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 Abstract 

 The  rapid  development  of  clinical  ar�ficial  intelligence  (AI)  technologies  has  outpaced  the 
 development  of  robust  regulatory  and  clinical  safety  mechanisms.  AI  systems  are  cleared  for  use  and 
 deployed  in  prac�ce  relying  on  pre-clinical  performance  studies,  without  evidence  of  the  impact  this 
 will  have  on  pa�ent  and  provider  outcomes.  This  has  led  to  concerns  of  an  “implementa�on  gap”, 
 where  systems  that  appear  to  perform  well  on  pre-clinical  tes�ng  fail  to  produce  the  expected 
 outcomes in prac�ce. 

 While  there  is  an  urgent  need  for  direct  clinical  tes�ng  of  AI  systems  and  evalua�on  of  the  impact  of 
 these  systems  on  pa�ent  and  provider  outcomes,  it  is  implausible  to  expect  the  clinical  evalua�on 
 will  be  performed  at  the  scale  necessary  to  mi�gate  poten�al  AI  harms  of  the  many  AI  systems 
 already in use and currently under development. 

 In  this  body  of  work  I  look  at  factors  which  may  contribute  to  the  implementa�on  gap,  in  par�cular 
 the  effects  of  low-quality  training  and  tes�ng  data,  flawed  and  incomplete  study  design 
 methodologies,  and  an  over-reliance  on  explainability  methods  to  address  safety.  I  suggest  a  series  of 
 improvements  to  how  we  design,  evaluate,  and  u�lise  AI  systems  in  clinical  prac�ce,  with  the  goal  of 
 be�er  es�ma�ng  the  poten�al  harms  of  AI  during  the  pre-clinical  tes�ng  phase,  and  by  doing  so 
 closing the implementa�on gap. 
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 Introduc�on: The AI Implementa�on Gap 

 The  explosion  of  ar�ficial  intelligence  (AI)  research  1,2  and  commercial  ventures  3  since  the 
 technological  breakthroughs  of  the  early  2010s  has  le�  regulators  and  governance  bodies  struggling 
 to  catch  up  3,4  .  Indeed,  dozens  of  medical  AI  systems  have  been  approved  by  the  FDA  in  the  last 
 decade  5  ,  despite  an  absence  of  regula�ons  for  so�ware  as  a  medical  device  (SaMD)  un�l  December 
 2017  6  ,  and  an  ongoing  lack  of  AI-specific  regulatory  guidance  (a  document  outlining  the  future  plans 
 of the regulator regarding medical AI was released in early 2021  7  ). 

 In  this  environment,  many  have  raised  concerns  about  an  “implementa�on  gap”  in  medical  AI,  where 
 promising  preclinical  AI  models  may  fail  to  translate  into  ac�onable,  safe,  and  efficacious  clinical  tools 
 8  .  There  is  historical  precedent  that  suggests  the  gap  may  be  caused,  at  least  in  part,  by  a  failure  of 
 pre-clinical  tes�ng,  where  the  exci�ng  preclinical  performance  results  failed  to  predict  the  poor 
 clinical  performance  of  the  deployed  models.  This  phenomenon  was  observed  with  an  older  form  of 
 AI  technology  broadly  termed  computer-aided  detec�on  (CAD)  algorithms.  These  systems  were 
 widely  deployed  in  screening  mammography  programs  in  the  USA  during  the  1990s  and  2000s  9  ,  but 
 the  posi�ve  preclinical  evidence  did  not  translate  into  clinical  benefit,  and  may  have  in  fact  caused 
 clinical harm  9,10  . 

 More  recently,  a  growing  body  of  clinical  and  research  experience  with  medical  AI  has  validated 
 these  concerns,  with  many  examples  of  AI  models  failing  in  unexpected  and  o�en  poten�ally  harmful 
 ways,  including  models  which  rely  on  spurious  image  features  11–13  ,  models  which  exacerbate  exis�ng 
 healthcare  dispari�es  14,15  ,  and  models  which  tend  to  underperform  when  applied  to  new 
 popula�ons (external valida�on)  1  . 

 The  obvious  solu�on  is  to  test  these  systems  clinically  ,  to  demonstrate  that  not  only  is  performance 
 similar  to  human  experts  in  controlled  laboratory  condi�ons,  but  that  pa�ent  and  healthcare 
 outcomes  are  equal  or  improved  in  the  real  world  16  .  The  gold  standard  approach  to  clinical  tes�ng  is 
 the  interven�onal  randomised  control  trial  (RCT),  where  the  AI  model  is  deployed  clinically  and 
 closely  monitored,  much  like  a  pharmaceu�cal  trial.  Recently,  guidelines  for  the  design  and  repor�ng 
 of clinical trials for medical AI have been developed  17,18  . 

 There  can  be  li�le  to  no  implementa�on  gap  with  an  RCT  as  it  directly  measures  the  impact  of 
 implementa�on.  However,  RCTs  are  expensive,  slow,  and  can  be  commercially  risky  16  .  The  FDA  has 
 taken  the  pragma�c  stance  that  low  and  medium  risk  AI  systems  19  can  be  safely  sold  without 
 interven�onal  RCTs,  albeit  with  the  requirement  to  perform  post-marke�ng  monitoring  6  .  The  safety 
 of  this  approach  is  yet  to  be  tested,  as  thus  far  no  “high-risk”  systems  have  undergone  regulatory 
 review and few reported studies have included prospec�ve randomisa�on in their design  2,20  . 

 The  conflict  between  safety  and  pragma�sm  in  medical  AI  safety  is  the  founda�on  of  this  thesis  and 
 body  of  work.  If  we  accept  that  many  AI  systems  will  not  undergo  real-world  clinical  evalua�on  prior 
 to  marke�ng,  is  there  a  way  to  close  the  implementa�on  gap  by  augmen�ng  preclinical  tes�ng?  As  a 
 general  approach,  I  consider  what  factors  may  be  responsible  for  the  implementa�on  gap,  and  rather 
 than  seeking  technical  solu�ons,  I  ask  if  there  are  poten�al  human-lead  strategies  to  produce  more 
 informa�ve preclinical results and to iden�fy AI model vulnerabili�es? 
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 Sec�on 1: Issues with medical data 

 Machine  learning  applied  to  medical  problems,  similar  to  much  of  clinical  epidemiology  and  medical 
 research  in  general,  is  a  data  driven  science.  Both  scale  and  quality  of  data  are  therefore  cri�cal 
 aspects in construc�ng robust and useful clinical AI systems. 

 Training  data  is  o�en  described  as  one  of  the  most  cri�cal  parts  of  any  AI  development  process,  and 
 is  commonly  implicated  as  a  cause  of  the  unexpectedly  poor  real  world  performance,  unfairness,  and 
 algorithmic injus�ce  21  . 

 Most  o�en,  this  is  discussed  in  terms  of  the  size  of  datasets,  with  an  expecta�on  of  “more  is  be�er”. 
 Certainly,  it  has  been  shown  that  AI  performance  improves  as  data  increases,  with  no  known  ceiling 
 22  ,  although  extremely  large  datasets  can  be  unwieldy  and  difficult  to  operate  on.  Certainly,  in  other 
 fields AI performance con�nues to improve even into hundreds of thousands or millions of examples. 

 In  medicine,  data  availability  is  heavily  limited  by  disease  rarity  -  even  common  diseases  o�en  occur 
 only  thousands  of  �mes  per  year  in  a  given  hospital  or  healthcare  network,  and  uncommon  diseases 
 can  be  much  rarer.  This  leads  to  highly  imbalanced  datasets,  where  there  may  be  hundreds  of 
 thousands  of  cases,  but  only  hundreds  or  even  tens  of  examples  of  a  par�cular  pathology  and 
 tending  to  reflect  only  the  most  common  variants  of  the  disease.  Take  for  example  screening 
 mammography,  with  a  detected  breast  cancer  prevalence  of  0.3-0.7%,  or  less  than  one  cancer  per 
 100  disease-free  pa�ents  23  .  The  implica�on  is  that  for  many  medical  problems,  it  can  be  incredibly 
 difficult or even impossible to obtain “enough” data. 

 Not  just  the  quan�ty  of  data  but  also  the  quality  of  data  is  extremely  important  in  medical  AI,  as 
 Gebru  et  al  say:  “the  characteris�cs  of  these  datasets  will  fundamentally  influence  a  model’s 
 behavior“  21  .  In  this  context,  an  extremely  important  but  less  discussed  considera�on  is  the  quality  of 
 data  labels.  While  it  has  been  argued  that  deep  learning  models  tend  to  be  robust  to  label  noise  24  , 
 this  tends  to  relate  to  random  noise,  and  both  class-dependent  label  noise  (where  the  label  errors 
 depend  on  the  label  class)  and  feature-dependent  label  noise  (where  the  magnitude  and  type  of  the 
 label  errors  are  dependent  on  the  content  of  the  input  data)  cause  more  severe  degrada�on  25  .  In  the 
 medical context, sources of these types of structured noise are plen�ful. 

 Finally,  the  effect  of  the  visual  conspicuity  of  features  has  been  poorly  inves�gated  in  the  computer 
 vision  and  medical  imaging  AI  literature.  A  large  propor�on  of  the  broader  computer  vision  AI 
 literature  is  benchmarked  on  visual  tasks  which  contain  highly  conspicuous  subjects;  the  features  of 
 interest  are  easily  dis�nguished  from  surrounding  structures  and  those  features  fill  a  large  por�on  of 
 the  input  images.  In  medical  imaging,  many  features  of  interest  are  small  and  subtle  and  it  is  possible 
 that  this  dis�nc�on  may  limit  our  ability  to  extrapolate  findings  from  the  broader  computer  vision 
 literature directly to medical contexts. 
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 1.1 The nature, quality, and content of input data labels 

 The  choice  of  label  categories  and  the  labelling  methods  employed  can  directly  result  in  an 
 ‘implementa�on  gap’.  Commonly,  AI  models  are  tested  on  a  dataset  sampled  from  the  same  source 
 as  the  data  used  for  training.  Even  when  tested  on  external  (independent)  data,  the  labelling  schema 
 and  labelling  methods  (these  might  be  called  the  “label  genera�ng  process”)  are  o�en  the  same  as 
 the  local  data.  If  this  label  genera�ng  process  is  poorly  matched  to  the  intended  purpose  and  use  of 
 an  AI  model,  then  not  only  will  the  model  perform  poorly  when  deployed,  but  it  will  perform 
 unreasonably well when tested (as the errors in the labels are equally present in the test data). 

 An  example  of  this  problem  is  the  use  of  natural  language  processing  to  label  data  in  several  large 
 public  chest  x-ray  datasets,  notably  CXR-14  26  ,  Chexpert  27  ,  and  MIMIC-CXR  28  .  While  the  la�er 
 includes  the  free  text  radiology  reports  in  the  dataset,  all  of  these  datasets  make  the  same 
 underlying  assump�on;  that  the  visual  informa�on  in  the  image  is  adequately  reflected  in  the  reports 
 to  produce  meaningful  labels  (although  the  Chexpert  dataset  does  also  include  a  small  test  set  with 
 labels produced by visual evalua�on of the images by radiologists). 

 In “  Exploring Large-Scale Public Medical Image Datasets”  29  , I consider the accuracy of labels for the 
 CXR-14 dataset  26  and the MURA (musculoskeletal radiographs) dataset  30  , showing that the method 
 of labelling has a direct impact on the reliability of the labels when compared to a gold standard for 
 the task (expert human visual review of the images). 
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Original Investigation

Exploring Large-scale Public Medical
Image Datasets
Luke Oakden-Rayner, MBBS, FRANZCR

Abbreviations

AI
artificial intelligence

CXR14
The ChestXray14 dataset

MURA
The Musculoskeletal

Radiology dataset

RSNA
Radiological Society of North

America

Rationale and Objectives: Medical artificial intelligence systems are dependent on well characterized
large-scale datasets. Recently released public datasets have been of great interest to the field, but
pose specific challenges due to the disconnect they cause between data generation and data usage,
potentially limiting the utility of these datasets.

Materials and Methods: We visually explore two large public datasets, to determine how accurate the
provided labels are and whether other subtle problems exist. The ChestXray14 dataset contains
112,120 frontal chest films, and the Musculoskeletal Radiology (MURA) dataset contains 40,561 upper
limb radiographs. A subset of around 700 images from both datasets was reviewed by a board-certified
radiologist, and the quality of the original labels was determined.

Results: The ChestXray14 labels did not accurately reflect the visual content of the images, with posi-
tive predictive values mostly between 10% and 30% lower than the values presented in the original
documentation. There were other significant problems, with examples of hidden stratification and label
disambiguation failure. The MURA labels were more accurate, but the original normal/abnormal labels
were inaccurate for the subset of cases with degenerative joint disease, with a sensitivity of 60% and a
specificity of 82%.

Conclusion: Visual inspection of images is a necessary component of understanding large image data-
sets. We recommend that teams producing public datasets should perform this important quality con-
trol procedure and include a thorough description of their findings, along with an explanation of the
data generating procedures and labeling rules, in the documentation for their datasets.

Key Words: Artificial intelligence; dataset; exploratory analysis; deep learning; quality control.

© 2019 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

INTRODUCTION

T he successful training of modern artificial intelligence
(AI) relies on large, well-characterized datasets (1).
The availability of these datasets can be considered a

major barrier to the production of high quality image analysis
AI systems in radiology, not only because the cost to produce
these datasets is high, but also because access to existing data-
sets is restricted. Privacy concerns around the sharing of medi-
cal data and the competitive advantage that medical AI

companies obtain from their own proprietary datasets is likely
to have limited the sharing of these resources.

To overcome this challenge, several large public datasets
have been made available in recent years. The ChestXray14
(CXR14) dataset produced by a team of researchers at the
National Institutes of Health Clinical Center contains over
112,000 chest radiographs (2). The Musculoskeletal Radiol-
ogy (MURA) dataset and competition from the Stanford
Machine Learning Group contains over 40,000 upper limb
radiographs (3). The Radiological Society of North America
(RSNA) Paediatric Bone Age challenge dataset contains
14,236 upper limb radiographs (4). Several other notable
recent releases of data include the RSNA pneumonia chal-
lenge, which builds on the CXR14 dataset with radiologist-
produced labels, the QC500 dataset from Qure.AI (a com-
mercial group) containing 500 CT head images in patients
with and without intracranial hemorrhage (5), and the
fastMRI dataset from New York University and Facebook
AI Research containing 10,000 knee MRI studies (6). Each
of these datasets, other than the fastMRI dataset, are accom-
panied by labels (indicators of a particular disease or imaging
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finding within each study) that are intended to inform the
training of clinically useful AI systems.
These public datasets have generated an enormous level of

interest in the medical image analysis community. Two hun-
dred and sixty teams registered for the RSNA Bone Age chal-
lenge, and over 1400 teams registered for the RSNA
pneumonia detection challenge. Similarly, dozens of teams
have published results on the CXR14 and MURA datasets.
This democratization of access to large-scale medical data

has undoubtedly been of benefit to the medical image analysis
community; however it is important to understand the spe-
cific challenges presented by these public datasets.
The root of the problem with public datasets is that the

development processes (data gathering, cleaning, and label-
ing) are disconnected from the usage of the data. This means
that the end-user of the data may not understand the nuances
of the development processes, including many subtle design
decisions that are not always well communicated in the pub-
lished reports on the datasets. This problem is compounded
by the highly opaque nature of medical images to nonexperts
(i.e., nonradiologists). Unlike with datasets of ordered rows
and columns of numbers, where the relationships between
input variables and labels can be analyzed by anyone practiced
in the skills of data science, the connection between a medical
image and its label (for example, a diagnosis) requires domain
understanding.
This disconnect between dataset development and usage

can cause a variety of problems; (1) the accuracy of the labels
can be overestimated by users, particularly when the weak-
nesses of the label generation procedures are poorly
explained, (2) the presence of unlabeled visual subsets (sub-
groups of images that look different than the majority of
images in the label class) can significantly alter the usefulness
of the labels in training AI systems, and (3) the clinical mean-
ing of the labels themselves can be obscure. Making matters
worse, if AI systems are then tested on data generated with
the same procedures (i.e., on test data drawn from the same
dataset), then these problems may occur silently; the results of
testing can look good because the models can learn to repro-
duce the flawed labels from the training data, but the actual
clinical performance of these systems will be poor.
Each of these problems can only be overcome by the direct

application of medical knowledge; an expert must appreciate
the presence of subsets, review the quality of the labels, and
comprehend the logic of the label schema (the rules that gov-
ern what each label means, and their relationships to each
other). Only after this evaluation is it possible to determine
the value of the dataset for building medical AI systems.
In this work we explore two large public datasets to dem-

onstrate the importance of this review process, assessing the
accuracy of the provided labels, as well as identifying other
issues that may limit the utility of these datasets. In doing so,
we stress the importance of expert visual analysis as a form of
quality control when building and using these large-scale
datasets, and present recommendations for teams planning to
release public datasets in the future.

METHODS

Datasets

CXR14
The CXR14 dataset is a large-scale dataset for pathology detec-
tion in chest radiographs. This dataset was released in 2017 and
updated later the same year, containing 112,120 frontal chest
films from 30,805 unique patients. The dataset is drawn from a
single tertiary medical center (the NIH Clinical Center) and
appears to include films from multiple clinical settings, includ-
ing intensive care unit (ICU) and non-ICU patients.

The images had a resolution of 3000£ 2000 pixels, and
were in the DICOM format (which stores grayscale pixels
with around 3000�4000 gray levels). These were down-
sampled into PNG images with a resolution of 1024£ 1024
pixels and 255 gray levels, an absolute reduction in complex-
ity of around 99%.

The dataset was labeled using natural language processing
on the original (clinical) free-text reports, a process that
involved matching keywords related to various forms of
pathology, and identifying negations (sentences that exclude
certain findings and pathologies).

The dataset was initially labeled with eight different classes,
however this was expanded to 14 classes later in 2017. These
classes were: atelectasis, consolidation, infiltration, pneumo-
nia, cardiomegaly, pneumothorax, fibrosis, pleural effusion,
mass, nodule, pleural thickening, oedema, hiatus hernia,
emphysema, and a normal (no finding) class. As the dataset
was collected from a clinical archive, these image findings
occur roughly at clinical prevalence, ranging from less than
0.5% (hernia) up to almost 10% (infiltration). The “normal”
or “no finding” class makes up around 75% of the total
images, or roughly 84,000 studies.

Notably, there are many patients with multiple X-rays.
Almost half of all patients (13,302) had more than one study,
together accounting for 84% of the data. Further exploration
of the extent of multiple studies is provided in Table 1,
revealing that the number of patients with numerous repeat
images account for a surprisingly large proportion of the data-
set. In many of these cases, these will reflect ICU patients
who have repeat imaging daily, where the images change
very little across the entire series, significantly reducing the
diversity of the dataset.

MURA
The MURA dataset is a large dataset for abnormality detection
in upper limb musculoskeletal radiographs. Released in 2018,
the dataset contains 40,561 images from 14,863 studies,
obtained from a single tertiary medical center (Stanford Hospi-
tal). The dataset includes seven standard upper limb study types,
with studies of the fingers (2110 studies), hands (2185 studies),
wrists (3697 studies), forearms (1010 studies), elbows (1912
studies), humeri (727 studies), and shoulders (3015 studies).

The dataset was labeled at the time of clinical interpretation
by board-certified radiologists, each providing a label of
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“normal” or “abnormal” at the time of performing their usual
report. No additional pathology specific labels were produced.

It was not specified in the MURA paper what constituted
an “abnormal” finding, however an analysis of the label com-
position was performed by the authors; the text reports of
100 cases labeled abnormal were reviewed and the specific
abnormalities identified were noted. This analysis revealed, of
100 abnormal cases, there were 53 studies with fractures, 48
studies with implanted hardware (such as joint replacements),
35 studies with degenerative joint disease, and 29 studies with
other abnormalities such as lesions and subluxations.

The image in MURA was also downsampled, from
DICOM images with a resolution of 1500£ 2000 pixels and
around 3000�4000 gray levels, to PNG images with a resolu-
tion of 512£ 200�400 pixels, and 255 gray levels. This reflects
an absolute reduction in image complexity of over 95%.

Multiple views were performed for most cases, with over
92% of cases having more than one image. There were rela-
tively few repeat studies however, with only around 4% of
patients having two or more studies.

Visual Inspection

The accuracy of the datasets was assessed by visual inspection
performed by LOR, a board-certified radiologist. Each data-
set was relabeled by LOR according to the findings of an ini-
tial exploratory assessment. Visual review of a randomly
generated subset of around 100 images from each class (i.e.,
pneumonia, cardiomegaly, etc. in CXR14, and normal,
abnormal in MURA) was performed. This exploration was
to understand the images and labels, and to identify any com-
mon problems with the label schemata, with the findings
used to inform the relabeling process. The images used for
exploratory analysis were separate from the images that were
used for relabeling.

CXR14
In the CXR14 dataset, large-scale relabeling at the original
prevalence was not achievable due to the rarity of many of
the labels present in the original dataset and the ambiguity of
many of the label classes. For example the CXR14 label
schema considers pneumonia, consolidation, and infiltration

as distinct processes, but clinically it is rarely possible to distin-
guish these processes, at least without clinical information. As
such, any labels created for these categories would likely be
idiosyncratic and unfairly reflect upon the accuracy of the
original labels.

To overcome these issues, an enriched, randomly selected
subset of 50 cases per class were reviewed, for a total of 700
cases. Rather than attempting to relabel each case with the 14
possible classes, each case was reviewed purely for the pres-
ence of the label(s) it had been given; for example, a case
from the cardiomegaly subset was relabeled “cardiomegaly”
or “not cardiomegaly”.

As each label class is not explicitly defined in the original
paper, a permissive labeling rule was applied. In general, if a
case could plausibly reflect the finding in the original label, it
was considered positive for that finding, as long as that finding
was visible to the eye of faith (i.e., an ill-defined basal opacity
could be positive for pleural effusion or consolidation, but
not for a mass). This is in comparison to labeling rules such as
“label only findings that you would report in clinical prac-
tice” or “label only findings that you are certain of,” both of
which rules are much stricter than the rule applied. As such,
the labels should diverge as little as possible from the original
CXR14 labels, while still reflecting the visual appearance.

Notably this label rule was more permissive than the rules
used in previous analysis of this dataset (7).

Because this approach was very permissive, a second rule
which was closer to normal clinical practice was also applied
for relabeling. The finer details of both of these rules are pro-
vided in the Supplement.

MURA
In MURA, relabeling of 714 randomly selected cases was
performed. This was achievable at the original prevalence of
the dataset, as the ratio of abnormal to normal cases was
around 45:55.

Pathology specific labeling was undertaken, with labels
produced to identify cases containing fractures, implanted
hardware, degenerative joint disease, bone tumors, and a class
containing miscellaneous pathologies (such as osteopaenia,
subluxations, and ligamentous injuries). These labels were
produced without knowing the original MURA label (nor-
mal or abnormal) for each study.

The labeling rule in this case was less permissive, as these
labels were part of a larger effort to relabel the MURA dataset
with clinically accurate labels. As such, cases were labeled to
the best accuracy of the radiologist.

Analysis

The CXR14 data labels were assessed by calculating their
positive predictive value (PPV), using the expert visual labels
as the gold-standard. The PPV was presented here because
the cases were only assessed for the presence or absence of
their associated labels findings. As explained earlier, the

TABLE 1. The Prevalence of Patients with Multiple Studies in
the CXR14 Dataset

Number of
Studies per
Patient

Number of Patients
(Percentage of
Patients in CXR14)

Total Number of
Studies
(Percentage of
Studies in CXR14)

>1 13,302 (43%) 94,617 (84%)
>5 4821 (16%) 70,081 (63%)
>10 2225 (7%) 50,468 (45%)
>50 151 (0.5%) 10,812 (10%)
>100 18 (<0.001%) 2310 (2%)
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dataset could not be efficiently relabeled wholesale for a vari-
ety of reasons, which meant that the negative predictive value
could not be determined. As such it should not be assumed
that these results reflect a comprehensive assessment of the
dataset, but instead simply provide evidence towards the
quality of the labels.
The MURA data labels were assessed using the expert

visual labels as the ground truth, with the sensitivity and spec-
ificity calculated. In this dataset, comprehensive relabeling
was possible, which allowed for assessment of both positive
and negative cases.
In both datasets, subgroup analysis was performed. In the

MURA dataset, the subgroups included the body region
imaged and the specific pathology groups labeled by visual
review. In the CXR14 dataset, the specific subgroups beyond
just the label classes were identified during exploratory analy-
sis of the images.

RESULTS

CXR14

Fifty cases from each of the 15 class groups were assessed by
LOR. The results for the visual assessment of the CXR14
dataset are provided in Table 2. Even with the use of permis-
sive labeling rules, the PPV determined by visual assessment

of the images is below the estimated PPV presented in Wang
et al. in all classes.

Exploratory visual analysis revealed two striking examples
of visual stratification. The first is in the pneumothorax class,
where 80% of the positive cases have chest drains. In these
examples, there were often no other features of pneumotho-
rax (i.e., the lung did not appear collapsed, likely reflecting a
successfully treated pneumothorax). While the overall PPV
was quite high (90%), of the cases without chest drains the
PPV was lower, at 60%.

The second example of visual stratification was related to
the emphysema class. The majority of cases (86%) had subcu-
taneous emphysema rather than pulmonary emphysema. This
is almost certainly a specific failure of the original labeling
method, where these keywords were not successfully disam-
biguated. This resulted in a very low PPV for the emphysema
labels.

MURA
The imaging characteristics of the test subset, as well as the
entire MURA dataset, are provided in Table 3. The distribu-
tion of cases within these groups was similar.

Taking the expert review of the images as the ground-
truth, the sensitivity (true positive rate) and specificity (true
negative rate) of the MURA labels is presented in Table 4,
both overall and by region.

The class specific (i.e., per pathology) sensitivity of the
MURA labels is presented in Table 5, using the expert class
labels as the ground truth. The specificity of the MURA
labels is also presented, but the values are inflated by the low
per-class prevalence of the conditions relative to the number
of normal studies.

