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Body size covaries with population dynamics across life’s domains. Metabolism may
impose fundamental constraints on the coevolution of size and demography, but experi-
mental tests of the causal links remain elusive. We leverage a 60,000-generation experi-
ment in which Escherichia coli populations evolved larger cells to examine intraspecific
metabolic scaling and correlations with demographic parameters. Over the course of
their evolution, the cells have roughly doubled in size relative to their ancestors. These
larger cells have metabolic rates that are absolutely higher, but relative to their size, they
are lower. Metabolic theory successfully predicted the relations between size, metabo-
lism, and maximum population density, including support for Damuth’s law of energy
equivalence, such that populations of larger cells achieved lower maximum densities but
higher maximum biomasses than populations of smaller cells. The scaling of metabo-
lism with cell size thus predicted the scaling of size with maximum population density.
In stark contrast to standard theory, however, populations of larger cells grew faster
than those of smaller cells, contradicting the fundamental and intuitive assumption that
the costs of building new individuals should scale directly with their size. The finding
that the costs of production can be decoupled from size necessitates a reevaluation of
the evolutionary drivers and ecological consequences of biological size more generally.
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Differences in the sizes of individual organisms drive widespread and repeated patterns
across the tree of life (1–4). For example, Damuth’s rule holds that larger organisms
have lower population densities than smaller organisms (5). Similarly, populations of
larger organisms grow more slowly than populations of smaller organisms (6). Mean-
while, global warming and harvesting are causing declines in body size in many species,
from phytoplankton to fish (7–10). If body size and demography covary within species
as they do across species, then human-induced changes in body size may have impor-
tant consequences for ecosystem function, particularly with regards to food security
and the global carbon pump (11). However, our ability to anticipate such changes is
limited by the dearth of studies examining the within-species covariance of size, energy,
and demography.
Metabolism has long been argued to provide the mechanistic link between size and

demography because it governs the rate at which organisms transform energy into bio-
logical work and growth (4–6). Larger-sized species have higher absolute metabolic rates
than smaller species but lower metabolic rates relative to their size. In formal terms,
absolute metabolism scales hypoallometrically with body size with an exponent of B,
whereas mass-specific metabolism scales at B – 1. The hypoallometric scaling of size and
metabolism generates several predictions for how size should affect demography (12).
First, because the ability to perform biological work per unit mass should scale with

mass-specific metabolic rates, maximum rates of population growth (r) should scale at
B – 1 (6, 12). For metazoans, B is typically ∼0.75; thus, r should scale around –0.25,
which is strongly supported by interspecific comparisons (4). This prediction has intui-
tive appeal: mouse populations can grow much faster than elephant populations.
Second, smaller species should attain higher maximum population densities (K) than

larger species because their absolute per capita demands are lower. The resource
requirements of organisms depend on their metabolism, so populations of larger species
should cease growing at lower densities than those of smaller species (5). However,
larger organisms have lower mass-specific metabolic rates (in metazoans, at least), and
so they require fewer resources per unit mass than smaller organisms. Accordingly, pop-
ulations of larger organisms should have greater total mass at carrying capacity than
populations of smaller organisms, with the expected scaling at 1 – B (1). This relation
is known as the theory of energy equivalence (3).
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Finally, the maximum rate of population productivity (effec-
tively the product of r and K ) should scale with size at –1 when
expressed as the rate of production of individuals, and so it
should be size-independent (i.e., scaling exponent of 0) in terms
of the rate of biomass production (2, 12). Together these three
predictions represent the canonical elements of how size, metabo-
lism, and energy equivalence determine population growth and
dynamics. Put simply, populations of larger organisms, with
lower mass-specific metabolic rates, should grow more slowly, but
eventually achieve higher total biomass, than populations of
smaller organisms (4). Nonetheless, there remains a fundamental
disconnect between theory and evidence: most tests are based
on among-species comparisons, making it difficult to attribute
metabolism as the underlying driver of such patterns.
Although metabolic theory successfully predicts variation in

demography across the domains of life, these predictions often
falter when applied to narrower taxonomic groups (2, 12–14).
Various explanations have been offered for these discrepancies,
but a key difficulty lies in inferring causality with respect to size
differences across species. Mice differ from elephants in ways
other than size, but metabolic theories about the relation
between size and demography ignore these differences, treating
them as an error term that is uncorrelated with size. We know,
however, that many other traits covary with size (e.g., lifespan
generally increases with size), and these traits also affect popula-
tion dynamics (4, 6). Interspecific comparisons of individual size
and population dynamics therefore confound other species-
specific traits that influence demographic variables. Conse-
quently, it remains unclear whether size, energy, and population
dynamics are invariably related as supposed by the canonical
scaling theory. Meanwhile, our capacity to predict the conse-
quences of human-mediated impacts on the size of organisms
depends on understanding the causal links between these factors
within species.
Intraspecific tests of the relation between body size and

