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Abstract Herbicides with novel modes of action are urgently needed to safeguard global agricul-
tural industries against the damaging effects of herbicide- resistant weeds. We recently developed 
the first herbicidal inhibitors of lysine biosynthesis, which provided proof- of- concept for a promising 
novel herbicide target. In this study, we expanded upon our understanding of the mode of action 
of herbicidal lysine biosynthesis inhibitors. We previously postulated that these inhibitors may act 
as proherbicides. Here, we show this is not the case. We report an additional mode of action of 
these inhibitors, through their inhibition of a second lysine biosynthesis enzyme, and investigate 
the molecular determinants of inhibition. Furthermore, we extend our herbicidal activity analyses to 
include a weed species of global significance.

Editor's evaluation
This paper presents the highly interesting and novel finding that the investigated compound inhibits 
two targets in lysine synthesis. Further, the first enzyme has allosteric inhibition, while the second 
enzyme is a competitive inhibitor. The authors do a good job explaining why this is high interest 
for herbicide resistance management in a new compound. The authors demonstrated that the 
compound is not a pro- herbicide, and propose that the higher in vivo activity relative to in vitro 
activity is due to the simultaneous in vivo inhibition of two separate steps in lysine synthesis.

Introduction
Effective herbicides are critical for sustainable agriculture. However, our current options are dwindling 
as the prevalence of herbicide- resistant weeds continues to rise (Hall et al., 2020). Weeds have now 
evolved resistance to 21 out of the 31 herbicide modes of action, yet there has been a lack of herbi-
cides with new modes of action brought to market over the last 30 years (Duke and Dayan, 2022; 
Heap, 2022).

Despite the success of targeting amino acid biosynthesis enzymes for the development of herbi-
cides (e.g. glyphosate and chlorsulfuron), the inhibition of plant lysine biosynthesis has never been 
explored commercially. Our group was the first to discover inhibitors of lysine biosynthesis with herbi-
cidal activity (Soares da Costa et al., 2021). We showed that the most potent of these inhibitors, 
(Z)- 2- (5- (4- methoxybenzylidene)- 2,4- dioxothiazolidin- 3- yl)acetic acid (MBDTA- 2) (Figure 1A) targets 
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lysine production by inhibiting dihydrodipicolinate synthase (DHDPS), the enzyme that catalyses the 
first and rate- limiting step in the pathway (Soares da Costa et al., 2018). Interestingly, we found that 
the mode of DHDPS inhibition by MBDTA- 2 was through binding at a novel allosteric site distinct 
from the allosteric lysine- binding site (Figure 1B), which enables regulation of the enzyme (Hall et al., 
2021).

In the previous study, we revealed that the in vitro potency of MBDTA- 2 against recombinant 
Arabidopsis thaliana (At) DHDPS enzymes was similar to the activity against agar- grown A. thaliana 
(Soares da Costa et al., 2021). Usually, herbicides inhibit their enzyme targets with greater potency 
than they inhibit in vivo plant growth. This is because the amount of herbicide reaching the target site 
is less than the amount applied. We proposed that this unusual similarity between in vitro and in vivo 
activity may be due to MBDTA- 2 acting as a proherbicide, which is modified in vivo to a form that is 
more active at the target site. Proherbicides have been reported in the literature such as diclofop- 
methyl, which is demethylated via ester hydrolysis in vivo to produce the more active compound 
diclofop . Whilst MBDTA- 2 could not undergo the same process as it does not contain an ester, we 
postulated that a similar proherbicidal effect may be observed through the in vivo demethylation of 
the aryl methyl ether.