There was poor identification of degenerative joint disease
by the MURA labels (sensitivity = 60%) compared to fractures
and hardware (sensitivity = 92% and 85%, respectively), which
was also reflected in lower sensitivity for identifying pathology

TABLE 2. Visual Assessment of the CXR14 Dataset Labels,
Using Both Permissive and “Clinical-Style” Relabelling Rules
as the Ground-Truth

PPV (Visual,
Permissive)

PPV (Visual,
Clinical)

PPV (Text
Mining, From
Wang et al.)yy

Consolidation 80% 66% -
Atelectasis 80% 50% 99%
Infiltration 66% 36% 74%
Pneumonia 60% 50% 66%
Oedema 76% 40% -
Nodule 76% 64% 96%
Mass 64% 46% 75%
Pneumothorax* 90% (60%) 90% (60%) 90%
Pleural effusion 74% 70% 93%
Pleural thickening 84% 52% -
Emphysema 14% 10% -
Cardiomegaly 70% 52% 100%
Fibrosis 46% 26% -
Herniay 94% 78% -
Normal 76% 62% 87%

* The pneumothorax class was stratified, with the majority of
images containing chest drains. The PPV of the subset of cases
without chest drains is given in parentheses.
y The hernia class was almost always correctly labeled, but on

exploratory analysis there were many examples of false negatives
that were not captured in the PPV value.
yy The text mining PPV reported by Wang et al. was scored against

the Open-i dataset (9), rather than using data from the CXR14 cohort.
The labels with no text mining PPV did not appear in the Open-i dataset.

TABLE 3. The Imaging Characteristics of the Relabelled Test
Subset, and the MURA Dataset Overall

No. in Test
Subset
(% of the
Subset)

Percentage
of the Test
Subset
Labelled
Abnormal

No. in
MURA
Dataset
(% of the
MURA
Dataset)

Percentage
of MURA
Labelled
Abnormal

All
images

714 (100%) 43% 14656
(100%)

39%

Finger 126 (18%) 44% 2110 (14%) 35%
Hand 131 (18%) 44% 2185 (15%) 27%
Wrist 182 (25%) 36% 3697 (25%) 38%
Forearm 45 (6%) 28% 1010 (7%) 35%
Elbow 70 (10%) 33% 1912 (13%) 38%
Humerus 19 (3%) 42% 727 (5%) 47%
Shoulder 141 (20%) 52% 3015 (21%) 52%
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in the regions typically affected by joint disease (i.e., in the
wrist and the forearm, but not in the elbow or humerus).

To further explore this correlation, a linear regression
model was created to quantify the relationship between the
prevalence of joint disease by region, and the sensitivity for
the detection of abnormal findings by region. These results
are presented in Figure 1, demonstrating a clear relationship
(the coefficient is �0.88). In other words, the more joint

disease occurring in the region, the worse the labels are for
identifying abnormal cases.

During this analysis, it was noted that there was an unex-
pected number of false positive results in the shoulder class;
that is, cases that were labeled abnormal in MURA but were
considered normal on visual review. Visual exploration of
these cases revealed no clear patterns. There were several
missed diagnoses amongst the visually reviewed cases (several
subtle fractures and two lytic bone lesions), but the majority
of the false positive cases revealed no identifiable pathology.

DISCUSSION

The two datasets explored were of variable quality. The PPV
of the labels in the CXR14 dataset were typically quite low,
even allowing for differences in reporting style and inter-
observer variability. By contrast, the MURA labels were of
much higher accuracy, other than in the subset of patients
with features of degenerative joint disease.

In both datasets, the errors in the labels appear directly
related to the weaknesses of the respective labeling methods.

In the CXR14 data, the use of natural language processing
on the reports is problematic because even if the process of
label extraction is flawless, the reports themselves are often
incomplete descriptions of the images. This hypothesis is sup-
ported by the large gap between the findings in Wang et al.,
which show that their labels are accurate reflections of the
reports, and the visual appearance of the images. This discrep-
ancy is understandable from a clinical perspective, as radiol-
ogy reports are not simply an enumeration of image findings.
Many findings are not included in radiology reports either
because they are already known (for example, the classic
report that only states “no change compared to previous”) or
because the radiologist determined that the finding was not
relevant to the referring clinician. This is a major concern
because it suggests that label harvesting with natural language
processing may never be able to accurately reflect the image
findings on the films, and thus may never be able to produce
high quality labels for training image analysis systems.

The CXR14 dataset also included examples of label disam-
biguation failure, with the majority of cases labeled “emphy-
sema” actually showing evidence of subcutaneous
emphysema, and of label schema failure, where the labels did
not account for the clinically important stratification in the
pneumothorax class. The majority of pneumothorax cases
were already treated with chest tubes and often did not show
radiographic evidence of ectopic pleural gas.

This latter point is important not only because untreated
pneumothoraces are more clinically important to identify,
but also because these labels are intended to train image anal-
ysis systems. While it is technically true that a patient with a
chest tube in “has a pneumothorax,” if the majority of cases
do not show any of the visual features associated with this
pathology, the usefulness of the labels is highly suspect. What
can we reasonably expect models to learn from these labels,
other than the appearance of chest tubes?

Figure 1. The relationship between sensitivity (true positive rate)
and the prevalence of degenerative joint disease in the images from
specific regions (i.e., hand, wrist, etc.).

TABLE 4. The Sensitivity and Specificity of the MURA Labels,
Overall and by Region. Specific Subgroups Where the Labels
Underperform Compared to the Average Performance
Across the Dataset are Highlighted in Bold

Sensitivity Specificity

All images 80% 75%
Finger 72% 82%
Hand 79% 80%
Wrist 63% 89%
Forearm 56% 90%
Elbow 94% 81%
Humerus 100% 92%
Shoulder 82% 64%

TABLE 5. The Sensitivity and Specificity of the MURA Labels
by Pathology Type. The Specificity Values Appear High Par-
tially Due to the Low Per-Class Prevalence of the Findings

Sensitivity Specificity

Fracture 92% 98%
Hardware 85% 98%
Degenerative disease 60% 82%
Other 82% 97%
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The label schema of the CXR14 data also suffered from
significant ambiguity, particularly related to the various labels
for airspace opacities, to the point that it became almost
impossible to design an acceptable way to relabel these classes.
This was noted on review of the CXR14 labels themselves, as
it was highly unclear why a case would be labeled as one class
but not another. No common patterns were identified with
exploratory analysis.
The MURA labeling process was much more robust,

because each radiologist at the point of care was asked to label
each case as normal or abnormal. The issue with this labeling
strategy arises because the definition of normal and abnormal
cases was left up to each radiologist. Anecdotally, the Stanford
team has suggested in private communication that many of
the radiologists interpreted this to mean “normal for age”.
This would be in keeping with the finding that degenerative
joint disease in particular was under-reported in the labeling
process, as presumably many radiologists may have decided
that minor degenerative disease was within the expected
range of normal for older patients. As the age of the patients
is not provided with the dataset, this hypothesis cannot be
explored further.
These weaknesses do not necessarily detract from the general

usefulness of these datasets, but they do need to be understood
if the models trained on the data are to function as expected.
For example, a model trained on the MURA data should not
be expected to detect hand or wrist osteoarthritis to any degree
of accuracy. With this in mind, the biggest limitation of these
datasets is not their label quality, but their documentation.
The supporting documents for these datasets do not ade-

quately discuss these issues. In fact, the ChestXray14 paper
and dataset FAQ explicitly state that “the text-mined disease
labels are expected to have accuracy >90%.” Similarly, the
MURA dataset paper presents an exploration of 100 abnor-
mal cases, and states that the abnormalities include fractures,
hardware, degenerative changes, and other miscellaneous
findings. This gives the impression that the labels do cover
degenerative disease, but is in fact an artefact of the process of
only looking at the abnormal cases. If the team had reviewed
the cases labeled normal, they would likely have discovered
the presence of many cases of degenerative joint disease in
this group as well.
In both circumstances, the original documentation is mis-

leading. This raises an important question; “who is responsi-
ble for ensuring the quality of the data in public datasets?”
The effort required to explore a dataset of this size is not neg-
ligible, and we may fear that expecting this level of analysis of
teams who intend to release public datasets may dissuade
them from producing these important resources.
It is also true that many end-users of this data are teams of

computer scientists and engineers, who may not have easy
access to the medical expertise required to understand the
nuances of the data. Even worse, due to this lack of expertise,
they may not even realize that the data could be flawed in

the first place, particularly if they rely on test sets drawn from
the same data.

On balance, the effort required to manually inspect a small
subset of a dataset is fairly low compared to the effort required
to build such a dataset, if performed a single time in a central-
ized manner (i.e., at the time of building the dataset). The
team that builds the dataset is ideally suited to performing this
analysis because they already understand the data generating
process (for example, the MURA team already had anecdotal
knowledge of how the labeling rule was being applied) and
already have access to the medical expertise required for this
assessment.

One way to partially mitigate the problems that users of the
data may face is to produce a smaller second dataset purely for
testing models trained on the original data, using a less flawed
method, ideally involving expert visual review of cases. The
MURA team has done this, using the majority vote of three
board-certified radiologists to produce the labels for 207 randomly
selected cases. Unfortunately, no analysis of the quality of the
original labels for these 207 cases was presented in the MURA
paper, nor was any subset analysis done on these test labels.

The CXR14 team did not provide a manually labeled test
set. Independently, a team that published results on this dataset
produced their own visual labels (8), and showed that the orig-
inal labels significantly underperformed compared to other
radiologists tested on the new labels (F1 score of 0.288 vs radi-
ologist F1 scores of 0.35�0.44). Unlike the MURA test set,
these CXR14 test labels are not publically available.

In both cases, the labeling rules used to produce these test
sets were not explicitly stated.

While the use of a visually accurate set of labels for the test
set does not solve many of the issues of the primary dataset, it
does protect against the risk that the models will fail silently;
the insidious risk that the model can reproduce the flawed
labels but appear to be performing well because the test set is
equally as flawed.

There are a number of limitations to this analysis that
should be acknowledged. First of all, the labels produced by
LOR are not 100% accurate. There will always be a signifi-
cant amount of inter-observer variability, particularly when
labels are ambiguous. This was compounded by the reduced
image quality in each dataset. In particular, the reduction in
the number of gray levels meant that many dense parts of the
images became completely obscured, as if only a single win-
dow setting was available for review. For example it was reg-
ularly impossible to identify any retrocardiac pathology in the
CXR14 dataset, because the heart appeared purely white.

These limitations were mitigated to some extent by being
as permissive as possible when relabeling the CXR14 data,
erring on the side of agreeing with the original labels.

It is also true that some of the labels in the CXR14 and
MURA datasets are informed by information not available to
the reviewer. This is probably particularly true in the case of air-
space opacities, where a label of pneumonia or consolidation
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may be more likely to be used in a patient with a fever. How-
ever, in the context of producing labels for image analysis sys-
tems, it may actually be the case that a blind review of the
images themselves is more worthwhile, as the presence or
absence of image features alone is all that the models will be
able to learn.

CONCLUSION

The disconnect between the dataset development and the
usage of that data can lead to a variety of major problems in
public datasets. The accuracy, meaning, and clinical relevance
of the labels can be significantly impacted, particularly if the
dataset development is not explained in detail and the labels
produced are not thoroughly checked.

These problems can be mitigated by the application of
expert visual review of the label classes, and by thorough doc-
umentation of the development process, strengths, and weak-
nesses of the dataset. This documentation should include an
analysis of the visual accuracy of the labels, as well as the iden-
tification of any clinically relevant subsets within each class.
Ideally, this analysis and documentation will be part of the
original release of the data, completed by the team producing
the data to prevent duplication of these efforts, and a separate
test set with visually accurate labels will be released alongside
any large-scale public dataset.
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 1.2 Underperforming data subsets 

 While  the  accuracy  of  the  labels  is  well-known  to  be  important,  the  variability  within  label  groups  is 
 less  o�en  recognised  as  a  source  of  the  implementa�on  gap.  Labelling  schemas  are  designed  based 
 on  a  number  of  factors,  and  while  exhaus�ve  labeling  of  all  features  in  an  image  is  desirable  this 
 process  is  costly  and  �me  consuming,  and  dataset  developers  are  limited  by  the  availability  of 
 labeling  resources  (i.e.,  expert  clinicians).  Limi�ng  labelling  to  coarse  superclasses  which  describe 
 broad  constella�ons  of  image  features  is  a  widely  employed  strategy,  for  example  labelling  “lung 
 masses”  on  a  chest  x-ray  rather  than  specifically  labelling  subtypes  or  even  image  features  (such  as 
 “spiculated” vs “rounded” masses, or “solid” vs “cavita�ng” lesions). 

 When  overly  broad  class  labels  are  used  there  is  a  high  chance  to  produce  an  implementa�on  gap;  if 
 smaller  subsets  are  associated  with  worse  performance  then  the  use  of  such  datasets  can  produce 
 poor  outcomes,  especially  if,  as  is  o�en  the  case  in  medical  imaging,  serious  or  life-threatening 
 condi�ons  tend  to  be  less  common  than  more  benign  variants.  In  this  context,  not  only  does  tes�ng 
 fail  to  detect  underperformance  within  the  smaller  subset  (as  the  majority  subclass  obscures  the 
 minority  in  aggregate  performance  metrics),  but  medical  AI  models  are  naturally  less  likely  to 
 perform  well  on  these  subsets  because  the  rare  subset  has  fewer  training  examples,  and  therefore 
 provides a weaker training signal to the model. 

 In “  Hidden stra�fica�on causes clinically meaningful failures in machine learning for medical 
 imaging”  31  I explore the role of unrecognised subsets in AI systems, including how the size of 
 minority subclasses, the quality of subclass labels, and the visibility/subtleness of subclass features 
 can result in “hidden” underperformance in important clinical tasks. I also iden�fy several possible 
 ways to discover subsets when developing datasets and tes�ng AI models. 
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ABSTRACT
Machine learning models for medical image analysis often suffer
from poor performance on important subsets of a population that
are not identified during training or testing. For example, overall
performance of a cancer detectionmodel may be high, but themodel
may still consistently miss a rare but aggressive cancer subtype.
We refer to this problem as hidden stratification, and observe that
it results from incompletely describing the meaningful variation
in a dataset. While hidden stratification can substantially reduce
the clinical efficacy of machine learning models, its effects remain
difficult to measure. In this work, we assess the utility of several
possible techniques for measuring hidden stratification effects, and
characterize these effects both via synthetic experiments on the
CIFAR-100 benchmark dataset and on multiple real-world medical
imaging datasets. Using these measurement techniques, we find ev-
idence that hidden stratification can occur in unidentified imaging
subsets with low prevalence, low label quality, subtle distinguishing
features, or spurious correlates, and that it can result in relative
performance differences of over 20% on clinically important sub-
sets. Finally, we discuss the clinical implications of our findings,
and suggest that evaluation of hidden stratification should be a
critical component of any machine learning deployment in medical
imaging.
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1 INTRODUCTION
Deep learning systems have shown remarkable promise in medical
image analysis, often claiming performance rivaling that of human
experts [13]. However, performance results reported in the litera-
ture may overstate the clinical utility and safety of these models.
Specifically, it is well known that machine learning models often
make mistakes that humans never would, despite having aggregate
error rates comparable to or better than those of human experts.
An example of this “inhuman” lack of common sense might include
a high performance system that calls any canine in the snow a wolf,
and one on grass a dog, regardless of appearance [31]. This property
of machine learning models is likely to be of critical importance in
medical practice, where specific types of errors can have serious
clinical impacts.

Of particular concern is the fact that most medical machine
learning models are built and tested using an incomplete set of
possible labels—or schema—and that the training labels therefore
only coarsely describe the meaningful variation within the popula-
tion. Medical images contain dense visual information, and imaging
diagnoses are usually identified by recognizing the combination of
several different visual features or patterns. This means that any
given pathology or variant defined as a “class” for machine learn-
ing purposes is often comprised of several visually and clinically
distinct subsets; a “lung cancer” label, for example, would contain
both solid and subsolid tumors, as well as central and peripheral
neoplasms. We call this phenomenon hidden stratification, mean-
ing that the data contains unrecognized subsets of cases which
may affect model training, measured model performance, and most
importantly the clinical outcomes related to the use of a medical
image analysis system.

Worryingly, when these subsets are not labelled, even perfor-
mance measurements on a held-out test set may be falsely reas-
suring. This is because the aggregate performance measures such
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as sensitivity (i.e. recall) or ROC-AUC can be dominated by larger
subsets, obscuring the fact that there may be an unidentified subset
of cases within which performance is poor. Given the roughmedical
truism that serious diseases are less common than mild diseases,
it is even likely that underperformance in minority subsets could
lead to disproportionate harm to patients.

In this article, we demonstrate that hidden stratification is a
fundamental technical problem that has important implications
for medical imaging analysis on multiple real-world datasets, and
explore several possible techniques for measuring its effects. We
first define three distinct approaches to measuring hidden stratifi-
cation effects—schema completion, error auditing, and algorithmic
measurement—and detail their relative strengths and weaknesses.
We next apply schema completion to illustrate that hidden stratifi-
cation is present in standard computer vision models trained on the
CIFAR-100 benchmark dataset, and leverage this well-characterized
dataset to empirically explore several possible causes of hidden
stratification. We extend our analysis to medical imaging datasets
by using a combination of schema completion, error auditing, and
algorithmic measurement to show not only that hidden stratifica-
tion can result in performance differences of up to 20% on clinically
important subsets, but also that simple unsupervised learning ap-
proaches can help to identify these effects. Using these measure-
ment techniques, we find evidence across multiple datasets that
hidden stratification occurs on subsets characterized by a combi-
nation of low prevalence, poor label quality, subtle discriminative
features, and spurious correlates.

Our results also suggest that more research is necessary on
methods for mitigating hidden stratification. Though we show that
approaches that require manual application of human expertise—
such as schema completion and error auditing—have potential in
practice, widespread use of such techniques is likely to be limited
by cost. Algorithmic measurement approaches, on the other hand,
require more limited human intervention, but are of variable perfor-
mance and cannot yet guarantee the detection of important subsets.
We examine the clinical implications of these findings, and argue
that despite the associated challenges, measurement and reporting
of hidden stratification effects should become a critical component
of machine learning deployments in medicine.

Our paper is organized as follows: Section 2 contextualizes the
hidden stratification problem with respect to related work, Section
3 defines three possible methods by which hidden stratification
can be measured, Section 4 presents the results of experiments that
apply these measurement techniques to multiple relevant datasets,
and Section 5 discusses both the clinical implications of our findings
and the limitations of our study.

2 RELATEDWORK
Problems similar to hidden stratification have been observed or
postulated in many domains, including traditional computer vision
[30], fine-grained image recognition [39], genomics [7], and epi-
demiology (often termed “spectrum effects”) [23]. The difficulty of
the hidden stratification problem fundamentally relates to the chal-
lenge of obtaining labelled training data. Were fine-grained labels
available for every important variant that could be distinguished
via a given data modality, discriminative model performance on

important subsets could be improved by training and evaluating
models using this information. Thus, typical approaches to ob-
served stratification and dataset imbalance in medical machine
learning often center on gathering more data on underperforming
subsets, either via additional labelling, selective data augmentation,
or oversampling [22]. However, the cost of manual labelling is often
prohibitive, appropriate augmentation transforms can be difficult
to define, and oversampling an underperforming subset can cause
degradation on others [4, 14, 29, 41]. As a result, medical imagery
analysts have commonly begun either to use semi-automated la-
belling techniques [10, 14, 18, 35] or to apply human expertise to
produce a narrow or incomplete set of visual labels [26] rather than
exhaustively labelling all possible findings and variations. Both of
these approaches can yield reduced accuracy on important sub-
sets [24]. Techniques that reliably increase performance on critical
imaging subsets without degrading performance on others have
yet to be demonstrated.

Methods that directly address hidden stratification, where the
subclasses are obscure, have not been commonly explored in medi-
cal imaging analysis. However, it is clear from the recent literature
that this issue has been widely (but not universally) recognized.
The most common approach for measuring hidden stratification
is by evaluating model performance on specific subsets. Gulshan
et al. [16], for instance, present variations in retinopathy detection
performance on subsets with images obtained in different loca-
tions, with differing levels of disease severity, and with different
degrees of pupil dilation. In several cases, their models perform
differently on these subsets in a manner that could be clinically
impactful. Chilamkurthy et al. [9] present a subset analysis for
different diagnostic categories of intracranial hemorrhage (e.g. sub-
dural vs. subarachnoid) when designing a deep learning model for
abnormality detection on head CT, but do not analyze differences in
performance related to bleed size, location, or the acuity of the bleed.
Their work does, however, evaluate the performance of models on
cases with multiple findings, and observe substantial variation in
model performance within different strata; for instance, subarach-
noid bleed detection performance appears to degrade substantially
in the presence of an epidural hemorrhage. Wang et al. [34] perform
an excellent subset analysis of a colonoscopy polyp detector, with
comparative performance analysis presented by polyp size, location,
shape, and underlying pathology (e.g. adenoma versus hyperplas-
tic). Similarly, Dunnmon et al. [11] report the performance of their
chest radiograph triage system by pathology subtype, finding that
models trained on binary triage labels achieved substantially lower
performance on fracture than on other diseases. Non-causal con-
founding features such as healthcare process quantities can also
contribute substantially to high model performance on data subsets
heavily associated with these confounding variables [1, 2, 36, 41].

Instead of analyzing subsets defined a priori, Mahajan et al. [21]
describe algorithmic audits, where detailed examinations of model
errors can lead to model improvements. Several recent studies
perform error audits, where specific failure modes such as small
volume cancers, disease mimics, and treatment-related features are
observed [6, 34]; such analyses may be helpful in identifying error
modes via human review, but do not characterize the full space
of subset performance [33]. There has been particular interest in
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formalizing algorithmic audit methods recently [25], although these
initiatives have yet to be tailored to the medical setting.

Of course, there also exist multiple studies that do not directly
address the effects of hidden stratification [3, 17]. Esteva et al. [12]
is particularly notable, as this dataset is labelled for more than
2,000 diagnostic subclasses but the results presented only consider
“top-level” diagnostic categories. Analysis of these effects would
improve the community’s ability to assess the real-world clinical
utility of these models.

3 METHODS FOR MEASURING HIDDEN
STRATIFICATION

We explicitly define and evaluate three possible approaches to
measure the clinical risk of hidden stratification: (1) exhaustive
prospective human labeling of the data, called schema completion,
(2) retrospective human analysis of model predictions, called error
auditing, and (3) automated algorithmic measurement methods to
detect hidden strata. Each of these methods is applied to the test
dataset, allowing for analysis and reporting (e.g., for regulatory
processes) of subclass (i.e. subset) performance.

Schema Completion: In schema completion, the schema au-
thor prospectively prescribes a more complete set of subclasses that
need to be labeled, and provides these labels on test data. Schema
completion has many advantages, such as the ability to prospec-
tively arrive at consensus on subclass definitions (e.g. a professional
body could produce standards describing reporting expectations)
to both enable accurate reporting and guide model development.
However, schema completion is fundamentally limited by the under-
standing of the schema author; if important subclasses are omitted,
schema completion does not protect against important clinical fail-
ures. Further, it can be time consuming (or practically impossible!)
to exhaustively label all possible subclasses, which in a clinical
setting might include subsets of varying diagnostic, demographic,
clinical, and descriptive characteristics. Finally, a variety of factors
including the visual artifacts of new treatments and previously
unseen pathologies can render existing schema obsolete at any
time.

Error Auditing: In error auditing, the auditor examines model
outputs for unexpected regularities, for example a difference in
the distribution of a recognizable subclass in the correct and incor-
rect model prediction groups. Advantages of error auditing include
that it is not limited by predefined expectations of schema authors,
and that the space of subclasses considered is informed by model
function. Rather than having to enumerate every possible subset,
only subsets observed to be concerning are measured. While more
labor-efficient than schema completion, error auditing is critically
dependent on the ability of the auditor to visually recognize differ-
ences in the distribution of model outputs. It is therefore more likely
that the non-exhaustive nature of audit could limit certainty that
all important strata were analyzed. Of particular concern is the abil-
ity of error auditing to identify low-prevalence, high discordance
subsets that may rarely occur but are clinically salient.

Algorithmic Measurement: In algorithmic measurement ap-
proaches, the algorithm developer designs a method to search for
subclasses automatically. In most cases, such algorithms will be
unsupervised methods such as clustering. If any identified group

(e.g. a cluster) underperforms compared to the overall superclass,
then this may indicate the presence of a clinically relevant subclass.
Clearly, the use of algorithmic approaches still requires human
review in a manner that is similar to error auditing, but is less
dependent on the specific human auditor to initially identify the
stratification. While algorithmic approaches to measurement can
reduce burden on human analysts and take advantage of learned
encodings to identify subsets, their efficacy is limited by the sepa-
rability of important subsets in the feature space analyzed.

4 EXPERIMENTS
In our experiments, we empirically measure the effect of hidden
stratification using each of these approaches, and evaluate the char-
acteristics of subsets on which these effects are important. Drawing
from the existing machine learning literature, we hypothesize that
there are several subset characteristics that contribute to degraded
model performance in medical imaging applications: (1) low subset
prevalence, (2) reduced label accuracy within the subset, (3) subtle
discriminative features, and (4) spurious correlations [33]. These
factors can be understood quite simply: if the subset has few exam-
ples or the training signal is noisy, then the expected performance
will be reduced. Similarly, if one subset is characterized by features
that are harder to learn, usual training procedures result in models
that perform well on the “easy” subset. Finally, if one subset con-
tains a feature that is correlated with the true label, but not causal,
models often perform poorly on the subset without the spurious
correlate.

To demonstrate the technical concept of hidden stratification
in a well-characterized setting, we first use schema completion to
demonstrate substantial hidden stratification effects in the CIFAR-
100 benchmark dataset, and confirm that low subset prevalence
and reduced subset label accuracy can reduce model performance
on subsets of interest. We then use this same schema completion
technique to evaluate clinically important hidden stratification ef-
fects in radiograph datasets describing hip fracture (which contains
subsets with low prevalence and subtle discriminative features) and
musculoskeletal extremity abnormalities (which contains subsets
with poor label quality and subtle discriminative features). Each
of these datasets has been annotated a priori with labels for im-
portant subclasses, and is thus amenable to schema completion.
We then demonstrate how error auditing can be used to identify
hidden stratification in a large public chest radiograph dataset that
contains a spurious correlate. Finally, we show that a simple unsu-
pervised clustering algorithm can provide value by separating the
well-performing and poorly-performing subsets identified by our
previous analysis.

