so the null Hypothesis is not rejected for those six topics. Only algebraic factoring and 

graphing (Topic 11) fell into the critical region. Because this topic is already included in the 

algebraic prerequisites, it was omitted as a required trigonometric topic in the rigor algorithm. 
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Table 7.4 Trigonometric Topic Analysis 

 
Book 

Number 

8.  
Angles, 
Arcs & 

Unit 
Circle 

9. Functions 
& 

Application 

10. 
 Exact Value 

Triangle 

11. 
Factoring & 

Graphing 
(Algebraic) 

12. 
Identities & 
Equations 

13.  
Graphing 

(Trig.) 

14. 
Trig. 

Proofs 

i. 0 0 1 0 1 0 1 
ii. 1 1 0 0 0 1 0 
iii. 1 0 1 0 1 1 1 
iv. 0 1 1 0 0 0 1 
v. 1 1 1 1 1 1 1 
vi. 1 0 1 0 1 0 0 
vii. 0 1 1 1 1 1 0 
viii. 1 1 1 0 1 1 1 

Total 3 5 7 2 4 3 3 
Sample (�̅�) 0.375 0.625 0.875 0.250 0.500 0.375 0.375 
Sample σ 0.518 0.518 0.354 0.463 0.535 0.518 0.518 

n 8.000 8.000 8.000 8.000 8.000 8.000 8.000 
𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑡 -2.049 -2.049 -1.000 -4.583 -1.528 -2.049 -2.049 
𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡 ±2.365 ±2.365 ±2.365 ±2.365 ±2.365 ±2.365 ±2.365 

 

 
Figure 7.2 Trigonometric Topic Analysis 

7.3.4. Validation of Selected Prerequisites 

The conclusions of the statistical analysis are further validated by subjective observations 

regarding the inclusion of factoring and analytic geometry. For example, the statistical 

analysis indicates that both factoring (to include polynomial long division, completing the 

square, factor and remainder theorems, and deriving the quadratic formula) and analytic 

geometry (conic section identification and use) should be retained as prerequisites even 
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though some modern textbooks are omitting them. In fact, Judson and Nishimori (2005) note 

that mastery of the skill called “reduction of operational complexity” is key for the elementary 

calculus student’s success. They also note that conic section identification, simplification, and 

manual graphing require factoring maturity that is gained only through first principle 

applications such as the derivation of the quadratic formula and ‘completing the square.’ Thus, 

it is concluded that advanced factoring skill is a critical requirement because much of 

elementary calculus is laden with complex algebraic gymnastics. Accordingly, function 

simplification or the reducing of operational complexity, such as through factoring, must be 

stressed as a mastered prerequisite for the calculus. Additionally, since the trigonometric 

functions are circular functions, the basis of the trigonometric approach requires, at minimum, 

unit circle mastery as a central concept. Thus, unit circle emphasis in the precalculus will 

prove vital in the calculus. The rigor algorithm emphasizes mastery of trigonometric identities 

and trigonometric equations as well as paper and pencil graphing literacy. 

7.3.5. Other Considerations in the Rigor Algorithm 

A textbook that incorporates all prerequisite topics may still lack rigor if it includes material 

that is pedagogically unnecessary or if it presents topics in a less than optimal sequence. 

7.3.5.1. Technology—Pedagogically Necessary?  

There is considerable debate among educators about the integration of technology into 

mathematics textbooks and classrooms. In developing a rigor measuring tool, the issue of 

technology in the classroom (e.g., graphing calculators and computer exercises) should be 

weighted as either a positive factor, a negative factor, or a neutral factor. Some argue that 

technology contributes much to students’ understanding of the connection between algebraic 

and geometric systems and they support the increasing emphasis in textbooks on teaching 
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students to use graphing calculators and to complete computerized exercises (Koop, 2016; 

Thomson, 2008). Other educators counter that there are no mathematical concepts that require 

technology to either teach or assess. They contend that an abundance of technologically-

related exercises and applications actually interferes with the mathematical maturing of 

students because technology tends to force the introduction of applications prematurely 

(Foster & Ollerton, 2020), thus truncating the concept acquisition phase of the pedagogical 

process and leaving students device rich and concept poor (Mao et al., 2017; White, 1998; 

Wilson & Naiman, 2004). Professor James Stewart of McMaster University (2003), author of 

the most recently published calculus textbook in this analysis, took a middle ground on 

technology, writing his book so that it could be used with or without technology. He noted, 

however, that the “availability of technology makes it not less important but more important to 

clearly understand the concepts that underlie the images on the screen” (p. xvii). 

Eight years after Stewart made his observations about the need to keep concept mastery 

preeminent in mathematical teaching, the MAA Calculus I instructor survey for 2011 revealed 

that nearly 47% of college Calculus I professors prohibited the use of graphing calculators in 

examinations (Bressoud, 2011). Like Stewart, many university professors recognized a 

diminishing return for their students from the use of technology and set examination 

requirements that would motivate them to acquire manual mastery in the assessed topics (Mao 

et al., 2017). 

Because technology (with its emphasis on computation) interrupts the “precept upon precept” 

process (thus hindering students from a recursively-maturing mastery of mathematical 

concepts), the rigor algorithm negatively scores textbooks that emphasize procedural or 

technological skills over mastery of concepts (Bergsten et al., 2015; Klein, 2000). 
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7.3.6. Defining the Components of the Rigorous Textbook 

The learning of precalculus mathematics, like the learning of any other set of concepts, 

requires that each new topic or concept presented is solidly and recursively built on the 

previous topics and concepts. More than most subjects, mathematics mastery demands 

mastery of prerequisite material and, recursively, prerequisite material requires mastery of its 

prerequisite material and so on. Recursively presented topics and concepts is vital to the 

concept acquisition continuum (Carlson et al., 2010; Klein, 2000; "Our work of iteration," 

1877). The rigor algorithm is designed to assess how well textbooks facilitate this approach to 

mathematical instruction. It considers a textbook to have an acceptable level of rigor when: 

 Continuity of topics/concepts is upheld (Lin et al., 2020; Newton et al., 2020; 

Roehrig et al., 2021). 

 Topic perspicuity is not stagnated by irrelevant discussions (Jackson et al., 2021; 

Roehrig et al., 2021; Siegler & Oppenzato, 2021). 

 A maturing precept upon precept structure is maintained (Newton et al., 2020; 

Poast et al., 2021; Roehrig et al., 2021; Rohrer et al., 2020). 

 The prerequisite topics (as described in Section 7.3.2) are presented recursively 

(Bowen et al., 2019; Jackson et al., 2021; Zerger, 2010). 

7.4. Calculating Final Rigor Scores for Precalculus Textbooks 

This section describes the three measurements (derived from the four components listed in 

section 7.3.6) incorporated into the rigor algorithm to calculate a Final Rigor Score (FRS) for 

textbooks that can be used to predict how effectively each textbook has incorporated the 

prerequisites for year-13 calculus to facilitate year-12 student mastery of calculus 
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prerequisites. The three measurements are: the Cohesive Continuum Score, the Presentation 

Score, and the Maturity Score.  

7.4.1. Measuring Topic Order (A)—Calculating the Cohesive Continuum Score (CCS) 

The concept of cohesive continuum looks at the order in which topics are presented in a 

textbook. That is, it assesses the extent to which a textbook maintains a continuum of 

prerequisite topics to prerequisite topics while maturing the previous topics in the current 

topic. TIMSS testing results consistently rank students from countries that maintain 

curriculum coherence higher than those from countries that do not (Hong & Mi Choi, 2014; 

Schmidt, 2004; Schmidt et al., 2001). Thus, the rigor algorithm negatively scores textbooks 

that fail to maintain cohesive continuum as defined below. 

Cohesive: Effectively blending strategies and content for subject presentation and content 

consistency (Lin et al., 2020) while ordering mathematical concepts in such a way as to 

promote increasing abstraction capability in seemingly uncorrelated information that the 

student needs in complex problem solving (Yin et al., 2020). 

Continuum: “A coherent whole characterized as a collection, sequence, or progression of 

values or elements varying by minute degrees”(Webster, 1828). Learning requires “a 

rigorous, continuous sequence of concept building through listening, practicing, 

memorizing, and repeating” (Wagner, 2006, p. 88). A continuum is required in the support 

of the appropriately ordered prerequisite learning, proficiency, and mathematical maturity 

(Faulkner et al., 2020; Wheeler, 1986). 

Cohesive Continuum: A union of “cohesive” and “continuum” provides a definition for 

“cohesive continuum”: the effective blending of strategies and content for subject 

presentation in support of the appropriately ordered prerequisite learning, proficiency, and 
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mathematical maturity (Lin et al., 2020). It is “a bonded progression of elements or 

concepts, increasing in complexity while remaining succinct with adjacent 

elements”(Burton, 2013). It ensures scholarly communication in a knowledge continuum 

such that the dissemination of new knowledge may be utilized (Vassallo, 1999). 

A cohesive continuum in mathematics instruction will reflect a strict adherence to a 

progressive (step by step) mastery of basic concepts, maintenance of succinctness of 

progressing adjacent concepts, and a commitment to presenting material, examples, and 

exercises for the current topic that include previous concepts and that connect them to 

upcoming ideas (Anselone & Lee, 2005; Burton, 2013; Hirsch, 1996; Most & Wellmon, 

2015). 

Topic order—the methodical arrangement of subject materials—is the foundation of cohesive 

continuum in a textbook (Retnawati et al., 2018). The optimal mathematics textbook is one 

that incorporates “cyclic reinforcement” of ordered topics as it strategically implements the 

preservation of concept order and arrangement as the topic matures (Carlson et al., 2010).  

The order of topics (chapters and sections) is integral in the maintenance of the concept 

continuum. That is, without a cohesive topic order, the concept continuum will fragment, and 

the cyclic reinforcement will fail to maintain the continuum within the topic order (Carlson et 

al., 2010; Yin et al., 2020). Figure 7.3 visually depicts the essential components of a rigorous 

presentation that will be measured in the rigor algorithm. Note how the simplicity of this 

continuum acts as a funnel toward the calculus. 

 (A) Precalculus Topic Order (concept-upon-concept), calculated as a “Cohesive 

Continuum Score” (CCS) in the algorithm. The algorithm penalizes textbooks that 

do not follow the optimal topic order. 
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 (B) Concept Continuum (concept flow to sustain continuity and perspicuity), 

calculated as a “Presentation Score” (PS) in the algorithm (see section 7.4.2). The 

algorithm penalizes textbook attributes that interfere with concept flow. 

 (C) Cyclic Reinforcement (concept practice to promote concept maturity), 

calculated as a “Maturity Score” (MS) in the algorithm (see section 7.4.3). The 

algorithm rewards textbooks that promote concept maturity. 

 

 
Figure 7.3 Essential Components of a Rigorous Presentation 

 
7.4.1.1. Determining Optimal Topic Order  

In order to avoid the fragmentation of topics and topic order, preceding and subsequent topics 

may be ordered into sequential reasoning and computational abilities (Yin et al., 2020). Each 

subsequent level of requirements should be introduced within the reasoning abilities category. 

For example, the elementary calculus student must understand the concept of a function to 

especially include the composition and inverse concepts. However, since the very definition of 

a function requires a precise understanding of what the domain and range are, the optimally 

rigorous textbook must first introduce students to domain and range (covariational reasoning) 
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before formally addressing functions. Only then should the textbook present the algebraic 

concept and associated computations for function composition and function inverse (Carlson 

et al., 2010). According to Carlson’s assertion, the elementary calculus student needs to be 

able to: 

Set up, solve, and understand: 

 Algebraic equations/functions 

 Logarithmic equations & functions 

 Exponential equations & functions 

 Trigonometric equations/functions 

Graph: 

 Algebraic equations/functions 

 Logarithmic equations & functions 

 Exponential equations & functions 

 Trigonometric equations/functions 

 Interpret said graphs 

Prove: 

 Algebraic identities and theorems 

 Trigonometric identities and theorems 

 Understand and implement said proofs 

Solve: 

 Linear systems 

 Nonlinear systems 
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7.4.1.2. Carlson-derived Topic Order 

Given the broad agreement among scholars with the principles underlying Carlson’s suggested 

topic order for the algebraic and trigonometric topics listed in Tables 7.1 and 7.2 (Klein, 2000; 

Wakefield et al., 2018; Weir, 2020), it was decided to use the following “Carlson-derived” 

topic sequence to design the rigor algorithm: 

 General Equations and Inequalities Review to include: 

o algebraic structures, concepts (domain and range, symmetry) 

o linear equations, graphs, and applications 

o quadratic equations and applications 

o complex numbers 

o other types of equations (circles) 

o inequalities 

 Polynomials Functions and their Graphs 

o quadratic functions 

o higher order polynomial functions  

o division of polynomials 

o zeros of polynomials 

o applications 

 Functions and Graphs 

o functions  

o graphs of functions (manually) 

o parent functions (function family) 

o transformation of functions 
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o composite functions 

o inverse functions 

 Exponential and Logarithmic Functions and Graphs 

o properties of exponents and logarithms  

o exponential functions and graphs 

o logarithmic functions and graphs 

o exponential and logarithmic equations and applications 

 Trigonometry (Functional, Graphical, and Analytic) 

o degree and radian measures 

o unit circle 

o definitions of the trigonometric functions as circular 

o standard trigonometric identities (recognition, use, and proof) 

o graphs of trigonometric functions 

o inverse trigonometric functions 

o law of sines and law of cosines 

o equations and solutions 

o applications 

 Polar Coordinates and Complex Numbers and Graphs 

o polar coordinates and graphs 

o geometric representation of complex numbers 

o powers and roots of complex numbers 

o De Moivre’s Theorem 

 Vectors and Determinants 
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o vector Properties and operations 

o applications of vectors 

o parametric equations 

o 3D vectors (optional) 

 Analytic Geometry (Conic Sections) and Graphs 

o ellipse, hyperbola, parabola and circle 

o rotations and transformations 

 Sequences and Series 

o notation and factorials 

o induction 

o summations 

o finite and infinite considerations 

Table 7.5 lists the prerequisite topic order derived from Carlson and Figure 7.4 illustrates the 

dependency construct depicted in Figure 7.3. (Dashed lines indicate optional coursework 

dependencies.) 

Table 7.5 Carlson-Derived Precalculus Topic Order 

 
 
 
 

 
 
 

 

Topic Order Topic 

1 General and Prerequisite Review 
2 Polynomials and Rational Functions  
3 Equations and Inequalities 
4 Functions: Theory, Operations and Graphs 
5 Exponential and Logarithmic Functions 
6 Trigonometry (Functional, Graphical, and Analytic) 
7 Polar concepts and Complex Number integration 
8 Vectors and Determinants 
9 Analytic Geometry 

10 Sequences and Series with Combinatorics 
11 Linear Systems and Matrices- Optional 
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Figure 7.4 Dependency Construct of Carlson-Derived Topics 

7.4.1.3. Final Topic Order for Rigor Algorithm 

The rigor algorithm considers the following order of precalculus topics to be the optimal 

ordering for a maximum rigor score: 

Chapter 0/1, or prerequisite review chapter (often chapter 1) will reinforce the minimum 

required mastery for the essential concepts that will be presented in the precalculus 

textbook. These topics commonly include: 

 polynomial, rational, exponential, logarithmic, and trigonometric functions  

 functions of complex numbers 

 linear systems and tools 
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 sequences and series (optional based on infinite series topic in either 1st or 2nd 

term/semester calculus requirements) 

Accordingly, the review topics should include:  

 real numbers  

 exponents and radicals 

 polynomials 

 rational expressions 

 coordinate systems 

 finite and transfinite arithmetic 

Chapter 2 will flow from some of the review chapter’s concepts. 

 factoring polynomial equations 

 graphing polynomial functions 

 roots of polynomial equations 

 proofs and derivations 

Chapter 3 will flow from polynomials into applications of polynomials. 

 linear and polynomial inequalities 

 applications of the inequalities and in particular the quadratic 

 using the discriminant 

 proofs and derivations 

Chapter 4 will expand polynomials into functions and function attributes. 

 function definition and graphs 

o domain and range 

 functional relations and specifications 
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o function composition 

o applications 

o inverse functions 

Chapter 5 will flow from functions and inverses into the acquisition and use of an inverse 

function. 

 exponents 

o integral 

o rational 

o exponential functions 

o proofs and derivations 

 logarithms 

o logarithmic functions 

o properties of logarithms 

o proofs and derivations 

o exponential equations 

 base changing 

 exponential growth 

o natural logarithms and the number 𝑒 

Since functions are now formally defined, the optimally-rigorous textbook will next address 

the application of functions to trigonometry. 

Chapter 6 will introduce and define trigonometric functions. 

 angles, arcs, and sectors 

o angle measure 



189 
 

o application to the circle 

o proofs and derivations 

o unit circle 

 circular trigonometric functions 

o sine 

o cosine 

o tangent 

o co-functions 

o graphing the trigonometric functions 

 identities and equations 

o functional relationships 

o solving trigonometric equations  

o proofs and derivations 

Chapter 7 will apply the unit circle and angle measure to triangle trigonometry. 

 solving triangles 

o right triangle trigonometry 

o triangle area 

o law of sines and cosines 

o proofs and derivations 

 trigonometric inverses 

o inverse trigonometric relations 

o domains and “Arc” or “-1” (Arcsin, sin-1) 

 trigonometric graphing 
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o stretching 

o reflecting 

o asymptotes 

o applications 

 trigonometric equations 

o solving trigonometric equations  

Chapter 8 will advance the identities to the trigonometric addition formulae. 

 addition and subtraction of sine, cosine and tangent 

 double and half angle 

 derivations 

 applications 

 solving trigonometric equations  

Chapter 9 will apply sine and cosine equations to polar coordinates and complex numbers. 

 polar coordinates and graphs 

o move between polar coordinates and rectangular coordinates 

 geometric representations of complex numbers 

 powers and De Moivre’s theorem 

 roots 

Chapter 10 will apply the polar representations and associated trigonometry to vectors and 

determinants. 

 
At this point in the optimally rigorous textbook, all prerequisite algebraic and trigonometric 

functions have been covered. The textbook should now introduce the following calculus topics 
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because both appear in all sampled calculus textbooks and, thus, have been incorporated into 

the rigor algorithm as prerequisites. 

 Conic Sections (Analytic Geometry) 

 Sequences and Series 

The rigor algorithm penalizes any precalculus textbook that does not include both topics and it 

penalizes any textbook that includes one or both topics before completing instruction in all 

algebraic and trigonometric topics outlined above. Below is an example of how these two 

topics might appear as chapters 11 and 12 in an optimally rigorous precalculus textbook. 

