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Abstract 

Shear failure in reinforced concrete (RC) beams with a brittle nature is a serious safety concern. Due to 

the inadequate description of the phenomenology of shear resistance (the shear behaviour of RC beams), 

several of the existing shear design equations for RC beams with stirrups have high uncertainty. Therefore, 

the predicted models with higher accuracy and lower variability are critical for the shear design of RC beams 

with stirrups. To predict the ultimate shear strength of RC beams with stirrups, machine learning (ML) based 

models are proposed in the present research. The models were created using a database of 201 experimental 

RC beams with stirrups gathered from earlier investigations for training and testing of the ML method, with 

70% of the data being used for model training and the rest for testing. The performance of suggested models 

was evaluated using statistical comparisons between experimental results and state-of-the-art current shear 

design models (ACI 318-08, Canadian code, GB 510010-2010, NZS 3101, BNBC 2015). The suggested 

machine-learning-based models are consistent with experimentally observed shear strength and current 
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predictive models, but they are more accurate and impartial. To understand the model very well, sensitivity 

analysis is determining as input values for a specific variable affect the outcomes of a mathematical model. 

To compare the results with different machine learning models in training and testing R2, RMSE and MSE 

are also established. Finally, proposed ML models such as gradient boost regressor and random forest give 

higher accuracy to evaluate the shear strength of the reinforcement concrete beam using stirrups 

Keywords  

RC Beam with Stirrups, Shear capacity, ML Algorithm, Standard building code, Sensitivity Analysis 
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1 Introduction 

The shear behaviour of reinforced concrete (RC) structures has been intensively studied for decades. 

The intricacy of the shear transfer mechanism [1], [2], [3], [4], [5] the shear strength models for RC beams 

depends on various paraments and factors while considering different country codes. As a result, the precise 

value of shear strength remains a mystery. Consequently, empirical formulas and semiempirical formulas for 

design codes are proposed by regression analysis of experimental data against certain theoretical hypotheses. 

In structural design, the American concrete institute (ACI 318-08), Canadian building design code (CSA 

A23.3 04), Chinese design code (GB50010-2010), New Zealand building code (NZS3101), and Bangladesh 

building design code (BNBC 2015) have been used actual simulated in practice. In recent decades, numerous 

investigations have been done to enhance the ability of empirical formulas to predict the shear behaviour of 

concrete structures [6], [7]. Bazant and Kim [8] and Russo et al. [4] proposed the shear strength equations 

for normal-strength concrete and high strength concrete beam, respectively, and their size effect. Arslan et al. 

[5] equation are related to slender reinforced concrete (RC) beam without stirrups, where normal strength 

concrete and high strength concrete is considered for a shear design equation. Zsutty et al. [9] developed a 

database where statistical regression analysis was applied and established an equation for failure stress 

prediction for the sudden shear failure of the slender beam. However, the prediction accuracy of these 

equations and developed models is low; when multiple influence factors are incorporated, a model with high 

robustness and accuracy is required to predict the beam's shear capacity.  
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      Back-propagating neural networks (RBPNNs) [10], artificial neural networks (ANNs) 

[11],[12],[13],[14][15],[2],[16],[17],[18],[19],[20], adaptive neuro-fuzzy inference systems (ANFIS) [21], 

[22],[23],[24], and have been utilized to forecast concrete qualities, damage detection, shear, and flexural 

strength and compressive strength prediction in recent decades. Other machine learning techniques such as 

random forest (RF) [25],[26], support vector machine (SVM) [27],[28],[29] are widely using for optimization 

and to evaluate the compressive strength of the concrete specimens. Concrete compressive strength and 

electrical resistivity are predicted using by gene expression programming (GEP) [30],[31],[32],[33]. The 

variable input factors were used in the GEP model as Portland cement, water, fine aggregates, coarse 

aggregate (CA), superplasticizer, fly ash (FA), blast furnace slag (BFS), and concrete age. The suggested 

literature, GEP, ANN, and SVM models used testing data for validation and training. The prediction results 

revealed that among the eight input parameters, water, cement, and age have the greatest impact on the 

compressive strength of specimens. 

      One of the major exploration areas in the use of ML techniques has been predicting the shear and 

flexural capacity of the beam, examples of which include studies by [34],[35],[34],[36]. The shear capacity 

of fibre-based-reinforced concrete slabs was investigated using regression model, ensemble tree (bagged and 

boosted), SVM, DT, GPR, ANNs with 148 experimental test results and eight input parameters in these 
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studies [36]. To predict the compressive and flexural strengths of steel fibre reinforced concrete, XGBoost 

and GBR showed the best results using seven input parameters [37]. Later, they valid the result using RMSE 

MSE and see their correlation among the variables. Solhmirzaei et al. [38] used the same technique to predict 

the failure mechanisms and shear capacity of ultra-high-performance fibre concrete, comparing the results to 

previous research and existing codes and predicting the best model for the problem. Similarly, a genetic 

algorithm (GA) was being extended to the shear capacity of the deep beam [39]. To compare the mathematical 

models and the different country code equations, a database of 381 deep beam experiments was used. For 

structural safety, the reliability analysis and the resistance factors for shear design were determined. The bond 

strength estimation of concrete-encased steel structures using ANN-PSO, GAPSO [40] showed more accurate 

results than ANN. To estimate the ultimate compressive strength of rectangular concrete-filled steel tubular 

(RCFST) columns [41], the hybrid model PANN was designed to compare the result with the design code. 