The present study sought to extend our understanding of the mode of action of our previously 
developed DHDPS inhibitors (Christoff et al., 2021; Soares da Costa et al., 2021). Specifically, we 
used biochemical enzyme kinetic assays to demonstrate that MBDTA- 2 does not act as a proherbicide, 
and that the apparent similarity between in vitro and in vivo potency may instead be explained by 
this series of compounds having a novel, dual- target mode of action through inhibition of the second 
lysine biosynthesis enzyme in the pathway, dihydrodipicolinate reductase (DHDPR). Static docking and 
biochemical assays revealed that in contrast to the allosteric binding of these inhibitors to DHDPS, 
active site binding is responsible for their inhibition of DHDPR. Additionally, we extended our previous 
in vivo activity studies on A. thaliana to include one of the most agriculturally problematic weeds in the 
world, rigid ryegrass (Lolium rigidum) (Bajwa et al., 2021; Busi and Beckie, 2020).

Figure 1. Structure and mode of binding of (Z)- 2- (5- (4- methoxybenzylidene)- 2,4- dioxothiazolidin- 3- yl)acetic acid (MBDTA- 2). (A) Chemical structure 
of MBDTA- 2. (B) The AtDHDPS1 quaternary structure with MBDTA- 2 (green sticks) bound within a novel allosteric pocket (PDB ID: 7MDS) (Soares da 
Costa et al., 2021).

https://doi.org/10.7554/eLife.78235
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Results
Inhibitory activity of a demethylated MBDTA analogue
Given that proherbicides are metabolised in vivo to produce compounds with greater potency at the 
target site, it can be assumed that the metabolised form will have greater activity than the proher-
bicidal form against the target in vitro. As such, to assess whether MBDTA- 2 is a proherbicide that 
is demethylated in vivo, we measured the inhibitory activity of the demethylated analogue, (Z)- 2- 
(5- (4- hydroxybenzylidene)- 2,4- dioxothiazolidin- 3- yl)acetic acid (HBDTA), against both recombinant A. 
thaliana DHDPS enzymes (Figure 2; Christoff et al., 2021). The dose–response curves yielded IC50 
values for AtDHDPS1 and AtDHDPS2 of 100 ± 0.95 and 105 ± 1.04 µM, respectively (Figure 2). These 
values are slightly greater than those we reported for MBDTA- 2 (IC50 (AtDHDPS1) = 63.3 ± 1.80 µM, 
IC50 (AtDHDPS2) = 64.0 ± 1.00 µM) (Soares da Costa et al., 2021). These data suggest, conversely 
to our hypothesis, that the activity of MBDTA- 2 at the target site is not influenced by the retention or 
loss of the methyl group in vivo.

Dual-target activity of MBDTA-2
Given that the similarity in the in vitro and in vivo activity of MBDTA- 2 could not be explained by 
enhanced target site activity of the demethylated compound, we sought to explore other mechanisms 
that may explain this observation.

We investigated whether additional modes of action beyond the inhibition of the DHDPS enzyme 
may account for the increased in vivo potency relative to the in vitro activity against the target enzyme. 
It is well established that proteins catalysing sequential reactions within a metabolic pathway often 
have conserved binding site features (Hsu et al., 2013; Jensen, 1976; Jenwitheesuk et al., 2008; 
Zhang et al., 2009). As such, we hypothesised that DHDPS inhibitors may also have activity against 
the enzyme following DHDPS in the plant lysine biosynthesis pathway, DHDPR. The activity of both 
recombinant A. thaliana DHDPR enzymes was measured whilst titrating MBDTA- 2 to determine the 
IC50 values of 6.92 ± 0.92 µM against AtDHDPR1 and 8.58 ± 1.19 µM against AtDHDPR2 (Figure 3A). 
Given that these results revealed a new target site for MBDTA- 2, we assessed whether the compound 
could be proherbicidal with respect to DHDPR. To do so, we assessed the inhibitory activity of HBDTA 
against both AtDHDPR isoforms to determine the IC50 values of 169 ± 0.92 and 155 ± 0.90 µM for 
AtDHDPR1 and AtDHDPR2, respectively (Figure 3B). HBDTA is therefore >18- fold less potent at the 
DHDPR target site relative to MBDTA- 2, suggesting that the MBDTA- 2 methyl group is beneficial for 