demography are challenging. Comparisons among individuals
of the same species suffer from limited power because they
compare a narrower range of sizes than comparisons across spe-
cies. Intraspecific comparisons of individuals at different onto-
genetic stages can span a greater size range, but this approach
also introduces confounding factors and cannot be extended to
demographic parameters that must integrate across all ontoge-
netic stages. Ideally, a species that varies significantly in size
across populations, and that allows the direct parameterization
of population dynamical models, would provide valuable evi-
dence of how intraspecific variation in size and metabolic rates
affects demography. However, such tests are rare (2, 11), and
they have typically relied on either temperature manipulation
or strong artificial selection for individual size to generate
differences.
Here we analyze the relations among organismal size, metab-

olism, and demography in 12 populations of Escherichia coli
that have evolved and diverged from a common ancestor in the
long-term evolution experiment (LTEE) for more than 60,000
generations (15). The populations are diluted 100-fold in fresh
culture medium each day. They undergo ∼6.7 generations
(cell doublings) before they exhaust the limiting resource,
which is glucose. The bacteria thus experience alternating peri-
ods of growth and stationary phase, while the composition of
the medium and other aspects of their environment are kept
constant. The LTEE populations have been extensively charac-
terized, including by competitive fitness assays as well as whole-
genome and whole-population sequencing (16–18). Over the
duration of the LTEE, each population has steadily increased

in fitness, while accumulating many mutations. The average
size of individual cells also increased during the LTEE (19–21).
The LTEE imposes no direct, artificial selection on cell size or
any other individual phenotypic trait. Instead, the changes in
size evolve incidentally, as correlated responses to selection
favoring faster growth (22). In this study, we measure the pop-
ulation dynamics, metabolism, and cell size of the ancestral and
evolved bacteria to determine how these factors covary, thereby
allowing us to test whether they conform to predictions based
on standard metabolic theory. In particular, we examine popu-
lation growth rates and yields and find that the evolution of
larger cell sizes has led to Pareto improvements whereby growth
rate has increased but not at the expense of yield (23, 24).

Results

We examined two clones from each of the 12 LTEE popula-
tions at the 10,000 and 60,000 generation time points. We
excluded the 60,000-generation clones from one population
(Ara–3) that evolved the ability to consume citrate (25), which
is present in the medium as a chelating agent, because it gives
cells access to an additional resource that confounds the relation
between metabolism and demography that we seek to under-
stand. The fundamental unit of independent replication in the
LTEE, and in evolution experiments generally, is the evolving
population and not the individual (15–19). Therefore, in all
analyses, we treat the average value of the two clones from the
same population and generation as a single sample. We also
include the two ancestral strains, REL606 and REL607, each of
which was used to found six populations and which differ by a
genetic marker used in competition assays (15, 16, 19). Thus,
our analyses include a total of 25 samples (2 ancestors, 12 pop-
ulations at 10,000 generations, and 11 populations at 60,000
generations).

Previous studies reported large increases in cell volume in the
first 50,000 generations of the LTEE (19–21). Our measure-
ments confirm the large increases in cell size and show that
they have continued to increase, from an average of 0.239 fL
(i.e., μm3) for the ancestors to an average of 0.670 fL for the
60,000-generation samples (Fig. 1). The evolving populations
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Fig. 1. Trajectories of cell size in E. coli populations across 60,000 genera-
tions of evolution. The black line shows the mean trajectory of all populations;
gray lines show the 12 independent populations. The 60,000-generation sam-
ple from one population is excluded because it evolved the ability to use an
additional resource not available to the other bacteria (Materials and Methods).
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followed different size trajectories, but they all show the same
trend of increasing size.
We quantified metabolism by measuring oxygen consump-

tion at three initial cell densities, achieved by differentially
diluting samples. The concentration of the limiting resource,
glucose, was the same for all three initial densities, and it was
insufficient to support one population doubling even at the
lowest initial density. As a result, the glucose was depleted over
the course of our measurements of oxygen consumption, lead-
ing to a transition into stationary phase and concomitant
decline in the per capita respiration rates at the higher initial
densities. At all three initial cell densities, metabolism scaled
with average cell size (volume) sublinearly (Fig. 2), and the
scaling relation was consistent across the densities (density ×
log[cell size], F2,69 = 0.082, P = 0.921; density, F2,71 = 97.06,
P < 0.0001; log[cell size], F1,71 45.99, P < 0.0001). The esti-
mated scaling exponent for the metabolic rate, B, is 0.38, which
differs significantly from interspecies comparisons (26) that
have estimated the scaling exponent to be >1 and from theoret-
ical expectations based on surface area to volume ratios of
∼0.67 to 1 (depending on cell shape). With our empirical esti-
mate of the intraspecific metabolic scaling exponent, we can
then use standard metabolic theory to predict how population
growth rates and maximum population size should scale with
cell size (Table 1).
We measured population growth over 24 h for all the sam-

ples, each at three different resource levels achieved by varying
the concentration of glucose in the medium and with replica-
tion of the growth curves at each concentration. Populations
grew slightly faster at the higher glucose concentrations (Fig.
3A). However, the scaling of the maximum growth rate, r, was
consistent across glucose levels (glucose × log[cell size], F2,69 =
0.113, P = 0.893). The scaling exponent of the growth rate
was 0.27, which differs significantly from both zero and the
exponent (–0.63) predicted by the canonical theory (Table 1).
Instead, the scaling of the growth rate is much closer to that of
the metabolic scaling (0.38 versus 0.27).