In the end, sensitivity analysis was also conducted to see the influence on input paraments in the design. 

Cladera et al. [3] used the ANN method to develop a new method for predicting shear strength; a total of 123 

test data was used, and compared to other methods, 0.23 standard deviation was gained. It is necessary to 

create a better database and use a novel ML algorithm design approach that may optimize the higher range 

of input qualities in the RC beam design to enhance the usability of RC beams with stirrups. The outcome of 

numerous elements of the RC members with stirrups was investigated using a computational framework 

based on machine learning. The results of multiple different testing procedures were gathered and fed into 
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the machine learning architecture. Hoang et al. [42] used pattern recognition algorithms to identify the critical 

parameters that affect the shear response of RC beams. In Fig. 1, stirrups prevent cracks from forming in 

beams and increase aggregate interlocking capacity, making the mechanical properties of stirrup beams more 

complicated. The suggested ML models' expressions are a function of beam geometric properties and loading 

configuration can be used to forecast the shear capacity of an RC beam with stirrups.  

      This study aimed to create ML models that could evaluate the shear capacity of the RC beam with 

stirrups in such a way that model predictions could be quantitatively connected to input data. First, a 

substantial experimental database is built, followed by comparing the current result with the projected model 

in the following parts. The data is then divided into training and testing sets at random using the standard 

proportions of 70%–30%. A robust machine learning approach called ANNs, GEP, RF, GBR, LR, and RR is 

utilized to develop a predictive shear strength model. The testing sets are then used to evaluate the ML model, 

and its predictions are compared to those of various existing classical mechanics-based models and existing 

codes. Finally, using a machine learning model, the elements that contribute to a certain shear strength 

estimation are investigated, and various conclusions are derived. 

 



 

7 

 

               Fig. 1. Obtained various locations of the RC beams using stirrups in shear. 

Table 1  

Statistical parameters of the different variables used in the database 

Parameters Unit Mean Standard Minimum Average Max Operation 

a  mm 1042.4 560.3 190.0 914.0 2553.0 Input 

b  mm 208.2 83.0 76.0 203.0 457.0 Input 

d  mm 357.4 127.7 95.0 383.0 851.0 Input 

cof  MPa 29.6 7.2 12.8 27.7 50.3 Input 

rt  % 2.7 0.9 1.0 2.7 4.8 Input 

ryf  MPa 459.2 130.1 300.0 434.0 707.0 Input 

stp  % 0.3 0.2 0.1 0.3 1.9 Input 
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syf  MPa 384.3 122.8 159.0 331.0 820.0 Input 

testV  KN 253.8 164.3 13.6 211.9 836.1 Output 

 

2 Shear design of RC beam with stirrups  

The following section summarizes the existing shear design models for RC beams with stirrups as 

defined in design guidelines. 

2.1 ACI 318-08       

   The shear capacity of non-prestressed concrete members without shear reinforcement is calculated [43] 

using Eq. (1) and in SI units as: 

                     
6

co

c

f
v bd

 
=  

 
 

                                               (1)                                                            

where  is a factor that contributes to the lightweight of concrete. 

The shear resistance can be calculated for a more detailed analysis by using Eq. (2) as follows 

                     0.290.16 17 u
c co rt co

u

V
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V                   (2) 

  uV  and uM are the calculated shear force and bending moment in the crucial section under consideration. 

In any instance, the ratio u

u

V

M
 should not exceed 1. 
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According to the ACI, code nV  is considered as a normal shear strength   

                     n c sV v v= +                                                (3)  

where from Eq. (4) cv is taken and sv  expressed as a  

                    
v sy

s

A f d
v

s
= = 

rt stpb d                                      (4) 

where 
syf  is the yielding strength of the transverse reinforcement, vA  is the area of vertical shear 

reinforcement. rt  is the yielding of the longitudinal reinforcement ratio, s considered as a stirrup spacing, 

and 
stp is the transverse reinforcement ratio. 

2.2 Building code CSA (Canadian Standards Association) 

     According to the Canadian code [44], the shear capacity of beams without web reinforcing is 

determined only by concrete compressive strength. Shear resistance in a beam without shear reinforcement 

is calculated Eq. (5) as follows: 

                       0.2 cc of bdv =                                            (5)   

    where b  and d  considered as a web width and effective depth, respectively. Concrete compressive 

strength cof in MPa. 

ACI building code sv has the same value considering Eq. (4) 

2.3 Chinese Code GB 50010-2010 

     To improve the safety in shear design, the coefficient of stirrups 1.50 in the formula is uniformly 
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changed to 1.0. For the shear capacity of with stirrups only [45]. 

                   0.7 sv
n to rt

A
V f bd d

s
= +                                    (6) 

where tof  is the tensile strength of the concrete. rt  is the yielding of longitudinal reinforcement 

ratio. The cross-sectional area of the bent steel bar in the bent plane svA , d is the effective depth. 