Code describing these experiments is available at
www.github.com/HazyResearch/hidden-stratification-mi.

4.1 Schema Completion
We first use schema completion to measure the effects of hidden
stratification on CIFAR-100 [19], Adelaide Hip Fracture [15], and
MURA [26] datasets.When feasible, even partial schema completion
can be useful for assessing hidden stratification.

CIFAR-100: The benchmark CIFAR-100 dataset from computer
vision represents an excellent testbed on which to demonstrate the
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(a) True (Semantic) Subclasses (b) Random Subclasses

Figure 1: Performance of a ResNeXt-29, 8x64d onCIFAR-100 superclasses by (a) true (semantic) CIFAR-100 subclass and (b) ran-
dom CIFAR-100 subclasses. Random subclasses were assigned by randomly permuting the subclass label assignments within
each superclass. Most superclasses contain true subclasses where performance is far lower than that on the aggregate su-
perclass. Intra-subclass performance variance on random subclasses is on average 66% lower than on the true (semantic) sub-
classes, indicating that the stratification observed in practice is substantially higher than would be expected from randomness
alone.

effect of hidden stratification in a well-characterized environment
[19]. The CIFAR-100 dataset consists of 60,000 images binned into
20 “superclasses,” which each contain five distinct “subclasses.” Each
subclass is represented in the dataset with equal frequency. We hy-
pothesize that by training models only on superclass labels, and
assessing superclass performancewithin each subclass, wewill com-
monly observe subclasses on which performance is substantially
inferior to that of the overall superclass. We further expect that
subclass performance will degrade if that subclass is subsampled
or if noise is added to superclass labels for that subclass, simulat-
ing stratification with low subclass prevalence or reduced label
accuracy. For the purposes of this experiment, we assume that the
CIFAR-100 subclasses represent a reasonable attempt at schema
completion, and measure superclass accuracy within each subclass.

Figure 1(a) presents the performance of a ResNeXt-29, 8x64d
Convolutional Neural Network (CNN) trained on the 20 CIFAR-100
superclasses using the training schedule reported in [37] and the
implementation provided by [38]. In each superclass, the five con-
stituent subclasses exhibit substantial performance variation, and
the worst-performing subclass can underperform the aggregate
superclass by over 30 accuracy points. This same phenomenon in
medical imaging would lead to massively different outcomes for
different subsets of the population, be these demographically or
pathologically determined. To confirm that these large differences
in subclass performance do not result from random variation within

each superclass, we randomly permute the subclass labels within
each superclass and evaluate our model on these random subclasses.
If random variation was the cause of the stratification observed
in Fig. 1(a), we would expect the inter-subclass performance vari-
ance to remain unchanged in this experiment. Instead, we find
that inter-subclass performance variance is reduced by an average
of 66% across all superclasses when the subclasses are randomly
rather than semantically assigned, indicating that the performance
stratification observed in Fig. 1(a) cannot be attributed to random
variation.

Table 1 (middle) shows classification results on randomly se-
lected subclasses (“dolphin” and “mountain”) when 75% of the ex-
amples in a subclass are dropped from the training set, simulating
a subclass with reduced prevalence. While the overall marine mam-
mals superclass performance drops by only 4 accuracy points when
the dolphin subclass is subsampled, performance on the dolphin
subclass drops by 14 points from 0.78 to 0.64. Similar trends are
observed for the mountain subclass, where overall superclass per-
formance drops by 5 accuracy points when the mountain subclass is
subsampled, but performance on the mountain subclass itself drops
by 19 points. Clearly, unmeasured subclass underrepresentation
can lead to substantially worse performance on that subclass, even
when superclass performance is only modestly affected.

We show a similar trend in Table 1 (right) when random noise is
added to the labels of a given subclass by replacing the 25% of the
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Subclass Baseline
Superclass

Baseline
Subclass

Subsample
Superclass

Subsample
Subclass

Random Noise
Superclass

Random Noise
Subclass

Dolphin 0.69 0.78 0.65 (-4) 0.64 (-14) 0.67 (-2) 0.73 (-5)
Mountain 0.87 0.90 0.82 (-5) 0.71 (-19) 0.82 (-5) 0.73 (-17)

Table 1: Accuracy of a ResNeXt-29, 8x64d trained using the full CIFAR-100 dataset (“Baseline”) and two synthetic experiments
with altered datasets. (“Subsample”) drops 75% of the dolphin and mountain subclasses from the training dataset, and (“Ran-
dom Noise”) assigns 25% of examples from these subclasses a random superclass label. Results reported are on superclass
labels for the validation set. Numbers in parentheses are reductions in performance with respect to the baseline model for
each experimental condition.

true superclass labels with a random incorrect label, simulating a
subclass with reduced label accuracy. Performance on both dolphin
and mountain subclasses drops substantially when label accuracy
decreases; while overall superclass performance in each case drops
by less than 5 points, subclass performance decreases by up to 17
points. Such stratification of label quality by pathology is highly
likely to occur in medical datasets, where certain pathologies are
easier to identify than others.

Adelaide Hip Fracture Schema completion also shows hidden
stratification on a large, high quality pelvic x-ray dataset from
the Royal Adelaide Hospital [15]. A DenseNet model previously
trained on this dataset to identify hip fractures achieved extremely
high performance (AUC = 0.994) [15]. We hypothesize that reduced
subclass performance will occur even in models with high overall
superclass performance, particularly in subclasses characterized by
subtle visual features or low subclass prevalence. The distribution
of the location and description subclasses is shown in Table 2, with
subclass labels produced by a board-certified radiologist (LOR).
We indeed find that sensitivity on both subtle fractures and low-
prevalence cervical fractures is significantly lower (p<0.01) than
that on the overall task. ROC curves for each of these subclasses
and the overall superclass shown in Fig. 2(a) demonstrate that these
differences in sensitivity would be expected across a variety of
potential operating points. These results support the hypothesis
that both subtle discriminative features and low prevalence can
contribute to clinically relevant stratification.

Subclass Prevalence (Count) Sensitivity
Overall 1.00 (643) 0.981

Subcapital 0.26 (169) 0.987
Cervical 0.13 (81) 0.911

Pertrochanteric 0.50 (319) 0.997
Subtrochanteric 0.05 (29) 0.957

Subtle 0.06 (38) 0.900
Mildly Displaced 0.29 (185) 0.983

Moderately Displaced 0.30 (192) 1.000
Severely Displaced 0.36 (228) 0.996

Comminuted 0.26 (169) 1.000

Table 2: Superclass and subclass performance for hip frac-
ture detection from frontal pelvic x-rays. Bolded subclasses
show significantly worse performance (p<0.01) than that on
the overall task.

MURA: We next use schema completion to demonstrate the
effect of hidden stratification on the MURA musculoskeletal x-ray
dataset developed by Rajpurkar et al. [26], which provides labels for
a single class, identifying cases that are “normal” and “abnormal.”
These labels were produced by radiologists in the course of their
normal work, and include visually distinct abnormalities such as
fractures, implanted metal, bone tumors, and degenerative joint
disease. These binary labels have been previously investigated and
relabelled with subclass identifiers by a board certified radiologist
[24], showing substantial differences in both the prevalence and
sensitivity of the labels within each subclass (see Table 3). While
this schema remains incomplete, even partial schema completion
demonstrates substantial hidden stratification in this dataset.

We hypothesize that the low label quality and subtle image
features that characterize the degenerative joint disease subclass
will result in reduced performance, and that the visually obvious
metalwork subclass will have high performance (despite low preva-
lence). We train a DenseNet-169 on the normal/abnormal labels,
with 13,942 cases used for training and 714 cases held-out for test-
ing [26]. In Fig. 2(b), we present ROC curves and AUC values for
each subclass and in aggregate. We observe that AUC for the easy-
to-detect hardware subclass (0.98) is higher than aggregate AUC
(0.91), despite the low subclass prevalence. As expected, we also
find degraded AUC for degenerative disease (0.76), which has low-
sensitivity superclass labels and subtle visual features (Table 3).

4.2 Error Auditing
We next use error auditing to show that the clinical utility of a
common model for classifying the CXR-14 dataset is substantially
reduced by existing hidden stratification effects in the pneumotho-
rax class that result from the presence of a spurious correlate.

Subclass Subclass Prevalence Superclass Label Sensitivity
Fracture 0.30 0.92

Metalwork 0.11 0.85
DJD 0.43 0.60

Table 3: MURA “abnormal” label prevalence and sensitivity
for the subclasses of “fracture,” “metalwork,” and “degenera-
tive joint disease (DJD).” The degenerative joint disease sub-
class labels have the highest prevalence but the lowest sensi-
tivity with respect to review by a board-certified radiologist.
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(a) Adelaide Hip Abnormal (b) MURA Abnormal (c) CXR14 Pneumothorax

Figure 2: ROC curves for subclasses of the (a) abnormal Adelaide Hip Fracture superclass (b) abnormal MURA superclass and
(c) pneumothorax CXR14 superclass. All subclass AUCs are significantly different than the overall task (DeLong p<0.05) for
MURA and CXR14. For hip fracture, the AUCs themselves are not statistically different via a two-sided test (DeLong p>0.05),
but the sensitivities are statistically different (p<0.01) at the relevant operating point [15]—see Table 2 for details. For MURA,
sensitivities at 0.50 specificity are 0.93 (All), 1.00 (Hardware), 0.89 (Fracture), 0.80 (Degenerative). For CXR14, sensitivities at
0.50 specificity are 0.94 (All), 0.99 (Drain), and 0.85 (No Drain). For hip fracture, sensitivities at 0.50 specificity are 1.00 (All),
1.00 (Cervical), and 0.95 (Subtle)

CXR-14: The CXR-14 dataset is a large-scale dataset for pathol-
ogy detection in chest radiographs [35]. This dataset was released
in 2017 and updated later the same year, containing 112,120 frontal
chest films from 30,805 unique patients. Each image was labeled
for one of 14 different thoracic pathologies. In our analysis, we
leverage a pretrained DenseNet-121 model provided by Zech [40]
which reproduces the procedure and results of Rajpurkar et al. [27]
on this dataset.

During error auditing, where examples of false positive and false
negative predictions from the pretrained model were visually re-
viewed by a board certified radiologist [24], it was observed that
pneumothorax cases without chest drains were highly prevalent
(i.e., enriched) in the false negative class. A chest drain is a non-
causal image feature in the setting of pneumothorax, as this device
is the common form of treatment for the condition. As such, not
only does this reflect a spurious correlate, but the correlation is in
fact highly clinically relevant; untreated pneumothoraces are life-
threatening while treated pneumothoraces are benign. To explore
this audit-detected stratification, pneumothorax subclass labels for
“chest drain” and “no chest drain” were provided by a board-certified
radiologist (LOR) for each element of the test set. Due to higher
prevalence of scans with chest drains in the dataset, clear discrimi-
native features of a chest drain, and high label quality for the scans
with chest drains, we hypothesize that a model trained on the CXR-
14 dataset will attain higher performance on the pneumothorax
subclass with chest drains than that without chest drains.

We present ROC curves for each pneumothorax subclass in
Fig. 2(c). While overall pneumothorax ROC-AUC closely matches
that reported in Rajpurkar et al. [28] at 0.87, pneumothorax ROC-
AUC was 0.94 on the subclass with chest drains, but only 0.77 on

the subclass without chest drains. We find that 80% of pneumoth-
oraces in the test set contained a chest drain, and that positive
predictive value on this subset was 30% higher (0.90) than on those
with no chest drain (0.60). These results suggest that clearly identi-
fiable spurious correlates can also cause clinically important hidden
stratification.

4.3 Algorithmic Approaches: Unsupervised
Clustering

While schema completion and error auditing have allowed us to
identify hidden stratification problems in multiple medical machine
learning datasets, each requires substantial effort from clinicians.
Further, in auditing there is no guarantee that an auditor will recog-
nize underlying patterns in the model error profile. In this context,
unsupervised learning techniques can be valuable tools in automat-
ically identifying hidden stratification. We show that even simple
k-means clustering can detect several of the hidden subsets identi-
fied above via time-consuming human review or annotation.

For each superclass, we apply k-means clustering to the pre-
softmax feature vector of all test set examples within that superclass
using k ∈ {2, 3, 4, 5}. For each value of k , we select the two clus-
ters with greater than 100 constituent points that have the largest
difference in error rates (to select a “high error cluster” and “low
error cluster” for each k). Finally, we return the pair of high and
low error clusters that have the largest Euclidean distance between
their centroids. Ideally, examining these high and low error clus-
ters would help human analysts identify salient stratifications in
the data. Note that our clustering hyperparameters were coarsely
tuned, and could likely be improved in practice.
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Dataset-Superclass (Subclass) Difference in Subclass Prevalence
(High Error Cluster, Low Error Cluster)

Overall Subclass
Prevalence

CXR14-Pneumothorax (Drains) 0.68 (0.17, 0.84) 0.80
CIFAR-Carnivores (Bears) 0.30 (0.36, 0.06) 0.20
CIFAR-Outdoor (Forest) 0.28 (0.36, 0.08) 0.20
CIFAR-Household (Lamp) 0.16 (0.28, 0.12) 0.20

MURA-Abnormal (Hardware) 0.03 (0.29, 0.26) 0.11
MURA-Abnormal (Degenerative) 0.04 (0.12, 0.08) 0.43

Table 4: Subclass prevalence in high and low error clusters on CIFAR, MURA, and CXR14.

To demonstrate the potential utility of this approach, we apply
it to several datasets analyzed above, and report results in Table 4.
We find that while this simple k-means clustering approach does
not always yield meaningful separation (e.g. on MURA), it does
produce clusters with a high proportion of drains on CXR-14 and a
high proportion of various high-error classes (bear, forest, lamp)
on CIFAR-100. In practice, such an approach could be used both to
assist human auditors in identifying salient stratifications in the
data and to confirm that schema completion has been successful.

5 DISCUSSION
We find that hidden stratification can lead to markedly different
superclass and subclass performance when labels for the subclasses
have different levels of accuracy, when the subclasses are imbal-
anced, when discriminative visual features are subtle, or when spu-
rious correlates such as chest drains are present. We observe these
trends on both a controlled CIFAR-100 environment and multiple
clinical datasets.

The clinical implications of hidden stratification will vary by
task. Our MURA results, for instance, are unlikely to be clinically
relevant, because degenerative disease is rarely a significant or un-
expected finding, nor are rapid complications likely.We hypothesize
that labels derived from clinical practice are likely to demonstrate
this phenomenon; that irrelevant or unimportant findings are of-
ten elided by radiologists, leading to reduced label quality for less
significant findings.

The findings in the CXR14 task are far more concerning. The
majority of x-rays in the pneumothorax class contain chest drains,
the presence of which is a healthcare process variable that is not
causally linked to pneumothorax diagnosis. Importantly, the pres-
ence of a chest drain means these pneumothorax cases are already
treated and are therefore at almost no risk of pneumothorax-related
harm. In this experiment, we see that the performance in the clini-
cally important subclass of cases without chest drains is far worse
than the primary task results would suggest. We could easily imag-
ine a situation where a model is justified for clinical use or regula-
tory approval with the results from the primary task alone, as the
images used for testing simply reflect the clinical set of patients
with pneumothoraces.

While this example is quite extreme, this does correspond with
the medical truism that serious disease is typically less common
than non-serious disease. These results suggest that image analy-
sis systems that appear to perform well on a given task may fail
to identify the most clinically important cases. This behavior is

particularly concerning when comparing these systems to human
experts, who focus a great deal of effort on specifically learning to
identify rare, dangerous, and subtle disease variants.

The performance of medical image analysis systems is unlikely
to be fully explained by the prevalence and accuracy of the labels,
or even the dataset size. In the MURA experiment (see Figure 2), the
detection of metalwork is vastly more accurate than the detection
of fractures or degenerative change, despite this subclass being both
smaller and less accurately labelled than fractures. We hypothesize
that the nature of the visual features is important as well; metal-
work is highly visible and discrete, as metal is significantly more
dense (with higher pixel values) than any other material on x-ray.
While our understanding of what types of visual features are more
learnable than others is limited, it is not unreasonable to assume
that detecting metal in an x-ray is far easier for a deep learning
model than identifying a subtle fracture (and particularly on down-
sampled images). Similarly, chest drains are highly recognizable
in pneumothorax imaging, and small untreated pneumothoraces
are subtle enough to be commonly missed by radiologists. It is pos-
sible that this effect exaggerates the discrepancy in performance
on the pneumothorax detection task, beyond the effect of subclass
imbalance alone. Finally, it is worth noting that there will likely
be stratifications within a dataset that are not distinguishable by
imaging, meaning that the testing for hidden stratification is likely
a necessary, but not sufficient condition for models that perform in
a clinically optimal manner.

We show that a simple unsupervised approach to identify un-
recognized subclasses often produces clusters containing different
proportions of cases from the hidden subclasses our analysis had
previously identified. While these results support other findings
that demonstrate the utility of hidden-state clustering in model
development [20], the relatively simple technique presented here
should be considered only a first attempt at unsupervised identifi-
cation of hidden stratification [5, 32]. Indeed, it remains to be seen
if these automatically produced clusters can be useful in practice,
either for finding clinically important subclasses or for use in re-
training image analysis models for improved subclass performance,
particularly given the failure of this method in the detection of
clinically relevant subclasses in the MURA task. More advanced
semi-supervised methods such as those of [8] may ultimately be
required to tackle this problem, or it may be the case that both unsu-
pervised and semi-supervised approaches are unable to contribute
substantially, leaving us reliant on time-consuming methodical hu-
man review. Importantly, our experiments are limited in that they
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do not explore the full range of medical image analysis tasks, so the
results will have variable applicability to any given scenario. The
findings presented here are intended specifically to highlight the
largely underappreciated problem of hidden stratification in clinical
imaging datasets, and to suggest that awareness of hidden stratifica-
tion is important and should be considered (even if to be dismissed)
when planning, building, evaluating, and regulating clinical image
analysis systems.

6 CONCLUSION
Hidden stratification in medical image datasets appears to be a
significant and underappreciated problem. Not only can the unrec-
ognized presence of hidden subclasses lead to impaired subclass
performance, but this may even result in unexpected negative clin-
ical outcomes in situations where image analysis models silently
fail to identify serious but rare, noisy, or visually subtle subclasses.
Acknowledging the presence of visual variation within class la-
bels is likely to be important when building and evaluating the
next generation of medical image analysis systems. Indeed, our
results suggest that models should not be certified for deployment
by regulators unless careful testing for hidden stratification has
been performed. While this will require substantial effort from the
community, bodies such as professional organizations, academic
institutions, and national standards boards can help ensure that we
can leverage the enormous potential of machine learning in med-
ical imaging without causing patients harm as a result of hidden
stratification effects in our models.
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 Sec�on 2: Issues with tes�ng 

 The  preclinical  tes�ng  of  medical  imaging  AI  systems  typically  involves  some  combina�on  of  three 
 elements  1,2,30  : 

 1.  a  measurement  of  model  performance  on  “hold-out”  data;  images  and  pa�ents  which  have 
 not been seen by the algorithm during model training 

 2.  a  reader  study,  comparing  human  performance  against  AI  performance  on  all  or  a  subset  of 
 this hold out data 

 3.  an  external  valida�on  tes�ng  the  AI  model  on  independent  data  from  a  different  geographic 
 loca�on 

 The  ideas  of  ‘hold-out’  data  and  external  valida�ons  are  commonly  discussed  in  the  medical  machine 
 learning  literature,  and  can  be  interpreted  as  a�empts  to  reduce  the  implementa�on  gap.  Image 
 analysis  AI  models  can  learn  unintended  cues  in  the  training  data  31  ;  image  features  that  correlate 
 with  the  clinical  target  in  the  training  dataset  but  are  not  causally  related  and  will  not  be  useful 
 outside  of  that  environment.  For  example,  AI  models  have  been  shown  to  learn  that  radiographic 
 markers  are  associated  with  pneumonia  or  that  surgical  skin  markings  are  a  sign  of  melanoma  11,13  , 
 but  as  these  features  are  related  to  local  clinical  processes  rather  than  the  diseases  themselves,  use 
 of  these  models  can  result  in  unexpectedly  poor  performance  in  se�ngs  where  this  correla�on  is  not 
 preserved. 

 By  tes�ng  the  model  on  unseen,  independent  data,  par�cularly  if  those  data  come  from  a  different 
 geographic  site  (with  a  different  pa�ent  popula�on  and  different  clinical  processes),  it  is  reasonable 
 to  assume  that  many  of  these  unintended  cues  will  no  longer  be  useful  for  the  task.  Thus,  we  can 
 obtain  a  more  realis�c  es�mate  of  real-world  model  AI  performance  and  reduce  the  implementa�on 
 gap. 

 Another  common  element  of  medical  AI  studies  is  a  comparison  against  human  experts.  A  reader 
 study  can  provide  a  good  clinical  baseline  for  any  task  which  humans  have  exper�se  in,  however  it  is 
 necessary  to  recognise  that  achieving  equivalent  or  be�er  performance  than  humans  does  not 
 necessarily  imply  that  there  is  no  implementa�on  gap.  The  capability  of  AI  models  to  learn 
 unintended  cues  means  that  models  perform  the  task  differently  than  a  human,  who  would  for 
 example  never  mistake  a  radiographic  marker  for  a  feature  of  pneumonia.  While  unintended  cue 
 learning  o�en  can  be  detected  as  poor  performance  during  tes�ng,  it  can  also  result  in  equal  but 
 different  performance,  where  the  same  number  of  errors  are  made  but  the  specific  errors  are 
 different,  affec�ng  different  pa�ents  and  poten�ally  producing  different  outcomes.  Given  the  fact 
 that  some  medical  errors  are  higher  risk  than  others,  it  is  en�rely  possible  for  AI  systems  to  produce 
 fewer errors than human experts while also increasing the overall risk to pa�ents. 
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 2.1 Metrics and human performance baselines 

 The  reader  study  is  the  most  common  study  design  for  medical  AI  tes�ng  prior  to  regulatory 
 approval.  This  is  referenced  in  regulatory  guidelines  32  ,  study  design  checklists  33  ,  and  can  be  clearly 
 seen  in  a  review  of  the  literature;  almost  all  medical  AI  studies  in  a  number  of  systema�c  reviews 
 have relied upon a mul�-reader baseline as a comparison with current clinical prac�ce  1,2  . 

 The  analysis  of  reader  studies  using  receiver  opera�ng  characteris�c  (ROC)  curves  is  widespread  in 
 diagnos�c  radiology  and  the  assessment  of  diagnos�c  test  accuracy  34–36  .  These  methods  have  tended 
 to  be  applied  in  a  par�cular  set  of  clinical  scenarios  however,  par�cularly  breast  imaging  where  cases 
 are  scored  for  the  probability  of  malignancy,  and  the  extension  of  the  underlying  assump�ons  to 
 typical  medical  AI  evalua�on  use  cases  (where  these  scores  are  unavailable)  has  been  problema�c. 
 When  disease  scores  are  unavailable  and  the  clinical  task  is  treated  as  a  binary  predic�on,  as  is  the 
 case  in  most  diagnos�c  tasks  in  medical  imaging,  it  is  impossible  to  construct  reader-wise  ROC  curves 
 due to the absence of mul�ple opera�ng points per reader. 

 In  this  se�ng,  the  standard  prac�ce  has  consisted  of  repor�ng  human  performance  with  the  average 
 of  sensi�vity  and  specificity,  independently  pooled  across  readers,  which  systema�cally 
 under-es�mates  human  performance  and  in  doing  so  can  overes�mate  the  clinical  value  of  AI 
 systems. 

 In “  Docs are ROCs:  A simple off-the-shelf approach for es�ma�ng average human performance in 
 diagnos�c studies”  39  I present a methodologically jus�fied approach to the analysis of reader data in 
 the most common AI study designs, where we compare human and AI performance on one or a set 
 of binary tasks. By u�lising well validated methods from the field of sta�s�cal meta-analysis for 
 diagnos�c test accuracy studies, we can be�er es�mate human performance and produce fairer 
 clinical baselines against which to compare AI models. 
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Introduction 

Sensitivity and specificity are among the most common and important metrics in diagnostic 
medical research, favoured for their ability to summarise both false positive and false negative 
errors​1​. Their invariance to disease prevalence allows for a direct numerical comparison of 
performance across tests or sites with different rates of disease. Unsurprisingly, these metrics 
are widely reported in medical artificial intelligence (AI) studies, particularly where human 
performance is compared to that of AI models in multi-reader multi-case (MRMC) study designs. 
Given the variability in performance between readers on any given set of cases, multiple human 
readers are required to estimate the range of “average” human performance, but there is no 
well-motivated consensus on how to perform this averaging operation. A recent systematic 
review​2​ noted that ‘naive’ averages of human sensitivity and/or specificity, or other metrics 
derived from these values, were reported in at least 70% of publications that compared human 
performance to AI models, a practice which is highly problematic. 
 
The use of sensitivity and specificity to describe the discriminative performance of individual 
tests or readers is appropriate, but averaging these highly correlated metrics independently of 
each other is strongly discouraged in other, more methodologically mature domains such as the 
meta-analysis of diagnostic test accuracy studies. For example in “Guidelines for Meta-Analyses 
Evaluating Diagnostic Tests”​3​ the authors write “In general, estimating mean sensitivity and 
specificity separately underestimates test accuracy”. Gatsonis and Paliwal​4​ even go as far as to 
say “the use of simple or weighted averages of sensitivity and specificity to draw statistical 
conclusions is not methodologically defensible.”​ ​Similarly, ​the Cochrane handbook recommends 
these metrics be addressed together rather than in isolation when summarising the accuracy of 
a diagnostic test​5​. 
 
Despite these recommendations from reputable authors and bodies, the independent pooling of 
sensitivity and specificity (or use of similar pooled metrics such as the average F1 score and 
average accuracy) remain popular in the medical AI literature. Unfortunately, not only do these 
methods consistently underestimate human diagnostic performance, but they can bias the 
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experimental conclusions because the performance of the AI models are not similarly 
underestimated. 
 