The maximum yield in terms of cell density (Maxcells)
showed a negative scaling relation with cell volume, with an
exponent of –0.45 (Fig. 3B), and the confidence interval over-
laps the prediction of –0.38 from theory (Table 1). The corre-
lation between cell size and maximum cell density was strong; a
model including glucose level and cell size explained 96% of
the variation in maximum cell density. The maximum biovo-
lume yield (Maxbiovolume) scaled positively with cell size with an
exponent of 0.55 (Fig. 3C), again in reasonable agreement with
the theoretical expectation of 0.64 (Table 1). As expected, pop-
ulations achieved higher biovolumes at higher glucose levels
(Fig. 3C), but the scaling relation was again consistent across
the three glucose levels (glucose, F2,71 = 437.32, P < 0.0001;
glucose × log[cell size], F2,69 = 0.257, P = 0.774).

Maximum productivity, expressed as the maximum rate of
biovolume increase, increased with average cell size (Fig. 3D),
with an estimated exponent of 0.81 (Table 1). This estimate
differs greatly, and significantly, from the canonical expectation
of zero (Productivitybiovolume, F1,71 = 301.5, P < 0.0001).
Productivity increased at higher glucose levels (glucose, F2,71 =
410.5, P < 0.0001), with no significant interaction between
cell size and glucose levels (F2,69 = 0.447, P = 0.641).

Table 1 summarizes our empirical results relative to theoreti-
cal expectations. The scaling of maximum population size with
individual size was similar to the predictions made by metabolic
theory, regardless of whether it was measured in terms of cell
number (Fig. 3B) or total biovolume (Fig. 3C). In contrast,
productivity did not conform to the predictions made by the
canonical metabolic theory, whether measured as the rate of
population increase (Fig. 3A) or the maximum biovolume pro-
ductivity (Fig. 3D). Instead, both productivity exponents were
much higher than the canonical theory would predict, by values
of 0.89 and 0.81, respectively.

Discussion

The LTEE provides a unique opportunity to study the covariance
between size, metabolism, and demography within a species.
Damuth’s law of energy equivalence successfully predicted the
coevolution of individual cell size with maximum population den-
sity (5). However, we also discovered that a fundamental assump-
tion about how the growth and productivity of populations
should scale with metabolism and size lacks generality and there-
fore requires modification. Our study shows the value of, and
need for more, within-species tests of metabolic theory. Of partic-
ular interest, our results indicate that evolution sometimes produ-
ces Pareto improvements in key size-related parameters—leading
to trade-ups, rather than trade-offs—that are not anticipated
from interspecific comparisons among both multicellular (6) and
unicellular organisms (27, 28).

Larger Cells Have Relatively Lower Metabolic Rates than Smaller
Cells. The scaling of metabolic rate with size in these experi-
mental E. coli populations is remarkably low, with an exponent
of only ∼0.38. Among-species comparisons of metabolic rate in
bacteria have usually reported hyperallometric scaling (B > 1),
whereby larger cells have disproportionately higher metabolic
rates (26, 29). By contrast, we find that the larger cells from
later generations of the LTEE have much lower mass-specific
metabolic rates than their smaller ancestors, such that a dou-
bling in size leads to only a 30% increase in metabolism.

There are several potential explanations for the low scaling
exponent that we observe in this experiment relative to inter-
specific comparisons. First, it could be that within-species
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Fig. 2. Scaling relation between average cell volume and per capita meta-
bolic rate. The relation was examined across three different total bio-
masses, achieved by varying the initial cell density (shown by different
colors). The limiting glucose concentration was the same for all three treat-
ments; the glucose was thus depleted faster at the higher cell densities,
leading to lower per capita metabolic rates. Each point shows the mean
value for a sample at the generation indicated by the different symbols.
The resulting estimate of the metabolic scaling exponent, B, is 0.38 and
statistically indistinguishable across densities.
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metabolic scaling is generally shallower than interspecific scal-
ing in bacteria; to date, there are too few studies that have mea-
sured within-species scaling to compare them. In other taxa,
metabolic scaling sometimes differs depending on whether it is
estimated within or among species (30, 31). Theory predicts

that all else equal, the physics of resource limitation in slow-
moving fluids should result in metabolic scaling exponents of
about 0.33 (32), which is close to our estimate. The cytoplasm
of bacterial cells is viscous and densely packed with DNA and
other macromolecules (20, 21). It could also be that physical