Figure 2. Structure and in vitro potency of (Z)- 2- (5- (4- hydroxybenzylidene)- 2,4- dioxothiazolidin- 3- yl)acetic acid (HBDTA). (A) Chemical structure of 
HBDTA. (B) Dose–response curves of HBDTA against recombinant AtDHDPS1 (⚬) and AtDHDPS2 (+) enzymes. Initial enzyme rate was normalised against 
the vehicle control to determine % activity remaining. Data were fitted to a nonlinear regression model (solid line), resulting in R2 values of 0.99.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data for Figure 2.

https://doi.org/10.7554/eLife.78235
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DHDPR inhibition. As such, MBDTA- 2 is unlikely to be a proherbicide. Moreover, these results demon-
strate that MBDTA- 2 is a multi- targeted inhibitor of two consecutive enzymes in the lysine biosyn-
thesis pathway, AtDHDPS and AtDHDPR. This compound represents the first example of a dual- target 
inhibitor of the lysine biosynthesis pathway.

Mode of AtDHDPR inhibition by MBDTA-2
To investigate the molecular determinants of inhibition of AtDHDPR, we sought to co- crystallise the 
enzyme with MBDTA- 2. Given that our attempts were unsuccessful, we employed a static docking 
approach using the published AtDHDPR2 crystal structure (Watkin et al., 2018). The resulting data 
suggested that MBDTA- 2 binds in the active site with a binding affinity of −6.2 kcal mol−1 (Figure 4). 
The hydrophobic pocket occupied by MBDTA- 2 overlaps with the probable NADPH cofactor- binding 
site, based on the crystal structure of cofactor- bound Escherichia coli DHDPR (Reddy et al., 1996; 
Scapin et al., 1997). The predicted MBDTA- 2 orientation suggests its stabilisation by polar interac-
tions between the heterocyclic ring and Thr122 and Gly120. Additionally, the MBDTA- 2 acid is within 
hydrogen bonding proximity to Asp185. To validate the mechanism of inhibition of MBDTA- 2 against 
AtDHDPR, further enzyme kinetic experiments were performed. The previous dose–response exper-
iments were conducted according to standard practice in that substrate and cofactor were kept at 
limiting concentrations to ensure that inhibition may be measured regardless of the kinetic mechanism 
of inhibition. Subsequently, the activity of AtDHDPR was measured whilst titrating MBDTA- 2, this 
time in the presence of excess amounts of substrate and nucleotide cofactor, that is at concentrations 
10- fold above the respective KM values (Figure 4B). The IC50 values determined were 72.7 ± 1.07 and 
69.5 ± 1.06 µM for AtDHDPR1 and AtDHDPR2, respectively, which are 10- and 8- fold greater than 
those determined for AtDHDPR1 and AtDHDPR2 when substrate and cofactor were limiting. This 
apparent reduction in potency indicates that MBDTA- 2 is a competitive inhibitor, and therefore likely 
binds at the AtDHDPR active site as suggested by the docking results. Interestingly, this contrasts with 
the allosteric mode of inhibition of MBDTA- 2 against AtDHDPS.

Herbicidal activity of MBDTA-2 against weeds
Previously, we showed that the MBDTA- 2 compound has herbicidal activity against the model plant 
A. thaliana and is therefore the first example of a herbicidal lysine biosynthesis inhibitor. To further 

Figure 3. In vitro potency of (Z)- 2- (5- (4- methoxybenzylidene)- 2,4- dioxothiazolidin- 3- yl)acetic acid (MBDTA- 2) and (Z)- 2- (5- (4- hydroxybenzylidene)- 2,4- 
dioxothiazolidin- 3- yl)acetic acid (HBDTA) against AtDHDPR. Dose–response curves of (A) MBDTA- 2 and (B) HBDTA against recombinant AtDHDPR1 
(⚬) and AtDHDPR2 (+) enzymes. Initial enzyme rate was normalised against the vehicle control to determine % activity remaining. Data were fitted to a 
nonlinear regression model (solid line), resulting in R2 values of (A) 0.99 and 0.95 and (B) 0.99 and 0.99 for AtDHDPR1 and AtDHDPR2, respectively.