Chapter 11 will apply function analytics, parabolas, circles, and polynomial manipulations 

to the analytic geometry of the cone (i.e., conic sections). 

 circles 

 ellipses 

 hyperbolas 

 parabolas 

 applications and common properties 

Chapter 12 will apply logic and proof experience, as well as algebraic maturity, to 

sequences and series. 

 finite sequences and series 

o arithmetic and geometric sequences 

o arithmetic and geometric series and their sums 

 infinite sequences and series 

o limits of infinite sequences 

o sums of infinite series 
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o sigma notation 

o power series 

o mathematical induction 

Precalculus textbooks may also include additional topics such as: 

 Probability & Statistics 

 Advanced Linear Systems with Matrices 

The rigor algorithm does not reward textbooks that include these (and other) topics; it will not 

penalize textbooks that include these (and other) topics unless they are introduced prior to the 

presentation of all the prerequisite topics outlined above in chapters 0/1 through chapter 10. 

7.4.2. Measuring Concept Continuum (B)—Calculating the Presentation Score 

In addition to presenting topics in the proper order, an optimally rigorous textbook will ensure 

that all material presented is relevant to the concepts being mastered. The antithesis of concept 

continuum is the interruption of topic instruction with irrelevant discussions, technology-

centric verbiage, or concept-irrelevant imagery (photographs, illustrations, cartoons) 

(Henningsen & Stein, 1997). The rigor algorithm Presentation Score (PS) decrements 

textbooks for extraneous material that disrupts the concept continuum. The PS is calculated by 

collecting demographics from each textbook and then applying a mathematical formula that 

measures concept continuum. 

7.4.2.1. Textbook Demographics Collected: 

A. Teaching Page Count 

i. All teaching pages (excluding solutions and indexes) 

ii. All remedial review pages (e.g., Chapter 0) 

B. Chapter Count 
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i. Total number of non-calculus chapters 

C. Section Count 

i. Total number of sections in the counted chapters 

D. Irrelevant imagery pages count (if page has one or more images) 

E. Exercises/Examples Count 

i. All Exercises/Examples 

ii. Technology, Discovery, Focus or Group exercises/examples 

iii. Concept exercises/examples (Ei.-Eii.) 

7.4.2.2. Components of the PS Mathematical Formula: 

Since textbooks generally contain both relevant/cogent material and irrelevant material, it was 

determined that content relevance could be described as the density of relevant/cogent material 

(Ipek, 2011). Thus, the following PS mathematical formula was created using the following 

variables: 

 #1. Proportion of Review Pages to Teaching Pages = A.ii/A.i. When the rigor algorithm 

was being designed, it was unknown whether the number of remedial or review pages 

would be a positive or a negative variable in maintaining the concept continuum. The 

number of remedial or review pages was analyzed by inclusion using a variation of 

Rational Choice or Multi Attribute Utility Theory (Jonassen, 2012). The Presentation 

Score highs and lows were ordered equally so the remedial variable was determined to be 

unneeded and was disqualified using the argumentation decision process described by 

Jonassen. 

 #2. Imagery per Teaching Page = D/A.i. Because excessive or irrelevant images degrade 

student mastery of concepts, they are considered a negative variable in the PS calculation. 
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#3. Technology Exercises/Examples per Teaching Page = E.ii./A.i. Because excessive 

technology infusion contributes to the student’s inability to acquire a mastery-level 

understanding of the concept presented and group or “discovery” exercises (Chun-Hung 

Lin et al, 2013), having the same effect, it is regarded as a negative variable. 

#4. Concept-Building Exercises/Examples per Teaching Page = (E.iii)/A.i. Given the 

positive nature of concept mastery practice (Schmidt et al., 2001), the number of concept 

exercises per teaching page is calculated as a positive variable. 

The PS formula was created using accounting principles. It creates a balance sheet of assets 

and liabilities within textbooks in which conceptual assets in a textbook (relevance, topic 

flow/ordering, application, practice, and integration) are considered to be positives in the 

assets column while concept liabilities (interference or interruption of any or all of the 

conceptual assets) are considered to be positives in the liability column (Barth, 2014; Miller-

Nobles et al., 2018). A balance sheet is the sum of assets minus the sum of liabilities 

(Gangwar & Gangwar, 2008) and, thus, the final PS is determined by calculating the 

difference between the concept-building exercises/examples (concept assets) per teaching 

page and the sum of the material that degrades the concept-building exercises/examples 

(concept liabilities) in the textbook using this formula: PS = #4 - (#3 + #2 + #1). The positive 

components of the PS (PSp) = #4 and the negative components of the PS (PSn) = (#3 + #2 + 

#1), thus, PSfinal = (PSp – PSn). The final PS can be positive, negative, or even zero. 

7.4.3. Measuring Cyclic Reinforcement (C)—Calculating the Maturity Score 

In addition to presenting topics in the proper order and sustaining the concept continuum by 

minimizing irrelevant or distracting material, the optimally rigorous textbook will continually 
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reinforce topics in a cyclic manner in which previously-mastered topics are reintroduced in 

increasingly complex scenarios. The rigor algorithm calculates a Maturity Score (MS) to 

measure how well a textbook achieves cyclic reinforcement of concepts. 

There are two components used to calculate the Maturity Score. The first (called Maturity 

Analytics) assesses whether a textbook includes four key categories of instruction that 

promote cyclic reinforcement of concepts. The categories are: 

 Mathematical Tables (see section 7.4.3.1) 

 Reduction of Functional or Operational Complexity (see section 7.4.3.2) 

 Functional Analysis (see section 7.4.3.3) 

 Trigonometric Function and Identities (see section 7.4.3.4) 

The second component of the MS, (called Maturity Numerics) counts how many pages in the 

textbook are devoted to each of these four instructional categories. Using a similar approach to 

the PS calculation, it measures the proportion of each textbook given to the key categories 

(i.e., it determines the conceptual asset density of these categories in each textbook) (Petersson 

et al., 2020; Schubring & Fan, 2018). 

7.4.3.1. Mathematical Tables.  

Logarithms are significantly important in calculus (Rachael & Signe, 2013). In the past tables 

of logarithms were commonly used in conjunction with the teaching of logarithms. Today, 

tables of logarithms are absent from most textbooks; they have been replaced by electronic 

calculators. Though logarithms can be taught in the absence of logarithmic tables, depriving 

students of an understanding of how the tables were constructed in the first place leaves 

conceptual gaps in the presentation of the topics (Panagiotou, 2010). Mulqueeny (2012) found 

that presenting students with the historical account of the development of the logarithms and 
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introducing the logarithmic tables as the initiation of the study of logarithms provided 

understanding that was needed for acquiring the concept. Tables of logarithms are an implied 

part of the collection of unused yet valuable necessities for modern mathematical curricula 

cited by Boas (1993), because knowing and using them contributes to thought processes that 

are needed in subsequent learning and thinking experiences. Cook (2013) asserts that 

logarithmic tables fill the “conceptual gaps” mentioned above by making logs “more tangible” 

and that using the tables teaches students how to interpolate. The skill of interpolation is 

important for precalculus students to learn in preparation for their calculus course since 

interpolation is needed in approximation theory as it relates to where functions cross the x axis 

(the solution) and approximation of areas under curves using numeric methods. (Yang & 

Gordon, 2014). Because understanding and using mathematical tables promotes conceptual 

mastery of logarithms and skill in interpolation, the rigor algorithm includes an assessment of 

whether (and to what extent) a textbook includes mathematical tables. 

7.4.3.1.1. Maturity Numerics for Mathematical Tables. 

The MS is based on how many pages of mathematical tables addressing the following items 

are included in the textbook: 

 Logarithmic (Base 10) 

 Logarithmic (Base e) 

 Trigonometric tables for sine, cosine, and tangent 

7.4.3.2. Reduction of Functional or Operational Complexity 

Elementary factoring, advanced factoring, or factoring in general, facilitates concept maturity 

by enabling the student to see or visualize a problem in its entirety (DiBello & Stout, 2007; 

Ponce, 2007). Advanced factoring mastery is fundamental because the elementary calculus 
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student is immediately and constantly faced with algebraic complexity that must be simplified; 

thus, maturity in the application of advanced factoring is enhanced by student participation 

and hands-on exposure to the techniques (Dobbs & Peterson, 1991; Fitzherbert, 2016). 

Therefore, the rigor algorithm includes an assessment of whether (and to what extent) a 

textbook includes multiple techniques for reduction of functional or operational complexity. 

7.4.3.2.1. Maturity Numerics for Reduction of Functional or Operational Complexity 

The MS is based on how many teaching pages (not appendices) of the textbook are devoted to 

the following topics and techniques: 

 Completing the Square 

 Quadratic Formula 

 Polynomial Long Division (and Synthetic Division) 

 Remainder and Factor Theorem 

 Rational Roots Theorems 

 Fundamental Theorem of Algebra 

 Min-Max Applications 

7.4.3.3. Functional Analysis 

The application of domain and range to the inverse or composed function and the 

trigonometric functions work to coerce thinking that is organizational in nature (Hajizah et al., 

2020). To be able to see and understand what the problem is asking is a maturing event for the 

student as this promotes connectedness of other concepts (Ponce, 2007). Therefore, the rigor 

algorithm includes an assessment of whether (and to what extent) a textbook comprehensively 

covers elementary function and elementary function theory. 
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7.4.3.3.1. Maturity Numerics for Functional Analysis. 

The MS is based on how many pages of the textbook are devoted to the following topics: 

 Definitions of Functions 

 Domain and Range 

 Function Inverse 

 Function Composition 

7.4.3.4. Trigonometric Functions and Identities 

Trigonometric functions and identities and their proofs/derivations constitute a significant 

contribution to the calculus student’s problem-solving strategy of a derivative or an anti-

derivative problem because operation and functional complexity can be dramatically reduced 

by re-writing the trigonometric function as a simpler quantity (Kindle & Gentimis, 2018). For 

example: Given: 𝑓(𝑥) = 𝑠𝑖𝑛2𝑥, calculate 𝑓′(𝑥). To solve this example, the calculus student 

must implement the chain rule, which is an algorithm for calculating the derivative of the 

composition of two functions. 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑓(𝑥): ℎ(𝑥) = 2𝑥 𝑎𝑛𝑑 𝑔(𝑥) =

𝑠𝑖𝑛𝑥. 𝑇ℎ𝑢𝑠, 𝑓(𝑥) = 𝑔(ℎ(𝑥)). However, complexity may be reduced to needing only the product 

rule algorithm by altering 𝑓(𝑥) = 𝑠𝑖𝑛2𝑥 to become 𝑓(𝑥) = 2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥. This is accomplished 

with trigonometric identities. Therefore, the rigor algorithm includes an assessment of whether 

(and to what extent) a textbook addresses trigonometric functions and identities.  

7.4.3.4.1. Maturity Numerics for Trigonometric Functions and Identities 

The MS is based on how many pages of the textbook are devoted to the following topics: 

 Trigonometric Functions (to include Unit Circle) 

 Trigonometric Identities 
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7.4.3.5. Calculating the Maturity Score 

The calculation for the Maturity Score is as follows: 

𝑴𝑺 =  
𝑨ା𝑩ା𝑪ା𝑫

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒆𝒂𝒄𝒉𝒊𝒏𝒈 𝑷𝒂𝒈𝒆𝒔
  

where A, B, C, and D are the number of pages of relevant instruction in the four instructional 

categories. Though word count per page can vary from textbook to textbook, because A 

through D and the number of teaching pages are all derived from the same textbook, the 

density/proportionality retains integrity across all examined books. 

7.4.4. Combining PS and MS into a Presentation Maturity (PM) Score 

The PS and MS intersect in that cyclic reinforcement, as measured by the MS, affects the PS 

because concept building exercises contain the cyclic reinforcement that is measured in the 

MS. Since this was an intersection of densities, a new score (the PM, for Presentation 

Maturity) is derived as the product of the PS and the MS. As stated in 7.4.2.2, the final PS is 

determined by subtracting the concept interference density from the concept building density: 

PSfinal = (PSp – PSn). The PM score is calculated as MS(PSp) – MS(PSn) with the MS applied 

to both positive and negative PS factors because even concept building on irrelevant concepts 

(such as technology-centric exercises) is calculated as a negative impact in the rigor algorithm. 

7.4.5. Calculating the Final Rigor Score 

The Final Rigor Score is derived by adding the product of the Presentation Score and Maturity 

Score (the PM score) to the Cohesive Continuum Score for each textbook.  

𝑭𝑹𝑺 = 𝑪𝑪𝑺 + (𝑷𝑺 𝐱 𝑴𝑺), and becomes in the final computation 

𝑭𝑹𝑺 = 𝑪𝑪𝑺 + (𝑷𝑴) 

The FRS formula was developed based on the following: 



200 
 

1. Since a final asset measure is affected by addition of assets and the subtraction of 

liabilities, the FRS is derived by adding assets and subtracting liabilities. 

2. The CCS (the assessment of topic order adherence) is the high priority asset in the 

textbook; a teacher may augment an orderly set of topics in any way that suits the 

class but will run into problems when the topic order fails to promote the 

“preceding-current-subsequent” model (Carlson et al., 2010; Yin et al., 2020). The 

CCS is an asset, but it is assigned a negative value in the algorithm and thus, for 

the purposes of determining the FRS, the PM score (deficiency mitigation) is 

added. 

7.5. Conclusion 

The concept of MRP and deliverable end-product necessitates that tertiary math departments 

set requirements for year-12 mathematics curriculum. The rigor algorithm described in this 

chapter used the tertiary elementary calculus textbook as the driver for understanding the 

“deliverable end-product”—i.e., what was needed for secondary students to be ready for their 

elementary calculus course. The eight sampled calculus textbooks shared much assumed 

knowledge for the incoming student to be both well-versed and well-practiced. The 

triumvirate scoring model was derived so that it could be applied to the precalculus textbooks 

in an orderly and repeatable way by secondary mathematics departments to enable them to 

assess their precalculus textbooks to suggest modifications and upgrades to better prepare their 

mathematics students for tertiary coursework. 

In Chapter 8, the rigor algorithm will be demonstrated. A CCS, PM, and FRS will be 

calculated for a selected sampling of textbooks identified by the year-13 student survey. 
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Chapter 8. Mathematical Textbook Rigor Tool Applied 

8.1. Introduction 

This chapter demonstrates how to use the rigor tool presented in Chapter 7 using a selection of 

eight precalculus textbooks identified through the survey as well as some textbooks published 

prior to the widespread use of handheld electronic calculators. The details of chapter and topic 

order for these textbooks will be included in an appendix so the process used to create a final 

rigor score for each book can be followed step-by-step. The chapter will then apply the 

algorithm in an abbreviated fashion to an additional eleven precalculus textbooks published in 

Australia and the United States for the purposes of providing a pool of textbook data for 

analysis. Four of the nineteen books assessed with the rigor tool were published between 1965 

and 1985, six were published between 1986 and 2003, and nine were published between 2004 

and 2012. Section 8.2 describes the demonstration of the use of the rigor algorithm, section 8.3 

provides results of the application of the algorithm to the remaining 11 textbooks, and section 

8.4 tabulates the results for all 19 textbooks and provides analysis. 

8.2. Verifying the Rigor Algorithm 

This section demonstrates how the reliability of the rigor algorithm was verified by applying it 

to a sampling of eight precalculus textbooks. Since the purpose of the rigor algorithm is to 

measure the rigor of textbooks, it was decided to use a sampling of textbooks distributed 

across the graduation years of survey respondents plus a sampling of older textbooks 

commonly used in the 1970s and the 1980s7 to verify the algorithm and to test the hypothesis 

that rigor in precalculus textbooks has degraded over time. One of the selected books, number 

ii, Advanced Mathematics: A Precalculus Course, (1984), had a published review available 

                                                 
7 Based on the author’s personal experience. 
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that was used as an independent validation of the algorithm’s assessment of textbook rigor. 

(See comments following Table 8.14). 

The following eight secondary school precalculus textbooks published between 1972 and 2012 

were selected as representative of textbooks designed to prepare students for success in year-

13 calculus: 

i. Earl Swokowski, Fundamentals of Algebra and Trigonometry, 2d ed., (Boston: 

Prindle, Weber & Schmidt, Inc., 1972). 

ii. Richard G. Brown and David P. Robbins, Advanced Mathematics: A Precalculus 

Course, 1st ed., (Boston: Houghton Mifflin Co., 1984). 

iii. Richard G. Brown, Advanced Mathematics: Precalculus with Discrete Math and 

Data Analysis, 1st ed., (Boston: Houghton Mifflin Co., 1992). 

iv. Roland E. Larson, Robert P. Hostetler, Precalculus, 3rd ed., (Lexington, MA: D.C. 

Heath & Co., 1993). 

v. Franklin Demana, Bert K. Waits, Gregory D. Foley & Daniel Kennedy, 

Precalculus: Graphical, Numerical, Algebraic, 5th ed., (Reading, MA: Addison 

Wesley Longman, Inc., 2001). 

vi. James Stewart, Lothar Redlin & Saleem Watson, Precalculus: Mathematics for 

Calculus, 4th ed., (Pacific Grove, CA: Wadsworth Group, 2002). 

vii. Roland E. Larson, Robert P. Hostetler, and Bruce H. Edwards, Precalculus with 

Limits: A Graphing Approach, 4th ed., (Boston: Houghton Mifflin Co., 2005). 

viii. Paul A. Foerster, Precalculus with Trigonometry: Concept and Applications, 1st 

ed., (Emeryville, CA: Key Curriculum Press, 2012). 
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Section 8.2.1 describes how the algorithm was used to analyze Topic Order (A) and generate a 

Cohesive Continuum Score. Section 8.2.2 describes how the algorithm was applied to 

calculate a Presentation Score that reflects Concept Continuum (B). Section 8.2.3 describes 

how the algorithm was used to calculate a Presentation Maturity Score (PM) to assess Cyclic 

Reinforcement (C). Section 8.2.4 gives the Final Rigor Score calculated for each of the eight 

sampled textbooks. 

8.2.1. Analyzing Topic Order (A)—Calculating the Cohesive Continuum Score (CCS). 

Topic order was compared to the Carlson-derived topic order to calculate the CCS for each 

textbook. Table 8.1 depicts which topics each of the precalculus textbooks included and in 

what order. (Note: Calculus/Limits topics were omitted because none of the calculus textbooks 

surveyed to create the MRP-based prerequisites for precalculus assumed a knowledge of 

limits. Additionally, because precalculus books should focus on preparation for calculus and 

not calculus itself, calculus topics were omitted from the rigor algorithm.) The table uses a 

generic topic nomenclature. The numbers in each column, reading left to right, indicate in 

what order each textbook introduced the topic. The numbers do not directly correspond to 

chapter numbers; rather, they designate the relative order in which a book introduced a topic. 