Table 1. Summary of predicted and observed scaling of population parameters based on metabolic scaling theory

Parameter Definition
General
theory

Prediction
if C = 1

Prediction
if C = 0

Prediction
if C = 0.11

Observed
scaling

r Intrinsic rate
of increase

MB–C –0.62 (–0.73:–0.51) 0.38 (0.27:0.49) 0.27 (0.16:0.38) 0.27 (0.20:0.34)

Maxcells Maximum cell
density

M–B –0.38 (–0.49:–0.27) –0.38 (–0.49:-0.27) –0.38 (–0.49:–0.27) –0.45 (–0.54:–0.37)

Maxbiovolume Maximum
population
biovolume

M1–B 0.62 (0.51:0.73) 0.62 (0.51:0.73) 0.62 (0.51:0.73) 0.55 (0.46:0.63)

Biovolume
productivity

Maximum
productivity

M(1–B)x M(B–C)

= M1–C
0 1 0.89 0.81 (0.72:0.91)

We estimated the metabolic scaling exponent, B, as 0.38 (Fig. 2). We show predictions (including confidence intervals in parentheses) based on the standard theory, whereby
production costs are assumed to scale perfectly with size (C = 1); when production costs are assumed to be size invariant (C = 0); and when production costs scale weakly with size
(C = 0.11). The C value of 0.11 was calculated based on the scaling observed for the intrinsic rate of increase, r.
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constraints on scaling are more restrictive within than among
species. For example, cell shape may change with cell size more
substantially among species than within species (32). It should
be noted, however, that the aspect ratio (length/width) also
varies significantly among the E. coli lineages in this study (21).
Second, the fine-tuning of gene regulation and physiological

process may have produced the low metabolic scaling exponents
seen in the LTEE. DeLong et al. (26) suggested that hyperallo-
metric metabolic scaling in bacteria emerges from the effect of
genome size on metabolic rate. Larger cells typically have larger
genomes; more genes and gene products might drive higher
metabolic rates (33). Although the average haploid genome
length has declined slightly during the LTEE owing to some
gene deletions (17), rapidly growing bacterial cells typically
have multiple copies of their chromosome. Therefore, the
faster-growing and larger evolved bacteria have more total
DNA per cell, even if their genome length is slightly smaller.
Among prokaryotes, genome length scales with cell size with an
exponent of 0.35 (26), which is close to the 0.38 metabolic
exponent we observed (Fig. 2 and Table 1). The bacteria in the
LTEE have evolved substantial changes in gene expression and
regulation (34–36). These changes have reduced the expression
of functions that are no longer useful in the LTEE’s simple
conditions, while optimizing the expression of the functions
that are still needed (37). Such changes may be especially
important in an environment that varies cyclically between
resource abundance and depletion in a predictable manner over
time, as it does in the LTEE (15, 34).

Metabolic Theory Predicts Maximum Population Size. We
found strong support for the energy equivalence rule across a
range of resource levels (5). Because the mass-specific metabolic
rates of the larger evolved cells were so low, the maximum bio-
volume yields were much higher in those samples than in the
ancestors (Fig. 3C). However, the total metabolic demands of
these two groups were similar (∼4.5 × 10�3 J). Thus, the larger
cells are metabolically more efficient and attain higher popula-
tion biomass than smaller cells from a given amount of
resource. This result conforms with other LTEE studies that
found that the evolved cells are larger, are more efficient, and
attain higher maximum biomass yields than the ancestors (20,
23). It seems that metabolic rate can be an excellent predictor
of the limits to population biomass, both among (4) and within
species (11). In contrast, long-standing metabolic theories,
based on standard assumptions, failed to predict how individual
size and metabolism would impact population growth rates and
maximum productivity.

Metabolic Theory Does Not Predict Population Growth Rates.
The E. coli samples in this study defy theoretical predictions
based on standard assumptions about how individual size
should affect rates of population growth and production.
Despite having lower mass-specific metabolic rates, the larger
evolved cells have higher intrinsic rates of increase (r) than the
smaller ancestral cells. One might expect that larger cells would
require more materials and energy to produce, but relative to
their volume, they would also have less capacity to power this
work than smaller cells. Nonetheless, our study, other studies
of the LTEE populations, and indeed studies on E. coli more
generally find that faster growing cells are larger than cells
growing more slowly (20, 23, 38, 39). This positive correlation
between size and growth rate contradicts the expectation based
on standard theory.