An alternative to the various pooled metrics is to treat the estimation of human performance as 
a bivariate modelling problem, operating on the justified assumption that sensitivity and 
specificity are correlated across readers. This approach has become the mainstay of the 
meta-analysis of diagnostic test accuracy across the last 50 years, supported by an extensive 
body of literature on the development and validation of meta-analytic models. Indeed, 
meta-analysis is considered the highest level of experimental evidence in clinical medicine ​6​, in 
part because of the robustness of these techniques. 
 
Meta-analysis for diagnostic test accuracy studies involves the production of summary receiver 
operating characteristic (SROC) curves. The specific methods to do this are well covered in 
other publications​7–10​, but it is worth noting that these techniques are well understood and 
validated in the biostatistics community, and that software implementations of these methods 
are widely available in most common programming languages. Typically all that is needed is the 
2x2 contingency table for each reader and the software can do the rest.  
 
 
Fixed effects vs random effects models 
 
Briefly, there are two main families of models used for meta-analysis and SROC curve 
development; the fixed-effects and random-effects models. In simple terms the fixed effect 
models assume that the only difference between tests (in this case, the readers) is due to a 
single source of variation; that it is the choice of readers alone that contributes to these 
differences. In random-effects models, sometimes called hierarchical or two-level models, an 
estimation of further test heterogeneity is included. In the setting of reader studies common 
further sources of test heterogeneity include intra-user variability and the assessment of 
different cases by each reader. 
 
In general, random-effects models are recommended for the meta-analysis of diagnostic test 
accuracy studies​5​. Given the multiple sources of heterogeneity in MRMC studies, this 
recommendation appears appropriate in this context as well. 
 
 
Related literature 
In the case where the outcome is binary, a point in ROC space will be produced representing 
the sensitivity and specificity derived from a simple 2x2 table. However, in order to derive ROC 
curves at the level of individual readers, the MRMC literature has been strongly focused on the 
use of ordinal scoring systems such as those used in mammography​11​. In the scenario where a 
diagnostic score contains at least 5 levels it is reasonable to produce ROC curves for individual 
readers and then average these curves themselves, summarising the performance across 
readers​12​. These methods cannot be used when the clinical diagnosis is made with a binary 
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response (e.g., “yes there is cancer” vs “no there is not”), and attempts to extend these methods 
to binary data​13​ have not seen widespread uptake. In fact, it has become accepted practice to 
shoehorn ordinal scoring systems into tasks normally reported with binary responses (e.g., 
applying a 100 point scoring system to lung nodule detection​14​, despite the fact that clinical 
radiologists only ever report that nodules are present or absent). This approach has even been 
tacitly endorsed by regulatory bodies​15​, but is critically limited by its failure to reproduce clinical 
practice, raising significant concerns about the clinical relevance of this testing and the 
possibility of misleading laboratory effects​16​. 
 
In the medical AI literature, Rajpurkar et al used a constrained spline approach to summarise 
performance by estimating AUC​17​. This method assumes a symmetrical ROC curve (which is an 
uncommon distribution of readers in clinical practice), and produces confidence intervals with a 
bootstrap across cases alone, therefore underestimating the standard errors of the AUC by 
failing to incorporate the variability across readers. 
 
 
Why do SROC analysis of multi-reader studies? 
Aside from the already stated improvements in accuracy and methodological defensibility, 
SROC analysis has a number of attractive features compared to other commonly used methods. 
 
First, it allows for the estimation of a single metric (the area under the SROC curve, also known 
as the SROC AUC) which summarises the discriminative ability of readers. Comparison 
between reader groups or readers and AI models is significantly simplified compared to 
separate consideration of sensitivity and specificity or similar metrics. 
 
Second, it allows us to produce valid confidence intervals. When sensitivity and specificity are 
pooled separately, the confidence intervals are almost always calculated using the number of 
cases but ​not ​the number of readers. SROC analysis automatically takes both elements of 
variation into account. Importantly in common experimental scenarios (where n​Observers​ <10) the 
number of readers contributes strongly to the estimation of variation. 
 
Third, it avoids the need to select an arbitrary or unnatural (i.e., one that will never occur in 
clinical practice) operating point. If we consider that the position of a human reader along an 
SROC curve is related to their “aggressiveness” or risk-aversion, then these quantities are not 
fixed, either between readers or for individuals. SROC analysis allows for more control of the 
selection of an operating point if this is needed, and allows comparisons without operating point 
selection if this is more appropriate. 
 
Fourth, SROC analysis allows for visual presentation of results in a way that is easy to interpret. 
Side-by-side ROC curves are understandable at a glance while conveying a great deal of 
information about the discriminative performance of each decision maker, and the ability to plot 
confidence intervals allows for a useful visual summary of an experiment. 
 

37

https://paperpile.com/c/hWq6XM/8n1e
https://paperpile.com/c/hWq6XM/M9p5
https://paperpile.com/c/hWq6XM/S5Bq
https://paperpile.com/c/hWq6XM/mxXg
https://paperpile.com/c/hWq6XM/BabZ


Fifth and finally, SROC analysis can allow for easy comparison of subsets of readers. Many 
studies have included both expert and non-expert readers, and presentation of these results can 
be difficult. Single summary points (pooled sensitivity and specificity) are unjustified, but 
colour-coding of all the readers can be visually overwhelming if n​Observers​ is high. Producing 
SROC curves for each subset can allow for easy comparisons between groups, and 
comparisons of SROC AUC values are well motivated (particularly given the differing number of 
readers and different variance between these subgroups). 
 
 

Methods 
 
We present examples of this meta-analytic approach applied to a variety of heavily cited reports 
in the medical AI literature, re-evaluating the presented ROC curves and primary comparisons. 
For the majority of these papers, the data from these studies have been reproduced from the 
published figures (i.e., sensitivity and specificity were “eyeballed” for each reader), although 
Tschandl et al. provided the raw reader data for their experiments​18​. 
 
All statistical analysis was performed in R v3.6.2​19​ . SROC analysis was undertaken with the 
mada package v0.5.8​20​, using the proportional hazards model described by Holling et al​9​. 
 
 

Results 
 
Dermatologist-level classification of skin cancer with deep neural networks 
 
Esteva et al​21​ described a deep learning model trained to distinguish melanoma from 
non-melanomatous skin lesions, comparing the performance of the model against 22 
dermatologists asked to decide if a skin lesion requires biopsy. 
 
Esteva et al reported the average performance of the dermatologists by pooling sensitivity and 
specificity independently. This “average dermatologist” point was inside the ROC curve for the 
AI model. This figure was accompanied by the statement that the “CNN outperforms any 
dermatologist whose sensitivity and specificity point falls below the blue curve of the CNN”, 
although no specific statement was made about the “average” dermatologist. 
 
In figure 1 we apply a random-effects model meta-analysis of the performance of the 
dermatologists, showing the benefits of treating sensitivity and specificity as correlated values. 
The average point is inside the summary ROC curve, and in fact is at the limit of the 95% 
confidence interval. The SROC curve appears to better reflect the desired goal of describing an 
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average dermatologist. With the curved distribution of the model as a guide, only 4 out of 22 
dermatologists are “worse” than the average sens/spec point. 
 
This approach not only produces a more justified summary of human performance, but the area 
under the SROC curve is directly comparable to the AUC of the AI model. The reported AUC of 
the AI model (0.94, CI not provided) is compared to the dermatologists (SROC AUC = 0.97, 
95% CI 0.96 - 0.98). 

 
Figure 1: SROC analysis of Esteva et al​21​ using a random effects model, demonstrating the 
individual performance of doctors (green circles), the average sensitivity and specificity of 
doctors (orange cross) and the SROC curve (black line) with associated 95% confidence region 
(dotted lines). 
 
 
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development 
and retrospective validation of MRNet 
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Bien and Rajpurkar et al​22​ reported the comparison of a deep learning model against 
radiologists and orthopedic surgeons at the detection of meniscal tears, ACL tears, and 
combined for any abnormality. They reported the average performance of the dermatologists by 
pooling sensitivity and specificity independently. 
 
In figure 2 we apply a random-effects meta-analysis to the performance of the clinical readers at 
the “any abnormality” task. Once again the “average” reader is below the SROC curve, and the 
SROC curve appears to be a more fair reflection of average reader performance. 
 
The authors report that there was no significant difference between doctors and the AI model 
performance, albeit they allow for the fact that both the number of readers and number of cases 
are quite low leading to wide confidence intervals. In our approach, the AI model AUC of  0.937 
(95% CI 0.895, 0.980) can be directly compared to the SROC AUC of 0.953 (95% CI 0.937, 
0.969), which supports the statement from the authors. 

 
Figure 2: SROC analysis of Bien et al​22​ using a random effects model, demonstrating the 
individual performance of doctors (green circles), the average sensitivity and specificity of 
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doctors (orange cross) and the SROC curve (black line) with associated 95% confidence region 
(dotted lines). 
 
 
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning  
 
Rajpurkar and Irvin et al​23​ compared the performance of an AI model against 4 radiologists at 
the task of pneumonia detection on chest x-ray. They initially reported the average of sensitivity 
and specificity for the radiologists, although the primary metric was changed to the average F1 
score in a later revision. 
 
In figure 3 we demonstrate a random-effects meta-analysis of human performance. In this case 
we see that the average sens/spec point is quite close to the SROC curve, but the example 
highlights another key benefit of this approach: the confidence intervals are very wide, due to 
the combination of a small test dataset (with only ~60 cases of pneumonia) and the small set of 
readers (n = 4). By failing to account for the latter source of variation, standard statistical tests 
based on the average sensitivity and specificity will be biased towards the alternative 
hypothesis. Rajpurkar et al report that the F1 score of the model is ​significantly ​better than the 
average F1 score of the radiologist, but the meta-analytic approach suggests that this is 
unlikely. While we cannot perform a null hypothesis test with the information provided in 
Rajpurkar et al, it can be appreciated that the evidence for a meaningful difference between the 
model AUC (0.77, CI not provided) and the radiologist SROC AUC (0.73, 95% CI 0.66, 0.83) is 
not compelling. 
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Figure 3: SROC analysis of Rajpurkar and Irvin et al​23​ using a random effects model, 
demonstrating the individual performance of doctors (green circles), the average sensitivity and 
specificity of doctors (orange cross) and the SROC curve (black line) with associated 95% 
confidence region (dotted lines). 
 
 
International evaluation of an AI system for breast cancer screening 
 
McKinney et al​24​ compared an AI model against radiologists for the detection of breast cancer at 
screening mammography. While mammography lends itself well to ordinal scoring, the authors 
also present results for a retrospective real-world dataset based on the binary decision of the 
readers with respect to the choice to perform a biopsy. Each reader read a different set of 
mammograms, each of different size. 
 
In Figure 4 we demonstrate the use of a random-effects meta-analysis of human performance. 
The distribution of human readers is highly unusual, likely an artefact of the clinical demands of 
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mammography (where the false positive rates of readers are monitored to standardise biopsy 
rates). 
 
The SROC curve again appears to capture a reasonable “average” performance more 
effectively than the average of sensitivity and specificity. In this example, the average point is 
below the 95% CI for the SROC curve, and is biased towards the bottom right of the set of 
readers. Only a small number of readers, who collectively reviewed an even smaller proportion 
of the overall cases, are inside the average point of sensitivity and specificity. 
 
This example demonstrates the flexibility of SROC analysis. Not only does this method 
appropriately manage the unusual distribution of readers, but random-effect models can 
estimate the variability of cases between readers, accounting for sampling bias in the setting 
where each reader reviews different cases. 
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Figure 4: SROC analysis of McKinney et al​24​ using a random effects model, demonstrating the 
individual performance of doctors (green circles), the average sensitivity and specificity of 
doctors (orange cross) and the SROC curve (black line) with associated 95% confidence region 
(dotted lines). The size of the green circles represents the number of cases each reader 
evaluated. 
 
 
Human–computer collaboration for skin cancer recognition 

Tschandl et al​18​ report results for a 301 dermatologist reader study to classify lesions into 
benign and malignant categories, with each reader assessing 28 images. They report pooled 
average sensitivity, specificity, and several other similar statistics including the positive and 
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negative predictive values, and the youden J statistic. Notably, there was a wide range of 
experience levels among the readers, ranging from less than 1 year (n = 48) up to greater than 
10 years (n = 15). 
 
The extremely large number of readers are difficult to visualise on a single plot (figure 5a), 
however SROC analysis can greatly improve the visibility of subgroup comparisons (figure 5b). 
Again, we notice that the “average” sensitivity and specificity points are well below the 
respective curves. 

Figure 5: The individual performance of 301 human readers in Tschandl et al​18​ stratified by 
experience level (5a, left) and summarised with SROC analysis (5b, right) using a random 
effects model (coloured lines) as well as the average of sensitivity and specificity (coloured 
crosses). 
 

Conclusion 
 
The estimation of average human performance is an important application of MRMC studies, 
both in diagnostic specialties such as radiology and in pre-clinical studies comparing human 
performance with that of AI models.  
 
In the diagnostic radiology literature, ordinal scoring systems have been widely used despite the 
relative lack of these in clinical practice, their biological implausibility, and the readers’ lack of 
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experience with them. In the AI literature, average human performance has been variably 
reported but the most common method has been to pool sensitivity and specificity 
independently, a technique which is methodologically flawed and will consistently bias results in 
favour of the AI models. 
 
We have described the use of well validated meta-analytic techniques for the purpose of 
estimating average human performance where the readers produce binary diagnostic labels, 
and have shown the benefits of doing so by re-evaluating a number of heavily cited medical AI 
papers. These results show improved estimation of performance, as well as other attractive 
properties including providing a single metric for discrimination performance and the ability to 
produce estimates of variance that incorporate both the number of cases as well as the number 
of readers. In at least one case (CheXNet) the latter property may have altered the 
interpretation of a published experiment, revealing that the reported difference between human 
and AI performance in that work was not compelling.  
 
These methods are not technically novel nor are they complicated, simply involving the fitting of 
bivariate linear models. The value of applying epidemiological meta-analytic techniques to 
medical AI problems arises from the availability of extensive practical experience and 
methodological literature regarding these techniques, the wide availability of statistical libraries 
to perform these operations in most common programming languages, and the flexibility of the 
methods. We believe that this approach can be used to standardise assessment of reader 
studies with binary outcomes, improving the quality and validity of these experiments in both 
diagnostic medicine and medical AI research. 
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 2.2 From “how well does the model perform?” to “what is the worst mistake 
 the model can make?” 

 The  most  important  cause  of  the  implementa�on  gap  in  preclinical  medical  AI  tes�ng  is  not  related 
 to  sta�s�cal  analysis  or  metric  choice  per  se  ,  but  instead  is  related  to  the  underlying  nature  of  AI 
 systems.  Modern  AI  systems  learn  to  recognise  useful  features  from  their  input  data  which  they  use 
 to  solve  their  task,  and,  unlike  humans,  are  not  limited  to  using  features  which  would  be  considered 
 sensible  or  biologically  plausible.  Indeed,  modern  AI  models  tend  to  be  underspecified  ;  given  a  model 
 architecture  and  a  training  data  set,  there  are  many  different  ways  in  which  the  model  can  learn  to 
 solve  the  task,  even  if  there  is  only  one  intended  solu�on  (i.e.,  “do  the  task  in  the  way  a  human 
 would, but be�er if possible.”)  37  . 

 While  humans  tend  to  rely  on  features  which  are  biologically  plausible,  causally  linked  to  the  task, 
 and  jus�fied  by  expert  opinion  or  even  common  sense,  AI  systems  will  make  use  of  any  features 
 which  are  useful  for  the  task  and  are  learnable  from  the  training  data.  This  o�en  leads  to  AI  models 
 which  rely  at  least  par�ally  on  unintended  and  unwanted  solu�ons,  such  as  iden�fying  any  canine  on 
 a snowy background to be a wolf, and any canine on grass to be a dog  38  . 

 These  unintended  solu�ons  can  lead  to  unexpected  or  aberrant  model  behaviour,  where  the  model 
 appears  to  work  well  in  most  circumstances  but  can  fail  on  cases  which  humans  tend  to  succeed  at, 
 and most concerningly, cases where errors are poten�ally more harmful to pa�ents. 

 Given  this  property  of  medical  AI,  it  is  not  enough  to  ask  how  well  AI  models  perform  in  aggregate  on 
 datasets  containing  a  variety  of  cases.  Instead,  we  need  to  ask  “what  are  the  worst  mistakes  that  the 
 model  makes?”  This  ques�on  is  grounded  in  clinical  best  prac�ce;  it  requires  human  exper�se  to 
 recognise what makes certain mistakes worse than others. 

 In “  The  Medical algorithmic audit”  (in press) I describe the formal process of thoroughly audi�ng 
 medical AI models, intended to provide a mechanism for clinical users, developers, and regulators to 
 iden�fy poten�al sources of the implementa�on gap, and ideally to be able to remediate these 
 issues prior to the marke�ng of AI devices. 
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Summary

Artificial intelligence systems for healthcare, like any other medical device, have the potential to

fail. However, specific qualities of AI systems, such as the tendency to learn spurious correlates

in training data, poor generalisability to new deployment settings, as well as lack of reliable

explainability mechanisms, mean they can yield unpredictable errors which may be entirely

missed in the absence of proactive investigation.

In this paper, we propose a medical algorithmic audit framework that guides the auditor through

a process of considering potential algorithmic errors in the context of a clinical task, mapping the

components which may contribute to the occurrence of errors, and predicting their potential

consequences. We suggest several approaches for testing algorithmic errors including

exploratory error analysis, subgroup testing and adversarial testing, and provide illustrative

examples from our own work and from previous published papers.

The algorithmic audit is a tool which can be used to better understand the weaknesses of an AI

system and put in place mechanisms to mitigate their impact. Importantly, we propose that

safety monitoring and algorithmic auditing should be a joint responsibility between users and

developers, and encourage the utilisation of feedback mechanisms between them to promote

learning and maintain the safe deployment of AI systems.

Keywords: artificial intelligence, machine learning, deep learning, algorithmic audit, clinical

audit, algorithmic error, safety, algorithmovigilance, failure modes and effects analysis
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Introduction

Advances in artificial intelligence (AI) have attracted significant interest for their potential

applications in healthcare, particularly systems based on deep learning and neural networks. A

vast body of literature has been published proposing AI/machine learning-based solutions for

disease detection, classification, prediction, or even as therapeutic interventions including

titration of drug dosages or offering mental health support through AI ‘chatbots’.(1,2)

More recently, there has been a shift in emphasis from reporting impressive performance results

to actively investigating algorithmic reliability and characterising algorithmic errors.(3–6) Indeed,

the analysis of algorithmic errors is a new minimum reporting requirement in the recently

published SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional

Trials–Artificial Intelligence) and CONSORT-AI (Consolidated Standards of Reporting

Trials–Artificial Intelligence) guidelines for reporting clinical trial protocols and reports for AI

interventions.(7,8) This change in focus from ‘what is the best performance this AI system

can achieve’ to ‘what is the worst mistake this AI system can make’ aligns with the

foundational maxim embedded in medical safety: to first do no harm. Traced back to

Hippocrates, the clinician’s commitment to abstain from and minimize harm is consecrated

in modern medical ethics as the principle of non-maleficence, which recognises that medical

interventions carry inherent risks which must be mitigated. The question of medical AI safety

is being asked at a crucial time, where this is no longer a theoretical concern but one of

preventing harm both for the AI systems that have already received regulatory approval and for

the many more that are in various stages of development but which are intended for clinical

deployment.

So why are AI systems different? Concerns have been raised that, unlike other medical

interventions, AI systems can yield errors that are difficult to foresee or prevent, due to the very

nature of these systems. Modern AI systems based on deep learning establish complex and

opaque mathematical relationships between the input data and the output predictions, with little

to no human control over how those predictions are generated. While this gives rise to a

powerful machinery for learning patterns in the data, there is also a significant risk for the

machine to pick up spurious correlations; relationships which appear useful in the training

context but are unreliable when applied to real-world patients. An example might be an AI model

4
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that learns to detect surgical skin markings to diagnose skin cancer, rather than looking for

features related to the lesion itself(9). Importantly, the errors of AI systems appear to be quite

distinct from the errors of human experts. In medical imaging for example, the majority of human

errors (60-70%) are related to perceptual failure, caused by factors such as the subtlety of

visual findings, incomplete search of the entire image, and “satisfaction syndrome” (where

finding an abnormality makes the reader less likely to find a second one)(10). In contrast, AI

cannot fall victim to incomplete search or satisfaction syndrome. In this context, it is entirely

reasonable to expect that AI systems of equal performance to human readers will produce

different errors, which can lead to different clinical outcomes.

The "AI performance gap" can be caused by a variety of factors, including those related to the

algorithm development, the input data used during training and deployment and interactions

with users and the deployment environment. From the algorithm development, the model

design, training strategies, as well as the choice of training data (in the case of poorly labelled or

under-representative data) can directly influence the AI performance. Mismatch/incompatibility

of input data used during deployment can arise from various types of dataset shift, as described

by Castro et al (including population shift, annotation shift, prevalence shift, manifestation shift

and acquisition shift)(11). Interactions with users and the deployment environment are subject to

automation bias, human error and unintended/intended misuse of the AI system(12). It is also

worth noting that the reasons for unexpectedly poor clinical performance can be non-obvious

even after human inspection, and subtle or even unnoticeable differences in the input data may

lead to catastrophic failure. This relates to the underlying mathematical approximations that AI

systems use to map input data (e.g., a medical scan) to target outputs (e.g., a diagnostic label).

Generally, we can assume that AI systems will operate well within the space mapped out by the

training data (a process called “interpolation”), but perform rather poorly on out-of-distribution

data which requires extrapolation. Intuitively, the further an input sample is away from the

statistical distribution of the training data, the more unpredictable becomes the behavior and

outputs of the AI system. Unfortunately, given the complexity of most forms of medical data, it

can be difficult to define which cases are in-distribution and which are out-of-distribution.

Furthermore, this drop in performance may not be obvious at the aggregate level of typical AI

testing, but rather in subsets of the target cohort or specific strata represented within the input

data: a concept which has been described as ‘hidden stratification’.(13) These factors all

5

55

https://paperpile.com/c/S4PUs4/9iRVd
https://paperpile.com/c/S4PUs4/FC2CU
https://paperpile.com/c/S4PUs4/QAG82
https://paperpile.com/c/S4PUs4/NO2ue
https://paperpile.com/c/S4PUs4/VDVvW


contribute to the performance gap between preclinical testing and real-world deployment, and

current evaluation strategies are ill-suited to identifying the problem.(14)

What is an algorithmic error and why do we need to know about them?

We define algorithmic errors as any outputs of the AI system which are inaccurate, including

those which are inconsistent with the expected performance and those which can result in harm

if undetected or detected too late. Within these, there is a category where the output may be

correct but the algorithm is clearly informed by a flawed decision-making process. We suggest

that these are also considered algorithmic errors, as this indicates high risk of future errors and

should therefore be treated with similar levels of caution. An example might be when a

skin-cancer detection AI system determines a lesion is malignant because of the presence of

surgical skin markings rather than relying on the visual characteristics of the lesion.9 Where

there is a pattern or systematic nature to the occurrence of errors, we refer to this as a failure

mode: the tendency to malfunction in the presence of certain conditions. Whereas an error can

be a single occurrence, failure modes represent errors which will repeatedly occur and often

have similar consequences. Whilst individual errors may not always result in direct harm, their

frequency or the summation of multiple errors may reach above an acceptable threshold and

result in overall harm.

By proactively investigating algorithmic errors and failure modes, the auditor becomes better

placed to monitor AI systems effectively and to understand the potential failure modes and their

consequences. Within the broader mandate to ensure AI systems are safe, undertaking regular

systematic analyses of the observed errors is helpful for a number of reasons:

1. It is an essential component of safety monitoring and adverse event reporting.(15,16)

2. It allows quantification of risk for the AI system, which can be weighed against the

potential benefits, to inform decision-making around whether it is appropriate to apply the

model clinically. There may be existing benchmarks within current clinical practice (such

as estimated human radiologist error rates for a diagnostic task) which would inform the

risk-benefit-ratio for deploying the AI system.

3. It may reveal unknown failure modes of the AI system, such as tendency to produce

higher error rates in certain populations, diseases or settings, or in the presence of

specific input data characteristics.(9,11,17)
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4. Prior to deployment it can be used to derive a measurable adverse event rate, which can

inform how closely safety monitoring and post-deployment auditing should be performed.

It also provides a baseline measurement against which ongoing performance can be

benchmarked.

5. It can inform risk mitigation strategies so that those overseeing deployment of the AI

system can anticipate errors if the conditions known to trigger failure do occur, put in

place measures to avoid failure modes and preemptively set ‘hard stops’ in high risk

situations.

6. It can provide valuable feedback and information for future AI development and model

improvement, and also highlight potential need for post-deployment calibration and/or

localisation of AI systems.

7. It can reveal systematic differences in performance across features mapping onto a

protected identity or social determinant. Insight into these performance differences can

prevent a systematic disadvantage to those groups resulting from the implementation of

the algorithm.

In this paper, we propose an audit-based approach for investigating algorithmic errors.

Algorithmic audit broadly focuses on development processes and embedding organisational

principles and values in the algorithm design, and these values can vary widely depending on

the organisation and context of the deployment. In the context of medical AI the audit process is

more tightly focused on the safety and quality of medical systems, the outcomes and

perceptions of the patient and the public, the responsible utilisation of healthcare resources, and

the equitable distribution of healthcare and healthcare outcomes.

The Principles Underpinning the Medical Algorithmic Audit

The importance of safety and quality for medical algorithms is embedded in the principles of

medical ethics which describe the obligations of clinicians to their patients and the public.

Evidence-based practice reflects the ethical imperative to act to promote the patient’s best

interests (beneficence) while minimizing harm (non-maleficence), with empirical data forming

part of the foundation upon which these judgments are made in consort with patient values.