The online version of this article includes the following source data for figure 3:

Source data 1. Source data for Figure 3.

https://doi.org/10.7554/eLife.78235
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assess the potential of inhibiting plant lysine biosynthesis enzymes for the development of herbicides, 
the efficacy of MBDTA- 2 against the economically significant invasive weed species rigid ryegrass L. 
rigidum was investigated. Treatment of L. rigidum with 1200 mg l−1 of MBDTA- 2 resulted in inhibition 
of plant germination and growth, corresponding to a significant reduction in shoot fresh and dry 
weight and a significant reduction in root dry weight (Figure 5). Specifically, we observed ~4- and 

Figure 4. Mode of AtDHDPR2 inhibition by (Z)- 2- (5- (4- methoxybenzylidene)- 2,4- dioxothiazolidin- 3- yl)acetic acid (MBDTA- 2). (A) The predicted MBDTA- 2 
(green)- binding site resulting from static docking with AtDHDPR2 (PDB ID: 5UA0) overlaps with the probable NADPH cofactor- binding site (cyan, left 
panel). Hydrophobicity of the predicted binding pocket (right panel) is represented by white- red shading indicating hydrophilic–hydrophobic residues. 
(B) Dose–response curves of MBDTA- 2 against AtDHDPR1 (⚬) and AtDHDPR2 (+) enzymes in the presence of saturating concentrations of substrate and 
cofactor. Data were fitted to a nonlinear regression model (solid line), resulting in R2 values of 0.97 and 0.98 for AtDHDPR1 and AtDHDPR2, respectively.

The online version of this article includes the following source data for figure 4:

Source data 1. Source data for Figure 4.

https://doi.org/10.7554/eLife.78235
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Figure 5. Inhibition of Lolium rigidum germination and growth by (Z)- 2- (5- (4- methoxybenzylidene)- 2,4- dioxothiazolidin- 3- yl)acetic acid (MBDTA- 2). (A) 
Day growth of L. rigidum treated with three pre- emergence treatments of vehicle control (2% (vol/vol) DMSO, 0.01% Agral), or 1200 mg l−1 of MBDTA- 2, 
or 1200 mg l−1 of chlorsulfuron. Treatments were given by pipetting 2.0 ml per pot directly onto seeds. (B) Fresh weight of L. rigidum shoots and roots 
following treatment of plants with vehicle control (dots) or MBDTA- 2 (lines). Shoots, p = 0.00002, roots, p = 0.05233, unpaired Student’s two- tailed t-test. 
(C) Dry weight of L. rigidum shoots and roots following treatment of plants with vehicle control (dots) or MBDTA- 2 (lines). Shoots, p = 0.00088, roots, p 
= 0.00374, unpaired Student’s two- tailed t- test. Data were normalised against the vehicle control. Data represent mean ± standard error of the mean 
(SEM) (N = 3). **p < 0.01, ***p < 0.001, ****p < 0.0001.

The online version of this article includes the following source data for figure 5:

Source data 1. Source data for Figure 5.

https://doi.org/10.7554/eLife.78235
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~5- fold reductions in shoot fresh and dry weight, respectively, and a ~2- fold reduction in root dry 
weight (Figure 5). These results further exemplify the potential of lysine biosynthesis inhibitors for 
development as herbicide candidates.

Discussion
Herbicides with new modes of action are urgently needed to combat the rise in herbicide- resistant 
weed species, which pose a global threat to agriculture. In our previous study, we described the 
development of the first herbicidal lysine biosynthesis inhibitors, providing proof- of- concept for a 
novel herbicide mode of action. Whilst we previously explored the molecular mode of action of these 
inhibitors at their target site, namely the DHDPS enzyme, an explanation for their unusual similarity 
in in vitro and in vivo potency remained to be delineated. Specifically, we hypothesised that they may 
be acting as proherbicides, through demethylation of their aryl methyl ethers. While this mechanism 
of proherbicide conversion has not been reported to date, the demethylation of aryl methyl ethers 
on prodrugs, such as codeine, is well established (Dayer et  al., 1988; Kirchheiner et  al., 2007). 
Nevertheless, our finding that the demethylated analogue of the MBDTA- 2 aryl methyl ether did not 
positively impact activity against the target enzyme DHDPS demonstrated that these compounds are 
not proherbicides.