Standard theory predicts that population growth rate should
scale with the mass-specific metabolic rate (i.e., MB–1) (6, 12,
40). This theory works well for among-species comparisons: in
multicellular eukaryotes, both mass-specific metabolic rate and
population growth rate scale at ∼M�0.25 (1, 4), and in prokar-
yotes, both rates appear to scale at ∼1 (26, 41). However, in
the E. coli from the LTEE, population growth rate scales at
0.27, an exponent that is 0.89 higher than expected given the
mass-specific scaling of –0.62. In fact, the population growth
rate exponent is much closer to the per capita metabolic expo-
nent of 0.38 than to the mass-specific exponent of –0.62.
Why do these bacteria show positive scaling of both per
capita metabolism and population growth rate with individual
size, contradicting expectations based on the standard theory?

Metabolic Theory and the Costs of Biological Production. A
crucial, but often overlooked, assumption of standard metabolic
theory is that the energy required to produce a new individual
is directly proportional to its mass (6). This assumption seems
reasonable at first glance, but in fact, there is little empirical
evidence to support it and, in the case of the LTEE, some evi-
dence against it. The total cost of producing a cell is the sum of
the energy consumed between cell divisions (sometimes called
maintenance costs) and the energy used to build the new cell
itself (41). Neither component is likely to scale directly with
cell volume, for several reasons.

First, it has been estimated that about half of the energy
required by E. coli is used to maintain ion gradients across the
cell membranes (42). Larger cells have smaller surface area rela-
tive to mass, and so they should have relatively lower mainte-
nance costs than smaller cells. Consistent with this reasoning,
total metabolism scales hypoallometrically with cell volume in
the LTEE. Second, large cells often have different stoichiometry
from small cells. Both among and within taxa, large cells tend
to have relatively lower carbon content than small ones (43). In
the LTEE specifically, size and carbon density do not scale pro-
portionately, and the stoichiometry of cells has evolved over
time (20, 44). In this light, the assumption of equal costs per
unit volume of building smaller and larger cells is violated.
Finally, large cells are relatively cheaper to produce than small
cells in terms of genome replication. In the LTEE, the larger
evolved cells have slightly smaller genomes than the smaller
ancestral cells (17), so that the relative, and even absolute, costs
of genome replication are lower for the larger cells. Of likely
greater importance, the evolved cells have undergone substan-
tial fine-tuning of their gene-regulatory networks to the LTEE
environment, thus reducing the costly expression of unneeded
transcripts and proteins (34–37).

Relaxing the Strict Proportionality of Production Costs and
Size. Taken together, our results imply that larger cells are
cheaper to maintain and build per unit volume, such that the
scaling of the total cost of production is far less than proportional
to cell size. If the assumption of proportional cost is relaxed, then
the paradox of larger cells having higher growth rates may be
resolved. Instead of assuming that the costs of production scale
with individual cell size with an exponent of 1, we can explore a
range of possible scaling exponents and compare the resulting
predictions with our observations. To that end, here is the gener-
alized formula relating cell size to population growth rate:

r ¼ MB=MC , [1]

where B is the exponent linking cell mass to metabolic rate,
and C is the exponent linking total production costs (both
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maintenance and building) to mass. When the costs are assumed
to be directly proportional to size (i.e., C = 1), we recover the
prediction of classic metabolic theory (6):

r ¼ MB=M1 ¼ MB–1: [2]

At the other extreme, the costs of production are size invariant
(i.e., C = 0). That is, the total costs of producing smaller and
larger cells are the same, and theory would instead predict

r ¼ MB=M0 ¼ MB : [3]

Of course, any value of C is possible in this more general frame-
work. In the case of the LTEE strains, we find that r scales at
0.27, which implies that C = 0.11 (i.e., 0.38 � 0.27 = 0.11). In
other words, the costs increase only weakly with cell size. Specifi-
cally, the cells from generation 60,000 are, on average, roughly
twice the volume of their ancestors (Fig. 1), but each one costs
only ∼10% more to produce than a small ancestral cell. If we
now set the exponent that links production cost (C) to size at
0.11, then we can predict much more accurately the scaling expo-
nent for the maximum rate of biovolume production seen in our
experiments (Table 1). In other words, if we assume the per capita
cost of producing the larger evolved cells is only slightly more
than the cost of the smaller ancestral cells, then we can reconcile
our other observations with the classic theoretical predictions.
A recent study of the single-celled eukaryote Dunaliella tertio-

lecta also found improvements in both population growth rate
and yield as cells evolved to be larger (2). These improvements
were associated with the evolution of significant genomic stream-
lining (45), which likely decoupled some production costs from
cell size. Thus, it seems that the trade-offs between size and rates
of production that seem almost invariant in comparisons among
species can, at least sometimes, be circumvented within species
when other traits that affect metabolic costs also coevolve.
Whether the same decoupling of size and production costs can
occur in metazoans, with their complex development and life
cycles, is unclear and, in our view, deserves attention.
In conclusion, our results demonstrate the importance of

examining the scaling of size, metabolism, and population
dynamics within species, as well as across species, because these
comparisons may differ quantitatively and even qualitatively.
Such differences can occur even though the explanations for
these patterns at both scales involve the same underlying meta-
bolic processes. Given the importance of the scaling of produc-
tion costs to organismal size in driving our expectations of how
size affects population growth and productivity (4), this issue
has received far too little empirical attention. We recommend,
therefore, that future studies examine production costs as a
function of size, both within and among species.