(Appendix E provides a detailed chapter outline for each textbook to include the exact 

nomenclature used for topics and the chapter numbers for each topic.) Multiple trigonometry 

chapters were grouped together into a single chapter. A zero indicates that the book did not 

cover that topic. The table also includes some descriptive statistics (mode, mean, median, 

standard deviation) related to topic order. Topic numbers correspond to the following topics: 

1. General and Prerequisite Review 

2. Polynomials and Rational Functions 
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3. Equations and Inequalities 

4. Functions: Theory, Operations and Graphs 

5. Exponential and Logarithmic Functions 

6. Trigonometry (Functional, Graphical, Analytic) 

7. Polar and Complex 

8. Vectors and Determinants 

9. Analytic Geometry 

10. Sequences and Series with Combinatorics 

An eleventh topic, Linear Systems and Matrices, was included in many precalculus textbooks. 

However, because it is not mandatory in the Carlson-derived rubric, it was not included in the 

rigor algorithm scoring. 

Table 8.1 Analyzing Topic Order (A) 

Book Topic Order 
i. 1 8 2 3 4 5 7 6 0 9 
ii. 1 2 3 4 5 6 7 9 8 10 
iii. 1 2 3 4 5 7 8 9 6 10 
iv. 1 3 1 2 4 5 6 6 10 9 
v. 1 3 2 2 4 5 6 6 8 9 
vi. 1 3 1 2 4 5 6 6 8 9 
vii. 1 3 1 2 4 5 6 6 10 9 
viii. 1 3 0 2 2 4 6 4 5 8 

           
Mode 1 3 2 2 4 5 6 6 8 9 

Mean 1.00 3.38 1.71 2.63 4.00 5.25 6.50 6.50 6.88 9.13 
Median 1.00 3.00 2.00 2.00 4.00 5.00 6.00 6.00 8.00 9.00 

SD 0.00 1.92 1.11 0.92 0.93 0.89 0.76 1.69 3.27 0.64 
Bold font designates statistical outliers. 

8.2.1.1. Outlier Considerations 

An outlier is an observation that lies outside the overall pattern of a distribution (Moore & 

McCabe, 1999). Usually, the presence of an outlier indicates some sort of problem. This can 

be a case which does not fit the model under study or an error in measurement. Table 8.2 

calculates the Inter Quartile Range (IQR) to determine if there are outliers of topic order in the 
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selected textbooks; that is, it calculates whether there are significant differences in where a 

topic is placed in relative order. The numbers in the rows are the chapters in which a particular 

topic was introduced. Columns are sorted lowest to highest on chapter number to acquire first 

quartile (Q1) and third quartile (Q3). As seen in the table, an outlier is a point which falls 

more than 1.5 times the IQR above the third quartile or below the first quartile [Q3+I and Q1-

I]. It will be shown that including the outliers is an important consideration for “relative 

chapter order” because textbook authors place their chapters in the order they believe is 

consistent with preceding and subsequent material. 

Table 8.2 Outlier Table: (IQR=Inter Quartile Range) 

  
 

Carlson Rubric Topic Order 

Carlson Rubric Topic Order 1 2 3 4 5 6 7 8 9 10 

 

1 2 0 2 2 4 6 4 0 8 

1 2 1 2 4 5 6 6 5 9 

1 3 1 2 4 5 6 6 6 9 

1 3 2 2 4 5 6 6 8 9 

1 3 2 2 4 5 6 6 8 9 

1 3 3 3 4 5 7 6 8 9 

1 3 3 4 5 6 7 9 10 10 
1 
 

8 
 

3 
 

4 
 

5 
 

7 
 

8 
 

9 
 

10 
 

10 
 

Q1=MEDIAN Low 1 2.5 1 2 4 5 6 6 5.5 9 
Q1 – I 1 1.75 -1.25 -0.25 3.25 4.25 4.5 3.75 0.25 8.25 
Q3=MEDIAN High 1 3 2.5 3.5 4.5 5.5 7 7.5 9 9.5 

Q3+ I 1 3.75 4.75 5.75 5.25 6.25 8.5 9.75 14.25 10.25 
IQR 0 0.5 1.5 1.5 0.5 0.5 1 1.5 3.5 0.5 
I= IQR * 1.5 0 0.75 2.25 2.25 0.75 0.75 1.5 2.25 5.25 0.75 

Bold font designates statistical outliers. 

8.2.1.2. Calculating Means for Topic Order 

In Table 8.3 the Means were calculated for the topic order. The numbered table columns 

record the following calculations: 

1. Mean order including the outliers of topic order 
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2. Absolute value of the difference between the Outlier Mean and the Topic 

3. Mean without outliers 

4. Absolute value of the difference between the “no Outlier Mean” and the Topic 

5. Outlier and no Outlier Means 

6. Means of Difference (1) and Difference (2) 

7. Mean of 1, 3 and 5 

Table 8.3 Calculating Means for Carlson-Derived Topic Order 
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1 General and Prerequisite Review 1.00 0.00 1.00 0.00 1.00 0.00 1 

2 Polynomials and Rational Functions 3.38 1.38 2.78 0.71 3.04 1.04 3.07 

3 Equations and Inequalities 1.71 1.29 1.71 1.29 1.71 1.29 1.71 

4 Functions: Theory, Operations and Graphs 2.63 1.38 2.63 1.37 2.63 1.37 2.63 

5 Exponential and Logarithmic Functions 4.00 1.00 4.29 0.71 4.15 0.86 4.15 

6 Trigonometry (Functional, Graphical and Analytic) 5.25 0.75 5.25 0.75 5.25 0.75 5.25 

7 Polar and Complex 6.50 0.50 6.50 0.50 6.50 0.50 6.5 

8 Vectors and Determinants 6.50 1.50 6.86 1.14 6.68 1.32 6.68 

9 Analytic Geometry 6.88 2.13 6.88 2.12 6.88 2.12 6.88 

10 Sequences and Series with Combinatorics 9.13 0.88 9.13 0.87 9.13 0.87 9.13 

When the Grand Mean (Average of the Outlier Means and the Difference Means) and 

Carlson-derived chapter numbers are aligned and sorted by the Grand Mean, as seen in Table 

8.4, there is a conformational tendency to the Carlson-derived order with disagreement in the 

placement of topic 2 being placed ahead of the ordered topics 3 and 4. Thus the disagreement 

between the Carlson-derived topic order and the calculated topic order is that Equations and 

Inequalities have been placed prior to the correctly-ordered topics 3 and 4 (Equations and 

Inequalities and Functions: Operations and Graphs). See analysis in Tables 8.4 and 8.5. 
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Table 8.4 Mean Chapter Placement 

Grand 
Mean 

Chapter 

1 1 

3.07 3 

1.71 4 

2.63 2 

4.15 5 

5.25 6 

6.5 7 

6.68 8 

6.88 9 

9.13 10 

Table 8.5 compares the calculated topic order with the Carlson-derived topic order. An “X” 

indicates agreement between the two lists. 

Table 8.5 Calculated Textbook Topic Order and Carlson-derived Topic Order 

Calculated Textbook Topic Order  Carlson-Derived Topic Order 
General and Prerequisite Review X General and Prerequisite Review 

  Polynomials and Rational Functions 

Equations and Inequalities X Equations and Inequalities 

Functions: Theory, Operations and Graphs X Functions: Theory, Operations and Graphs 

Polynomials and Rational Functions   

Exponential and Logarithmic Functions X Exponential and Logarithmic Functions 

Trigonometry (Functional, Graphical and Analytic) X Trigonometry (Functional, Graphical and Analytic) 

Polar and Complex X Polar and Complex 

Vectors and Determinants X Vectors and Determinants 

Analytic Geometry X Analytic Geometry 

8.2.1.3. Analysis of Topics 2 and 3 Ordering 

All ten prerequisite topics are included in the two rubrics in Table 8.5. Chapters 1, 3, 4 and 6-

10, match the derived order except the placement of chapter 2, Polynomials and Rational 

Functions. The next step was to determine whether the deviation from the order specified by 
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the Carlson-derived rubric should be penalized in the Cohesive Continuum Score calculation 

or whether this order is acceptable. The working hypothesis was that topic order does matter 

and that the topic, Polynomials and Rational Functions, is best done before Equations and 

Inequalities. The following justification is offered in support of this hypothesis: 

First, polynomials are simple functions having domain and range (-∞,∞) and other elementary 

attributes of functions and though they may serve as an introduction to functions, the notion of 

function extends far beyond polynomials. Thus, formal functional domain and range 

discussion (incorporating function composition and function inverse) should come after the 

polynomial. Second, though insignificantly different, the formal treatment of functions should 

immediately precede the applications of function inverse and function composition as 

exercised in logarithms and exponents. Formal domain and range, compostion and inverse 

discussion should immediately precede the implementation of those topics in the exponential 

and logarithmic chapter/topic which is consistent with the Carlson-derived topic order. Third, 

polynomials can be expressions, equations, or inequalities. As expressions, polynomials may 

be succintly defined; as equations they may be solved using simple or complex techniques. All 

these techniques will be applicable to the inequality problems but at a more complicated level 

(McLaurin, 1985). Complexity-reducing techniques, such as polynomial long division, factor 

and remainder theorems, and even the Fundamental Theorem of Algebra, are all presented in 

their simplest form in the presentation of polynomials and polynomial equations, and are 

assumed as polynomial inequalities are presented (Dobbs & Peterson, 1991). Thus, it is 

concluded that the Carlson-derived topic order is optimal for the Cohesive Continuum 

measurement; therefore, textbooks that place Equations and Inequalities before Polynomials 

and Rational Functions are penalized in the rigor algorithm. 
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Tables 8.6 further confirms the correctness of the Carlson-derived chapter order asserted 

above. It depicts the Z-score (Hayek & Buzas, 2010, pp. 27-28) that was calculated for the 

chapter order of each chapter in each book. 

Table 8.6 Z-Score Calculations for Topic Order 

B
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 Topic Order 

M
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n 

S
D

 

Z-Score for Each Topic 

i. 
1 8 2 3 4 5 7 6 0 9 4.50 2.87 

-1.22 1.22 -0.87 -0.52 -0.17 0.17 0.87 0.52 -1.57 1.57   

ii. 
1 2 3 4 5 6 7 9 8 10 5.50 2.87 

-1.57 -1.22 -0.87 -0.52 -0.17 0.17 0.52 1.22 0.87 1.57   

iii. 
1 2 3 4 5 7 8 9 6 10 5.50 2.87 

-1.57 -1.22 -0.87 -0.52 -0.17 0.52 0.87 1.22 0.17 1.57   

iv. 
1 3 1 2 4 5 6 6 10 9 4.70 2.97 

-1.25 -0.57 -1.25 -0.91 -0.24 0.10 0.44 0.44 1.79 1.45   

v. 
1 3 2 2 4 5 6 6 8 9 4.60 2.54 

-1.42 -0.63 -1.02 -1.02 -0.24 0.16 0.55 0.55 1.34 1.73   

vi. 
1 3 1 2 4 5 6 6 8 9 4.50 2.66 

-1.32 -0.56 -1.32 -0.94 -0.19 0.19 0.56 0.56 1.32 1.69   

vii. 
1 3 1 2 4 5 6 6 10 9 4.70 2.97 

-1.25 -0.57 -1.25 -0.91 -0.24 0.10 0.44 0.44 1.79 1.45   

viii. 
1 3 0 2 2 4 6 4 5 8 3.50 2.29 

-1.09 -0.22 -1.53 -0.65 -0.65 0.22 1.09 0.22 0.65 1.96   

Table 8.7 shows the same data as Table 8.6 except that each chapter Z-score is sorted from 

smallest to largest numeric order (as read left to right). 

Table 8.7 Z-Scores Sorted Smallest to Largest 

B
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Z-Order of Topics 

Chapter Where Topic is Found 

Z-Score for Each Topic Ranked Smallest to Largest 

i. 
9 1 3 4 5 6 8 7 2 10 
0 1 2 3 4 5 6 7 8 9 

-1.57 -1.22 -0.87 -0.52 -0.17 0.17 0.52 0.87 1.22 1.57 

ii. 
1 2 3 4 5 6 7 9 8 10 
1 2 3 4 5 6 7 8 9 10 

-1.57 -1.22 -0.87 -0.52 -0.17 0.17 0.52 0.87 1.22 1.57 
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Table 8.7 (continued) 

B
oo

k 
 

Z-Order of Topics 

Chapter Where Topic is Found 

Z-Score for Each Topic Ranked Smallest to Largest 

iii. 
1 2 3 4 5 9 6 7 8 10 
1 2 3 4 5 6 7 8 9 10 

-1.57 -1.22 -0.87 -0.52 -0.17 0.17 0.52 0.87 1.22 1.57 

iv. 
1 3 4 2 5 6 7 8 10 9 
1 1 2 3 4 5 6 6 9 10 

-1.25 -1.25 -0.91 -0.57 -0.24 0.10 0.44 0.44 1.45 1.79 

v. 
1 3 4 2 5 6 7 8 9 10 
1 2 2 3 4 5 6 6 8 9 

-1.42 -1.03 -1.03 -0.63 -0.24 0.16 0.55 0.55 1.34 1.73 

vi. 
1 3 4 2 5 6 7 8 9 10 
1 1 2 3 4 5 6 6 8 9 

-1.32 -1.32 -0.94 -0.57 -0.19 0.19 0.57 0.57 1.32 1.70 

vii. 
1 3 4 2 5 6 7 8 10 9 
1 1 2 3 4 5 6 6 9 10 

-1.25 -1.25 -0.91 -0.57 -0.24 0.10 0.44 0.44 1.45 1.79 

viii. 
3 1 4 5 2 6 8 9 7 10 
0 1 2 2 3 4 4 5 6 8 

-1.53 -1.09 -0.66 -0.66 -0.22 0.22 0.22 0.66 1.09 1.96 

8.2.1.4. Calculating the final Cohesive Continuum Score (CCS) 

To retain the outliers (since they are not erroneous measures), the following strategy was used 

to construct Tables 8.8 which depicts the final CCS based on the Relative Chapter Order 

(RCO). In order to give credit for chapters that were in order relatively, as opposed to a one-

to-one match against the Carlson-derived order, the scores for each individual textbook (B1-

B8) were sorted low to high by Z-Score. Once this sort was finished, the Z-order chapter 

numbers were calculated to determine if chapters were in a Carlson-derived relative order. If 

the chapter order standard was met, the score was zero (0). If the chapter order standard was 

not met, the score was negative one (-1). Scores for each book were then totaled and the 

largest negative number (closest to zero) earned the highest CC score. 



211 
 

Table 8.8 Final Cohesive Continuum Scores for Books 1-8 

Book 
Continuity Across Chapters Cohesive 

Continuum 
Score 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 

i -1 -1 0 0 0 -1 -1 -1 -1 -6 

ii 0 0 0 0 0 0 -1 -1 -1 -3 

iii 0 0 0 0 -1 -1 0 0 -1 -3 

iv -1 0 -1 -1 0 0 0 -1 -1 -5 

v -1 0 -1 -1 0 0 0 0 0 -3 

vi -1 0 -1 -1 0 0 0 0 0 -3 

vii -1 0 -1 -1 0 0 0 -1 -1 -5 

viii -1 -1 0 -1 -1 -1 0 -1 -1 -7 

8.2.2. Analyzing Concept Continuum (B)—Calculating Presentation Scores (PS) 

Table 8.9 displays the demographic information collected for each of the eight textbooks, 

omitting any specific calculus topics. Note that when the score in any section is a 1, it is a non-

zero placeholder for texts that have no pages in that category. 

Table 8.9 Presentation Score Raw Data 

Book 
Teaching 

Pages 
Review 
Pages 

Chapters Sections 
Imagery 
Pages 

Technology 
Exercises 

Concept 
Exercises 

Imagery 
Infusion* 

  Tech 
Infusion** 

i 412 46 10 75 1 1 1758 0.24% 0.06% 

ii 565 46 15 96 75 75 3326 13.27 2.25% 

iii 749 52 18 107 180 510 3401 24.03% 15.00% 

iv 810 86 11 74 308 1110 3223 38.02% 34.44% 

v 751 59 10 64 290 2090 3420 38.62% 61.11% 

vi 905 141 11 74 264 1105 3367 29.17% 32.82% 

vii 704 71 10 65 300 2593 5377 42.61% 48.22% 

viii 786 62 15 90 225 1665 2280 28.63% 73.03% 
* Calculated by dividing the number of pages containing imagery by the number of teaching pages. 

 ** Calculated by dividing the number of technology exercises/examples by the number of concept 
exercises/examples. 

8.2.2.1. Analyzing the Importance of the Remedial/Review Pages as a Variable 

Table 8.10 shows the results of applying the mathematical formula described in chapter 7 

(Proportion of Review Pages to Teaching Pages = A.ii/A.i) to the demographics. The analysis 

included applying two different formulas—one in which the ratio of review pages to teaching 
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pages was considered as a variable, and one in which it was not considered as a variable. The 

result of the analysis was that this ratio was optional in the calculation of the Presentation 

Score (PS) because the rank order of books did not change with either option. 

Table 8.10 Presentation Score Analytics 

Book 
Review Pages 
per Teaching 

Pages 

Imagery per 
Teaching 

Pages 

Calculated * 
Technology 

Exercises per 
Teaching 

Pages 

Concept 
Exercises per 

Teaching 
Pages 

PS Including 
Review 
Pages** 

PS Without 
Review 

Pages*** 

i 0.11 0.00 0.01 4.27 4.15 4.26 

ii 0.08 0.13 0.40 5.89 5.27 5.36 

iii 0.07 0.24 2.04 4.54 2.19 2.26 

iv 0.11 0.38 4.11 3.98 -0.62 -0.51 

v 0.08 0.39 8.35 4.55 -4.26 -4.18 

vi 0.16 0.29 3.66 3.72 -0.39 -0.23 

vii 0.10 0.43 11.05 7.64 -3.94 -3.84 

viii 0.08 0.29 6.35 2.90 -3.82 -3.74 

*Calculated by dividing the number of pages containing technology exercises/examples by the number of 
teaching pages and then multiplying by a factor of 3 to reflect that, while images can be a distraction, technology 
exercises/examples likely interfere with concept reinforcement.  

**PS=Concept-building exercises/examples per teaching page minus the sum of technology exercises/examples 
per teaching pages, imagery per teaching pages and review pages per teaching pages. (See chapter 7, section 
7.4.2.2 for details.) 

*** PS=Concept-building exercises/examples per teaching page minus the sum of technology exercises per 
teaching pages and imagery per teaching pages. 

The final rank order of books based on Presentation Score is shown in Table 8.11 indicating 

that with or without review pages the order does not change, therefore review pages visibility 

will remain. Note that the rank order of books did not change. 

Table 8.11 Final Presentation Score Ranking 

Book 
Presentation Score 

With Review 
Pages 

Presentation 
Score Without 
Review Pages 

ii 5.27 5.36 
i 4.15 4.26 

iii 2.19 2.26 
vi -0.39 -0.23 
iv -0.62 -0.51 
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Table 8.11 (continued) 

Book 
Presentation Score 

With Review 
Pages 

Presentation 
Score Without 
Review Pages 

viii -3.82 -3.74 
vii -3.94 -3.84 

v -4.26 -4.18 

8.2.3. Measuring Cyclic Reinforcement—Calculating Maturity Scores (MS) 

Table 8.12 shows the number of pages devoted to each of the four categories of mathematical 

instruction described in Section 7.3.3 of Chapter 7 and gives the final MS. (The MS is the total 

of columns A, B, C, and D divided by the total number of teaching pages.) 

