
Harnessing meta-learning via probabilistic
modelling and trajectory optimisation

by

Cuong Nguyen

A thesis submitted for the degree of

Doctor of Philosophy

in

Computer Science

of

THE UNIVERSITY OF ADELAIDE

Supervision panel:

Professor Gustavo Carneiro

Dr Toan Do

October 2021

ii

Abstract

Meta-learning has recently flourished as one of the most promising transfer learning
techniques that can adapt quickly to a new task, even if that task consists of a
limited number of training examples. The main idea of meta-learning is to use
a meta-parameter to model the shared structure between many observed tasks
and utilise the knowledge gained from such modelling to facilitate the learning for
unobserved tasks. Despite steady progress with many remarkable state-of-the-art
results, existing meta-learning algorithms are often fragile due to the lack of studies
in prediction uncertainty and generalisation for unseen tasks. In addition, little is
known about how tasks are related to each other, potentially leading to sub-optimal
solutions due to the assumption that tasks are evenly distributed – which is hardly
true in practice. This thesis, therefore, aims to address such problems through the
lenses of probabilistic modelling and optimisation. In particular, the thesis proposes
to (i) integrate variational inference into meta-learning that considers the epistemic
uncertainty into the modelling to reduce calibration errors and overfitting induced
by meta-learning models, (ii) derive a PAC-Bayes upper-bound of errors evaluated
on both seen and unseen tasks to enable the study of theoretical generalisation in
meta-learning and use that bound to formulate a loss function applied in the training
of different meta-learning methods, (iii) model tasks via a variant of Gaussian latent
Dirichlet allocation and utilise the newly-obtained representation for task selection
to make training more efficient, and (iv) adopt trajectory optimisation from optimal
control to determine the re-weighting factor of each training task to optimise the
training process of meta-learning. The results of these studies improve the robustness
and provide an insightful understanding of meta-learning, and thus, enable further
development of practical meta-learning approaches.

iii

iv

Declaration

I certify that this work contains no material which has been accepted for the award of
any other degree or diploma in my name, in any university or other tertiary institution
and, to the best of my knowledge and belief, contains no material previously published
or written by another person, except where due reference has been made in the
text. In addition, I certify that no part of this work will, in the future, be used
in a submission in my name, for any other degree or diploma in any university or
other tertiary institution without the prior approval of the University of Adelaide
and where applicable, any partner institution responsible for the joint-award of this
degree.

I acknowledge that copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to
restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

October, 2021

Cuong Nguyen

v

vi

Acknowledgement

Pursuing my PhD. degree is an exciting and at the same time challenging period in
my life. Such experience has not only attributed to my intellectual growth, but also
shaped my philosophical perspective. The completion of my research would not be
possible without the kind support of many people whom I have had the opportunity
to learn, work and collaborate with. Although I cannot thank all of them individually
in writing, I would like to acknowledge some that are particular helpful.

Professor Gustavo Carneiro has fully and continuously supported the research
from its inception. His immense knowledge and extraordinary patience has guided the
research direction and been an instrumental in coaching me from a student without
computer science background to a researcher with a specialisation in machine learning.
I am extremely grateful to have him as my advisor and mentor.

Dr Toan Do has also provided a strong support to the research with insightful
discussions and encouragement. His intellectual expertise and energy have aided to
the direction of research. I am very grateful to have him as my co-advisor.

I would like to thank many colleagues at the Australian Institute for Machine
Learning (AIML), including Toan Tran, Dung Doan, Violetta Shevchenko, Gabriel
Maicas, Yutong Dai, Shin-Fang Ch’ng, Daqi Liu, Chee Kheng Chng, among others
for many amusing moments. You all have made every day at AIML more enjoyable.

I would like to thank many friends outside of works, including the families of Dinh
Pham, Hoa Nguyen, Dung Le, Bao Doan, Viet Vo, Khuong Nguyen, Khue Nguyen,
Linh V Nguyen, Kiet Wong, among others. Hanging out with them and enjoying
their delicious food have made me feel welcome and reduced my homesickness while
studying in Australia.

I would also like to thank Huu Le – a long time friend – for his generous support
even remotely. His encouragement and sharing about research life have made me
overcome some difficult times during the period of my research. I have enjoyed
talking to him about not only scientific research, but also history, life and everything.

Finally, I am grateful to my parents, my younger sister and my girlfriend, for
their constant love, support and confidence in me.

vii

viii

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Data generation model of a task 2
1.1.2 Loss function of a task . 3
1.1.3 Task instance . 3
1.1.4 Hyper-parameter optimisation 4

1.2 Formulation of meta-learning . 5
1.2.1 Second-order meta-learning 6
1.2.2 First-order meta-learning . 8

1.3 Differentiation from other transfer learnings 8
1.3.1 Fine-tuning . 8
1.3.2 Domain adaptation and generalisation 9
1.3.3 Multi-task learning . 10
1.3.4 Continual learning . 11

1.4 Open questions and contributions . 11
1.4.1 Reliable meta-learning . 11
1.4.2 Effect of training tasks on meta-learning 12

1.5 Thesis outline . 13

2 Literature review 15
2.1 General meta-learning . 15
2.2 Probabilistic meta-learning . 16
2.3 PAC-Bayes meta-learning . 17
2.4 Task similarity . 18
2.5 Task weighting in meta-learning . 20
2.6 Summary . 21

3 Variational Bayesian meta-learning 23
3.1 Addendum to the publication . 23

3.1.1 Maximum likelihood estimation and MAML 23
3.1.2 Minimum variational-free energy and VAMPIRE-2 24

ix

Contents Contents

3.2 Introduction . 26
3.3 Related work . 28
3.4 Methodology . 29

3.4.1 Few-shot Learning Problem Setup 30
3.4.2 Point Estimate - MAML . 31
3.4.3 Gradient-based Variational Inference 32
3.4.4 Differentiating VAMPIRE and Other Bayesian Meta-learning

Methods . 34
3.5 Experiments . 36

3.5.1 Few-shot regression . 36
3.5.2 Few-shot classification . 38

3.6 Summary . 42

4 PAC-Bayesian meta-learning 43
4.1 Introduction . 45
4.2 Related Work . 46
4.3 Background . 48

4.3.1 Data generation model of a task 48
4.3.2 Task instance . 48
4.3.3 Meta-learning . 49
4.3.4 PAC-Bayes upper-bound in single-task learning 51

4.4 Methodology . 52
4.4.1 PAC-Bayes meta-learning . 52
4.4.2 Practical meta-learning objective 54
4.4.3 Meta-learning with implicit task-specific posterior 54

4.5 Experiments . 58
4.5.1 Regression . 59
4.5.2 Few-shot classification . 61
4.5.3 Discussion . 65

4.6 Summary . 65

5 Probabilistic task modelling for meta-learning 67
5.1 Introduction . 69
5.2 Related Work . 70
5.3 Methodology . 72
5.4 Experiments . 79

5.4.1 Task distance matrix and correlation diagrams 80
5.4.2 Lifelong few-shot meta-learning 82

5.5 Summary . 85

x

Contents Contents

6 Task weighting 87
6.1 Introduction . 89
6.2 Background . 90

6.2.1 Trajectory optimisation . 90
6.2.2 Meta-learning . 91
6.2.3 Task-weighting meta-learning 92

6.3 Methodology . 93
6.3.1 Task-weighting as a trajectory optimisation 93
6.3.2 Convergence analysis . 97

6.4 Related work . 99
6.5 Experiments . 100
6.6 Discussion . 103

7 Conclusion 105

A Variational inference meta-learning 119
A.1 Multi-modal regression from sinusoidal and linear task distribution . 119

A.1.1 Training configuration . 119
A.1.2 Additional results . 119

A.2 Classification experiments . 120
A.2.1 Model calibration for classification - ECE and MCE 121

A.3 Pseudo-code for evaluation . 122

B PAC-Bayes meta-learning 123
B.1 Proof of PAC-Bayes meta-learning . 123

B.1.1 PAC-Bayes upper-bound of the validation loss for a single task 123
B.1.2 PAC-Bayes upper-bound for unseen tasks 127
B.1.3 PAC-Bayes upper-bound for meta-learning 127

B.2 Auxiliary lemmas . 128
B.3 Complexity analysis . 132

B.3.1 Deterministic point estimate meta-learning (MAML) 133
B.3.2 Probabilistic meta-learning with multivariate normal distribu-

tions . 133
B.3.3 SImPa . 135

C Probabilistic task modelling 137
C.1 Calculation of each term in the ELBO 137

C.1.1 Eq(ui;µui ,Σui)Eq(zi,πi) [ln p(ui|zi,µ,Σ)] 137
C.1.2 Eq(ui;µui ,Σui)Eq(zi,πi) [ln p(zi|πi)] 138
C.1.3 Eq(ui;µui ,Σui)Eq(zi,πi) [ln p(πi|α)] 138

xi

Contents Contents

C.1.4 Eq(ui;µui ,Σui)Eq(zi,πi) [ln q(zi|ri)] 138
C.1.5 Eq(ui;µui ,Σui)Eq(zi,πi) [ln q(πi|γi)] 138

C.2 Maximisation of the ELBO . 138
C.2.1 Variational categorical distribution 138
C.2.2 Variational Dirichlet distribution 139
C.2.3 Maximum likelihood for the task-theme µk and Σk 140
C.2.4 Maximum likelihood for α . 141

D Task weighting 143
D.1 Derivation of iLQR . 143
D.2 Convergence of iLQR . 145

D.2.1 Auxiliary to prove convergence 145
D.2.2 Proof of iLQR convergence . 146

D.3 Linearisation of state-transition dynamics 149
D.3.1 Stochastic gradient descent . 149
D.3.2 Adam . 150

D.4 Quadraticise cost function w.r.t. state xt 152
D.4.1 Quadraticise validation loss 152
D.4.2 Quadraticise the penalisation of the action ut 152

D.5 Trajectory optimisation algorithm(s) 153
D.6 Convergence analysis for TOW . 153

D.6.1 Notations . 153
D.6.2 Assumptions on boundedness and smoothness 154
D.6.3 Auxiliary lemmas . 155
D.6.4 Convergence of TOW . 160
D.6.5 Miscellaneous lemmas . 164

D.7 Results with full matrix Vt . 166
D.8 Visualisation of weight values . 166

xii

List of Figures

3.1 (a) Hierarchical graphical model of the few-shot meta-learning, where
a prior parameterised by θ is shared across many tasks; (b) and (c)
Visualisation between MAML and VAMPIRE, respectively, where
VAMPIRE extends both the deterministic prior p(wi; θ) and posterior
p(wi|S(t)

i , θ) in MAML by using probabilistic distributions. 29

3.2 Qualitative results on multi-modal data – half of the tasks are gen-
erated from sinusoidal functions, and the other half are from linear
functions with visualisation of MAML and VAMPIRE, where the
shaded area is the prediction made by VAMPIRE ± 2× standard
deviation. 36

3.3 Quantitative results on sinusoidal-linear 5-shot regression problem:
(a) reliability diagram of various meta-learning methods averaged over
1000 tasks, and (b) ECE and MCE of the Bayesian meta-learning
methods. 37

3.4 (a) Uncertainty evaluation between different meta-learning methods
using reliability diagrams, and (b) expected calibration error (ECE)
and maximum calibration error (MCE), in which the evaluation is
carried out on 5-way 1-shot setting for

(
20
5

)
= 15504 unseen tasks

sampled from mini-ImageNet dataset. 42

4.1 Meta-learning is an extension of hyper-parameter optimisation, where
the meta-parameter θ is shared across all tasks. The solid arrows
denote forward pass, while the dashed arrows indicate parameter
inference, and rectangles illustrate the plate notations. The training
subset {(x(t)

ij , y
(t)
ij)}m

(t)
i

j=1 of task Ti and the meta-parameter θ are used to
learn the task-specific parameter λi, corresponding to the lower-level
optimisation in (4.3). The obtained λi is then used to evaluate the error
on the validation subset {(x(v)

ij , y
(v)
ij)}m

(v)
i

j=1 to learn the meta-parameter
θ, corresponding to the upper-level optimisation in (4.3). 50

xiii

List of Figures List of Figures

4.2 SImPa and MAML are compared in a regression problem when training
is based on multi-modal data – half of the tasks are generated from
sinusoidal functions, and the other half are from linear functions. The
shaded area is the prediction made by SImPa ± 3× standard deviation. 60

4.3 Quantitative comparison between various probabilistic meta-learning
approaches averaged over 1000 unseen tasks shows that SImPa has a
comparable MSE error and the smallest calibration error. 61

4.4 Calibration of the “standard” 4-block CNN trained with different
meta-learning methods on 5-way 1-shot classification tasks on mini-
ImageNet. 64

5.1 The results locally produced for MAML on 15,504 available 5-way 1-
shot mini-ImageNet testing tasks vary from 20 to 70 percent accuracy,
suggesting that not all testing tasks are equally related to training tasks. 70

5.2 An example of a task-theme simplex where each task is represented
by a 3-dimensional mixture vector. 73

5.3 The graphical model used in task modelling. The solid arrows denote
data generation, while the dashed arrows stand for inference. The
boxes are “plates” representing replicates. The shading nodes denote
observable variables, while the white nodes denote latent variables. . 74

5.4 The matrix of log KL distances between Omniglot tasks shows that
tasks that are generated from the same alphabet are closer together,
denoted as the dark green blocks along the diagonal. The matrix is
asymmetric due to the asymmetry of the KL divergence used as the
task distance. 80

5.5 Correlation diagrams between prediction accuracy made by MAML
on 100 5-way 1-shot testing tasks versus: (a) and (b) entropy of the
inferred task-theme mixture distributions, and (c) and (d) the KL
distances from testing to training tasks. The results show that largest
the task entropy or distances, the worse the testing performance. The
blue dots are the prediction made the MAML and PTM, the solid
line is the mean of Bayesian Ridge regression, and the shaded areas
correspond to ±1 standard deviation around the mean. 82

xiv

List of Figures List of Figures

5.6 Exponential weighted moving average (EWMA) of prediction accuracy
made by MAML following the lifelong learning for 100 random 5-way
1-shot tasks sampled from mini-ImageNet testing set: (a) inductive
setting, and (b) transductive setting. The EWMA weight is set to
0.98 to smooth the noisy signal. (c) Prediction accuracy made by
models trained on different task selection approaches on all 5-way
1-shot testing tasks generated from mini-ImageNet. The error bars
correspond to 95 percent confident interval. 84

6.1 Validation accuracy exponential moving average (with smoothing
factor 0.1) of different task-weighting strategies evaluated on: (a) and
(b) Omniglot, and (d), (e) and (f) mini-ImageNet. The column plots
show testing accuracy on: (c) Omniglot and (g) mini-ImageNet. . . . 102

D.1 Additional results of prediction accuracy on 100 random validation
tasks using MAML when the matrix Vt is exact without any approx-
imation. 167

D.2 Visualisation of the weight values where tasks are drawn from the same
Omniglot alphabet (either training or testing set); the notation same
means that all tasks in a mini-batch are formed from one alphabet,
while different indicates the mini-batch consists of tasks formed from
different alphabets. 167

D.3 Visualisation of the weight values associated with mini-ImageNet tasks.168

xv

List of Figures List of Figures

xvi

List of Tables

3.1 Few-shot classification accuracy (in percentage) on Omniglot, tested
on 1000 tasks and reported with 95% confidence intervals. The results
of VAMPIRE are competitive to the state-of-the-art baselines which
are carried out on a standard 4-convolution-layer neural networks.
The top of the table contains methods trained on the original split
defined in (Lake et al., 2015), while the middle part contains methods
using a standard 4-layer CNN trained on random train-test split.
The bottom part presents results of different methods using different
network architectures, or requiring external modules and additional
parameters trained on random split. Note that the Omniglot results
on random split cannot be fairly compared. 39

3.2 The few-shot 5-way classification accuracy results (in percentage) of
VAMPIRE averaged over 600 mini-ImageNet tasks and 5000 tiered-
ImageNet tasks are competitive to the state-of-the-art methods. . . . 41

4.1 The few-shot 5-way classification accuracy results (in percentage, with
95% confidence interval) of SImPa averaged over 1 million tasks on
Omniglot (top), and 600 tasks on mini-ImageNet (middle-top and
middle-bottom) and tiered-ImageNet (bottom) datasets. The bold
numbers denote statistically significant best method according to t-test. 62

6.1 Running time of different task-weighting methods based on MAML
(unit in GPU-hour evaluated on an NVIDIA A6000). 103

A.1 Hyper-parameters used in the regression experiments on multi-modal
structured data. 120

A.2 Mean squared error of many meta-learning methods after being trained
in the same setting are tested on 1000 tasks. 120

A.3 Hyper-parameters used in the few-shot classification presented in
Section 3.5. 121

xvii

List of Tables List of Tables

A.4 Accuracy for 5-way classification on mini-ImageNet tasks (in percent-
age) of many methods which uses extra parameters, deeper network
architectures or different training settings. 121

A.5 Results of ECE and MCE of several meta-learning methods that are
tested in 5-way 1-shot setting over 15504 unseen tasks sampled from
mini-ImageNet dataset. 122

B.1 Notations used in the running time complexity analysis. 134
B.2 Running time complexity per one gradient update of different meta-

learning methods. 136

xviii

List of Algorithms

1 Training procedure of meta-learning in general 7
2 VAMPIRE training . 33
3 SImPa . 57
4 Online probabilistic task modelling 77
5 Task-weighting for meta-learning . 96
6 VAMPIRE testing . 122
7 Implementation of iLQR backward 153

xix

List of Algorithms List of Algorithms

xx

Chapter 1

Introduction

The vast development of machine learning has created a large number of applications
to solve increasingly complex problems (Hinton et al., 2012; Krizhevsky et al., 2012;
Graves et al., 2013; Simonyan and Zisserman, 2015; Havaei et al., 2017). Such
successes rely on high capacity models (e.g. very deep neural networks with millions
of parameters) trained on a massive amount of annotated data, which is obtained
from an arduous, costly and even infeasible annotation process. This, however,
contrasts with the learning ability in humans where a new task can be adapted
with only a few “training” examples. Such difference might be due to the fact that
humans tend to utilise prior knowledge gained from past experiences to facilitate the
learning of a new task, while machine learning models are often trained from scratch
without utilising any prior knowledge. This has, therefore, motivated the research of
novel learning approaches, generally known as transfer learning, that exploit past
experience (in the form of models learnt from other training tasks) to quickly learn a
new task using relatively small training sets.

Transfer learning, in general, assumes the existence of a common latent distri-
bution over training and testing tasks. Such assumption means that learning to
solve one or many training tasks can be helpful to solve a new testing task sampled
from the same or “similar” task distribution, even if the new task contains a limited
number of training examples. There are many transfer learning paradigms studied
in the literature depending on the configuration of the problems to be solved. For
example, in fine-tuning (L. Y. Pratt et al., 1991; Yosinski et al., 2014) – one of
the most widely-used transfer learning techniques, a part of a model pre-trained on
a source task is re-used to extract relevant features. The remaining part of that
model is then trained or fine-tuned on the data of the target task. In multi-task
learning (Caruana, 1997), an agent simultaneously learns the shared representation
of many related tasks and a main task that are assumed to come from the same
domain. The information extracted from the related tasks tends to regularise the
training of the main task, potentially improving the performance of that task. In

1

1.1. Background Chapter 1. Introduction

domain adaptation (Heckman, 1979; Shimodaira, 2000; Japkowicz and Stephen,
2002; Daume III and Marcu, 2006; Ben-David et al., 2007), a learner utilises the
information of data in one or many source domains and a small amount of data
in a target domain to learn domain in-variant knowledge. Such knowledge is then
used to enhance the prediction made on the tasks drawn from the target domain.
In meta-learning (Schmidhuber, 1987; Thrun and L. Pratt, 1998; Baxter, 2000), a
meta-learner learns how to solve many training tasks, and use that experience to
facilitate the learning of future tasks drawn from the same task distribution.

Given the ability that leverages prior knowledge to quickly adapt to new tasks or
new environments, meta-learning has recently been re-visited and flourished with
state-of-the-art results in several few-shot learning benchmarks (Vinyals et al., 2016;
Ravi and Larochelle, 2018; Finn et al., 2017; Finn et al., 2018; Grant et al., 2018;
Ravi and Beatson, 2019). This thesis focuses on investigating transfer learning
techniques based on meta-learning, especially in the probabilistic and optimisation
point of views.

In the remaining sections, we provide relevant background and present the
formulation for meta-learning. Such explicit formulation allows to distinguish meta-
learning from some other types of transfer learning techniques, such as fine-tuning,
multi-task learning, domain adaptation and continual learning. The final parts of
the chapter include our research questions in meta-learning and our contributions.

1.1 Background
In this section, we review relevant background in single-task learning that relates
to meta-learning. The background is then used in the mathematical formulation of
meta-learning presented in Section 1.2.

1.1.1 Data generation model of a task

Consider a set of tasks indexed by i ∈ N = {1, 2, . . .}. A data point for a task consists
of an input-label pair. We denote the input for the j-th data point of the i-th task
as xij ∈ X ⊆ Rd and its corresponding label as yij ∈ Y. For simplicity, only two
families of tasks – regression and classification – are considered in this thesis. As a
result, the label is defined as Y ⊆ R for regression and as Y = {0, 1, . . . , C − 1} for
classification, where C is the number of classes.

Each data point in a task can be generated in 2 steps:

1. generate the input xij by sampling from some probability distribution Di,

2. determine the label yij = fi(xij), where fi : X → Y is the “correct” labelling
function.

2

Chapter 1. Introduction 1.1. Background

Both the probability distribution Di and the labelling function fi are unknown to
the learning agent.

For simplicity, we denote (xij,yij) ∼ (Di, fi) as the data generation model of task
i-th.

1.1.2 Loss function of a task
Definition 1.1: Loss function
The loss function `i : Y × Y → R of the i-th task is defined as a measure of
“error” between the true label fi(xij) and predicted label hi(xij) made by the
model of interest h parameterised by wi on a random data point xij generated
from the underlying distribution.

Some common loss functions are:

• Negative log likelihood: `i(h(xij; wi),yij) = − ln p(yij|xij; wi). Thus:

– if the likelihood follows a Gaussian distribution as in regression, the loss
function corresponds to mean-squared error,

– if the likelihood follows a categorical distribution as in classification, the
loss function is the cross-entropy loss,

– if the likelihood follows a discrete Dirac delta distribution, then the loss
function is 0-1 loss.

• Variational-free energy used in variational inference.

1.1.3 Task instance
Definition 1.2: Task (Hospedales et al., 2021)
A task or a task instance Ti consists of an unknown associated data generation
model (Di, fi), and a loss function `i, denoted as: Ti = (Di, fi, `i).

To solve a task Ti, one needs to obtain an optimal model h(.; w∗i) : X → Y,
parameterised by a task-specific parameter w∗i ∈ W ⊆ Rn, which minimises a loss
function `i on the data of that task:

w∗i = arg min
wi

E(xij ,yij)∼(Di,fi) [`i(h(xij; wi),yij)] . (1.1)

In practice, since both Di and fi are unknown, the data generation model is
replaced by a dataset consisting of a finite number of data-points generated according
to the data generation model (Di, fi), denoted as Si = {(xij,yij)}mij=1, where mi ∈ N

3

1.1. Background Chapter 1. Introduction

is the number of data points. The objective to solve that task is often known as
empirical risk minimisation:

wERM
i = arg min

wi

1
mi

mi∑
j=1

[`i(h(xij; wi),yij)] . (1.2)

Since the loss function used is the same for each task family, e.g. ` is mean
squared error (MSE) for regression and cross-entropy for classification, the subscript
on the loss function is, therefore, dropped, and the loss is denoted as ` throughout
this chapter. Furthermore, given the commonality of the loss function across all
tasks, a task can, therefore, be simply represented by either its data generation
model (Di, fi) or the associated dataset Si.

1.1.4 Hyper-parameter optimisation

In single-task learning, the common way to “tune” or optimise a hyper-parameter is
to split a given dataset Si into two disjoint subsets:

• Training (or support) subset S(t)
i =

{(
x(t)
ij , y

(t)
ij

)}m(t)
i

j=1
,

• Validation (or query) subset S(v)
i =

{(
x(v)
ij , y

(v)
ij

)}m(v)
i

j=1
,

where:
Si = S

(t)
i ∪ S(v)

i , S
(t)
i ∩ S(v)

i = ∅.

Note that with this definition, m(t)
i +m(v)

i = mi, and m(t)
i and m(v)

i are not necessarily
identical.

The subset S(t)
i is used to train the model parameter of interest wi, while the subset

S
(v)
i is used to validate the hyper-parameter, denoted by θ (we provide examples of the

hyper-parameter in Section 1.2). Mathematically, the hyper-parameter optimisation
in a single-task can be written as the following bi-level optimisation:

min
θ

1
m

(v)
i

m
(v)
i∑

k=1
`
(
h
(
x(v)
ik ; w∗i (θ)

)
, y

(v)
ik

)

s.t.: w∗i (θ) = arg min
wi

1
m

(t)
i

m
(t)
i∑

j=1
`
(
h
(
x(t)
ij ; wi(θ)

)
, y

(t)
ij

)
.

(1.3)

Note that the notation wi(θ) denotes that the task-specific parameter wi is a function
of the hyper-parameter θ.

We can extend the hyper-parameter optimisation in (1.3) evaluated on the two

4

Chapter 1. Introduction 1.2. Formulation of meta-learning

data subsets S(t)
i and S(v)

i to the general data generation model as the following:

min
θ

E(x(v)
ik
,y

(v)
ik

)∼(D(v)
i ,fi)

[
`
(
h
(
x(v)
ik ; w∗i (θ)

)
, y

(v)
ik

)]
s.t.: w∗i (θ) = arg min

wi
E(x(t)

ik
,y

(t)
ik

)∼(D(t)
i ,fi)

[
`
(
h
(
x(t)
ij ; wi(θ)

)
, y

(t)
ij

)]
,

(1.4)

where D(t)
i and D(v)

i are the probability distributions of training and validation input
data, respectively, and they are not necessarily identical.

1.2 Formulation of meta-learning
The setting of the meta-learning problem considered in this paper follows the task
environment (Baxter, 2000) that describes the unknown distribution p(D, f) over
a family of tasks. Each task Ti is sampled from this task environment and can be
represented as

(
D(t)
i ,D(v)

i , fi
)
, where D(t)

i and D(v)
i are the probability of training

and validation input data, respectively, and are not necessarily identical. The aim
of meta-learning is to use T training tasks to train a meta-learning model that
can be fine-tuned to perform well on an unseen task sampled from the same task
environment.

Such meta-learning methods use meta-parameters to model the common latent
structure of the task distribution p(D, f). In this thesis, we consider meta-learning
as an extension of hyper-parameter optimisation in single-task learning, where the
hyper-parameter of interest – often called meta-parameter – is shared across many
tasks. Similar to hyper-parameter optimisation presented in Subsection 1.1.4, the
objective of meta-learning is also a bi-level optimisation:

min
θ

ETi∼p(D,fi)E(x(v)
ik
,y

(v)
ik

)∼(D(v)
i ,fi)

[
`
(
h
(
x(v)
ik ; w∗i (θ)

)
, y

(v)
ik

)]
s.t.: w∗i (θ) = arg min

wi
E(x(t)

ij ,y
(t)
ij)∼(D(t)

i ,fi)

[
`
(
h
(
x(t)
ij ; wi(θ)

)
, y

(t)
ij

)]
. (1.5)

The difference between meta-learning presented in (1.5) and the hyper-parameter
optimisation in (1.4) is that the meta-parameter (also known as hyper-parameter) θ
is shared across all tasks sampled from the task environment p(D, f). Such difference
is reflected through the expectation highlighted in red colour in (1.5).

In practice, the meta-parameter (or shared hyper-parameter) θ can be chosen as
one of the followings:

• learning rate of gradient-based optimisation used to minimise the lower level
objective function in (1.5) to learn w∗i (θ) (Z. Li et al., 2017),

• initialisation of model parameter when using gradient-based optimisation to
minimise the lower-level in (1.5) (Finn et al., 2017),

5

1.2. Formulation of meta-learning Chapter 1. Introduction

• data representation or feature extractor (Vinyals et al., 2016; Snell et al., 2017),

• optimiser used to optimise the lower-level in (1.5) (Andrychowicz et al., 2016;
K. Li and Malik, 2017).

The meta-parameter θ is assumed to be the initialisation of model parameters
throughout this thesis. Formulation, derivation and analysis in the subsequent
sections and chapters will, therefore, revolve around this assumption. Note that the
analysis can be straight-forwardly extended to other types of meta-parameters with
slight modifications.

In general, the objective function of meta-learning in (1.5) can be solved by
gradient-based optimisation, such as gradient descent. Due to the nature of the
bi-level optimisation, the optimisation are often carried out in two steps. The first
step is to adapt (or fine-tuned) the meta-parameter θ to the task-specific parameter
wi(θ). This corresponds to the optimisation in the lower-level, and can be written as:

w∗i (θ) = wi − αE(x(t)
ij ,y

(t)
ij)∼(D(t)

i ,fi)

[
∇wi

`
(
h
(
x(t)
ij ; wi

)
,y(t)

ij

)] ∣∣∣∣
wi=θ

, (1.6)

where α is a hyper-parameter denoting the learning rate for task Ti. For simplicity,
the adaptation step in (1.6) is carried out with only one gradient descent update.

The second step is to minimise the validation loss induced by the locally-optimal
task-specific parameter w∗i (θ) evaluated on the validation subset w.r.t. the meta-
parameter θ. This corresponds to the upper-level optimisation, and can be expressed
as:

θ ← θ − γETi∼p(D,f)E(x(v)
ik
,y(v)
ik

)∼(D(v)
i ,fi)

[
∇θ`

(
h
(
x(v)
ij ; w∗i (θ)

)
,y(v)

ij

)]
, (1.7)

where γ is another hyper-parameter representing the learning rate to learn θ. The
general algorithm of meta-learning using gradient-based optimisation is shown in
Algorithm 1.

1.2.1 Second-order meta-learning

As shown in (1.7), the optimisation for the meta-parameter θ requires the gradient of
the validation loss averaged across T tasks. Given that each task-specific parameter
w∗i is a function of θ due to the lower-level optimisation in (1.6), the gradient of

6

Chapter 1. Introduction 1.2. Formulation of meta-learning

Algorithm 1 Training procedure of meta-learning in general
1: procedure Training(task environment p(D, f), learning rates γ and α)
2: initialise meta-parameter θ
3: while θ not converged do
4: sample a mini-batch of T tasks from task environment p (D, f)
5: for each task Ti, i ∈ {1, . . . , T} do
6: sample two data subsets S(t)

i and S(v)
i from task Ti = (D(t)

i ,D(v)
i , fi)

7: adapt meta-parameter to task Ti:
w∗i (θ) = θ − α

m
(t)
i

∑m
(t)
i

j=1 ∇wi

[
`
(
h
(
x(t)
ij ; wi(θ)

)
, y

(t)
ij

)]
. Eq. (1.6)

8: end for
9: update meta-parameter:

θ ← θ − γ
T

∑T
i=1

1
m

(v)
i

∑m
(v)
i

k=1 ∇θ

[
`
(
h
(
x(v)
ik ; w∗i (θ)

)
, y

(v)
ik

)]
. Eq. (1.7)

10: end while
11: return the trained meta-parameter θ
12: end procedure

interest can be expanded as:

ETi∼p(D,f)E(x(v)
ik
,y

(v)
ik

)∼(D(v)
i ,fi)

[
∇θ`

(
h
(
x(v)
ik ; w∗i (θ)

)
, y

(v)
ik

)]
= ETi∼p(D,f)E(x(v)

ik
,y

(v)
ik

)∼(D(v)
i ,fi)

[
∇>

θ w∗i (θ)× ∇wi
`
(
h
(
x(v)
ik ; wi

)
, y

(v)
ik

) ∣∣∣∣
wi=w∗i (θ)

]

= ETi∼p(D,f)

{[
I− αE(x(t)

ij ,y
(t)
ij)∼(D(t)

i ,fi)

[
∇2

wi
`
(
h
(
x(t)
ij ; wi

)
, y

(t)
ij

) ∣∣∣∣
wi=θ

]]

× E(x(v)
ik
,y

(v)
ik

)∼(D(v)
i ,fi)

[
∇wi

`
(
h
(
x(v)
ik ; wi

)
, y

(v)
ik

) ∣∣∣∣
wi=w∗i (θ)

]}
,

(1.8)
where the first equality is due to chain rule, and the second equality is the result
that differentiates the gradient update in (1.6). Note that in the second equality, we
remove the transpose notation since the corresponding matrix is symmetric.