Materials and Methods

Experimental Overview. We measured average cell volumes for 48 E. coli
clones: two ancestral strains, two clones sampled from each of the 12 LTEE popu-
lations at 10,000 generations, and two clones from 11 of those populations at
60,000 generations (SI Appendix, Table S1). We excluded from our analyses one
population at 60,000 generations because it evolved the ability to use citrate as
an additional source of carbon and energy in the LTEE environment. We mea-
sured metabolic rates of the same 48 clones at three initial cell densities. We
monitored the population growth of the 48 clones at each of three resource lev-
els, to which we fit growth curves. The key unit of independent replication in the
LTEE, and in evolution experiments generally, is the evolving population, not the
individual organism (15–19). Thus, we averaged the estimates of cell size, meta-
bolic rate, and population growth parameters for the two evolved clones from
the same population and generation, and we treat that average value as a single

sample. We also include the two ancestral strains, each of which founded six of
the LTEE populations. Thus, our statistical analyses reflect a total of 25 samples
(2 ancestors, 12 populations at 10,000 generations, and 11 populations at
60,000 generations) for each assay and, when relevant, for each treatment.

Evolution Experiment, Strains, and Media. The LTEE started in 1988 (15),
and it has continued since. Twelve 50-mL flasks containing 10 mL DM25
medium (see recipe below) were seeded with either the arabinose-negative
ancestral strain REL606 (populations Ara–1 to Ara–6) or the arabinose-positive
ancestor REL607 (populations Ara+1 to Ara+6). The Ara marker causes cells to
produce either red (Ara–) or white (Ara+) colonies on tetrazolium-arabinose indi-
cator plates, and it serves to differentiate competitors during relative fitness
assays. The Ara marker is selectively neutral in the LTEE conditions (15, 46, 47).
The 12 populations are propagated daily with 100-fold dilutions at 37 °C while
shaking at 120 rpm for mixing and aeration. The dilutions and regrowth allow
log2 100 ≅ 6.6 cell generations per day. The stationary-phase (i.e., end of day)
population density is ∼5 × 107 cells/mL for the ancestral strains (15). In 11 pop-
ulations, the stationary-phase population density declined as the individual cells
became larger; in the case of population Ara–3, however, the cell density
increased severalfold after cells evolved the new capacity to use the citrate in
DM25 as an additional source of carbon and energy (25). Samples (including
whole populations and isolated clones) are periodically stored with glycerol
(as cryoprotectant) at –80 °C, where the cells remain viable and available for
further analyses.

As noted in Experimental Overview, our analyses used the two ancestors, plus
two clones sampled from each population at 10,000 and 60,000 generations
(except for Ara–3 at 60,000 generations, which we excluded owing to its access
to citrate as an additional substrate for growth). The 10,000-generation clones
were isolated and described previously (17). For this study, we plated each
60,000-generation whole-population sample on Lysogeny Broth (LB) agar and
picked two clones at random, which we then stored as glycerol stocks.

The culture medium used in the LTEE and in this study is Davis Mingioli (DM)
minimal medium (7 g/L potassium phosphate [dibasic trihydrate], 2 g/L potas-
sium phosphate [monobasic anhydrous], 1 g/L ammonium sulfate, 0.5 g/L diso-
dium citrate, 1 mL/L 10% magnesium sulfate, and 1 mL/L 0.2% thiamine [vitamin
B1]) supplemented with a specified amount of glucose (15, 46). The concentra-
tion of glucose added to the medium is indicated by a suffix (e.g., DM25 has
25 mg/L glucose). MG agar plates were used for counting colonies; in addition to
the ingredients of DM media, MG agar contains 4 g/L of glucose and 16 g/L agar.
LB broth (NaCl [10 g/L], tryptone [10 g/L], and yeast extract [5 g/L]) was used for
the initial recovery of bacteria from thawed glycerol stocks prior to performing the
hemocytometer counts. LB plates were made by adding 20 g/L agar.

Population Growth Measurements. Each clone was revived from a frozen
stock and then grown in 3 mL of DM25 at 37 °C with orbital shaking for 24 h to
acclimate the bacteria to that medium. The next day, we measured the optical
density (OD) of each culture, and the density was normalized to match the
culture with the lowest OD. The resulting cultures were diluted 100-fold into
96-well microplates containing DM25, DM50, or DM100 media. Each clone
was replicated four times in each medium, for a total of 600 growth curves
(50 clones × 3 media × 4 replicates, including the two clones from population
Ara–3 at generation 60,000 that were subsequently excluded). The clones were
randomly assigned to wells for each medium over 20 microplates to minimize
position effects. We measured OD at 600 nm wavelength every 10 min for 24 h
using an ELx808 Incubating Absorbance Microplate Reader (BioTek Instruments)
set to its maximum shaking speed and 37 °C.