                  0.07 sv
n co rt

A
V f bd d

s
= +                                     (7) 

For converting the concrete tensile strength to compressive strength 10co tof f= , have been used.  

2.4 New Zealand concrete structure code 

The nominal shear capacity of a reinforced concrete beam with transverse reinforcement [46] is given 

by 

                   ( )0.07 10n srt c tp rtoV df bd b  += +                          (8)      

2.5 BNBC 2015  

 Eq. (9) calculates the concrete shear strength (MPa) when subjected to the shear strength of 

unreinforced concrete parts [47] as follows: 

                    0.17c cov f bd=                                           (9) 

For more details, shear strength can be calculated by  
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      where, u

u

V d

M
shall not take greater than 1.0, where uM occurs simultaneously with uV at the 

section considered. 

                   r

v sy v
ts

s d
A f

v
ss

A

b
= =                                       (12)  

      where, the BNBC code follows the same as the ACI 318-08 code. 

 

3 Database Creation 

Total 201 sets experimental test results of shear strength test of reinforcement concrete beam with steel 

stirrups was obtained from [48], [49], [50], [51] [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], 

[63], [64], [65]. Each paper's experimental test results included a diverse set of parameters. To ensure the 

input variables, the majority of influence parameters were used to predict the shear capacity, which can also 

be used in the county code. Each literature contains eight input parameters. The parameters are shear span a, 

web width b, effective depth d, transverse reinforcement ratio
stp  , yielding strength of the transverse 

reinforcement 
syf  , concrete compressive strength 

cof , yielding of longitudinal reinforcement ratio 
rt

 , yielding strength of longitudinal reinforcement 
ryf  . Table 1 summarizes the model's main variable 

locations and datasets parameters explained as mean, standard deviation, minimum and maximum. The only 

output in this study's database was the experiment shear capacity 
testV  of the RC stirrups. 
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                    Fig. 2. Kernel Density estimation for input and output variables. 

     In Fig. 2, Kernel density estimation (KDE) estimated the probability density function (PDF) of the 

random variables in the dataset. It can easily show the distribution of the data in each variable. The high picks 

show more data on distribution at this stage. The KDE line shows the distribution line in the dataset. The 

bandwidth of the KDE is a parameter that has a high impact on the estimation. The higher bandwidth reveals 

smooth picks, and the low bandwidth shows more picks in the figures. 
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Table 1  

Different machine learning models and their performance in predicting shear capacity for various problems. 

Author Year Machine learning method R2 

Olalusi et al .[66] 2020 GPR 

RF 

0.93 

0.95 

 

 

Pham et al. [67] 

          

 

 

2018 

ANFIS 0.65 

SVM 0.64 

PSO 0.81 

ANNs 0.63 

Olalusi et al .[68] 2020 GPR 0.99 

SVM 0.98 

Gao et al. [69] 2021 XGBoost 0.91 

Solhmirzaeia et al. [70]  

2020 

SVM 0.81 

ANNs 88.9 

k-NN 0.75 

 

4 The Application of Machine learning 

    Table 2 describes the previous machine learning method that has been used for different structural 
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problems such as beam-column join, ultra-high performance concrete RC beam, soft soil, Steel fibre RC 

beam. The shear capacity has been predicted through GEP, SVM, ANNs, XGBoost, KNNs, PSO, ANFIS, 

and RF. Almost all the ML model shows better performance in predicting the shear capacity. Later, describe 

six machine learning models to evaluate our result and choose the best model to determine the RC beam's 

shear capacity with stirrups. The standard country code will evaluate the results. 

4.1 Linear Regression 

    Statistical analysis using linear regression is a well-known technique for discovering relationships 

between two or more variables. [71]. After establishing a connection between the features (input), and the 

target (output), the learning process will be used to minimize the value of the loss function (like Mean 

Squared Error) [72]. The weights that minimize the loss function are also the ideal parameters for regression. 

This model has a low degree of accuracy due to its simplicity. The general structure of a multiple linear 

regression model is illustrated in Eq. (13) [73] follow: 

                   
0

1

ˆ
n

j j

j

y a a X
=

= +                                             (13) 

where 
jX are the features (input) of the dataset and 0 1 2, , ,..., na a a a  the parameters to the train set, 

the observed result showed ŷ . 

4.2 Ridge Regression 

When the independent variables are highly correlated, least-square estimates have a low bias but 

significant variance. When creating ridge regression models on a real dataset, the trade-off between bias and 

variance is often complex. The development of ridge regression is driven by the search for bias with a small 

mean square error (MSE). 
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Hoerl and Kennard (1970) hypothesized that the LS estimator might be unstable; the general structure 

of the model is illustrated in Eq. (14). 

                   
1ˆ ( ' ) 'X X X Y −=                                           (14) 

Before computing the inverse of the matrix 'X X , it could be enhanced by adding a small constant

value to the diagonal elements. 

The ridge regression estimator is the outcome of this process. 

                  
1ˆ ( ' ) 'ridge pX X K X Y  −= +                                   (15) 

The penalized sum of squares is minimized by using ˆ
ridge , 

                  

2

2

1 1 1

p pn

i ij j j

i j j

y x   
= = =

 
− + 

 
                                     (16) 

where 

2

1 1

pn

i ij j

i j

y x 
= =

 
− 

 
  , is equivalent to minimization of some 0c  , 0  i.e., constraining the 

sum of the squared coefficients. The shrinkage parameters define as . 