Hence, naively implementing such gradient would require to calculate the Hessian
matrix ∇2

wi
`, resulting in an intractable procedure for large models, such as deep

neural networks. To obtain a more efficient implementation, one can utilise the
Hessian-vector product (Pearlmutter, 1994) between the gradient vector ∇wi

` and
the Hessian matrix ∇2

wi
` to efficiently calculate the gradient of the validation loss

w.r.t. θ.
Another way to calculate the gradient of the validation loss w.r.t. the meta-

parameter θ is to use implicit differentiation (Domke, 2012; Rajeswaran et al., 2019;
Lorraine et al., 2020). This approach is more advantaged since it does not need to
stores the computational graph and takes gradient via chain rule as the methods
mentioned above. Such implicit differentiation technique reduces the memory usage
and therefore, allows to work with large-scale models. However, the trade-off is the

7

1.3. Differentiation from other transfer learnings Chapter 1. Introduction

increasing computational time to estimate the gradient of interest.
Nevertheless, the implementations that compute the exact gradient of the val-

idation loss w.r.t. θ without approximation are often referred to as “second-order”
meta-learning.

1.2.2 First-order meta-learning

In practice, the Hessian matrix ∇2
wi
` is often omitted from the calculation to simplify

the update for the meta-parameter θ (Finn et al., 2017). The resulting gradient
consists of only the gradient of validation loss ∇wi

`, which is more efficient to calculate
with a single forward-pass if auto differentiation is used. This approximation is often
referred as “first-order” meta-learning, and the gradient of interest can be presented
as:

ETi∼p(D,f)E(x(v)
ik
,y

(v)
ik

)∼(D(v)
i ,fi)

[
∇θ`

(
h
(
x(v)
ij ; w∗i (θ)

)
, y

(v)
ik

)]
≈ ETi∼p(D,f)E(x(v)

ik
,y

(v)
ik

)∼(D(v)
i ,fi)

[
∇wi

`
(
h
(
x(v)
ik ; wi

)
, y

(v)
ik

) ∣∣∣∣
wi=w∗i (θ)

]
. (1.9)

REPTILE (Nichol et al., 2018) – a variant first-order meta-learning – approx-
imates further the gradient of validation loss ∇wi

`, resulting in a much simpler
approximation:

ETi∼p(D,f)E(x(v)
ik
,y(v)
ik

)∼(D(v)
i ,fi)

[
∇θ`

(
h
(
x(v)
ik ; w∗i (θ)

)
, y

(v)
ik

)]
= θ − ETi∼p(D,f) [w∗i (θ)] .

(1.10)

1.3 Differentiation from other transfer learnings

Given the definition of meta-learning in Section 1.2, it is often a source of confusion
to differentiate meta-learning from other transfer learning approaches. In this section,
some popular transfer learning methods are described with their objective function
formulated to purposely distinguish from meta-learning.

1.3.1 Fine-tuning

Fine-tuning is the most common technique in neural network based transfer learn-
ing (L. Y. Pratt et al., 1991; Yosinski et al., 2014) where the last or a couple of last
layers in a neural network pre-trained on a source task are replaced and fine-tuned
on a target task. Formally, if g(.; w0) is denoted as the forward function of the
shared layers with shared parameters w0, where ws and wt are the parameters of
the remaining layers h specifically trained on source and target tasks, respectively,

8

Chapter 1. Introduction 1.3. Differentiation from other transfer learnings

then the objective of fine-tuning can be expressed as:

min
wt

E(xt,yt)∼Tt [` (h (g (xt; w∗0) ; wt) , yt)]

s.t.: w∗0,w∗s = arg min
w0,ws

E(xs,ys)∼Ts [` (h (g (xs; w0) ; ws) , ys)] , (1.11)

where xs, ys and xt, yt are the data sampled from the source task Ts and target task
Tt, respectively.

Although the objective of fine-tuning shown in (1.11) is still a bi-level optimisation,
it is easier to solve than the one in meta-learning due to the following reasons:

• The objective in fine-tuning has only one constrain corresponding to one source
task, while meta-learning has several constrains corresponding to multiple
training tasks.

• In fine-tuning, wt and w0 are inferred separately, while in meta-learning, the
task-specific parameter is a function of the meta-parameter, resulting in a more
complicated correlation.

The downside of fine-tuning is the requirement of a reasonable number of training
examples on the target task to fine-tune wt. In contrast, meta-learning leverages the
knowledge extracted from several training tasks to quickly adapt to a new task with
only a few training examples.

1.3.2 Domain adaptation and generalisation

Domain adaptation or domain-shift refers to the case when the joint data-label
distribution on source and target are different, denoted as (Ds, fs) 6= (Dt, ft) (Heck-
man, 1979; Shimodaira, 2000; Japkowicz and Stephen, 2002; Daume III and Marcu,
2006; Ben-David et al., 2007). The aim of domain adaptation is to leverage the
model h(.; w) trained on source domain to available unlabelled data xt in the target
domain, so that the model obtained can perform reasonably well on the target
domain. Mathematically, it can be written as:

min
w

E(xt,yt)∼(Dt,ft) [` (h (xt; w) , yt)]

s.t.: w ∈ W(Ds, fs,Dt), (1.12)

where: W(Ds, fs,Dt) is the feasible set of model parameters computed based on the
labelled data of the source domain and unlabelled data of the target domain. Note
that during training, the labels on the target domain is unknown to the learning
agent.

Given the objective of domain adaptation in (1.12), it differs from meta-learning
with the following reasons:

9

1.3. Differentiation from other transfer learnings Chapter 1. Introduction

• Domain adaptation assumes a shift in the task environments that generate
source and target tasks, while meta-learning assumes that such tasks are i.i.d.
sampled from the same task environment.

• In the training phase, domain adaptation utilises information of data, and in
particular, the unlabelled data xt, from target domain, while meta-learning
does not have such access.

• In the testing phase, domain adaptation makes prediction by exploiting the
trained model without any further fine-tuning nor additional training data,
while meta-learning needs to fine-tune on a small set of labelled data of the
targeted task.

In general, meta-learning learns a shared prior or hyper-parameters to generalise
for unseen tasks, while domain adaptation produces a model to solve a particular
task in a specified target domain. Recently, there is a variance of domain adaptation,
named domain generalisation, where the aim is to learn a domain-invariant model
without any information of target domain. In this view, domain generalisation is
very similar to meta-learning, and there are some works that employ meta-learning
algorithms for domain generalisation (D. Li et al., 2018; Y. Li et al., 2019).

1.3.3 Multi-task learning

Multi-task learning learns several related auxiliary tasks and a target task simultan-
eously to exploit the diversity of task representation to regularise and improve the
performance on the target task (Caruana, 1997). If the input x is assumed to be the
same across T extra tasks and the target task TT+1, then the objective of multi-task
learning can be expressed as:

min
w0,{wi}T+1

i=1

1
T + 1

T+1∑
i=1

`i (hi (g (x; w0) ; wi) , yi) , (1.13)

where yi, `i and hi are the label, loss function and the classifier for task Ti, respectively,
and g(.,w0) is the shared feature extractor for T + 1 tasks.

Multi-task learning is often confused with meta-learning due to their similar
nature extracting information from many tasks. However, the objective function of
multi-task learning in (1.13) is a single-level optimisation for the shared parameter
w0 and multiple task-specific classifier {wi}T+1

i=1 . It is, therefore, not as complicated
as a bi-level optimisation seen in meta-learning as shown in (1.5). Furthermore,
multi-task learning aims to solve a number of specific tasks known during training
(referred to as target tasks), while meta-learning targets the generalisation for unseen
tasks in the future.

10

Chapter 1. Introduction 1.4. Open questions and contributions

1.3.4 Continual learning

Continual or life-long learning refers to a situation where a learning agent has access to
a continuous stream of tasks available over time, and the number of tasks to be learnt
is not pre-defined (Zhiyuan Chen and B. Liu, 2018; Parisi et al., 2019). The aim is
to accommodate the knowledge extracted from one-time observed tasks to accelerate
the learning of new tasks without catastrophically forgetting old tasks (French, 1999).
In this sense, continual learning is very similar to meta-learning. However, continual
learning most likely focuses on systematic design to acquire new knowledge in such
a way that prevents interfering to the existing one, while meta-learning is more
about algorithmic design to learn the new knowledge more efficiently. Hence, we
cannot mathematically distinguish their differences as done in Subsections 1.3.1
to 1.3.3. Nevertheless, continual learning criteria, especially catastrophic forgetting,
can be encoded into meta-learning objective to advance further continual learning
performance (Al-Shedivat et al., 2018; Nagabandi et al., 2019).

1.4 Open questions and contributions

1.4.1 Reliable meta-learning

To solve the meta-learning problem defined in (1.5), the loss function must be defined
explicitly. One of the simplest but most popular loss functions used in meta-learning
is negative log-likelihood (NLL) – corresponding to maximum likelihood estimation.
In addition, since the task environment p(D, f) and the data generation of each
task (D(t)

i , fi) and (D(v)
i , fi) are unknown, the bi-level optimisation objective for

meta-learning shown in (1.5) is carried out with empirical risk minimisation. In
other words, the data used for training consists of a finite number of training tasks,
where each task is associated with two data subsets S(t)

i and S(v)
i . Although such

assumptions make the optimisation in (1.5) tractable, they poses two major concerns
that need to be addressed:

1. The usage of NLL in the learning objective results in a point estimate modelling,
making meta-learning fragile and easily over-fitted to the training data.

2. The reliance on empirical risk minimisation without proper regularisation in
the learning objective also increases the risk of over-fitting, especially when
the number of training data within each task is small.

The potential consequences are catastrophic failures, such as poorly calibrated models
and overfitting, especially in applications that require high reliability, such as medical
analysis or autonomous vehicles. These might hinder the deployment of meta-learning
in those practical applications.

11

1.4. Open questions and contributions Chapter 1. Introduction

To address such problematic issues, we propose to integrate probabilistic modelling
and PAC-Bayes framework into the learning objective to make meta-learning more
robust. In particular, our contributions can be summarised as follows:

• In Chapter 3, we employ variational inference to take the modelling uncertainty
into account. Such probabilistic modelling approach results in an efficient train-
ing with state-of-the-art calibration errors in both regression and classification
tasks.

• In Chapter 4, we use the PAC-Bayes framework to derive an upper-bound
of errors induced on unseen tasks and unseen samples from each training
task. The meta-learning models trained by optimising the newly-derived upper-
bounds show a comparable performance with respect to some state-of-the-art
meta-learning methods, both in regression and classification settings.

1.4.2 Effect of training tasks on meta-learning

Recent empirical studies have shown a large variation of prediction performance
when evaluating the same meta-learning model on different testing tasks (Dhillon
et al., 2019, Figure 1). This means that not all testing tasks are equally related
to training tasks. However, the majority of existing meta-learning algorithms is
based on the bi-level optimisation in (1.5), which minimises the uniformly-weighted
validation losses of training tasks. This implicitly assumes that all tasks are evenly
distributed, which might not be true in practice. This has, therefore, led to the
following research questions:

1. How related are tasks in meta-learning? If such relatedness exists, could it be
exploited to optimise the training and prediction of meta-learning methods?

2. If tasks are not distributed evenly, training meta-learning models with uniformly
weighted tasks could potentially bias the models toward some frequently-
observed training tasks. Could a re-weighting method be developed to avoid
such bias?

We carry out two studies to answer the above questions as follows:

• In Chapter 5, we employ a graphical modelling method to model tasks in meta-
learning where each task is assumed to be generated from a Gaussian mixture
model. Such modelling allows to represent tasks by their corresponding mixture
vectors in the latent “task-theme” simplex. The newly-obtained representation
can then be used to quantify task similarity which, in turn, benefits the training
of meta-learning through task selection. We demonstrate that the task selection
outperforms some common baselines in a life-long learning setting.

12

Chapter 1. Introduction 1.5. Thesis outline

• In Chapter 6, we cast the training of meta-learning problem to trajectory op-
timisation, and employ iterative Linear Quadratic Regulator – an optimisation
method in optimal control – to re-weight tasks to train a meta-learning model.
The experimental results show that the model trained on re-weighting criterion
out-performs the one trained on uniformly-weighted approach.

1.5 Thesis outline
The upcoming chapters of the thesis are oraganised as follows:

• Chapter 2 discusses in detail existing works in meta-learning, including prob-
abilistic meta-learning, PAC-Bayes meta-learning, task modelling and task
re-weighting.

• Chapter 3 proposes a variational inference method for meta-learning.

• Chapter 4 presents the formulation of a PAC-Bayes upper-bound for meta-
learning. Unlike prior works based on PAC-Bayes framework, the proposed
upper-bound is derived for the bi-level optimisation in (1.5), not the single-level
optimisation often observed in multi-task learning. Thus, it is more applicable
for practical meta-learning.

• Chapter 5 contributes to task modelling for meta-learning by employing a
graphical model based on the Gaussian latent Dirichlet allocation. The proposal
follows a generative approach that model the data generation process, while
existing works on similar topics rely on discriminative approaches that use
task-specific classifier to represent the task of interest.

• Chapter 6 applies an optimal control method, and in particular trajectory
optimisation, to re-weight tasks to train the meta-learning model of interest.

• Chapter 7 concludes the studies carried out in this thesis, including their
significance and limitations.

13

1.5. Thesis outline Chapter 1. Introduction

14

Chapter 2

Literature review

This chapter reviews existing works in the literature that cover the three main
research topics of this thesis: (i) probabilistic meta-learning, (ii) task representation
and relatedness, and (iii) task weighting in meta-learning

2.1 General meta-learning
The history of meta-learning or learning to learn can be rooted back in 1990s with
some early works relating to inductive bias in learning (Utgoff, 1986; Rendell et al.,
1987; Schmidhuber, 1987). The main idea of these studies is to explicitly model the
learning process using hierarchical structures consisting of two main levels: base-level
and meta-level (Thrun and L. Pratt, 1998, Section 1.3). The base-level is the problem
of learning task-specific models – corresponding to the lower-level optimisation in
(1.5) – which is similar to single-task learning, while the meta-level is to learn the
task-invariant properties of models – corresponding to the upper-level optimisation
in (1.5). Research in meta-learning is taken more formally in 1995 when many works
that conceptualised and formulated meta-learning were presented at the Learning to
Learn: Knowledge Consolidation and Transfer in Inductive Systems NIPS workshop,
providing a mathematical foundation for meta-learning. In these early stages of
development, research in meta-learning mainly focused on the theoretical point of
view, such as algorithm complexity in some small-scale applications.

Research in meta-learning has gradually progressed and taken off, especially
for deep learning models where more data with faster computational hardware
has become available. By employing deep neural network to model complex data,
meta-learning has achieved remarkable results in learning more efficient optim-
iser (Andrychowicz et al., 2016; K. Li and Malik, 2017; Ravi and Larochelle, 2018),
model initialisation (Finn et al., 2017) or metric-based encoding (Vinyals et al., 2016;
Snell et al., 2017). Meta-learning has also shown state-of-the-art performances in
several few-shot learning benchmarks where meta-learning can quickly adapt to a

15

2.2. Probabilistic meta-learning Chapter 2. Literature review

new task with only a few training examples. Despite such promising results, there
are many challenges to the current meta-learning research, such as overfitting due to
the reliance on point estimation of the model of interest, or how to quantify task
similarity and utilise such information to train a model faster and predict more
accurately. In the following sections, we review many studies that address those
issues. In particular, we review probabilistic meta-learning in Section 2.2, PAC-Bayes
and statistical analysis for meta-learning in Section 2.3, task-modelling in Section 2.4,
and task-weighting in Section 2.5.

2.2 Probabilistic meta-learning
As majority of existing meta-learning algorithms relies on point estimate, learning
from few training examples could potentially lead to overfitting, making meta-learning
fragile in some reliability-required applications such as medical analysis or self-driving
cars. Probabilistic meta-learning is, therefore, introduced to include uncertainty into
modelling to improve the robustness of meta-learning.

One simple probabilistic meta-learning is LLAMA (Grant et al., 2018), which
employs the Laplace method to approximate the true posterior of meta-parameter by
a multivariate normal distribution around the mode of the true posterior. However,
due to the nature of the Laplace approximation, the desired covariance matrix is
proportional to the inverse Hessian matrix, making LLAMA intractable for large-scale
models, such as deep neural networks. Further approximation, such as Kronecker-
factored approximate curvature, is used to reduce the computational and storage
complexity to make LLAMA more tractable.

Parametric variational inference (VI) is another approach to include uncertainty
into meta-learning with highly-scalable capacity. Two notable parametric VI meta-
learning approaches are PLATIPUS (Finn et al., 2018) and ABML (Ravi and Beatson,
2019), where multivariate normal distributions with diagonal covariance matrices
are used to approximate the true posterior of meta-parameter. Despite simplicity in
formulation and efficiency in computation, both approaches can be criticised since
a part of the training data is used twice: one in task adaptation and the other in
meta-parameter update steps (corresponding to lower- and upper-level optimisations
in (1.5)), potentially leading to overfitting.

Non-parametric VI meta-learning has also been investigated, such as BMAML
(Yoon et al., 2018), which employs Stein Variational Gradient Descent to update
its ensemble of models, called “particles”. However, due to the nature of non-
parametric approaches which requires many particles, BMAML might not scale
well for large models, such as very deep neural networks, since it might require a
significant amount of memory storage. Another probabilistic inference-based method

16

Chapter 2. Literature review 2.3. PAC-Bayes meta-learning

is Neural Process (Garnelo et al., 2018) that trains a neural network to approximate a
Gaussian-Process-like distribution over functions to achieve uncertainty quantification
in few-shot learning. However, the nature of cubic complexity w.r.t. the data size
induced by Gaussian Process might limit the scalability of Neural Process, making it
infeasible for large-scale datasets.

The probabilistic method proposed in Chapter 3 of this thesis, in contrast, is a
natural extension of the point estimate meta-learning method MAML (Finn et al.,
2017). Instead of using negative log-likelihood (NLL) to substitute the loss function
in (1.5) to formulate MAML algorithm, the proposed method uses the variational
version of NLL – often known as variational-free energy (Blundell et al., 2015) – as
the loss function, and follows the bi-level optimisation objective in (1.5) to learn an
approximate posterior of the meta-parameter of interest. The proposed method can,
therefore, be considered as a meta version of Bayes by backprop (Blundell et al., 2015)
in single-task learning. The proposed method also has many advantages compared to
previous works in probabilistic meta-learning. Firstly, the proposed method does not
need the point estimate of any term, but uses a probabilistic approach that includes
uncertainty into the modelling. Secondly, the proposed method does not require to
calculate or inverse large matrices, such as the Hessian matrix in LLAMA. Lastly,
the proposed method is based on a parametric approach, and hence, it is efficient in
terms of computation and storage.

2.3 PAC-Bayes meta-learning
As the development of meta-learning is progressed, it is important to investigate and
analyse the generalisation of meta-learning, especially when facing tasks it has never
seen during training. This line of work is often relied on PAC-Bayes framework,
where the true error is bounded above by an empirical error plus some regularisation.

There have been existing works that employ PAC-Bayes learning to upper-bound
the true error of meta-learning with certain confidence level (Pentina and Lampert,
2014; Amit and Meir, 2018). In those works, the meta-parameter is often modelled
as the regularisation shared across all tasks. In addition, these previous works
rely on a train-train setting (Bai et al., 2021) without splitting the dataset of each
task into a support and a query subset as in Subsection 1.1.4, resulting in a single-
level optimisation objective. In contrast, the method proposed in Chapter 4 uses
a meta-parameter to model the initialisation shared across all tasks. In addition,
our proposed method follows the train-validation split, resulting in the bi-level
optimisation objective shown in (1.5). Due to these differences, there is a slight
discrepancy between our proposed method and the existing works in the literature.

Another closely-related work is exponentially weighted aggregation for lifelong

17

2.4. Task similarity Chapter 2. Literature review

learning (EWA-LL) (Alquier, Pontil et al., 2017). In EWA-LL, each task-specific
model is decomposed into a shared feature extractor and a task-specific classifier.
Moreover, the setting of EWA-LL follows the train-train meta-learning approach,
making the algorithm analogous to multi-task learning. The PAC-Bayes meta-
learning method proposed in Chapter 4, in contrast, considers each task-specific
model as an adapted or fine-tuned version of the meta model. The proposed method
also follows a train-validation meta-learning approach with the bi-level optimisation
objective as shown in (1.5).

This line of research also has a connection to the statistical analysis of meta-
learning that proves generalisation upper-bound for meta-learning algorithms (Maurer
and Jaakkola, 2005; Maurer et al., 2016). Some recent works include the learning of
the common regularisation that is used when adapting or fine-tuning on a specific
task (Denevi et al., 2018; Denevi et al., 2019a; Denevi et al., 2019b; Denevi et al.,
2020) to improve the performance of meta-learning algorithms in heterogeneous
task environments, or analyse and optimise the regret induced by meta-learning
algorithms in online settings (Khodak et al., 2019). Our work proposed in Chapter 4
differs from previous works at how the meta-parameter is modelled. In our case,
the meta-parameter of interest is the model initialisation, and our goal is to learn a
variational distribution for such parameter, while existing works consider different
parameter, such as the shared L2 regularisation parameters, as meta-parameter, and
often learn a point estimate for such meta-parameter.

2.4 Task similarity
This section reviews existing works that models tasks in meta-learning. The purpose
of task modelling is to employ task representation to quantify task similarity or
task relatedness to improve further the learning and performance of meta-learning
methods.

In general, task-modelling can be categorised into two main approaches: discrim-
inative and generative. The discriminative approach relies on training a task-specific
model to solve that task, and employing the information provided by such model
to represent that task (Achille et al., 2019). The generative modelling approach, in
contrast, does not need to train task-specific model for each task, but models the data
generation process of those tasks, and use such generation models to characterise
tasks. To the best of our knowledge, the majority of research in task similarity
follows the discriminative approach, while there is a limited or even zero number of
works related to generative modelling approach. In the following, we review some
relevant studies that model tasks or estimate task similarity.

The closest work relating to task modelling in meta-learning is Task2Vec (Achille

18

Chapter 2. Literature review 2.4. Task similarity

et al., 2019). In Task2Vec, a task can be represented by an embedding vector
calculated from the Fisher information matrix of the task-specific model trained
on that task. Such representation can then be used to calculate the “distance” or
similarity between tasks. Comparing to Task2Vec, the probabilistic task modelling
(PTM) proposed in Chapter 5 follows a probabilistic modelling approach where a
mixture of Gaussian distributions is used to model the task generation process. The
mixture vector in the Gaussian mixture model is then used to characterise the task
of interest. The two methods are therefore different at their modelling mechanisms:
Task2Vec is discriminative, while PTM is generative. Such difference provides an
advantage of PTM over Task2Vec, which includes modelling uncertainty into the
task representation. In addition, PTM is more efficient than Task2Vec at predicting
task representation, since PTM only needs a single forward pass, while Task2Vec
requires to re-train or fine-tune the whole task-specific classifier and calculate the
Fisher information matrix for the task that needs to be presented.

Task similarity estimation has also been studied in the field of multi-task learn-
ing. Some remarkable examples in this area include task-clustering using k-nearest
neighbours (Thrun and O’Sullivan, 1996), or modelling common prior between tasks
as a mixture of distributions (Bakker and Heskes, 2003; Xue et al., 2007). Another
approach is to formulate multi-task learning as a convex optimisation problem either
to cluster tasks and utilise the clustering results to fast track the learning (Jacob et al.,
2009), or to learn task relationship through task covariance matrices (Y. Zhang and
Yeung, 2012). Other approaches provided theoretical guarantees when learning the
similarity or relationship between tasks (Shui et al., 2019). Recently, the taskonomy
project (Zamir et al., 2018) was conducted to carry out extensive experiments on
26 computer-vision tasks to empirically analyse the correlation between those tasks.
Other works (Tran et al., 2019; C. V. Nguyen et al., 2020) take a slightly different
approach by investigating the correlation of the label distributions between the tasks
of interest to measure task similarity. One commonality among all studies above
is their nature of discriminative approaches that rely on task-specific classifiers to
quantify task relatedness. In contrast, the proposed PTM method explicitly models
tasks following the generative approach without the help of any task-specific classifier,
making it more efficient in training and prediction.

The proposed PTM method in Chapter 5 is also connected to finite mixture
models (Pritchard et al., 2000), such as the latent Dirichlet allocation (Blei et al.,
2003), which analyses and summarises text data in topic modelling, or categorises
natural scenes in computer vision (F.-F. Li and Perona, 2005). LDA assumes that
each document within a given corpus can be represented as a mixture of finite
categorical distributions, where each categorical distribution is a latent topic shared
across all documents. Training an LDA model or its variants on a large text corpus

19

2.5. Task weighting in meta-learning Chapter 2. Literature review

is challenging, so several approximate inference techniques have been proposed,
ranging from mean-field variational inference (VI) (Blei et al., 2003), collapsed
Gibbs’ sampling (Griffiths and Steyvers, 2004) and collapsed VI (Teh et al., 2007).
Furthermore, several online inference methods have been developed to increase the
training efficiency for large corpora (Canini et al., 2009; Hoffman et al., 2010; Foulds
et al., 2013). PTM is slightly different from the modelling of the conventional LDA,
where we do not use the data directly, but embed it into a latent space. In short,
PTM is a combination of VAE (Kingma and Welling, 2014a) and LDA to model
the dataset associated with a task. The proposed approach considers “word” as
continuous data, instead of the discrete data represented by a bag-of-word vector
generally used by LDA-based topic modelling methods. The resultant model in the
embedding latent space is, therefore, similar to the Gaussian LDA (Das et al., 2015)
for word embedding in topic modelling.

2.5 Task weighting in meta-learning
This section reviews some recent works in task weighting for meta-learning. The
purpose of task weighting is to avoid the trained meta-learning models from overfitting
to some frequently-observed tasks.

Re-weighting tasks in meta-learning has recently attracted much research interest.
One notable recent work is TR-MAML (Collins et al., 2020) which places higher
weights on tasks with larger validation losses to optimise performance for worst-case
scenarios. However, due to being formulated as a min-max optimisation, TR-MAML
is reported to be computationally prohibitive when the number of tasks is large,
requiring to cluster tasks into a small number of clusters, limiting the practicality
of the approach. Another work, α-MAML (Cai et al., 2020), provides an upper-
bound on the distance between the weighted risk evaluated on training tasks to
the expected risk on testing tasks. The re-weight factors can then be obtained to
minimise that upper-bound, reducing the variance between training and testing tasks.
In reinforcement learning, MWL-MAML (Xu et al., 2021) was recently proposed to
employ meta-learning to learn the local optimal re-weight factor of each trajectory
using a few gradient descent steps. The downside of MWL-MAML is the need of
validation trajectories (or validation tasks in meta-learning) that are representative
enough to learn those weights. Furthermore, TR-MAML and MWL-MAML rely
on a single mini-batch of tasks to determine the weights without considering the
dynamic effect of a sequence of mini-batches when training a meta-model, potentially
rendering sub-optimal solutions. In contrast, our method proposed in Chapter 6
does not need to cluster tasks nor require additional set of validation tasks. In
addition, our proposed method automates the dynamic calculation of task-weighting

20

Chapter 2. Literature review 2.6. Summary

through an optimisation over a sequence of mini-batches, allowing to obtain better
local-optimal solutions outside of a single mini-batch of tasks.

This line of work is also motivated from the observation of large variation in
terms of prediction performance made by meta-learning algorithms on various testing
tasks (Dhillon et al., 2019, Figure 1), implying that the trained meta-model may
be biased toward certain training tasks. Such observation may be rooted in task
relatedness or task similarity which is a growing research topic in the field of transfer
learning, especially multi-task learning as presented in Section 2.4. This suggests the
design of a mechanism to re-weight the contribution of each training task to improve
the performance of the meta-model of interest.

Furthermore, the method proposed in Chapter 6 is related to finite-horizon
discrete-time trajectory optimisation or open-loop optimal control which has been
well studied in the field of control and robotics. The objective is to minimise a cost
function that depends on the states and actions in many consecutive time steps
given the state-transition dynamics. Exact solution can be obtained for the simplest
problem where the cost is quadratic and the dynamics is linear using linear quadratic
regulator (LQR) (Anderson and Moore, 2007). For a general non-linear problem,
approximate solutions can be found via iterative approaches, such as differential
dynamic programming (DDP) (Jacobson and Mayne, 1970; Murray and SJ Yakowitz,
1984; Sidney Yakowitz and Rutherford, 1984) and iterative LQR (iLQR) (Todorov
and W. Li, 2005; Tassa et al., 2012).

2.6 Summary
In this chapter, we reviewed work related to the four studies presented in this
thesis. These discussions include: probabilistic methods for meta-learning, PAC-
Bayes upper-bound to analyse the generalisation of meta-learning, task modelling to
investigate task relatedness, and task-weighting to improve further the performance
of meta-learning.

21

2.6. Summary Chapter 2. Literature review

22

Chapter 3

Variational Bayesian meta-learning

This chapter is based on the following publication:

Cuong Nguyen, Thanh-Toan Do and Gustavo Carneiro (2020). ‘Uncertainty in
model-agnostic meta-learning using variational inference’. In: Winter Conference
on Applications of Computer Vision, pp. 3090–3100.

The study is slightly modified from its original published content to adapt to the
notations presented in Chapter 1. We also add an addendum at the beginning of
this chapter to discuss how to formulate the method proposed in this chapter using
the bi-level optimisation framework presented in Section 1.2.

3.1 Addendum to the publication

The current derivation of MAML and VAMPIRE presented in the following part of
the chapter is a probabilistic approach that models the meta-parameter of interest,
θ, as the parameter of the prior of task-specific parameter p(wi). For a more general
formulation without modelling θ to relate to the prior p(wi), one can also use the
formulation framework presented in Section 1.2. This section is, therefore, dedicated
to re-formulate MAML and VAMPIRE using the bi-level optimisation approach
presented in Section 1.2.

Note that the general objective function of meta-learning is a bi-level optimisation
shown in (1.5). Hence, one can derive different meta-learning algorithms by simply
replacing the loss function ` in both levels.