Given that we could not attribute the similarity between the in vitro and in vivo potency of our 
compounds to their modification to a more active form in vivo, we postulated that we may have previ-
ously failed to capture the totality of their target site effects. Our discovery that MBDTA- 2 is an inhib-
itor of not only DHDPS, but also of the subsequent enzyme in the lysine biosynthesis pathway DHDPR, 
supported this hypothesis. Moreover, the ~8- fold greater potency of MBDTA- 2 against DHDPR than 
DHDPS reveals that the in vitro potency is actually ~6- fold greater than the in vivo potency. Further-
more, the low- micromolar potency of MBDTA- 2 at the DHDPR target site is comparable to the potency 
of glyphosate, the most successful commercial herbicide active ingredient, at its enzyme target 5- e
nolpyruvylshikimate- 3- phosphate synthase (Mao et al., 2016; Sammons et al., 2018). The phenom-
enon of inhibitors having dual- target activity against consecutive enzymes in metabolic pathways has 
sometimes been attributed to conserved active site features (Hsu et al., 2013; Toulouse et al., 2020). 
However, there are also many examples of inhibitors of multiple targets from distinct pathways, which 
have been identified regardless of binding site similarities (Allen et al., 2015; Hashmi et al., 2021; 
Wang et al., 2019). Nevertheless, to our knowledge, this is the first time a dual- target inhibitor has 
been shown to have allosteric and orthosteric inhibitory activity at two different enzymes. The advan-
tages of multi- target inhibitors over single- target inhibitors have been well reported for the devel-
opment of novel drugs and fungicides (Allen et al., 2015; Gullino et al., 2010; Oldfield and Feng, 
2014). Such advantages include a reduced susceptibility to the generation of resistance, which is also 
a highly desirable property in herbicide development (Gressel, 2020; Hall et al., 2020). Indeed, there 
has been a focus on the use of herbicide mixtures inhibiting multiple molecular targets in attempts to 
reduce the generation of resistance to existing herbicides (Gressel, 2020). Despite the recognition of 
the potential of inhibiting multiple targets for the reduction of target site resistance generation, little 
work has been done on the development of new herbicides that do so (Fu et al., 2019; Giberti et al., 
2017). Dual- target compounds such as MBDTA- 2 are therefore promising candidates for progressing 
the herbicide development field beyond the ‘one target- one herbicide’ approach.

For the future development of dual- target herbicides, the previously published DHDPS co- crystal 
structure and the DHDPR- binding model presented here could be used for the rational design of new 
MBDTA- 2 analogues with increased target site activity (Soares da Costa et al., 2021). Such rational 
design efforts could also be guided by additional kinetic assays in the presence of sub- saturating 
amounts of MBDTA- 2. Examining any changes in the KM values for the DHDPR substrate and cofactor 
under these conditions may provide further insights into MDBTA- 2 interactions at the binding site. 
Additionally, exploring the structure–activity relationship of MBDTA- 2 through the screening of 
analogues against whole plants may also provide insights into modifications that are advantageous to 
in vivo potency.

Although these methods offer opportunities to optimise inhibitor potency, formulation also has a 
substantial impact on the performance of herbicide active ingredients and is therefore an important 
avenue to pursue for potency maximisation. Whilst the in vivo assays conducted here provide proof- of- 
concept for the potential of dual- target lysine biosynthesis inhibitors as herbicide active ingredients, 

https://doi.org/10.7554/eLife.78235
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controlled- dosage spraying experiments with the formulated compound will be pertinent to assess 
the application rate required for herbicidal efficacy in comparison to commercial herbicides. Further-
more, metabolomics experiments to quantify changes in lysine and other aspartate- derived amino 
acid levels in response to treatment with dual- target lysine biosynthesis inhibitors would be of interest 
to validate the mode of action at the target site, as well as elucidate whether pathway deregulation 
contributes to the in vivo activity.