Typically, the information gathered through the process of prospective evaluation is

contextualized to a clinical setting on the basis of factors relating to each individual patient(18).
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For interventions like drugs, the intervention itself is identical for all iterations (e.g., the chemical

structure of a single pharmaceutical agent is the same for every patient who takes it) and it is

within individuals that responses vary. With AI systems, the intervention is acutely sensitive to

between-individual and within-individual feature variation, as the very power of the

computational technique is in its ability to utilise feature variations to make individual-level

predictions. However, what AI systems cannot do is apply clinical knowledge and domain

expertise (including prior experience, contextual understanding and causal knowledge)

‘common sense’ to distinguish between relevant feature variation due to disease versus

irrelevant feature variation due to other biological confounders or non-biological sources,

potentially resulting in unreliable predictions. This means that to translate algorithms within

clinical practice, more nuanced information is required describing the algorithm’s performance

across a range of relevant features, which is the goal of medical auditing. This information then

forms the constellation of knowledge and practices that guides effective - and beneficial -

translation of interventions(18).

A core and often overlooked concern with AI is that of fairness. So long as bias and social

determinants of health exist, these patterns will entrench themselves within healthcare ML. In

many cases the performance of AI models differs across patient identities or social determinants

of health (often proxies for identities), which can pose a threat to another core ethical principle:

justice. In this case, we might consider distributive justice as a desirable property of AI-enabled

care delivery (i.e. whether the benefits afforded by ML are conferred equally to all). Distributive

justice also points us to the necessity of redressing disparities. If an audit reveals substandard

performance among certain groups, compensatory mechanisms may help ensure these patients

are not disadvantaged by use of the algorithm. Medical auditing can reveal areas where these

mechanisms are required and also point to how potential disadvantages may be redressed.

The elements of a medical algorithmic audit

In this paper we build on the algorithmic audit approach proposed by Raji et al(19), who

describe a qualitative structured audit process applying the “SMACTR” framework (Scoping,

Mapping, Artifact Collection, Testing, and Reflection) to AI, as a general purpose technology.

Whilst this framework was originally proposed as a way of assessing whether AI development
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was conducted in alignment with the principles of an organisation, its structure is highly

applicable to local auditing of AI performance due to its orientation towards internal auditing

(and thus led by those closest to implementation). Each step of the SMACTR framework has its

own set of documentation requirements, thus facilitating accountability and iterative, ongoing

safety monitoring. There is also emphasis on other established auditing practices in medicine

and other industries, including process mapping, failure modes and effects analysis, risk

prioritisation and planning mitigating actions. We adapt this framework for use in medical AI

applications (Figure 1) and approach the problem from two perspectives: that of the developer,

who has the ability to modify the AI system in response to the audit results; and that of the user,

who cannot modify the AI system but has means to set up risk mitigation plans specific to the

deployment setting. We apply the principles of failure modes and effects analysis (the FMEA

tool), a well established mechanism in engineering to facilitate risk assessment, risk

prioritisation and risk mitigation. For illustrative purposes, an example of an audit for a hip

fracture detection algorithm is published as supplementary information in Oakden-Rayner et al

(included in thesis) alongside a detailed breakdown of the FMEA. The benefits of performing the

FMEA is to initiate and guide a critical thought process, rather than to establish whether the AI

system is acceptable or unacceptable or to provide certainty that all risks can be anticipated and

minimised. FMEA has previously been applied to clinical settings, although must be interpreted

with care due to issues around reproducibility and incompleteness(20).
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Figure 1: Top: Overview of the Internal Audit Framework from Raji et al(20). Gray = a process,
and colored sections represent documents. Orange = produced by the auditors, blue =
produced by the engineering and product teams, and green = jointly developed. Image
reproduced with permission. Bottom: Proposed modifications for the Medical Algorithmic Audit.

The medical algorithmic audit may be conducted by AI developers but is also likely to be

conducted by stakeholders with no involvement in algorithm design, such as healthcare

workers. It is possible that during deployment, a myriad of human factors combined with a poor

understanding of AI systems may create a situation where all errors are assumed to be a fault of

the algorithm’s design. It is therefore essential that clinical auditors have the necessary tools to

identify error sources which are preventable (input data factors, user factors) and not

preventable (factors which are intrinsic to the algorithm itself). Whilst those outside of the

development team may have no opportunity to change the algorithm, they may be able to

control or influence the circumstances under which it is deployed, which is intrinsically tied to the

likelihood of errors, as well as the ability to avoid or manage them. To consider the medical

algorithmic audit from both perspectives, Table 1 describes tasks taken by users and

developers separately for each stage of the audit. It is also worth noting that developer and

clinical audits are complementary; ideally both will be performed either separately or in

collaboration.
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Table 1. Checklist for artefact collection

Developer actions User actions

Scoping Define intended use Identify intended use

Anticipate intended impact(s) Define intended impact(s)

Mapping Mapping of the AI system Mapping of the AI system

Define data flow Define data flow

Identify known risks of the AI system:
- Existing published

evidence
- Existing unpublished

evidence
- Through knowledge of the

training data

Identify known risks of the AI system:
- Existing published evidence

Identify known risks of the healthcare task

Mapping of the healthcare task including elements
before and after the AI system in the clinical
pathway

- Identify important patient or data
subgroups.

- Identify potential sources of atypical
input data.

- Identify relevant outcomes to be
measured and how they will be
captured in the audit.

Summarise risks in a risk priority
number

Summarise risks in a risk priority number

Artifact
Collection

Intended use statement Intended use statement

Intended impact statement Intended impact statement

FMEA:
- Clinical pathway mapping
- Clinical task risk analysis
- Risk priority number

document

FMEA:
- Clinical pathway mapping
- Clinical task risk analysis
- Risk priority number document

Datasheet for datasets (training and
test data)

Datasheet for datasets (deployment data)

Data flow diagram Data flow diagram

The AI system itself The AI system itself

Model Summary Model Summary

Data for direct assessment, including
explainability artifacts and adversarial
testing artifacts

Data for direct assessment, including explainability
artifacts and adversarial testing artifacts

Previous evaluation materials
(including performance testing/user
experience artifacts)

Previous evaluation materials (including
performance testing/user experience artifacts)
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Testing Exploratory error analysis
- False positives and false

negatives
- Explainability methods

(saliency maps and
feature weights)

Exploratory error analysis
- False positives and false negatives
- Explainability methods (saliency maps

and feature weights)

Subgroup testing
- Table 1 subgroup analysis
- Task-specific subgroup

analysis

Subgroup testing
- Table 1 subgroup analysis
- Task-specific subgroup analysis

Adversarial testing Adversarial testing (if possible)

Reflection Risk mitigation measures:
- Retrain the model
- Modify the model

threshold
- Modify the workflow or

intended use

Risk mitigation actions
- Continue use with additional human

oversight
- Modify or limit use
- Withdraw use

Compile algorithm audit summary
report and share with relevant
stakeholders.

Compile algorithm audit summary report and share
with relevant stakeholders.

Scoping

Scoping is the process of defining the intended purpose of the AI system and anticipating

potential harms that may arise due to use of the system. In Raji et al, the framework is intended

for any domain where AI may be applied. In the setting of medical AI testing, the scope of the

audit is more clearly defined: the ethical and clinical motivation is uniform across medical AI

studies, with the intention to improve healthcare outcomes (i.e., wellbeing, financial,

organisational) and to promote distributive justice. Therefore, scoping in medical algorithmic

audit should focus on two key elements, the intended use, and the intended impact.

The intended use is a term from regulatory guidance (21,22) which describes a high level

summary of how the device is to be applied. The United States Food and Drug Administration

(FDA) Premarket Approval (PMA) guidance states “Indications for use for a device include a

general description of the disease or condition the device will diagnose, treat, prevent, cure, or

mitigate, including a description of the patient population for which the device is intended. Any

differences related to gender, race/ethnicity, etc. should be included in the labeling.” The
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intended use statement is defined by the developer, who has knowledge of any prior evidence

supporting indications for legal and safe use. It should also be known to the user, who decides

whether the intended use statement matches the clinical task and clinical pathway in which the

algorithm is intended to be deployed. For example, in the hip fracture audit (included in thesis),

scoping of the intended use refers to the function of the algorithm (detecting proximal femoral

fractures) as well as its integration into a clinical pathway (where detection leads to admitting

under an orthopaedic team and booking of further imaging if necessary). Other considerations

include any limits on the healthcare environment for use (i.e., inpatient, outpatient) and the

intended users/oversight (i.e., health professional, patient, autonomous). It is important to

establish a clear understanding of whether the current application falls within the AI system’s

intended use, or if there are areas of ambiguity (i.e., from missing or poorly defined intended

use descriptions). Any identified mismatches can motivate a targeted error analysis during the

algorithmic audit.

The intended impact identifies the clinical or healthcare target of the AI system, accompanied

by the ensemble of information that describes the boundaries within which the system is

efficacious(18). This high-level statement describes how the AI system will affect healthcare

outcomes if it works as intended. The developer may be able to define, in theory, the intended

impact, but the user is better placed to consider this. The hip fracture audit (included in thesis)

has several intended impacts including reduced time to admission and theatre, reduced

resource utilisation in the emergency department and unnecessary imaging, and downstream

improvement in health outcomes.

Different users of the same algorithm may have different target impacts specific to their health

setting and needs. They may choose to implement them in different ways to produce different

results and therefore their measures of success (and failures) will also be different. The auditor

should consider whether there are any unacceptable high risk outcomes or adverse events

(such events in medical safety are distinct, as they are considered so severe that they should

never occur, such as “never events” like surgical procedures performed on the wrong limb). It

may be helpful to consider this also in the context of non-AI systems with the same or similar

intended use and intended impacts.
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Both the intended use statement and intended impact statement will be used during the next

phase (mapping), as these statements define the scope of algorithmic errors related to use of

the AI system.

Mapping

The mapping phase considers two main topics; the mapping of personnel and resources

necessary for the audit, and the mapping of the risks and known vulnerabilities of the intended

use as the first stage of the Failure Modes and Effects Analysis.

Personnel who may be useful for medical algorithmic audit include developers, users, and

domain experts (including medical ethicists), particularly those who have experience with the AI

system. Developers have a substantial role to play in terms of providing periodic evaluations to

guarantee expected performance, as is the case with other medical devices such as scanners,

which often include 24/7 service and support plans to ensure the device continues to meet

operational, regulatory, quality and safety requirements. Where possible, developers should also

design mechanisms which allow the user to carry out audits independently at a local level.

Resources that may be required include, but are not limited to, access to suitable training and/or

testing data and the associated labels (including non-target labels such as demographic

information and hospital process factors), access to model predictions on the test data, access

to any interpretability tools produced for use with the AI model, and access to the model itself if

a more in-depth introspection or further data challenges (such as adversarial testing) may be

required.

Failure Modes and Effects Analysis (FMEA) is a prospective risk analysis tool which first maps

out the process, and then is used to identify foreseeable failures which may occur. In the

mapping phase there are two important elements of FMEA: mapping of the AI system itself and

the mapping of the healthcare task.

Mapping of the AI system itself is a detailed expansion on the intended use statement and

analysis of prior evidence documenting risks intrinsic to the AI system by design, or which the AI

system has encountered previously. This may include an evaluation of the existing literature on

known risks, or a scoping of other AI systems with similar intended use for potential risks.
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Mapping the AI system also involves mapping any prerequisite steps or minimal requirements

which are essential to achieving expected performance. Crucial to this is the process for

handling and selection of input data, which is sometimes underspecified and poorly reported.

Mapping of the healthcare task is a contextualised analysis of the AI system as a component

of clinical care within a health system. It requires clinical knowledge of the use-case, the clinical

workflow (including existing safeguards for detecting errors), user behaviour (healthcare

provider, patient and public) and understanding of the potential consequences of errors. This

knowledge can complement the mapping of the AI system above, to anticipate when, and how,

failure modes can arise. Mapping the clinical pathway can identify upstream factors which may

increase the chances of algorithmic error, and downstream consequences which may occur as

a result of algorithmic error. It also involves identifying any important patient or data subgroups

and any specific features of the input data which are unusual or atypical.

It can be helpful at this stage to map the AI system in relation to the clinical task and intended

impacts in the form of a causal diagram, to determine the direction of causality between

variables measured in the audit(23). This will inform the metadata required for the Artifact

Collection phase and can help auditors in making sense of relationships and assumptions

between relevant components of the healthcare task in the Reflection phase.

These elements are then summarised in a risk priority number (RPN), which ranks the identified

risks. The risk priority number is an arbitrary value calculated through ranking and combining

three elements: severity (severity of the failure effects), occurrence (likelihood of occurrence)

and detection (effectiveness of mechanisms to detect the failure before it results in adverse

consequences). The ranking of each item is subjective but a scale should be defined so that

RPNs in future audits can be comparable. For example, in the hip fracture audit (included in

thesis), severity and occurrence were scored between 1 to 4. A severity score 4 was catastrophic

(failure could cause injury or death, extreme loss of trust) and 1 was minor (no intervention needed,

no injury to patient). An occurrence score of 4 was frequent (several times in 1 day) and 1 was

remote (may happen in more than 6 months). The auditor should decide whether all three

elements are applicable to the AI system, or whether there are additional elements which should

be added. In the hip fracture audit only severity and occurrence elements were included as most
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risks could not be easily detected in the current clinical workflow (resulting in homogenous

scoring).

It is critical to understand that the actual RPN value is not a measure of safety, nor should there

be an attempt to create arbitrary thresholds to determine the acceptability of risks. Rather, the

RPN enables relative ranking of all risks to prioritise those which need urgent attention and to

serve as a baseline for re-evaluation in future audits.

Artifact collection

The artifact collection phase involves gathering the documents and materials identified in the

mapping phase which may inform the audit (Table 1). There are three main components to

consider in the context of medical AI systems (aside from those already produced in the scoping

and mapping phases): 1) any relevant datasets (training data, previous evaluation data and/or

prospectively collected audit data for the current audit), 2) the model itself, and 3) results of

previous evaluations of the model or task.

The datasets are of primary importance in determining both the performance of the AI system,

and the potential limitations and failure modes. Various datasets come into play throughout the

development, evaluation and monitoring of AI systems and all are relevant for the algorithmic

audit, but may reveal different information about errors and failure modes. The relevant datasets

are the algorithm training data (for developing the algorithm, which may include data for internal

validation), previous test data (for evaluation or validation of the algorithm in silico) and

deployment data (data generated as a byproduct of the algorithm being used). Both the test

data and deployment data can be used in an algorithmic audit, however the information

provided within them may vary. Note that evaluation data, and in particular labelled evaluation

data can be difficult or impossible to obtain in live deployment situations (or in certain evaluation

designs, such as RCTs of effectiveness), where the ground truth for each case is not routinely

collected. In these settings the identification of sources of weak labels (such as adverse events

registers and user feedback) will be important, and the limitations of these labels should be

clearly indicated.
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There is often little relationship between errors on the training set and errors that occur during

deployment, therefore access to the complete training data is a lower priority in algorithmic

audit. Although training data may be used for conducting exploratory error analyses (discussed

below), it is not uncommon for deep learning models in particular to achieve negligible training

error but still perform poorly in a test or deployment environment. Access to this data can also

be problematic for users and external auditors, given the commercial value of this data and the

sheer size of these datasets.

Whilst direct access to the relevant data is likely to be useful, understanding the data processes

is equally important. This information can be formalised with a “datasheet”(24) and a data flow

diagram. A datasheet provides an extensive description of the data generating process, dataset

collection, dataset composition, and dataset processing and labelling. Datasheets can be

extremely valuable during an audit, as the dataset composition (in particular, the training data

composition) can suggest likely failure modes (for example, patient subgroups that are

under-represented in the training data). Access to datasheets is not similarly problematic or

commercially sensitive, and should be provided by the developers wherever possible. In

addition to the datasheet, there should be a data flow diagram which outlines the handling of

data from point of acquisition to presentation to the algorithm. This should include any

pre-processing steps, such as data transformation and normalisation, as well as exclusions

based on data quality and a traceability mechanism for unusable or discarded data. Any results

from previous explainability methods such as saliency or attention maps, per case feature

importance measures, feature visualisations and so on should also be collected at this stage.

The model itself is also important in the audit process. Basic information about the model

design, version, and model developers should be collected as a minimum. Such information can

be summarised in a “model card”.(25) If the AI system consists of multiple components (for

example a segmentation step, followed by a classification step(26)), artifacts should be

collected for each individual component where possible. Where multiple audits have been

conducted over time spanning updated versions of the AI model, documentation regarding

changes between updates and any published evaluations since the last audit should also be

collected. While model description can be formalised with a “model card”(25), there is significant

overlap between this and other artefacts to be collected.
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While direct access to the model code and parameters (sometimes called a “white box audit”)

can be hypothetically useful, for example by performing stress-testing of the AI system by

intentionally modifying input data to induce errors, this is rarely possible due to intellectual

property concerns. The majority of the benefit that access would provide can be equally

obtained with the ability to test the model on new cases and receive model outputs, usually via a

web portal or API (also known as a “black box audit”). Developers should provide such a

mechanism for users to perform independent local testing using representative data samples, to

ensure performance is as expected.

The evaluations performed previously are extremely important during the preparation of an

algorithmic audit. Typically medical AI development goes through several phases of evaluation,

and artefacts of this process include internal and external evaluation summaries, published

materials on pre-clinical and proof-of-concept testing, and summaries of any previous qualitative

assessments or audits. The latter may include developer and user experience materials, such

as interviews, surveys, or other forms of feedback.

In the context of the hip fracture audit, the components of the scoping and mapping phases

were all collated, but in addition the auditor secured access to the validation and test datasets

with explainability artefacts/saliency maps for these cases, the hip fracture model itself, and

documents related to model development and previous testing (27,28), including design

documents for each component of the algorithm.

Testing

The most important part of the audit process, other than the implementation of

recommendations, is the testing phase. It is also the hardest part of the process to standardise,

as each AI system will face different risks and challenges and much of the assessment is

informed by the results. Institutions are accountable for the choice to incorporate a given AI

system into their clinical workflow, which necessitates the need to ensure its appropriateness

and functionality for the particular patient populations they serve. Should an algorithm not

perform as expected or if harm were to occur, an audit would provide a clear mechanism of

demonstrating institutional accountability.
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We suggest several key components of testing of medical AI systems during algorithmic audit:

Exploratory error analysis (EEA)

The auditors will review each example of algorithm error which has been provided (either from

previous evaluations, or from detected errors/adverse events in deployment). Auditors will

systematically examine both false positive and false negative groups in the case of classification

systems, or outliers with high numerical errors in the case of regression models. The intent of

this process is to identify any common elements among the errors (i.e., specific types of cases

which may be more prone to error and therefore carry higher risk, as shown in the hip fracture

detection example in Figure 2), as well as any examples of surprising errors (for example, a

fracture detection model missing an extremely obvious fracture). Given the contrastive nature of

this method, access to cases correctly analysed by the AI system can also be useful.

Figure 2: Audit of the hip fracture detection system (included in thesis) revealed that cases with
abnormal bones or joints (Paget’s disease and femoral head deformity) were overrepresented
amongst the errors. The overall error rate was 2.5%, but the error rate for this subset was 50%
(false positives = D, false negatives = E, F).

As EEA is exploratory in nature, it can be useful to have access to additional tools which may

require access to the algorithm itself or support from the algorithm developers. Examples of
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useful tools include AI explainability methods such as saliency maps and feature visualisations

for image data, attention maps, feature weights or importance measures for text and tabular

data, and so on. Similarly, data clustering methods have been shown to be of some help for

some audit tasks such as cryptic subset detection(29). An example for the use of data

visualisation is shown on the left in Figure 3, where, in the absence of data normalisation, the

largest modes of variation in brain magnetic resonance imaging data after principal component

analysis on the input images is between hospital sites. There is a high risk that a disease

classification model trained on such data may pick up features associated with the site rather

than the pathology, in particular if one site contributes more cases than controls. A careful data

normalisation pipeline may mitigate such site differences, as shown on the right in Figure 3. A

model trained on the normalised data may be more robust when employed to new data. While

these exploratory tools are not powerful for risk assessment in isolation, they can be extremely

useful during EEA.

Figure 3. Principal component analysis of brain MRI, with and without data normalisation,
across four hospital sites. UKBB: UK Biobank, Cam-CAN: Cambridge Centre for Ageing and
Neuroscience dataset, IXI: Information eXtraction from Images dataset including data from
Guy’s Hospital and Hammersmith Hospital. UK Biobank data is accessed under Application
Number 12579.

Subgroup testing

Subgroup testing, or secondary performance analysis, is widely used in medical and

epidemiological research to investigate the possibility of confounding/stratification; patient or
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data variables which indicate a subset of cases in which performance will significantly differ than

in the overall cohort.

Importantly, subgroup analysis is not performed to test hypotheses. Given the reduction in

power due to the lower sample sizes in subsets, as well as the inflated type 1 error rate (false

positives) caused by multiple testing, these results should not be considered reliable or

definitive in the same way a primary analysis may be. Instead, the goal is to identify possible

high risk sub-populations within the target group. Whilst the subgroup analyses can be useful for

identifying possible error patterns, these findings should be confirmed through investigation in a

sufficiently powered sample.

There are three main forms of subset testing: 1) Table 1 subgroup analysis, 2) Task-specific

subgroup analysis, and 3) EEA-discovered subgroup analysis.

1. Table 1 subgroup analysis

In medical publications, the baseline characteristics table - Table 1 (and sometimes Table 2) -

are used to describe important forms of variation in the dataset which may cause confounding

relationships within the data, or have wider implications on the results. Almost all studies report

subgroups by age, sex, ethnicity, socioeconomic status, disease severity and comorbidities, and

some studies also include data acquisition details such as imaging protocols and hardware

devices. The reason these variables are highlighted during audit is twofold: 1) they have well

known stratifying relationships with disease and treatment outcomes, and 2) if they are included

in Table 1, the data is readily available and the subgroup analysis is trivial to perform.  Many

studies already report this information(30–32) and an example is shown from the Ting et al

evaluation of a retinal imaging AI system (Table 2).
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Table 2. Example of a “Table 1 subgroup analysis” by dataset source/setting from Ting et al.28

which demonstrates the performance of their AI model stratified by the clinical origin of the data.

2. Task-specific subgroup analysis (TSSA)

There is a near infinite set of possible confounding and stratifying factors in medical AI

evaluation. The TSSA seeks to analyse the most concerning of these factors, and is informed

by the FMEA risk analysis and risk priority score. Like the Table 1 subgroup analysis, the

subgroups in the TSSA are defined prospectively, based on an understanding of the clinical

task, often informed by domain experts. The main difference between a Table 1 subgroup

analysis and TSSA is that the subgroups are often cryptic (unlabelled) in TSSA. It is often

necessary to undertake additional labelling to identify data which is part of the subgroup of

interest. As it may require significant time and resources to undertake labelling of relevant data,

the risk prioritisation performed in the FMEA may inform which additional labelling should be

prioritised.

Examples of task-specific factors that may be considered in TSSA include collision groups (such

as a combination of features from the Table 1 analysis) and process variables such as the

scanner used to obtain medical images or the presence of artefacts of medical care within the

data (such as a chest drain on a chest xray for a patient being treated for pneumothorax(13)

(Figure 4), or a surgical mark on the skin of a patient suspected of melanoma(9)). Special
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consideration should be made of data subgroups which would not be captured in a typical Table

1 analysis, for example visually distinct subsets in a medical image analysis task (such as

subsolid versus solid lung nodules)(33). The TSSA may also be informed by important clinical

implications associated with certain subgroups, such as the need for diagnostic certainty when

differentiating infectious from non-infectious skin lesions (as the treatment for the latter, topical

steroids, will often worsen the former and may make subsequent diagnosis more difficult).(34)

Figure 4. Example of task-specific subgroup analysis for a model detecting pneumothorax on

chest radiographs, where the AI model learns to detect the artefacts of clinical care (chest

drains) and fails to adequately learn the features of the pathology itself.(13)

3. EEA-discovered subgroup analysis

During the EEA process, distinct subgroups of error cases or error features may be discovered,

which are not considered during Table 1 subgroup analysis or TSSA. Notably, while TSSA

subgroups are defined prospectively based on expert knowledge, EEA-discovered subgroups

are identified during the EEA component of the audit. In these cases, the error feature

discovered should be investigated as above with a TSSA. However, unlike prospectively defined

subgroups, subgroup cases identified during the EEA are even less likely to be labelled and the

auditor may need to invest time and resources to carry out further targeted labelling of the audit
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dataset. The risk priority score is helpful in this context, to help the auditor rationalise whether

this investment is necessary. In the hip fracture detection audit, discovery of algorithmic errors in

cases with abnormal bones prompted an additional labelling exercise of all hips with abnormal

bones and joints to find the error rate in those cases were 50%, compared to 2.5% in the overall

dataset.

Adversarial testing

While it is generally less of a concern in medical settings (where data generation and

processing is heavily standardized and monitored), it can be useful to consider “worst-case”

scenarios for targeted testing. The term “adversarial” here means the sort of actions that a

hostile actor may take to “break” the system, but in the medical context we could consider

adversarial testing roughly analogous with counterfactual reasoning - where users can explore

or simulate changes in data inputs to observe how the model behaves. This can be done in a

safe environment to simulate high-risk situations and their potential consequences. For

example, De Grave et al used multiple adversarial testing approaches for a Covid-19 detection

model for chest radiographs to show the model can be misled by laterality markers and shoulder

positioning(35).

Unlike subgroup analyses, adversarial testing may require access to the model itself. It may also

require gathering real-world examples of specific subgroups where performance is known to be

poor, particularly if the subgroup is rare enough in the test data that few valid conclusions can

be drawn. Alternatively, simulated data can be used. While this is more common in tabular data,

recent advances in generative models can allow for the simulation of more complex data, such

as images and text. With either real-world or simulated data, the purpose of adversarial testing

is to better understand the prevalence and source of errors in worst-case subgroups.

Reflection

The final stage of the audit is a reflection of test results in light of the intended use and the

intended impact outlined in the scoping phase. A final assessment of risk is formalised at this

stage, risk mitigation strategies are proposed, and recommendations are made on whether the

errors fall above or below threshold for continued use of the AI system. This decision will be

highly specific to the clinical setting and its ability to put in place risk mitigation measures. Those
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overseeing the algorithmic audit should be vigilant to deviations from the AI system’s intended

use. It may become apparent during testing when a mismatch between intended use and actual

use has occurred, but additional auditing measures such as root cause analysis may be

required to retrospectively determine whether errors were due to gaps between the intended

and actual use. In any case, errors should be reported to the relevant regulatory bodies,

especially if the errors found invalidates the AI system’s intended use claim or the indications for

use. It is also important to report errors even if adverse outcomes were mitigated through other

measures in the health system (i.e., near misses), as other deployment sites may not have the

same mitigation measures in place and harm which was prevented in one setting may not be

prevented in another.