3.1.1 Maximum likelihood estimation and MAML

In single-task learning, the simplest objective function is maximum likelihood estima-
tion (MLE). Hence, the simplest meta-learning algorithm can be obtained by simply

23

3.1. Addendum to the publication Chapter 3. Variational Bayesian meta-learning

replacing the loss function ` by the negative log-likelihood in MLE for both levels of
the meta-learning objective in (1.5). This results in the following objective function:

min
θ

1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

k=1
− ln p

(
y(v)
ik

∣∣∣x(v)
ik ; w∗i (θ)

)

s.t.: w∗i (θ) = arg min
wi

1
m

(t)
i

m
(t)
i∑

j=1
− ln p

(
y(t)
ij

∣∣∣x(t)
ij ; wi(θ)

)
, ∀i ∈ {1, . . . , T}. (3.1)

Furthermore, if gradient descent is used to optimise (3.1), the resulting learning
algorithm resembles MAML.

3.1.2 Minimum variational-free energy and VAMPIRE-2

In single-task learning, variational inference is used to infer the model parameter
of interest probabilistically by minimising variational-free energy (VFE) (Blundell
et al., 2015). Hence, one can replace the loss function ` in both levels of (1.5) by
VFE to obtain a probabilistic meta-learning algorithm:

min
θ

1
T

T∑
i=1

m
(v)
i∑

j=1
Eq(wi;λ∗i)

[
− ln p

(
y(v)
ij |x(v)

ij ; wi

)]
+ KL [q (wi;λ∗i) ‖p(wi)]

s.t.: λ∗i (θ) = arg min
λi

m
(t)
i∑

j=1
Eq(wi;λi)

[
− ln p

(
y(t)
ij |x(t)

ij ; wi

)]
KL [q (wi;λi) ‖p(wi)] ,

∀i ∈ {1, . . . , T},
(3.2)

where KL(π||ρ) denotes the Kullback-Leibler (KL) divergence between two distribu-
tions π and ρ.

The bi-level optimisation in (3.2) can, therefore, be considered as a “meta” version
of Bayes-by-backprop (Blundell et al., 2015) in sample-based learning. Note that
the objective function in (3.2) is different from VAMPIRE at the additional KL
divergence term highlighted in blue. For the ease of differentiation, the meta-learning
algorithm that solves the bi-level optimisation in (3.2) is called as VAMPIRE-2 to
distinguish from VAMPIRE.

24

Statement of Authorship
Title of Paper

Publication Status Published Accepted for Publication

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Principal Author

Name of Principal Author (Candidate)

Contribution to the Paper

Overall percentage (%)

Certification: This paper reports on original research I conducted during the period of my Higher Degree by

Research candidature and is not subject to any obligations or contractual agreements with a

third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

Signature Date

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Contribution to the Paper

Signature Date

Name of Co-Author

Contribution to the Paper

Signature Date

Please cut and paste additional co-author panels here as required.

20/10/2021

Uncertainty in model-agnostic meta-learning using variational inference

Cuong Nguyen, Thanh-Toan Do and Gustavo Carneiro (2020). “Uncertainty in model-agnostic
meta-learning using variational inference”. In Winter Conference on Applications of Computer
Vision, pp. 3090-3100

Cuong Nguyen

70

- Developed the conception of the paper
- Formulated the objective function of the research problem
- Implemented the proposed algorithm
- Drafted and revised the paper

Thanh-Toan Do

- Discussed and refined the conception of the paper
- Verified the mathematical formulation of the research problem
- Discussed the experiment setup and results
- Wrote and revised the paper

Gustavo Carneiro

- Discussed and refined the conception of the paper
- Verified the mathematical formulation of the research problem
- Suggested ideas to implement the proposed algorithm
- Wrote and revised the paper

20/10/2021

20/10/2021

3.2. Introduction Chapter 3. Variational Bayesian meta-learning

Abstract

We introduce a new, rigorously-formulated Bayesian meta-learning algorithm that
learns a probability distribution of model parameter prior for few-shot learning.
The proposed algorithm employs a gradient-based variational inference to infer
the posterior of model parameters for a new task. Our algorithm can be applied
to any model architecture and can be implemented in various machine learning
paradigms, including regression and classification. We show that the models trained
with our proposed meta-learning algorithm are well calibrated and accurate, with
state-of-the-art calibration and classification results on three few-shot classification
benchmarks (Omniglot, mini-ImageNet and tiered-ImageNet), and competitive results
in a multi-modal task-distribution regression.

3.2 Introduction

Machine learning, in particular deep learning, has thrived during the last decade,
producing results that were previously considered to be infeasible in several areas.
For instance, outstanding results have been achieved in speech and image under-
standing (Hinton et al., 2012; Graves et al., 2013; Krizhevsky et al., 2012; Simonyan
and Zisserman, 2015), and medical image analysis (Havaei et al., 2017). However,
the development of these machine learning methods typically requires a large number
of training samples to achieve notable performance. Such requirement contrasts with
the human ability of quickly adapting to new learning tasks using few “training”
samples. This difference may be due to the fact that humans tend to exploit prior
knowledge to facilitate the learning of new tasks, while machine learning algorithms
often do not use any prior knowledge (e.g., training from scratch with random
initialisation (Glorot and Bengio, 2010)) or rely on weak prior knowledge to learn
new tasks (e.g., training from pre-trained models (Rosenstein et al., 2005)). This
challenge has motivated the design of machine learning methods that can make more
effective use of prior knowledge to adapt to new learning tasks using few training
samples (Lake et al., 2015).

Such methods assume the existence of a latent distribution over classification
or regression tasks that share a common structure. This common structure means
that solving many tasks can be helpful to solve a new task, sampled from the same
task distribution, even if it contains a limited number of training samples. For
instance, in multi-task learning (Caruana, 1997), an agent simultaneously learns the
shared representation of many related tasks and a main task that are assumed to
come from the same domain. The extra information provided by this multi-task
training tends to regularise the main task training, particularly when it contains few

26

Chapter 3. Variational Bayesian meta-learning 3.2. Introduction

training samples. In domain adaptation (Bridle and Cox, 1991; Ben-David et al.,
2010), a learner transfers the shared knowledge of many training tasks drawn from
one or several source domains to perform well on tasks (with small training sets)
drawn from a target domain. Bayesian learning (F.-F. Li et al., 2006) has also been
explored, where prior knowledge is represented by a probability density function
on the parameters of the visual classes’ probability models. In learning to learn
or meta-learning (Schmidhuber, 1987; Thrun and L. Pratt, 1998), a meta-learner
extracts relevant knowledge from many tasks learned in the past to facilitate the
learning of new future tasks.

From the methods above, meta-learning currently produces state-of-the-art results
in many benchmark few-shot learning datasets (Santoro et al., 2016; Ravi and
Larochelle, 2018; Munkhdalai and H. Yu, 2017; Snell et al., 2017; Finn et al., 2017;
Yoon et al., 2018; R. Zhang et al., 2018; Rusu et al., 2019). Such success can be
attributed to the way meta-learning leverages prior knowledge from several training
tasks drawn from a latent distribution of tasks, where the objective is to perform
well on unseen tasks drawn from the same distribution. However, a critical issue
arises with the limited amount of training samples per task combined with the
fact that most of these approaches (Santoro et al., 2016; Vinyals et al., 2016; Ravi
and Larochelle, 2018; Finn et al., 2017; Snell et al., 2017) do not try to estimate
model uncertainty – this may result in overfitting. This issue has been recently
addressed with Laplace approximation to estimate model uncertainty, involving the
computationally hard estimation of a high-dimensional covariance matrix (Grant
et al., 2018), and with variational Bayesian learning (Finn et al., 2018; Yoon et al.,
2018) containing sub-optimal point estimate of model parameters and inefficient
optimisation.

In this work, we propose a new variational Bayesian learning by extending model-
agnostic meta-learning (MAML) (Finn et al., 2017) based on a rigorous formulation
that is efficient and does not require any point estimate of model parameters. In
particular, compared to MAML (Finn et al., 2017), our approach explores probability
distributions over possible values of meta-parameters, rather than having a fixed
value. Learning and prediction using our proposed method are, therefore, more
robust due to the perturbation of learnt meta-parameters that coherently explains
data variability. Our evaluation shows that the models trained with our proposed
meta-learning algorithm is at the same time well calibrated and accurate, with
competitive results in terms of Expected Calibration Error (ECE) and Maximimum
Calibration Error (MCE), while outperforming state-of-the-art methods in some
few-shot classification benchmarks (Omniglot, mini-ImageNet and tiered-ImageNet).

27

3.3. Related work Chapter 3. Variational Bayesian meta-learning

3.3 Related work

Meta-learning has been studied for a few decades (Schmidhuber, 1987; Naik and
Mammone, 1992; Thrun and L. Pratt, 1998), and recently gained renewed attention
with the use of deep learning methods. As meta-learning aims at the unique ability
of learning how to learn, it has enabled the development of training methods with
limited number of training samples, such as few-shot learning. Some notable meta-
learning approaches include memory-augmented neural networks (Santoro et al.,
2016), deep metric learning (Vinyals et al., 2016; Snell et al., 2017), learning how to
update model parameters (Andrychowicz et al., 2016; Ravi and Larochelle, 2018)
and learning good prior (Finn et al., 2017) using gradient update. These approaches
have generated some of the most successful meta-learning results, but they lack the
ability to estimate model uncertainty. Consequently, their performances may suffer
in uncertain environments and real world applications.

Bayesian meta-learning techniques have, therefore, been developed to incorporate
uncertainty into model estimation. Among those, MAML-based meta-learning has
attracted much of research interest due to the straightforward use of gradient-based
optimisation. LLAMA (Grant et al., 2018) uses Laplace method to extend the point
estimates made in MAML to Gaussian distributions to improve the robustness of the
trained model, but the need to estimate and invert the Hessian matrix makes this
approach computationally challenging, particularly for large-scale models used in
deep learning. Variational inference (VI) addresses such scalability issue – remarkable
examples of VI-based methods are PLATIPUS (Finn et al., 2018), BMAML (Yoon et
al., 2018) and the methods similar to our proposal, Amortised Bayesian Meta-Learning
(ABML) (Ravi and Beatson, 2019) and VERSA (Gordon et al., 2019) 1. However,
PLATIPUS optimises the lower bound of data prediction, leading to the need to
approximate a joint distribution between the task-specific and meta parameters.
This approximation complicates the implementation and requires a point estimate of
the task-specific parameters to reduce the complexity of the estimation of this joint
distribution. Employing point estimate may, however, reduce its ability to estimate
model uncertainty. BMAML uses a closed-form solution based on Stein Variational
Gradient Descent (SVGD) that simplifies the task adaptation step, but it relies on the
use of a kernel matrix, which increases its computational complexity. ABML uses the
both train and validation subsets to update meta-parameters, potentially resulting
in overfitting. VERSA takes a slightly different approach by employing an external
neural network to learn the variational distribution for certain parameters, while
keeping other parameters shared across all tasks. Another inference-based method

1ABML (Ravi and Beatson, 2019) and VERSA (Gordon et al., 2019) have been developed in
parallel to our proposed VAMPIRE.

28

Chapter 3. Variational Bayesian meta-learning 3.4. Methodology

xij yij

wi

θ

(a) Hierarchical graph-
ical model

θ∗

w 1
w

2

w3

(b) MAML (reproduced
from (Finn et al., 2017))

p (w; θ∗)

q(w
1;λ

∗ 1)
q(w

2 ;λ ∗2)

q(
w

3;
λ

∗ 3)

(c) VAMPIRE

Figure 3.1: (a) Hierarchical graphical model of the few-shot meta-learning, where a prior
parameterised by θ is shared across many tasks; (b) and (c) Visualisation between MAML
and VAMPIRE, respectively, where VAMPIRE extends both the deterministic prior p(wi; θ)
and posterior p(wi|S(t)

i , θ) in MAML by using probabilistic distributions.

is Neural Process (Garnelo et al., 2018) that employs the train-ability of neural
networks to model a Gaussian-Process-like distribution over functions to achieve
uncertainty quantification in few-shot learning. However, due to the prominent
weakness of Gaussian Process that suffers from cubic complexity to data size, this
might limit the scalability of Neural Process and makes it infeasible for large-scale
datasets.

Our approach, in contrast, is a straightforward extension of MAML, which uses
VI to model the distributions of task-specific parameters and meta-parameters, where
we do not require the use of point estimate of any term, nor do we need to compute
Hessian or kernel matrices or depend on an external network. Our proposed algorithm
can be considered a rigorous and computationally efficient Bayesian meta-learning
algorithm. A noteworthy non-meta-learning method that employs Bayesian methods
is the neural statistician (Edwards and Storkey, 2017) that uses an extra variable to
model data distribution within each task, and combines that information to solve
few-shot learning problems. Our proposed algorithm, instead, does not introduce
additional parameters, while still being able to extract relevant information from a
small number of examples.

3.4 Methodology

In this section, we first define and formulate the few-shot meta-learning problem. We
then describe MAML, derive our proposed algorithm, and mention the similarities
and differences between our method and recently proposed meta-learning methods
that are relevant to our proposal.

29

3.4. Methodology Chapter 3. Variational Bayesian meta-learning

3.4.1 Few-shot Learning Problem Setup

While conventional machine learning paradigm is designed to optimise the perform-
ance on a single task, few-shot learning is trained on a set of conditional independent
and identically distributed (i.i.d.) tasks given meta-parameters. We employ the nota-
tion of “task environment” (Baxter, 2000), where tasks are sampled from an unknown
task distribution D over a family of tasks. Each task Ti in this family is indexed by
i ∈ {1, ..., T} and consists of a support (or training) set S(t)

i = {(x(t)
ij ,y

(t)
ij)}m

(t)
i

j=1 and
a query (or validation) set S(v)

i = {(x(v)
ij ,y

(v)
ij)}m

(v)
i)

j=1 . The aim of few-shot learning
is to predict the output y(v)

ij of the query input x(v)
ij given the small support set for

task Ti (e.g. m(t)
i ≤ 20). We rely on a Bayesian hierarchical model (Grant et al.,

2018) to model the few-shot meta-learning problem. In the graphical model shown
in Figure 3.1a, θ denotes the meta-parameters of interest, and wi represents the
task-specific parameters for task Ti. One typical example of this modelling approach
is MAML (Finn et al., 2017), where wi are the neural network weights adapted to
task Ti by performing truncated gradient descent using the data from the support
set S(t)

i and the initialisation θ.
The objective function of few-shot learning is, therefore, to find a meta-learner,

parameterised by θ, across tasks sampled from D that maximises the following
log-likelihood:

max
θ

1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

j=1
ln p

(
y(v)
ij

∣∣∣x(v)
ij , S

(t)
i , θ

)
, (3.3)

where T denotes the number of tasks.
Each term of the predictive probability on the right hand side of (3.3) can be

expanded by applying the sum rule of probability and lower-bounded by Jensen’s
inequality:

ln p
(
y(v)
ij

∣∣∣x(v)
ij , S

(t)
i , θ

)
= ln

∑
wi

p
(
y(v)
ij

∣∣∣x(v)
ij ,wi

)
p
(
wi

∣∣∣S(t)
i , θ

)
= lnE

p(wi|S(t)
i ,θ)

[
p
(
y(v)
ij

∣∣∣xvij,wi

)]
≥ E

p(wi|S(t)
i ,θ)

[
ln p

(
y(v)
ij

∣∣∣xvij,wi

)]
. (3.4)

Hence, instead of maximising the log-likelihood in (3.3), we maximise the lower-
bound of the corresponding log-likelihood shown in (3.4). Our alternative objective
function can, therefore, be written as:

max
θ

1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

j=1
E
p(wi|S(t)

i ,θ)

[
ln p

(
y(v)
ij

∣∣∣xvij,wi

)]
. (3.5)

If each task-specific posterior, p(wi|S(t)
i , θ), is well-behaved, we can apply Monte

30

Chapter 3. Variational Bayesian meta-learning 3.4. Methodology

Carlo to approximate the expectation in (3.5) by sampling model parameters wi

from p(wi|S(t)
i , θ). Thus, depending on how the task-specific posterior p(wi|S(t)

i , θ)
is modelled and approximated, we can formulate different algorithms to solve the
problem of few-shot learning. We review a deterministic method that is widely used
in the literature in Subsection 3.4.2, and then present our proposed approach in
Subsection 3.4.3.

3.4.2 Point Estimate - MAML

A simple way is to approximate p(wi|S(t)
i , θ) by a Dirac delta function at its local

mode:
p
(
wi

∣∣∣S(t)
i , θ

)
= δ

(
wi −wMLE

i (θ)
)
, (3.6)

where the local mode wMLE
i can be obtained by using maximum likelihood estimate:

wMLE
i (θ) = arg max

wi
ln p

(
wi

∣∣∣S(t)
i , θ

)

= arg max
wi

1
m

(t)
i

m
(t)
i∑

j=1
ln p

(
y(t)
ij |x(t)

ij ,wi

)
+ const. w.r.t. wi. (3.7)

If gradient descent is used with θ as the initialisation of wi, the local mode can
be determined as:

wMLE
i (θ) = wi + α

m
(t)
i

m
(t)
i∑

j=1
∇wi

[
ln p

(
y(t)
ij

∣∣∣x(t)
ij ,wi

)] ∣∣∣∣∣∣∣
wi=θ

, (3.8)

where α is the learning rate, and the truncated gradient descent consists of a single
step of (3.8) (the extension to a larger number of steps is trivial).

Given the point estimate assumption in (3.6), the maximisation on the lower-
bound of the log-likelihood in (3.5) can be simplified to:

max
θ

1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

j=1
ln p

(
y(v)
ij

∣∣∣x(v)
ij ,wMLE

i (θ)
)
. (3.9)

Maximising the resultant lower-bound in (3.9) w.r.t. θ by gradient-based optim-
isation represents the MAML algorithm (Finn et al., 2017). This derivation also
explains the intuition behind MAML, which finds a good initialisation of model
parameters as illustrated in Figure 3.1b.

31

3.4. Methodology Chapter 3. Variational Bayesian meta-learning

3.4.3 Gradient-based Variational Inference

In contrast to the deterministic method presented in Subsection 3.4.2, we use a
variational distribution q(wi;λi), parameterised by λi – a function of S(t)

i and θ,
to approximate the true task-specific posterior p(wi|S(t)

i , θ). In variational infer-
ence, q(wi;λi) can be obtained by minimising the following Kullback-Leibler (KL)
divergence:

λ∗i = arg min
λi

KL
[
q(wi;λi)

∥∥∥ p (wi

∣∣∣S(t)
i , θ

)]
= arg min

λi
Eq(wi;λi)

[
ln q(wi;λi)− ln p

(
wi

∣∣∣S(t)
i , θ

)]

= arg min
λi

Eq(wi;λi)

ln q(wi;λi)− ln p(wi)

− 1
m

(t)
i

m
(t)
i∑

j=1
ln p

(
y(t)
ij

∣∣∣x(t)
ij ,wi

)
+ ln p

(
y(t)
ij

∣∣∣x(t)
ij

)
= arg min

λi
KL [q(wi;λi)‖p (wi)]−

1
m

(t)
i

m
(t)
i∑

j=1
Eq(wi;λi)

[
ln p

(
y(t)
ij

∣∣∣x(t)
ij ,wi

)]
︸ ︷︷ ︸

L
(
S

(t)
i ,λi(θ)

)
. (3.10)

The resulting cost function L(S(t)
i , λi(θ)) in (3.10) is often known as the variational

free energy (VFE). The first term of VFE can be considered as a regularisation that
penalises the difference between the prior p (wi) and the approximated posterior
q(wi;λi), while the second term is referred as likelihood cost. Exactly minimising
the cost function in (3.10) is computationally challenging, so gradient descent is used
with θ as the initialisation of λi:

λ∗i = λi − α∇λi

[
L
(
S

(t)
i , λi(θ)

)] ∣∣∣∣
λi=θ

, (3.11)

where α is the learning rate, and only one gradient-descent step is carried out to
simplify the analysis. Note that the extension for multiple gradient-descent steps
can straight-forwardly be applied.

Given the approximated posterior q(wi;λ∗i) with parameter λ∗i obtained according
to (3.11), we can calculate and optimise the lower-bound of the log-likelihood of
interest shown in (3.5) to find a local-optimal meta-parameter θ.

In Bayesian statistics, the prior p (wi) represents a modelling assumption, and the
approximated posterior q(wi;λi) is a flexible function that can be adjusted to achieve
a good trade-off between performance and complexity. For simplicity, we assume
that both p (wi) and q(wi;λi) are Gaussian distributions with diagonal covariance

32

Chapter 3. Variational Bayesian meta-learning 3.4. Methodology

Algorithm 2 VAMPIRE training
1: task distribution (D, f)
2: hyper-parameters: T, Lt, Lv, α and γ
3: initialise θ
4: while the cost in (3.5) is not converged do
5: sample a mini-batch of tasks (S(t)

i , S
(v)
i) ∼ (D, f), i = 1 : T

6: for each task Ti do
7: λi ← θ
8: draw Lt samples ŵ(lt)

i ∼ q(wi;λi), lt = 1 : Lt
9: calculate L(S(t)

i , λi) using Monte Carlo to approximate Eq(wi;λi)

10: obtain λ∗i = λi − α∇λi [L(S(t)
i , λi(θ))]

∣∣∣
λi=θ

. Eq (3.11)
11: draw Lv samples ŵ(lv)

i ∼ q(wi;λ∗i), lv = 1 : Lv
12: calculate the validation loss L(S(v)

i , λ∗i)
13: end for
14: update meta-parameter: θ ← θ + γ

T

∑T
i=1 ∇θ[L(S(v)

i , λ∗i)]
15: end while

matrices: p (wi) = N [wi|µθ,Σθ = diag (σ2
θ)]

q(wi;λi) = N
[
wi|µλi ,Σλi = diag

(
σ2
λi

)]
,

(3.12)

where µθ,µλi ,σθ,σλi ∈ Rd, with d denoting the number of model parameters, and
the operator diag(.) returns a diagonal matrix of the vector in its input parameter.

Given the prior p (wi) and the posterior q(wi;λi) in (3.12), we can compute the
KL divergence of VFE shown in (3.10) by using either Monte Carlo sampling or a
closed-form solution. According to (Blundell et al., 2015), sampling model parameters
from the approximated posterior q(wi;λi) to compute the KL divergence term and
optimise the cost function in (3.10) does not perform better or worse than using the
closed-form of the KL divergence between two Gaussian distributions. Therefore,
we employ the closed-form formula of the KL divergence to speed up the training
process.

For numerical stability, we parameterise the standard deviation point-wisely
as σ = exp (ρ) when performing gradient update for the standard deviations of
model parameters. The meta-parameters θ = (µθ, exp(ρθ)) are the initial mean
and standard deviation of neural network weights, and the variational parameters
λi = (µλi , exp(ρλi)) are the optimised mean and standard deviation of those network
weights adapted to task Ti. We also implement the re-parameterisation trick (Kingma
and Welling, 2014a) when sampling the network weights from the approximated
posterior to compute the expectation of the data log-likelihood in (3.10):

wi = µλi + ε� exp(ρλi), (3.13)

33

3.4. Methodology Chapter 3. Variational Bayesian meta-learning

where ε ∼ N (0, Id), and � is the element-wise multiplication.
After obtaining the variational parameters λi in (3.11), we can apply Monte Carlo

approximation by sampling Lv sets of model parameters from the approximated
posterior q(wi;λ∗i) to calculate and optimise the objective function in (3.5) w.r.t. θ.
This approach leads to the general form of our proposed algorithm, named Variational
Agnostic Modelling that Performs Inference for Robust Estimation (VAMPIRE),
shown in Algorithm 2.

3.4.4 Differentiating VAMPIRE and Other Bayesian Meta-
learning Methods

VAMPIRE is different from the “probabilistic MAML” - PLATIPUS (Finn et al.,
2018) in several ways. First, PLATIPUS uses VI to approximate the joint distribution
p(wi, θ|S(t)

i , S
(v)
i), while VAMPIRE uses VI to approximate the task-specific pos-

terior p(wi|S(t)
i , θ). To handle the complexity of sampling from a joint distribution,

PLATIPUS relies on the same point estimate of the task-specific posterior as MAML,
as shown in (3.6). Second, to adapt to task Ti, PLATIPUS learns only the mean,
without varying the variance. In contrast, VAMPIRE learns both µθ and Σθ for
each task Ti. Lastly, when adapting to a task, PLATIPUS requires 2 additional
gradient update steps, corresponding to steps 7 and 10 of Algorithm 1 in (Finn et al.,
2018), while VAMPIRE needs only 1 gradient update step as shown in step 10 of
Algorithm 2. Hence, VAMPIRE is based on a simpler formulation that does not rely
on any point estimate, and it is also more flexible and efficient because it allows all
meta-parameters to be learnt while performing less gradient update steps.

VAMPIRE is also different from the PAC-Bayes meta-learning method designed
for multi-task learning (Amit and Meir, 2018) at the relation between the shared
prior p (wi; θ) and the variational task-specific posterior q(wi;λi). While the PAC-
Bayes meta-learning method does not relate the “posterior” to the “prior” as in the
standard Bayesian analysis, VAMPIRE relates these two probabilities through a
likelihood function by performing a fixed number of gradient updates as shown in
(3.11). Due to this discrepancy, the PAC-Bayes meta-learning needs to maintain all
the task-specific posteriors, requiring more memory storage, consequently resulting
in an un-scalable approach, especially when the number of tasks is very large. In
contrast, VAMPIRE learns only the shared prior, and hence, is a more favourable
method for large-scaled applications, such as few-shot learning.

VAMPIRE is also different from the PAC-Bayes meta-learning method designed
for multi-task learning (Amit and Meir, 2018) at the relation between the shared
prior p(wi; θ) and the variational task-specific posterior q(wi;λi). While the PAC-
Bayes meta-learning method does not relate the “posterior” to the “prior” as in the

34

Chapter 3. Variational Bayesian meta-learning 3.4. Methodology

standard Bayesian analysis, VAMPIRE relates these two probabilities through a
likelihood function by performing a fixed number of gradient updates as shown in
(3.11). Due to this discrepancy, the PAC-Bayes meta-learning needs to maintain all
the task-specific posteriors, requiring more memory storage, consequently resulting
in an un-scalable approach, especially when the number of tasks is very large. In
contrast, VAMPIRE learns only the shared prior, and hence, is a more favourable
method for large-scaled applications, such as few-shot learning.

Our proposed algorithm is different from BMAML (Yoon et al., 2018) at the
methods used to approximate task-specific posterior p(wi|S(t)

i , θ): BMAML is based
on SVGD, while VAMPIRE is based on a variant of amortised inference. Although
SVGD is a non-parametric approach that allows a flexible variational approximation,
its downsides are the computational complexity of kernel matrix, and high memory
usage when increasing the number of particles. In contrast, our approach uses a
straightforward VI using parametric functions, resulting in a simpler computational
and memory-efficient approach. One advantage of BMAML compared to our method
in Algorithm 2 is the use of Chaser Loss, which may be an effective way of preventing
overfitting. Nevertheless, in principle, we can also implement the same loss for our
proposed algorithm.

VAMPIRE is different from ABML (Ravi and Beatson, 2019) at the data subset
used to update the meta-parameters θ: whole data set Si = S

(t)
i ∪ S(v)

i of task Ti in
ABML versus only the query subset S(v)

i in VAMPIRE. This discrepancy is due to the
differences in the objective function. In particular, ABML maximises the lower bound
of marginal likelihood, while VAMPIRE maximises the predictive probability in (3.3).
Moreover, when deriving a lower bound of marginal log-likelihood using VI (Ravi and
Beatson, 2019, Derivation right before Eq. (1)), the variational distribution q must
be strictly greater than zero for all θ and variational parameters. The assumption
that approximates the variational distribution q(θ;ψ) by a Dirac delta function made
in Amortised ML (Ravi and Beatson, 2019, Eq. (4)) is, therefore, arguable.

Another Bayesian meta-learning approach similar to VAMPIRE is VERSA (Gor-
don et al., 2019). The two methods are different at the methods modelling the
parameters of interest θ. VAMPIRE relies on gradient update to relate the prior
and posterior through likelihood function, while VERSA is based on an amortisation
network to output the parameters of the variational distributions. To scale up to
deep neural network models, VERSA models only the parameters of the last fully
connected layer, while leaving other parameters as point estimates that are shared
across all tasks. As a result, VAMPIRE is more flexible since it does not need to
define which parameters are shared or not shared, nor does it require any additional
network.

35

3.5. Experiments Chapter 3. Variational Bayesian meta-learning

Figure 3.2: Qualitative results on multi-modal data – half of the tasks are generated from
sinusoidal functions, and the other half are from linear functions with visualisation of
MAML and VAMPIRE, where the shaded area is the prediction made by VAMPIRE ±
2× standard deviation.

3.5 Experiments
The goal of our experiments is to present empirical evaluation of VAMPIRE compared
to state-of-art meta-learning approaches. The experiments include both regression
and few-shot classification problems often used to benchmark meta-learning al-
gorithms.

3.5.1 Few-shot regression

VAMPIRE is evaluated using the popular multi-modal task distribution described in
Subsection 3.5.1, where half of the tasks generated are sinusoidal functions, and the
other half are linear functions (Finn et al., 2018). The model used in this experiment
is a 3-hidden fully connected neural network with 100 hidden units per each hidden
layer. Output from each layer is activated by ReLU without batch normalisation.
Adam is used as the optimiser to optimise the meta-parameter of interest. Please
refer to Table A.1 in the Appendix for the details of hyperparameters used. The
performance of VAMPIRE is then compared to its closely-related meta-learning
algorithm MAML.

36

Chapter 3. Variational Bayesian meta-learning 3.5. Experiments

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Predicted

A
ct

ua
l

MAML PLATIPUS
BMAML ABML
VAMPIRE

(a) Reliability diagram

0.1 0.2 0.3 0.4

PLATIPUS

BMAML

ABML

VAMPIRE

Calibration error

ECE
MCE

(b) Calibration errors

Figure 3.3: Quantitative results on sinusoidal-linear 5-shot regression problem: (a) reliability
diagram of various meta-learning methods averaged over 1000 tasks, and (b) ECE and
MCE of the Bayesian meta-learning methods.

The qualitative results in Figure 3.2 show that VAMPIRE can effectively reason
which underlying function generates the training data points as the predictions are
all sinusoidal or linear. In addition, VAMPIRE is able to vary the prediction variance,
especially when there is more uncertainty in the training data. In contrast, due to
the deterministic nature, MAML can only output a single value at each input.

To quantitatively compare the performance between VAMPIRE and other few-
shot meta-learning methods, a reliability diagram based on the quantile calibration
for regression (Song et al., 2019) is constructed. A model is perfectly calibrated
when its predicted probability equals to the actual probability, resulting in a curve
that is well-aligned with the diagonal y = x. Some popular few-shot meta-learning
methods are re-implemented, trained until convergence, and their reliability diagrams
for 1000 tasks are plotted in Figure 3.3a. To have a fair comparison, BMAML is
trained without Chaser Loss, and ABML is trained with a uniform hyper-posterior.
Due to the deterministic nature, the performance curve of MAML is presented as a
horizontal line. In addition, the expected calibration error (ECE), which averages
the absolute errors measuring from the diagonal, and the maximum calibration error
(MCE), which returns the maximum of absolute errors, are plotted in Figure 3.3b to
further quantitatively compare.

Overall, in terms of ECE and MCE, the model trained with VAMPIRE is better
than BMAML and ABML, while competitive with PLATIPUS. The performance
of BMAML could be higher if more particles and Chaser Loss are used. Another
observation is that ABML has slightly lower performance than MAML, although
the training procedures of the two methods are very similar. This might be due to
overfitting induced by using the whole training data subset S(t)

i ∪ S(v)
i to update

meta-parameter, while MAML and VAMPIRE use only the validation data subset

37

3.5. Experiments Chapter 3. Variational Bayesian meta-learning

S
(v)
i to learn the meta-parameters.