Table 8.12 Final Maturity Score 

Book 
Number 

A. 
Mathematical 

Tables 

B. 
Reduction of 
Functional or 
Operational 
Complexity 

C. 
Functional 
Analysis 

D. 
Trigonometric 
Functions and 

Identities 

# of 
Teaching 

Pages 
Final MS  

i 16 17 16 90 412 0.34 
ii 19 17 18 126 565 0.32 
iii 20 21 17 110 749 0.22 
iv 8 29 11 130 810 0.22 
v 0 13 7 93 751 0.15 
vi 0 15 8 133 905 0.17 
vii 0 10 8 130 804 0.18 
viii 0 8 2 92 786 0.13 

Average 7.88 16.25 10.88 113.00 722.75 0.22 

8.2.4. Calculating the Final Rigor Score (FRS) 

Determining the Final Rigor Score (FRS) for each textbook was a two-step process. The first 

step was to calculate a Presentation Maturity (PM) score for each book by multiplying the 

Presentation Score (PS) and the Maturity Score (MS). Multiplication was used because the 

Final Rigor Score target is 0 (a zero indicates no rigor adjustment is needed). Multiplying 

Maturity Scores ranging from 0 to <1 with Presentation Scores centralizes the results (i.e., 

groups them closer to zero. The results are shown in Table 8.13. 
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Table 8.13 Calculating Presentation Maturity Scores 

Book 
Number 

Presentation 
Score 

Maturity 
Score 

PM 
Score 

i 4.15 0.34 1.41 
ii 5.27 0.32 1.69 
iii 2.19 0.22 0.48 
iv -0.62 0.22 -0.14 
v -4.26 0.15 -0.64 
vi -0.39 0.17 -0.07 
vii -3.94 0.18 -0.71 
viii -3.82 0.13 -0.50 

The second step was to add the PM score to the Cohesive Continuum Score (see Table 8.8). 

The FRS closest to zero is the most rigorous textbook. Table 8.14 presents the data sorted by 

the FRS. 

Table 8.14 Final Rigor Scores Sorted by Rigor Score 

Rigor Ranking 
Book 

Number 
CC Final PM Score 

Final Rigor 
Score 

1 ii -3 1.69 -1.31 
2 iii -3 0.48 -2.52 
3 vi -3 -0.07 -3.07 
4 v -3 -0.64 -3.64 
5 i -6 1.41 -4.59 
6 iv -5 -0.14 -5.14 
7 vii -5 -0.71 -5.71 
8 viii -7 -0.50 -7.50 

One of the textbooks, number ii, Advanced Mathematics: A Precalculus Course, (1984), had a 

published review available. After running the algorithm, this review was consulted for 

comparison. The review identified the textbook as being a very good resource that covered the 

“usual” calculus prerequisites (Kenneth, 1984). The algorithm placed it as the most rigorous of 

the selected textbooks. The algorithm was then applied to 11 additional precalculus textbooks 

in order to provide a larger sample to facilitate analysis of whether precalculus textbooks have 

become less rigorous over time. 
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8.3. Applying the Rigor Algorithm to Additional Textbooks 

8.3.1. Identifying Additional Textbooks 

The following 11 secondary school precalculus textbooks published between 1965 and 2012 

were selected as representative of textbooks designed to prepare mathematically savvy 

students for success in year-13 calculus: 

ix. Mary P. Dolciani, Simon L. Berman, William Wooton, Modern Algebra and 

Trigonometry: Book 2, Structure and Method, 2d ed., (Boston: Houghton Mifflin 

Company, 1965). 

x. J.D. Harmer, Senior Mathematics Book 1 & 2, Revised ed., (E. Herman, 1978) 

OCLC#: 220214667 (2 Volumes Book 1 and Book 2). Only Book 1 was reviewed 

as Book 2 was Abstract Algebra and Elementary Calculus only. 

xi. Roland E. Larson, Robert. P. Hostetler, Precalculus, (Lexington MA: D.C. Heath 

& Co.,1989).  

xii. Robert Haese, Sandra Haese, Michael Haese, Roger Dixon, Jon Roberts, Michel 

Teubner, Anthony Thompson, Specialist Mathematics; Mathematics for Year 12, 

1st Ed., (Adelaide: Raksar Nominees Ry Ltd., 2002) and Robert Haese, Sandra 

Haese, Tom Van Dulken, Kim Harris, Anthony Thompson, Mark Bruce, Michael 

Haese, Mathematical Studies; Mathematics for Year 12, 2nd Ed., (Adelaide: Raksar 

Nominees Ry Ltd., 2006). 

xiii. Mal Coad, Glen Wiffen, John Owen, Robert Haese, Sandra Haese, Mark Bruce, 

Mathematics for the International Student, 1st Ed., (Adelaide: Raksar Nominees Ry 

Ltd., 2006). 
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xiv. Ron Larson, Robert Hostetler, Precalculus with Limits, 1st Ed., (Boston: Haughton 

Mifflin Co., 2007). 

xv. Paul Urban, David Martin, Robert Haese, Sandra Haese, Michael Haese, Mark 

Humphries, Mathematics for the international student; Mathematics HL (Core), 2nd 

Ed.,(Adelaide SA: Raksar Nominees Pty Ltd.,2008). 

xvi. Robert Blitzer, Precalculus, 4eth Ed., (Upper Saddle River, NJ: Prentice-Hall, Inc., 

2009). 

xvii. Michael Sullivan, Michael Sullivan III, Precalculus: Concepts Through Functions 

– A Right Triangle Approach To Trigonometry, 2nd Ed., (Boston: Prentice Hall 

Pearson Education, 2011). 

xviii. Eric Connally, Deborah Hughes-Hallett, Andrew M. Gleason, et al, Functions 

Modeling Change: A Preparation for Calculus, 4th Ed., (Hoboken NJ: John Wiley 

& Sons, Inc., 2011). 

xix. Mal Coad, Glen Wiffen, John Owen, Sandra Haese, Michael Haese, Mark 

Humphries, Mathematics for the International Student; Mathematical Studies SL, 

3rd Ed., (Adelaide SA: Haese and Harris Publications, 2012). 

8.3.2. Calculating Cohesive Continuum Scores 

The same process used to validate the rigor algorithm in Section 8.2.1 was used to determine 

final CCS for the 11 additional precalculus textbooks. Results are shown in Table 8.15. 
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Table 8.15 Cohesive Continuum Scores 

Book 
Continuity Across Chapters Cohesive 

Continuum 
Score 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 

ix -1 0 -1 -1 0 0 -1 -1 -1 -6 

x 0 -1 -1 -1 -1 -1 -1 -1 -1 -8 

xi -1 -1 -1 0 0 0 -1 -1 -1 -6 

xii -1 -1 0 0 -1 -1 0 -1 -1 -6 

xiii 0 -1 -1 0 -1 -1 -1 -1 -1 -7 

xiv -1 -1 -1 0 0 -1 0 -1 0 -5 

xv -1 -1 0 -1 -1 -1 -1 -1 -1 -8 

xvi -1 -1 -1 0 0 -1 -1 0 0 -5 

xvii -1 -1 -1 -1 0 0 0 0 0 -4 

xviii -1 -1 0 0 -1 -1 -1 -1 -1 -7 

xix -1 0 0 -1 0 -1 -1 -1 0 -5 

 
8.3.3. Calculating Presentation Scores (PS) 

The same process used to validate the rigor algorithm in Section 8.2.1 was used to determine 

final PS for the 11 additional precalculus textbooks. Results are shown in Table 8.16. Note 

that when the score in any section is a 1, it is a non-zero placeholder for texts that have no 

pages in that category. 

Table 8.16 Presentation Score Raw Data 

Book 
Teaching 

Pages 
Review 
Pages 

Chapters Sections 
Imagery 
Pages 

Technology 
Exercises 

Concept 
Exercises 

Imagery 
Infusion* 

  Tech 
Infusion** 

ix 572 76 15 139 15 45 4858 2.62% 0.93% 
x 124 6 4 31 1 1 280 0.81% 0.36% 
xi 730 86 11 73 220 473 5544 30.14% 8.53% 
xii 346 18 10 68 110 150 683 31.79% 21.96% 
xiii 553 147 17 119 374 84 1208 67.63% 6.95% 
xiv 810 39 10 67 360 1020 7880 44.44% 12.94% 
xv 832 48 29 200 218 667 3335 26.20% 20.00% 
xvi 1037 134 10 76 340 1193 7607 32.79% 15.68% 
xvii 996 121 12 84 309 944 7728 31.02% 12.22% 
xviii 608 102 14 67 14 1 4288 2.30% 0.02% 
xix 540 126 19 63 342 266 1102 63.33% 24.14% 

* Calculated by dividing the number of pages containing imagery by the number of teaching pages. 

 ** Calculated by dividing the number of technology exercises/examples by the number of concept 
exercises/examples. 
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Table 8.17 shows the presentation score analytics. 

Table 8.17 Presentation Score Analytics 

Book 
Review Pages 
per Teaching 

Pages 

Imagery per 
Teaching 

Pages 

Calculated* 
Technology 

Exercises per 
Teaching 

Pages 

Concept 
Exercises per 

Teaching 
Pages 

PS Including 
Review 
Pages** 

ix 0.13 0.03 0.24 8.49 8.10 

x 0.05 0.01 0.02 2.26 2.18 

xi 0.12 0.30 1.94 7.59 5.23 

xii 0.05 0.32 1.30 1.97 0.30 

xiii 0.27 0.68 0.46 2.18 0.79 

xiv 0.05 0.44 3.78 9.73 5.46 

xv 0.06 0.26 2.41 4.01 1.28 

xvi 0.13 0.33 3.45 7.34 3.43 

xvii 0.12 0.31 2.84 7.76 4.48 

xviii 0.17 0.02 0.00 7.05 6.86 

xix 0.23 0.63 1.48 2.04 -0.30 

*Calculated by dividing the number of pages containing technology exercises/examples by the number of 
teaching pages and then multiplying by a factor of 3 to reflect that, while images can be a distraction, technology 
exercises/examples likely interfere with concept reinforcement.  

**PS=Concept-building exercises/examples per teaching page minus the sum of technology exercises/examples 
per teaching pages, imagery per teaching pages and review pages per teaching pages. (See chapter 7, section 
7.4.2.2 for details.) 

The final rank order of books based on Presentation Score is shown in Tables 8.18. 

Table 8.18 Final Ranking of Books Based on Presentation Score 

Book 
PS Including 

Review 
Pages 

ix 8.10 

xviii 6.86 

xiv 5.46 

xi 5.23 

xvii 4.48 

xvi 3.43 

x 2.18 

xv 1.28 

xiii 0.79 

xii 0.30 

xix -0.30 
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8.3.4. Calculating Maturity Scores (MS) 

Table 8.19 shows the number of pages devoted to each of the four categories of mathematical 

instruction described in Section 7.3.3 of Chapter 7 and gives the final MS. (The MS is the total 

of columns A, B, C, and D divided by the total number of teaching pages.) 

Table 8.19 Final Maturity Score 

Book 
Number 

A. 
Mathematical 

Tables 

B. 
Reduction of 
Functional or 
Operational 
Complexity 

C. 
Functional 
Analysis 

D. 
Trigonometric 
Functions and 

Identities 

# of 
Teaching 

Pages 
Final MS  

ix 12 13 2 108 572 0.24 
x 0 7 0 0 124 0.06 
xi 7 15 15 157 730 0.27 
xii 0 14 1 26 346 0.12 
xiii 0 1 6 10 553 0.03 
xiv 0 8 11 130 810 0.18 
xv 0 11 13 8 832 0.04 
xvi 0 21 15 177 1037 0.21 
xvii 0 11 18 98 996 0.13 
xviii 0 5 11 82 608 0.16 
xix 0 26 2 32 540 0.11 

Average 1.73 10.50 8.55 75.27 597.50 0.14 

8.3.5. Calculating Final Rigor Score 

The first step in calculating a final rigor score for the additional 11 textbooks was to calculate 

a Presentation Maturity (PM) score for each book by multiplying the Presentation Score (PS) 

and the Maturity Score (MS). The results are shown in Table 8.20. 

Table 8.20 Calculating Presentation Maturity Scores 

Book 
Number 

Presentation 
Score 

Maturity 
Score 

PM 
Score 

ix 8.10 0.24 1.94 
x 2.18 0.06 0.13 
xi 5.23 0.27 1.41 
xii 0.30 0.12 0.04 
xiii 0.79 0.03 0.02 
xiv 5.46 0.18 0.98 
xv 1.28 0.04 0.05 
xvi 3.43 0.21 0.72 
xvii 4.48 0.13 0.58 
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Table 8.20 (continued) 

Book 
Number 

Presentation 
Score 

Maturity 
Score 

PM 
Score 

xviii 6.86 0.16 1.10 
xix -0.30 0.11 -0.03 

The second step was to add the PM score to the Cohesive Continuum Score (see Table 8.15). 

The FRS closest to zero is the most rigorous textbook. Table 8.21 presents the data sorted by 

the FRS. 

Table 8.21 Final Rigor Scores Sorted by Rigor Score 

Rigor 
Ranking 

Book 
Number 

CC Final PM Score 
Final Rigor 

Score 
1 xvii -4 0.58 -3.42 
2 xiv -5 0.98 -4.02 
3 ix -6 1.94 -4.06 
4 xvi -5 0.72 -4.28 
5 xi -6 1.41 -4.59 
6 xix -5 -0.03 -5.03 
7 xviii -7 1.10 -5.90 
8 xii -6 0.04 -5.96 
9 xiii -7 0.02 -6.98 
10 x -8 0.13 -7.87 
11 xv -8 0.05 -7.95 

8.4. Pooling Results and Final Analysis 

8.4.1. Pooled Results 

Table 8.22 shows the final rigor score calculations for all 19 textbooks sorted by FRS and 

includes the year of publication for each book. 

Table 8.22 Results Sorted by Final Rigor Score Including Publication Year 

Rigor 
Rank 

Book 
# 

Rigor 
Score 

Year 
Teaching 

Pages 
CCS 

PM 
Score 

Imagery 
Infusion 

Tech 
Infusion 

1 ii -1.31 1984 565 -3 1.72 13.27% 2.25% 

2 iii -2.52 1992 749 -3 0.48 24.03% 15.00% 

3 vi -3.07 2002 905 -3 -0.07 29.17% 32.82% 

4 xvii -3.42 2011 996 -4 0.58 31.02% 12.22% 
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Table 8.22 (continued) 
 

Rigor 
Rank 

Book 
# 

Rigor 
Score 

Year 
Teaching 

Pages 
CCS 

PM 
Score 

Imagery 
Infusion 

Tech 
Infusion 

5 v -3.64 2001 751 -3 -0.64 38.62% 61.11% 

6 xiv -4.02 2007 810 -5 0.98 44.44% 12.94% 

7 ix -4.06 1965 572 -6 1.94 2.62% 0.93% 

8 xvi -4.28 2010 1037 -5 0.72 32.79% 15.68% 

9 i -4.59 1972 412 -6 1.41 0.24% 0.06% 

10 xi -4.59 1989 730 -6 1.41 30.14% 8.53% 

11 xix -5.03 2012 540 -5 -0.03 63.33% 24.14% 

12 iv -5.14 1993 810 -5 -0.14 38.02% 34.44% 

13 vii -5.71 2005 704 -5 -0.71 42.61% 48.22% 

14 xviii -5.90 2011 608 -7 1.10 2.30% 0.02% 

15 xii -5.96 2003 346 -6 0.04 31.79% 21.96% 

16 xiii -6.98 2004 553 -7 0.02 67.63% 6.95% 

17 viii -7.50 2012 786 -7 -0.50 28.63% 73.03% 

18 x -7.87 1978 124 -8 0.13 0.81% 0.36% 

19 xv -7.95 2008 832 -8 0.05 26.20% 20.00% 

8.4.2. Analysis of Results 

Final rigor scores ranged from as high as -1.31 to as low as -7.95 as shown in Table 8.22. 

There is a fairly strong correlation between CCS and FRS (0.875) evident in the final sorted 

order. Chronological correlation to lower rigor scores is less pronounced than expected, yet 

there are some notable correlations that can be exploited to draw conclusions here. 

SPSS v20.0 was run against CCS, PM score, FRS, year of publication, number of teaching 

pages, Imagery Infusion and Technology Infusion for the purposes of revealing correlations 

both positive and negative. Table 8.23 displays the results. 

Table 8.23 Rigor Score Correlations 

 
CCS 

PM 
Score 

FRS Year 
Teaching 

Pages 
Imagery 
Infusion 

Tech 
Infusion 

Cohesive 
Continuum 
Score 

Pearson Correlation 1 -.028 .875** -.115 .265 .044 .123 

Sig. (2-tailed) 
 

.913 .000 .649 .289 .862 .626 

 



222 
 

Table 8.23 (continued) 

 
CCS 

PM 
Score 

FRS Year 
Teaching 

Pages 
Imagery 
Infusion 

Tech 
Infusion 

PM Score 
Pearson Correlation -.028 1 .460 -.624** -.200 -.619** -.816** 

Sig. (2-tailed) .913 
 

.055 .006 .426 .006 .000 

Final Rigor 
Score 

Pearson Correlation .875** .460 1 -.405 .138 -.261 -.286 

Sig. (2-tailed) .000 .055 
 

.096 .585 .296 .250 

Year 
Pearson Correlation -.115 -.624** -.405 1 .423 .566* .414 

Sig. (2-tailed) .649 .006 .096 
 

.080 .014 .088 

Pages 
Pearson Correlation .265 -.200 .138 .423 1 .144 .280 

Sig. (2-tailed) .289 .426 .585 .080 
 

.569 .261 

Imagery 
Infusion 

Pearson Correlation .044 -.619** -.261 .566* .144 1 .348 

Sig. (2-tailed) .862 .006 .296 .014 .569 
 

.158 

Tech 
Infusion 

Pearson Correlation .123 -.816** -.286 .414 .280 .348 1 

Sig. (2-tailed) .626 .000 .250 .088 .261 .158 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

Tech Infusion was negatively correlated significantly with the PM score, indicating that the 

more infusion of technology, the more rigor degradation; likewise, with Imagery Infusion. The 

year of the book is also negatively correlated to the PM score, indicating that newer books had 

a lower PM score. 