 

4.3 Developing GEP model 

The optimization problem plays the role of individuals chosen for their fitness, and genetic variation is 

added by evolutionary algorithms utilizing one or more genetic operators. Near the 1950s, an artificial 

computational system was used based on an evolutionary algorithm [74]. 
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GEP model is closely related to genetic algorithms and genetic programming (GP). It is classified as a 

complex tree structure known as an evolutionary algorithm used in computer models [75]. Fig. 3 

demonstrates a modification to the GEP evaluation algorithm. It inherits linear chromosomes such as DNA 

strands of fixed length from GA and expressive parse trees of various sizes and shapes from the GP algorithm 

[76],[77]. The measure to evaluate in GEP is passing the genome on to the next population. Another one-of-

a-kind function is developing things via chromosomes composed of genes that are subsequently expanded 

into the tail and head [78].In the GEP model, chromosome and pares trees work as genotype and phenotype. 

Those multiple pares tresses are called in GEP as expression trees. In Fig. 4, each gene is responsible for 

encoding a sub-expression tree (sub-ET). The sub-ETs can then engage in various ways, resulting in the 

cellular system's effective program. Each program in population, chromosome, execute a program and 

evaluate fitness are involved. The mutation cycle is repeated by adding new individuals for multiple 

generations until the optimal model is obtained. To revitalize the population, genetic operations, including 

reproduction, mutations, and crossings, are performed. 
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Fig. 3. The GEP algorithm's architectural flowchart. 

The outcomes of the GEP model are influenced by the parameters chosen. Table 4 lists the function 

setups in the GeneXproTools v5.0 version that were used in the GEP model. The model's chromosome 

architecture, such as the number of genes, head size, and lining function, was determined based on literature 

[79],[80]. The final GEP models structure such as chromosomes, generals, training and testing records are 

shown in Table 3. These parameters are utilized to forecast the predicted value for the RC beam with stirrups. 

The number of trees and max complexity (Gene) was chosen from the previous experiences [81]. The model's 

performance is measured using the root mean square error (RMSE), and the GeneXproTools v5.0 version 

was used to create the model. The input parameters used for the final GEP structures are summarized in Table 

1. As a result, testV  it could be expressed as 
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              ( ), , , , , , ,test co rt ry stp syV f a b d f f f =                                (17) 
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    Fig. 4. Expression tree developed by gene expression tree (GEP) model. 



 

20 

Table 2  

Parameter setting for the ultimate GEP structures  

Parameter   Meaning Setting 

Chromosomes  50 

 Number of Genes  7 

General  Head size 13 

 Tail size 

Dc size 

Gene size 

13 

14 

14 

 Linking function 

Error 

Addition 

Error Function 

 Fitness function RMSE 

 Function set , , ,+ −    

Training records  200 

Test records  52 

   

Table 3  

The statistic used in the test model for the result 
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Function Set     

Function  Symbol   Weight  Arity  

Addition  + 2 2 

Subtraction - 2 2 

Multiplication    2 2 

Division / 2 2 

Numerical Constants  Model    

Constants per gene 10   

Data type  Floating- Point   

Lower Bound -10   

Upper Bound  10   

 

4.4 Random Forest  

 Random forest (RF) [82] is another effective machine learning (ML) strategy that works by creating a 

large number of decision trees during training time to address classification, regression, and other tasks, 

which was proposed by Ho in 1995. And Leo Breiman developed an extension of the algorithm [83]. The 

primary aim of this study is to forecast the shear capacity of the RC beam with stirrups by focusing 

exclusively on the regression model. Before averaging the results, the Random Forest (RF) generates the 
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appropriate number of regression trees. Averaging the output of all separate trees yields the final predicted 

results. Finally, the following equation gives the RF regression predictor after l  trees  ( )lT x have been 

produced [82].  

                         1

( )

( )

L

l

l

T x

f x
L

==


                                      (18) 

The RF regression method is a non-parametric regression approach comprised of a set of l  trees 

1 2{ ( ), ( ),...., ( )}lT X T X T X  , where 
1 2{ , ,...., }X x x x=  is a   -dimension input vector that forms a 

forest—output k correspondent to each tress ( 1,2,...., )kY k k= = . 

For each RF regression tree building, a new training set is created, replaced by the previous training set. 

As a result, a randomly picked training sample is used each time a regression tree is made from the original 

experimental dataset. The out-of-bag (OOB) example is used to check for sample accuracy [84]. 

                    
2

( ) ( )

1

( ) 1 ( , )
i i

m

X x X x

j

GI t f t j
=

= −                                (19) 

When independent test data is used, the inherent validation qualities of random forests improve tree 

robustness. The result is obtained by averaging the tree estimations. 