3.5.2 Few-shot classification

The experiments in this sub-section are based on the N -way k-shot learning task,
where a meta learner is trained on many related tasks containing N classes and small
training sets of k samples for each class. Omniglot (Lake et al., 2015), mini-ImageNet
(Vinyals et al., 2016; Ravi and Larochelle, 2018) and tiered-ImageNet (Ren et al.,
2018) are the three datasets used to benchmark the results against the state-of-the-art
in the few-shot classification setting. Note that the experiments on tiered-ImageNet
is carried with input as features extracted by a residual network that was pre-trained
on data and classes from training meta-set (Rusu et al., 2019, Section 4.2.2) instead
of using raw image data to have a consistent comparison to existing results reported
in the literature.

For Omniglot and mini-ImageNet, the same network architecture of state-of-the-
art methods (Vinyals et al., 2016; Finn et al., 2017; Ravi and Larochelle, 2018) is
employed to fairly compare different meta-learning algorithms. The network consists
of 4 hidden convolution modules, each containing 64 filters of size 3-by-3, followed by
batch normalisation (Ioffe and Szegedy, 2015), ReLU activation, and a 2-by-2 strided
convolution. For the mini-ImageNet, the strided convolution is replaced by a 2-by-2
max-pooling layer, and only 32 filters are used on each convolution layer to avoid
over-fitting (Finn et al., 2017; Ravi and Larochelle, 2018). For tiered-ImageNet with
extracted features, a 2-hidden-layer fully-connected network with 128 and 32 hidden
units is used as a backbone. The evaluation subset S(v)

i has 15 samples per class,
resulting in m(v)

i = 15×N samples to be consistent with the previous works in the
literature (Finn et al., 2017; Ravi and Larochelle, 2018). The training is carried out
by using Adam. The learning rate of the meta-parameters θ is set to be γ = 10−3,
and decayed by a factor of 0.99 after every 10,000 tasks. Other hyperparameters
used are specified in Table A.3 in the Appendix. The numbers of ensemble models
Lt and Lv sampled from the variational posterior q(wi;λi) are selected to fit into
the memory of one Nvidia 1080 Ti GPU. Higher values of Lt and Lv are desirable to
achieve a better Monte Carlo approximation, but the trade-off is slower computation
per task.

A 2-hidden fully connected layer with 128 and 32 hidden units is used in the
experiments with features extracted from mini-ImageNet and tiered-ImageNet presen-
ted in Table A.4, and the bottom part of Table 3.2, respectively (Rusu et al., 2019).
The learning rate α is set as 0.01 and 5 gradient updates were carried out. The
learning rate for meta-parameters was γ = 0.001.

The N -way k-shot classification accuracy measured on Omniglot, and mini-

38

C
hapter

3.
VariationalBayesian

m
eta-learning

3.5.
Experim

ents

Table 3.1: Few-shot classification accuracy (in percentage) on Omniglot, tested on 1000 tasks and
reported with 95% confidence intervals. The results of VAMPIRE are competitive to the state-of-the-art
baselines which are carried out on a standard 4-convolution-layer neural networks. The top of the table
contains methods trained on the original split defined in (Lake et al., 2015), while the middle part
contains methods using a standard 4-layer CNN trained on random train-test split. The bottom part
presents results of different methods using different network architectures, or requiring external modules
and additional parameters trained on random split. Note that the Omniglot results on random split
cannot be fairly compared.

5-way 20-way

1-shot 5-shot 1-shot 5-shot

Omniglot (Lake et al., 2015) - Original Split, standard 4-layer CNN

MAML 96.68± 0.57 98.33± 0.22 84.38± 0.64 96.32± 0.17
VAMPIRE 96.27± 0.38 98.77± 0.27 86.60± 0.24 96.14± 0.10

Omniglot (Lake et al., 2015) - Random Split, standard 4-layer CNN

Matching nets (Vinyals et al., 2016) 98.1 98.9 93.8 98.5
Prototypical nets (Snell et al., 2017) † 98.8 99.7 96.0 98.9
MAML (Finn et al., 2017) 98.7± 0.4 99.9± 0.1 95.8± 0.3 98.9± 0.2
VAMPIRE 98.43± 0.19 99.56± 0.08 93.20± 0.28 98.52± 0.13

Omniglot (Lake et al., 2015) - Random Split, non-standard CNNs

Siamese nets (Koch et al., 2015) 97.3 98.4 88.2 97.0
Neural statistician 98.1 99.5 93.2 98.1(Edwards and Storkey, 2017)
Memory module (Kaiser et al., 2017) 98.4 99.6 95.0 98.6
Relation nets (Sung et al., 2018) 99.6± 0.2 99.8± 0.1 97.6± 0.2 99.1± 0.1
VERSA (Gordon et al., 2019) 99.70± 0.20 99.75± 0.13 97.66± 0.29 98.77± 0.18
† Trained with 60-way episodes

39

3.5. Experiments Chapter 3. Variational Bayesian meta-learning

ImageNet, tiered-ImageNet data sets are shown in Tables 3.1 and 3.2, respectively.
Overall, the results of VAMPIRE are competitive to the state-of-the-art methods
that use the same network architecture (Vinyals et al., 2016; Finn et al., 2017; Ravi
and Larochelle, 2018).

On Omniglot, the results of VAMPIRE on a random train-test split are competitive
in most scenarios. VAMPIRE outperforms some previous works in few-shot learning,
such as siamese networks (Koch et al., 2015), matching networks (Vinyals et al., 2016)
and memory models (Kaiser et al., 2017), although they are designed with a focus on
few-shot classification. The result of VAMPIRE on the 20-way 1-shot is slightly lower
than prototypical networks (Snell et al., 2017) and VERSA (Gordon et al., 2019),
but prototypical networks need more classes (higher “way”) per training episode to
obtain advantageous results and VERSA requires an additional amortised networks
to learn the parameters of variational distributions. The results of VAMPIRE are
also slightly lower than MAML, potentially due to the difference of train-test split.
To obtain a fair comparison, we run the public code provided by MAML’s authors,
and measure its accuracy on the original split suggested in (Lake et al., 2015). Using
this split, VAMPIRE achieves competitive performance, and outperforms MAML in
some cases.

On mini-ImageNet, VAMPIRE outperforms all reported methods that use the
standard 4-layer CNN architecture on the 1-shot tests, while being competitive on the
5-shot episodes. Prototypical Networks achieve a higher accuracy on the 5-shot tests
due to, again, the use of extra classes during training. Although the current work
does not aim to achieve the state-of-the-art results in few-shot learning, an additional
experiment using input as features extracted by a residual network (Rusu et al., 2019,
section 4.2.2) is carried out for reference purpose. The results, including the state-
of-the-art methods that employ much deeper networks with various architectures,
are presented in Table A.4. Note that deeper networks tend to reduce intra-class
variation, resulting in a smaller gap of performance among many meta-learning
methods (W.-Y. Chen et al., 2019).

On tiered-ImageNet, VAMPIRE outperforms many methods published previously
by a large margin on both 1- and 5-shot settings.

To evaluate the predictive uncertainty of the models trained with different meta-
learning methods, we show in Figure 3.4a the “normalised” reliability diagrams (C.
Guo et al., 2017) which presents the absolute errors averaged over many unseen
tasks. A perfectly calibrated model will have its “normalised” values overlapped
with the y-axis, indicating that the probability associated with the label prediction
is the same as the true probability. To have a fair comparison, we train all the

2Trained with 30-way episodes for 1-shot classification and 20-way episodes for 5-shot classification
3Produced locally without Chaser loss

40

Chapter 3. Variational Bayesian meta-learning 3.5. Experiments

Table 3.2: The few-shot 5-way classification accuracy results (in percentage) of VAMPIRE
averaged over 600 mini-ImageNet tasks and 5000 tiered-ImageNet tasks are competitive to
the state-of-the-art methods.

Mini-ImageNet
1-shot 5-shot

Standard 4-block CNN

Matching nets (Vinyals et al., 2016) 43.56± 0.84 55.31± 0.73
Meta-learner LSTM (Ravi and Larochelle, 2018) 43.44± 0.77 60.60± 0.71
MAML (Finn et al., 2017) 48.70± 1.84 63.15± 0.91
Proto. nets (Snell et al., 2017) 2 49.42± 0.78 68.20± 0.66
LLAMA (Grant et al., 2018) 49.40± 1.83 _
PLATIPUS (Finn et al., 2018) 50.13± 1.86 _
BMAML (Yoon et al., 2018)3 49.17± 0.87 64.23± 0.69
Amortised ML (Ravi and Beatson, 2019) 45.00± 0.60 _
VAMPIRE 51.54± 0.74 64.31± 0.74

Tiered-ImageNet
1-shot 5-shot

Different settings and network architectures

MAML (Y. Liu et al., 2018) 51.67± 1.81 70.30± 0.08
Prototypical Networks (Ren et al., 2018) 53.31± 0.89 72.69± 0.74
Relation Networks (Y. Liu et al., 2018) 54.48± 0.93 71.32± 0.78
Transductive Propagation Nets (Y. Liu et al., 2018) 57.41± 0.94 71.55± 0.74
LEO (Rusu et al., 2019) 66.33± 0.05 81.44± 0.09
MetaOptNet (Lee et al., 2019) 65.81± 0.74 81.75± 0.53
VAMPIRE 69.87± 0.29 82.70± 0.21

methods of interest under the same configuration, e.g. network architecture, number
of gradient updates, while keeping all method-specific hyper-parameters the same
as the reported values. Due to the constrain of GPU memory, BMAML is trained
with only 8 particles, while PLATIPUS, Amortimised Meta-learner and VAMPIRE
are trained with 10 Monte Carlo samples. According to the reliability graphs, the
model trained with VAMPIRE shows a much better calibration than the ones trained
with the other methods used in the comparison. To further evaluate, we compute
the expected calibration error (ECE) and maximum calibration error (MCE) (C.
Guo et al., 2017) of each models trained with these methods. Intuitively, ECE is
the weighted average error, while MCE is the largest error. The results plotted
in Figure 3.4b show that the model trained with VAMPIRE has smaller ECE and
MCE compared to all the state-of-the-art meta-learning methods. The slightly low
performance of ABML might be due to the usage of the whole task-specific dataset,
potentially overfitting to the training data. Another factor contributed might be

41

3.6. Summary Chapter 3. Variational Bayesian meta-learning

0.4 0.6 0.8 1.0
conf.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

|a
cc
u
- c

on
f.|

MAML
PLATIPUS
BMAML
ABML
VAMPIRE

(a) “Normalised” reliability diagram

M
AM

L

PL
AT

IP
US

BM
AM

L

AB
M
L

VA
M
PI
RE

0.000

0.025

0.050

0.075

0.100

0.125

Er
ro
r

ECE
MCE

(b) ECE and MCE

Figure 3.4: (a) Uncertainty evaluation between different meta-learning methods using
reliability diagrams, and (b) expected calibration error (ECE) and maximum calibration
error (MCE), in which the evaluation is carried out on 5-way 1-shot setting for

(20
5
)

= 15504
unseen tasks sampled from mini-ImageNet dataset.

the arguable Dirac-delta hyper-prior used, which can be also the cause for the low
prediction accuracy shown in Table 3.2.

3.6 Summary
We introduce and formulate a new Bayesian algorithm used for few-shot meta-
learning. The proposed algorithm, VAMPIRE, employs variational inference to
optimise a well-defined cost function to learn a distribution of model parameters.
The uncertainty, in the form of the learnt distribution, can introduce more variability
into the decision made by the model, resulting in well-calibrated and highly-accurate
prediction. The algorithm can be combined with different models that are trainable
with gradient-based optimisation, and is applicable in regression and classification.
We demonstrate that the algorithm can make reasonable predictions about unseen
data in a multi-modal 5-shot learning regression problem, and achieve state-of-the-art
calibration and classification results with only 1 or 5 training examples per class on
public image data sets.

42

Chapter 4

PAC-Bayesian upper-bound for
meta-learning

The content of this chapter was submitted at the time the thesis was examined, and
then accepted to the IEEE Transaction on Pattern Analysis and Machine Intelligence
with the following publication:

Cuong Nguyen, Thanh-Toan Do and Gustavo Carneiro (2022). ‘PAC-Bayes meta-
learning with implicit task-specific posteriors’. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2022.3147798.

We note that Section 4.3, and in particular, Subsections 4.3.1 to 4.3.3, are largely
overlapped with Section 1.1 presented in Chapter 1.

43

https://doi.org/10.1109/TPAMI.2022.3147798

Statement of Authorship
Title of Paper

Publication Status Published Accepted for Publication

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Principal Author

Name of Principal Author (Candidate)

Contribution to the Paper

Overall percentage (%)

Certification: This paper reports on original research I conducted during the period of my Higher Degree by

Research candidature and is not subject to any obligations or contractual agreements with a

third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

Signature Date

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Contribution to the Paper

Signature Date

Name of Co-Author

Contribution to the Paper

Signature Date

Please cut and paste additional co-author panels here as required.

PAC-Bayesian meta-learning with implicit variational posterior

Cuong Nguyen

70

20/10/2021

- Developed the conception of the paper
- Formulated the objective function
- Implemented the proposed algorithm
- Drafted the paper

Thanh-Toan Do

- Discussed and refined the idea of the paper
- Verified the mathematical formulation
- Sugguested ideas to implement the proposed method
- Wrote and revised the paper

Gustavo Carneiro

- Discussed and refined the idea of the paper
- Verified the mathematical formulation of the proposed method
- Advised and discussed some difficulties of the implementation
- Wrote and revised the paper

20/10/2021

Cuong Nguyen, Thanh-Toan Do and Gustavo Carneiro (2021). “PAC-Bayesian meta-learning
with implicit variational posterior”. Submitted to IEEE Transactions on Pattern Analysis and
Machine Intelligence.

20/10/2021

Chapter 4. PAC-Bayesian meta-learning 4.1. Introduction

Abstract

We introduce a new and rigorously-formulated PAC-Bayes meta-learning algorithm
that solves few-shot learning. Our proposed method extends the PAC-Bayes frame-
work from a single-task setting to the meta-learning multiple-task setting to upper-
bound the error evaluated on any, even unseen, tasks and samples. We also propose a
generative-based approach to estimate the posterior of task-specific model parameters
more expressively compared to the usual assumption based on a multivariate normal
distribution with a diagonal covariance matrix. We show that the models trained
with our proposed meta-learning algorithm are well-calibrated and accurate, with
state-of-the-art calibration errors while still being competitive on classification res-
ults on few-shot classification (mini-ImageNet and tiered-ImageNet) and regression
(multi-modal task-distribution regression) benchmarks.

4.1 Introduction

Ounique ability of humans is to quickly learn new tasks with only a few training
examples. This is due to the fact that humans tend to exploit prior experience to
facilitate the learning of new tasks. Such exploitation is markedly different from
conventional machine learning approaches, where no prior knowledge (e.g. training
from scratch with random initialisation) (Glorot and Bengio, 2010), or weak prior
knowledge (e.g., fine-tuning from pre-trained models) (Rosenstein et al., 2005) are
employed to learn a new task. This motivates the development of novel learning
algorithms that can effectively encode the knowledge learnt from training tasks, and
exploit that knowledge to quickly adapt to future tasks (Lake et al., 2015).

Prior knowledge can be helpful for future learning only if all tasks are assumed to
be distributed according to a latent task distribution. Learning this latent distribu-
tion is, therefore, useful for solving an unseen task, even if the task contains a limited
number of training examples. Many approaches have been proposed and developed
to achieve this goal, namely: multi-task learning (Caruana, 1997), domain adapta-
tion (Bridle and Cox, 1991; Ben-David et al., 2010) and meta-learning (Schmidhuber,
1987; Thrun and L. Pratt, 1998). Among these, meta-learning has flourished as one
of the most effective methods due to its ability to leverage the knowledge learnt from
many training tasks to quickly adapt to unseen tasks.

Recent advances in meta-learning have produced state-of-the-art results in many
benchmarks of few-shot learning data sets (Santoro et al., 2016; Ravi and Larochelle,
2018; Munkhdalai and H. Yu, 2017; Snell et al., 2017; Finn et al., 2017; R. Zhang
et al., 2018; Rusu et al., 2019). Learning from a few training examples is often difficult
and easily leads to over-fitting, especially when no model uncertainty is taken into

45

4.2. Related Work Chapter 4. PAC-Bayesian meta-learning

account. This issue has been addressed by several recent probabilistic meta-learning
approaches that incorporate model uncertainty into prediction, e.g., LLAMA (based
on Laplace method) (Grant et al., 2018), or PLATIPUS (Finn et al., 2017), Amortised
Bayesian Meta-learner (ABML) (Ravi and Beatson, 2019) and VERSA (Gordon et al.,
2019) that use variational inference. However, these studies have not thoroughly
investigated the errors evaluated on arbitrary tasks (including seen and unseen)
sampled from the same task distribution and arbitrary samples generated from the
same task. This results in limited theoretical generalisation guarantees. Moreover,
most of these studies are based on variational functions that may not represent well
the richness of the underlying distributions. For instance, a common choice for the
variational posterior relies on a multivariate normal distribution with a diagonal
covariance matrix, which can potentially worsen the prediction accuracy given its
limited representability.

In this paper, we address the two problems listed above with the following
technical novelties: (i) derivation of a rigorous meta-learning objective that upper-
bounds the errors evaluated on any tasks and any samples of few-shot learning setting
based on the PAC-Bayes framework, and (ii) proposal of a novel implicit modelling
approach to expressively approximate the posterior of task-specific model parameters.
Our evaluation shows that the models trained with our proposed meta-learning
algorithm are at the same time well-calibrated and accurate, with state-of-the-art
Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) in few-
shot classification (mini-ImageNet and tiered-ImageNet) and regression (multi-modal
task-distribution regression) benchmarks, while still being competitive in terms of
classification accuracy.

4.2 Related Work
Our paper is related to probabilistic few-shot meta-learning techniques that have been
developed to incorporate uncertainty into model estimation. LLAMA (Grant et al.,
2018) employs the Laplace method to extend the deterministic estimation assumed in
MAML (Finn et al., 2017) to a multivariate normal distribution. However, the need
to estimate and invert the Hessian matrix of a loss function makes this approach
computationally challenging for large-scale models, such as deep neural networks.
Variational inference (VI) addresses such scalability issue – remarkable examples of
VI-based methods are PLATIPUS (Finn et al., 2018), BMAML (Yoon et al., 2018),
ABML (Ravi and Beatson, 2019) and VERSA (Gordon et al., 2019). Although these
VI-based approaches have demonstrated impressive results in regression, classification
as well as reinforcement learning, they do not provide any theoretical guarantee
on the error induced by arbitrary or even unseen tasks sampled from the same

46

Chapter 4. PAC-Bayesian meta-learning 4.2. Related Work

task distribution as well as any samples belonging to the same task. Moreover,
the variational distributions used in most of these works are overly-simplified as
multivariate normal distributions with diagonal covariance matrices. This assumption,
however, limits the expressiveness of the variational approximation, resulting in a
less accurate prediction.

Our work is also related to the PAC-Bayes framework used in meta-learning
that upper-bounds errors with certain confidence levels (Pentina and Lampert, 2014;
Amit and Meir, 2018). The main difference between those previous studies and
ours is in the modelling of meta-parameters and the objective functions which are
used to train such parameters. In the previous studies, the meta-parameters are
the prior of task-specific parameters which are analogous to regularisation in task
adaptation step (also known as “inner-loop”), while in our proposed method, the
meta-parameters of interest are the model initialisation. In addition, the existing
works rely on a train-train setting (Bai et al., 2021) where all data of a task is used
for task adaptation such as REPTILE (Nichol et al., 2018), while ours follows the
train-validation split with the bi-level optimisation objective shown below in (4.3).
Such differences lead to a discrepancy in the formulation of the corresponding PAC-
Bayes bounds. Another work closely related to our proposed method is exponentially
weighted aggregation for lifelong learning (EWA-LL) (Alquier, Pontil et al., 2017). In
EWA-LL, each task-specific model is decomposed into a shared feature extractor and
a task-specific classifier, while in our approach, each task-specific model is an adapted
or a fine-tuned version of the meta-parameters. Moreover, the setting of EWA-LL
follows the train-train meta-learning approach, making the algorithm analogous to
multi-task learning, while our proposed method is a train-validation meta-learning
approach with the bi-level optimisation objective.

Our work has a connection to the statistical analysis of meta-learning that proves
generalisation upper-bound for meta-learning algorithms (Maurer and Jaakkola, 2005;
Maurer et al., 2016). Some typical recent works include the learning of the common
regularisation that is used when adapting or fine-tuning on a specific task (Denevi
et al., 2018; Denevi et al., 2019a; Denevi et al., 2019b; Denevi et al., 2020) to improve
the performance of meta-learning algorithms in heterogeneous task environments, or
analyse and optimise the regret induced by meta-learning algorithms in an online
setting (Khodak et al., 2019). Our work differs from this line of research at how
the meta-parameters are modelled. In our case, the meta-parameters of interest
are the model initialisation, and our goal is to learn an approximated posterior
for such parameters, while existing works consider different hyper-parameters, such
as the shared L2 regularisation parameters, as meta-parameters, and often follow
maximum likelihood estimation (MLE) or maximum a posterior (MAP) to learn a
point estimate for such meta-parameters.

47

4.3. Background Chapter 4. PAC-Bayesian meta-learning

The most closely related work to ours is the PAC optimal hyper-posterior (PA-
COH) (Rothfuss et al., 2021), submitted later but published earlier. Both works
study the generalisation of meta-learning via PAC-Bayes framework. There are only
some minor differences between the two works. In PACOH, the meta-parameter
of interest is used to model the common prior of task-specific parameter, while in
our work, such parameter is analogous to the hyper-parameter shared over tasks
sampled from the same task environment. In addition, PACOH relies on a “modern”
PAC-Bayes bound (Alquier et al., 2016) which does not require bounded loss function,
but moment generating function, while ours is extended from the classical PAC-Bayes
bound (McAllester, 1999). Nevertheless, such differences are minimal and the two
derived upper-bounds will coincide if the same PAC-Bayes bound for single-task
learning setting is used. Another related work is PACMAML (Ding et al., 2021) that
presents an upper-bound of the generalisation error when the testing task is sampled
from a different task environment. In a loose sense, PACMAML can be considered
as a variant of PACOH applied when the testing task environment is not the same
as the training.

4.3 Background

4.3.1 Data generation model of a task

Consider a task indexed by i ∈ N = {1, 2, . . .}. A data point of the i-th task consists
of an input xij ∈ X ⊆ Rd and a corresponding label yij ∈ Y with j ∈ N. Such data
points are generated in two steps. The first step is to generate the input xij by
sampling from some probability distribution Di. The second step is to determine
the label yij = fi(xij), where fi : X → Y is the “correct” labelling function. Note
that both the probability distribution Di and the labelling function fi are unknown.
To simplify the notations, (xij,yij) ∼ (Di, fi) is then used to denote such data
generation.

4.3.2 Task instance

We restate the definition of a task as presented in Section 1.1.

Definition 1.2: Task (Hospedales et al., 2021)
A task or a task instance Ti consists of an unknown associated data generation
model (Di, fi), and a loss function `i, denoted as: Ti = (Di, fi, `i).

48

Chapter 4. PAC-Bayesian meta-learning 4.3. Background

Remark 4.1
The loss function `i is defined abstractly, and not necessarily some common loss
functions, such as mean squared error (MSE) or cross-entropy. For example,
`i could be referred to as negative log-likelihood if the objective is maximum
likelihood estimation, or variational-free energy if the objective is based on
variational inference.

To solve a task Ti, one needs to obtain an optimal task-specific model h(.; w∗i) :
X → Y , parameterised by w∗i ∈ W ⊆ Rn, which minimises a loss function `i on the
data of that task:

w∗i = arg min
wi

E(xij ,yij)∼(Di,fi) [`i(xij,yij; wi)] . (4.1)

In practice, since both Di and fi are unknown, the data generation model is
replaced by a dataset consisting of a finite number of data-points generated according
to the data generation model (Di, fi), denoted as Si = {xij,yij}mij=1. The objective
to solve that task is often known as empirical risk minimisation (ERM):

wERM
i = arg min

wi

1
mi

mi∑
j=1

[`i(xij,yij; wi)] . (4.2)

For simplicity, this paper considers two families of tasks: regression and classifica-
tion. As a result, the label is a scalar Y ⊆ R for regression and Y = {0, 1, . . . , C− 1}
for classification, where C is the total number of classes. In addition, the loss function
used will be the same for each task family, hence, the subscript on the loss function
will be dropped, and the loss is denoted as ` throughout the paper. Due to the
commonality of the loss function across all tasks, we will drop the notation of ` when
referring to a task. In other words, a task can be simply represented by either its
data generation model (Di, fi) or the associated dataset Si.

4.3.3 Meta-learning

The setting of the meta-learning problem considered in this paper follows the task
environment (Baxter, 2000) that describes the unknown distribution p(D, f) over a
family of tasks. Each task Ti sampled from this task environment can be represented
as (D(t)

i ,D(v)
i , fi), where D(t)

i and D(v)
i are the probability distributions generate the

training and validation input data, respectively, and they are not necessarily identical.
The aim of meta-learning is to obtain a model trained on available training tasks
such that the model can be fine-tuned on some labelled data of a testing task drawn
from the same task environment to predict the label of unlabelled data on the same
task accurately.

49

4.3. Background Chapter 4. PAC-Bayesian meta-learning

θ λ

y(t) x(t)

y(v) x(v)

Figure 4.1: Meta-learning is an extension of hyper-parameter optimisation, where the
meta-parameter θ is shared across all tasks. The solid arrows denote forward pass, while the
dashed arrows indicate parameter inference, and rectangles illustrate the plate notations.
The training subset {(x(t)

ij , y
(t)
ij)}m

(t)
i

j=1 of task Ti and the meta-parameter θ are used to learn
the task-specific parameter λi, corresponding to the lower-level optimisation in (4.3). The
obtained λi is then used to evaluate the error on the validation subset {(x(v)

ij , y
(v)
ij)}m

(v)
i

j=1 to
learn the meta-parameter θ, corresponding to the upper-level optimisation in (4.3).

Such meta-learning methods use meta-parameters to model the common latent
structure of the task distribution p(D, f). Examples of meta-parameters are: model
initialisation (Finn et al., 2017; Finn et al., 2018; Ravi and Beatson, 2019; C. Nguyen
et al., 2020), learning rate when fine-tuning the model for a task (Z. Li et al., 2017),
feature extractor (Vinyals et al., 2016; Snell et al., 2017), and optimiser (Andrychowicz
et al., 2016; Ravi and Larochelle, 2018). From this point of view, meta-learning can
be considered as an extension of hyper-parameter optimisation in single-task learning,
where the hyper-parameters of interest or meta-parameters are shared across many
tasks. Mathematically, the objective of meta-learning can be written as a bi-level
optimisation:

min
ψ

Eq(θ;ψ)Ep(D,f)Eq(wi;λ∗i (θ))E(D(v)
i ,fi)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]
, i ∈ N

s.t.: λ∗i (θ) = arg min
λi(θ)

E(D(t)
i ,fi)

Eq(wi;λi(θ))
[
`
(
x(t)
ij , y

(t)
ij ; wi

)]
, (4.3)

where q(θ;ψ), parameterised by ψ, is a distribution over the meta-parameter θ,
q(wi;λi(θ)), parameterised by λi(θ), is a distribution of task-specific parameter wi,
E(D(t)

i ,fi)
means the expectation evaluated on input x(t)

ij sampled from D(t)
i and its

corresponding label y(t)
ij = fi(x(t)

ij), and E(D(v)
i ,fi)

is defined similarly. In addition, to
simplify the notations, we drop the dependence of θ from λi(θ).

Note that the difference of the objective in (4.3) from hyper-parameter optimisa-
tion in single-task learning is at the upper-level where (4.3) consists of the additional
expectation over all training tasks, denoted as Ep(D,f).

Depending on how the loss function ` and distributions q(θ;ψ) and q(wi;λi)
are defined, one can obtain different meta-learning algorithms. For example, if `
corresponds to the loss in MLE and the lower-level is optimised by gradient descent

50

Chapter 4. PAC-Bayesian meta-learning 4.3. Background

with θ as the initialisation of λi:

`(x, y; w) = − ln p(y|x; w)
θ = initialisation of λi
q(wi;λi) = δ(wi − λi)
q(θ;ψ) = δ (θ − ψ) ,

(4.4)

where δ(.) is the Dirac delta function, then the objective in (4.3) can be simplified to:

min
θ

Ep(D,f)E(D(v)
i ,fi

) [− ln p
(
y

(v)
ij |x(v)

ij ; wi

)]
s.t.: w∗i = arg min

wi
E(
D(t)
i ,fi

) [− ln p
(
y

(t)
ij |x(t)

ij ; wi

)]
, i ∈ N, (4.5)

which resembles the MAML algorithm (Finn et al., 2017).
Another example is the probabilistic meta-learning algorithm that replaces the loss

function ` by a form of the variational-free energy and uses some similar assumptions
in MAML:

`(x, y; w) = − ln p(y|x; w) + ln
[
q(wi;λi)
p(wi)

]
θ = initialisation of λi
q(wi;λi) = N

(
wi; µλi , diag

(
σ2
λi

))
q(θ;ψ) = δ (θ − ψ) ,

(4.6)

where N (.) denotes multivariate normal distribution, diag(.) denotes a diagonal
matrix, and p(wi) is the prior of wi. This formulation resembles ABML (Ravi and
Beatson, 2019) and VAMPIRE (C. Nguyen et al., 2020) algorithms.

4.3.4 PAC-Bayes upper-bound in single-task learning

In practice, the data probability distribution Di and the labelling function fi of a
task Ti are unknown, but only a dataset Si consisting of finite input data and labels
is available. Since the aim is to minimise the loss averaged over all data generated
from (Di, fi), it is, therefore, important to analyse the difference between such “true”
loss and the empirical loss evaluated on a given dataset. Such difference can be
upper-bounded by the KL divergence shown in Theorem 4.1 with a certain level of
confidence.

Theorem 4.1: (McAllester, 1999)
If a dataset Si consists of mi inputs xik i.i.d. sampled from a data probability
distribution Di and being labelled by fi, H is a hypothesis class, ε ∈ (0, 1]

51

4.4. Methodology Chapter 4. PAC-Bayesian meta-learning

and a loss function ` : H × Y → [0, 1], then for any “posterior” q(wi;λi) over
a hypothesis h(.; wi) ∈ H, parameterised by wi, the following holds with a
probability at least 1− ε:

Eq(wi;λi)E(Di,fi) [`(xij, yij; wi)] ≤
1
mi

mi∑
k=1

Eq(wi;λi) [`(xik, yik; wi)]

+

√√√√KL [q(wi;λi)||p(wi)] + lnmi
ε

2(mi − 1) ,

where p(wi) is the prior of wi.

Instead of minimising the “true” loss of a task, denoted as the left-hand side term
in Theorem 4.1, which is intractable, one should minimise both the empirical loss and
the KL divergence on the right-hand side. Indeed, the upper-bound in Theorem 4.1
is often used as a tractable learning objective function for the model of interest.