8.4.2.1. Comments on Imagery and Technology 

The expectation described in previous chapters was that newer textbooks were larger, 

primarily because of imagery and technology infusion. More study needs to be done in this 

area as there were notable exceptions to this expectation. Book xviii, for example, is relatively 

new, having been published in 2011; yet it scored 2.3% and 0.02% for imagery and 

technology infusion. Noteworthy was the fewer number of pages in this textbook compared to 

most others published around the same time—a reflection of minimal imagery and technology 

interferences. Its FRS reflected the fact that it failed to conform to the Carlson-derived topic 
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order rather than that concept maturity was interrupted by imagery and technology infusion. In 

general, however, as textbooks became newer and imagery and technology infusion increased, 

the FRS was affected negatively. 

8.4.2.2. Presentation Maturity Score Factors 

The bivariate correlations in Table 8.23 show significant correlations negatively linking PM 

scores with: the age of the textbook, photos and other unnecessary imagery, and technology 

instruction and exercises. That is, the newer textbooks generally had lower PM scores. 

Imagery Infusion was strongly correlated with the newness of the textbook so that the newer 

the textbook, the more imagery present. When coupled with the negative correlation with 

presentation and maturity scores, this affirms the hypothesis that proliferation of imagery 

degrades the rigor of material presented. Technology Infusion is positively correlated but 

SPSS has evaluated it as only almost significant at 0.414 with 0.088 significance in a 2-tailed 

test. The same can be said for the size of the textbook and the year of publication, also 

positively correlated and close to significant at .080. It is likely that, processing more 

textbooks through the rigor algorithm would strengthen the already significant results and 

move the “close to significant” results into the significant category. 

Further, though not manipulated to do so, the PM scores are not correlated to the CC scores, 

indicating that they are not measuring the same thing. Perhaps revisiting elements of the order 

of topics in the Carlson-derived topic order, such as placement of Polynomials and Rational 

Functions chapters in relation to chapters on Equations and Inequalities (as addressed in 

Chapter 7), would yield different results. Yet, the PM scores’ almost significant score of 0.460 

(2-tailed, 0.055) coupled with the very strong positive correlation between the FRS and the 
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CC scores seems to indicate that the Carlson-derived topic order is valuable for evaluating the 

rigor of a textbook.  

8.4.3. Linking the Rigor Algorithm to SEM Results 

The SEM described in Chapter 6 demonstrated the centrality and significance of the year-12 

precalculus textbook and its use to students in year-12 precalculus classes; therefore, its use 

and centrality cannot be underemphasized. Accordingly, the year-12 precalculus textbook’s 

ability to do this profoundly important task had to be critiqued as to its adequacy as measured 

against the rigorously presented minimum calculus prerequisites. This led to development of a 

measuring tool (called the rigor algorithm in this research) to provide a resource for teachers 

and mathematics departments to measure and, where needed, to augment topic items so that 

alignment between year-12 precalculus textbook content and year-13 calculus prerequisites is 

satisfied.  

8.5.  Conclusion 

This chapter has demonstrated the implementation of an MRP-based rigor algorithm that 

provides mathematics department with a tool for evaluating year-12 precalculus textbooks as 

to whether the topics presented are adequately covering year-13 calculus prerequisites. Using 

the tool may reveal inadequacies in textbooks that can be addressed with extracurricular 

resources of the department’s choice. The adequacy of those additional resources can also be 

assessed using the algorithm (or a portion of the algorithm). Moreover, the principles behind 

the algorithm can be applied to textbooks used at any stage in the mathematics curriculum to 

prepare students for their subsequent courses. 
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Chapter 9. Conclusions, Implications and Recommendations 

9.1. Introduction 

This project was fueled initially from the researcher’s classroom experience in secondary 

advanced mathematics and university calculus courses in Australia and the United States 

where it became apparent that there was a misalignment of secondary advanced mathematics 

exit standards and university calculus entrance requirements. This fact was also readily 

apparent from the poor scores of university students on calculus tests, the number of students 

failing to complete their calculus courses, and from professor concerns about the inadequate 

skill set of the incoming mathematics students—particularly those needed for the first course 

in elementary calculus introducing limits, derivatives, and anti-derivatives, and applications of 

those three topics. Despite this strong evidence about the lack of preparedness of secondary 

students for advanced mathematics, there was also evidence that secondary school students 

and their teachers had full confidence in their mathematical readiness for university calculus. 

This project was designed to explore this misalignment. 

The researcher, already sensitive to the fact that important complexity-reducing techniques 

had been omitted from many secondary curricula and textbooks, embarked on this project to 

determine whether lack of rigor in the secondary advanced mathematics textbook was a 

significant reason that many secondary students believed themselves ready for their university 

elementary calculus course even though they lacked the skill set needed to succeed in that 

course. This project sought to investigate the distinct possibility that some secondary 

precalculus textbooks were designed more as a casual resource for secondary student 

enjoyment of mathematics as opposed to solid preparation and practice for the next course in 

mathematics. When the study revealed a lack of rigor in the presentation of necessary topics, 
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both in order and content in some secondary mathematics textbooks, it inspired development 

of a rigor algorithm tool based on Material Requirements Planning (MRP) that mathematics 

teachers could use to assess rigor shortcomings in their textbooks so that they could adapt their 

curricula to better align secondary exit requirements with tertiary entrance requirements. 

9.2. Research Design 

9.2.1. Incorporating MRP 

The MRP strategy of backwards scheduling was incorporated into the project as an optimal 

tool for guiding curriculum design and planning. The underlying assumption was that MRP 

could be used to ensure that the minimum exit requirements of one course (as codified in 

curricula and syllabi) would satisfy the minimum entrance requirements of the subsequent 

course. Though the project focused specifically on the alignment of exit and entrance 

requirements for year-12 precalculus and year-13 calculus courses, it was understood that the 

same MRP strategy could be applied iteratively to all previous and subsequent mathematics 

courses and even to courses outside of the discipline of mathematics. Accordingly, teacher and 

professor survey questions were designed to reveal misalignment between secondary 

advanced mathematics curricula and university calculus entrance requirements. 

9.2.2. Survey Instrument Design 

Rigor has many facets that were outside the scope of this study, so it was necessary to design 

an experiment that could query students and teachers/professors in both secondary and 

university settings regarding various areas of student skill and textbook use to narrowly 

investigate how the textbook and its use contributed to the general successful completion of 

the advanced secondary mathematics curriculum but unsuccessful preparation for subsequent 

university coursework. As described in Chapter 3, the design of surveys for secondary 
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students, secondary teachers, secondary principals, university students, and university 

professors went through a pilot and final phase. The intention in the design was to determine 

whether secondary curriculum completion (via the textbook) was perceived as finished and 

adequate preparation for university calculus. 

Questions to secondary students targeted textbook use, textbook trust/comfort, textbook like, 

whether the teacher used the textbook, and sought to determine whether completion of the 

textbook requirements (i.e., homework, exercises, and assessments) gave students confidence 

that they were ready for the next level of mathematics. Questions to secondary teachers 

targeted their appraisal of student mathematical skills, confidence, use and like of the textbook 

plus whether the teachers used the textbook and whether they augmented it with other 

materials. Tertiary students were asked similar questions about their secondary and tertiary 

textbooks with the expectation that student responses to questions about their secondary 

textbooks would be influenced by how well or how poorly they were doing in their current 

course. Questions to tertiary professors asked about student use and trust of the textbook as 

well as solicited a general appraisal of current and past student readiness. 

9.2.3. Rigor Algorithm Design 

The rigor algorithm was developed to expose weaknesses in the textbook coverage of required 

material so that when the advanced secondary curriculum, delivered via the textbook, was 

analyzed by the tool, the discovered weaknesses and strengths could be assembled into a score 

revealing the extent to which a textbook was sufficient to the task of preparing students for the 

next course in mathematics. The tool was also designed so that, when the textbook fell short in 

the rigor score, the specific weakness could be implicitly exposed so that teachers could 

incorporate steps to mitigate those shortcomings. 
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9.3. Project Implementation 

9.3.1. Data Collection  

All student data was collected via in-person (on campus, in the classroom) and online surveys 

over a span of three years. In-person surveys were administered by the researcher and his 

assistants, and by teachers and professors. The online surveys were administered via Google 

Forms and Google Sheets. Teacher/professor data was collected in the same way. 

The secondary student survey was given to 566 year-12 students in the United States and 

Australia. The secondary students in the United States were attending secular public and 

religious private schools; those in Australia were attending secular private and religious 

private schools. All schools in the U.S. and Australia were co-educational. The tertiary student 

survey was given to 2,195 students attending two engineering universities—one in Australia 

and one in the United States. 

The secondary school teacher survey was given to 41 teachers, 68% of whom were in 

Australia and 32% of whom were in the United States. The tertiary professor survey was given 

to 17 professors, 29% of whom were in Australia and 71% of whom were in the United States. 

9.3.2. Data Processing and Statistical Analysis  

Excel spreadsheets were used as the initial data containers for the data collected from the 

paper surveys and Google Forms/Sheets. Initial data cleansing was performed via statistical 

capability of Excel. Data was then imported into SPSS v20.0 for descriptive statistics and 

continuation of data cleansing as detailed in Chapter 4. 

SPSS was then used to implement Exploratory Factor Analysis (EFA) and initial 

Confirmatory Factor Analysis (CFA) on the cleansed student data as detailed in Chapters 5 

and 6. The output of the CFA was then exported to Mplus v7.1 for finalizing the CFA in 
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preparation for Structured Equation Modelling (SEM) in order to compile collected data and 

determine whether there were underlying relationships in the data that could be grouped as 

factors contributing to (or possibly, causing) a particular outcome. 

9.4. Summary of Findings 

With respect to the first research question, (Is the textbook central to instruction—used, 

trusted, and liked?), the findings reflected in the secondary and tertiary SEMs demonstrate the 

centrality of the year-12 mathematics textbook with its use, trust, and parental influence 

leading to the student’s comfort with the textbook. Moreover, the tertiary SEM demonstrated 

that student comfort with the textbook continued into the beginning of the year-13 university 

calculus term and the literature affirmed the perception of the year-13 university calculus 

student in agreement with the model results. Literature solidly argues that the mathematical 

textbook is the key curriculum delivery system for the requirements contained in the 

curriculum that is aimed at preparing the year-12 precalculus student for year-13 university 

calculus. 

With regard to the second research question, (Does the textbook contribute to the student and 

teacher perception of student readiness?), the research and literature agree that U.S. and 

Australian year-12 students are inadequately prepared for their year-13 calculus course. The 

research and literature also agree that U.S. and Australian year-12 students and their teachers 

are confident that the students are prepared for year-13 calculus and that year-13 students are 

confident in their readiness for calculus. In alignment with the literature that the textbook is 

the central component of curriculum delivery for year-12 precalculus mathematics students, 

the secondary SEM and the secondary teacher data presented in this research project affirm 

that the textbook is central as a source of content and confidence. Student and teacher 
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perception of year-12 student readiness was based on the successful completion of curriculum 

requirements as delivered by the year-12 precalculus textbook, thus confirming the importance 

of the precalculus textbook containing content that is consistent with year-13 calculus 

prerequisites. 

The tertiary SEM affirmed the year-13 students’ confidence in their readiness by affirming 

their use and like of the year-12 precalculus textbook. That is, the year-13 calculus students’ 

positive assessment of their previous year-12 precalculus textbook positively influenced their 

perception of readiness. An additional finding of the model was that year-13 calculus students 

were not comfortable using their year-13 textbook, but the model did not explain why this was 

the case. It is possible that this is because students were so accustomed to the non-rigorous 

presentation of topics in their year-12 precalculus textbooks that they found the year-13 

calculus textbooks dry and complicated. Alternatively, it could be because, in some cases, 

calculus professors spent the first part of the course augmenting the textbooks with remedial 

handouts. Because the surveys were given early in a student’s university experience, if 

professors were focused on remedial instruction through handouts, it would influence the 

students’ responses to questions about year-13 textbook use. 

The tertiary SEM modelled the students’ perceived readiness as a result of the confidence 

acquired in the use and comfort with the year-12 precalculus textbook and, in this way, as 

supported by the literature, demonstrated the connection between the rigor of the secondary 

advanced mathematics textbook and university student perception of readiness in such a way 

that a less rigorous secondary textbook (i.e., easy coursework) promoted a higher level of 

perceived readiness. Coupling this finding with the university professors’ appraisal of actual 
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student mathematical maturity and readiness, the centrality of the year-12 precalculus 

textbook to both maturity and readiness (and its need for rigor) was affirmed. 

Given the findings relating to the first two research questions, the following conundrum 

pointed to the third question: “Can MRP-derived year-13 calculus prerequisites measure rigor 

adequacy of year-12 precalculus textbooks?” Tertiary professors at the universities surveyed 

in the informal discussion groups and in the survey question answers agreed that the student, 

though confident in mathematical preparedness is actually not prepared for year-13 calculus. 

This led to research into why, if the year-12 precalculus mathematics textbooks are central in 

the presentation of precalculus mathematics and if the year-12 student and their teachers are 

confident that the successful completion of the textbook’s prescribed mathematics is adequate 

preparation for the year-13 calculus, are the students not prepared for their university course? 

With personal experience and literature indicating a misalignment of year-12 core 

mathematical outcomes with year-13 calculus prerequisites, a rigor tool was developed to 

enable inspection and measurement of the alignment of the content of year-12 precalculus 

textbooks with calculus prerequisites. The tool indicated the level of conformity via a rigor 

score. Misalignment was quantitatively measured by the rigor tool to show actual omissions 

from year-12 precalculus textbooks of necessary calculus requirements. It also measured the 

extent to which the necessary content continuum was interfered with by irrelevant material. 

The tool demonstrated that, as textbooks became newer and imagery and technology infusion 

increased, rigor scores were negatively affected. 

The data collected from secondary students and teachers and from tertiary students and 

professors affirmed that rigor changes in year-12 precalculus textbooks were negatively 

impacting mathematical maturity and readiness for year-13 calculus courses. The factors 
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developed in the secondary SEM (textbook use, textbook trust, parental influence, and 

students’ perception of readiness) which contributed to textbook comfort led to the logical 

linear consequence that the textbook is an influencer of mathematical maturity (i.e., the better 

the textbook, the better the students’ mathematical maturity and vice-versa). The secondary 

SEM affirmed the centrality of, and student comfort with, the textbook, whereby successful 

completion of the material presented in the textbook promoted confidence in the students, 

teachers, and parents regarding students’ preparation for year-13 calculus. Accordingly, were 

the secondary mathematical textbooks sufficiently rigorous and appropriately aligned with 

year-13 tertiary mathematical prerequisites, it would be logical to assume that the 

mathematical inadequacies in year-12 preparation for year-13 calculus cited in the literature 

were caused by reasons other than the year-12 precalculus textbook. Nevertheless, the SEM 

has shown year-12 students and their teachers to be confident in readiness based on the 

standard of the textbook. In cases where the secondary precalculus textbook lacks rigor and is 

out of alignment with year-13 calculus prerequisites, this confidence does not reflect reality. 

Numerous studies have been completed, or are underway, to discover possible remedies, but 

the research presented here has positively identified the year-12 precalculus textbook as an 

addressable cause. 

9.5. Limitations 

9.5.1. Sample Size Constraints 

Because it was infeasible to sample the universal population of secondary and tertiary 

mathematics students, it was necessary to create a representative sample. It is understood that 

when sample sizes are limited, inferential processes (as opposed to the whole population) 

mean that the representative sample is limited in its modeling of the actual population. These 
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limitations were intentionally offset with stratified sampling, statistically based data cleansing 

strategies, and by comparing findings with anecdotal data collected from multiple resources 

(as presented in Chapter 4). 

9.5.2. Student Identity Constraints 

Due to privacy limitations, direct tracking of students from secondary to tertiary was not 

possible. Thus, this project could not draw a direct connection between specific students and 

their performance in secondary and tertiary mathematics courses or between specific students 

and their secondary and tertiary textbooks. However, these constraints were mitigated by 

collecting data in a narrow window of time (many tertiary students who took the survey in 

their first semester of college had graduated within the previous three months). The content of 

university calculus textbooks has changed little over the years while secondary precalculus 

textbooks are regularly revised. By conducting data collection within a three-year time span, it 

was possible to draw conclusions about textbook influence on readiness for tertiary courses for 

the representative sample of students surveyed. Thus, the findings of this study form a sturdy 

foundation for future studies designed and implemented to target declining rigor of secondary 

mathematics textbooks as a definite contributor to declining university mathematical 

readiness. 

9.6. Recommendations 

9.6.1. Affirm Findings through a Targeted, Longer Study 

Additional data collection that directly tracked specific students from their secondary to 

tertiary experience across multiple revisions of precalculus textbooks will likely affirm the 

findings of this study and mitigate the limitation imposed by privacy requirements. Though 

this study (three years of data collection) coincided with the typical cycle of textbook 
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revisions, a longer study spanning more revisions may more starkly show the secondary 

advanced mathematical exit standards diverging from the tertiary calculus prerequisites. 

9.6.2. Reestablish Universities as the Drivers of Secondary Exit Requirements 

For secondary mathematical textbooks to be aligned with university entrance requirements, 

tertiary institutions need to drive the requirements to the secondary systems so that 

mathematical curriculum can be reformed to promote the student (K-12) toward mathematical 

mastery for the student’s exit sector. MRP strategies that utilize the clear understanding of 

minimal product requirements (secondary student mathematical readiness) for the customer 

(tertiary mathematics department elementary calculus prerequisites, for this study) 

convincingly surface as a rational option in secondary mathematics departments’ adoption of 

curriculum and textbooks. Such a strategy would have a cascading effect, in that, if secondary 

advanced mathematical curricula and textbooks were driven by university prerequisites, then 

the requirements of the secondary advanced mathematics curricula would then drive the 

prerequisites for previous mathematics courses across a student’s K-12 experience. 

9.6.3. Using the Rigor Tool to Enhance Current Curricula and Textbooks 

The altering of the K-12 curricula cannot happen in any one school year, but mathematics 

departments can use the rigor algorithm described in this study to survey their current 

precalculus textbooks to determine whether optimal topic order, reduction of operational 

complexity, and maturing of concepts through a smooth continuum are present. If they are not 

present, departments can augment the textbook with the missing material, skip over 

unnecessary material, and order/alter the presentation to align with the rubric presented in 

Chapters 7 and 8. Additionally, departments could adapt the rigor tool/algorithm to perform 

the same function for textbooks used in previous mathematics courses. 
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9.7. Conclusion 

The data indicate that the rigor needed for student mathematical understanding and success in 

university elementary calculus is affected by the presentation of prerequisite material. This 

precept-upon-precept (generative) endeavor is sufficiently important that even the “best” of 

textbooks may not help prepare students for success in year-13 calculus if prerequisite topics 

are not included (in proper order, free of distractions) in year-12 precalculus courses. 

Additionally, the success of students in year-12 precalculus courses will be dependent on 

generative prerequisites being covered in prior mathematics courses. 

Further, this study has found that mathematical textbook rigor and student mathematical 

preparation are connected in a profound way. Thus, the textbook, as the curriculum delivery 

tool, must align itself with the minimum deliverable requirements since it is central in the 

effective conveyance of necessary mathematical content, the ordering of that content, the 

maintenance of a cohesive continuum, and the exercising of that content for both teachers and 

students. 