A complete description of the methods that we used to estimate demo-
graphic parameters is provided in Malerba et al. (48). Briefly, OD serves as a
proxy for population biomass, and we loge-transformed OD values to reduce het-
eroscedasticity. We then fit the following four-parameter logistic-type sinusoidal
growth model to the data:

logeOD600 ∼ ODmin þ ðODmax � ODminÞ
1þ eμ ðxmid�timeÞ , [4]

where ODmin is the minimum population biomass, ODmax is the maximum pop-
ulation biomass, xmid is the time to the inflection point, and μ quantifies the
curve’s steepness. The following demographic parameters were extracted for
each trajectory: the maximum predicted value for OD600 (K; unit, OD600), the
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maximum rate of biomass increase (r; unit, min�1), and the maximum rate of
biomass production (unit, OD600 min

�1).

Metabolic Assays. We measured metabolic rates based on oxygen consump-
tion. The clones were revived from the frozen stocks by plating on LB agar. Single
colonies were used to inoculate 2 mL of DM800 medium, and the cultures were
incubated at 37 °C with orbital shaking for 24 h. The next day, the cells were pel-
leted by centrifugation and washed with DM0 medium (i.e., DM without added
glucose) to remove any residual glucose and extracellular by-products. The pel-
lets were resuspended in 2 mL of DM0, and the cultures were then adjusted to
OD600 values of 0.15, 0.3, and 0.6 and a final volume of 5 mL each using DM0.

Oxygen consumption was measured in a temperature-controlled room at
37 °C using 4 × 24-channel PreSens Sensor Dish Reader (SDR; AS-1 Scientific),
using methods adopted from Malerba et al. (31). Before the experiment, the
equipment was kept overnight in the 37 °C room, and each SDR plate was cali-
brated using air-saturated DM800 medium (100% air saturation) and DM800
medium containing 2% sodium sulphite (0% air saturation). We monitored a
total of 192 cultures that included the 2 ancestral and 48 evolved clones (includ-
ing the two 60,000-generation clones from population Ara–3 that were later
excluded) at each of the three initial cell densities, plus an additional 21 repli-
cates of ancestral strain REL606 and 21 blanks without any cells. The additional
ancestral replicates meant that each 24-well plate included this reference strain
at all three cell densities, allowing us to detect possible plate-level anomalies;
however, we encountered no such problems. The cultures were otherwise ran-
domly distributed over two consecutive days of data collection. Each culture was
carefully placed in a 5-mL vial to avoid creating any air pockets. At least two vials
per plate were filled with sterile medium that served as blanks. Before starting
the trials, all cultures were acclimated to 37 °C for an hour. We added 0.4 μL of
10% glucose solution to each 5-mL sample prior to the start of the assays, which
brought the glucose concentration to 8 mg/L (about one-third of the concentra-
tion in the standard LTEE medium, DM25). Moreover, even the lowest initial
density (OD600 = 0.15) is higher than the final density the bacteria reach when
they have depleted the glucose in DM25. Thus, the glucose supply was quickly
exhausted during these metabolic assays, with the depletion occurring faster at
the higher cell densities. This effect led to different estimates of metabolic rates
across the three cell density treatments; however, the scaling exponent between
cell volume and metabolic rate was unaffected by the treatment (Fig. 2). The
assays began after the SDR channels were fully loaded and the samples were
well mixed. The nonconsumptive O2 sensors then monitored the oxygen in each
vial every minute until it was consumed by the bacteria.

After the assays ended, the rate of change in oxygen saturation (VO2) was
quantified from the linear part of each time series (SI Appendix, Fig. S1). Energy
rates were calculated with the following model:

VO2 ¼ ma � mb

100
VβO2, [5]

wherema is the rate of change in each sample (% min�1), mb is the mean rate of
change for the blanks in each plate (% min�1), V is the water volume (0.005 L),
and βO2 is the oxygen capacity of air-saturated water at 37°C and zero salinity
(210 μmol O2 L�1). The rates were then converted to energy units, assuming a
caloric energy of 0.512 J (μmol O2)�1 from Malerba et al. (31).