The development of new herbicides that are effective against L. rigidum, particularly those with 
a reduced propensity to generate resistance, is of the highest priority given the economic impact of 
this species. An overreliance on a small number of herbicide modes of action has culminated in the 
widespread evolution of multiple resistance mechanisms in L. rigidum (Bajwa et al., 2021; Owen 
et al., 2014). In Australia alone, herbicide- resistant L. rigidum invades 8 million hectares of cropping 
land, resulting in revenue losses of AUD$93 million annually (Llewellyn et al., 2016). Our finding that 
MBDTA- 2 can significantly reduce L. rigidum germination and growth further illustrates the potential 
utility of lysine biosynthesis inhibitors in combatting the global herbicide resistance crisis.

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Gene (Arabidopsis thaliana) DHDPS1 TAIR AtG60880

Gene (Arabidopsis thaliana) DHDPS2 TAIR AtG45440

Gene (Arabidopsis thaliana) DHDPR1 TAIR At2G44040

Gene (Arabidopsis thaliana) DHDPR2 TAIR At3G59890

Software, algorithm PyRX Source Forge Version 0.8

Chemical synthesis
Compounds were synthesised as previously described (Christoff et al., 2021; Perugini et al., 2018).

Protein expression and purification
Recombinant AtDHDPS1, AtDHDPS2, AtDHDPR1, and AtDHDPR2 proteins were produced as previ-
ously described (Mackie et al., 2022; Soares da Costa et al., 2021).

Enzyme inhibition assays
DHDPS enzyme activity was measured using methods previously described (Soares da Costa et al., 
2021). DHDPR enzyme activity was measured using methods previously described (Mackie et al., 
2022). Briefly, reaction mixtures were incubated at 30℃ for 12 min before a second 60- s incubation 
following the addition of excess E. coli DHDPS (51 µg ml−1) for generation of the DHDP substrate. 
The relevant DHDPR isoform (2.6 µg ml−1) was added to initiate the reaction, and substrate turnover 
measured spectrophotometrically at 340 nm via the associated oxidation of the cofactor NADPH. 
Experiments were performed in technical triplicates.

Docking
The AtDHDPR2 crystal structure was retrieved from the Protein Data Bank and hydrogens added 
using AutoDock Tools. Three- dimensional MBDTA- 2 was docked with AtDHDPR2 using an unlimited 
search space in the PyRX interface using AutoDock Vina with default parameters. The resulting ligand 
poses were visualised in PyMol.

Herbicidal activity analyses
The herbicidal efficacy of MBDTA- 2 against L. rigidum was assessed using methods similar to those 
reported previously (Mackie et  al., 2022). Pre- wet seed- raising soil (pH 5.5) (Biogro, Dandenong 
South, VIC, Australia) supplemented with 0.22% (wt/wt) Nutricote N12 Micro 140 day- controlled 
release fertiliser (Yates, Sydney, NSW, Australia) was used. Ten seeds were sown at a depth of 0.5 cm 
into pots of pre- wet soil, following stratification at 4℃ for 21 days in the dark. Compounds dissolved 

https://doi.org/10.7554/eLife.78235
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in DMSO were diluted to working concentrations in H2O containing 0.01% (vol/vol) Agral (Syngenta, 
North Ryde, NSW, Australia) to a final DMSO concentration of 2% (vol/vol). Treatments were given by 
pipetting 2.0 ml of MBDTA- 2, vehicle control or positive control (chlorosulfuron PESTANAL [Sigma- 
Aldrich, North Ryde, NSW, Australia]) directly onto seeds upon sowing and on each of the subsequent 
2 days. Plants were grown in a chamber at 22℃ under a 16 hr light (100 µmol m−2 s−1)/8 hr dark 
schedule for 14 days before photos were taken. Roots and shoots were separated prior to drying at 
70℃ for 72 hr. Experiments were performed in biological triplicates.
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