While other factors (teacher education and ability, environmental factors, student 

demographics, etc.) may also influence student mathematical equipping and maturity, this 

study has demonstrated the centrality of the textbook in the mathematical environment and 

places the mathematics textbook, by virtue of the findings, as foundational for conveying what 

is needed to meet and exceed student exit requirements. 
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Appendices 

Appendix A. Data Driven Survey Instrument Construction 

Secondary Student Final Survey Instrument 
 
Likert Questions 
Pre-year 12 textbook experience (1, 4, 5, 6) 
Pre-year 12 environmental experiences (1, 2, 4, 7, 9, 11, 15, 17, 19) 
Year 12 preparedness appraisal (1, 2, 4, 5) 
Year 12 math textbook use (5, 6, 7, 8, 9, 13, 16) 
Year 12 textbook value (3, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19, 20) 
Year 12 teacher experience (6, 7, 11, 15, 18, 19, 20) 
Year 12 examination success estimation (2, 5, 14, 16) 
Year 12 student maturity (1, 2, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20) 

Demographic Questions 
Gender (0/1) 
Age (Years) 

Secondary Teacher Final Survey Instrument 
 

Likert Questions 
Textbook evaluation (2, 7, 10, 11, 14, 15, 17, 18, 19, 20) 
Textbook use (1, 3, 12, 13, 14, 15, 21) 
Student evaluation (1, 12, 13, 16, 21) 
Student maturity – compare and contrast (1, 3, 4, 5, 6, 8, 9, 12, 13, 21) 

Demographic Questions 
Gender (0/1) 
Age (years) 
Education Level  
Years teaching mathematics 
Number of different textbooks used 

Tertiary Student Final Survey Instrument 
 

Likert Questions 
Pre-Year 13 preparation (1, 5, 6, 17) 
Pre-Year 13 textbook value (1, 2, 3, 4, 5, 7, 8, 10) 
Pre-Year 13 teacher experience (3, 4, 7, 16, 19, 20) 
Year 13 textbook experience (6, 9, 10, 12, 13, 14, 16, 19) 
Year 13 student maturity (11, 12, 13, 14, 15, 17) 
Year 13 examination success estimation (11, 15, 17) 
Year 13 math textbook value (6, 9, 10, 13,14, 16, 18) 
Year 13 student maturity (1, 2, 8, 9, 12, 13, 15, 18, 20) 
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Demographic Questions 
Gender (0/1) 
Age (years) 
Experience 
Placement Test 
Current mathematics class 
High School Name 
High School State 
High School City 
High School Country 
High School Graduation Year 

Tertiary Teacher Final Survey Instrument 
 
Likert Questions 
Textbook evaluation (1, 7) 
Textbook use (1, 2, 3) 
Student evaluation (3, 4, 5, 6, 8) 
Student maturity—compare and contrast (1, 8, 9, 10) 

Demographic Questions 
Gender (0/1) 
Age (years) 
Number years teaching math 
Education 
Number years teaching 1st year engineering math 
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Appendix B. Survey Instruments 

Secondary Student Pilot Survey 
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240 
 

 
Figure B-1 Secondary Student Pilot Survey Instrument 
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Secondary Student Final Survey Instrument 

In the Secondary Student Survey, Column “C” refers to the categories and Column “Q” refers 
to question numbers.  
 

 
Figure B-2 Secondary Student Final Survey Instrument  
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Secondary Teacher Pilot Survey Instrument 
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Figure B-3 Secondary Teacher Pilot Survey Instrument 
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Secondary Teacher Final Survey Instrument 

 
Figure B-4 Secondary Teacher Final Survey Instrument  
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Tertiary Student Pilot Survey Instrument 
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Figure B-5 Tertiary Student Pilot Survey Instrument 
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Tertiary Student Final Survey Instrument 

 
Figure B-6 Tertiary Student Final Survey Instrument  
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Tertiary Professor Pilot Survey Instrument 
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Figure B-7 Tertiary Professor Pilot Survey Instrument 
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Tertiary Professor Final Survey Instrument 

 
Figure B-8 Tertiary Professor Final Survey Instrument 



252 
 

Appendix C. Supporting Tables  

Table C-1 Raw Survey Data For Final MSA Computation in Table C-2 
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Table C-2 shows the merging of university professors’ gender, age, education, and experience 

pertaining to survey answers for V3 and V9 (general maturity and mathematical skill). 

Credential factor pertained to skill analysis and experience factor to maturity analysis. 

Combined Coefficient is the mean of the coefficients calculated for V3 and V9. 

Table C-2 Professor Demographic Data Relating to Survey Answers for V3 & V9 

Gender 
     

Gender 
     

 Female Male Total 
V3 

Coefficient   
Female Male Total 

V9 
Coefficient 

Averaged 
Coefficient 

V3 8 9 17 
  

V9 8 9 17 
  

Average 4.550 4.330 
   

Average 3.750 3.560 99999999 
  

Dispersal 2.141 2.292 
 

0.151 
 

Dispersal 1.765 1.885 
 

0.120 
 

            
Credential 

     
Credential 

     

 
Female Male 

    
Female Male 

   

 
8 9 17 

   
8 9 17 

  
Degree 2.13 2.33 

   
Degree 2.13 2.33 

   
Factor 1.002 1.234 

 
0.231 

 
Factor 1.002 1.234 

 
0.231 

 

            
Experience 

     
Experience 

     

 
Female Male 

    
Female Male 

   

 
8 9 17 

   
8 9 17 

  
Sum Ages 370 360 

   
Sum Ages 370 360 

   

Sum 
Experience 

122 153 
   

Sum 
Experience 

122 153 
   

Factor 1.427 1.246 
 

0.182 
 

Factor 1.427 1.246 
 

0.182 
 

            
Average 

   
0.166 

     
0.176 0.171 
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Table C-3 Data Points Provided and Derived for University Professors 

University 
Teachers 

Distribution of Data 
from 3.a & 3. b 

Population Data 
With Filler 

Survey Items 
V3+V9 

1 Low US 25 9 
2 filler 27 5 
3 Low US/AUS 28 10 
4 filler 29 9 
5 filler 31 7 
6 filler 

  
7 filler 32 5 
8 filler 33 8 
9 filler 34 10 

10 High US/AUS 35 10 
11 Low w/CC 36 9 
12 filler 37 6 
13 filler 38 9 
14 filler 39 7 
15 High US 40 9 
16 filler 43 7 
17 High w/CC 46 7 

 
Mean 34.53125 7.9375 

 
Variance 32.67089844 2.8625 

    
    
 Beta 0.087616201  

 

Table C-4 Application of the Weighting Calculation as shown in Table C-5 

Education 
Credential 

University 
Teachers 

Distribution of Data 
from 3.a & 3.b 

Population 
Data 

With Filler 

Survey 
Items 

V3+V9 

Weighting 
2.24 

MA 1 Low US 25 9 20.16 
MA 2 filler 27 5 11.2 
MA 3 Low US/AUS 28 10 22.4 
PHD 4 filler 29 9 20.16 
MA 5 filler 31 7 15.68 
PHD 6 filler   
BA 7 filler 32 5 11.2 
MA 8 filler 33 8 17.92 
BA 9 filler 34 10 22.4 
BA 10 High US/AUS 35 10 22.4 

PHD 11 Low w/CC 36 9 20.16 
PHD 12 filler 37 6 13.44 
MA 13 filler 38 9 20.16 
PHD 14 filler 39 7 15.68 
MA 15 High US 40 9 20.16 
PHD 16 filler 43 7 15.68 
PHD 17 High w/CC 46 7 15.68 

Mean 34.53 7.94 17.78 
Variance 32.67 2.86 14.36 

Beta 0.439623049 
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To calculate MSAR and the weighting for the sample data values, age, experience, gender and 

educational level were analyzed using the data in this table. 

Table C-5 Calculating MSAR and Sample Data Weighting 

Sex Age Exp Edu Edu Score 

0 30 5 MA 2 
1 50 25 MA 2 
0 50 20 MA 2 
1 50 20 PHD 3 
0 40 3 MA 2 
0 50 9 PHD 3 
0 50 20 BA 1 
1 50 25 MA 2 
1 30  BA 1 
1 30 8 BA 1 
1 50 25 PHD 3 
0 40 25 PHD 3 
0 55 20 MA 2 
1 50 25 PHD 3 
0 55 20 MA 2 
1 50 25 PHD 3 
1 40 20 PHD 3 

 45.29 18.44  2.24 
1 50.00 25.00  2.00 

8.56 7.70 0.75 
 73.35 59.33  0.57 
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Appendix D. Reverse Coding Process 

Table D-1 shows the rotated matrix for Imputation 3 with |suppression of coefficients| <0.33 

using Principal Component Analysis and Varimax rotation. 

Table D-1 Secondary Student Data Imputation 3 Rotated Component Matrix 

Variables 
Component (Factor) 

1 2 3 4 5 6 
V5 

  
.819 

   
V6 

  
.697 

   
V7 

  
.552 

   
V8 

 
.360 .670 

   
V9 .555 -.347 

    
V10 .679 

     
V11 

 
.671 

    
V12 -.467 .533 

    
V13 

    
.794 

 
V14 

 
.473 

    
V15 

 
.727 

    
V16 

   
-.604 

  
V17 

 
.381 

   
.633 

V18 
     

.838 
V19 

   
.798 

  
V20 

 
.465 

 
.421 

  
V21 

    
.703 

 
V22 .796 

     
V23 .698 

     
V24 -.443 

  
.581 

  

Note that four of the variables (V9, V12, V16, and V24) in Table 5.12 are negatively loaded 

but that V16 does not have any cross-loading. To determine if reverse coding would allow 

V16 (survey question #12, “I have regular help with my math”) to be loaded onto component 

(factor) 4 without affecting other variables, the rotated component matrix was re-run with the 

reverse coding (i.e., V16R as “I do not have regular help with my math.”) to make the 

direction of the item (question) consistent with V19, V20, and V24. Table D-2 shows the 

statistics for this variable (question) and Table D-3 depicts the rotated component matrix with 

V16R (reverse coded V16) with |suppression of coefficients ≤ 0.33 illustrating that V16R did 

load onto component 4 without affecting other variables. 
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Table D-2 Secondary Student Data V16/Q12 Statistics 

Statistic V16/Q12 V16R/Q12R 
Median 3 4 
Mean 3.1 3.9 
Mode 3 4 
Max 6 6 
Min 1 1 

1=Strongly Agree; 6=Strongly Disagree 

Table D-3 Secondary Student Data Imputation 3 Rotated Component Matrix V16 Reverse 
Coded 

Variables 
Component 

1 2 3 4 5 6 
V5 

  
.819 

   
V6 

  
.696 

   
V7 

  
.552 

   
V8 

 
.360 .670 

   
V9 .555 -.347 

    
V10 .680 

     
V11 

 
.670 

    
V12 -.467 .533 

    
V13 

    
.794 

 
V14 

 
.474 

    
V15 

 
.727 

    
V16R 

   
.602 

  
V17 

 
.380 

   
.633 

V18 
     

.838 
V19 

   
.798 

  
V20 

 
.465 

 
.421 

  
V21 

    
.703 

 
V22 .796 

     
V23 .697 

     
V24 -.442 

  
.582 

  

To address negative and positive cross-loaded variables (V8 loaded on factors 2 and 3, V9 and 

V12 loaded on factors 1 and 2, V17 loaded on factors 2 and 6, V20 loaded on factors 2 and 4, 

and V24 loaded on factors 1 and 4), the ProMax Rotation algorithm was used. Table D-4 

shows the results. 
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Table D-4 Secondary Student Data Imputation 3 Pattern Matrix by ProMax Rotation 

Variables 
Component 

1 2 3 4 5 6 

V5 
  

.836 
   

V6 
  

.691 
   

V7 
  

.599 
   

V8 
  

.662 
   

V9 .552 
     

V10 .756 
     

V11 
 

.706 
    

V12 -.408 .470 
    

V13 
    

.876 
 

V14 
 

.423 
    

V15 
 

.779 
    

V16R 
   

.663 
  

V17 
 

.404 
   

.628 
V18 

     
.848 

V19 
   

.891 
  

V20 
 

.412 
 

.384 
  

V21 
    

.721 
 

V22 .861 
     

V23 .698 
     

V24 
   

.517 
  

 
Note that only variables V12, V17, and V20 remain cross-loaded. 

In the tertiary student data rotated component matrix, V20 (“With textbook only (no lectures) I 

could understand the topics clearly”) presents itself as a variable that requires reverse coding. 

Table D-5 shows the statistics for this variable.  

Table D-5 Tertiary Student Data V20/Q20 Statistics 

Statistic V20/Q20 V20R/Q20R 
Median 4 3 
Mean 3.9 3.1 
Mode 4 3 
Max 6 6 
Min 1 1 

   1=Strongly Agree 
6=Strongly Disagree 

 
Table D-6 shows the Varimax rotation with V3 removed for comparison and with |suppression 

of coefficients| < 0.395. The loading densities are equivalent save for the V12 loading. V12 is 
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the question, “I have regular help with my mathematics.” The double loading in factor 3 and 

factor 5 when analyzed seem to align V12 with Factor 3.  

Table D-6 Imputation 5 Pattern Matrix by Varimax Rotation with Coefficient Suppression < 
0.395  

Variables 
Component 

1 2 3 4 5 6 
V1 

 
.601 

    
V2 

     
.668 

V4 
     

.665 
V5 

 
.706 

    
V6 

   
.758 

  
V7 

 
.737 

    
V8 

 
.810 

    
V9 .689 

     
V10 .675 

     
V11 .743 

     
V12 

  
.398 

   
V13 

  
.821 

   
V14 

  
.769 

   
V15 .720 

     
V16 .677 

     
V17 .556 

     
V18 

   
.687 

  
V19 

    
.748 

 
V20R 

    
.734 

 

Table D-7 shows the improved KMO after removal of V6. Additionally, it was recognized 

that, with seven factors explaining only 64% of the variance, the model needed upgrades 

before being ready for Mplus (CFA and SEM).  

Table D-7 KMO and Bartlett’s Test After Removal of V6 From Tertiary EFA 

Kaiser-Meyer-Olkin 
Measure of Sampling 
Adequacy. 

.764 

Bartlett's 
Test of 
Sphericity 

Approx. 
Chi-

Square 
9358.668 

df 171 
Sig. 0.000 

 

Table D-8 shows the new variance explained with V6 removed, indicating a 6-factor model. 
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Table D-8 Total Variance Explained with V6 Removed 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% 
Total % of 

Variance 
Cumulative 

% Total % of 
Variance 

Cumulative 
% 

1 3.781 19.902 19.902 3.781 19.902 19.902 2.526 13.292 13.292 
2 2.122 11.166 31.069 2.122 11.166 31.069 2.229 11.731 25.023 
3 1.847 9.723 40.792 1.847 9.723 40.792 2.118 11.145 36.168 
4 1.491 7.849 48.641 1.491 7.849 48.641 1.724 9.072 45.240 
5 1.143 6.013 54.654 1.143 6.013 54.654 1.628 8.569 53.809 
6 1.093 5.754 60.408 1.093 5.754 60.408 1.254 6.599 60.408 
7 .918 4.832 65.240 

      
8 .846 4.451 69.691 

      
9 .781 4.109 73.800 

      
10 .706 3.716 77.516 

      
11 .626 3.297 80.813 

      
12 .566 2.982 83.795 

      
13 .546 2.873 86.668 

      
14 .508 2.673 89.341 

      
15 .480 2.524 91.865 

      
16 .420 2.213 94.078 

      
17 .406 2.134 96.213 

      
18 .394 2.072 98.285 

      
19 .326 1.715 100.000 

      
 
After removing V6, V20 loaded negatively onto Factor 4 (Table D-9). 

Table D-9 Rotated Component Matrix After Removal of V6 

Variables 

Component 

1 2 3 4 5 6 

V1 .066 .612 .490 .076 -.040 .037 

V2 .118 -.346 -.317 .112 -.016 .572 

V3 -.030 .099 .001 .535 -.037 .484 

V4 -.089 .072 .156 -.084 .071 .796 

V5 -.031 .447 .631 .061 .044 .063 

V7 .105 -.054 .767 .065 -.046 .032 

V8 .148 .037 .828 -.076 .039 -.052 

V9 .795 .012 .159 -.122 .137 -.012 

V10 .773 .034 .137 -.021 .175 -.010 

V11 .633 .340 .036 .172 -.139 .010 
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Table D.9 (continued) 

Variables 

Component 

1 2 3 4 5 6 

V12 .264 -.314 .051 .327 .351 .092 

V13 .125 -.081 .065 .027 .818 .020 

V14 .110 .119 -.071 .002 .806 .014 

V15 .468 .660 -.076 .022 -.003 -.009 

V16 .633 .302 -.044 -.208 .238 -.044 

V17 .262 .758 .118 -.005 .003 -.045 

V18 -.011 .304 -.026 .408 .151 .007 

V19 .006 .056 .046 .784 .050 .046 

V20 .221 .289 -.002 -.649 .145 .185 

Table D-9 also reveals that V3 and V20 (secondary and tertiary mix) are loading onto Factor 

4. Since the communalities are too low for repeatable modeling in V18 and V12, variables V3, 

V12 and V18 were removed and V20 was reversed to V20R. Table D-10 indicates improved 

KMO, and Table D-11 shows a six-factor model with 67% of variance explained. 

Table D-10 Improved KMO and Bartlett’s Test After Additional Adjustments to Tertiary EFA 

Kaiser-Meyer-Olkin Measure 
of Sampling Adequacy. 

.772 

Bartlett's 
Test of 
Sphericity 

Approximate 
Chi-Square 

8364.427 

df 120 
Sig. 0.000 

 

Table D-11 Total Variance Explained with V3, V12, and V18 Removed and V20 Reverse 
Coded 

Component 
Initial Eigenvalues 

Extraction Sums of Squared 
Loadings 

Rotation Sums of Squared 
Loadings 

Total 
% of 

Variance 
Cumulative 

% 
Total 

% of 
Variance 

Cumulative 
% 

Total 
% of 

Variance 
Cumulative 

% 

1 3.758 23.489 23.489 3.758 23.489 23.489 2.342 14.639 14.639 
2 2.053 12.829 36.318 2.053 12.829 36.318 2.234 13.963 28.602 

Table D.11 (continued) 

Component Initial Eigenvalues Extraction Sums of Squared Rotation Sums of Squared 



262 
 

Loadings Loadings 

Total 
% of 

Variance 
Cumulative 

% 
Total 

% of 
Variance 

Cumulative 
% 

Total 
% of 

Variance 
Cumulative 

% 

3 1.478 9.237 45.555 1.478 9.237 45.555 2.149 13.433 42.035 
4 1.326 8.289 53.844 1.326 8.289 53.844 1.518 9.487 51.522 
5 1.102 6.889 60.732 1.102 6.889 60.732 1.408 8.800 60.322 
6 1.073 6.709 67.441 1.073 6.709 67.441 1.139 7.119 67.441 
7 .782 4.885 72.326 

      
8 .654 4.086 76.412 

      
9 .607 3.791 80.203 

      
10 .555 3.468 83.671 

      
11 .536 3.351 87.022 

      
12 .488 3.052 90.074 

      
13 .450 2.812 92.886 

      
14 .408 2.551 95.438 

      
15 .401 2.507 97.944 

      
16 .329 2.056 100.000 

      

Table D-12 is a rotated component matrix revealing cross-loading ambiguity in V1 and V11.  