Calibration Curves for OD and Cell Density. In order to express metabolism
and productivity on a per capita basis, we performed calibrations to convert oxy-
gen consumption (VO2) and carrying capacity (K) from units of OD600 to units of
cells per mL. To this end, we measured cell densities using two approaches. The
first used a Neubauer Improved hemocytometer (Bright-line double ruled, Pacific
Lab) to estimate cell densities for calculating per capita respiration rates. The bac-
teria were growing, at least briefly, during the respiration measurements, and
therefore, these calibrations used growing cultures. Clones were revived from
glycerol stocks by inoculation into 1 mL LB medium and grown overnight. Cells
were washed three times in 1 X PBS and then diluted 1,000-fold in 3 mL of
DM100 medium, where they grew at 37 °C with orbital shaking for 24 h. The
next day, the cultures were diluted 20-fold into 200 μL of DM400 medium in a
96-well microplate. We used DM400 (instead of DM25, DM50, or DM100) so
that cell densities were comparable to those used in the metabolic assays. We
immediately measured an initial OD600 value for each well using the same
ELx808 Incubating Absorbance Microplate Reader as for the population growth
measurements. We then placed the plate in a Thermo Scientific plate shaker at

37 °C and 750 rpm for 2 h. We recorded another set of OD600 readings and
then took a 20-μL sample from each well and diluted it to a final concentration
of 5% formaldehyde to fix the cells. We returned the plate to the shaker at
37 °C. Every hour, we recorded OD600 readings and took and fixed 20-μL sam-
ples for hemocytometer cell counts until 5 h had elapsed. Three to four replicate
cultures were analyzed for each clone, with a blinded set of clones used for
measurements, which were conducted over 20 d. We rarely measured replicates
from the same clone on a given day. Fixed cells were mixed by pipetting up and
down, and we transferred 10 μL into the Neubauer chamber. We used a light
microscope to count the cells. We ran a linear regression to convert OD values to
cell densities for each sample, which we then used to convert oxygen consump-
tion to per capita metabolic rates.

Maximum OD values typically occurred in our population-growth assays
when the cells depleted the glucose and began to enter stationary phase. Bacte-
rial cells are smaller, on average, in stationary phase than while growing, includ-
ing in the LTEE populations (21). Therefore, the calibrations described above
could not be used to estimate maximum cell density (Maxcells). Instead, we per-
formed additional calibrations using cultures grown to stationary phase at the
same glucose concentrations as in the growth assays (DM25, DM50, and
DM100). We estimated stationary-phase densities at 24 h by plating cells on
MG agar. Clones were revived from frozen stocks and grown in DM25. Aliquots
of these cultures were distributed at random over multiple 96-well microplates
to minimize position effects. After 24 h at 37 °C on a plate shaker, each culture
was diluted 100-fold in DM25, DM50, and DM100 (2 μL of culture in 200 μL of
fresh medium) and incubated again for 24 h on the shaker. These cultures were
diluted 10,000-fold and spread on MG agar plates, and colonies were counted
after incubating the plates for 24 h. We used these counts to calibrate stationary-
phase cell densities based on colony-forming units at 24 h (NCFU) and cell densi-
ties inferred from OD values and hemocytometer counts of growing cells (NOD),
which yielded the following equation (SI Appendix, Fig. S2): log10[NCFU] =
0.92 × log10[NOD] + 1.35. We then used this equation to estimate Maxcells as
the cell density corresponding to the maximum OD reading (ODmax) from each
growth curve. The 60,000-generation sample from population Ara+3 appeared
to be an outlier when calibrating the relation between cell numbers based on
OD and CFU values (SI Appendix, Fig. S2). (Note that this outlier is not the Ara–3
sample that was excluded from all of our analyses because the cells can grow on
citrate.) We therefore recalculated all the scaling exponents in this work while
excluding this outlier, but none of the values changed substantively (SI Appendix,
Table S2).

Cell Size Measurements. We measured the mean cell volume for each clone
in stationary phase using the side-scatter of a flow cytometer (Flow-Core, BD
LSRII, BD Biosciences); beads of four diameters (0.2, 0.5, 1, and 2 μm, Invitro-
gen by Thermo Fisher Scientific) served as standards. The clones were revived
from frozen stocks and grown in DM25 at 37 °C with orbital shaking for 24 h.
The next day, these acclimated cells were diluted 100-fold in fresh DM25
medium in 96-well microplates. We had four replicates per clone, and the clones
were randomly placed across four plates. The plates were incubated at 37 °C
and 750 rpm for another 24 h, at which time samples were taken and used for
flow cytometry. The cell volumes we obtained using this approach are very simi-
lar to those previously obtained using microscopy and electronic size-based parti-
cle counts (21).

Statistical Analyses. Metabolic rates and growth models were calculated
using R (49) and the packages nlme (50), lme4 (51), and plyr (52) for model fit-
ting. Analysis of covariance and multiple regression models were performed
using Systat to examine the scaling relations between average log-transformed
cell volume and the various log-transformed metabolic and population dynamics
metrics, respectively; initial cell density (in the case of metabolism) and glucose
level (in the case of population dynamics) were additional covariates or fixed fac-
tors. In all cases, we calculated mean values across technical replicates for a
given clone, and we then averaged the values for the two clones sampled from
each LTEE population at either 10,000 or 60,000 generations.

Data Availability. Experimental data have been deposited in Dryad Digital
Repository (DOI: 10.5061/dryad.kd51c5b7n).
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