4.4 Methodology

4.4.1 PAC-Bayes meta-learning

In practice, the training and validation data probability distributions, D(t)
i and D(v)

i ,
and their corresponding labelling function fi, are unknown, and only two disjoint
datasets with finite examples:

S
(t)
i =

{(
x(t)
ij , y

(t)
ij

)}m(t)
i

j=1
, S

(v)
i =

{(
x(v)
ik , y

(v)
ik

)}m(v)
i

k=1

Si = S
(t)
i ∪ S(v)

i , S
(t)
i ∩ S(v)

i ,

associated with task Ti, are provided as illustrated in Figure 4.1. Note that m(t)
i

and m(v)
i are not necessarily identical, and the label y(v)

ij in the validation dataset
S

(v)
i are known in training, while being unknown in testing. In addition, the task

distribution p(D, f) is unknown, but only T tasks sampled from such task distribution
are available for training. Hence, it is important to derive an upper-bound, and in
particular PAC-Bayes upper-bound, for both the “generalisation” losses in upper- and
lower-levels of (4.3). Since the optimisation in the lower-level of (4.3) corresponds
to solving a single task, the PAC-Bayes upper-bound presented in Theorem 4.1 can
be straight-forwardly applied as the learning objective to upper-bound the error
on unseen samples generated from that task. The remaining problem lies on the
formulation of the PAC-Bayes upper-bound for the loss in the upper-level of (4.3).
This novel bound is shown in Theorem 4.2 with its detailed proof presented in
Appendix B.1.

52

Chapter 4. PAC-Bayesian meta-learning 4.4. Methodology

Theorem 4.2

Given T tasks sampled from the same task environment p(D, f), where each
task has an associated pair of datasets (S(t)

i , S
(v)
i) with samples generated from

the task-specific data generation model (D(t)
i ,D(v)

i , fi), then for a bounded loss
function ` :W×Y → [0, 1] and any distributions q(θ;ψ) of meta-parameter θ and
q(wi;λi) of task-specific parameter wi, the following holds with the probability
at least 1− ε,∀ε ∈ (0, 1]:

Eq(θ;ψ)Ep(D,f)Eq(wi;λi)E(D(v)
i ,fi)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]

≤ 1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

k=1
Eq(θ;ψ)Eq(wi;λ)

[
`
(
x(v)
ik , y

(v)
ik ; wi

)]

+

√√√√√Eq(θ;ψ) [KL [q(wi;λi)||p(wi)]] + T 2

(T−1)ε lnm(v)
i

2
(
m

(v)
i − 1

)
+

√√√√KL [q(θ;ψ)||p(θ)] + T lnT
ε

2(T − 1) ,

where p(wi),∀i ∈ {1, . . . , T} is the prior of task-specific parameter wi and p(θ)
is the prior of meta-parameter θ.

Proof sketch. The proof is carried out in three steps: (i) derive a PAC-Bayes
upper-bound for unseen samples generated from task-specific data generation model
(D(v)

i , fi),∀i ∈ {1, . . . , T} by adapting the proof of Theorem 4.1 as shown in Ap-
pendix B.1.1, (ii) derive a PAC-Bayes upper-bound for unseen tasks by applying
Theorem 4.1 as shown in Appendix B.1.2, and (iii) combine the two obtained results
as shown in Appendix B.1.3 to complete the proof.

Remark 4.2
One limitation of Theorems 4.1 and 4.2 is the assumption of bounded loss which
restricts the loss function within [0, 1]. Although there are several studies that
extend PAC-Bayes bound to unbounded losses (Catoni, 2004; Germain et al.,
2016; Alquier et al., 2016; Alquier and Guedj, 2018), their formulation still needs
to assume the boundedness of the moment generating function of some particular
loss functions. This assumption is, however, impractical since in practice, some
common loss functions, such as mean squared error or cross-entropy, do not
possess such property. Nevertheless, our main focus in this paper is to provide a
theoretical generalisation guarantee for meta-learning using PAC-Bayes theory.

53

4.4. Methodology Chapter 4. PAC-Bayesian meta-learning

Such extension is not necessary since in the implementation our loss is clipped
to be within [0, 1].

4.4.2 Practical meta-learning objective

Instead of following the objective in (4.3), which is intractable due to the unknown
data generation model of each task and the unknown task environment, we utilise the
results in Theorems 4.1 and 4.2 to propose a new objective function for a practical
meta-learning that theoretically guarantees the generalisation errors due to unseen
samples of a task and unseen tasks sampled from the task environment. The new
objective is formulated by replacing the optimisation in the lower-level of (4.3) by the
minimisation of the corresponding upper-bound in Theorem 4.1, and the optimisation
in the upper-level of (4.3) by the minimisation of the upper-bound in Theorem 4.2.

4.4.3 Meta-learning with implicit task-specific posterior

Given the new objective function where both the optimisations in the lower- and
upper-levels of (4.3) are replaced by the minimisation of the PAC-Bayes upper-
bounds in Theorems 4.1 and 4.2, there are a total of four distributions of interest:
the “posteriors” q(θ;ψ) and q(wi;λi), i ∈ {1, . . . , T}, and the priors p(θ) and p(wi).

As priors represent the modelling assumption and are chosen before observing
data, we assume that both p(θ) and p(wi) follows multivariate normal distributions
with diagonal covariance matrices:

p(θ) = N
(
θ; 000, σ2

θI
)

(4.7)

p(wi) = N
(
wi; 000, σ2

wI
)
, (4.8)

where 000 is a vector containing all zeros, I is the identity matrix, σθ > 0 and σw > 0
are hyper-parameters.

Remark 4.3
The assumption of multivariate normal priors is to simplify the analysis presented
in this section, especially easily sampled from to apply Monte Carlo approximation
for the lower-bound of the KL divergence shown in Eq. (4.12). One can also select
different distributions as priors, but that might result in a more complicated
formulation and implementation.

For the posterior q(θ;ψ) of the meta-parameter θ, it is often assumed to be a
Dirac delta function: q(θ;ψ) = δ(θ − ψ) (Finn et al., 2017; Ravi and Beatson, 2019;
C. Nguyen et al., 2020). In this paper, q(θ;ψ) is assumed to be a multivariate normal

54

Chapter 4. PAC-Bayesian meta-learning 4.4. Methodology

distribution with a fixed diagonal covariance matrix, denoted as:

q(θ;ψ) = N (θ; µθ, σ0I) , (4.9)

where σ0 is a hyper-parameter. Such notation also means that ψ = µθ.
The only distribution left is the task-specific “posterior” q(wi;λi). In general,

q(wi;λi) can be modelled following one of the two general types: prescribed and
implicit Diggle and Gratton, 1984. For example, ABML Ravi and Beatson, 2019
and VAMPIRE C. Nguyen et al., 2020 are prescribed approaches where q(wi;λi)
is assumed to be a multivariate normal distribution with a diagonal covariance
matrix. Such approximation is, however, inexpressive, resulting in a poor estimation.
In contrast, implicit modelling only has access to the samples generated from the
distribution of interest without assuming any analytical form of such distribution, e.g.
the generator in generative adversarial networks (Goodfellow et al., 2014). In this
paper, we use the implicit modelling approach to expressively represent q(wi;λi).

The distribution q(wi;λi) is now defined at a more fundamental level whereby
data is generated through a stochastic mechanism without specifying a parametric
distribution. A parameterised model (i.e., a generator G represented by a deep neural
network) is used to model the sample generation:

wi ∼ q(wi;λi)⇔ wi = G(z;λi), z ∼ p(z), (4.10)

where z ∈ Z ⊆ Rz is the latent noise sampled from a latent noise distribution p(z),
which is often selected as the uniform in [0, 1]z or the standard normal distribution.
In our implementation, we observe that due to the unconstrained support space
of the standard normal distribution, latent noise sampled from such distribution
may vary drastically, resulting in a large variation of the generated task-specific
model parameter wi and potentially, making the training difficulty, especially at the
beginning of the training. We, therefore, use the uniform distribution on [0, 1]z as
the latent noise distribution p(z) to bound the support space Z of the latent noise
to make the training more stable.

Due to the nature of implicit models, the KL divergence term KL [q(wi;λi)||p(wi)]
in the lower-level and KL [q(wi;λ∗i)||p(wi)] in the upper-level of the bi-level optimisa-
tion objective cannot be evaluated either analytically or symbolically. We, therefore,
propose to employ the lower-bound of the KL divergence shown in Lemma 4.3 to
estimate the value of the KL divergence to train the meta-learning model.

Lemma 4.3: Compression lemma (Banerjee, 2006)

For any measurable function φ(h) on a set of predictors under consideration H,

55

4.4. Methodology Chapter 4. PAC-Bayesian meta-learning

and any distributions P and Q on H, the following holds:

EQ [φ(h)]− lnEP
[
eφ(h)

]
≤ KL [Q‖P] .

Further,
sup
φ

EQ [φ(h)]− lnEP
[
eφ(h)

]
= KL [Q‖P] .

Proof. Please refer to the proof in Appendix B.2.

Remark 4.4
Naively substituting the lower-bound of the KL divergence terms into the object-
ive function makes the upper-bound in Theorem 4.2 no longer the upper-bound
of the generalisation error. However, since the supremum (or maximum) of
such KL lower-bound equals to the KL divergence, the upper-bound derived in
Theorem 4.2 still holds if the maximum for the KL lower-bound is obtained. In
this paper, we present another optimisation to estimate such optimal lower-bound
to approximate the KL divergence terms.

To model the function φ :W → R in Lemma 4.3 to estimate the lower-bound of
KL divergences, we use a neural network with parameter ωi. The objective to obtain
φ is to maximise the left-hand side in Lemma 4.3, which can be expressed as:

ω∗i = arg max
ωi

Eq(wi;λi) [φ(wi;ωi)]− lnEp(wi)
[
eφ(wi;ωi)

]
. (4.11)

The KL divergence between the task-specific posterior q(wi;λi) and prior p(wi)
can then be estimated as:

KL [q(wi;λi)||p(wi)] = Eq(wi;λi) [φ(wi;ω∗i)]− lnEp(wi)
[
eφ(wi;ω∗i)

]
. (4.12)

One problem that arises when estimating the losses in both the lower- and
upper-level of the meta-learning objective is to learn a different ωi for each different
task Ti by training the neural network φ from scratch. The downside of such naive
implementation is the significant increase in training time. We, therefore, propose
to learn a good initialisation of ωi using MAML (Finn et al., 2017) to reduce the
time of the KL divergence estimation. With this assumption, we define ω0 as the
meta-parameters (or initialisation) of ωi. Within each task, we initialise ωi at ω0 and
optimise the loss in (4.11) w.r.t. ωi using gradient descent. ω0 is then obtained by
optimising the validation loss evaluated on ω∗i w.r.t. ω0.

The proposed meta-learning method, therefore, consists of two parameters of
interest: the hyper-meta-parameter ψ and the meta-parameter ω0 of the φ-network.

56

Chapter 4. PAC-Bayesian meta-learning 4.4. Methodology

Algorithm 3 SImPa
1: procedure train
2: initialise hyper-meta-parameter ψ = µθ

3: initialise φ-network meta-parameter ω0
4: while ψ and ω0 not converged do
5: sample: θ ∼ N (θ; µθ, σ0I)
6: sample a mini-batch of T tasks
7: for each task Ti do
8: λi, ωi ← optimise lower-level(θ, ω0, Ti)
9: use λi to calculate PAC-Bayes upper-bound in Theorem 4.2

10: use ωi to calculate the KL lower-bound in (4.12)
11: end for
12: ψ ← SGD (average of T losses obtained in step 9)
13: ω0 ← SGA(average of T KL lower-bounds obtained in step 10)

. SGD/SGA = stochastic gradient descent/ascent
14: end while
15: return ψ and ω0
16: end procedure

17: procedure optimise lower-level(θ, ω0, Ti)
18: initialise task-specific parameter: λi ← θ
19: initialise task-specific φ-net: ωi ← ω0
20: ω∗i ← arg maxωi KL lower-bound in (4.11)
21: use ω∗i to calculate KL divergence in Eq. (4.12)
22: λ∗i ← arg minλi PAC-Bayes upper-bound in Theorem 4.1
23: return λ∗i and ω∗i
24: end procedure

Each of the parameters is optimised following their corresponding bi-level optimisation
objective functions similar to (4.3). Algorithm 3 shows the training procedure of
the proposed approach. In addition, we name the proposed approach as statistical
implicit PAC-Bayes meta-learning or SImPa for short, to simplify the text when
comparing to other meta-learning methods.

One potential drawback of the implicit modelling approach is the curse of dimen-
sionality, resulting in a computationally expensive training process. This is an active
research question when dealing with generative models. This issue can be addressed
by encoding the high-dimensional data, such as images, to a feature embedding space
by supervised-learning on the same training data set. For example, in one of our
experiments, we also show how to use image features extracted from a wide-residual
network trained on tiered-ImageNet training set (Rusu et al., 2019) to mitigate this
issue. This strategy reduces the dimension of the input space, leading to smaller
task-specific model parameter wi, and eventually decreasing the size of the generator.
The trade-off lies in the possibility of losing relevant information that can affect the
performance on hold-out tasks.

57

4.5. Experiments Chapter 4. PAC-Bayesian meta-learning

It is also worth noting that our proposed method is easier to train than prior
probabilistic meta-learning methods (Finn et al., 2018; Ravi and Beatson, 2019)
because we no longer need to tune the weighting factor of KL [q(wi;λi)||p(wi)] in both
levels of the bi-level optimisation objective. Although weighting such KL divergence
terms can be justified by casting the optimisation in each level of the meta-learning
objective to a constrained optimisation as shown in β-VAE (Higgins et al., 2016),
the weighting factor in such case is the corresponding Lagrange multiplier of the
constrained optimisation. Thus, simply setting that weighting factor as a “tunable”
hyper-parameter may result in a sub-optimal solution. In contrast, our proposed
approach does not need to re-weight the KL divergences. The trade-off of our
approach lies in the need to set the confidence parameter ε, but tuning ε is arguably
more intuitive than tuning the correct weighting factor for the KL divergence terms
done in previous works.

4.5 Experimental evaluation
In this section, SImPa is evaluated on few-shot regression and classification problems
and compared to common meta-learning baselines, such as MAML (Finn et al., 2017),
ABML (Ravi and Beatson, 2019), PLATIPUS (Finn et al., 2018) and BMAML (Yoon
et al., 2018).

The loss functions used are mean-squared error (MSE) for regression and cross-
entropy for classification. Following the assumption of bounded losses made in
Section 4.4, the data-related losses in both the lower- and upper-level, `(xij, yij; wi)
are clipped to [0, 1]. In addition, Monte Carlo (MC) sampling is used to evaluate the
expectation over q(θ;ψ) and q(wi;λi). In particular, one sample of meta-parameter
θ and eight samples of task-specific parameter wi are used in training, while these
numbers are one and thirty-two in testing, respectively. The asymmetric choice of
those hyper-parameters is to optimise training time, while maximising the prediction
performance in evaluation. For the hyper-parameters defined in Eqs. (4.7) to (4.9),
σθ = σw = 1 and σ = 10−6. In addition, the confidence parameters is selected as
ε = εi = 0.1,∀i ∈ {1, . . . , T}. The number of tasks per an update of the parameters
of interest is T = 20.

In terms of generating wi for each task Ti, we use latent noise vectors z sampled
from the uniform distribution in [0, 1]128. The generator in (4.10) is modelled by a
fully-connected neural network with 2 hidden layers. Each of these layers consists
of 256 and 512 hidden units, respectively, and is activated by rectified linear unit
without any batch normalisation. The output of the final layer is then activated by
hyperbolic tangent function to constrain the parameter of the base network, avoiding
the loss value from exploding. The φ-network has an “inverted” architecture of the

58

Chapter 4. PAC-Bayesian meta-learning 4.5. Experiments

generator, which consists of 3-hidden layers. These layers consist of 512, 256 and 128
hidden units, respectively, and are also activated by rectified linear unit without any
batch normalisation. Adam optimiser (Kingma and Ba, 2015) is used to optimise
both the hyper-meta-parameter ψ and ω0 with the same learning rate of 10−4. To
train the φ-network for each task, 512 MC samples of the base network parameters
are sampled from both q(wi;λi) and p(wi) to evaluate the lower-bound of the KL
divergence in (4.11). To optimise (4.11) w.r.t. ωi, gradient descent is used with a
learning rate of 10−4.

4.5.1 Regression

The experiment in this subsection is a multi-modal task distribution where half of
the data is generated from sinusoidal functions, while the other half is from linear
functions (Finn et al., 2018). The sinusoidal function used in this experiment has the
form y = A sin(x+ Φ) + ε, where A and Φ are uniformly sampled from [0.1, 5] and
[0, π], respectively, while the linear function considered is in the form y = ax+ b+ ε,
where a and b are randomly sampled from [−3, 3]. The noise ε is sampled from
N (0, 0.32). The experiment is carried out under the 5-shot setting: m(t)

i = 5, and
the validation set S(v)

i consists of m(v)
i = 50 data points.

Similar to existing works in the literature (Finn et al., 2018), the base network to
solve each regression task is a fully-connected network with 2 hidden layers, where
each layer has 40 hidden units. Linear rectifier function is used as activation function,
and no batch-normalisation is used. Gradient descent is used as the optimiser for
the lower-level optimisation with learning rate fixed at 10−3 and iterated 5 times.

As shown in Figure 4.2, SImPa is able to vary the prediction variance, espe-
cially when there is more uncertainty in the training data, while MAML can only
output a single value at each data point. For a quantitative comparison, we train
many probabilistic meta-learning methods, including PLATIPUS (Finn et al., 2018),
BMAML (Yoon et al., 2018) and ABML (Ravi and Beatson, 2019), in the same
regression problem. Here, BMAML consists of 10 particles trained without Chaser
Loss. As shown in Figure 4.3a, SImPa achieves much smaller MSE, comparing
to MAML, PLATIPUS and ABML, and comparable NLL to the non-parametric
BMAML when being evaluated on the same hold-out tasks.

To further evaluate the predictive uncertainty, we employ the reliability diagram
based on the quantile calibration for regression (Song et al., 2019). The reliability
diagram shows a correlation between predicted and actual probability. A perfectly
calibrated model will have its predicted probability equal to the actual probability,
and hence, align well with the diagonal y = x. The results in Figure 4.3b show that
the model trained with SImPa achieves the best calibration among all the methods

59

4.5. Experiments Chapter 4. PAC-Bayesian meta-learning

5.0 2.5 0.0 2.5 5.0
x

2

1

0

1

y

5.0 2.5 0.0 2.5 5.0
x

3

2

1

0

1

2

y

5.0 2.5 0.0 2.5 5.0
x

15

10

5

0

5

10

15

y

5.0 2.5 0.0 2.5 5.0
x

20

15

10

5

0

5

10

y

Figure 4.2: SImPa and MAML are compared in a regression problem when training is
based on multi-modal data – half of the tasks are generated from sinusoidal functions, and
the other half are from linear functions. The shaded area is the prediction made by SImPa
± 3× standard deviation.

considered. Due to the nature of a deterministic approach, MAML (Finn et al., 2017)
is represented as a horizontal line, resulting in a poorly calibrated model. The two
probabilistic meta-learning methods, PLATIPUS and ABML, perform better than
MAML; however, the averaged slopes of their performance curves are quite close to
MAML, implying that their multivariate normal posteriors of task-specific model
parameters have small covariance diagonal values. This may be caused by their
exclusive reliance on less-expressive multivariate normal distributions with diagonal
covariance matrices. The performance of BMAML is slightly better than PLATIPUS
and ABML due to its non-parameteric modelling approach. In contrast, SImPa
employs a much richer variational distribution q(wi;λi) for task specific parameters,
and therefore, produces a model with better calibration. For another quantitative
comparison, we plot the expected calibration error (ECE) (C. Guo et al., 2017),
which is the weighted average of the absolute errors measuring from the diagonal,
and the maximum calibration error (MCE) (C. Guo et al., 2017), which returns the
maximum of absolute errors in Figure 4.3c. Overall, SImPa outperforms all of the
state-of-the-art methods in both ECE and MCE.

60

Chapter 4. PAC-Bayesian meta-learning 4.5. Experiments

1.5 2 2.5

MAML

PLATIPUS

BMAML

ABML

SImPa

Mean squared error

(a) MSE on hold-out tasks

0 0.5 1
0

0.5

1

Observed probability

Ex
pe

ct
ed

pr
ob

ab
ili

ty

MAML
PLATIPUS
BMAML
ABML
SImPa

(b) Reliability diagram

0.2 0.3 0.4 0.5

MAML

PLATIPUS

BMAML

ABML

SImPa

Calibration error

ECE MCE

(c) ECE and MCE

Figure 4.3: Quantitative comparison between various probabilistic meta-learning approaches
averaged over 1000 unseen tasks shows that SImPa has a comparable MSE error and the
smallest calibration error.

4.5.2 Few-shot classification

We evaluate SImPa on the N -way k-shot setting, where a meta learner is trained
on many related tasks containing N classes with k examples per class (m(t)

i = kN).
The evaluation is carried out by comparing the results of SImPa against the results
of state-of-the-art methods on three popular few-shot learning benchmarking data
sets: Omniglot (Lake et al., 2015), mini-ImageNet (Vinyals et al., 2016; Ravi and
Larochelle, 2018) and tiered-ImageNet (Ren et al., 2018).

Omniglot dataset consists of 50 different alphabets with a total of 1,623 characters
drawn online via Amazon’s Mechanical Turk by 20 different people. Hence, Omniglot
is often considered as a “transposed” MNIST since Omniglot has many classes, but
each class has 20 images. We follow the original train-test split where 30 alphabets
are used for training, while the other 20 alphabets are used for testing. To be
consistent with previous evaluations, we pre-process by down-sampling all images
to 28-by-28 pixels. No data augmentation, such as rotation, is used. Note that
for the task formation, many existing meta-learning methods in the literature use

61

4.5. Experiments Chapter 4. PAC-Bayesian meta-learning

Table 4.1: The few-shot 5-way classification accuracy results (in percentage, with 95%
confidence interval) of SImPa averaged over 1 million tasks on Omniglot (top), and 600
tasks on mini-ImageNet (middle-top and middle-bottom) and tiered-ImageNet (bottom)
datasets. The bold numbers denote statistically significant best method according to t-test.

METHOD 1-SHOT 5-SHOT

Omniglot (Lake et al., 2015) - standard 4-block CNN

MAML (Finn et al., 2017) 97.143± 0.005
Prototypical nets (Snell et al., 2017) 96.359± 0.006
BMAML (Yoon et al., 2018) 94.104± 0.008
ABML (Ravi and Beatson, 2019) 97.281± 0.004
SImPa 98.352 ± 0.005

Mini-ImageNet (Ravi and Larochelle, 2018) - standard 4-block CNN

Matching nets (Vinyals et al., 2016) 43.56 ± 0.84 55.31 ± 0.73
Meta-learner LSTM (Ravi and Larochelle, 2018) 43.44 ± 0.77 60.60 ± 0.71
MAML (Finn et al., 2017) 48.70 ± 1.84 63.15 ± 0.91
Prototypical nets (Snell et al., 2017)1 49.42 ± 0.78 68.20 ± 0.66
LLAMA (Grant et al., 2018) 49.40 ± 1.83 _
PLATIPUS (Finn et al., 2018) 50.13 ± 1.86 _
ABML (Ravi and Beatson, 2019) 45.00 ± 0.60 _
SImPa 51.72 ± 0.48 63.49 ± 0.40

Mini-ImageNet (Ravi and Larochelle, 2018) - non-standard network

Relation nets (Sung et al., 2018) 50.44 ± 0.82 65.32 ± 0.70
VERSA (Gordon et al., 2019) 53.40 ± 1.82 67.37 ± 0.86
SNAIL (Mishra et al., 2018) 55.71 ± 0.99 68.88 ± 0.92
adaResNet (Munkhdalai et al., 2018) 56.88 ± 0.62 71.94 ± 0.57
TADAM (Oreshkin et al., 2018) 58.50 ± 0.30 76.70 ± 0.30
LEO (Rusu et al., 2019) 61.76 ± 0.08 77.59 ± 0.12
LGM-Net (H. Li et al., 2019) 69.13 ± 0.35 71.18 ± 0.68
SImPa2 62.85 ± 0.56 77.65 ± 0.50

Tiered-ImageNet (Ren et al., 2018) non-standard network

MAML (Y. Liu et al., 2018) 51.67± 1.81 70.30± 0.08
Proto. Nets (Ren et al., 2018) 53.31± 0.89 72.69± 0.74
Relation Net (Y. Liu et al., 2018) 54.48± 0.93 71.32± 0.78
Trns. Prp. Nets (Y. Liu et al., 2018) 57.41± 0.94 71.55± 0.74
LEO (Rusu et al., 2019) 66.33± 0.05 81.44± 0.09
MetaOptNet (Lee et al., 2019) 65.81± 0.74 81.75 ± 0.53
SImPa2 70.26 ± 0.35 80.15 ± 0.28

non-standard train-test split where characters of all 50 alphabets are mixed, and
randomly split. This splitting potentially forms easier tasks since knowing a character
in an alphabet might help to classify other characters within that same alphabet.
Moreover, the mixed and random split is different from evaluation to evaluation,
making it challenging to fairly compare different meta-learning methods.

62

Chapter 4. PAC-Bayesian meta-learning 4.5. Experiments

Mini-ImageNet (Vinyals et al., 2016) is another dataset used to evaluate classific-
ation performance between different meta-learning methods. The dataset consists of
100 classes, where each class contains 600 colour images taken from ImageNet (Rus-
sakovsky et al., 2015). We follow the standard train-test split which uses 64 classes
for training, 16 classes for validation, and 20 classes for testing (Ravi and Larochelle,
2018). The images in the dataset are pre-processed by down-sampling to 84-by-84
pixels before any training is carried out. No data augmentation, such as image
flipping or rotation, is used.

Tiered-ImageNet is one of the largest subsets of ImageNet, which consists of total
608 classes grouped into 34 high-level categories (Ren et al., 2018). Tiered-ImageNet
is often used as a benchmark for large-scaled few-shot learning. We also follow the
standard train-test split that consists of 20 categories for training, 6 categories for
validation, and 8 categories for testing. In addition, our evaluation is carried out by
employing the features extracted from a residual network trained on the data and
classes from the training set (Rusu et al., 2019).

The evaluation is carried out in 2 cases: one with raw image data and the other
with 640-dimensional image features extracted from a wide-residual network trained
solely on training data (Rusu et al., 2019). In the “standard” case, the base network
is the “standard” convolutional network consisting of 4 modules. Each module has a
convolutional layer with 32 3-by-3 filters, followed by a batch normalisation, ReLU
and 2-by-2 max-pooling. The output of the final module is flatten and connected to
a fully connected layer to predict the label of the input image. In the “non-standard”
case, the base network is a fully-connected network with 2 hidden layers. Each layer
consists of 128 and 32 hidden units activated by rectified linear unit without any
batch-normalisation.

We report the classification accuracy of SImPa on these three data sets in Table 4.1.
For Omniglot, we use the published code to reproduce the results for some common
meta-learning methods to fairly compare with SImPa. The accuracy averaged over
more than 1 million testing tasks show that the proposed SImPa is better than
competing meta-learning methods in the literature. For mini-ImageNet, SImPa
achieves the best empirical results for the 1-shot setting when the base model is the
“standard” CNN, and for the 5-shot setting when a different network architecture is
used. SImPa shows the second best results for the 5-shot setting with the 4-layer
CNN and the 1-shot setting with the different network architecture. Note that for
the 5-shot setting using standard CNN, Prototypical networks need to train with
a much higher “way” which is harder to learn, and might help the trained model
to perform better on easier tasks with lower “way”. For tiered-ImageNet, SImPa

1Trained on 30-way 1-shot setting
2Use extracted features (Rusu et al., 2019) as input

63

4.5. Experiments Chapter 4. PAC-Bayesian meta-learning

0.4 0.6 0.8 1
0.00

0.05

0.10

Accuracy

|C
on

fid
en

ce
-A

cc
ur
ac
y

| MAML
PLATIPUS
BMAML
ABML
SImPa

(a) Reliability diagram

5 · 10−2 0.1

MAML

PLATIPUS

BMAML

ABML

SImPa

Calibration error

ECE
MCE

(b) ECE and MCE

Figure 4.4: Calibration of the “standard” 4-block CNN trained with different meta-learning
methods on 5-way 1-shot classification tasks on mini-ImageNet.

outperforms the current state-of-the-art in 1-shot setting, while being comparable in
5-shot setting. To obtain a fairer comparison, we re-run MAML on the image data
of mini-ImageNet using a ResNet10, which has about 5 million parameters (ours has
about 8 millions parameters). However, MAML, with and without L2 regularisation,
over-fits the training data (our best result for MAML was 89% accuracy on train,
while only 42% on test). This known issue of overfitting when using larger networks
in MAML was mentioned in the MAML paper (Finn et al., 2017, Section 5.2). We
also try a similar model for ABML (Ravi and Beatson, 2019), but observed no
improvement.

Similarly to the experiment for regression, we use reliability diagrams (C. Guo
et al., 2017) to evaluate the predictive uncertainty. For a fair comparison, we re-
implement several probabilistic meta-learning approaches, including MAML (Finn
et al., 2017), PLATIPUS (Finn et al., 2018), BMAML (Yoon et al., 2018) and
ABML (Ravi and Beatson, 2019), using the 4-block CNN as the base model, trained
under the same setting, and plot their reliability chart. The performance curves in
the reliability diagram show how well calibrated a model is when testing across many
unseen tasks. A perfectly calibrated model will have its values overlapped with the
identity function y = x, indicating that the probability associated with the label
prediction is the same as the true probability. To ease the visualisation, we normalise
the reliability chart by subtracting the predicted accuracy by its corresponding value
on the diagonal y = x, as shown in Figure 4.4a. Hence, for the normalised reliability
chart, the closer to y = 0, the better the calibration. Visually, the model trained
with SImPa shows better calibration than the ones trained with other meta-learning
methods. To further evaluate, we compute the expected calibration error (ECE) and
maximum calibration error (MCE) (C. Guo et al., 2017) of the models trained with
these methods. The results plotted in Figure 4.4b show that the model trained with

64

Chapter 4. PAC-Bayesian meta-learning 4.6. Summary

SImPa achieves the smallest ECE and MCE among all the methods considered in
this comparison. The most competitive method to SImPa, regarding ECE and MCE,
is ABML, but note that ABML has a worse classification accuracy than SImPa, as
shown in Table 4.1 (Top) – see row “ABML (Ravi and Beatson, 2019)”.

4.5.3 Discussion

As mentioned in Remark 4.2, the loss function ` is clipped to [0, 1] to satisfy the
assumption made in PAC-Bayes framework. We observed that it affects the training
of SImPa, mostly at the early stages. The reason might be the imbalance between
the clipped loss and the regularisation terms related to KL divergence, making the
learning over-regularised with slow convergence. In the implementation, we first train
SImPa without such regularisation terms for 1,000 tasks, and then add them back to
the loss with such regularisation. This facilitates the training process, allowing the
algorithm to converge faster.

As specified in Subsection 4.4.3, the usage of implicit distribution, and in particular
the generator in (4.10) to generate the parameter for the neural network of interest,
leads to an exponential increase in the number of learnable parameters. For example,
in the classification of mini-ImageNet using the 4-convolutional module neural
network, the number of parameter of the base network is 32,645, requiring us to have
a generator with 16.7 million parameters. Such a large generator limits the scalability
of SImPa, making it inapplicable for larger base networks. One workaround solution
might be to utilise the architecture design proposed in Hypernetworks (Ha et al.,
2017) that shares parameters to reduce the size of the generator. The trade-off is the
slight decreasing of the generator expressiveness when generating the parameter for
the base neural network.