Table D-12 Rotated Component Matrix Showing Cross-Loading Ambiguity in V1 and V11 

Variables 
Component 

1 2 3 4 5 6 
V1 .607 

 
.511 

   
V2 

     
.611 

V4 
     

.855 
V5 

  
.650 

   
V7 

  
.766 

   
V8 

  
.822 

   
V9 

 
.820 

    
V10 

 
.798 

    
V11 .533 .513 

    
V13 

   
.820 

  
V14 

   
.841 

  
V15 .753 

     
V16 

 
.595 

    
V17 .791 

     
V19 

    
.822 

 
V20R 

    
.759 

 
 
The following observations followed from an analysis of Table D-12. V11 (“My progress so 

far is better than I expected”) is not logically connected to the other variables in Factor 2 

which are: V9 (“textbook/written material examples help me understand the topic”), V10 

(“The chapters in the textbook/written materials follow each other pretty well”), and V16 
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(“There is enough detail in the textbook/written materials to master the topics”). Instead, V11 

is logically connected to the variables in Factor 1 which are: V1 (“Year 12 mathematics was 

very good preparation for this course”), V15 (“I am going to do very well in the terminal 

exams”), and V17 (“I was ready for mathematics this year”). It was also noted that V1 cross 

loaded onto Factor 3 with observed variables that were not logically connected. Factor 3 

variables are: V5 (“There were enough exercises in 12th grade textbook for me to be well 

practiced”), V7 (“My 12th grade math teacher used the textbook and referred to it in class”) 

and V8 (“My 12th grade math book examples helped me understand the topic”). It was 

decided to suppress lower cross loadings on V-1 and V-11 by using SPSS to suppress 

coefficients ≤ 0.52. Results are seen in Table D-13. The extraction method used was Principal 

Component Analysis. The rotation method was Varimax with Kaiser Normalization. 

Table D-13 Rotated Component Matrix Filtered with SPSS Suppression of Coefficients, ≤ 0.52 

Variables 
Component 

1 2 3 4 5 6 
V1 .607 

     
V2 

     
.611 

V4 
     

.855 
V5 

  
.650 

   
V7 

  
.766 

   
V8 

  
.822 

   
V9 

 
.820 

    
V10 

 
.798 

    
V11 .533 

     
V13 

   
.820 

  
V14 

   
.841 

  
V15 .753 

     
V16 

 
.595 

    
V17 .791 

     
V19 

    
-.822 

 
V20R 

    
.759 
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Appendix E. Textbook Chapter Details 

Book i. Earl Swokowski, Fundamentals of Algebra and Trigonometry, 2d ed., (Boston: 
Prindle, Weber & Schmidt, Inc., 1972), LOCCCN: 68-13118. 

Generalized Content and Topic Order Summary: 

1: General and Prerequisite Review 

2: Equations and Inequalities 

3: Functions: Theory, Operations and Graphs 

4: Exponential and Logarithmic Functions 

5: Trigonometry (Functional, Graphical and Analytic) 

6: Linear Systems and Matrices 

7: Polar Coordinates and Complex Numbers 

8: Polynomials and Rational Functions 

9: Sequences and Series with Combinatorics 

Detailed Chapter Contents: 

Chapter 1: Fundamental Concepts of Algebra 
 Sets 
 Real Numbers 
 Coordinate Lines; Absolute Value 
 Integral Exponents 
 Rational Exponents 
 Algebraic Expressions 
 Factoring 

Chapter 2: Equations and Inequalities 
 Elementary Equations 
 Applications 
 Equations of Degree Greater than 1 
 Miscellaneous Equations 
 Elementary Inequalities 
 More Inequalities 

Chapter 3: Functions and Graphs 
 Coordinate Systems Two Dimensions 
 Relations and their Graphs 
 Functions 
 Graphs of Functions 
 Linear Functions 
 Composite and Inverse Functions 
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 Variation 

Chapter 4: Exponential and Logarithmic Functions 
 Exponential Functions 
 Logarithms 
 Logarithmic Functions 
 Common Logarithms 
 Linear Interpolation 
 Computations with Logarithms 
 Exponential and Logarithmic Equations and Inequalities 

Chapter 5: The Trigonometric Functions 
 Arc Length and the Unit Circle 
 Trigonometric Functions 
 Values of the Trigonometric Functions 
 Angles and their Measurement 
 Trigonometric Functions of Angles 
 Right Triangle Trigonometry 

Chapter 6: Analytic Trigonometry 
 Trigonometric Identities 
 Conditional Equations 
 Addition Formulas 
 Multiple Angle Formulas 
 Sum and Product Formulas 
 Summary of Formulas 
 Trigonometric Graphs 
 Graphs and their Applications 
 Inverse Trigonometric Functions 
 Law of Sines 
 Law of Cosines 

Chapter 7: Systems of Equations and Inequalities 
 Solving for Function Intersections 
 Systems of Two Variable Linear Equations 
 Systems of More than Two Variable Linear Equations 
 Matrix Methods 
 Determinants 
 Properties of Determinants 
 Cramer’s Rule 
 Systems of Inequalities 
 The Algebra of Matrices 
 Inverses of Matrices 
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Chapter 8: Complex Numbers 
 Definitions 
 Conjugates and Inverses 
 Complex Roots of Equations 
 Trigonometric Form of Complex Numbers 
 De Moivre’s Theorem nth Roots of Complex Numbers 

Chapter 9: Polynomials 
 Algebra of Polynomials 
 Polynomial Division (Long and Synthetic Division) 
 Factorization Theory (FTA, RT, FT) 
 Zeros of Polynomials with Real Coefficients 

Chapter 10: Sequences and Series 
 Mathematical Induction 
 Infinite Sequences 
 Summation Notation 
 Arithmetic Sequences 
 Geometric Sequences 
 The Binomial Theorem 
 Permutations and Combinations 

Book ii. Richard G. Brown and David P. Robbins, Advanced Mathematics: A Precalculus 
Course, 1st ed., (Boston: Houghton Mifflin Co., 1984), ISBN: 0-395-32073-9. 

Generalized Content and Topic Order Summary: 

1: General and Prerequisite Review 

2: Polynomials and Rational Functions 

3: Equations and Inequalities 

4: Functions: Theory, Operations and Graphs 

5: Exponential and Logarithmic Functions 

6: Trigonometry (Functional, Graphical, and Analytic) 

7: Polar Coordinates and Complex Numbers 

8: Analytic Geometry 

9: Vectors and Determinants 

10: Sequences and Series 

11: Statistics* 

12: Probability* 

13: Introduction to Calculus* 
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* These topics do not appear in the minimum requirements for calculus but were needed for 
place holders in the scoring of the continuum 

Detailed Chapter Contents: 

Chapter 1: Coordinate Geometry 
 Points and Lines 
 Parallel and Perpendicular Lines 
 Finding Equations of Lines 
 Complex Numbers 
 Quadratic Equations 
 Circles and their Equations 
 Intersections of Lines and Circles 
 Coordinate Geometry Proofs 

Chapter 2: Polynomials 
 Factoring Polynomials 
 Graphing Quadratics and Polynomials 
 Polynomial Analytics (Division, FTA, FT, RT) 
 Polynomial Applications 

Chapter 3: Inequalities 
 Linear Inequalities 
 Absolute Value 
 Polynomial Inequalities 
 Applications of Inequalities 
 Using the Discriminant 

Chapter 4: Functions 
 Definitions 
 Graphs 
 Composition 
 Applications 
 Inverses 

Chapter 5: Exponents and Logarithms 
 Integral Exponents 
 Rational Exponents 
 Exponential Functions 
 Logarithmic Functions 
 Properties of Logarithms 
 Exponential Equations (Changing Bases) 
 Exponential Growth 
 Natural Logarithm and e 
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Chapter 6: Trigonometric Functions 
 Arcs and Angles 
 Sectors 
 Unit Circle 
 Sine and Cosine Functions 
 Evaluating Sines and Cosines 
 Other Trigonometric Functions 
 Function Relationships 
 Trigonometric Equations 

Chapter 7: Triangle Trigonometry 
 Right Triangle Trigonometry 
 Area of a Triangle 
 Law of Sines 
 Law of Cosines 
 Inverse Trigonometric Functions 

Chapter 8: Trigonometric Graphs 
 Periodic Function Graphing and Stretching 
 Periodic Graphic Reflections and Symmetry 
 Graph Translation 
 Asymptote 
 Applications 

Chapter 9: Trigonometric Addition Formulas 
 cosine(α±β) and sine(α±β) 
 tan(α±β) 
 Double and Half angle Formulas 
 Solving Equations / Applications 

Chapter 10: Polar Coordinates and Complex Numbers 
 Polar Coordinates and Graphs 
 Geometric form of Complex Numbers 
 Powers of Complex Numbers 
 De Moivre’s Theorem 
 Roots of Complex Numbers 

Chapter 11: Analytic Geometry 
 Ellipse 
 Hyperbola 
 Parabola 
 Applications 
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Chapter 12: Vectors and Determinants 
 Geometric and Algebraic Representation of Vectors 
 Parametric Equations\ 
 Parallel and Perpendicular Vectors 
 Vectors in three Dimensions and in the Plane 
 Determinants 
 Applications 
 Determinants and Vectors in Three Dimensions 

Chapter 13: Sequences and Series 
 Arithmetic and Geometric Sequences 
 Arithmetic and Geometric Sequences and their Sums 
 Limits of Infinite Sequences 
 Sums of Infinite Series 
 Sigma Notation 
 Mathematical Induction 

Chapter 14: Statistics 
Chapter 15: Probability 
Chapter 16: Calculus Introduction 

 
Book iii. Roland E. Larson, Robert P. Hostetler, Precalculus, 3rd ed., (Lexington, MA: D.C. 
Heath & Co., 1993), ISBN: 0-669-33236-4. 

Generalized Content and Topic Order Summary: 

1: General and Prerequisite Review 

2: Functions: Theory, Operations and Graphs  

3: Polynomials and Rational Functions 

4: Exponential and Logarithmic Functions 

5: Trigonometry (Functional, Graphical and Analytic) 

6: Vectors without Determinants 

7: Complex Numbers 

8: Equations and Inequalities 

9: Linear Systems and Matrices 

10: Sequences and Series 

11: Analytic Geometry 

12: Polar Coordinates and Complex Numbers 
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Detailed Chapter Contents: 

Chapter 1: Review of Basic Algebra 
 Real Number System 
 Exponents and Radicals 
 Polynomials 
 Fractional Expressions 
 Solving Equations 
 Solving Inequalities 
 Remedial Activities 

Chapter 2: Functions and Graphs 
 The Cartesian Plane 
 Graphs of Equations 
 Lines in the Plane 
 Function 
 Graphs of Functions 
 Combinations of Functions 
 Inverse Functions 
 Variation 

Chapter 3: Polynomial and Rational Functions 
 Quadratic Equations 
 Polynomial Functions of Higher Degree 
 Polynomial Division (Long and Synthetic) 
 Real Zeros of Polynomial Functions 
 Complex Numbers 
 FTA 
 Rational Functions 
 Partial Fractions 

Chapter 4: Exponential and Logarithmic Functions 
 Exponential Functions 
 Logarithmic Functions 
 Properties of Logarithms 
 Solving Exponential and Logarithmic Equations 
 Applications 

Chapter 5: Trigonometry 
 Radian and Degree Measure 
 The Trigonometric Functions and the Unit Circle 
 The Trigonometric Functions and Right Angles 
 Trigonometric Functions of Any Angle 
 Graphs of Sine and Cosine Functions 
 Graphs of Other Trigonometric Functions 



271 
 

 Other Graphing 
 Inverse Trigonometric Functions 
 Applications 

Chapter 6: Analytic Trigonometry 
 Applications of Fundamental Identities 
 Verifying Trigonometric Identities 
 Solving Trigonometric Equations 
 Sum and Difference Formulas 
 Multiple-Angle and Product-Sum Formulas 

Chapter 7: Additional Topics in Trigonometry 
 Law of Sines 
 Law of Cosines 
 Vectors in the Plane 
 Trigonometric Form of a Complex Number 
 De Moivre’s Theorem 

Chapter 8: Systems of Equations and Inequalities 
 Systems of Equations 
 Systems of Linear Equations in Two Variables 
 Linear Systems in More than Two Variables 
 Systems of Inequalities 
 Linear Programming 

Chapter 9: Matrices and Determinants 
 Matrices and Systems of Linear Equations 
 Operations with Matrices 
 The Inverse of a Square Matrix 
 The Determinant of a Square Matrix 
 Properties of Determinants 
 Applications of Determinants and Matrices 

Chapter 10: Sequences, Counting Principles and Probability 
 Sequences and Summation Notation 
 Arithmetic Sequences 
 Geometric Sequences 
 Mathematical Induction 
 The Binomial Theorem 
 Counting Principles, Permutations and Combinations 
 Probability 

Chapter 11: Topics in Analytic Geometry 
 Lines 
 Parabolas 
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 Ellipses 
 Hyperbolas 
 Rotation and Second Degree Equations 
 Graphs of Polar Equations 
 Polar Equations of Conics 
 Plane Curves and Parametric Equations 

Book iv. Richard G. Brown, Advanced Mathematics: Precalculus with Discrete Math and 
Data Analysis, 1st ed., (Boston: Houghton Mifflin Co., 1994), ISBN: 0-395-42169-1.  

Generalized Content and Topic Order Summary: 

1: General and Prerequisite Review 

2: Polynomials and Rational Functions  

3: Equations and Inequalities 

4: Functions: Theory, Operations and Graphs 

5: Exponential and Logarithms Functions 

6: Analytic Geometry 

7: Trigonometry (Functional, Graphical and Analytic) 

8: Polar Coordinates and Complex Numbers 

9: Vectors and Determinants 

10: Sequences and Series with Combinatorics 

11: Linear Systems and Matrices 

12: Sequences and Series With Combinatorics 

13: Probability* 

14: Statistics* 

15: Curve Fitting and Model* 

16: Limits, Series and Iterated Functions* 

17: An Introduction to Calculus* 

* These topics do not appear in the minimum requirements for calculus but were needed for 
place holders in the scoring of the continuum 

Detailed Chapter Content: 

Chapter 1: Linear and Quadratic Functions 
 Points and Lines 
 Slopes of Lines 
 Finding Equations of Lines 
 Linear Functions and Models 
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 The Complex Numbers 
 Solving Quadratic Equations 
 Quadratic Functions and their Graphs 
 Quadratic Models 

Chapter 2: Polynomial Functions 
 Polynomials 
 Synthetic Division; The Remainder Theorem; Factor Theorems 
 Graphing Polynomial Functions 
 Finding Maximums and Minimums of Polynomial Functions 
 Using Technology to Approximate Roots of Polynomial Equations 
 Solving Polynomial Equations by Factoring 
 General Results for Polynomial Equations 

Chapter 3: Inequalities 
 Linear Inequalities; Absolute Value 
 Polynomial Inequalities in One Variable 
 Polynomial Inequalities in Two Variables 
 Linear Programming 

Chapter 4: Functions 
 Functions 
 Operations on Functions 
 Reflecting Graphs; Symmetry 
 Periodic Functions; Stretching and Translating Graphs 
 Inverse Functions 
 Functions of Two Variables 
 Forming Functions from Verbal Descriptions 

Chapter 5: Exponents and Logarithms 
 Growth and Decay: Integral Exponents 
 Growth and Decay: Rational Exponents 
 Exponential Functions 
 The Number e and the Function ex 
 Logarithmic Functions 
 Laws of Logarithms 
 Exponential Equations; Changing Bases 

Chapter 6: Analytic Geometry 
 Coordinate Proofs 
 Equations of Circles 
 Ellipses 
 Hyperbolas 
 Parabolas 
 Systems of Second-Degree Equations 



274 
 

 A New Look at Conic Sections 

Chapter 7: Trigonometric Functions 
 Measurement of Angles 
 Sectors of Circles 
 The Sine and Cosine Functions 
 Evaluating and Graphing Sine and Cosine 
 The Other Trigonometric Functions 
 The Inverse Trigonometric Functions 

Chapter 8: Trigonometric Equations and Applications 
 Simple Trigonometric Equations 
 Sine and Cosine Curves 
 Modeling Periodic Behavior 
 Relationships Among the Functions 
 Solving More Difficult Trigonometric Equations 

Chapter 9: Triangle Trigonometry 
 Solving Right Triangles 
 The Area of a Triangle 
 The Law of Sines 
 The Law of Cosines 
 Applications of Trigonometry to Navigation and Surveying 

Chapter 10: Trigonometric Addition Formulas 
 Formulas for cos (α±β) and sin (α±β) 
 Formulas for tan (α±β) 
 Double-Angle and Half-Angle Formulas 
 Solving Trigonometric Equations 

Chapter 11: Polar Coordinates and Complex Numbers 
 Polar Coordinates and Graphs 
 Geometric Representation of Complex Numbers 
 Powers of Complex Numbers 
 Roots of Complex Numbers 

Chapter 12: Vectors and Determinants 
 Geometric Representation of Vectors 
 Algebraic Representation of Vectors 
 Vector and Parametric Equations: Motion in a Plane 
 Parallel and Perpendicular Vectors; Dot Product 
 Vectors in Three Dimensions 
 Vectors and Planes 
 Determinants 
 Applications of Determinants 
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 Determinants and Vectors in Three Dimensions 

Chapter 13: Sequences and Series 
 Arithmetic and Geometric Sequences 
 Recursive Definitions 
 Arithmetic and Geometric Series and Their Sums 
 Limits of Infinite Sequences 
 Sums of Infinite Series 
 Sigma Notation 
 Mathematical Induction 

Chapter 14: Matrices 
 Matrix Addition and Scalar Multiplication 
 Matrix Multiplication 
 Applying Matrices to Linear Systems 
 Communication Matrices 
 Transition Matrices 
 Transformation Matrices 

Chapter 15: Combinatorics 
 Venn Diagrams 
 The Multiplication, Addition, and Complement Principles 
 Permutations and Combinations 
 Permutations with Repetition; Circular Permutations 
 The Binomial Theorem; Pascal’s Triangle 

Chapter 16: Probability 
 Introduction to Probability 
 Probability of Events Occurring Together 
 The Binomial Probability Theorem 
 Probability Problems Solved with Combinations 
 Working with Conditional Probability 
 Expected Value 

Chapter 17: Statistics 
 Tables, Graphs, and Averages 
 Box-and-Whisker Plots 
 Variability 
 The Normal Distribution 
 Sampling  
 Confidence Intervals for Surveys and Polls 

Chapter 18: Curve Fitting and Models 
 Introduction to Curve Fitting; The Least-Squares Line 
 Fitting Exponential Curves 
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 Fitting Power Curves 
 Choosing the Best Model 

Chapter 19: Limits, Series and Iterated Functions 
 Limits of Functions 
 Graphs of Rational Functions 
 Using Technology to Approximate the Area under a Curve 
 Power Series 
 Analyzing Orbits 
 Applications of Iterated Functions 

Chapter 20: Introduction to Calculus 
 The Slope of a Curve 
 Using Derivatives in Curve Sketching 
 Extreme Value Problems 
 Velocity and Acceleration 

Book v. Franklin Demana, Bert K. Waits, Gregory D. Foley & Daniel Kennedy, Precalculus: 
Graphical, Numerical, Algebraic, 5th ed., (Reading, MA: Addison Wesley Longman, Inc., 
2001), ISBN: 0-201-69974-5.  