Risk Mitigation Measures

The feasibility and success of risk mitigation strategies will be specific to the deployment setting

and requires regular review as clinical systems change over time. The measures which can be

put in place also depend on who the auditor is and which aspects of the AI system and

healthcare system they are able to modify. Developers may be limited by legal requirements,

where any substantial changes to the AI model, deployment infrastructure, or the intended use

may need to be re-evaluated by regulatory agencies.

Developer Actions

1. Retrain the AI model

The developer may decide to alter the AI system to mitigate the identified risks. Modifications

could target any part of the AI system, but most commonly will involve targeted retraining of the

model itself. In general, the intention would be to train an improved version of the AI model

using more diverse and representative data, targeting any areas of weakness by enriching the

training dataset with more examples of cases associated with errors. If further data is not

available, a similar effect may be achieved by reweighting the training examples or rebalancing

the training data to increase the relative value of these cases, or by producing simulated

examples of these error cases.

2. Modify the model threshold
The model threshold in classification systems determines the cut-off to discriminate between

positive and negative cases, and is also known as the operating point. This can be altered

25

75



without retraining the model, for example if user feedback suggests that the model produces too

many false positives, then shifting the threshold can reduce these (at the expense of increasing

the rate of false negatives). The operating point of a model may be pre-specified or suggested

by the developers, but may also need tuning after deployment based on the specific clinical

needs at a particular site.

3. Modify the instructions for use or intended use
Modifications can also affect the non-model components of the deployed infrastructure and AI

workflow. This could involve changes to data acquisition and pre-processing steps, or in more

extreme cases modifying the intended use of the system. Such modifications could involve

excluding some types of input data from the AI system, changing how the model outputs are

presented to the users, or even redefining the intended user group (for example, by increasing

training requirements for users).

Clinical Actions

1. Continue use with additional human oversight

Some errors may be acceptable for continued use if the likelihood of harm is very low, or if the

consequences can easily be mitigated given adequate human-oversight. Depending on the

use-case, reducing the level of autonomy of the AI system and necessitating human verification

may be sufficient to mitigate risks. In the FMEA, the risk prioritisation number may be

informative as such errors would score low for severity and/or high for detection.

Human-oversight may be implemented for all use or reserved for certain subgroups where

performance is known to be lower.

2. Modify or limit use
Where modifiable risks are identified (for example, confounding visual features such as laterality

markers on chest radiographs), processes can be put in place to prevent reoccurence (in this

example, by standardising placement or removal/digitization of laterality markers in chest x-ray

images).  Modifying the input data acquisition protocol or additional pre-processing steps

integrated into the workflow to minimise the effects of spurious input data elements may be

required.

If modifications are unfeasible or insufficient, limiting use of the AI system on certain input data

or subgroups which are prone to errors is another option. This can be implemented if the
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subgroup can be identified upstream in the clinical pathway (for example, subgroups of certain

demographic, input data type, or known task-specific feature variants could be identified by the

imaging technicians performing a scan) and those patients can be routed to an alternative care

pathway. In the hip fracture detection audit, the risk of false positives in cases of femoral

deformities was determined to require further monitoring, with a potential modification of the

intended use (to exclude cases with deformities) as an appropriate mitigation action, if they

were confirmed to cause a failure mode (included in thesis).

However, this option is not always feasible if the subgroups are not readily identifiable prior to

analysis by the AI system.

There should also be consideration as to whether such modifications inadvertently

legitimises a two-tier health system, with particular groups receiving worse care,

compromising the principle of distributive justice.

3. Withdraw use
The last option is withdrawal of the AI system altogether and reverting to prior care models.

Where the likelihood of errors are so severe that continued use of the algorithm is no longer

safe or ethical, the only option is to stop use of the AI system until modifications can be made.

The potential harms of sudden and complete withdrawal of the AI system should be weighed

against the harms caused by continued use with or without modifications and limitations.

A particularly attractive alternative method to consider is the use of “hard stop” thresholds,

which are common components of medical device deployments.(36) These involve

pre-specified minimum performance levels, where if performance falls below the threshold

during ongoing and active monitoring, then the device is immediately removed from use. These

thresholds can be clearly informed by relevant organisational values (including equity and

justice), and  prespecification can simplify the often complex “stop use” decisions as it can allow

all relevant stakeholders to be involved in these deliberations.

Algorithmic audit summary report

Findings of the medical algorithmic audit are summarised in a report which includes all collected

artifacts, the FMEA, datasets, test results, risk mitigation plans and final decisions made. Any

learning derived from the audit process which extends beyond the current application, should be
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recorded to assist future AI evaluations/deployments. Key audit findings which carry direct

implications on clinical care should also be disseminated to users. Any updates or changes

made to the AI system should be made apparent to the user, ideally with reasons reported. A

frequent and open dialogue of findings from the algorithmic audit summary report should be

shared between developers and users.

Conclusion

AI systems for healthcare may bring significant benefits to patient care, but like any other

medical intervention they also have the potential to fail and cause harm. In the case of AI

algorithms, the nature of errors may be particularly difficult to discover, explain and mitigate,

given the tendency for AI systems to yield unpredictable, and often subtle, errors. At a time

where AI systems are being rapidly adopted into clinical practice, ensuring a framework for

ongoing performance monitoring and scrutiny of error and harm is essential. These can be

especially high-risk, given the deployment of AI systems often coincides with the establishment

of new clinical pathways with no clear comparators for expected outcomes or standards for

quality (such as the creation of new telemedical and virtual care pathways).

It is worth noting, although many AI systems are supported by evidence showing superior or

equivalent performance in comparison to human experts, such monitoring of human

performance is not routinely monitored in a task-specific fashion in actual clinical practice. In

fact, recent clinical AI evaluations have provided valuable insights into human performance by

measuring and benchmarking human performance at specific diagnostic tasks. Routine

monitoring of human grader accuracy, such as those introduced by UK national screening

programmes for diabetic retinopathy(37) and breast cancer screening(38), is not performed for

most other clinical tasks. Gaining an understanding of human performance will not only reveal

which tasks AI systems truly provide value, but will also hopefully drive the motivation to

improve higher standards of care in clinicians.

The medical algorithmic audit proposed in this paper is a process to investigate and even

preempt errors and harms which can be caused by AI systems. It is a general framework which

promotes thoughtful interrogation of errors and unexpected results in evaluations of AI systems

prior to and during real-world deployment. Performing the audit requires clinical and technical
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expertise and contextual knowledge for anticipating the potential effects of the deployment

environment, which may expose vulnerabilities of the algorithm and increase the likelihood of

errors.

One question yet to be answered is who should conduct the Medical Algorithmic Audit? The

skills and knowledge required to undertake such an audit crosses computational, bioinformatics

and clinical skill sets, and are not currently taught in standard medical or technical curricula. In

order to fulfill this responsibility, health providers need to invest in upskilling clinical personnel to

oversee the piloting, deployment and ongoing monitoring of AI systems - broadly described as

the science of Algorithmovigilance.(39) In the UK, the need to invest in digital leaders with the

necessary capabilities (such as clinical information officers) has been recognised by the

National Health System and Health Education England.(40,41) In Australia, the Royal Australian

and New Zealand College of Radiologists have recently recommended that medical imaging

departments and practices appoint a responsible radiologist with the necessary skills and

knowledge to perform regular algorithmic audits of AI systems in deployment(42).  In both

nations, concerns have been raised that appropriately trained clinicians are rare, and that there

remains significant work to be done in building an AI-ready workforce. Structured processes and

guidelines such as the ones described here are necessary to accelerate the development of

clinically-relevant AI quality and safety capabilities.

Ultimately, the responsibility and benefits of investigating and improving the safety of the AI

system is shared between developers, healthcare decision-makers, and users and should be

part of a larger oversight framework of algorithmovigilance to ensure the continued efficacy and

safety of AI systems. For the medical algorithmic audit to have the highest chance of success,

we advocate for the process being carried out jointly between these stakeholders, where each

party enables the other in developing a deeper and more contextualised insight into the findings

and possible mitigation strategies.

29

79

https://paperpile.com/c/S4PUs4/5JUdX
https://paperpile.com/c/S4PUs4/GdlUr+aHSNB
https://paperpile.com/c/S4PUs4/Lpb7N


Acknowledgements

XL and AKD receive a proportion of their funding from the Wellcome Trust, through a Health
Improvement Challenge grant (200141/Z/15/Z). BG receives funding from the European
Research Council (ERC) under the European Union's Horizon 2020 research and innovation
programme (grant agreement No 757173, project MIRA, ERC-2017-STG).

Author Contributions

All authors contributed to the conception, writing, and editing of the manuscript.

Competing Interests
BG is Scientific Advisor for Kheiron Medical Technologies, Part-time Employee and Scientific
Lead of the HeartFlow-Imperial Research Team and Visiting Researcher and was a part-time
Employee at Microsoft Research. The remaining authors declared no conflict of interests.

30

80



References
1. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep

learning performance against health-care professionals in detecting diseases from medical
imaging: a systematic review and meta-analysis. The Lancet Digital Health. 2019 Oct
1;1(6):e271–97.

2. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial
intelligence versus clinicians: systematic review of design, reporting standards, and claims
of deep learning studies. BMJ. 2020 Mar 25;368:m689.

3. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, et al. Do no harm: a
roadmap for responsible machine learning for health care. Nat Med. 2019
Sep;25(9):1337–40.

4. Schulam P, Saria S. Can You Trust This Prediction? Auditing Pointwise Reliability After
Learning. In: Chaudhuri K, Sugiyama M, editors. Proceedings of Machine Learning
Research. PMLR; 2019. p. 1022–31. (Proceedings of Machine Learning Research; vol. 89).

5. Pooch EHP, Ballester P, Barros RC. Can We Trust Deep Learning Based Diagnosis? The
Impact of Domain Shift in Chest Radiograph Classification. In: Thoracic Image Analysis.
Springer International Publishing; 2020. p. 74–83.

6. Mahajan V, Venugopal VK, Murugavel M, Mahajan H. The Algorithmic Audit: Working with
Vendors to Validate Radiology-AI Algorithms-How We Do It. Acad Radiol. 2020
Jan;27(1):132–5.

7. Liu X, The SPIRIT-AI and CONSORT-AI Working Group, Rivera SC, Moher D, Calvert MJ,
Denniston AK. Reporting guidelines for clinical trial reports for interventions involving
artificial intelligence: the CONSORT-AI extension [Internet]. Vol. 26, Nature Medicine. 2020.
p. 1364–74. Available from: http://dx.doi.org/10.1038/s41591-020-1034-x

8. Rivera SC, The SPIRIT-AI and CONSORT-AI Working Group, Liu X, Chan A-W, Denniston
AK, Calvert MJ, et al. Guidelines for clinical trial protocols for interventions involving artificial
intelligence: the SPIRIT-AI extension [Internet]. Vol. 26, Nature Medicine. 2020. p. 1351–63.
Available from: http://dx.doi.org/10.1038/s41591-020-1037-7

9. Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, et al. Association
Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a
Deep Learning Convolutional Neural Network for Melanoma Recognition. JAMA Dermatol
[Internet]. 2019 Aug 14; Available from: http://dx.doi.org/10.1001/jamadermatol.2019.1735

10. Degnan AJ, Ghobadi EH, Hardy P, Krupinski E, Scali EP, Stratchko L, et al. Perceptual and
Interpretive Error in Diagnostic Radiology—Causes and Potential Solutions. Acad Radiol.
2019 Jun 1;26(6):833–45.

11. Du-Harpur X, Arthurs C, Ganier C, Woolf R, Laftah Z, Lakhan M, et al. Clinically-relevant

31

81

http://paperpile.com/b/S4PUs4/oH98x
http://paperpile.com/b/S4PUs4/oH98x
http://paperpile.com/b/S4PUs4/oH98x
http://paperpile.com/b/S4PUs4/oH98x
http://paperpile.com/b/S4PUs4/EYbwa
http://paperpile.com/b/S4PUs4/EYbwa
http://paperpile.com/b/S4PUs4/EYbwa
http://paperpile.com/b/S4PUs4/myuAb
http://paperpile.com/b/S4PUs4/myuAb
http://paperpile.com/b/S4PUs4/myuAb
http://paperpile.com/b/S4PUs4/N9cJT
http://paperpile.com/b/S4PUs4/N9cJT
http://paperpile.com/b/S4PUs4/N9cJT
http://paperpile.com/b/S4PUs4/bfF8u
http://paperpile.com/b/S4PUs4/bfF8u
http://paperpile.com/b/S4PUs4/bfF8u
http://paperpile.com/b/S4PUs4/e6603
http://paperpile.com/b/S4PUs4/e6603
http://paperpile.com/b/S4PUs4/e6603
http://paperpile.com/b/S4PUs4/LVbUQ
http://paperpile.com/b/S4PUs4/LVbUQ
http://paperpile.com/b/S4PUs4/LVbUQ
http://paperpile.com/b/S4PUs4/LVbUQ
http://dx.doi.org/10.1038/s41591-020-1034-x
http://paperpile.com/b/S4PUs4/eUqvR
http://paperpile.com/b/S4PUs4/eUqvR
http://paperpile.com/b/S4PUs4/eUqvR
http://paperpile.com/b/S4PUs4/eUqvR
http://dx.doi.org/10.1038/s41591-020-1037-7
http://paperpile.com/b/S4PUs4/9iRVd
http://paperpile.com/b/S4PUs4/9iRVd
http://paperpile.com/b/S4PUs4/9iRVd
http://paperpile.com/b/S4PUs4/9iRVd
http://dx.doi.org/10.1001/jamadermatol.2019.1735
http://paperpile.com/b/S4PUs4/FC2CU
http://paperpile.com/b/S4PUs4/FC2CU
http://paperpile.com/b/S4PUs4/FC2CU
http://paperpile.com/b/S4PUs4/QAG82


vulnerabilities of deep machine learning systems for skin cancer diagnosis. J Invest
Dermatol [Internet]. 2020 Sep 12; Available from: http://dx.doi.org/10.1016/j.jid.2020.07.034

12. Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. J Am
Med Inform Assoc. 2017 Mar 1;24(2):423–31.

13. Oakden-Rayner L, Dunnmon J, Carneiro G, Re C. Hidden stratification causes clinically
meaningful failures in machine learning for medical imaging. In: Proceedings of the ACM
Conference on Health, Inference, and Learning. New York, NY, USA: Association for
Computing Machinery; 2020. p. 151–9. (CHIL ’20).

14. McCradden MD, Stephenson EA, Anderson JA. Clinical research underlies ethical
integration of healthcare artificial intelligence. Nat Med. 2020 Sep;26(9):1325–6.

15. Postmarket Requirements (Medical Devices and Radiation-Emitting Products) [Internet].
[cited 2020 Dec 4]. Available from:
https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/g
uidance-documents-medical-devices-and-radiation-emitting-products

16. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on
medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and
Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and
93/42/EEC. EUR-Lex [Internet]. Official Journal of the European Union. Available from:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745

17. Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-time
automatic detection system increases colonoscopic polyp and adenoma detection rates: a
prospective randomised controlled study. Gut. 2019 Oct;68(10):1813–9.

18. Kimmelman J, London AJ. The structure of clinical translation: efficiency, information, and
ethics. Hastings Cent Rep. 2015 Mar;45(2):27–39.

19. Raji ID, Smart A, White RN, Mitchell M, Gebru T, Hutchinson B, et al. Closing the AI
accountability gap: defining an end-to-end framework for internal algorithmic auditing. In:
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New
York, NY, USA: Association for Computing Machinery; 2020. p. 33–44. (FAT* ’20).

20. Shebl NA, Franklin BD, Barber N. Failure mode and effects analysis outputs: are they
valid? BMC Health Serv Res. 2012 Jun 10;12:150.

21. Center for Devices, Radiological Health. PMA Labeling [Internet]. 2019 [cited 2020 Sep 29].
Available from: https://www.fda.gov/medical-devices/premarket-approval-pma/pma-labeling

22. IEC 62366-1:2015 [Internet]. 2020 [cited 2020 Sep 29]. Available from:
https://www.iso.org/standard/63179.html

23. Castro DC, Walker I, Glocker B. Causality matters in medical imaging. Nat Commun. 2020
Jul 22;11(1):3673.

24. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Iii HD, et al. Datasheets for

32

82

http://paperpile.com/b/S4PUs4/QAG82
http://paperpile.com/b/S4PUs4/QAG82
http://dx.doi.org/10.1016/j.jid.2020.07.034
http://paperpile.com/b/S4PUs4/NO2ue
http://paperpile.com/b/S4PUs4/NO2ue
http://paperpile.com/b/S4PUs4/VDVvW
http://paperpile.com/b/S4PUs4/VDVvW
http://paperpile.com/b/S4PUs4/VDVvW
http://paperpile.com/b/S4PUs4/VDVvW
http://paperpile.com/b/S4PUs4/urQqa
http://paperpile.com/b/S4PUs4/urQqa
http://paperpile.com/b/S4PUs4/ky8aR
http://paperpile.com/b/S4PUs4/ky8aR
https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/guidance-documents-medical-devices-and-radiation-emitting-products
https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/guidance-documents-medical-devices-and-radiation-emitting-products
http://paperpile.com/b/S4PUs4/DnaBA
http://paperpile.com/b/S4PUs4/DnaBA
http://paperpile.com/b/S4PUs4/DnaBA
http://paperpile.com/b/S4PUs4/DnaBA
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745
http://paperpile.com/b/S4PUs4/6RpOx
http://paperpile.com/b/S4PUs4/6RpOx
http://paperpile.com/b/S4PUs4/6RpOx
http://paperpile.com/b/S4PUs4/QiqA0
http://paperpile.com/b/S4PUs4/QiqA0
http://paperpile.com/b/S4PUs4/sWAER
http://paperpile.com/b/S4PUs4/sWAER
http://paperpile.com/b/S4PUs4/sWAER
http://paperpile.com/b/S4PUs4/sWAER
http://paperpile.com/b/S4PUs4/jhAKL
http://paperpile.com/b/S4PUs4/jhAKL
http://paperpile.com/b/S4PUs4/vpq2k
http://paperpile.com/b/S4PUs4/vpq2k
https://www.fda.gov/medical-devices/premarket-approval-pma/pma-labeling
http://paperpile.com/b/S4PUs4/s5Xqd
https://www.iso.org/standard/63179.html
http://paperpile.com/b/S4PUs4/1A0rR
http://paperpile.com/b/S4PUs4/1A0rR
http://paperpile.com/b/S4PUs4/AYe4Z


Datasets [Internet]. arXiv [cs.DB]. 2018. Available from: http://arxiv.org/abs/1803.09010

25. Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B, et al. Model Cards for
Model Reporting. In: Proceedings of the Conference on Fairness, Accountability, and
Transparency. New York, NY, USA: Association for Computing Machinery; 2019. p. 220–9.
(FAT* ’19).

26. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al.
Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med.
2018 Sep;24(9):1342–50.

27. Gale W, Oakden-Rayner L, Carneiro G, Bradley AP, Palmer LJ. Detecting hip fractures with
radiologist-level performance using deep neural networks [Internet]. arXiv [cs.CV]. 2017.
Available from: http://arxiv.org/abs/1711.06504

28. Gale W, Oakden-Rayner L, Carneiro G, Palmer LJ, Bradley AP. Producing
Radiologist-Quality Reports for Interpretable Deep Learning. In: 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI 2019). 2019. p. 1275–9.

29. Sohoni NS, Dunnmon J, Angus G, Gu A, Ré C. No Subclass Left Behind: Fine-Grained
Robustness in Coarse-Grained Classification Problems. In: NeurIPS [Internet]. 2020 [cited
2020 Nov 12]. Available from:
https://www.semanticscholar.org/paper/8c96b865bbe1f597cf2c644e20ae46eab8e7caad

30. Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and
Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases
Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017 Dec
12;318(22):2211–23.

31. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development
and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA - Journal of the American Medical Association.
2016;316(22):2402–10.

32. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al.
International evaluation of an AI system for breast cancer screening. Nature. 2020
Jan;577(7788):89–94.

33. Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. Towards automatic
pulmonary nodule management in lung cancer screening with deep learning. Sci Rep.
7:46479.

34. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system for differential
diagnosis of skin diseases. Nat Med. 2020 Jun;26(6):900–8.

35. DeGrave AJ, Janizek JD, Lee S-I. AI for radiographic COVID-19 detection selects shortcuts
over signal [Internet]. Available from: http://dx.doi.org/10.1101/2020.09.13.20193565

36. Center for Devices, Radiological Health. Recalls, Corrections and Removals (Devices)
[Internet]. [cited 2020 Nov 26]. Available from:

33

83

http://paperpile.com/b/S4PUs4/AYe4Z
http://arxiv.org/abs/1803.09010
http://paperpile.com/b/S4PUs4/t9ZB5
http://paperpile.com/b/S4PUs4/t9ZB5
http://paperpile.com/b/S4PUs4/t9ZB5
http://paperpile.com/b/S4PUs4/t9ZB5
http://paperpile.com/b/S4PUs4/Apbkc
http://paperpile.com/b/S4PUs4/Apbkc
http://paperpile.com/b/S4PUs4/Apbkc
http://paperpile.com/b/S4PUs4/pgW7
http://paperpile.com/b/S4PUs4/pgW7
http://paperpile.com/b/S4PUs4/pgW7
http://arxiv.org/abs/1711.06504
http://paperpile.com/b/S4PUs4/iIuJ
http://paperpile.com/b/S4PUs4/iIuJ
http://paperpile.com/b/S4PUs4/iIuJ
http://paperpile.com/b/S4PUs4/R9cDF
http://paperpile.com/b/S4PUs4/R9cDF
http://paperpile.com/b/S4PUs4/R9cDF
https://www.semanticscholar.org/paper/8c96b865bbe1f597cf2c644e20ae46eab8e7caad
http://paperpile.com/b/S4PUs4/MepuG
http://paperpile.com/b/S4PUs4/MepuG
http://paperpile.com/b/S4PUs4/MepuG
http://paperpile.com/b/S4PUs4/MepuG
http://paperpile.com/b/S4PUs4/2SfOG
http://paperpile.com/b/S4PUs4/2SfOG
http://paperpile.com/b/S4PUs4/2SfOG
http://paperpile.com/b/S4PUs4/2SfOG
http://paperpile.com/b/S4PUs4/wmCxs
http://paperpile.com/b/S4PUs4/wmCxs
http://paperpile.com/b/S4PUs4/wmCxs
http://paperpile.com/b/S4PUs4/gZVfW
http://paperpile.com/b/S4PUs4/gZVfW
http://paperpile.com/b/S4PUs4/gZVfW
http://paperpile.com/b/S4PUs4/TW7GD
http://paperpile.com/b/S4PUs4/TW7GD
http://paperpile.com/b/S4PUs4/syaPb
http://paperpile.com/b/S4PUs4/syaPb
http://dx.doi.org/10.1101/2020.09.13.20193565
http://paperpile.com/b/S4PUs4/jOtCd
http://paperpile.com/b/S4PUs4/jOtCd


https://www.fda.gov/medical-devices/postmarket-requirements-devices/recalls-corrections-a
nd-removals-devices#4

37. Diabetic eye screening: participation in the grading test and training system [Internet]. [cited
2020 Dec 9]. Available from:
https://www.gov.uk/government/publications/diabetic-eye-screening-test-and-training-partici
pation/diabetic-eye-screening-participation-in-the-grading-test-and-training-system

38. Quality Assurance Guidelines for Breast Cancer Screening Radiology - NHS Breast
Screening Programme. 2011 Mar. Report No.: 2nd Editiion.

39. Embi PJ. Algorithmovigilance-Advancing Methods to Analyze and Monitor Artificial
Intelligence-Driven Health Care for Effectiveness and Equity. JAMA Netw Open. 2021 Apr
1;4(4):e214622.

40. Topol E. The Topol review: preparing the healthcare workforce to deliver the digital future.
Health Education England. 2019;

41. NHS. The NHS long term plan. 2019; Available from: www.longtermplan.nhs.uk

42. The Royal Australian and New Zealand College of Radiologists. Standards of Practice for
Artificial Intelligence [Internet]. 2020 Jul [cited 2020 Nov 25]. Available from:
https://www.ranzcr.com/whats-on/news-media/420-ranzcr-launches-world-leading-standard
s-for-the-use-of-ai-in-healthcare

34

84

https://www.fda.gov/medical-devices/postmarket-requirements-devices/recalls-corrections-and-removals-devices#4
https://www.fda.gov/medical-devices/postmarket-requirements-devices/recalls-corrections-and-removals-devices#4
http://paperpile.com/b/S4PUs4/9ebRc
http://paperpile.com/b/S4PUs4/9ebRc
https://www.gov.uk/government/publications/diabetic-eye-screening-test-and-training-participation/diabetic-eye-screening-participation-in-the-grading-test-and-training-system
https://www.gov.uk/government/publications/diabetic-eye-screening-test-and-training-participation/diabetic-eye-screening-participation-in-the-grading-test-and-training-system
http://paperpile.com/b/S4PUs4/ZtYaS
http://paperpile.com/b/S4PUs4/ZtYaS
http://paperpile.com/b/S4PUs4/5JUdX
http://paperpile.com/b/S4PUs4/5JUdX
http://paperpile.com/b/S4PUs4/5JUdX
http://paperpile.com/b/S4PUs4/GdlUr
http://paperpile.com/b/S4PUs4/GdlUr
http://paperpile.com/b/S4PUs4/aHSNB
http://www.longtermplan.nhs.uk
http://paperpile.com/b/S4PUs4/Lpb7N
http://paperpile.com/b/S4PUs4/Lpb7N
https://www.ranzcr.com/whats-on/news-media/420-ranzcr-launches-world-leading-standards-for-the-use-of-ai-in-healthcare
https://www.ranzcr.com/whats-on/news-media/420-ranzcr-launches-world-leading-standards-for-the-use-of-ai-in-healthcare


 Sec�on 3: Explainability and ‘black box’ medical research 

 Deep  learning  models  are  ‘black  box’  systems,  meaning  the  mechanism  of  decision  making  is  opaque 
 to  users  and  developers.  Understanding  the  decisions  made  by  AI  models  is  broadly  termed 
 explainable  AI  (XAI),  and  the  use  of  explainability  techniques  is  o�en  cited  as  a  poten�al  solu�on  to 
 various  factors  that  are  involved  in  the  implementa�on  gap;  for  example,  it  is  common  to  hear  that 
 explainability  can  increase  user  trust  and  reduce  the  harm  caused  by  unexpected  or  aberrant  model 
 behaviour  (discussed  in  sec�on  2.2)  by  allowing  users  to  detect  these  model  errors  39  .  Claims  like 
 these  have  mo�vated  the  inclusion  of  XAI  methods  in  regulatory  guidelines,  professional  standards 
 documents, and even in legisla�on  7,40,41  . 