 

4.5 Gradient Boost Regressor  

     Leo Breiman observed that boosting can be viewed as an optimization procedure on an appropriate 

cost function, which gave rise to the concept of gradient boosting. This is defined by introducing and 



 

23 

minimizing a loss function ( , ( ))K y f x , where the number of iterations M : 

                      0

1

( ) min ( , )
L

i

l

f x arg K y



=

=                                       (20) 

Calculate a type of residual known as a pseudo-residual, where m = 1 to M, and 1,2,3,...,i n=  

                     

1( ) ( )

( , ( ))

( )
m

i i
im

i f x f x

K y f x
r

f x
−=

 
= −  

 
                                  (21)   

Solve the one-dimensional optimization problem below to find a multiplier m . The equation in the down,  

                     1

1

min ( , ( ) ( ))
L

m i m m i

l

arg K y f x h x


 −

=

= +                           (22) 

For the training, set 
, 1{( )}n

i i ix y =
update the model, which emphasis as below 

 

                      1( ) ( ) ( )m m m mf x f x h x−= +                                       (23)       

For the output defined after the M iteration as below,   

                       
1

( ) ( )
L

M m m

l

f x h x
=

=                                             (24)                 

 

4.6 Artificial Neuronal Network (ANNs) 

By inventing a computer framework in 1943, Warren McCulloch and Walter Pitts lay the foundation for 

neural networks, which create a future computing system [85]. ANNs are a type of soft computing approach 

inspired by the behaviour of the human nervous system. It is widely employed in civil engineering research 

and technology [86],[87],[88],[89],[90],[91]. Neural network architecture comprises several major 

components, including inputs, weights, a sum function, an activation function, and outputs. The weights 
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modify the input signals and are added to the bias term as specified in Eq. (25) [92]. Fig. 5 shows a schematic 

design of an artificial neuron model. 

                
0

L

i i i

i

y f x w b
=

 
= − 

 
                                             (25) 

     where iw   represent the weight for input ix   and bias defined as b  . L   is the number of 

neurons and y is the output term. 

The sigmoid function is employed as the activation function in multilayer feed-forward ANNs. The 

sigmoid function is a mathematical function expressed in Eq. (26) [93]. 

                
1

( )
1 k

f k
e −

=
+

 where, 
0

L

i i

i

k x w b
=

= −                            (26) 

where   is a constant, which is a shape parameter in Eq. (26) used to control the gradient of the 

semilinear structure. 
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       Fig. 5. The architecture of artificial neuronal networks (ANNs). 

 

5 Results and Discussion  

Table 4  

Statistical indicators of the development of the machine learning model for the training and testing Phase 

 

Training    Testing   

Statistical parameter R2 MSE RMSE R2 MSE RMSE 

Linear Regression 0.85 4355.13 65.9 -1.43 52500.10 229.12 
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Ridge regression 0.87 3436.26 58.62 -0.93 50081.46 223.78 

Random forest 0.98 359.06 18.94 0.94 1167.51 34.16 

Gradient Boost Regressor 0.99 159.91 12.64 0.93 1293.72 35.96 

ANNs 0.97 564.09 23.75 0.96 1150.31 34.52 

GEP 0.92 344.1 44.54 0.95 388.2 44.98 

 

5.1 Observation of the Result of Linear Regression and Ridge Regression 

5.1.1 Developing the linear regression model and performance analysis 

Multiple linear regression (MLR), often known as multiple regression, is a statistical technique for 

predicting the outcome of a predictor variable by combining many factors. MLR is two types which are 

including linear and nonlinear regression. Here we are focusing on the linear part of it. 
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Fig. 6a. Training data fit in multiple linear 

regression model 

Fig. 6b. Testing data fit in multiple linear 

regression model 

As shown in Table 5, the multiple linear regression model is the model's performance of R2, MSE, RMSE 

are calculated for training as 0.85, 4355.13, and 65.9, respectively. Fig. 6a shows that the multiple linear 

regression model is not efficient in estimating the shear capacity of the RC stirrups than GEP, and ANN, 

random forest, and gradient boost regressor model. Fig. 6b shows the negative result for R2 -1.43, and MSE 

and RMSE are also calculated for testing 52500.10 and 229.12, respectively, which is much lower than 

another machine learning algorithm. 

5.1.2 Developing the ridge regression model and performance analysis 

  Ridge regression is a model tuning technique that can be used to analyze data with multi-collinearity. 

Calculating the coefficients of multiple-regression models in cases with strongly correlated independent 

variables. 
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Fig. 7a. Training data fit in ridge regression 

model. 

Fig. 7b. Testing data fit in ridge regression 

model. 

     The ridge regression model performance of R2, MSE, RMSE are calculated for training as 0.87, 

3436.26, and 58.62, respectively shown in Table 5. Fig. 7a shows that the ridge model is not efficient in 

estimating the shear capacity of the RC stirrups than GEP, and ANN, random forest, and gradient boost 

regressor model but it is showing better result compared to the multiple linear regression. Fig. 7b shows the 

negative result for R2 -0.93, and MSE and RMSE are also calculated for testing 50081.46, and 223.78 

respectively, which is much lower than another machine learning algorithm. 

