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 CURRENT
OPINION Intermittent feeding and circadian rhythm in

critical illness
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Purpose of review

Circadian rhythms, i.e., periodic oscillations in internal biological processes, modulate metabolic processes
such as hormonal signalling, nutrient absorption, and xenobiotic detoxification. Meal timing is a strong
entraining cue for peripheral clocks in various organs, and eating out of circadian phases can impair
glucose, gastrointestinal, and muscle metabolism. Sleep/wake cycles and circadian rhythms are extremely
disrupted during critical illness. Timing of nutritional support may help preserve circadian rhythms and
improve post-Intensive Care Unit (ICU) recovery. This review summarises circadian disruptors during ICU
admission and evaluates the potential benefits of intermittent feeding on metabolism and circadian rhythms.

Recent findings

Rhythmic expression of core clock genes becomes rapidly disturbed during critical illness and remains
disturbed for weeks. Intermittent, bolus, and cyclic enteral feeding have been directly compared to routine
continuous feeding, yet no benefits on glycaemic control, gastrointestinal tolerance, and muscle mass have
been observed and impacts of circadian clocks remain untested.

Summary

Aligning timing of nutritional intake, physical activity, and/or medication with circadian rhythms are
potential strategies to reset peripheral circadian rhythms and may enhance ICU recovery but is not proven
beneficial yet. Therefore, selecting intermittent feeding over continuous feeding must be balanced against
the pros and cons of clinical practice.
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INTRODUCTION

Although the survival rates in critically ill patients
are increasing worldwide, longer-term outcomes
after admission in the Intensive Care Unit (ICU)
are often poor, with up to 80% of patients suffering
from long-term complications including impair-
ments in sleep, physical function, and cognitive
and psychological health [1]. Circadian rhythms,
i.e., 24-h cycles, are central to physiological, psy-
chological, and behavioural processes. Disruptions
in circadian rhythms are associated with complica-
tions such as immune system disruption, delirium,
long-term cardiovascular consequences, neurodege-
nerative diseases, type 2 diabetes mellitus, and
increased mortality [2

&

,3
&

]. With the ICU environ-
ment being so drastically different from daily life
with ongoing clinical and environmental changes,
these disruptors likely contribute to impairments in
circadian rhythms. Supporting circadian health in
critically ill patients may help improve metabolism
and reduce psychological health impairment and
delirium during the post-ICU recovery phase.
uthor(s). Published by Wolters Kluwe
Therefore, it is essential to understand how critical
illness affects circadian rhythms in order to develop
intervention strategies and chronotherapy to
r Health, Inc. www.co-criticalcare.com
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KEY POINTS

� Circadian rhythms become rapidly disturbed during
critical illness and remain disturbed for weeks after
ICU admission.

� Eating out of circadian phases impairs glucose,
gastrointestinal, and muscle metabolism.

� Intermittent feeding can reset misaligned circadian
rhythms in health and might be a potential strategy to
support circadian health in critically ill patients.

Metabolic support
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minimise disruption of patients’ circadian rhythms
in the ICU.

Nutritional support forms an essential part of
standard clinical care in critically ill patients,
thereby improving clinical outcomes. Although cur-
rent nutritional guidelines [4,5] specify recommen-
dations on the quantity and quality of the provided
energy, macro- and micronutrients, strategies
towards the timing and mode of feeding have been
largely understudied. When food is consumed
affects various physiological functions, including
the sleep/wake cycle, core body temperature, (skel-
etal muscle) insulin sensitivity, whole-body meta-
bolic health, and mental alertness. This has been
referred to ‘chrononutrition’, i.e. synchronisation of
eating with the body’s entrained circadian rhythms,
which has led to an enormous scientific and public
interest in time-restricted eating diets; a dietary
strategy that alters meal timing and incorporates
more extended daily periods of fasting into the diet,
without restricting the total energy intake. Time-
restricted eating has been shown to reduce risk
factors for type 2 diabetes mellitus and cardiovas-
cular disease [2