Another limitation of SImPa is the need of GPU memory and training time
comparing to other meta-learning approaches, such as MAML. In our implementation,
the simplest baseline MAML needs 6 GPU-hours to train until convergence, while
probabilistic baselines, such as ABML, BMAML and PLATIPUS, take about 30
GPU-hours to converge under the same setting. For SImPa, it requires more than
48 hours to converge. The reason of such long training time lies on the size of the
meta-parameter, the need to train the φ network to estimate KL divergence, and the
number of Monte Carlo samples used.

4.6 Summary

We introduce and formulate a new probabilistic algorithm for few-shot meta-learning.
The proposed algorithm, SImPa, is based on PAC-Bayes framework which theoretic-

65

4.6. Summary Chapter 4. PAC-Bayesian meta-learning

ally bounds the error induced on unseen tasks and unseen samples within each task.
In addition, the proposed method employs a generative approach that implicitly
models the posterior of task-specific model parameter q(wi;λi), resulting in more
expressive variational approximation compared to the usual variational methods
using multivariate normal posteriors with diagonal covariance matrices, such as
PLATIPUS (Finn et al., 2018) or ABML (Ravi and Beatson, 2019). The uncertainty,
in the form of the learnt implicit distributions, can introduce more variability into
the decision made by the model, resulting in well-calibrated and highly-accurate pre-
diction. The algorithm can be combined with different base models that are trainable
with gradient-based optimisation, and is applicable in regression and classification.
We demonstrate that the algorithm has state-of-the-art calibration and prediction
results on unseen data in a multi-modal 5-shot learning regression problem, and
achieve state-of-the-art calibration and classification results on few-shot 5-way tasks
on mini-ImageNet and tiered-ImageNet data sets.

66

Chapter 5

Probabilistic task modelling for
meta-learning

The main content of this chapter is accepted to present at the Conference on
Uncertainty in Artificial Intelligence (UAI) 2021:

Cuong Nguyen, Thanh-Toan Do and Gustavo Carneiro (2021). ‘Probabilistic
task modelling for meta-learning’. In: Conference on Uncertainty in Artificial
Intelligence.

67

Statement of Authorship
Title of Paper

Publication Status Published Accepted for Publication

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Principal Author

Name of Principal Author (Candidate)

Contribution to the Paper

Overall percentage (%)

Certification: This paper reports on original research I conducted during the period of my Higher Degree by

Research candidature and is not subject to any obligations or contractual agreements with a

third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

Signature Date

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Contribution to the Paper

Signature Date

Name of Co-Author

Contribution to the Paper

Signature Date

Please cut and paste additional co-author panels here as required.

20/10/2021

Cuong Nguyen, Thanh-Toan Do and Gustavo Carneiro (2021). “Probabilistic task modelling for
meta-learning”. In Conference on Uncertainty in Artificial Intelligence.

Probabilistic task modelling for meta-learning

Cuong Nguyen

- Developed the conception of the paper
- Formulated the objective function of the proposed graphical model
- Implemented the proposed method
- Drafted and revised the paper

20/10/2021

70

Thanh-Toan Do

- Discussed and refined the idea of the paper
- Verified the mathematical formulation
- Suggested some ideas to overcome difficulties in the implementation
- Wrote and revised the paper

Gustavo Carneiro

- Discussed and refined the idea of the paper
- Verified the correctness in the formulation of the paper
- Suggested some ideas to overcome the difficulties in the implementation
- Wrote and revised the paper

20/10/2021

Chapter 5. Probabilistic task modelling for meta-learning 5.1. Introduction

Abstract

We propose probabilistic task modelling – a generative probabilistic model for col-
lections of tasks used in meta-learning. The proposed model combines variational
auto-encoding and latent Dirichlet allocation to model each task as a mixture of
Gaussian distribution in an embedding space. Such modelling provides an explicit
representation of a task through its task-theme mixture. We present an efficient ap-
proximation inference technique based on variational inference method for empirical
Bayes parameter estimation. We perform empirical evaluations to validate the task
uncertainty and task distance produced by the proposed method through correlation
diagrams of the prediction accuracy on testing tasks. We also carry out experiments
of task selection in meta-learning to demonstrate how the task relatedness inferred
from the proposed model help to facilitate meta-learning algorithms.

5.1 Introduction

The latest developments in machine learning have enabled the field to solve increas-
ingly complex classification problems. Such complexity require high capacity models,
which in turn need a massive amount of annotated data for training, resulting in an
arduous, costly and even infeasible annotation process. This has, therefore, motivated
the research of novel learning approaches, generally known as transfer learning, that
exploit past experience (in the form of models learned from other training tasks) to
quickly learn a new task using relatively small training sets.

Transfer-learning, and in particular, meta-learning, assumes the existent of a task
environment where training and testing tasks are i.i.d. sampled from the same latent
distribution. By modelling such environment through meta-parameters that are
shared across all tasks, meta-learning can solve an unseen task more accurately and
efficiently by learning how to solve many tasks generated from the same distribution,
even if each task contains a limited number of training examples. Meta-learning
has, therefore, progressed steadily with many remarkable state-of-the-art results
in several few-shot learning benchmarks (Vinyals et al., 2016; Snell et al., 2017;
Finn et al., 2017; Yoon et al., 2018; Rusu et al., 2019; Allen et al., 2019). However,
current development of meta-learning focuses on solving tasks without providing
understanding on how tasks are generated or correlated, potentially leading to sub-
optimal solutions. In fact, there is a large variation of prediction performance made
by various meta-learning algorithms reported in (Dhillon et al., 2019, Figure 1) or
shown in Figure 5.1, suggesting that not all testing tasks are equally related to
training tasks. This motivates our work to model and represent tasks in a latent
“task-theme” space. The new task representation allows further downstream works,

69

5.2. Related Work Chapter 5. Probabilistic task modelling for meta-learning

0.1 0.3 0.5 0.7
0

1

2

3

4

Accuracy

N
or

m
al

ise
d

fre
qu

en
cy

Figure 5.1: The results locally produced for MAML on 15,504 available 5-way 1-shot
mini-ImageNet testing tasks vary from 20 to 70 percent accuracy, suggesting that not all
testing tasks are equally related to training tasks.

such as task similarity or active task selection, to be developed to gain insights into,
or even improve, the prediction performance of different meta-learning algorithms.

In this paper, we propose probabilistic task modelling (PTM) – a graphical
model that combines variational auto-encoding (VAE) (Kingma and Welling, 2014b)
and Gaussian latent Dirichlet allocation (LDA) (Das et al., 2015) – to model tasks
used in meta-learning. Note that PTM itself is not a meta-learning method. With
this modelling approach, the dataset associated with each task can be modelled as
a mixture of finite Gaussian distributions, allowing to represent tasks in a latent
“task-theme” simplex via its mixture coefficient vector. Such representation provides
a convenient way to quantitatively measure “task uncertainty” or task relatedness,
which can be utilised in active task selection for meta-learning.

5.2 Related Work

The proposed approach is closely related to Task2Vec (Achille et al., 2019) when
modelling tasks for meta-learning. In Task2Vec, a task is represented by an embedding
computed from the Fisher information matrix associated with the task-specific
classifier. In PTM, a task is represented by the variational distribution of task-theme
mixture, which is a part of the graphical model describing the task generation process.
The two methods, therefore, differ at the modelling mechanism: Task2Vec follows
a deterministic approach, while PTM is a probabilistic method. Such difference
provides an advantage of PTM over Task2Vec, which includes modelling uncertainty
into the task representation. In addition, PTM is more efficient than Task2Vec at
inference when predicting task representation, since PTM only needs a single forward

70

Chapter 5. Probabilistic task modelling for meta-learning 5.2. Related Work

pass, while Task2Vec requires to re-train or fine-tune the task-specific classifier and
calculate the Fisher information matrix for the task that needs to be presented.

Our work is related to task similarity estimation, which has been intensively
studied in the field of multi-task learning. Some remarkable examples in this area
include task-clustering using k-nearest neighbours (Thrun and O’Sullivan, 1996), or
modelling common prior between tasks as a mixture of distributions (Bakker and
Heskes, 2003; Xue et al., 2007). Another approach is to formulate multi-task learning
as a convex optimisation problem either to cluster tasks and utilise the clustering
results to fast track the learning (Jacob et al., 2009), or to learn task relationship
through task covariance matrices (Y. Zhang and Yeung, 2012). Other approaches
provided theoretical guarantees when learning the similarity or relationship between
tasks (Shui et al., 2019). Recently, the taskonomy project (Zamir et al., 2018)
was conducted to carry out extensive experiments on 26 computer-vision tasks to
empirically analyse the correlation between those tasks. Other works (Tran et al.,
2019; C. V. Nguyen et al., 2020) take a slightly different approach by investigating
the correlation of the label distributions between the tasks of interest to measure task
similarity. One commonality among all studies above is their reliance on task-specific
classifiers which are used to quantify task relatedness. In contrast, our proposed
method explicitly models tasks without the help of any task-specific classifier, making
it more efficient in training and prediction.

Our work is also connected to finite mixture models (Pritchard et al., 2000), such
as the latent Dirichlet allocation (Blei et al., 2003), which analyses and summarises
text data in topic modelling, or categorises natural scenes in computer vision (F.-F.
Li and Perona, 2005). LDA assumes that each document within a given corpus
can be represented as a mixture of finite categorical distributions, where each
categorical distribution is a latent topic shared across all documents. Training
an LDA model or its variants on a large text corpus is challenging, so several
approximate inference techniques have been proposed, ranging from mean-field
variational inference (VI) (Blei et al., 2003), collapsed Gibbs’ sampling (Griffiths
and Steyvers, 2004) and collapsed VI (Teh et al., 2007). Furthermore, several online
inference methods have been developed to increase the training efficiency for large
corpora (Canini et al., 2009; Hoffman et al., 2010; Foulds et al., 2013). Our work
is slightly different from the modelling of the conventional LDA, where we do not
use the data directly, but embed it into a latent space. In short, our approach is a
combination of VAE (Kingma and Welling, 2014b) and LDA to model the dataset
associated with a task. Our approach considers “word” as continuous data, instead of
the discrete data represented by a bag-of-word vector generally used by LDA-based
topic modelling methods. The resultant model in the embedding latent space is,
therefore, similar to the Gaussian LDA (Das et al., 2015) for word embedding in

71

5.3. Methodology Chapter 5. Probabilistic task modelling for meta-learning

topic modelling.

5.3 Methodology
To relate task modelling to topic modelling, we consider a task as a document,
and a data point as a word. Given these analogies, we can use LDA (Blei et al.,
2003) – a popular topic model – to model tasks for meta-learning. However, simply
applying LDA for task modelling would not scale well with high-dimensional data
and large datasets. We, therefore, propose to employ the VAE (Kingma and Welling,
2014a) to reduce the dimension of the data, and use the inferred embeddings of
data as words to model tasks. Due to the nature of VAE, the latent variables are
often continuous, not discrete as the bag-of-words used in the conventional LDA. We,
therefore, replace the categorical word-topic distributions in LDA by Gaussian
task-theme1 distributions. Given these assumptions, each task can be modelled as a
mixture of K Gaussian task-themes, allowing to represent tasks by their inferred task-
theme mixture vectors in the latent task-theme simplex as illustrated in Figure 5.2.
Hence, it is beneficial to utilise this representation for further downstream tasks,
such as measuring task similarity.

The graphical model of the proposed PTM is shown in Figure 5.3, where there
are T tasks, and each task consists of N data points, denoted as x. To simplify
the formulation and analysis, N is assumed to be fixed across all tasks, but the
extension of varying N is trivial and can be implemented straightforwardly. Under
these assumptions, a task can be generated as follows:

• Initialise the Dirichlet prior for task-theme mixture: {αk}Kk=1, where α ∈ R+

• Initialise means and covariance matrices ofK Gaussian task-themes {µk,Σk}Kk=1,
where µk ∈ RD, Σk ∈ RD×D is positive definite matrix, and D is the dimension
of the data embedding

• For task Ti in the collection of T tasks:

– Choose a task-theme mixture vector: πi ∼ Dirichlet (π; α)

– For data point n-th of task Ti:

∗ Choose an task-theme assignment one-hot vector: zin ∼ Categorical (z; πi)
∗ Choose an embedding of the data point: uin ∼ N (u; µk,Σk), where:
zink = 1

∗ Generate the data point from a decoder h parameterised by θ: xin = h(uin; θ).

1“Task-theme” is inspired by F.-F. Li and Perona (2005)

72

Chapter 5. Probabilistic task modelling for meta-learning 5.3. Methodology

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Task i

FurnitureAn
im

al

Human

0 1 2 3

Figure 5.2: An example of a task-theme simplex where each task is represented by a
3-dimensional mixture vector.

To model tasks according to the task generation described above, we need to infer
the task-agnostic (or meta) parameters of interest, namely µ,Σ,α and θ. However,
due to the complexity of the graphical model shown in Figure 5.3, the exact inference
for the posterior p(µ,Σ,α, θ|x) is intractable, and therefore, the estimation must
rely on approximate inference. For simplicity, maximum likelihood estimation (MLE)
is used as the objective function:

max
µ,Σ,α,θ

ln p(x|µ,Σ,α, θ). (5.1)

Although MLE simplifies the learning for the meta-parameters of interest, the
log-likelihood in (5.1) is still difficult to evaluate due to the presense of the latent
variables πππi and zin. One workaround solution is to find its lower-bound, and
maximise the lower-bound instead of maximising the log-likelihood itself. This
approach is analogous to the variational inference, which has been widely used to
infer the latent parameters of VAE and LDA models.

Since the proposed PTM is a combination of VAE and LDA, the derivation for
the lower-bound of the likelihood in (5.1) can be divided into two steps, where the
first step is analogous to the lower bound of a VAE, and the second step is similar
to the plain LDA model.

In the first step, the latent variable u is introduced, so that the log-likelihood
ln p(x|µ,Σ,α, θ) can be bounded below by Jensen’s inequality:

ln p(x|µ,Σ,α, θ) ≥ LVAE, (5.2)

73

5.3. Methodology Chapter 5. Probabilistic task modelling for meta-learning

π

α

z u x

µ Σ

θφ

n = 1 : N
i = 1 : T

k
=

1
:K

Figure 5.3: The graphical model used in task modelling. The solid arrows denote data
generation, while the dashed arrows stand for inference. The boxes are “plates” representing
replicates. The shading nodes denote observable variables, while the white nodes denote
latent variables.

where the lower-bound is defined as:

LVAE = Eq(u) [ln p (x|u, θ) + ln p (u|µ,Σ,α)− ln q(u)] , (5.3)

with q(u) being the variational distribution for the latent variable u.
Following the conventional VI for VAE (Kingma and Welling, 2014a), the vari-

ational distribution for the data embedding u is assumed to be a Gaussian distribution
with diagonal covariance matrix:

q(u) = N
(
u; m, diag

(
s2
))
, (5.4)

where diag(.) denotes a diagonal matrix.
In addition, the parameters m and s, which represent the distribution encoding the

data x, are modelled by a neural network (also known as an encoder) f parameterised
by φ: [

m> s>
]>

= f(x;φ). (5.5)

Hence, instead of maximising the marginal log-likelihood in (5.1), the lower-bound
in (5.3) is maximised, resulted in the alternative objective:

max
µ,Σ,α,θ

max
φ

LVAE. (5.6)

One difficulty in maximising the lower-bound in (5.6) is the evaluation for the
embedding prior ln p (u|µ,Σ,α) in Eq. (5.3). In vanilla VAE, the embedding prior
is often modelled as some standard distributions, such as Gaussian or Beta, resulting

74

Chapter 5. Probabilistic task modelling for meta-learning 5.3. Methodology

in a tractable solution. In this paper, the prior is modelled as a Gaussian mixture
model, making the solution intractable. However, since this prior is the marginal
log-likelihood in the conventional LDA model, we can apply techniques developed
for LDA methods to approximate this term. Here, we employ the VI approach in
which the term is bounded below by Jensen’s inequality:

ln p (u|µ,Σ,α) ≥ LLDA(u, q(z,π)), (5.7)

where:

LLDA (u, q(z,π)) = Eq(z,π) [ln p(u|z,µ,Σ) + ln p(z|π) + ln p(π|α)
− ln q(z)− ln q(π)] , (5.8)

with q(z,π) being the variational distribution for z and π. This corresponds to the
second step in the derivation.

Similar to LDA (Blei et al., 2003), the variational distribution q(z,π) is assumed
to be fully factorised and followed the conjugate priors:

q(z,π) =
T∏
i=1

q(πi; γi)
N∏
n=1

q(zin; rin), (5.9)

where:

q(πi; γi) = Dirichlet (πi; γi) (5.10)
q(zin; rin) = Categorical (zin; rin) , (5.11)

with r and γ being the parameters of the variational distribution q(z,π).

In practice, q(z,π) is obtained as the maximiser of the lower-bound LLDA (u, q(z,π))
on the embedding data u. It is, however, inapplicable in this case, since the data
embedding u is used twice: one to optimise q(z,π), and the other is to optimise the
objective in (5.6), which may result in overfitting. To avoid this issue, we employ
the empirical Bayes approach relying on the train-test split method, where one half
of data in a task, denoted as u(t), is used to obtain q(z,π), while the other half,
denoted as u(v), is used for the optimisation in (5.6). This approach is analogous to
the empirical Bayes meta-learning (Finn et al., 2017; C. Nguyen et al., 2020), where
one part of data is used for task-adaptation (often known as “inner-loop”), while the
other part is used to learn the meta-parameter (often known as “outer-loop”).

Given this modelling approach, the objective function can be formally written as

75

5.3. Methodology Chapter 5. Probabilistic task modelling for meta-learning

a bi-level optimisation:

max
µ,Σ,α,θ,φ

L
(
u(v), q∗ (z,π)

)
s.t.: q∗ (z,π) = arg max

q(z,π)
Eq(u(t);φ)

[
LLDA

(
u(t), q(z,π)

)]
, (5.12)

where

L
(
u(v), q∗ (z,π)

)
= Eq(u(v);φ)

[
LLDA

(
u(v), q∗(z,π)

)
+ ln p

(
x(v)|u(v), θ

)
− ln q

(
u(v);φ

)]
. (5.13)

Due to the assumptions made in Eqs. (5.4), (5.10) and (5.11), prior conjugate can
be applied to simplify the evaluation for all the terms in (5.8) w.r.t. the variational
distribution q(.). Details of the evaluation can be referred to Appendix C.1. In addi-
tion, the optimisation for the meta-parameters in (5.12) is based on gradient ascent,
and carried out in two steps, resulting in a process analogous to the expectation-
maximisation (EM) algorithm. In the E-step (corresponding to the optimisation
for the lower-level in (5.12)), the task-specific variational-parameters r and γ are
iteratively updated, while holding the meta-parameters µ,Σ,α, θ and φ fixed. In the
M-step (corresponding to the optimisation for the upper-level), the meta-parameters
are updated using the values of the task-specific variational-parameters obtained
in the E-step. Note that the inference for the task-theme parameters µ and Σ are
similar to the estimation of Gaussian mixture model (Bishop, 2006, Chapter 9).
Please refer to Appendix C.2 for more details on the optimisation.

Conventionally, the iterative updates in the E-step and M-step require a full
pass through the entire collection of tasks. This is, however, very slow and even
infeasible since T is often in the magnitude of millions. We, therefore, propose an
online VI inspired by the online learning for LDA (Hoffman et al., 2010) to infer the
meta-parameters. For each task Ti, we perform the EM to obtain the “task-specific”
parameters (denoted by a tilde on top of variables) that are locally optimal for that
task. The “meta” parameters of interest are then updated as a weighted average
between their previous values and the “task-specific” values:

µ← (1− ρi)µ + ρiµ̃

Σ← (1− ρi)Σ + ρiΣ̃
α← α− ρi α̃i︸︷︷︸

H−1g

, (5.14)

where ρi = (τ0 + i)−τ1 with τ0 ≥ 0 and τ1 ∈ (0.5, 1] (Hoffman et al., 2010), g is the
gradient of LLDA w.r.t. α, and H is the Hessian matrix. The learning for the encoder
φ and the decoder θ follows the conventional learning by stochastic gradient ascent.

76

Chapter 5. Probabilistic task modelling for meta-learning 5.3. Methodology

Algorithm 4 Online probabilistic task modelling
1: procedure Training
2: Initialise LDA parameters: {µk,Σk, αk}Kk=1
3: Initialise encoder φ and decoder θ
4: for each mini-batch of Tmini tasks do
5: for i = 1 : Tmini do
6: Split data into {x(t)

i ,y
(t)
i } and {x(v)

i ,y(v)
i }

7: m(t)
i , s

(t)
i ← f(x(t)

i ;φ)
8: m(v)

i , s(v)
i ← f(x(v)

i ;φ)
9: γ, r← E-step(N (u; m(t)

i , (s
(t)
i)2I))

10: Calculate L
(
u(v)
i , q∗i (z,π)

)
. Eq. (5.13)

11: Calculate “local” task-themes µ̃i, Σ̃i, α̃i

12: end for
13: L = 1

T

∑T
i=1 L

(
u(v)
i , q∗i (z,π)

)
14: µ,Σ,α← online_LDA

(
µ̃1:T , Σ̃1:T , α̃1:T

)
15: θ, φ← SGD

(
−L
)

. gradient ascent
16: end for
17: return µ,Σ,α, θ, φ
18: end procedure

19: procedure E-step(N (u; m, s2I))
20: Initialise r,γ
21: repeat
22: calculate the un-normalised rink . Eq. (C.10)
23: normalise rin such that ∑K

k=1 rink = 1
24: calculate γik . Eq. (C.14)
25: until 1

K
|change in γ| < threshold

26: return γ, r
27: end procedure

The complete learning algorithm for the proposed probabilistic task modelling is
shown in Algorithm 4.

Also, instead of updating the meta-parameters as in (5.14) when observing a single
task, we use multiple or a mini-batch of tasks to reduce the effect of measurement
noise. The mini-batch version requires a slight modification in the formulation
presented above, where we calculate the average of all “task-specific” parameters for
tasks in the same mini-batch, and use that as the “task-specific” value to update the
corresponding “meta” parameters.

Although the “reconstruction” term ln p(x(v)|u(v), θ) in (5.12) is used to model
the likelihood of un-labelled data, it can straightforwardly be extended to a labelled
data pair (x(v),y(v)) by introducing the parameter w of a classifier. In that case, the

77

5.3. Methodology Chapter 5. Probabilistic task modelling for meta-learning

“reconstruction” term can be expressed as:

ln p(x(v),y(v)|u(v), θ,w) = ln p(y(v)|u(v),w)︸ ︷︷ ︸
negative classification loss

+ ln p(x(v)|u(v), θ)︸ ︷︷ ︸
negative reconstruction loss

. (5.15)

In general, w can be either a task-specific parameter generated from an additional
meta-parameter shared across all tasks – corresponding to empirical Bayes meta-
learning (e.g. using train-test split to learn hyper-parameters) algorithms (Finn
et al., 2017; C. Nguyen et al., 2020), or a meta-parameter itself – corresponding to
metric meta-learning (Vinyals et al., 2016; Snell et al., 2017). For simplicity, we will
use the latter approach relying on the prototypical network (Snell et al., 2017) with
Euclidean distance on the data embedding u, to calculate the classification loss on
labelled data. This reduces the need to introduce an additional parameter w into
our modelling.

Task representation

Given the inferred meta-parameters, including the task-themes {(µk,Σk)}Kk=1, the
Dirichlet prior {αl}Ll=1, the encoder φ and the decoder θ, we can embed the data
of a task into a latent space, and calculate its variational Dirichlet posterior of
the task-theme mixing coefficients q(π; γi). The obtained distribution can be used
represent the corresponding task in the latent task-theme simplex as illustrated
in Figure 5.2. This new representation of tasks has two advantages comparing to
the recently proposed task representation Task2Vec (Achille et al., 2019): (i) it
explicitly models and represents tasks without the need of any pre-trained networks
to use as a “probe” network, and (ii) it uses a probability distribution, instead of a
vector as in Task2Vec, allowing to include modelling uncertainty when representing
tasks. Given the probabilistic nature of PTM, we can use the entropy of the inferred
task-theme mixture distribution q(π; γi) as a measure of task uncertainty. In Sub-
section 5.4.1, we empirically show that this measure correlates to the generalisation
or test performance.

In addition, the representation produced by PTM can be used to quantitatively
analyse the similarity or distance between two tasks i and j through a divergence
between q(π; γi) and q(π; γj). Commonly, symmetric distances, such as Jensen-
Shannon divergence, Hellinger distance, or earth’s mover distance are employed to
calculate the divergence between distributions. However, it is argued that similarity
should be represented as an asymmetric measure (Tversky, 1977). This is reasonable
in the context of transfer learning, since knowledge gained from learning a difficult
task might significantly facilitate the learning of an easy task, but the reverse might
not always have the same level of effectiveness. In light of asymmetric distance, we

78

Chapter 5. Probabilistic task modelling for meta-learning 5.4. Experiments

decide to use Kullback-Leibler (KL) divergence, denoted as KL[.‖.], to measure task
distance. As KL [P‖Q] is defined as the information lost when using a code optimised
for Q to encode the samples of P , we, therefore, calculate KL [q(π; γT+1)‖q(π; γi)],
where i ∈ {1, . . . , T}, to assess how the training task Ti differs from the learning of
the novel task TT+1.

5.4 Experiments
In this section, we empirically validate the two properties of PTM – task uncertainty
and task distance – through task distance matrix and correlation diagrams. We
also show two applications of the proposed approach used in active task selection
for inductive and transductive life-long meta-learning. The experiments are based
on the n-way k-shot tasks formed from Omniglot (Lake et al., 2015) and mini-
ImageNet (Vinyals et al., 2016) – the two widely used datasets to evaluate the
performance of meta-learning algorithms.

The Omniglot dataset consists of 1,623 different handwritten characters from 50
different alphabets, where each character was drawn in black and white by 20 different
people. Instead of using random train-test split that mixes all characters, the original
split (Lake et al., 2015) is used to yield finer-grained classification tasks. In addition
to the task forming based on randomly mixing characters of many alphabets, the
two-level hierarchy of alphabets and characters are utilised to increase the difficulty
of the character classification. Note that no data augmentations, such as rotating
images by multiples of 90 degrees, is used throughout the experiments. Also, all
images are down-sampled to 64-by-64 pixel2 to simplify the image reconstruct in the
decoder.

The mini-ImageNet dataset comprises a small version of ImageNet, which contains
100 classes taken from ImageNet, and each class has 600 colour images. We follow
the common train-test split that uses 64 classes for training, 16 classes for validation,
and 20 classes for testing (Ravi and Larochelle, 2018). Similar to Omniglot, all
images are also in 64-by-64 pixel2.

The encoder used in the experiments consists of 4 convolutional modules, where
each module has a convolutional layer with 4-by-4 filters and 2-by-2 stride, followed
by a batch normalisation and a leaky rectified linear activation function with a slope
of 0.01. The output of the last convolutional layer is flattened and connected to a
fully connected layer to output the desired dimension for the latent variable u. The
decoder is designed similarly, except that the convolutional operator is replaced by
the corresponding transposed convolution. For the Omniglot dataset, the number of
filters within each convolutional layer of the encoder is 8, 16, 32, and 64, respectively,
and the dimension of u is 64. For mini-ImageNet dataset, these numbers are 32,

79

5.4. Experiments Chapter 5. Probabilistic task modelling for meta-learning

0

5

Figure 5.4: The matrix of log KL distances between Omniglot tasks shows that tasks that
are generated from the same alphabet are closer together, denoted as the dark green blocks
along the diagonal. The matrix is asymmetric due to the asymmetry of the KL divergence
used as the task distance.

64, 128 and 256, and the dimension of u is 128. The reconstruction loss follows
the negative log-likelihood of the continuous Bernoulli distribution (Loaiza-Ganem
and Cunningham, 2019), which is often known as binary cross-entropy, while the
classification loss is based on the prototypical network used in metric learning. The
training subset of each task, u(t)

i , is used to calculate the class prototypes, and the
classification loss is based on the soft-max function of the distances between the
encoding of each input image to those prototypes (Snell et al., 2017). The optimiser
used is Adam with the step size of 2×10−4 to optimise the parameters of the encoder
and decoder after every mini-batch consisting of 20 tasks. For the LDA part, a total
of K = 8 task-themes is used. The Dirichlet prior is assumed to be symmetric with
a concentration α = 1.1 across both datasets. The parameters of the learning rate
used in the online LDA are ρ0 = 106 and ρ1 = 0.5. A total of 106 episodes are used
to train PTM on both datasets. We note that setting α > 1 enforces every task to
be modelled as a mixture of many task-themes, avoiding the task-themes collapsing
into a single task-theme during training. The phenomenon of task-theme collapse
when α < 1 is not observed in LDA, but in PTM due to the integration of VAE. At
the beginning of training, the encoder is inadequate, producing mediocre embedding
features. The resulting features, combined with α < 1, makes a task more likely
to be represented by a single task-theme. By learning solely from that task-theme,
the encoder is pushed to bias further toward to that task-theme, making only one
task-theme distribution updated, while leaving others unchanged. When α > 1, all
the task-themes contribute to the representation of a task, so they can be learnt
along with the encoder.

5.4.1 Task distance matrix and correlation diagrams

Task distance matrix is used as one of the tools to qualitatively validate the prediction
made by PTM. In particular, the hypothesis is that the PTM would predict small

80

Chapter 5. Probabilistic task modelling for meta-learning 5.4. Experiments

distances for tasks that are close together. Since the “labels” specifying the closedness
of tasks are unknown, we utilise the hierarchical structure of Omniglot dataset to
form tasks. Each task is generated by firstly sampling an alphabet, and then choosing
characters in that alphabet. Under this strategy, tasks formed from the same alphabet
would have small distances comparing to tasks from different alphabets. Figure 5.4
shows the task distances between 50 testing tasks of Omniglot dataset, where each
block of 5 tasks on rows and columns of the task distance matrix corresponds to a
group of tasks sampled from the same alphabet. The result, especially the square
5-task-by-5-task blocks along the diagonal, agrees well with the hypothesis. Note
that the distance matrix shown in Figure 5.4 is asymmetric due to the asymmetric
nature of the KL divergence used to measure task distance.

We use a correlation diagram between prediction accuracy made by MAML and
the task entropy produced by PTM as another verification. Since the task entropy
denotes the uncertainty when modelling a task, we hypothesise that it proportionally
relates to the difficulty when learning that task. To construct the correlation diagram,
we firstly train a meta-learning model based on MAML using the training tasks
of the two datasets, and evaluating the performance on 100 random testing tasks.
Secondly, we calculate the task entropy for those 100 testing tasks. Finally, we plot
the prediction accuracy and task entropy in Figures 5.5a and 5.5b. The results
on both datasets show that the higher the task uncertainty, the worse the test
performance. This observation, therefore, agrees with our hypothesis about task
entropy.

We conduct another correlation diagram between training-testing task distance
and the test performance to verify further the proposed PTM. Our hypothesis is the
inverse proportion between training-testing task distance and prediction accuracy. A
similar experiment as in task uncertainty is carried out with a modification in which
the task uncertainty is replaced by the average KL divergence between all training
tasks to each testing task. Due to the extremely large number of training tasks, e.g.
more than 1012 unique 5-way tasks can be generated from both the two datasets, the
calculation of the distance measure is infeasible. To make the training and testing
tasks manageable, we randomly generate 10, 000 tasks for training, and 100 tasks for
testing. This results in 1, 000, 000 distances, which can be calculated in parallel with
multiple computers. A testing task can be represented in the correlation diagram
through its prediction accuracy and the average KL distance to training tasks, which
is defined as:

KL(γT+1) = 1
T

T∑
i=1

KL[q(π; γT+1)‖q(π; γi)].