 

5.2 Observation of the Result between GEP and ANN model  

5.2.1 Developing the GEP model and performance analysis  

     Eq. (28) shows a simplified relationship based on the GEP technique for estimating the RC beam with 

stirrups. After multiple attempts, the model was finalized with a minimum objective value of 0. 085. The best 

GEP model is shown below 
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The sub-ETs in Fig. 4 are used to create the preceding expression program, which comprises 

mathematical functions, constants, and variables in the GEP model. Seven sub-ETs (genes investigated in the 

model development) contain the complex solution's multiple components to the modelled problem and are 

linked by the addition mathematical operator. In Table 6, sub-ETs variables notation and constrain were 

reading in the direction of left-to-right and top-to-bottom. The parameters in Fig. 4 are more complex and 

hierarchical structures, denoted by the letter "d" while the constants are indicated by the letter "c", a digit 

precedes both characters. Each sub-ET reflects a distinct aspect of the problem that must be addressed to 

produce a meaningful solution.  

The process was repeated until no substantial change in R squared values or the fitness function was 

seen. After the method is stopped, other statistical metrics such as RMSE, MSE, and the trained model's OBJ 

function are calculated. Following iterations, the number of genes, head size, and arithmetic operations in the 

functions set increases while a linking function is established. 
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Table 3 summarizes the best parameters utilized to model the GEP-based model. After analyzing the 

model performance with different GEP models' variables in the training and testing sets, the final model was 

picked. The number of iterations in evolution also significantly affects a model's success. In the model, the 

best fitness is 21.95, and for the training and testing, the best fitness is 731.21 and 731.24. After 66304 

generations, the model was terminated, and the method was completed when no significant changes were 

seen. 

Table 5  

Different variables notations as well as constants values in the model 

 

Variable  Constants 

Sub-ET1    Sub-ET2   Sub-ET3     Sub-ET4   Sub-ET5     Sub-ET6   Sub-ET7 

d0 a
a  C8 8.5 C8 8.3 C6 -6.5 C1 -0.7 C3 4.6 C0 0.9 C8 -0.9 

d1 b  C7 9.1   C1 -1.0   C5 -10.6 C4 -9.8 C5 -5.9 

d2 d  C9 -11       C0 -4.4 C6 -0.4   

d3 cof
         C1 -8.2     

d4 rt
         C6 -0.9     

d5 ryf
 

              

d6 stp
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d7 syf
 

              

 

Numerous statistical metrics, such as the root mean square error, the root mean square error, and r 

squared, are calculated further to emphasize the model's performance throughout the training stage. As shown 

in Table 5, the GEP model is determined the R2, MSE, RMSE is calculated for training as 0.92, 344.1, 44.54, 

respectively and for the testing, the R2, MSE, RMSE are calculated for testing as 0.95, 388.0, 44.98, 

respectively. Fig. 8 shows that the GEP model is more efficient in estimating the RC stirrups' shear capacity 

than linear regression and ridge regression. And the ANN is showing much better results compared to the 

GEP model. 

  

Fig. 8. The relationship between observed 

and expected shear capacity that the GEP model 

provides. 

Fig. 9. The relationship between observed and 

expected shear capacity that the ANN model 

provides. 

 

5.2.2 Developing the ANN model and performance analysis 

As illustrated in Fig. 4, the ANN model comprises three layers: input, output, and hidden. The number 
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of neurons in the input and output layers equals the number of variables in the input and output layers. Thus, 

the input layer contains eight neurons, and the output layer has one. Whereas neurons in the buried layer are 

discovered using a hit-and-miss strategy. The ANN model predicts the shear capacity via training and testing. 

This model was built using 201 datasets, of which 70%, 30%(i.e., 141, 60) were utilized for training and 

testing, respectively. This model was chosen using the levenberg–marquardt (LM) technique. Ten hidden 

layers were used to test the ANN model. 

As shown in Table 5, the ANN model is determined as an R2 = 0.97. The MSE, RMSE are also calculated 

for training as 564.09, and 23.75, respectively. Fig. 9 shows that the ANN model is more efficient in 

estimating the shear capacity of the RC stirrups than Linear regression and Ridge regression. Random forest 

and ANN are showing similar results, which is better than the GEP model 

5.3 Observation of the Result Between Random Forest and Gradient Boost 

Regressor 

5.3.1 Developing the random forest model and performance analysis 

     Random forest is a well-known machine learning method that works in multivariable problems. It gives 

outstanding accuracy across broad selection options of classification and regression predictive modelling 

problems [83]. Like bagging, random forest entails building many decision trees from bootstrap samples 

from the training dataset. 

As shown in Table 5, the random forest model is the model's performance determined R2 0.98. The MSE, 

RMSE are also calculated for training as 359.06, and 18.94 respectively. Fig. 12a shows that the random 
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forest model is more efficient in estimating the shear capacity of the RC stirrups than linear regression and 

ridge regression, GEP, and ANN models. Random forest and ANN are showing similar results in training, 

but they show less performance than the ANN model for the testing. Fig. 12b illustrates the R2 value as 0.94 

for the testing model, less than the training model in random forest.  

 

  

Fig. 12a. Training data fit in the random 

forest model. 

Fig. 12b. Testing data fit in the random forest 

model. 