&

,6
&

].
In the ICU, continuous and intermittent feed-

ing (intermittent, bolus, or cyclic) are the most
common enteral nutrition administration strat-
egies. Continuous feeding is standard practice, as
the slow release of nutrients into the stomach is
thought to enhance feeding tolerance, reduce the
risk of regurgitation, and lower respiratory compli-
cations, as well as being convenient. In contrast,
intermittent feeding is more physiological as it
mimics eating patterns in everyday life, thereby
maintaining regular gastrointestinal hormone
secretion and digestion, and it gives patients more
mobility. Studies in animals and healthy humans
[7–11] have suggested that intermittent feeding
results in improved insulin sensitivity, increased
muscle protein synthesis, activation of fasting-
induced autophagy and ketogenesis, and the pres-
ervation of circadian rhythms in contrast to con-
tinuous feeding. However, in critically ill patients,
382 www.co-criticalcare.com
only a handful of studies have directly compared
the effect of intermittent versus continuous feeding
on clinical outcomes, and these have been dis-
cussed in earlier reviews [12–17]. This review aims
to provide an overview of studies published in the
last 18months on the effect of timing of nutritional
support on metabolic outcomes in critically ill
patients, with a specific interest in circadian align-
ment during and post-ICU admission.
REGULATION OF CIRCADIAN RHYTHMS

Multiple physiological processes in peripheral tis-
sues such as gastrointestinal function, muscle, and
other vital organs are all under circadian regulation.
Themaster regulator is in the hypothalamus’s supra-
chiasmatic nucleus, primarily entrained by the
light/dark cycle. At the molecular level, the circa-
dian clock is based on the transcriptional/transla-
tional feedback loop of proteins such as
Cryptochrome (CRY), Period (PER), Brain and
muscle Arnt-like protein (BMAL), and Circadian
Locomotor Output Cycles Kaput (CLOCK) that take
�24h to complete. However, nutrient signalling
molecules directly regulate clock genes; activation
of insulin-mTOR pathways increases the stability
and translation of PER proteins [18,19,20

&&

],
whereas fasting activates AMP-activated protein kin-
ase (AMPK) and nicotinamide phosphoribosyltrans-
ferase (NAMPT) pathways reducing the stability and
transcription of CRY and PER [21–23]. In this way,
changes in insulin and cAMP due tomistimedmeals
will influence hundreds of downstream ‘clock-con-
trolled’ genes in peripheral tissues responsible for
metabolic processes, including gastrointestinal
function, glycaemic control, and muscle metabo-
lism.

Environmental cues such as light/dark phase,
temperature changes, and physical activity can syn-
chronise the circadian clock with the external envi-
ronment, with food consumption being the most
potent entrainer for peripheral clocks. In the gut,
nutrient uptake, gastric motility, gastric acid and
gastrointestinal hormone production, nutrient
absorption, and the gut microbiome are under cir-
cadian regulation [24

&&

,25
&&

]. Glucose metabolism is
also under circadian control [26]; the hepatic clocks
regulate glucose production, whereas the pancreatic
clocks regulate insulin secretion according to time
of day with much less secretory capacity at night. In
contrast, the muscle clock regulates glucose uptake
through reduced glucose transporter translocation
at night versus day [27

&

]. Moreover, circadian dis-
ruption can acutely impact glycaemic control
through impairments in beta-cell function and
peripheral insulin sensitivity [26].
Volume 28 � Number 4 � August 2022
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THE INTENSIVE CARE UNIT ENVIRONMENT
AND CIRCADIAN DISRUPTORS

Diurnal rhythms of central phase markers such as
body temperature, blood pressure, heart rate, and
sleep patterns in critically ill patients are highly
disturbed during ICU admission [28–30] and con-
tinue to be disrupted for weeks after discharge
[29,31

&&

,32]. The pathophysiological response to
critical illness might primarily drive this disruption
in circadian rhythms, whereas non-physiological
clinical factors, such as mechanical ventilation,
medications, and sedation, may further contribute.
Moreover, critical illness comes with pain, fatigue,
stress, and cognitive dysfunctions such as delirium,
which might further exacerbate circadian disrup-
tion [3

&

]. ICU patients are exposed to frequent
patient care interactions, noise, persistent light,
and often to continuous enteral feeding, which
are potentially modifiable factors that could miti-
gate circadian disruption. Therefore, further under-
standing of the extent of circadian disruptors and
circadian health in ICU patients is needed.

A handful of studies have assessed the rhythmic
expression of clock genes in critically ill patients
[28,33–35], and the studies published in the last
18months are summarised in Table 1. Studies that
have quantified circadian rhythms of clock genes in
critically ill patients early in ICU admission show no
rhythmic expression of crucial clock genes com-
pared to healthy controls [28,33]. However, these
studies vary in patient population and are limited to
neurology patients and patients with and without
sepsis (type of patients was not specified). Following
admission, the time to inclusion is critical when
circadian health is assessed, as circadian rhythm
disturbance occurs rapidly [34]. In addition, baseline
circadian health (i.e., at home or on the ward)might
be variable and is an important confounding factor.
For the assessment of circadian disruption (i.e.
rhythmicity), the frequency of blood samples is
critical for modelling analysis and varied in the
published studies from 2- to 6 hourly in 24h, with
recommendations being 2-hourly with at least 4-
hourly [36] so as not to underpower the analysis.