Generalized Content and Topic Order Summary: 

1: General and Prerequisite Review 

2: Functions: Theory, Operations and Graphs 

3: Polynomials and Rational Functions  

4: Exponential and Logarithms Functions 

5: Trigonometry (Functional, Graphical and Analytic) 

6: Polar Coordinates and Complex Numbers 

7: Linear Systems and Matrices 

8: Analytic Geometry 

9: Sequences and Series with Combinatorics 

10: An Introduction to Calculus: Limits, Derivatives and Integrals* 

*These topics do not appear in the minimum requirements for calculus but were needed for 
place holders in the scoring of the continuum. 

Detailed Chapter Content 

Chapter P: Prerequisites 
 Real Numbers 
 Cartesian Coordinate System 
 Linear Equations and Inequalities 
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 Lines in the Plane 
 Solving Equations Graphically, Numerically and Algebraically 
 Solving Inequalities Algebraically and Graphically 

Chapter 1: Functions and Graphs 
 Modeling and Equation Solving 
 Functions and Their Properties 
 Ten Basic Functions 
 Building Functions from Functions 
 Graphical Transformations 
 Modeling with Functions 

Chapter 2: Polynomial, Power and Rational Functions 
 Linear and Quadratic Functions with Modeling 
 Power Functions with Modeling 
 Polynomial Functions of Higher Degree with Modeling 
 Real Zeros of Polynomial Functions 
 Complex Numbers 
 Complex Zeros and the Fundamental Theorem of Algebra 
 Rational Functions and Equations 
 Solving Inequalities in One Variable 

Chapter 3: Exponential, Logistic, and Logarithmic Function 
 Exponential and Logistic Functions 
 Exponential and Logistic Modeling 
 Logarithmic Functions and Their Graphs 
 Properties of Logarithmic Functions 
 Equation Solving and Modeling 
 Mathematics of Finance 

Chapter 4: Trigonometric Functions 
 Angles and their Measures 
 Trigonometric Functions of Acute Angles 
 Trigonometry Extended: The Circular Functions 
 Graphs of Sine and Cosine: Sinusoids 
 Graphs of Tangent, Cotangent, Secant, and Cosecant 
 Graphs of Composite Trigonometric Functions 
 Inverse Trigonometric Functions 
 Solving Problems with Trigonometry 

Chapter 5: Analytic Trigonometry 
 Fundamental Identities 
 Proving Trigonometric Identities 
 Sum and Difference Identities 
 Multiple-Angle Identities 
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 Law of Sines 
 Law of Cosines 

Chapter 6: Vectors, Parametric Equations, and Polar Equations 
 Vectors in the Plane 
 Dot Product of Vectors 
 Parametric Equations and Motion 
 Polar Coordinates 
 Graphs of Polar Equations 
 De Moivre’s Theorem and nth Roots 

Chapter 7: Systems and Matrices 
 Solving Systems of Two Equations 
 Matrix Algebra 
 Multivariate Linear Systems and Row Operations 
 Partial Fractions 
 Systems of Inequalities in Two Variables 

Chapter 8: Analytic Geometry in Two and Three Dimensions 
 Conic Sections and Parabolas 
 Ellipses 
 Hyperbolas 
 Translations and Rotations of Axes 
 Polar Equations of Conics 
 Three Dimensional Cartesian Coordinate System 

Chapter 9: Discrete Mathematics 
 Basic Combinatorics 
 The Binomial Theorem 
 Probability 
 Sequences and Series 
 Mathematical Induction 
 Statistics and Data (Graphical) 
 Statistics and Data (Algebraic) 

Chapter 10: An Introduction to Calculus: Limits, Derivatives, and Integrals 
 Limits and Motion: The Tangent Problem 
 Limits and Motion: The Area Problem 
 More on Limits 
 Numerical Derivatives and Integrals 

Book vi. James Stewart, Lothar Redlin & Saleem Watson, Precalculus: Mathematics for 
Calculus, 4th ed., (Pacific Grove, CA: Wadsworth Group, 2002), ISBN: 0-534-38541-9. 

 



279 
 

Generalized Content and Topic Order Summary 

1: General and Prerequisite Review 

2: Functions: Theory, Operations and Graphs 

3: Polynomials and Rational Functions 

4: Exponential and Logarithmic Functions 

5: Trigonometry (Functional, Graphical and Analytic) 

6: Polar Coordinates and Complex Numbers 

7: Equations and Inequalities 

8: Vectors and Determinants 

9: Analytic Geometry 

10: Sequences and Series 

11: Sequences and Series 

12: Probability* 

13: Introduction to Calculus* 

* These topics do not appear in the minimum requirements for calculus but were needed for 
place holders in the scoring of the continuum 

Detailed Chapter Content 

Chapter 1: Fundamentals 
 Real Numbers 
 Exponents and Radicals 
 Algebraic Expressions 
 Fractional Expressions 
 Equations 
 Modeling with Equations 
 Inequalities 
 Coordinate Geometry 
 Solving Equations and Inequalities Graphically 
 Lines 

 Chapter 2: Functions 
 What Is a Function? 
 Graphs of Functions 
 Applied Functions: Variation 
 Average Rate of Change: Increasing and Decreasing Functions 
 Transformations of Functions 
 Extreme Values of Functions 
 Modeling with Functions 
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 Combining Functions 
 One-to-One Functions and Their Inverses 

Chapter 3: Polynomial and Rational Functions 
 Polynomial Functions and Their Graphs 
 Dividing Polynomials 
 Real Zeros of Polynomials 
 Complex Numbers 
 Complex Zeros and the Fundamental Theorem of Algebra 
 Rational Functions 

Chapter 4: Exponential and Logarithmic Functions 
 Exponential Functions 
 Logarithmic Functions 
 Laws of Logarithms 
 Exponential and Logarithmic Equations 
 Modeling with Exponential and Logarithmic Functions 

Chapter 5: Trigonometric Functions of Real Numbers 
 The Unit Circle 
 Trigonometric Functions of Real Numbers 
 Trigonometric Graphs 
 More Trigonometric Graphs 

Chapter 6: Trigonometric Functions of Angles 
 Angle Measure 
 Trigonometry of Right Triangles 
 Trigonometric Functions of Angles 
 The Law of Sines 
 The Law of Cosines 

Chapter 7: Analytic Trigonometry 
 Trigonometric Identities 
 Addition and Subtraction Formulas 
 Double-Angle, Half-Angle, and Product-Sum Formulas 
 Inverse Trigonometric Functions 
 Trigonometric Equations 
 Trigonometric Form of Complex Numbers: DeMoivre’s Theorem 
 Vectors 
 The Dot Product 

Chapter 8: Systems of Equations and Inequalities 
 Systems of Equations 
 Systems of Linear Equations in Two Variables 
 Systems of Linear Equations in Several Variables 
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 Systems of Linear Equations: Matrices 
 The Algebra of Matrices 
 Inverses of Matrices and Matrix Equations 
 Determinants and Cramer’s Rule 
 Systems of Inequalities 
 Partial Fractions 

Chapter 9: Topics in Analytic Geometry 
 Parabolas 
 Ellipses 
 Hyperbolas 
 Shifted Conics 
 Rotation of Axes 
 Polar Coordinates 
 Polar Equations of Conics 
 Parametric Equations 

Chapter 10: Sequence and Series 
 Sequences and Summation Notation 
 Arithmetic Sequences 
 Geometric Sequences 
 Annuities and Installment Buying 
 Mathematical Induction 
 The Binomial Theorem 

Chapter 11: Counting and Probability 
 Counting Principles 
 Permutations and Combinations 
 Probability 
 Expected Value 

Chapter 12: Limits: A Preview of Calculus 
 Finding Limits Numerically and Graphically 
 Finding Limits Algebraically 
 Tangent Lines and Derivatives 
 Limits at Infinity; Limits of Sequences 
 Areas 

Book vii. Roland E. Larson, Robert P. Hostetler, and Bruce H. Edwards, Precalculus with 
Limits: A Graphing Approach, 4th ed., (Boston: Houghton Mifflin Co., 2005), ISBN: 0-618-
39480-X. 

Generalized Content and Topic Order Summary 

1: General and Prerequisite Review 
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2: Functions: Theory, Operations and Graphs 

3: Polynomials and Rational Functions  

4: Exponential and Logarithms Functions 

5: Trigonometry (Functional, Graphical and Analytic) 

6: Linear Systems and Matrices 

7: Sequences and Series with Combinatorics 

8: Probability* 

9: Analytic Geometry 

10: Vectors and Determinants 

11: Limits and in Introduction to Calculus* 

* These topics do not appear in the minimum requirements for calculus but were needed for 
place holders in the scoring of the continuum 

Detailed Chapter Content 

Chapter 1: Functions and their Graphs 
 Lines in the Plane 
 Functions 
 Graphs of Functions 
 Shifting, Reflecting, and Stretching Graphs 
 Combinations of Functions 
 Inverse Functions 
 Exploring Data: Linear Models and Scatter Plots 

Chapter 2: Polynomial and Rational Functions 
 Quadratic Functions 
 Polynomial Functions of Higher Degree 
 Real Zeros of Polynomial Functions 
 Complex Numbers 
 The Fundamental Theorem of Algebra 
 Rational Functions and Asymptotes 
 Graphs of Rational Functions 
 Exploring Data: Quadratic Models 

Chapter 3: Exponential and Logarithmic Functions 
 Exponential Functions and their Graphs 
 Logarithmic Functions and Their Graphs 
 Properties of Logarithms 
 Solving Exponential and Logarithmic Equations 
 Exponential and Logarithmic Models 
 Exploring Data: Nonlinear Models 
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Chapter 4: Trigonometric Functions 
 Radian and Degree Measure 
 Trigonometric Functions: The Unit Circle 
 Right Triangle Trigonometry 
 Trigonometric Functions of Any Angle 
 Graphs of Sine and Cosine Functions 
 Graphs of Other Trigonometric Functions 
 Inverse Trigonometric Functions 
 Applications and Models 

Chapter 5: Analytic Trigonometry 
 Using Fundamental Identities 
 Verifying Trigonometric Identities 
 Solving Trigonometric Equations 
 Sum and Difference Formulas 
 Multiple-Angle and Product-to-Sum Formulas 

Chapter 6: Additional Topics in Trigonometry 
 Law of Sines 
 Law of Cosines 
 Vectors in the Plane 
 Vectors and Dot Products 
 Trigonometric Form of a Complex Number 

Chapter 7: Linear Systems and Matrices 
 Solving Systems of Equations 
 Systems of Linear Equations in Two Variables 
 Multivariable Linear Systems 
 Matrices and Systems of Equations 
 Operations with Matrices 
 The Inverse of a Square Matrix 
 The Determinant of a Square Matrix 
 Applications of Matrices and Determinants 

Chapter 8: Sequences, Series, and Probability 
 Sequences and Series 
 Arithmetic Sequences and Partial Sums 
 Geometric Sequences and Series 
 Mathematical Induction 
 The Binomial Theorem 
 Counting Principles 
 Probability 

Chapter 9: Topics in Analytic Geometry 
 Introduction to Conics: Parabolas 
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 Ellipses 
 Hyperbolas 
 Rotation and Systems of Quadratic Equations 
 Parametric Equations 
 Polar Coordinates 
 Graphs of Polar Equations 
 Polar Equations of Conics 

Chapter 10: Analytic Geometry in Three Dimensions 
 The Three-Dimensional Coordinate System 
 Vectors in Space 
 The Cross Product of Two Vectors 
 Lines and Planes in Space 

Chapter 11: Limits and an Introduction to Calculus 
 Introduction to Limits 
 Techniques for Evaluating Limits 
 The Tangent Line Problem 
 Limits at Infinity and Limits of Sequences 
 The Area Problem 

Book viii. i. Paul A. Foerster, Precalculus with Trigonometry: Concept and Applications, 
1st ed., (Emeryville, CA: Key Curriculum Press, 2012), ISBN: 978-1-60440-044-1. 

Generalized Content and Topic Order Summary 

1: General and Prerequisite Review 

2: Functions: Theory, Operations and Graphs 

3: Functions: Theory, Operations and Graphs 

4: Exponential and Logarithms Functions 

5: Statistics* 

6: Polynomials and Rational Functions 

7: Trigonometry (Functional, Graphical and Analytic) 

8: Analytic Geometry /6 

9: Polar Coordinates and Complex Numbers /7 

10: Vectors and Determinants /8 

11: Linear Systems and Matrices /9 

12: Probability* /10 

13: Sequences and Series /11 

14: Introduction to Limits, Derivatives and Integrals* /12 
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* These topics do not appear in the minimum requirements for calculus but were needed for 
place holders in the scoring of the continuum 

Detailed Chapter Contents 

Chapter 1: Functions and Mathematical Models 
 Functions: Graphically, Algebraically, Numerically, and Verbally 
 Types of Functions 
 Dilation and Translation of Function Graphs 
 Composition of Functions 
 Inverse Functions and Parametric Equations 
 Reflections, Absolute Values, and Other Transformations 
 Precalculus Journal 

Chapter 2: Properties of Elementary Functions 
 Shapes of Function Graphs 
 Identifying Functions from Graphical Patterns 
 Identifying Functions from Numerical Patterns 
 Properties of Logarithms 
 Logarithms: Equations and Other Bases 
 Logarithmic Functions 
 Logistic Functions for Restrained Growth 

Chapter 3: Fitting Functions to Data 
 Introduction to Regression for Linear Data 
 Deviations, Residuals, and the Correlation Coefficient 
 Regression for Nonlinear Data 
 Linearizing Data and Logarithmic Graph Paper 
 Residual Plots and Mathematical Models 

Chapter 4: Polynomial and Rational Functions 
 Introduction to Polynomial and Rational Functions 
 Quadratic Functions, Factoring, and Complex Numbers 
 Graphs and Zeros of Higher-Degree Functions 
 Fitting Polynomial Functions to Data 
 Rational Functions: Asymptotes and Discontinuities 
 Partial Fractions and Operations with Rational Expressions 
 Fractional Equations and Extraneous Solutions 

Chapter 5: Periodic Functions and Right Triangle Problems 
 Introduction to Periodic Functions 
 Measurement of Rotation 
 Sine and Cosine Functions 
 Values of the Six Trigonometric Functions 
 Inverse Trigonometric Functions and Triangle Problems 
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Chapter 6: Applications of Trigonometric and Circular Functions 
 Sinusoids: Amplitude, Period, and Cycles 
 General Sinusoidal Graphs 
 Graphs of Tangent, Cotangent, Secant, and Cosecant Functions 
 Radian Measure of Angles 
 Circular Functions 
 Inverse Circular Relations: Give y, Find x 
 Sinusoidal Functions as Mathematical Models 
 Rotary Motion 

Chapter 7: Trigonometric Function Properties and Identities, and Parametric Equations 
 Introduction to the Pythagorean Property 
 Pythagorean, Reciprocal, and Quotient Properties 
 Identities and Algebraic Transformation of Expressions 
 Arcsine, Arctangent, Arccosine, and Trigonometric Equations 
 Parametric Functions 
 Inverse Trigonometric Relation Graphs 

Chapter 8: Properties of Combined Sinusoids 
 Introduction to Combinations of Sinusoids 
 Composite Argument and Linear Combination Properties 
 Other Composite Argument Properties 
 Composition of Ordinates and Harmonic Analysis 
 The Sum and Product Properties 
 Double and Half Argument Properties 

Chapter 9: Triangle Trigonometry 
 Introduction to Oblique Triangles 
 Oblique Triangles: The Law of Cosines 
 Area of a Triangle 
 Oblique Triangles: The Law of Sines 
 The Ambiguous Case 
 Vector Addition 
 Real-World Triangle Problems 

Chapter 10: Conic Sections and Quadric Surfaces 
 Quadratic Relations and Conic Sections 
 Cartesian Equations for Conic Sections 
 Parametric Equations for Conic Sections 
 Quadric Surfaces and Inscribed Figures 
 Analytic Geometry of the Conic Sections 
 Parametric and Cartesian Equations for Rotated Conics 
 Applications of Conic Sections 

Chapter 11: Polar Coordinates, Complex Numbers, and Moving Objects 
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 Introduction to Polar Coordinates 
 Polar Equations for Conics and Other Curves 
 Intersections of Polar Curves 
 Complex Numbers in Polar Form 
 Parametric Equations for Moving Objects 

Chapter 12: Three-Dimensional Vectors 
 Review of Two-Dimensional Vectors 
 Two-Dimensional Vector Practice 
 Vectors in Space 
 Scalar Products and Projections of Vectors 
 Planes in Space 
 Vector Product of Two Vectors 
 Direction Angles and Direction Cosines 
 Vector Equations for Lines in Space 

Chapter 13: Matrix Transformations and Fractal Figures 
 Introduction to Iterated Transformations 
 Matrix Operations and Solutions of Linear Systems 
 Rotation and Dilation Matrices 
 Translation with Rotation and Dilation Matrices 
 Strange Attractors for Several Iterated Transformations 
 Fractal Dimensions 

Chapter 14: Probability, and Functions of a Random Variable 
 Introduction to Probability 
 Words Associated with Probability 
 Two Counting Principles 
 Probabilities of Various Permutations 
 Probabilities of Various Combinations 
 Properties of Probability 
 Functions of a Random Variable 
 Mathematical Expectation 

Chapter 15: Sequences and Series 
 Introduction to Sequences and Series 
 Arithmetic, Geometric, and Other Sequences 
 Series and Partial Sums 

Chapter 16: Introduction to Limits, Derivatives and Integrals 
 Exploring Limits, Derivatives, and Integrals 
 Limits 
 Rate of Change of a Function: The Derivative 
 Accumulated Rates: The Definite Integral  
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