 

5.3.2  Developing the gradient boost regressor model and performance analysis 

Gradient boosting is a highly effective technique for developing predictive models. Gradient boosting 

is effective when used with the loss function, weak learners, and the additive model. It enhances the 

performance of the underlying algorithm using several regularization approaches. The function [94] (weak 

hypothesis) demonstrates how a functional gradient approach of boosting has resulted in the creation of 

boosting algorithms in a wide variety of domains of machine learning and statistics, in addition to regression 
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and classification. 

As shown in Table 5, the random forest model is the model's performance determined R2 0.99. The MSE, 

RMSE are also calculated for training as 159.91 and 12.64, respectively. Fig. 13a shows that the gradient 

boost regressor is more efficient in estimating the RC stirrups' shear capacity than linear regression and ridge 

regression, GEP, and ANN model. Gradient boost regressor showing better results than for training and 

testing. Table 5 shows that the R2, MSE, and RMSE are calculated for testing as 0.93, 1293.72, and 35.96, 

respectively. Fig. 13b illustrates the R2 value as 0.93 for the testing model, less than the training model in 

gradient boost regressor. 

 

  

Fig. 13a. Training data fit in the gradient 

boost regressor model. 

Fig. 13b. Testing data fit in the gradient 

boost regressor model. 

 

5.4 Observation of the Result Between Actual Value and Predicted Value 

for Different Country Code 
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A total of 201 experimental test results were analyzed to determine the shear critical of an RC beam 

with stirrups only included in the model. To prevent the effect of arching, beams with a shear span-to-depth 

ratio / 2.5a d   were omitted from consideration. Fig. 15 illustrates the distribution of the effective depth, 

reinforcement ratio, and concrete compressive strength of the beams employed in this investigation. It can 

be observed from Fig. 16 that the effective depth, beam weight, and shear span have a height influence on 

the predicted value. 
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Fig. 14 Linear relation between actual value and predicted value: (a) ACI 318-08; (b) CSA A23.3-

04 ;(c) NZS 3101; (d) BNBC 2015; (e) GB 50010-2010. 

 

 

Fig. 14 illustrates that the relationship between experimental shear capacity and predicted shear force 
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using various codes. When these values are compared to the R squared value of 0.78, CSA A23.3-04 has the 

best-fit data points. NZS 3101 and GB 50010-2010 both evaluate the shear capacity of beams with 0.75 and 

0.73 shear strengths, respectively. ACI 318-08 and BNBC 2015 have the same shear capacity results of 

expected values 0.45 and 0.41, respectively.  

Table 7 presents a detailed examination of the expected shear resistance from various codes using 

regression analysis. As can be seen from this table, GB 50010-2010 has the lowest standard deviation of 0.32 

and the lowest mean of 1.06. The ACI 318-08 and CSA A23.3-04 standard deviation is 0.66 and 0.69, but 

CSA A23.3-04 is showing higher result in mean 2.23 while ACI 318-08 is 1.33. 

The machine learning model shows the relationship between experimental shear capacity and predicted 

shear force using various models in Table 7. Random forest and gradient boost regressor show the lowest 

mean of 0.98 and 0.985 and standard deviation of 0.078 and 0.075, respectively. It shows a significant 

correlation between the predicted value and the proposed ML model in the paper. ANN and GEP model is 

showing for mean 0.993 and 1.01 and standard deviation 0.147 and 1.02 respectively. ANN model is better 

than the GEP model to identifying shear capacity in this database. Multilinear regression and ridge regressor 

showing not good results compared to the other ML model. To satisfy the powerful machine learning model 

RMSE, MSE is also calculated in Table 5. The r squared value (Table 4) shows the best correlation between 

the actual and predicted value for the training and testing stage, which describes powerful ML algorithms 

with high prediction capacity for large-scale data. It is also suggested that more databases will give more 
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accurate results to implement those powerful algorithms in the future. 

Fig.15 displays /a d  the shear capacity for the sample RC beam with the stirrups database. Where 

the residual assumption the variability is approximately about the same on various data in the x-axis. For 

random forest, gradient boost regressor, ANN, and GEP models show almost the same sequence. This model 

shows the mean is normally distributed, with no systematic curvature and non-normality, indicating no real 

obvious problem with the assumption model. Table 7 illustrates that mean and standard deviation are 

compared to lower, whereas the existing code has a higher result—gradient boost regressor showing the best 

result among all leering machine models.  

Fig. 15 also shows that ACI 318 -08 and BNBC 2015 have lower results than the proposed robust 

machine learning algorithm. CSA A23.3-04, NZS 3101, and GB 50010-2010 show the variable distribution 

is almost the same in the x-axis and no systematic curvature generated. It means the data is normally 

distributed, and predicted values are valid. 

Table 6 

Variation of proposed shear strength for RC beam with stirrups. 