The relationship between circadian rhythm dis-
ruption and clinical and environmental factors in
critical illness has been largely unexplored. Maas
et al. published two additional papers (using the
original larger dataset of n¼112 critically ill patients
[33]) to associate changes in clock genes with mel-
atonin levels, light/dark phase, nutritional intake,
and physical activity levels [37

&&

,38
&&

]. No associa-
tions were found between clock gene amplitudes
and illness severity (SOFA scores), encephalopathy
(Glasgow Coma Score), rest-activity rhythmicity
1070-5295 Copyright © 2022 The Author(s). Published by Wolters Kluwe
(daily pattern of activity and rest), and melatonin
levels. Low day-time light intensity levels, frequent
nursing care, and night-time noise were highly
prevalent. Nutritional intake (only available in
n¼43/112 patients) was inadequate, with 39%
receiving some bolus feeding (enteral or oral); how-
ever, no detailed nutritional intake data was
reported. Physical activity levels in critically ill
patients were drastically lower compared with
ambulatory and bedrest healthy controls. No rela-
tion between feeding regime and/or physical activ-
ity levels and clock gene expression was made, so it
remains yet uncertain how disruptors such as light,
noise, nutrition, and/or physical acitivity affects
circadian rhythm in ICU patients.
INTERMITTENT FEEDING AND METABOLIC
OUTCOMES IN CRITICALLY ILL PATIENTS

The optimal feeding mode for critically ill patients
has become an ongoing debate in critical care nutri-
tion. As reviewed previously, most continuous ver-
sus intermittent feeding [12–17] studies in critical
illness are aimed to improve nutritional intake tar-
gets. To date, the few studies that have been con-
ducted have included relatively small patient
cohorts and have failed to show clear clinical bene-
fit; well-controlled RCTs comparing metabolic
effects of alteredmeal timing in critically ill patients
remain scarce. Supporting evidence to understand
thepossible effect of intermittent feedingon glucose,
gastrointestinal, andmuscle metabolism in critically
ill patients is discussed in the following sections.
Glycaemic control and gastrointestinal
function

In critically ill patients, intermittent feeding has
been shown to either increase glycaemic variability
[39] or not to affect daily blood glucose levels
[40,41], whereas reduced insulin requirements have
been observed following intermittent feeding
[39,42,43]. Gastrointestinal intolerance (e.g.,
delayed gastric emptying) is common in critically
ill patients, resulting in impaired nutrient absorp-
tion and an increased risk for aspiration; intermit-
tent feeding may increase gut motility and the
release of postprandial gastrointestinal hormones.
Studies to date have only assessed surrogate meas-
ures of gastrointestinal dysfunction and have been
inconclusive, reporting no difference [39] or higher
[44,45,46

&

] gastric volumes following intermittent
feeding. With glucoregulatory and appetite hor-
mones playing an essential role in glycaemic control
and gastric emptying, further studies assessing the
r Health, Inc. www.co-criticalcare.com 383



Table 1. Studies that have assessed circadian disruption in ICU patients in the last 18months.

Study Design Patient population Methodology Main findings

Maas et al. [33] Cross-sectional observational
study

Enrolment within 24 h of
emergency department
presentation

Healthy volunteers were studied in
a clinical research facility under
similar circumstances

n¼15 ICU patients (10 with
sepsis and 5 with intracerebral
haemorrhage) vs n¼11 healthy
volunteers

Primary outcome: mRNA
expression of Cry1--2, Per1--3,
RORa, NR1D1, Bmal1,
CLOCK, and TIMELESS.

Secondary outcomes: Melatonin
concentrations (amplitude)

Sample analysis: 2-hourly blood
samples over 24h

Rhythm analysis: Individual
consinor fits for each gene
along with a population-mean
cosinor fit and TimeSignature (a
validated algorithm based on
41 genes to evaluate the
overall phase coherence of the
rhythmic transcriptome)

No rhythmic expression was
observed in any clock genes in
ICU patients, while circadian
rhythmicity was observed in
healthy controls (significant
cosinor rhythm fit in BMAL1,
TIMELESS, CRY1, NR1D1, and
PER1).

Diaz et al. [34] Prospective observational study on
the first day after ICU admission
and 1 week later.

n¼11 neuro-ICU patients (n¼7
subarachnoid or intracerebral
haemorrhage and n¼4
traumatic brain injury)

Primary outcome: mRNA
expression of CLOCK, Bmal1,
Cry1, and Per2.