 However,  these  claims  have  not  matched  the  experience  of  AI  users.  In  general,  AI  explana�ons  can 
 provide  useful  insights  into  how  AI  models  make  decisions  in  a  broad  sense  (some�mes  called  “global 
 explainability”)  but  are  rarely  of  assistance  in  determining  the  validity  of  individual  AI  decisions 
 (termed  “local  explainability”).  In  fact,  several  studies  have  now  reported  that  XAI  can  make  clinical 
 users  less  likely  to  recognise  bad  AI  decisions  39,42,43  ,  raising  the  possibility  that  explainability 
 techniques may in fact  widen  the implementa�on gap. 

 In “  The false hope of current approaches to explainable ar�ficial intelligence in health care”  47  I 
 contrast the desirable goal of XAI with the current reality; that XAI is useful for many things but can 
 be extremely misleading for clinical users, and that clarity is required about the goals and intent of 
 XAI policy. 
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The false hope of current approaches to explainable artificial 
intelligence in health care
Marzyeh Ghassemi, Luke Oakden-Rayner, Andrew L Beam

The black-box nature of current artificial intelligence (AI) has caused some to question whether AI must be 
explainable to be used in high-stakes scenarios such as medicine. It has been argued that explainable AI will 
engender trust with the health-care workforce, provide transparency into the AI decision making process, and 
potentially mitigate various kinds of bias. In this Viewpoint, we argue that this argument represents a false hope for 
explainable AI and that current explainability methods are unlikely to achieve these goals for patient-level decision 
support. We provide an overview of current explainability techniques and highlight how various failure cases can 
cause problems for decision making for individual patients. In the absence of suitable explainability methods, we 
advocate for rigorous internal and external validation of AI models as a more direct means of achieving the goals 
often associated with explainability, and we caution against having explainability be a requirement for clinically 
deployed models.

Introduction
Artificial intelligence (AI), powered by advances in 
machine learning, has made substantial progress across 
many areas of medicine in the past decade.1–5 Given the 
increasing ubiquity of AI techniques, a new challenge for 
medical AI is its so-called black-box nature, with 
decisions that seem opaque and inscrutable. In response 
to the uneasiness of working with black boxes, there is a 
growing chorus of clinicians, lawmakers, and researchers 
calling for explainable AI models for high-risk areas such 
as health care.6,7

Although precise technical definitions of explainability 
lack consensus,8,9 many high-level, less precise definitions 
have been put forth by various stakeholders. For example, 
the General Data Protection Regulation laws in the EU 
state that all people have the right to “meaningful 
information about the logic behind automated decisions 
using their data”.10,11 Similar discussions have taken place 
in the clinical literature, in which it has been argued that 
clinicians might feel uncomfortable with black-box AI,12 
leading to recommendations13 that AI should be 
explainable in a way that clinical users can understand. 
Indeed, Tonekaboni and colleagues report that surveyed 
clinicians “viewed explainability as a means of justifying 
their clinical decision-making”.14

We believe that the desire to engender trust through 
current explainability approaches represents a false hope: 
that individual users or those affected by AI will be able to 
judge the quality of an AI decision by reviewing a local 
explanation (that is, an explanation specific to that 
individual decision8). These stakeholders might have 
misunderstood the capabilities of contemporary explain
ability techniques—they can produce broad descriptions of 
how the AI system works in a general sense but, for 
individual decisions, the explanations are unreliable or, in 
some instances, only offer superficial levels of explanation. 
In practice, explanations can be extremely useful when 
applied to global AI processes, such as model development, 
knowledge discovery, and audit, but they are rarely 
informative with respect to individual decisions.

As such, we suggest that end users of explainable AI, 
including clinicians, lawmakers, and regulators, be 
aware of the limitations of explainable AI as it currently 
exists, especially as it relates to policy, use, and reporting. 
We argue that if the desire is to ensure that AI systems 
can operate safely and reliably, the focus should be on 
rigorous and thorough validation procedures.

Current approaches to explainable AI
Attempts to produce human-comprehensible explan
ations for machine learning decisions have typically been 
divided into two categories: inherent explainability and 
post-hoc explainability.

For machine learning models for which the input data 
are of limited complexity and clearly understandable, 
quantifying the relationships between these simple 
inputs and the outputs of the model is termed inherent 
explainability. An example of this would be in a linear 
regression model, where a coefficient measures the 
strength and direction of the relationship between the 
weight of a car and the fuel efficiency. The coefficient 
itself characterises the decision in an understandable 
way by describing how much each additional kilogram 
reduces fuel efficiency on average.

The intuitive simplicity of inherently explainable 
models is appealing, but even these explanations are 
hampered by the presence of unrecognised confounders. 
Work in the human–computer interaction community 
has identified that increased transparency can hamper 
users’ ability to detect sizable model errors and correct for 
them, “seemingly due to information overload”,15 even for 
clear-box or inherently explainable models. Further work 
has found that even data scientists “over-trust and misuse 
interpretability tools” and that few such experts were able 
to accurately describe visualisations output by inter
pretability tools.16

In contrast to inherently explainable models, in many 
modern AI use cases, the data and models are too 
complex and high-dimensional to be easily understood; 
they cannot be explained by a simple relationship 
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between inputs and outputs. Examples include models 
designed to analyse images, text, and sound data. In 
these scenarios, the focus has been on attempting to 
dissect the model’s decision making procedure, a process 
called post-hoc explainability. To show post-hoc 
explainability, we use medical imaging as an illustrative 
example and explore the most commonly used form of 
post-hoc explainability in this setting: heat maps. Heat 
maps (or saliency maps)17–19 highlight how much each 
region of the image contributed to a given decision and 
are illustrative because they provide a simple means of 
understanding some of the limitations of post-hoc 
explainability techniques. Although they are popular for 
medical imaging models, they are well known to be 
problematic in the broader explainability literature.20

As an example, the saliency map shown in figure 1, 
from Rajpurkar and colleagues,21 highlights the areas of 
the image deemed most important for the diagnosis of 

pneumonia. Even the hottest parts of the map contain 
both useful and non-useful information (from the 
perspective of a human expert), and simply localising the 
region does not reveal exactly what it was in that area that 
the model considered useful. The clinician cannot know 
if the model appropriately established that the presence 
of an airspace opacity was important in the decision, if 
the shapes of the heart border or left pulmonary artery 
were the deciding factor, or if the model had relied on an 
inhuman feature, such as a particular pixel value or 
texture that might have more to do with the image 
acquisition process than the underlying disease.

This interpretability gap of explainability methods 
relies on humans to decide what a given explanation 
might mean. Unfortunately, the human tendency is to 
ascribe a positive interpretation: we assume that the 
feature we would find important is the one that was 
used (this is an example of a famously harmful cognitive 
error called confirmation bias). This problem is well 
summarised by computer scientist Cynthia Rudin: “You 
could have many explanations for what a complex model 
is doing. Do you just pick the one you ‘want’ to be 
correct?”.22 The ability of localisation methods to mislead 
human users is compellingly demonstrated by Adebayo 
and colleagues,20 who show that even untrained networks 
can produce saliency maps that appear reassuring 
(appendix). Moreover, Gu and Tresp23 showed that 
common visual explanations remain unchanged even 
when precise modifications are made to the input that 
substantially alter the model’s predictions (a process 
known as an adversarial attack), even when those attacks 
lead to incorrect model predictions (figure 2). It is hard 
to credit the explanatory ability of a technique that 
appears believable even when the model is wrong or 
even completely untrained.

The interpretability gap exists beyond imaging as well. 
As an example, we see similar problems with contextual 
language models such as SciBERT,24 trained on 
seemingly innocuous sources such as PubMed, which 
have been shown to have deeply problematic associations 
about gender and race.25 Although explanations for 
language tend to revolve around highlighting the words 
in the text that contributed to the decision, this does not 
reveal the associative meaning the model has learned for 
those words. As with heat maps, the human tendency is 
to assume that a model has used words in the same way 
we would. However, deeper investigation often reveals 
that these models rely on unacceptable shortcuts, such 
as strongly associating the word doctor with maleness 
and using this reductionist interpretation to inform 
decision making.

Beyond heat maps, many other approaches have been 
developed to produce explanations in complex medical 
data, including methods such as feature visualisation 
and prototypical comparisons. Feature visualisation 
involves the production of synthetic inputs that most 
strongly activate specific parts of a machine learning 

Figure 1: Heat map produced by a post-hoc explanation method for a deep 
learning model designed to detect pneumonia in chest x-rays
Brighter colours (red) indicate regions with higher levels of importance 
according to the deep neural network, and darker colours (blue) indicate regions 
with lower levels of importance. Reproduced with permission from Rajpurkar 
et al.21 CNN=convolutional neural network.

Output
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Input
Chest x-ray image

CheXNet
121-layer CNN

See Online for appendix
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model.26 Each model decision can then be described as a 
combination of a series of features that were detected in 
the input. In practice, these synthetic inputs rarely 
correspond exactly to specific human-interpretable 
features and are subject to the exact same concerns as 
heat maps: if a synthetic input looks roughly like a 
feature a human would use to make a decision (for 
example, a fur-like texture feature in a dog-detecting AI 
model), a human must still interpret whether this 
implies the model made a good decision.

These concerns also extend to other well known post-
hoc explanation methods such as locally interpretable 
model-agnostic explanations (LIME)27 and Shapley 
values (SHAP).28 LIME seeks to understand decisions at 
the individual level by permuting the input example 
(altering it in minor ways) and identifying which 
alterations were most likely to change the decision. In 
the case of image analysis, this is done by occluding 
parts of the image, the explanation consisting of a heat 
map that indicates the image components that were 
most important for the decision. Such explanations 
suffer from interpretability gaps in the same way as 
saliency mapping. Methods such as LIME and SHAP 
are generic and not specific to images and are routinely 
used on a wide variety of health-care data, including 
structured data from electronic health-care records29 and 
electroencephalogram waveform data.30

Prototypical explanations are interesting in that they 
are generally considered to be a form of inherent 
explainability. The model is not only trained for the task 
itself, but to also identify prototypical elements of each 

class and then quantify how much of each component it 
identified for the given decision. Examples include 
comparing the relevant parts of an image (such as the 
beak and claws of a bird) to a prototype,31 producing a 
text-based description of the decision by referencing 
canonical descriptive features,32 or identifying a training 
instance that is most similar to a test instance according 
to the trained model.33 This type of learned explanation 
has only been recently proposed and has yet to be applied 
broadly, but still requires human interpretation (ie, were 
the right canonical elements selected? Was the proportion 
of each element appropriate?).

All of these examples reveal another major challenge: 
explanations have no performance guarantees. Indeed, 
the performance of explanations is rarely tested at all, 
and most tests that are done rely on heuristic measures 
rather than explicitly scoring the explanation from a 
human perspective.34 This is problematic because 
explanations, such as those shown in figures 1 and 2, are 
only approximations to the model’s decision procedure 
and therefore do not fully capture how the underlying 
model will behave. As such, using post-hoc explanations 
to assess the quality of model decisions adds an additional 
source of error—not only can the model be right or 
wrong, but so can the explanation. Rudin takes this 
further, saying that post-hoc explanations “must be 
wrong”; that they are by definition not completely faithful 
to the original model and must be less accurate with 
respect to the primary task.35 In this context, should 
researchers prefer the full, complex model, which, as 
humans, we cannot understand but has a high, validated 

Figure 2: Saliency maps produced by popular methods
Each column shows a different type of explainability method that highlights the most relevant pixels in the images below, which, in each row, are subject to different 
adverserial pertubations. The top row shows the correctly classified image and saliency maps, and rows 2 to 4 show incorrectly classified images after adversarial 
perturbations. Reproduced with permission from Gu and Tresp.23 BIM=basic iteractive method. C&W=Carlini & Wagner. FGSM=fast gradient sign method. 
GradCAM=gradient-weighted class activation mapping. GuidedBP=guided backpropagation. LRP=layerwise relevance propagation.
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performance or do we seek to modify that performance 
with an explanation mechanism, potentially resulting in 
diminished and unvalidated accuracy?

What are explanations for? 
These limitations do not render explainability methods 
useless, but they do challenge the use of these techniques 
for certain purposes. If we look at the policy positions and 
user preferences mentioned earlier, or the intuitive 
expectations that AI is made explainable, we see a desire 
to generate trust and inform the choices of individual 
users or the subjects of AI decision making. However, 
on an individual level, the explanations we can produce 
for the behaviour of complex AI systems are often 
confusing or even misleading. Selbst and Barocas36 state 
that, although explainability methods can provide some 
insight into the decision making process of models, they 
rarely elucidate whether a given decision was sensible or 
not. Selbst and Barocas distinguish between explainability 
techniques that provide descriptive accounts of how the 
model behaved and normative evaluations that can 
answer whether that behaviour was justified. Although 
most discussions and policies call for normative 
evaluations, current techniques are only capable of 
descriptive accounts and it is our own intuition that often 
“serves as the unacknowledged bridge” between the two.36

In the example of heat maps, the important question 
for users trying to understand an individual decision is 
not where the model was looking but instead whether it 
was reasonable that the model was looking in this region. 
By conflating these questions and allowing intuition to 
bridge the gap, there is a serious risk of introducing 
harmful biases into decision making. There is a great deal 
of evidence that humans tend to over-trust computer 
systems,37–39 and evidence suggests models that use 
explainability techniques can hamper people’s ability to 
detect when a model makes serious mistakes15 or 
unreasonably increase their confidence in an algorithmic 
decision,40,41 giving the veneer of authenticity and resulting 
in decreased vigilance and auditing of such systems.

This tendency is particularly problematic as another 
goal of explainability is to detect and avoid algorithms 
biased towards certain populations.25 Many systematic 
biases that reflect societal prejudices (eg, discriminatory 
policies against women and minority ethnic groups) are 
encoded in the data from which the AI system learns. 
Left unchecked, an AI system could operationalise these 
biases on a large scale. It is implied that explainability 
could allow us to catch discriminatory behaviour more 
readily. Unfortunately, as outlined above, this possibility 
is not reflected in the current state of explainability 
research, and reliance on explanations might even 
decrease our vigilance for these behaviours.

Rather than seeing explainability techniques as 
producing valid, local explanations to justify the use of 
model predictions, it is more realistic to view these 
methods as global descriptions of how a model functions. 

If, for example, a clinical diagnostic model appears to 
perform well in a specific test set but the heat maps show 
that the model is consistently distracted by regions of the 
images that cannot logically inform the diagnosis, then 
this finding can indicate that the test set itself is flawed and 
that further forensic investigation is required. An example 
of this use was when explanatory heat maps revealed that 
an AI model trained to detect skin cancer was focusing 
more on the surgical skin markings present on the images 
rather than the skin lesions.42 Similarly, there have been 
notable successes in using explainability methods to aid in 
the discovery of knowledge, for example, when heat maps 
were used to identify novel features of diabetic retinopathy 
progression in ophthalmological fundal eye examination43 
and new radiographic features that are predictive of knee 
pain.44 In this sense, we can see it is the aggregate behaviour 
of these explanations that is informative, not the 
unquantifiable effect a single reassuring or aberrant 
explanation will have on an individual prediction.

Better and more equitable outcomes
Although explanations cannot provide a normative 
evaluation of our models, that does not mean we are 
forced to accept their black-box predictions without 
scrutiny. As we have argued, it is the aggregated 
behaviour of the models that can be informative and, as 
such, the only effective way to justify the decisions of AI 
systems is thorough, careful, meticulous safety and 
validation efforts. Instead of requiring local explanations 
from a complicated AI system, we should advocate for 
thorough and rigorous validation of these systems across 
as many diverse and distinct populations as possible, 
showing that patient and health-care outcomes are 
improved and that marginalised groups are not 
disproportionately affected by any given system.

The medical system is already extremely adept at 
evaluation and validating various kinds of black-box 
systems, as many drugs and devices function, in effect, 
as black boxes. An often cited example is acetaminophen, 
which, despite having been used for more than a century, 
has a mechanism of action that remains only partially 
understood.45 Despite competing explanations for how 
acetaminophen works, we know that it is a safe and 
effective pain medication because it has been extensively 
validated in numerous randomised controlled trials 
(RCTs). RCTs have historically been the gold-standard 
way to evaluate medical interventions, and it should be 
no different for AI systems. In recognition of this, many 
RCT reporting guidelines are being updated to 
incorporate AI-specific recommendations.46

RCTs are not the only mechanism used in health 
technology assessment to ensure safety, efficacy, and 
equity. As an example, for an investigation into racial 
bias in a machine learning system,47 even completely 
transparent understanding of the algorithm in question 
did not reveal the racial bias inherent to the model 
because it was the problem formulation itself that was 
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flawed. Instead, it was an aggregate analysis of the 
inputs, outputs, and outcomes associated with the model 
that identified the bias. In this context, explainability 
techniques can serve as a valuable tool for analysis 
and an adjunct to algorithmic audit,48 for which the 
appropriate audience for explanations is not the users or 
subjects of AI, but rather the developers, auditors, and 
regulators of these systems.

Conclusions
AI will have an extraordinary impact on medicine in the 
coming decades, and we should do all we can to ensure 
that this technology is implemented in a way that 
maximises patient benefit. However, despite its intuitive 
appeal, explainability for patient-level decision making is 
unlikely to advance these goals in meaningful ways. 
Explainability methods cannot yet provide reassurance 
that an individual decision is correct, increase trust 
among users, nor justify the acceptance of AI recom
mendations in clinical practice.

That is not to say that explainability methods have no 
role in AI safety. These methods are incredibly useful for 
model troubleshooting and systems audit, both of which 
can be used to improve model performance or identify 
common failure modes or biases. Current explainability 
methods should be seen as tools for developers and 
auditors to interrogate their models and, unless there are 
substantial advances in explainable AI, we must treat 
these systems as black boxes, justified in their use not by 
just-so rationalisations, but instead by their reliable and 
experimentally confirmed performance.

Presently, the hope for human-comprehensible explan
ations for complex, black-box machine learning 
algorithms that can be used safely for bedside decision 
making remains an open challenge. In light of this 
challenge, we strongly recommend that health-care 
workers exercise appropriate caution when using 
explanations from an AI system and urge regulators to be 
judicious in listing explanations among the requirements 
needed for clinical deployment of AI.
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 Sec�on 4: A thorough preclinical evalua�on of an AI model 
 In sec�ons 1 to 3, I cover a range of issues which can lead to poor performance in AI models when 
 they are deployed in prac�ce, and offer several solu�ons to improve preclinical tes�ng and close the 
 implementa�on gap. 

 In “  Valida�on and algorithmic audit of a deep learning  system for the detec�on of proximal 
 femoral fractures in emergency department pa�ents”  (in press)  , I bring together these topics to 
 demonstrate an example of a rigorous pre-clinical evalua�on of AI. While I do not believe that this 
 approach can replace true pre-deployment clinical trials, I show how the use of high quality, well 
 characterised data, the applica�on of appropriate methods to es�mate human baseline 
 performance, and algorithmic audi�ng can reveal implementa�on gaps that would otherwise go 
 unrecognised. 
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Abstract

Background: Proximal femoral fractures are a serious clinical and public health issue associated

with substantial morbidity and early mortality. Artificial intelligence may offer improved
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diagnostic accuracy, but typical approaches to testing can underestimate the risks of these

systems.

Methods: We present a thorough preclinical evaluation of an artificial intelligence system

intended to detect proximal femoral fractures in frontal x-ray films in emergency department

patients,  including a reader study, an external validation, and an algorithmic audit.

Findings: The artificial intelligence system demonstrates very good summary performance (ROC

AUC = 0.994, 95% CI = 0.988 to 0.999 vs radiologist SROC AUC = 0.969, 95% CI = 0.960 to 0.978),

but a thorough evaluation identifies several barriers to safe deployment including a significant

shift in the model operating point on external validation, and an increased error rate on cases

with abnormal bones, such as those with Paget’s disease and femoral head deformities.

Interpretation: Thorough pre-clinical evaluation of artificial intelligence models, in particular

including algorithmic auditing, can reveal unexpected and potentially harmful behaviour even in

high performance artificial intelligence systems, which can inform future clinical testing and

deployment decisions.

Funding: Nil.
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Research in context

Evidence before this study: We searched Google Scholar on 10th December 2019, for literature

published at study inception, with no language restrictions, on: (a) deep learning-based

detection of hip fractures using the keywords “hip fracture” or “proximal femoral fracture”, and

“deep learning” or “artificial intelligence”, and (b) algorithmic audits of deep learning studies

using the keywords “deep learning” or “artificial intelligence” and “audit”. The literature on hip

fracture detection using deep learning models was limited. The majority of studies reported

internal performance of the AI model only. There was a single reader study identified, which

estimated human performance from a single clinician and performed no external validation.

There were no studies reporting further analysis into unexpected model behaviour or failure

modes. Further, no audits of medical AI systems have been reported.

Added value of this study: This study demonstrates a thorough preclinical evaluation of a high

performance medical artificial intelligence system (trained to detect  proximal femoral fractures

on plain film imaging). Despite extremely high performance, outperforming human experts in

the task of proximal femoral fracture detection, more thorough evaluation including algorithmic

auditing demonstrated unexpected and potentially harmful algorithmic behaviour.

Implications of all the available evidence: Thorough evaluation of AI systems, including

algorithmic auditing, can identify barriers to safe AI deployment which may not be appreciated

during standard preclinical testing, and which could cause significant harm if left unrecognised.
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Regulators, medical governance bodies, and professional groups should consider the need for

more comprehensive preclinical testing of AI prior to clinical deployment.

Introduction

Hip fractures, or more specifically proximal femoral fractures, present a significant global clinical

and public health challenge. In the elderly, proximal femoral fractures are the second most

frequent cause of hospitalisation and are among the most common causes of morbidity and

long-term mortality(1), with a lifetime risk of 17.5% for women and 6% for men(2). Up to 10% of

patients with suspected proximal femoral fractures are not diagnosed on the initial pelvic x-ray

study and undergo further diagnostic imaging(3), which may include additional x-rays, nuclear

medicine bone scans, computed tomography (CT), and/or magnetic resonance imaging (MRI).

Of those patients undergoing additional imaging, only around a third ultimately demonstrate a

fracture(3,4). Not only does this further imaging increase the diagnostic costs, burden on

doctors and patients, and resource utilisation, but these “occult fractures” may also lead to

delayed or missed diagnoses and concomitant worse patient outcomes, including increased

mortality rate(5,6), length of hospitalisation(7), and cost of care(8).

Improved diagnostic accuracy using x-rays taken at first clinical presentation could plausibly

reduce both costs and harms. Many studies have reported that artificial intelligence (AI) systems

may exceed human performance for certain diagnostic tasks(9). In order to reduce the rates of

misdiagnosis or incomplete diagnosis of the initial radiograph in an emergency department we
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have developed a deep learning-based proximal femoral fracture detection model with

exceptional performance characteristics(10). In the current study, we evaluate the performance

of the deep learning model, and compare this against the current standard of care (clinical

radiologists) in a multireader multicase (MRMC) study.

The performance of deep learning models for medical image analysis has been reported in

many preclinical studies(11), yet almost no clinical trials have been performed to show that

these results translate into clinical practice (9). Historically, computer aided diagnosis systems

have performed unexpectedly poorly in the clinical setting, despite promising preclinical

evaluations(12), which has been called the “implementation gap”(13). A number of factors are

expected to be responsible for this poor clinical performance, including the misapplication of

models outside of intended use-cases(14,15), a variable ability to generalise to new clinical

environments(16–19), statistical flaws when estimating the pooled performance and variability

of human readers(20), and the presence of unidentified poor performance in clinically

important subsets of cases(21). All of these factors, excepting the role of model misapplication,

can be evaluated to some extent prior to clinical testing. Despite this, the majority of preclinical

AI research to date has not addressed these concerns. External validation, a mechanism to

assess the ability of a model to generalise to new environments, was only performed in around

one third of studies considered in a recent systematic review(11). Recently, formal algorithmic

auditing has been proposed(22) as a mechanism to identify and mitigate any sources of

unexpected machine learning model behaviour.
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We perform a thorough preclinical evaluation of a previously developed high-performance

proximal femoral fracture model(10), intended to reflect current “best practice” for preclinical

(i.e., prior to clinical trial) assessment, including several key components:

1)      A multi-reader multi-case study design which is adequately powered to determine

the relative performance of the AI model and the humans experts,

2)      an external validation of the model on international data to attempt to replicate

the results and identify any challenges for generalisation to new clinical sites,

3)      an algorithmic audit to identify any unexpected behaviour of the deep learning

model and to estimate the likelihood of a gap between pre-clinical performance and the

safety of a clinical deployment.

Methods

Deep learning model

The deep learning model evaluated in this study was developed previously and has been

described in detail (10). Briefly, the model consists of a DenseNet architecture (23) with 172

layers, trained on a development dataset which had no patient overlap with the study datasets,

consisting of 45,786 unilateral hip images with a fracture prevalence of 11%.
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Primary validation dataset

A large local dataset was obtained from the Royal Adelaide Hospital (RAH), a tertiary teaching

hospital in South Australia which services adult patients only (age > 16 years). The RAH dataset

included all frontal pelvis x-rays ordered between 2005 and 2015 as part of standard clinical

care, obtained using a wide variety of x-ray equipment. Visual exclusion criteria included studies

with no frontal pelvis film, as well as cases with prior surgical intervention with implanted

metalwork. Hips containing metalwork were excluded on a per-hip basis (i.e., if only the left hip

contained metal, the right hip was still included). Fractures in post-operative hips were thought

to represent a visually distinct class of injury which would require an intentional training

approach and specific dataset to detect with good performance, thus it was considered more

clinically useful to train a model that could detect fractures in pre-operative hips. This model is

not intended to function in hips with metalwork in situ.