Compare results Statistical approach 

 Mean Standard Deviation 

testV

ANN  

0.993 0.147 

testV

RF  

0.980 0.078 
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testV

GBR  

0.985 0.075 

testV

GEP
 1.01 1.02 

testV

LR  

1.04 2.609 

testV

RidgeR  

1.175 3.321 

 318 08

testV

ACI −  

1.33 0.66 

 A23.3 04

testV

CSA −
 2.23 0.69 

GB 50010-2010

testV
 1.06 0.32 

 3101

test

NZS

V
 1.42 0.51 

 2015 

test

BNBC

V
 1.35 0.68 

 

It can be observed that the machine learning model (gradient boost regressor) which is the best model 

to predict the RC beam with stirrups. The same accuracy is adopted and satisfies the predicted best model for 

training and testing using different civil engineering problems to identify shear capacity. 
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Fig. 15. Shear capacity result predicted by diffecnt mechanics-based model : (a) Random Forest ;(b) 

Gradent Boost Regressor ;(c) Artifical Neural Network; (d) Gene Expression  Programming;(e) ACI -318-

08; (f) CSA A23.3-04;(g) NZS 3101; (h) BNBC 2015;(i) GB 50010-2010. 

5.5 Sensitivity analysis 

The relative strength of the effect (RSE) of an input " "i  unit on an output unit " "j  is a quantity that 

can formerly quantify the relative influence of input elements on output. The greater the absolute value of 

RSE, the greater the effect on the output unit of the corresponding input unit. Sensitivity analysis was used 

to verify the relative importance of each parameter in the machine learning model [95]. To use this technique, 

all data pairs were used to construct a data array X in the following manner: 
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                   1 2 3, , ,... ,...,i nX x x x x x=                                     (28) 

Here, ix  the variable in the array X is the length vector of t as 

                   1 2 3, , ,...,i i i i itx x x x x=                                       (29) 

The following equation expresses the strength of the relationship ( ijr ) between datasets ix  and jx . 

                  1

2 2

1 1

k

it jt

t
ij

k k

it jt

t t

x x

r

x x

=

= =

=


 

                                        (30) 

The strengths of the relationships ( ijr  values) between the input and observed ( testV ) parameters are 

depicted in Fig. 16. itx and jtx  is the t input variables. The data indicate that ( )a mm , ( )b mm , ( )d mm

and ( )syf MPa have the most significant influence on testV .To calculate the sensitivity the gradient boost 

regressor has been used to see the influence of the variables. 
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             Fig. 16. Relationship strength between input and output parameters. 

6 Conclusion  

     A machine learning-based algorithm is proposed for estimating the shear capacity for RC beam with 

stirrups. The objective of this research was to assess the predictive performance of six machine learning 

algorithms for estimating the shear strength of an RC beam with stirrups: multiple linear regression, ridge 

regressor, GEP, ANN, random forest, and gradient boost regressor. The result shows that the robust machine 

learning algorithm strongly influences calculating the shear strength of the RC beam. Among the six models, 

gradient boost regressor, random forest, and ANN have the highest prediction performance; as a result, we 

conclude that gradient boost regressors, random forests, and artificial neural networks are all suitable for 

determining the shear strength of an RC beam with stirrups. The following conclusions are taken from the 
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findings of this study:  

1. The analysis of data from various experiments demonstrates that the critical parameters 

governing the shear capacity of RC beams with stirrups are compressive strength, shear span, 

web width, effective depth, transverse reinforcement ratio, transverse reinforcement yielding 

strength, longitudinal reinforcement yielding strength, longitudinal reinforcement yielding ratio, 

and longitudinal reinforcement yielding strength. Sensitivity analysis shows shear span, web 

width, and effective depth are mostly influenceable on the dataset. 

2. Machine learning algorithms such as gradient boost regressor, random forest, and ANN 

effectively predict the shear strength of RC beam with stirrups. In this study, gradient boost 

regressor is the best among all machine learning models, which have 0.99 % accuracy for 

training. 

3. Prediction results reveal that the gradient boost regressor and the random forest model are more 

effective at predicting shear capacity. At the same time, the ANN algorithm shows satisfactory 

performance in estimating all datasets and training and testing data 0.97 and 0.96, respectively. 

4. The proposed expressions using gradient boost regressor and random forest yield good 

prediction of shear capacity of RC beam with stirrups beams with R2 of 99% and 0.98%. The 

developed machine learning model can be used for practical design purposes as they are derived 
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based on data from different experimental programs. 

5. The suggested machine learning-based models were evaluated for accuracy against predictive 

models integrated with international design standards and literature (ACI 318-08, CSA A23.3-

04, GB 510010-2010, NZS 3101, BNBC 2015). The best model has the closest R2 value to one 

and the smallest MAE and RMSE values. The overall precision of the machine learning-based 

strength models beats that of existing models when these parameters are used. 

6. In Fig. 15, the proposed design formula (random forest (RF), gradient boost regression, gene 

expression programming (GEP), and artificial neural network (ANNs)) is compared to the 

present design formula (ACI 318-08, Canadian code, GB 510010-2010, NZS 3101, BNBC 

2015) on 201 tested beams, along with the AVG and standard deviation, and the number of 

unsafe predictions for the beam. The proposed design formula appears to be superior to the 

existing design code. It delivers the most consistent predictions (lowest mean value) and the 

lowest number of inaccurate estimates. 

7. Future work will focus on developing multiple gene expression models that apply to a wide 

variety of attributes by incorporating additional test data and combining machine learning-

based models with computational frameworks such as hybrid PSO-ANN and then optimizing 

with gene expression modeling—creating a novel design formula for predicting the shear 

capacity of RC beam.  
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