Sample analysis: 6-hourly blood
samples over 24h (6, 12, 18,
24h after admission)

Rhythm analysis: Fourier series
and curve fitting

Rhythmicity was observed in all
clock genes on the first day
after ICU admission, while
rhythmicity completely
disappeared after one week.

Acun~a-Ferna’ndez et al. [28] Prospective observational study
(time frame unknown)

n¼24 non-septic ICU patients,
n¼20 septic ICU patients, and
n¼12 healthy controls

Primary outcome: mRNA
expression of CLOCK, Bmal1,
Cry1 and Per2

Secondary outcomes: Urinary
excretion of 6-SM (6-
sulfatoxymelatonin) and
procalcitonin levels.

Sample analysis: 4 blood samples
over 24h (at 08:00, 13:00,
18:00, and 23:00h).

Rhythm analysis: Relative changes
in gene expression.

No difference was detected in
Bmal1 and CLOCK expression,
while Per2 and Cry1 showed
higher peaks in ICU patients
when compared to healthy
controls. Bmal1 and CLOCK
expression was blunted in
septic patients.
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effect of meal timing on glycaemic control and
gastrointestinal function in critically ill patients
are needed.
Muscle metabolism

Intermittent feeding has been suggested to stimu-
late muscle protein synthesis to a greater extent
than continuous feeding due to increased plasma
amino acid availability and, as such, may serve as an
effective strategy to attenuate muscle wasting in
patients. The largest study (n¼127 patients) con-
ducted with a primary interest inmuscle byMcNelly
et al. [39] observed no difference in change ofmuscle
cross-sectional area (mean change: �1.1%) over ten
days of intermittent feeding when compared with
standard continuous feeding. A secondary analysis
of this study [47

&&

], demonstrated an attenuated
urea-to-creatinine ratio trajectory (as a marker of
muscle wasting) in intermittent feeding compared
with continuously fed patients, suggesting that
intermittent feeding might be preventing catabo-
lism. However, in this multicentre RCT, the primary
outcome was available in only n¼63/127 patients
(by day 10), and several confounding factors, includ-
ing higher protein and energy intakes in the inter-
mittent feeding group as well as the methodology
used to assess muscle mass, may explain the lack of
observed benefit. In a smaller patient cohort of 59
ICU patients [40] (only abstract available), no differ-
ence in change of thickness and cross-sectional area
of rectus femoris during seven days of intermittent
versus continuous feeding was observed; however,
the limited information available from this study
makes it hard to evaluate. No research to date has
assessed the effect of intermittent feeding versus
continuous feeding on muscle protein synthesis
rates in critically ill patients, which requires further
investigation to understand the impact of altered
meal timing on muscle metabolism.
MEAL TIMING AND CIRCADIAN RHYTHMS:
IS THERE AN EXPECTED EFFECT FOR THE
INTENSIVE CARE UNIT?

Environmental entrainers such as sleep/wake phase,
food intake, and physical activity can reset or re-
align circadian clocks in peripheral tissues [2

&

]. Eat-
ing during the inactive phase in animals completely
inverts the expression of core clock genes in muscle,
adipose tissue, and liver [48]. To date, this has been
poorly investigated in humans. Only two studies
have recently investigated the effects of limiting
meal timing on circadian clocks through repeated
tissue sampling in health. Lundell et al. [49

&&

]
showed that time-restricted eating did not alter
1070-5295 Copyright © 2022 The Author(s). Published by Wolters Kluwe
clock genes in muscle, but changes in the circadian
regulation of metabolites, including amino acids,
were observed. Zhao et al. [27

&

] took four repeated
adipose tissue biopsies over 24h and observed that
time-restricted eating restored 3 out of 12 clock
genes and rhythm to 450 genes in adipose tissue
that were arrhythmic at baseline ( personal commu-
nication, manuscript accepted, in preprint). Two other
studies have reported that time-restricted eating
induced changes in clock genes at different time
points: time-restricted eating between 8 am and 2
pm decreased PER1 at 8 pm and increased CRY1/2
and RORa at 8 am and 8 pm [50]. Increased ampli-
tude in BMAL1, CRY1, PER2, and RORa was also
reported in white blood cells of patients with type 2
diabetes who ate threemeals in 12h versus sixmeals
in 15h [51].