The correlation diagrams for both datasets are then plotted in Figures 5.5c and 5.5d.
The results agree well with our hypothesis, in which the further a testing task is

81

5.4. Experiments Chapter 5. Probabilistic task modelling for meta-learning

−25 −20

40

60

80

100

Entropy of test tasks

Pr
ed

ic
tio

n
ac

cu
ra

cy
(%

)

Omniglot

y = −1.45 · x + 49.05

(a)

−18.5 −18 −17.5 −17
0

20

40

60

80

Entropy of test tasks

Mini-ImageNet

y = −4.4 · x − 38.91

(b)

100 150 200 250

60

80

100

KL [test‖train]

Pr
ed

ic
tio

n
ac

cu
ra

cy
(%

)

Omniglot

y = −8.55 · 10−2 · x + 87.68

(c)

900 1,000 1,100 1,200

20

40

60

KL [test‖train]

Mini-ImageNet

y = −5.04 · 10−2 · x + 91.02

(d)

Figure 5.5: Correlation diagrams between prediction accuracy made by MAML on 100
5-way 1-shot testing tasks versus: (a) and (b) entropy of the inferred task-theme mixture
distributions, and (c) and (d) the KL distances from testing to training tasks. The results
show that largest the task entropy or distances, the worse the testing performance. The
blue dots are the prediction made the MAML and PTM, the solid line is the mean of
Bayesian Ridge regression, and the shaded areas correspond to ±1 standard deviation
around the mean.

from the training tasks, the worse the prediction accuracy. This enables us to use
the new representation produced by PTM to analyse task similarity.

5.4.2 Lifelong few-shot meta-learning

To further evaluate PTM, we conduct experiments following the lifelong learning
framework (Ruvolo and Eaton, 2013) with slight modification where the supervised

82

Chapter 5. Probabilistic task modelling for meta-learning 5.4. Experiments

tasks are replaced by 5-way 1-shot learning episodes. More precisely, the setting
consists of a meta-learning model and a pool of Tpool tasks. At each time step, a task
selected from the pool is used to update the meta-learning model, and discarded
from the pool. A new task is then added to the pool to maintain Tpool tasks available
for learning. The criterion for selecting a task to update the meta-learning model
will depend on the objective of interest. Two common objectives often observed in
practice are:

• Induction: the selected training task is expected to encourage the meta-
learning model to be able to rapidly adapt to any future task,

• Transduction: the selected training task is targeted toward one or many
specific testing tasks.

In the induction setting, the performance of the meta-learning model trained on
tasks selected by PTM is compared with three baselines: Task2Vec (Achille et al.,
2019), the “worst-case” approach (Collins et al., 2020) and random selection. For
the PTM, the selection criteria is based on the task entropy specified in Section 5.3,
where the training task with highest entropy is chosen for the learning. For Task2Vec,
tasks with large embedding norm are reported as difficult to learn. Hence, we pick the
one with the largest L1 norm produced by Task2Vec as the training task. Originally,
Task2Vec requires fine-tuning a pre-trained network (known as probe network) on
labelled data of a task. This fine-tuning step is, however, infeasible for few-shot
learning due to the insufficient number of labelled data. We address this issue by
training a MAML-based network to use as a probe network. When given few-shot
data of a training task, the MAML-based probe network perform gradient update to
adapt to that task. The task-specific embedding can, therefore, be calculated using
the adapted probe network. We follow the Monte Carlo approach specified in the
public code of Task2Vec to calculate the corresponding task embedding. For the
“worst-case” approach, the training task that results in the highest loss for the current
meta-learning model is selected. Due to this nature, the “worst-case” approach
requires to evaluate all losses for each task in the pool at every time step, leading
to an extensive computation and might not scale well when the number of tasks in
the pool is large. For simplicity, we use MAML to train the meta-learning model of
interest for each selection strategy.

The transduction setting follows a similar setup as the induction case, but the
testing tasks, including the labelled and unlabelled data, are known during training.
For PTM, the average KL distances between all testing tasks to each training task
in the task pool are calculated, and the training task with smallest average distance
is selected. For Task2Vec, the proposed cosine distance between normalised task
embeddings is used to calculate the average distance between all testing tasks to

83

5.4. Experiments Chapter 5. Probabilistic task modelling for meta-learning

100 200 300
40

40.5

41

41.5

42

№ of training tasks (×1, 000)

Pr
ed

ic
tio

n
ac

cu
ra

cy
(%

)

Induction

(a)

100 200 300
40

40.5

41

41.5

42

№ of training tasks (×1, 000)

Transduction

PTM
Task2Vec
Worst case
Random

(b)

MAML Protonet ABML

40

41

Test on 15, 504 mini-ImageNet tasks

PTM
Task2Vec
Worst case
Random

(c)

Figure 5.6: Exponential weighted moving average (EWMA) of prediction accuracy made
by MAML following the lifelong learning for 100 random 5-way 1-shot tasks sampled from
mini-ImageNet testing set: (a) inductive setting, and (b) transductive setting. The EWMA
weight is set to 0.98 to smooth the noisy signal. (c) Prediction accuracy made by models
trained on different task selection approaches on all 5-way 1-shot testing tasks generated
from mini-ImageNet. The error bars correspond to 95 percent confident interval.

each training task (Achille et al., 2019). Similar to PTM, the training task with the
smallest distance is prioritised for the learning. For the “worst-case” approach, the
entropy of the prediction ŷ on C-way testing tasks is used as the measure:

ST+1 = −
C∑
c=1

ŷc ln ŷc,

and the task that contributed to the highest entropy at prediction is chosen (MacKay,
1992). The “worst-case” approach, therefore, requires Tpool trials at every time step.
In each trial, the current meta-model is adapted to each training task in the pool,

84

Chapter 5. Probabilistic task modelling for meta-learning 5.5. Summary

and then the average prediction entropy on all testing tasks is calculated. This
results in an extremely extensive computation.

Four MAML-based meta-learning models are initialised identically and trained
on the tasks selected from a pool of Tpool = 200 tasks according to the four criteria
mentioned above. Figures 5.6a and 5.6b show the testing results on 100 random
mini-ImageNet tasks after every 500 time steps. Note that the plotted results are
smoothed by the exponential weighted moving average with a weight of 0.98 to
ease the visualisation. In general, PTM, Task2Vec and “worst-case” can generalise
better than random task selection. In addition, the model trained with tasks chosen
by PTM performs slightly better than Task2Vec and the “worst-case” approach
in both settings. This observation might be explained based on the designated
purpose of Task2Vec and the “worst-case” approach. Task2Vec requires a sufficient
number of labelled data to fine-tune its probe network to calculate task embedding.
Hence, it might not work well in few-shot learning. For the “worst-case”, tasks are
selected according to a measure based on the current meta-model without taking task
relatedness into account. PTM, however, has a weakness in active selection since the
approach only focuses on task uncertainty or task similarity without considering the
current state of the meta-learning model. Nevertheless, PTM still provides a good
selection criterion comparing to Task2Vec and the “worst-case” approaches. Note that
although the active task selection is able to select the best task within the pool, there
might be the case where all remaining tasks in the pool are uninformative, resulting
in overfitting as observed in Figure 5.6a. However, for simplicity, no additional
mechanism is integrated to decide whether to learn from the selected task, or simply
discarded from the pool. We believe that adding L2 regularisation or applying early
stopping based on a validation set of tasks will help with this overfitting issue.

To further compare, we implement two additional meta-learning algorithms:
Prototypical Networks (Snell et al., 2017) and Amortised Bayesian meta-learning
(ABML) (Ravi and Beatson, 2019) and show results for the induction setting on all
available testing 5-way 1-shot tasks of mini-ImageNet in Figure 5.6c. Again, the
prediction accuracy made by the model trained on tasks selected by PTM outperforms
other baselines, especially the random one by a large margin.

5.5 Summary
We propose a generative approach based on variational auto-encoding and LDA
adopted in topic modelling to model tasks used in meta-learning. Under this
modelling approach, the dataset associated with a task can be expressed as a
mixture model of finite Gaussian distributions, where each task differs at the mixture
coefficients. An online VI method is presented to infer the parameters of the Gaussian

85

5.5. Summary Chapter 5. Probabilistic task modelling for meta-learning

task-theme distributions. The obtained model allows us to represent a task by its
variational distribution of mixture coefficient in a latent task-theme simplex, enabling
the quantification of either the task uncertainty or task similarity for active task
selection.

86

Chapter 6

Task weighting for meta-learning
using trajectory optimisation

The content of this chapter is submitted to the International Conference on Machine
Learning (ICML) 2022.

Note that in this chapter, we no longer use the notations defined in Chapter 1.
Instead, we follow the ones used in trajectory optimisation which are explicitly
defined in the following parts of this chapter.

87

Statement of Authorship
Title of Paper

Publication Status Published Accepted for Publication

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Principal Author

Name of Principal Author (Candidate)

Contribution to the Paper

Overall percentage (%)

Certification: This paper reports on original research I conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

Signature Date

Co-Author Contributions
By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Contribution to the Paper

Signature Date

Name of Co-Author

Contribution to the Paper

Signature Date

Please cut and paste additional co-author panels here as required.

20/10/2021

Chapter 6. Task weighting 6.1. Introduction

Abstract

Developing meta-learning algorithms that are un-biased toward a subset of training
tasks often requires hand-designed criteria to weight tasks, potentially resulting
in sub-optimal solutions. In this paper, we introduce a new principled and fully
automated task-weighting algorithm for meta-learning methods. By considering the
weights of tasks within the same mini-batch as an action, and the meta-parameter of
interest as the system state, we cast the task-weighting meta-learning problem to a
trajectory optimisation and employ the iterative linear quadratic regulator to optimise
for the action or the weights of tasks. We theoretically show that the proposed
algorithm converges to an ε-stationary point, and empirically demonstrate that the
proposed approach out-performs common hand-engineering weighting methods in
two few-shot learning benchmarks.

6.1 Introduction

Meta-learning has been studied from the early 1990s (Schmidhuber, 1987; Naik and
Mammone, 1992; Thrun and L. Pratt, 1998) and recently gained a renewed interest
with the use of deep learning methods that achieves remarkable state-of-art results
in several few-shot learning benchmarks (Vinyals et al., 2016; Finn et al., 2017; Snell
et al., 2017; Nichol et al., 2018; Ravi and Beatson, 2019; Allen et al., 2019; Khodak
et al., 2019; Baik et al., 2020; Flennerhag et al., 2020). However, the majority
of existing meta-learning algorithms simply minimise the average loss evaluated
on validation subsets of training tasks, implicitly assuming that all training tasks
are evenly distributed. This assumption is hardly true in practice, and potentially
biases the trained meta-learning models toward tasks observed more frequently
during training, and consequently, resulting in a large variation of performance when
evaluating on different subsets of testing tasks (Dhillon et al., 2019, Figure 1).

One way to address such issue is to exploit the diversity of training tasks, so
that the trained meta-learning models can generalise to a wider range of testing
tasks. In fact, various studies in task relatedness or task similarity have shown
that learning from certain tasks may facilitate the generalisation of meta-learning
models (Thrun and O’Sullivan, 1996; Zamir et al., 2018; Achille et al., 2019; C.
Nguyen et al., 2021). This suggests the design of a re-weighting mechanism to
diversify the contribution of each training task when learning a meta-learning model
of interest. Existing re-weighting methods mostly rely on either hand-crafted criteria
to determine those weights (Collins et al., 2020), or additional validation tasks to
learn the re-weighting factors of interest (Xu et al., 2021). Such ad-hoc development
of re-weighting mechanisms motivates us to design a more principled approach to

89

6.2. Background Chapter 6. Task weighting

re-weight tasks for meta-learning.
In this paper, we present a new principled and fully automated task-weighting

algorithm, called trajectory optimisation based task weighting for meta-learning
(TOW). We note that TOW is not a meta-learning method, but a task weighting
framework that can be integrated into existing meta-learning algorithms to circumvent
the problematic assumption about the even distribution of training tasks. Our
contributions can be summarised as follows:

• We propose to cast the task-weighting problem in meta-learning to a finite-
horizon discrete-time trajectory optimisation with state denoted by the meta-
parameter and action by the re-weight factors of tasks, and solve such problem
using the iterative linear quadratic regulator.

• We prove that under the conditions of boundedness and smoothness of the loss
function used, TOW converges to a particular ε-stationary point.

• We demonstrate TOW’s functionality by incorporating it into two common
meta-learning algorithms, namely MAML (Finn et al., 2017) and Prototypical
Networks (Snell et al., 2017), and showing that TOW enables meta-learning
methods to converge with fewer training tasks and achieves higher prediction
accuracy than some common task re-weighting mechanisms in the literature.

6.2 Background

6.2.1 Trajectory optimisation

Given continuous state x ∈ RD and action u ∈ RM , the objective of a trajectory
optimisation is to find an optimal sequence of actions {u∗t}Tt=1 that minimises the
total cost:

min
{ut}Tt=1

T∑
t=1

c(xt,ut) s.t. xt+1 = f(xt,ut), (6.1)

where c(xt,ut) and f(xt,ut) are the cost function and the state-transition dynamics
at time step t, respectively. These functions are stationary and assumed to be twice
differentiable. In addition, the initial state x1 is given, and trajectory optimisation
means finding the optimal sequence of actions {u∗t}Tt=1 for a particular x1, not for all
possible initial states.

In trajectory optimisation, the finite-horizon discrete-time problem shown in
(6.1) can be solved approximately by iterative methods, such as differential dynamic
programming (DDP) (Jacobson and Mayne, 1970) or iterative linear quadratic
regulator (iLQR) (Todorov and W. Li, 2005; Tassa et al., 2012). These methods
rely on a local approximation of the state-transition dynamics and cost function

90

Chapter 6. Task weighting 6.2. Background

using Taylor series about a nominal trajectory {x̂t, ût}Tt=1. In DDP, both the state-
transition dynamics and cost function are approximated to the second order of their
Taylor series, while in iLQR – a “simplified” version of DDP, the state-transition
dynamics is approximated up to the first order. In a loose sense, DDP is analogy to
the Newton’s method, while iLQR is analogous to a quasi-Newton’s method.

The main idea of iLQR is to cast a general non-linear trajectory optimisation
problem shown in (6.1) to a linear quadratic problem (LQP) in which the state-
transition dynamics is linear and the cost function is quadratic. The approximate
LQP can then be solved exactly by the linear quadratic regulator (LQR) (Anderson
and Moore, 2007). Subsequently, the newly obtained trajectory is used as the nominal
trajectory for the next iteration. This process is repeated until the cost function is
converged. The detailed derivation of iLQR can be found in Appendix D.1. Further
details of iLQR can be referred to (Todorov and W. Li, 2005; Tassa et al., 2012). One
of the major contributions of this paper is that we provide the proof of convergence for
iLQR adopted from DDP (Sidney Yakowitz and Rutherford, 1984) in Appendix D.2,
which to the best of our knowledge has not been done before.

6.2.2 Meta-learning

The setting of the meta-learning considered in this paper follows the task environ-
ment (Baxter, 2000), where tasks are i.i.d. sampled from an unknown distribution
p(T) over a family of tasks. Each task Ti is associated with two data subsets: training
(or support) subset S(s)

i = {s(s)
ij , y

(s)
ij }

m
(s)
i

j=1 , where s(s)
ij denotes a training input and y(s)

ij

denotes the corresponding training label, i ∈ {1, . . . ,M}, and validation (or query)
subset S(q)

i which is similarly defined. For training tasks {T }Mi=1, both data subsets
have labels, while for testing tasks TM+1, only the data in S(s)

M+1 is labelled. The
aim is to learn a meta-parameter x ∈ RD shared across all tasks, so that x can
be efficiently fine-tuned on S(s)

i to produce a task-specific model that can predict
accurately the unlabelled data in S(q)

i . One of the simplest forms of meta-learning is
analogous to an extension of hyper-parameter optimisation in single-task learning,
where the shared meta-parameter x is learnt from many tasks. The objective of
meta-learning can be expressed as:

min
x

1
M

111>M `̀̀(x), (6.2)

where 111M is an M -dimensional vector with all elements equal to 1, and `̀̀(x) ∈ RM is
a vector containing M validation losses induced by evaluating the meta-parameter x
on each data subset S(q)

i of M training tasks. Each element of `̀̀(x) can be expressed

91

6.2. Background Chapter 6. Task weighting

as:

`̀̀i(x) = 1
m

(q)
i

m
(q)
i∑

j=1
`
(
s(q)
ij , y

(q)
ij ;φi(x)

)
,∀i ∈ {1, . . . ,M}, (6.3)

where `(.) is the loss function that is non-negative and twice differentiable, φ(x) is
the parameter fine-tuned on task Ti:

φi(x) = x− γ

m
(s)
i

m
(s)
i∑

k=1
∇x

[
`
(
s(s)
ik , y

(s)
ik ; x

)]
, (6.4)

and γ is the step size or learning rate for the task adaptation step (also known as
inner-loop).

Note that the gradient-based task adaptation step in (6.4) is a special case of
meta-learning in which x is considered as the initialisation of the neural network
of interest (Finn et al., 2017). In metric-based meta-learning (Snell et al., 2017),
the task adaptation step in (6.4) is slightly different where the class prototypes of
training data are embedded into a latent space by the meta-model, and the validation
loss is based on the distance between the class prototypes to each data-point in S(q)

i .
There are also other extensions of (6.2) using probabilistic approaches (Yoon et al.,
2018; Ravi and Beatson, 2019; C. Nguyen et al., 2020). Nevertheless, our approach
proposed in Section 6.3 can be integrated into any of these meta-learning algorithms
with a slight modification.

6.2.3 Task-weighting meta-learning

The minimisation of the average validation loss over M tasks in (6.2) implicitly
implies that those tasks are evenly distributed. This assumption is, however, hardly
true in practice, and consequently, makes the trained meta-model perform poorly
for testing tasks that are rarely observed (similar to class imbalance problems in
single-task learning). To address such issue, a task-weighting factor is introduced to
diversify the contribution of each training task, allowing the trained meta-model to
generalise better to unseen tasks even if those tasks are rare. The objective of such
meta-learning problem can be written as:

x∗ = f(x,u) = arg min
x

u>`̀̀(x) s.t. u ∈ U ⊆ RM , (6.5)

where u is anM -dimensional vector that re-weights the influence ofM training tasks,
and U is the set of feasible weights, i.e., as defined by some weighting criterion.

Note that the task-weighting problem in Eq. (6.5) is carried out at the meta
level (or “outer-loop”). It is, therefore, different from some recent meta-learning
methods (Khodak et al., 2019; Baik et al., 2020; Flennerhag et al., 2020) that

92

Chapter 6. Task weighting 6.3. Methodology

design different learning strategies for φi(x) at the “inner-loop” to estimate the
meta-parameters with the same outer-loop objective shown in Eq. (6.2).

The objective in (6.5) is more flexible than (6.2), since it allows one to select
different weighting criteria to train the meta-learning model of interest. The most
widely-used weighting criterion is uniform: ui = 1/M,∀i ∈ {1, . . . ,M}, making the
objective in (6.5) resemble the one in (6.2). Another popular criterion is to select
difficult tasks – tasks that have the largest validation losses – for training to optimise
the performance on the worst-case scenarios (Collins et al., 2020). However, such
difficult tasks may not always be preferred when outliers and noise are present. That
leads to another weighting approach which favours the most familiar data-points
in single-task learning (Kumar et al., 2010; Bengio et al., 2009; Wang et al., 2017) –
often referred as curriculum learning. The two latter task-weighting approaches can
be considered as the “exploration” and “exploitation” strategies used in reinforcement
learning (RL), respectively. Similar to the exploration and exploitation dilemma in
RL, we hypothesise that the optimality for task weighting is formed by a balance
between these two approaches. In the following section, we propose a principled
approach to automate re-weighting tasks through an optimisation on a sequence of
many mini-batches rather than relying on manually-designed criteria as the previous
papers.

6.3 Methodology

6.3.1 Task-weighting as a trajectory optimisation

In practice, the optimisation in (6.5) is often carried out using a gradient-based
optimiser where the next meta-parameter x∗ is obtained from the current meta-
parameter x and its corresponding u via the function f . Such update can be
considered as a state-transition dynamics where the meta-parameter x is the state
and the weighting vector u is the action. Given this observation, we explicitly
replace the weighting criterion in (6.5) by a trajectory optimisation to formulate the
task-weighting meta-learning problem as follows:

x∗t+1 = f(x∗t ,u∗t) ∀t ∈ {1, . . . , T}

s.t. {u∗t}Tt=1 = arg min
{u}Tt=1

T∑
t=1

c(xt,ut)

s.t. xt+1 = f(xt,ut)
x∗1 = x1,

(6.6)

93

6.3. Methodology Chapter 6. Task weighting

where f(., .) corresponds to the formulation of an optimiser such as stochastic gradient
descent (SGD) (Robbins and Monro, 1951) or Adam (Kingma and Ba, 2014), c(., .)
is a cost function representing the weighting criteria, x1 is the initialisation of the
meta-learning parameter, and the subscript denotes the time step.

To solve for an optimal re-weighting vector u in the constraint of (6.6), the
cost function needs to be defined. Since our interest is the convergence speed
and the generalisation of the learnt meta-model, we define the cost function as an
un-discounted sum of uniformly-weighted validation losses of tasks belonging to a
sequence of T mini-batches plus a penalisation on the action u. For simplicity, the
penalty on the action u is assumed to follow a Gaussian prior with mean µu and
precision βu. In particular, the cost function can be expressed as:

c(xt,ut) = 111>M `̀̀(xt) + βu
2 ‖ut − µu111M‖

2, (6.7)

where ‖.‖ denotes the L2-norm.

Note that the action ut is not necessarily normalised to 1. We argue that
imposing such constraint might not work well in some cases, for example, a mini-
batch containing all familiar tasks, and another one containing all unfamiliar tasks.
Our hypothesis is to have small weights for familiar tasks in the former mini-batch,
while setting large weights for unfamiliar tasks in the latter mini-batch to diversify
the learning. Normalising ut to 1 will, however, be undesirable since the contribution
of the tasks in both mini-batches would be the same, making the meta-learning
model even biased further toward the familiar tasks in the first mini-batch. Hence,
we allow the weights to be determined automatically by the optimisation in (6.6)
with a Gaussian prior.

In general, the constraint in (6.6) cannot be solved exactly, but approximately
using iterative methods such as DDP or iLQR. Given the state-transition dynamics f
follows the formulation of a first-order gradient-based optimiser (refer to Eq. (D.30)
in Appendix D.3.1 and Eq. (D.37) in Appendix D.3.2 for the explicit form of f using
SGD and Adam, respectively), f consists of the first derivatives of the weighted loss
u>t `̀̀(xt) w.r.t. x. Hence, applying DDP will result in an intractable solution since
DDP requires the second derivatives of f , corresponding to the third derivatives of
the weighted loss u>t `̀̀(xt). In contrast, iLQR needs only the first derivatives of f ,
which corresponds to the second derivatives of the weighted loss u>t `̀̀(xt). Although
this means that iLQR no longer exhibits the quadratic convergence rate as DDP, in
the context of meta-learning, the significant reduction in computation out-weights
the speed of convergence for the task weighting vector u. In this paper, we use iLQR
to solve the constraint in (6.6). The locally-optimal actions obtained is then used to
re-weight the tasks in each mini-batch to train the meta-learning model of interest.

94

Chapter 6. Task weighting 6.3. Methodology

The approximation using Taylor’s series on the state-transition dynamics and
cost function is shown in Appendices D.3 and D.4, respectively. This approximation
leads to the calculation of two Hessian matrices: one for the sum of weighted loss,
u>t `̀̀(xt), in the dynamics, denoted as Fxt , and the other for the sum of non-weighted
loss, 111>M `̀̀(xt), in the cost function, denoted as Cxt,xt . In addition, while performing
recursive backward iLQR, we need to calculate another temporary Hessian matrix of
the cost-to-go in (D.1) (referred to Appendix D.1), denoted as Vt. Naively calcu-
lating these Hessian matrices comes at the quadratic complexity O(D2) in terms of
running time and storage, resulting in an intractable solution for large-scaled models.
To address such issue, the two Hessian matrices Fxt and Cxt,xt may be approxim-
ated by their diagonals which can be efficiently computed using the Hutchinson’s
method (Bekas et al., 2007). However, as the size of the model increases, using a few
samples from the uniform Rademacher distribution produces noisy estimations of
the Hessian diagonals, resulting in a poor approximation (Yao et al., 2021). Instead
of calculating the Hessian diagonals, we use the Gauss-Newton diagonals as replace-
ments. As the Gauss-Newton matrix is known to be a good approximation of the
Hessian matrix (Martens, 2010; Botev et al., 2017), this, therefore, results in a good
approximation for the Hessian operator. In addition, Gauss-Newton diagonals can
be efficiently calculated using a single backward pass (Dangel et al., 2020). For the
matrix Vt, we approximate it by its diagonal matrix. We also provide some results
using full matrix Vt in Appendix D.7. Nevertheless, these approximation increases
the tractability of our proposed method, allowing to implement the proposed method
for very large models, such as deep neural networks.

The whole procedure for the proposed approach can be described as follows: first,
a meta-parameter x1 is initialised as the initial state, and then, iLQR is employed to
solve the constraint in (6.6) to determine a locally-optimal action {u∗t}Tt=1 about an
arbitrary-but-feasible trajectory {x̂t, ût}Tt=1 with x̂1 = x1. The obtained weighting
vectors {u∗t}Tt=1 are then used to weight tasks in each mini-batch to train the meta-
parameter x∗t+1 in (6.6). The newly calculated state at the end of the T time steps,
x∗T+1, is then used as the initial state for the next iteration. This process is repeated
until the weighted validation loss u>`̀̀(x) converges to a local minima. The complete
algorithm of the proposed task-weighting meta-learning approach is outlined in
Algorithm 5.

To simplify the implementation and convergence analysis, we select the nominal
actions that coincide with the uniform weighting, meaning that: ûti = 1/M,∀t ∈
{1, . . . , T}, i ∈ {1, . . . ,M}. In addition, we constrain that all elements of the weight-
ing vector or action u are non-negative since each task would either contribute more
or less or even not contribute to the learning for x. This constraint is incorporated
into the stopping condition for iLQR shown in step 18 of Algorithm 5. If there is at

95

6.3. Methodology Chapter 6. Task weighting

Algorithm 5 Task-weighting for meta-learning
1: procedure train
2: define total loss J in Eq. (D.13)
3: define ibackward() in Algorithm 7 (Appendix D.5)
4: initialise x1
5: while x is not converged do
6: get T mini-batches, each consists of M tasks
7: generate a random sequence of action {ût}Tt=1
8: obtain the corresponding state {x̂t}Tt=1
9: while iLQR cost is not converged do
10: {Kt,kt}Tt=1, θ1 ← ibackward({x̂t, ût}Tt=1)
11: ε = 2
12: repeat . Backtracking line search
13: ε← 1

2ε
14: for t = 1 : T do . Forward pass
15: ut = Kt (xt − x̂t) + εkt + ût
16: xt+1 = f(xt,ut)
17: end for
18: until J(u1:N)− J(û1:N) ≤ 1

2εθ1 and uti ≥ 0
19: {x̂t}Tt=1 ← {xt}Tt=1 . Update nominal state
20: {ût}Tt=1 ← {ut}Tt=1
21: end while
22: x1 ← xT . Update meta-parameter
23: end while
24: return x1
25: end procedure

least one element uti, t ∈ {1, . . . , T}, i ∈ {1, . . . ,M} being negative, the backtracking
line search will iterate one more time with ε decaying toward 0, forcing ut to stay
close to the nominal ût. Thus, in the worst-case, ε is reduced to 0, making ut coincide
with ût, which is the uniform weighting.

The downside of TOW is the overhead due to the linearisation and quadraticisation
for the state-transition dynamics and cost function, and the calculation to obtain
the controller Kt and kt shown in Algorithm 5. If O(T0) is the time complexity to
train a meta-learning method following a uniform weighting strategy, then the time
complexity required by TOW will consist of the following:

• nominal trajectory: O(T0)

• linearisation and quadraticisation using Gauss-Newton matrices: O(niLQRm0ηD)

• iLQR backward: O(niLQRMD)

• iLQR forward with back-tracking line search: O(niLQRnlsT0),
where niLQR is the number of iterations in iLQR, m0 = m

(q)
i , i ∈ {1, . . . ,M}, is the

total number of validation samples within a task, η is the number of arithmetic
operations in the model of interest, and nls is the number of back-tracking line search.

96

Chapter 6. Task weighting 6.3. Methodology

Thus, the final complexity of TOW is: O((niLQRnls + 1)T0 + niLQR(m0η +M)D))
comparing to O(T0) in the conventional meta-learning.

6.3.2 Convergence analysis

This subsection proves that the training process for MAML using TOW to weight
tasks converges to an ε-stationary point where ε is greater than some positive constant.
In other words, we prove an inequality similar to the following:

∃ε > 0 : ‖∇xuTiter`̀̀ (xTiter)‖ ≤ ε. (6.8)

Before analysing the convergence of TOW, we state a lemma bounding the norm
of the weighting vector (or action) ut obtained from iLQR:

Lemma 6.1
If ut is a stationary action of a nominal action ût obtained from iLQR, then:

∃δ > 0 : ‖ut − ût‖ ≤ δ.

To analyse the convergence of a general non-convex function, one typically assumes
the boundedness and Lipschitz continuity of the loss function and its first and second
derivatives as shown in Assumptions 6.1, 6.2 and 6.3, respectively (Collins et al.,
2020; Fallah et al., 2020).

Assumption 6.1

The loss function of interest ` mentioned in (6.3) is B-bounded and L-Lipschitz.

Assumption 6.2

The gradient ∇x`(s, y; x) is S-Lipschitz.

Assumption 6.3

The Hessian ∇2
x`(s, y; x) is ρ-Lipschitz.

These assumptions are used to bound the gradient of the “true” validation loss
of task Ti, which is defined as follows:

¯̀̀̀
i(x) = ED(q)

i

[
`
(
s(q)
ij , y

(q)
ij ;φ(x)

)]
, (6.9)

where ED(q)
i

indicates the expectation over all data pairs {(s(q)
ij , y

(q)
ij)}+∞

j=1 sampled
from the true probability distribution D(q)

i .

97

6.3. Methodology Chapter 6. Task weighting

Lemma 6.2

If the conditions in Assumptions 6.1, 6.2 and 6.3 hold, then ¯̀̀̀
i(x) defined in

Eq. (6.9) is S̃-smooth, where: S̃ = S(1 + γS)2 + γρL.

In addition, we assume that the variance of the loss function ` evaluated on
different data points is bounded.

Assumption 6.4

The variance of the gradient ∇x` is σ2-bounded.

Such assumption leads to the boundedness of the variance of the weighted
validation loss as shown in Lemma 6.3.

Lemma 6.3

If Assumption 6.4 holds, then the variance of ∇xu>t `̀̀(xt) is bounded by σ̃2 =
σ2 (δ +M−0.5)2.

Given the above assumptions and lemmas, the convergence of TOW can be shown
in Theorem 6.4. Further details on the proof is referred to Appendix D.6.