These visual assessments to identify cases to exclude were performed by a series cascade of

“helper” AI models developed and validated during earlier work, with human review of all

included films to ensure appropriateness(10).

The primary validation (PV) dataset was randomly selected (at the patient level) from the

emergency department cases in the RAH dataset. A total of 4,577 unilateral hip x-rays were

selected, including 640 proximal femoral (hip) fractures. The ground truth for hip fracture status

was determined through a combination of x-ray reports, follow-up imaging (with CT or MRI

scans), and surgical records, with a follow-up period of a minimum of 6 months. Mortality

records were also searched, but revealed no further cases of proximal femoral hip fractures. The
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majority of proximal femoral hip fracture cases were surgically validated (91.5%), meaning the

patients were surgically treated for fracture. The remainder of the patients either did not

receive surgery (i.e., they died prior to surgery or were palliated), or they were transferred to

other institutions prior to treatment.

The PV dataset was intended to investigate the application of our model to unseen clinical cases

and hence these cases were not available to the model during training (the remainder of the

RAH set was used for model development, called the Dev dataset). Emergency department

referrals were chosen for inclusion in the PV dataset as this was considered the most clinically

challenging setting, i.e., where lateral films and cross-sectional imaging are rarely immediately

available and management is often initiated prior to a formal radiology report.

A total of 200 positive cases (fractures) and 200 negative cases (non-fractures) from the PV

dataset were randomly selected to form the reader study (MRMC) dataset. The sample size was

chosen to balance the study requirements of as large a sample as possible with the logistic

concerns of providing a dataset that the readers - all busy clinicians - would find feasible to

evaluate. As was the case with the PV data, there was no overlap of patients with the Dev data

and all patients were imaged from the emergency department. The balanced dataset (with

equal numbers of fractures and non-fractures) was utilised to limit the number of cases for

review by each reader.
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External validation dataset

An international external validation (EV) dataset from Stanford University Hospital (California,

USA) was obtained to assess the replicability of the performance of the model and its potential

to generalise to new environments.

This dataset consisted of 93,455 images collected from patients at Stanford University Medical

Centre who underwent a radiographic examination of the lower extremity between 2003 and

2014, as well as the associated exam reports(24). Each image was prospectively labeled as

normal or abnormal by the attending radiologist at the time of initial interpretation. From this

group, 46 positive and 100 negative hip radiographs were randomly selected. The negative

images were reviewed by an attending radiologist to confirm "normal" labels or the presence of

a fracture, and the positive (fracture) cases were confirmed either via follow-up radiographs

with surgical fixation or review of follow-up cross-sectional imaging confirming the presence of

a fracture.

Specific exclusions included cases with “burned-in” private health information (i.e., identifiable

patient information stored within the image pixels themselves rather than in the metadata), and

those cases which contained metalwork, resulting in a final EV dataset of 40 positive cases and

41 negative cases. 22 of the fractures (55%) involved the trochanteric region, and 18 of the

fractures (45%) involved the femoral neck.

The data flow of cases and images in the RAH, Dev, PV, MRMC, and EV datasets is shown in

Figure 1, with dataset characteristics in Table 1.
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Figure 1: Data flow. The data acquisition process for the RAH and Stanford datasets. The RAH

data is further divided into the Dev, PV, and MRMC datasets by randomisation at the patient

level (i.e., no patients occur in both the Dev and PV/MRMC datasets).
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104



Table 1: Dataset characteristics.

Dev dataset PV dataset MRMC dataset EV dataset

Patient characteristics

Patients (n) 18,178 2,449 400 81

Frontal pelvic
x-rays (n)

32,182 2,490 400 -

Unilateral hip
images (n)

45,786 4,577 400 81

Mean age (SD)
(years)

69.9 (22.0) 63.7 (25.4) 74.3 (24.0)
63.5 (23.5)

Sex (% female) 52% 48% 60%
61%

Ward of referral
(% emergency
department)

47% 100% 100% N/A

Fracture
prevalence (%)

11% 14% 50% 49%

Reader study

Thirteen practicing clinicians who might be expected to review these films in an emergency

department setting were included in the reader study, with 5 radiologists in standard diagnostic

conditions, as well as a mix of other clinicians (radiologists, surgical, emergency department and

general practice doctors) who read the images under normal clinical conditions (i.e., without

diagnostic quality monitors). In this context, “diagnostic conditions” refers to the use of
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high-fidelity monitors and a fully-featured PACS viewer as required by the Royal Australian and

New Zealand College of Radiologists(25) for all primary diagnostic reads performed by

radiologists. “Clinical conditions” refers to the use of lower resolution monitors typically found

in emergency departments and inpatient wards, typically used for case review or by

non-radiologist clinicians. All readers reviewed the images with a locally developed web DICOM

viewer, which provided a standard set of image manipulation tools such as windowing, zoom,

and panning methods.

None of the readers had access to clinical information from the referral. While this is out of

keeping with standard radiological practice, these preclinical experiments were designed to test

visual performance at the task of proximal femoral fracture detection, rather than clinical

diagnostic ability. The radiologists were only told that each case was an acute presentation to an

emergency department, and the patient required pelvic x-ray imaging.

The five radiologists who were reporting in clinical conditions were all experienced at the task of

musculoskeletal radiograph analysis, and consisted of 3 musculoskeletal specialists and 2

general radiologists. All radiologists were fully qualified consultant radiologists (i.e., were

current Fellows of the Australian & New Zealand College of Radiologists) , and the

musculoskeletal radiologists had completed appropriate subspecialty training. The radiologists

had an average of 10.6 years of clinical experience (range = 5 to 19 years post fellowship). The

radiologists were all recruited from a large, multi-site private radiology practice in South

Australia (Dr Jones and Partners Pty Ltd).
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Readers were asked to classify each x-ray into one of 4 categories: “definitely fracture”, “likely

fracture, needs further imaging”, “likely not a fracture, needs further imaging”, or “no fracture”.

These categories were dichotomized into ‘definite fracture’ (the first category) or

‘equivocal/non-fracture’ (latter three categories) for analysis, to estimate the potential of the

model to avoid further follow-up imaging/investigation and therefore reduce delays to

admission and surgery.

Primary analysis

The primary measure of performance for the AI algorithm and the readers was the area under

the receiver operating characteristic curve (AUC) for the binary outcome fracture vs

equivocal/non-fracture, and the primary comparison was between the AI algorithm and the 5

radiologists, including 3 subspecialised musculoskeletal (MSK) radiologists, who assessed the

cases under diagnostic conditions. The results of the remaining readers (3 radiologists using

non-diagnostic monitors and 5 non-radiologists) are presented for completeness and interest.

To estimate the “average” performance of the readers for comparison with the AI model, we

adopted the well established and accepted practices of meta-analysis for diagnostic accuracy

studies (20). By treating each reader as a distinct ‘diagnostic study’ with a known confusion

matrix, we use summary receiver operating characteristic curve (SROC) analysis to summarise

reader performance. As is the case in meta-analysis more broadly, this approach prevents the

underestimation of human performance which is seen when sensitivity and specificity are

independently pooled across readers(26,27), and allows for the robust statistical comparison of
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AUC measures between test modalities. The 95% confidence intervals for the AI model were

produced from a non-parametric bootstrap with 10,000 samples, and we performed null

hypothesis testing on the difference of AUC measurements with the method reported by

Delong(28).

Secondary analyses and external validation

We report multiple secondary findings to further characterise the performance of the AI model.

These secondary findings are intended to be descriptive, demonstrating the specific diagnostic

properties of the AI algorithm that are not captured in the summary performance of the

primary analysis.

First, we show the performance of the AI algorithm at clinical prevalence, using the entire PV

dataset of 4,577 unilateral hip x-rays, containing 640 fractures (the reader study was a subset of

this larger PV dataset; the 200 fractures in the reader study were part of the 640 fractures in the

test set).

Second, we report the sensitivity and specificity of the AI algorithm at an operating point

selected on the basis of  achieving the highest human sensitivity in the reader study (sens =

0.95). The operating point was selected by matching this level of performance on using the

results from the development set by Gale et al(10) (i.e., not by matching this level of

performance on the test set, which would be an information leak into the model from the

held-out data) and corresponded with a threshold value of 0.62.
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Third, we report the performance of the AI algorithm on an external validation dataset obtained

from Stanford Hospital, reporting the AUC as well as the sensitivity and specificity at the

selected operating point. The model was not retrained or fine-tuned prior to this assessment.

Fourth, we present the results of the full set of thirteen readers, including the non-radiologists

and the radiologists who did not interpret the images under diagnostic conditions.

Algorithmic audit

We perform an algorithmic audit(29,30) to detect and characterise algorithmic errors, which we

define as any outputs of the AI system which are inaccurate, including those which are

inconsistent with the expected performance and those which can result in harm if undetected

or detected too late. We followed the SMACTR framework of Raji et al(29) to identify sources of

vulnerability to unexpected errors in the model and associated deployment environment. This

process involved scoping and mapping the task, the model, and the environment, as well as

defining the intended use and intended impact of the AI system. We then perform a Failure

Mode and Effects Analysis (FMEA), and multiple subset analyses of the MRMC dataset including

a Table 1 subset analysis, a Task-specific Subset analysis (TSSA), and an Exploratory Error

Analysis (EEA). Similar to the other secondary analyses, these subset analyses are intended to

be descriptive and null hypothesis significance testing has not been performed. The auditor is

required to use their expertise to try to identify patterns in the errors (which have been called

‘failure modes’). This process is qualitative, and intended to guide the audit and mitigation

approach, rather than quantitative.
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This methodology and structure of the medical algorithmic audit has been described in detail by

Xiao et al (included in thesis).

The role of the funder

This research was unfunded, and there were no external interests involved in the data

collection, analysis, interpretation, writing of the manuscript or the decision to submit.

Results

Reader study

In the primary performance comparison, the model AUC was 0.994 (95% CI = 0.988, 0.999),

while the AUC of the SROC for the 5 radiologists was 0.969 (95% CI = 0.960, 0.978). The model

ROC curve and radiologist SROC curve are shown in Figure 2.
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Figure 2: ROC results from the reader study, comparing the performance of the AI model

(orange line) against the individual performance of the radiologists (green triangles) and the

average human performance summarised with an SROC curve (solid green line) and confidence

region (dotted green lines).

A confusion matrix demonstrating the number of false positive and false negative errors is

presented in Extended Data Figure 1.
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Results for a simulated “forced choice” experiment, where all definite or equivocal fracture

responses from the readers were treated as a positive finding (instead of only the definite

responses) is included in Extended Data Figure 2.

Secondary analyses

Full PV dataset results, external validation, and performance at the selected operating point

At the selected operating point, the sensitivity was 95.5 (95% CI = 91.8, 97.9) and the specificity

was 99.5 (95% CI = 97.0, 100.0) on the MRMC dataset. These results were not significantly

different from those found using the PV dataset (n = 4,577 images, 640 fractures) at clinical

prevalence, where the AUC was 0.994 (p-value = 0.87), the sensitivity was 94.5 (95% CI = 91.7,

96.6) and the specificity was 99.1 (95% CI = 98.7, 99.4) at the selected operating point.

The model achieved an AUC of 0.98 (95% CI 0.93, 1.0) on the Stanford EV dataset, which was

not significantly different (P=0.20) from the results reported on the Adelaide PV dataset.

However, the operating point (of 0.62) shifted significantly when the model was applied to the

Stanford validation set data, producing a sensitivity of 75.0 and a specificity of 100.0 (vs 95.5

and 99.5 respectively in the internal validation). In post-hoc analysis, the same sensitivity level

(ie >95%) was achieved with an operating point of 0.0001, with a sensitivity of 97.4 and a

specificity of 87.8.

Additional reader results
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The performance of the additional readers (radiologists in non-diagnostic conditions and

non-radiologist doctors) is shown in figure 3, both with plotting the sensitivity and specificity of

individual readers, as well as summarising the performance of each group with SROC analysis.

Figure 3: Additional performance results for other readers. We show results for the primary

reader study radiologists in diagnostic conditions (n = 5, SROC-AUC = 0.969), as well as

additional radiologists using non-diagnostic monitors (n = 3, SROC-AUC = 0.943), and

non-radiologists (n=5, SROC-AUC = 0.902).
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Algorithmic audit

The full set of audit artefacts are included in the Supplementary Information, including the full

FMEA documents.

Subset performance

For task-specific subset analysis (TSSA), the fractures were labelled using a process of schema

completion(21), where an ontology of clinical relevant fracture subtypes was prospectively

defined by a radiologist (LOR). These subtypes included features regarding the fracture location

(i.e., subcapital, cervical, etc) and the fracture character (i.e., undisplaced, comminuted etc). To

describe displacement we utilised the following system: "subtle" displacement = no or minimal

cortical step, mild displacement = up to 1 cortical width, moderate displacement = up to half

bone width, and severe displacement = more than half bone width. We did not distinguish

between translation and angulation/tilt, but rather just referenced the most displaced

component/region of the fracture. We chose to use this abbreviated descriptive system as we

felt that it best described the useful elements of visual variation in the X-rays. Performance is

reported in these subsets and compared against the performance of readers using ROC-AUC for

the model and SROC-AUC for the readers.

The performance of the AI model for demographic subgroups (Table 1 Subgroup analysis) and

clinically-relevant fracture subgroups (TSSA) are presented in Table 2 and Table 3.
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Table 2: Subset analysis, demonstrating no aberrant model behaviour. While there is slightly

lower performance in the oldest patient cohort (age > 80 yrs), a similar reduction in diagnostic

accuracy is seen among the radiologists.

Subset (number of cases) AUC (AI) AUC (Rads)

Male (n = 160) 0.996 0.979

Female (n = 240) 0.994 0.967

Age < 40 (n = 53) 0.993 0.970

Age 40-60 (n = 63) 1.0 0.992

Age 60-80 (n = 59) 0.999 0.998

Age > 80 (n = 225) 0.988 0.967

Overall performance (n = 400) 0.994 0.969

Table 3: Task specific subset analysis, which reveals no obviously aberrant model behaviour. In

particular, there is no large drop in model performance for intracapsular fractures (subcapital

and cervical locations), which have distinct clinical implications.

Subset (number of cases) AUC (AI) AUC (Rads)

Subtle fractures (n = 9) 0.964 0.982

Mild displacement (n = 61) 0.998 0.969

Moderate displacement (n=56) 1.0 0.990

Severe displacement (n = 74) 1.0 0.946
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Comminuted fracture (n = 75) 1.0 0.971

Subcapital location (n = 66) 0.999 0.980

Cervical location (n = 23) 0.984 0.982

Pertrochanteric location (n = 105) 0.999 0.958

Subtrochanteric location (n = 6) 0.970 0.968

Overall performance (n = 400) 0.994 0.969

Exploratory error analysis

The false positive and false negative cases were visually reviewed by a radiologist (LOR). Other

than the subgroups already identified in the Table 1 subset analysis and TSSA, it was noted that

cases with abnormal bone or joint appearances were overrepresented amongst the errors for

the model. Targeted relabeling of the MRMC was undertaken, which revealed 6 cases with

either abnormal trabecular patterns due to Paget’s disease of the pelvis or femur, or severe

femoral head deformities.

A subset analysis was performed, and while this was limited by the low number of cases

involved, there was a large difference in the error rates for the overall MRMC dataset (error rate

= 2.5%) and the cases with abnormal bones and joints (error rate = 50%). These cases are shown

in Extended Data Figure 3.

No other obvious subsets were identified during EEA. There was a single further example of a

surprising error; a false negative in a significantly displaced fracture. This case is shown in

Extended Data Figure 4. The remaining 6 false negatives (i.e. those not already presented in

Extended Data Figures 3 and 4) are displayed in Extended Data Figure 5.
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It was noted on review of grad-cam saliency maps(31) (an interpretability method that produces

a heat-map to visualise regions of the image that were most salient to the model decision) that

the model had a tendency to focus on the inner cortex of the neck of femur region, which is

part of a clinically relevant feature for proximal femoral fracture detection known as “Shenton’s

line”(32). However, the saliency maps often did not highlight outer cortex fracture lines

(Extended Data Figure 6), even when the model correctly diagnosed the fracture. In the

example in Extended Data Figure 2, the outer cortex is clearly disrupted, but a plausible “intact”

curve along Shenton’s line is able to be discerned (Extended Data Figure 2c). It is possible that

this reflects a failure mode of the model: if displaced fracture elements form a

“pseudo-Shenton’s line” like in this case, the model may misinterpret this to be a sign of an

intact hip. This is speculative however, and little can be determined from this single error.

Discussion

We report results of a thorough investigation of a high-performance AI algorithm for the

detection of proximal femoral fractures from frontal pelvic radiographs in emergency

department patients. Overall the AI model achieved exceptional performance, outperforming

radiologists in diagnostic reporting conditions on both the primary metric (AUC 0.994 vs 0.969)

and by demonstrating both higher sensitivity and specificity than any doctor tested in the

reader study. We also note that the performance was higher than the performance of a deep
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learning model reported by Krogue et al (33) across their entire test set, perhaps due to the

smaller dataset and image downsampling utilised in that research.

In response to concerns in the recent literature that pre-clinical AI testing can obscure various

problems with AI models leading to an “implementation gap”(13) we performed a series of

secondary analyses as well as an algorithmic audit. These concerns include: a lack of

generalisability to different populations, unclear performance at true clinical prevalence (as the

majority of reader studies are highly enriched), statistical limitations on the analytic comparison

between human experts and AI models, and a lack of investigation into the unexpected

behaviour of AI models within strata of a study population (where models with good

performance can produce unacceptable answers in a subset of cases).

Apropos generalisability, our external validation results from a US cohort were informative.

While the discriminative performance of the AI system (as measured by AUC) appears to be

maintained, the drop in the sensitivity at the pre-specified operating point (95.5 to 75.0) would

make the system clinically unusable in the new environment. While this could be mitigated by

the selection of a new threshold, as shown when we demonstrate similar sensitivity and

specificity in a post-hoc analysis (where the more minor drop in specificity simply reflects the

small reduction in discriminative performance), this would require a localisation process to

determine the new threshold in the new environment. We believe this is the first report of such

behaviour in the medical AI literature, and we do not have a reasonable explanation; it appears

at face value that any model that can maintain AUC across populations should also demonstrate
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a fairly stable sensitivity and specificity at a given threshold. This issue requires further

investigation.

We believe that using meta-analytic summary ROC analysis is more methodologically justified

than alternatives, such as reporting the pooled sensitivity and specificity values of a group of

doctors, and brings the field into conformity with broader biomedical practice. The SROC

approach(20) solves the problem of underestimation of human performance when sensitivity

and specificity are summarised independently, as well as better modelling the variation in

performance across human readers.

Given the tendency of AI models to behave in unexpected ways (i.e., unlike a human expert

would), the inclusion of an algorithmic audit appears to be worthwhile. As stated in Xiao et al

(included in thesis), the audit approach changes the focus from ‘what is the best performance

this AI system can achieve’ to ‘what is the worst mistake this AI system can make’. Instead of

simply reporting broad summary statistics, identifying what sort of cases the model fails on may

assist in bridging the current gap between apparent high performance in preclinical testing and

the uncertainty around the clinical implications of these models.

We note in particular that while the model demonstrates high performance, and does not

appear to deviate from human performance in pre-specified subsets (Table 2 & 3), it does still

make the occasional “inhuman” error, e.g., misdiagnosing a highly displaced fracture. We also

note on saliency mapping that while the model reproduces some recognisable aspects of

human practice (for example, the AI model appears to pay attention to Shenton’s line), the

visualisations nonetheless raise concerns about the regions not highlighted in the heatmaps. In
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particular, the saliency maps almost never show strong activity along the outer region of the

femoral neck, even in cases where the cortex in this area is clearly disrupted. While

over-interpretation of saliency maps can be problematic due to known failings of these

methods(34), these findings together raise the concern that, despite the model performing

extremely well at the task of hip fracture detection when assessed with summary statistics, the

model appears to be more “brittle” than a human. These results will hopefully be useful when

planning to integrate the model into clinical workflows, and some possible strategies to mitigate

various issues have been suggested in the algorithmic audit report (included in the

Supplementary Information).

There are a number of limitations of this study. Firstly, we note that the model itself is limited,

being unable to act on cases with implanted metalwork (albeit the system is able to

automatically identify these cases and exclude them from analysis). Secondly, the sample size of

the MRMC study was limited by the availability of readers; we determined a total dataset of 400

cases (200 positive and 200 negative cases) was as many as we could reasonably expect the

readers to review, and only 5 radiologists reviewed the cases under diagnostic conditions as

defined in the local standards of practice. We do note that the sample size compares well to

other similar studies (11) and that the 95% confidence intervals are not excessively wide.

Similarly, the sample size for the external validation is modest, but again the confidence

intervals are reassuring from a clinical perspective. Thirdly, we recognise that despite the

significant effort put into the algorithmic audit, there are important aspects of the model we

could not test. Importantly, we were unable to access race and ethnicity data for our local

population for subset testing, and despite performing an external validation on data from
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Stanford Hospital we were unable to assess whether the deep learning model will generalise

outside of the two clinical settings and the populations evaluated in this study.

Regarding the audit, we note that given the reliance on individual human interpretation and

small underpowered subsets (or even individual examples) it would be reasonable to suspect

that the findings of the audit and subset tests are not statistically reliable. We believe that such

concerns are orthogonal to the purpose of the techniques, as the intention is to discover

potential sources of unexpectedly poor clinical performance in a descriptive or exploratory

manner, not to demonstrate a statistically robust effect or effect size.

Our study evaluated a high-performance proximal femoral fracture detection AI model, which

outperforms highly trained clinical specialists in diagnostic conditions as well as other clinical

readers in normal clinical environments. The performance of the AI system is maintained when

applied to an external validation sample from an international site, and a thorough analysis of

the behaviour of the AI system shows that it is mostly consistent with that of human experts.

We also characterise the occasional aberrant or unexpected behaviour of the AI model to

inform future clinical testing protocols.

We intend to test this model in a clinical environment, in the form of an interventional

randomised control trial.
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 Conclusions 

 The  implementa�on  gap  remains  the  largest  barrier  to  safe  and  efficacious  medical  AI  deployment. 
 Given  the  current  status  quo  ,  where  AI  models  are  being  cleared  by  regulators  and  sold  into  clinics 
 without  pre-market  evidence  in  the  form  of  clinical  trials,  mechanisms  to  close  the  implementa�on 
 gap are of cri�cal importance and must be considered. 

 AI  researchers  tend  towards  technological  solu�onism,  consistent  with  the  origin  of  the  field  in 
 computer  science.  Where  fully  automated  (and  therefore  near  fric�onless)  methods  are  favoured, 
 such  solu�ons  do  not  yet  exist  and  AI  models  are  already  in  use  in  clinics,  being  used  on  real  pa�ents. 
 I  have  therefore  focussed  on  approaches  that  u�lise  the  only  resources  that  can  currently  be  applied 
 to  the  implementa�on  gap  -  humans  and  their  exper�se.  While  exhaus�ve  labelling,  subset  tes�ng, 
 and  algorithmic  audi�ng  are  �me  consuming,  they  are  the  only  reliable  methods  currently  available 
 to address the shortcomings of current tes�ng procedures. 

 The  cri�cal  role  of  human  exper�se  and  oversight  has  been  recognised  in  AI  applica�ons  more 
 broadly.  Safety  in  medical  AI  has  analogues  in  other  applica�ons  which  involve  the  legi�mate  risk  of 
 harm,  including  self-driving  vehicles  and  policing/judicial  algorithms.  Major  sources  of  harm  have 
 only  been  uncovered  with  though�ul  human  analysis  and  effort  44–46  .  The  similarity  between  the 
 incau�ous  use  of  AI  algorithms  in  these  domains  and  the  current  medical  AI  regulatory  environment 
 is concerning, and it seems reasonable to assume that there is a similar risk of serious harm. 

 Indeed,  one  major  limita�on  of  this  thesis  can  be  appreciated  when  looking  at  these  other  domains; 
 this  work  does  not  directly  address  a  major  source  of  poten�al  harm  in  medical  AI,  that  of  racial  and 
 gender  bias  in  medical  AI  models.  AI  healthcare  dispari�es,  which  may  operate  to  bias  both  the  input 
 data  and  the  data  labels,  can  be  considered  a  form  of  hidden  stra�fica�on,  where  harm  is  caused  by 
 underperformance  among  specific  pa�ent  subgroups.  It  is  clear,  however,  that  both  the  prevalence 
 of  these  dispari�es  and  the  indefensibility  of  failing  to  perform  targeted  tes�ng  for  these  pa�ent 
 popula�ons  (where  demographic  informa�on  is  o�en  available  at  no  addi�onal  cost)  is  of  sufficient 
 concern  and  urgency  to  require  specific  interven�on  beyond  the  recommenda�ons  contained  in  my 
 thesis.  There  are  numerous  examples  of  medical  AI  models  which  replicate  or  even  exacerbate  the 
 sociocultural  dispari�es  that  already  exist  in  medical  prac�ce  14,47  ,  and  work  in  this  space  to  iden�fy 
 and mi�gate the harms posed by this technology to under-served pa�ents requires far more visibility. 

 Similarly,  the  complex  interac�ons  between  human  users  and  AI  models  is  poorly  understood  but  is 
 recognised  as  a  further  factor  contribu�ng  to  the  implementa�on  gap.  Automa�on  bias,  laboratory 
 effects,  and  false  alarm  fa�gue  have  all  been  cited  as  poten�al  sources  of  poor  real-world 
 performance  in  medical  algorithms  10,48,49  .  Much  of  the  literature  on  AI  human-computer  interac�on 
 is  confusing  and  contradictory,  sugges�ng  that  a  great  deal  of  further  work  is  required  if  we  truly 
 intend to close the implementa�on gap for systems which keep humans in-the-loop. 

 I note that my thesis does not reflect a desire to avoid clinical tes�ng of AI algorithms. Instead, I 
 believe that clinical tes�ng is cri�cal to AI safety in healthcare. This work simply recognises the low 
 likelihood of widespread clinical tes�ng in the current healthcare and regulatory environments and 
 proposes a series of achievable techniques to reduce harms given that context. 
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