No studies have been conducted to assess the
impact of time of nutritional intake on circadian
rhythms in critical illness. However, the time of day
of meal ingestion affects the postprandial glucose
response and shifting meal intake to earlier in the
day improves glucose tolerance throughout the day
in healthy adults and those with overweight or
obesity [52,53]. In contrast to continuous feeding,
intermittent feeding might reduce glucose intoler-
ance and insulin resistance, which is relevant in
critically ill patients, as up to 75% of patients show
stress-induced hyperglycaemia [54]. The current
clinical management of elevated glucose concentra-
tions in the ICU is exogenous insulin administration
with continuous enteral nutrition. However, inten-
sive exogenous insulin therapy has been associated
with negative consequences, including hypoglycae-
mic events, increased insulin administration, and
increased mortality [55]. Moreover, continuous
enteral nutrition to manage glucose levels is sup-
ported by limited evidence. Insulin (and IGF-1) has
recently been recognised as a circadian entrainer
and, as such, can serve as a primary signal of feeding
time to cellular clocks throughout the body [19].
Therefore, intermittent feeding might be an effec-
tive strategy for preserving or re-aligning circadian
rhythms, besides optimising glycaemic control.
Moreover, incorporating overnight fasting periods
has been suggested to be effective for metabolism, as
research in healthy individuals has shown that fast-
ing periods activate ketogenesis and autophagy [50].
A recent pilot study [56

&&

] tested the feasibility of a
period of fasting (alternating 12h feeding with 12h
fasting) in 70 prolonged critically ill patients, show-
ing that a 12h nutrient interruption can initiate a
metabolic fasting response by increased serum bilir-
ubin and plasma beta-hydroxybutyrate and decreas-
ing insulin requirements and serum IGF-I. Although
the effect of intermittent or cyclic feeding on
r Health, Inc. www.co-criticalcare.com 385



Light:
• Light/dark phase is the primary entraining cue for the 

master core clock.
• Light intensity in ICU rooms does not reach the same 

variation between light and darkness as in everyday 
life.31,38

Nutrition: 
▪ Time-restricted eating can induce changes in clock 

gene expression in healthy individuals.50,51

▪ Effect of intermittent feeding and overnight fasting 
periods on circadian health in critically ill patients 
needs further research.

Temperature: 
• Diurnal rhythms of central phase markers (e.g. body 

temperature, blood pressure, heart rate) and sleep 
patterns in critically ill patients are highly disturbed.28,30

Noise:
• High noise levels in the ICU occur frequently during 

day and night.3,38

• It is unknown how night-time noise affects circadian 
clocks.

Physical activity: 
• There is a day-night rhythm in mRNA expression of 

molecular clock genes in human skeletal muscle.55,56

• No studies have assessed the effect of timing of 
patient mobilisation and passive movements on 
circadian rhythms in ICU patients.

Patient interactions: 
• High frequency of patient care interactions at night 

disturbs sleep and thus potentially circadian health.

Medical interventions: 
• Sedative and vasopressor medications are associated with circadian disruption.37

• Melatonin rhythms are suppressed in sedated and ICU patients with increased 
neurologic dysfunction; the effect of melatonin therapy needs further 
investigation.37,38.

• The effect of chronotherapy on circadian disruption, i.e. providing drugs at a time of 
day least disturbing circadian rhythms, remains unknown.
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FIGURE 1. Clinical and environmental factors in the ICU that impact circadian rhythms.
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metabolism and clinical outcomes in critically ill
patients needs further investigation, intermittent
feeding regimes including overnight fasting periods
might be relevant to preserve or even reset circadian
misalignment. Other potential modifiable clinical
and environmental disruptors for circadian rhythms
in ICU patients, including light, temperature, phys-
ical activity, noise, sleeping medication, and nurs-
ing and medical interventions, are summarised in
Fig. 1 [57

&

,58].
CONCLUSION

Studies in the last 18months have further shown
that intermittent feeding can increase nutritional
intake. The suggested effect on improved glycaemic
control, impaired gastric intolerance, and muscle
mass maintenance compared to continuous feeding
is minimal and based upon low-quality evidence.
Ramifications on circadian misalignment in gastro-
intestinal, glucose, and muscle metabolism high-
light the degree to which different tissues are
affected, with studies in health showing that
time-restricted eating can induce changes in periph-
eral clock genes. Chronotherapy, i.e., aligning meal
timing, physical activity, and/or medication, are
potential strategies to preserve or reset peripheral
circadian rhythms; however, it is not known how
these strategies can affect circadian rhythms in ICU
patients. Interventional strategies to preserve
386 www.co-criticalcare.com
circadian health could include the use of eye masks
and earplugs, intermittent or cyclic day-time feed-
ing, daily mobilisation, light-, and/or melatonin
therapy during and post-ICU admission. However,
the effect on metabolism and clinical outcomes is as
yet unknown.
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