Theorem 6.4

If Assumptions 6.1 - 6.4 hold, the learning rate α < 2/S̃(δ√M+1), and z is randomly
sampled from {xt}Titer

t=1 returned by Algorithm 5, then:

Ez∼{xt}Titer
t=1

[
ED(q) t

1:M

[∥∥∥∇zu>t ¯̀̀̀1:M (z)
∥∥∥2
]]
≤ ε0 + κ

Titer
,

where:

ε0 =
4δB
√
M + α2σ̃2S̃

(
δ
√
M + 1

)
α
[
2− αS̃

(
δ
√
M + 1

)] > 0 (6.10)

κ = 2u>1 ¯̀̀̀1:M (x1)
α
[
2− αS̃

(
δ
√
M + 1

)] , (6.11)

with Titer as the number of gradient-update for the meta-parameter (or the
number of mini-batches of tasks used), and ED(q) t

1:M
as the expectation taken over

all data sampled from t mini-batches {D(q)
i }ti=1, each D(q)

i has M tasks.

Theorem 6.4 shows that the expectation of squared gradient norm of the weighted
validation loss is upper-bounded by a monotonically reducing function w.r.t. the
number of iterations Titer. This implies that Algorithm 5 converges in expectation to
an ε0-stationary point.

98

Chapter 6. Task weighting 6.4. Related work

6.4 Related work

Our work directly relates to re-weighting tasks in meta-learning. One notable recent
work is TR-MAML (Collins et al., 2020) which places higher weights on tasks with
larger validation losses to optimise performance for worst-case scenarios. However,
when the number of training tasks is very large, e.g. there will be

(
1000

5

)
≈ 8.25×1012

5-way classification tasks formed from 1000 characters in Omniglot dataset (Lake
et al., 2015), learning weight for each training task is intractable. TR-MAML
circumvents such issue by clustering tasks into a small number of clusters based
on some ad-hoc intuition and learn the weight for each cluster. This, however,
reduces the practicability of TR-MAML. Another work, α-MAML (Cai et al., 2020),
provides an upper-bound on the distance between the weighted risk evaluated on
training tasks to the expected risk on testing tasks. The re-weight factors can then
be obtained to minimise that upper-bound, reducing the variance between training
and testing tasks. In reinforcement learning (RL), MWL-MAML (Xu et al., 2021)
is recently proposed to employ meta-learning to learn the local optimal re-weight
factor of each trajectory using a few gradient descent steps. The downside of MWL-
MAML is the need of validation trajectories (or validation tasks in meta-learning)
that are representative enough to learn those weights. Furthermore, TR-MAML,
α-MAML and MWL-MAML rely on a single mini-batch of tasks to determine the
weights without considering the effect of sequence of mini-batches when training a
meta-model, potentially rendering sub-optimal solutions. In contrast, our proposed
method does not need to cluster tasks nor require additional set of validation
tasks. In addition, our proposed method automates the calculation of task-weighting
through an optimisation over a sequence of mini-batches, allowing to obtain better
local-optimal solutions outside of a single mini-batch of tasks.

Our work is also similar to task-weighting in multi-task learning (Zhao Chen
et al., 2018; Sener and Koltun, 2018; M. Guo et al., 2018; L. Liu et al., 2021) where
the goal is to obtain an optimal re-weighting vector u for all tasks. Such modelling
can, therefore, work well with a small number of tasks, but potentially fall short when
the number of tasks is very large, e.g. in the magnitude of 1012 5-way classification
training tasks in Omniglot, due to the poor scalability of the computational and
storage complexities of that modelling. In comparison, our proposed approach does
not explicitly learn the weighting vector for all training tasks, but determines the
weighting vector for tasks in current and some following mini-batches via a trajectory
optimisation technique. In a loose sense, the multi-task learning approaches can be
considered as an analogy to a “batch” learning setting w.r.t. the weighting vector u,
while ours is analogous to an “online” learning setting which can scale well to the
number of training tasks.

99

6.5. Experiments Chapter 6. Task weighting

This paper is motivated from the observation of large variation in terms of predic-
tion performance made by meta-learning algorithms on various testing tasks (Dhillon
et al., 2019, Figure 1), implying that the trained meta-model may be biased toward
certain training tasks. Such observation may be rooted in task relatedness or task
similarity which is a growing research topic in the field of transfer learning. Existing
works include task-clustering using k-nearest neighbours (Thrun and O’Sullivan,
1996) or using convex optimisation (Jacob et al., 2009), learning task relationship
through task covariance matrices (Y. Zhang and Yeung, 2012), or theoretical guar-
antees to learn similarity between tasks (Shui et al., 2019). Recently, a large-scale
empirical study, known as Taskonomy (Zamir et al., 2018), investigated the relation-
ship between 26 computer vision tasks. Another promising direction to quantify task
similarity is to employ task representation, notably Task2Vec (Achille et al., 2019),
which is based on Fisher Information matrix to embed tasks into a latent space. One
commonality among those studies is that learning from certain training tasks may
be beneficial to generalise to unseen tasks. This suggests the design of a mechanism
to re-weight the contribution of each training task to improve the performance of
the meta-model of interest.

Furthermore, our work is related to finite-horizon discrete-time trajectory op-
timisation or open-loop optimal control which has been well studied in the field of
control and robotics. The objective is to minimise a cost function that depends
on the states and actions in many consecutive time steps given the state-transition
dynamics. Exact solution can be obtained for the simplest problem where the cost
is quadratic and the dynamics is linear using linear quadratic regulator (Anderson
and Moore, 2007). For a general non-linear problem, approximate solutions can be
found via iterative approaches, such as differential dynamic programming (Jacobson
and Mayne, 1970; Murray and SJ Yakowitz, 1984; Sidney Yakowitz and Rutherford,
1984) and iterative LQR (iLQR) (Todorov and W. Li, 2005; Tassa et al., 2012).

6.5 Experiments
In this section, we empirically compare the performance of the proposed trajectory
optimisation task weighting (TOW) approach with three baselines: one with uniform
weighting, denoted as uniform, one with higher weights on difficult tasks (or tasks
with higher losses), denoted as exploration, and the other one with higher weights on
easier tasks (or tasks with lower losses), denoted as exploitation. The experiments
are based on n-way k-shot classification setting used in few-shot learning with tasks
formed from Omniglot (Lake et al., 2015) and mini-ImageNet (Vinyals et al., 2016)
– the two most widely used datasets to evaluate the performance of meta-learning
algorithms.

100

Chapter 6. Task weighting 6.5. Experiments

Naively implementing the two baselines, exploration and exploitation, will easily
lead to trivial solutions where only the task with largest or smallest loss within a
mini-batch is selected. Thus, only one task in each mini-batch is used for learning,
and consequently, making the learning noisy and unstable. We, therefore, introduce
a prior, denoted as p(u), as a regularisation to prevent many tasks within the same
mini-batch from being discarded. The objective to determine the weights for these
two baselines can be written as follows:

u∗ =

arg min

u
−u>`̀̀(x)− ln p(u) for exploration

arg min
u

u>`̀̀(x)− ln p(u) for exploitation.
(6.12)

In general, the prior p(u) can be any distribution that has support in (0,+∞)
such as Beta, Gamma or Cauchy distribution. For simplicity, p(u) is selected as a
Dirichlet distribution with a concentration κ > 1 to constrain the weight vector within
a probability simplex. One can then use a non-linear optimisation solver to solve
(6.12) to obtain an optimal u∗ for one of the two baselines. In the implementation,
we use Sequential Least SQuares Programming (SLSQP) to obtain u∗. Note that
the definition of the exploration baseline above resembles TR-MAML (Collins et al.,
2020), but is applicable for common few-shot learning benchmarks where the number
of tasks is large. Similarly, the exploitation is an analogy to robust Bayesian data
re-weighting (Wang et al., 2017) or curriculum learning in single-task learning.

For Omniglot dataset, we follow the original train-test split (Lake et al., 2015) with
30 alphabets used for training and 20 alphabets used for testing. For mini-ImageNet,
we evaluate on the standard train-test split with 64 classes for training, 16 classes for
validation and 20 for testing (Ravi and Larochelle, 2018). The base model used is the
4 CNN module network that is widely used in few-shot image classification (Vinyals
et al., 2016; Finn et al., 2017). Two common meta-learning algorithms considered
in this section include MAML (Finn et al., 2017) and Prototypical Networks (Snell
et al., 2017) with Euclidean distances.

For all experiments, the learning rate γ of task adaptation (also known as inner-
loop) shown in Eq. (6.4) is 0.1 for Omniglot and 0.01 for mini-ImageNet with 5
gradient updates. The learning rate for the meta-parameters, α, is set at 10−4

for all the setting. The mini-batch size is M = 5 and 10 tasks. For the Dirichlet
concentration of the prior in the exploration and exploitation baselines, we try three
values of κ ∈ {0.2, 1.2, 5}, and found that a too small value of κ leads to noisy
learning since only the easiest or hardest task is selected, while too large value of κ
makes both the baselines identical to uniform weighting. Hence, we select κ = 1.2
that balances between these two strategies. Note that κ = 1 results in a random prior,
leading to a trivial solution. For the trajectory optimiser iLQR, the state-transition

101

6.5.
Experim

ents
C
hapter

6.
Task

weighting

5 10 15 2080

85

90

95

№ of training tasks (×10,000)

A
cc

ur
ac

y
(%

)

(a) MAML on Omniglot

2 4 6 890
92
94
96
98

№ of training tasks (×10,000)

uniform
exploration
exploitation
TOW

(b) Protonet on Omniglot

MAML Protonet
92

94

96 Uniform
Exploration
Exploitation
TOW

(c) Omniglot - test

20 40
36
38
40
42
44

№ of training tasks (×10,000)

A
cc

ur
ac

y
(%

)

(d) MAML on mini-ImageNet

5 10 15
36
38
40
42
44

№ of training tasks (×10,000)

(e) Protonet on mini-ImageNet

5 10 15 2035

40

45

№ of training tasks (×10,000)

(f) MAML - Resnet-10 on mini-ImageNet

MAML Protonet MAML-

46

48

50

with Resnet-10
(g) Mini-ImageNet - test

Figure 6.1: Validation accuracy exponential moving average (with smoothing factor 0.1) of different task-weighting strategies evaluated on: (a) and
(b) Omniglot, and (d), (e) and (f) mini-ImageNet. The column plots show testing accuracy on: (c) Omniglot and (g) mini-ImageNet.

102

Chapter 6. Task weighting 6.6. Discussion

Table 6.1: Running time of different task-weighting methods based on MAML (unit in
GPU-hour evaluated on an NVIDIA A6000).

Omniglot mini-ImageNet
CNN Resnet-10

Exploration 1.55 5.24 7.18
Exploitation 1.55 5.24 7.18
Uniform 1.35 5.03 7.16
TOW 7.50 38.12 67.78

dynamics f follows the formula of Adam optimiser since Adam provides a less noisy
training as in SGD. The nominal trajectory is, as mentioned in Subsection 6.3.1,
selected with uniform actions: ûtj = 1/M,∀j ∈ {1, . . . ,M}, t ∈ {1, . . . , T}. The
number of iteration used is iLQR is 2, and the number of time steps (or number of
mini-batches) is T = 5 and 10. The parameters of the prior on the action ut are
µu = 1/M and βu = 10. As we do not observe any major difference between different
configuration of M and T used in this experiment, we report the result for the case
M = 10 and T = 5.

Figures 6.1a, 6.1b, 6.1d and 6.1e plot the testing accuracy evaluated on 100
validation tasks drawn from Omniglot and mini-ImageNet following the 5-way 1-shot
setting. The results show that TOW can achieve higher performance comparing to
the three baselines given different datasets and meta-learning methods. Furthermore,
we carry out an experiment with Resnet-10 (He et al., 2016) on mini-ImageNet to
demonstrate the scalability of TOW and have a similar observation in Figure 6.1f.
We note that the validation accuracy curves of Resnet-10 fluctuates due to our
injected dropout to regularise the network from overfitting. For the evaluation,
we follow the standard setting in few-shot learning by measuring the prediction
accuracy on 1,000 and 600 testing tasks formed from Omniglot and mini-ImageNet,
respectively (Vinyals et al., 2016; Finn et al., 2017). The results in Figures 6.1c and
6.1g show that TOW can be at least 2% more accurate than the best baseline among
Uniform, Exploration, and Exploitation. Despite the promising results, the downside
of TOW is the overhead caused by approximating the cost and state-transition
dynamics over T mini-batches of tasks to determine the locally-optimal {u∗t}Tt=1. As
shown in Table 6.1, TOW is about 7 to 9 times slower than the three baselines. We
also provide a visualisation of the weights ut in Appendix D.8.

6.6 Discussion
We propose a principled approach based on trajectory optimisation to mitigate the
issue of non-uniform distribution of training tasks in meta-learning. The idea is to

103

6.6. Discussion Chapter 6. Task weighting

model the training process in meta-learning by trajectory optimisation with state
as meta-parameter and action as the weights of training tasks. The local optimal
weights obtained from iLQR – a trajectory optimiser are then used to re-weight tasks
to train the meta-parameter of interest. We demonstrate that the proposed approach
converges with less number of training tasks and has a final prediction accuracy that
out-performs some common hand-crafted task-weighting baselines.

Our proposed method also has some limitations that could be addressed in future
work. TOW relies on iLQR which is not ideal for large-scale systems with high
dimensional state space such as deep neural networks. Despite the approximation
of Hessian matrices to use only diagonals as mentioned in Subsection 6.3.1, the
linearisation of the state-transition dynamics and quadraticisation of the cost function
are still time-consuming, and consequently, reduce TOW’s efficiency. Future work
might find a faster approximation to optimise the running time for TOW.

Furthermore, our method is local in nature due to the Taylor’s series approxim-
ation about a nominal trajectory used in iLQR. One way to improve further is to
define a “global” or “stationary” policy πθ(xt,ut), which is similar to Guided Policy
Search (Levine and Koltun, 2013; Levine and Koltun, 2014). This policy can then
be trained on multiple local optimal trajectories obtained from iLQR. While this
approach may offer a superior generalisation for the policy, scalability is an issue
since the policy needs to process the high-dimensional state xt. As a result, a very
large model may be required to implement such policy.

104

Chapter 7

Conclusion

In this thesis, we have explicitly formulated the meta-learning problem as an extension
of hyper-parameter optimisation, where the hyper-parameter of interest is shared
across several tasks. Such formulation allows us to analyse some major issues in
meta-learning research, including the potential overfitting due to the small number
of training data within each task and the ability to generalise to unseen tasks. In
addition, we have pointed out that the structure of task distribution and how to
distribute the influence of each task in the learning of the meta-parameter of interest
could benefit meta-learning, but have not been thoroughly explored yet.

We have, therefore, carried several studies to investigate and analyse such issues.
Firstly, we proposed to integrate variational inference that takes epistemic uncertainty
– the uncertainty due to modelling – into account to introduce a new probabilistic
meta-learning algorithm to address the overfitting issue. We showed that the proposed
algorithm can achieve the smallest calibration errors compared to some common
meta-learning methods, meaning that the meta-model trained with our proposed
algorithm is less fragile. Secondly, we employed PAC-Bayes framework to derive an
upper-bound of the generalisation errors evaluated on unseen tasks drawn from the
same task distribution. Such upper-bound can then be used as a new loss function
to train different meta-learning methods. We demonstrated that the meta-learning
models trained with the new proposed loss function can achieve state-of-the-art
results in both regression and classification. Next, we explored meta-learning by
modelling tasks via a graphical model based on a mixture of Gaussian distribution.
Such modelling allows us to quantify task similarity or relatedness, which can be
used in active task selection to optimise the training of meta-learning models. Lastly,
we adopt trajectory optimisation in optimal control to propose a principled way to
re-weight the contribution of each task to the learning of a meta-learning model. We
show that such automatic re-weighting mechanism can converge faster in terms of
number of training tasks and achieve better testing accuracy. In general, all the
studies in this thesis contribute to the reliability improvement for meta-learning and

105

Chapter 7. Conclusion

the optimisation for the prediction performance made by meta-learning models by
exploiting the insightful intuition extracted from the training task distribution.

Limitations and future work

Despite the promising results presented, the studies carried out in this thesis have
some limitations which need to be addressed in future work.

The first limitation is related to the use of a simplified variational distribution
in Chapter 3, and in particular, multivariate normal distributions with diagonal
covariance matrices, potentially hampering the modelling expressiveness. Although
it has been partly addressed by implicit distributions – a “hyper” neural network
outputs the “base” neural network that performs regression or classification – in
Chapter 4, such implicit modelling suffers from the curse of dimensionality as seen in
GAN models, making the proposed methods less applicable for large models. Thus,
future works should focus on solving the scalability issue when approximating the
posterior of the model of interest.

The second limitation is also a scalability issue but related to the task re-weighting
method – TOW – presented in Chapter 6. At the present, TOW relies on iLQR
– a quasi-Newton like method which has a quadratic time and storage complexity
in terms of the dimension of the model used. Although the Hessian matrices in
iLQR have been approximated by the diagonals of their corresponding Gauss-Newton
matrices, such approximation is still rough, potentially resulting in a sub-optimal
solution. In addition, calculating the approximated diagonal matrices is still time
consuming, making TOW lag behind some common task re-weighting baselines in
terms of running time and consequently, reduce its applicability, especially for large-
scale problems. Thus, future work needs to investigate the bottle-neck computation
of TOW and explore further the approximation to optimise TOW.

The last but not least limitation is the assumption of mono-modality of the task
environment used in meta-learning. Conventionally, the task environment is often
assumed to consist of only one family of tasks, e.g. either regression or classification.
In other words, the label space of tasks sampled from such environment is the same
from task-to-task, e.g. Y ⊆ R in regression and Y ⊆ N in classification. This,
however, quite limited since it does not utilise the knowledge extracted from a variety
of available task families, such as a mixture of image classification and segmentation
task families. To the best of our knowledge, no research has been carried out in the
direction of multiple task family setting, but only some empirical studies that show
the knowledge transferability from one task family to another (Zamir et al., 2018).
Thus, future works would be to investigate the feasibility of multi-modality of task
environment and develop novel meta-learning algorithms that solves different tasks
sampled from such complex setting.

106

Bibliography

Achille, Alessandro, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu
Maji, Charless C Fowlkes, Stefano Soatto and Pietro Perona (2019). ‘TASK2VEC:
Task embedding for meta-learning’. In: International Conference on Computer
Vision, pp. 6430–6439.

Allen, Kelsey, Evan Shelhamer, Hanul Shin and Joshua Tenenbaum (2019). ‘Infin-
ite mixture prototypes for few-shot learning’. In: International Conference on
Machine Learning, pp. 232–241.

Alquier, Pierre and Benjamin Guedj (2018). ‘Simpler PAC-Bayesian bounds for
hostile data’. In: Machine Learning 107.5, pp. 887–902.

Alquier, Pierre, Massimiliano Pontil et al. (2017). ‘Regret bounds for lifelong learning’.
In: International Conference on Artificial Intelligence and Statistics, pp. 261–269.

Alquier, Pierre, James Ridgway and Nicolas Chopin (2016). ‘On the properties of
variational approximations of Gibbs posteriors’. In: Journal of Machine Learning
Research 17.1, pp. 8374–8414.

Amit, Ron and Ron Meir (2018). ‘Meta-learning by adjusting priors based on extended
PAC-Bayes theory’. In: International Conference on Machine Learning, pp. 205–
214.

Anderson, Brian DO and John B Moore (2007). Optimal control: linear quadratic
methods. Courier Corporation.

Andrychowicz, Marcin, Misha Denil, Sergio Gómez Colmenarejo, Matthew W Hoff-
man, David Pfau, Tom Schaul, Brendan Shillingford and Nando de Freitas (2016).
‘Learning to learn by gradient descent by gradient descent’. In: Advances in Neural
Information Processing Systems, pp. 3988–3996.

Bai, Yu, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason Lee, Sham Kakade, Huan
Wang and Caiming Xiong (2021). ‘How important is the train-validation split in
meta-learning?’ In: International Conference on Machine Learning, pp. 543–553.

Baik, Sungyong, Myungsub Choi, Janghoon Choi, Heewon Kim and Kyoung Mu Lee
(2020). ‘Meta-learning with adaptive hyperparameters’. In: Advances in Neural
Information Processing Systems.

Bakker, Bart and Tom Heskes (2003). ‘Task clustering and gating for Bayesian
multitask learning’. In: Journal of Machine Learning Research 4.May, pp. 83–99.

107

Bibliography Bibliography

Banerjee, Arindam (2006). ‘On Bayesian bounds’. In: International Conference on
Machine learning, pp. 81–88.

Baxter, Jonathan (2000). ‘A model of inductive bias learning’. In: Journal of Artificial
Intelligence Research 12, pp. 149–198.

Bekas, Costas, Effrosyni Kokiopoulou and Yousef Saad (2007). ‘An estimator for the
diagonal of a matrix’. In: Applied Numerical Mathematics 57.11-12, pp. 1214–
1229.

Ben-David, Shai, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira and
Jennifer Wortman Vaughan (2010). ‘A theory of learning from different domains’.
In: Machine Learning 79.1-2, pp. 151–175.

Ben-David, Shai, John Blitzer, Koby Crammer, Fernando Pereira et al. (2007).
‘Analysis of representations for domain adaptation’. In: Advances in Neural
Information Processing Systems 19, p. 137.

Bengio, Yoshua, Jérôme Louradour, Ronan Collobert and Jason Weston (2009).
‘Curriculum learning’. In: International Conference on Machine Learning, pp. 41–
48.

Bishop, Christopher M (2006). Pattern recognition and machine learning. Springer.
Blei, David M, Andrew Y Ng and Michael I Jordan (2003). ‘Latent Dirichlet alloca-

tion’. In: Journal of Machine Learning Research 3.Jan, pp. 993–1022.
Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu and Daan Wierstra (2015).

‘Weight uncertainty in neural networks’. In: International Conference on Machine
Learning, pp. 1613–1622.

Botev, Aleksandar, Hippolyt Ritter and David Barber (2017). ‘Practical Gauss-
Newton optimisation for deep learning’. In: International Conference on Machine
Learning, pp. 557–565.

Bridle, John S and Stephen J Cox (1991). ‘Recnorm: Simultaneous normalisation and
classification applied to speech recognition’. In: Advances in Neural Information
Processing Systems, pp. 234–240.

Bubeck, Sébastien et al. (2015). ‘Convex Optimization: Algorithms and Complexity’.
In: Foundations and Trends® in Machine Learning 8.3-4, pp. 231–357.

Cai, Diana, Rishit Sheth, Lester Mackey and Nicolo Fusi (2020). ‘Weighted meta-
learning’. In: ICML Workshop on Automated Machine Learning.

Canini, Kevin, Lei Shi and Thomas Griffiths (2009). ‘Online inference of topics with
latent Dirichlet allocation’. In: International Conference on Artificial Intelligence
and Statistics, pp. 65–72.

Caruana, Rich (1997). ‘Multitask learning’. In: Machine Learning 28.1, pp. 41–75.
Catoni, Olivier (2004). Statistical learning theory and stochastic optimization: Ecole

d’Eté de Probabilités de Saint-Flour XXXI-2001. Springer.

108

Bibliography Bibliography

Chen, Wei-Yu, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang and Jia-Bin Huang
(2019). ‘A closer look at few-shot classification’. In: International Conference on
Learning Representations.

Chen, Zhao, Vijay Badrinarayanan, Chen-Yu Lee and Andrew Rabinovich (2018).
‘Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask
networks’. In: International Conference on Machine Learning, pp. 794–803.

Chen, Zhiyuan and Bing Liu (2018). ‘Lifelong machine learning’. In: Synthesis
Lectures on Artificial Intelligence and Machine Learning 12.3, pp. 1–207.

Collins, Liam, Aryan Mokhtari and Sanjay Shakkottai (2020). ‘Task-robust model-
agnostic meta-learning’. In: Advances in Neural Information Processing Systems.

Dangel, Felix, Frederik Kunstner and Philipp Hennig (2020). ‘BackPACK: Packing
more into Backprop’. In: International Conference on Learning Representations.

Das, Rajarshi, Manzil Zaheer and Chris Dyer (2015). ‘Gaussian LDA for topic models
with word embeddings’. In: Annual Meeting of the Association for Computational
Linguistics and International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 795–804.

Daume III, Hal and Daniel Marcu (2006). ‘Domain adaptation for statistical classifi-
ers’. In: Journal of Artificial Intelligence Research 26, pp. 101–126.

Denevi, Giulia, Carlo Ciliberto, Riccardo Grazzi and Massimiliano Pontil (2019a).
‘Learning-to-learn stochastic gradient descent with biased regularization’. In:
International Conference on Machine Learning, pp. 1566–1575.

Denevi, Giulia, Carlo Ciliberto, Dimitris Stamos and Massimiliano Pontil (2018).
‘Learning to learn around a common mean’. In: Advances in Neural Information
Processing Systems. Vol. 31.

Denevi, Giulia, Massimiliano Pontil and Carlo Ciliberto (2020). ‘The advantage of
conditional meta-learning for biased regularization and fine tuning’. In: Advances
in Neural Information Processing Systems 33.

Denevi, Giulia, Dimitris Stamos, Carlo Ciliberto and Massimiliano Pontil (2019b).
‘Online-within-online meta-learning’. In: Advances in Neural Information Pro-
cessing Systems. Vol. 32, pp. 1–11.

Dhillon, Guneet S, Pratik Chaudhari, Avinash Ravichandran and Stefano Soatto
(2019). ‘A baseline for few-shot image classification’. In: International Conference
on Learning Representations.

Diggle, Peter J and Richard J Gratton (1984). ‘Monte Carlo methods of inference
for implicit statistical models’. In: Journal of the Royal Statistical Society: Series
B (Methodological) 46.2, pp. 193–212.

Ding, Nan, Xi Chen, Tomer Levinboim, Sebastian Goodman and Radu Soricut
(2021). ‘Bridging the Gap Between Practice and PAC-Bayes Theory in Few-Shot
Meta-Learning’. In: Advances in Neural Information Processing Systems.

109

Bibliography Bibliography

Domke, Justin (2012). ‘Generic methods for optimization-based modeling’. In: Inter-
national Conference on Artificial Intelligence and Statistics, pp. 318–326.

Edwards, Harrison and Amos Storkey (2017). ‘Towards a neural statistician’. In:
International Conference on Learning Representations.

Fallah, Alireza, Aryan Mokhtari and Asuman Ozdaglar (2020). ‘On the conver-
gence theory of gradient-based model-agnostic meta-learning algorithms’. In:
International Conference on Artificial Intelligence and Statistics, pp. 1082–1092.

Finn, Chelsea, Pieter Abbeel and Sergey Levine (2017). ‘Model-agnostic meta-
Learning for fast adaptation of deep networks’. In: International Conference on
Machine Learning, pp. 1126–1135.

Finn, Chelsea, Kelvin Xu and Sergey Levine (2018). ‘Probabilistic model-agnostic
meta-learning’. In: Advances in Neural Information Processing Systems, pp. 9537–
9548.

Flennerhag, Sebastian, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun
Yin and Raia Hadsell (2020). ‘Meta-learning with warped gradient descent’. In:
International Conference on Learning Representations.

Foulds, James, Levi Boyles, Christopher DuBois, Padhraic Smyth and Max Welling
(2013). ‘Stochastic collapsed variational Bayesian inference for latent Dirichlet al-
location’. In: International Conference on Knowledge Discovery and Data Mining,
pp. 446–454.

French, Robert M (1999). ‘Catastrophic forgetting in connectionist networks’. In:
Trends in Cognitive Sciences 3.4, pp. 128–135.

Garnelo, Marta, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,
SM Eslami and Yee Whye Teh (2018). ‘Neural processes’. In: ICML workshop on
Theoretical Foundations and Applications of Deep Generative Models.

Germain, Pascal, Francis Bach, Alexandre Lacoste and Simon Lacoste-Julien (2016).
‘PAC-Bayesian theory meets Bayesian inference’. In: Advances in Neural Inform-
ation Processing Systems, pp. 1884–1892.

Glorot, Xavier and Yoshua Bengio (2010). ‘Understanding the difficulty of training
deep feedforward neural networks’. In: International Conference on Artificial
Intelligence and Statistics, pp. 249–256.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville and Yoshua Bengio (2014). ‘Generative adversarial
nets’. In: Advances in Neural Information Processing Systems.

Gordon, Jonathan, John Bronskill, Matthias Bauer, Sebastian Nowozin and Richard
Turner (2019). ‘Meta-learning probabilistic inference for prediction’. In: Interna-
tional Conference on Learning Representations.

110

Bibliography Bibliography

Grant, Erin, Chelsea Finn, Sergey Levine, Trevor Darrell and Thomas Griffiths (2018).
‘Recasting gradient-based meta-learning as hierarchical Bayes’. In: International
Conference on Learning Representations.

Graves, Alex, Abdel-rahman Mohamed and Geoffrey Hinton (2013). ‘Speech recog-
nition with deep recurrent neural networks’. In: International Conference on
Acoustics, Speech and Signal Processing. IEEE, pp. 6645–6649.

Griffiths, Thomas L and Mark Steyvers (2004). ‘Finding scientific topics’. In: Pro-
ceedings of the National Academy of Sciences 101.suppl 1, pp. 5228–5235.

Guo, Chuan, Geoff Pleiss, Yu Sun and Kilian Q. Weinberger (2017). ‘On calibration
of modern neural networks’. In: International Conference on Machine Learning.

Guo, Michelle, Albert Haque, De-An Huang, Serena Yeung and Li Fei-Fei (Sept. 2018).
‘Dynamic Task Prioritization for Multitask Learning’. In: European Conference
on Computer Vision.

Ha, David, Andrew Dai and Quoc V Le (2017). ‘Hypernetworks’. In: International
Conference on Learning Representations.

Havaei, Mohammad, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville,
Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin and Hugo Larochelle (2017). ‘Brain
tumor segmentation with deep neural networks’. In: Medical Image Analysis 35,
pp. 18–31.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun (2016). ‘Deep residual
learning for image recognition’. In: Conference on Computer Vision and Pattern
Recognition, pp. 770–778.

Heckman, James J (1979). ‘Sample selection bias as a specification error’. In: Econo-
metrica: Journal of The Econometric Society, pp. 153–161.

Higgins, Irina, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed and Alexander Lerchner (2016). ‘Beta-VAE: Learning
basic visual concepts with a constrained variational framework’. In: International
Conference on Learning Representations.

Hinton, Geoffrey et al. (2012). ‘Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups’. In: IEEE Signal Processing
Magazine 29.6, pp. 82–97.

Hoffman, Matthew, Francis R Bach and David M Blei (2010). ‘Online learning
for latent Dirichlet allocation’. In: Advances in Neural Information Processing
Systems, pp. 856–864.

Hospedales, Timothy M, Antreas Antoniou, Paul Micaelli and Amos J Storkey (2021).
‘Meta-learning in neural networks: A survey’. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

111

Bibliography Bibliography

Ioffe, Sergey and Christian Szegedy (2015). ‘Batch normalization: accelerating deep
network training by reducing internal covariate shift’. In: International Conference
on Machine Learning, pp. 448–456.

Jacob, Laurent, Jean-philippe Vert and Francis R Bach (2009). ‘Clustered multi-task
learning: A convex formulation’. In: Advances in Neural Information Processing
Systems, pp. 745–752.

Jacobson, David H and David Q. Mayne (1970). Differential dynamic programming.
Elsevier.

Japkowicz, Nathalie and Shaju Stephen (2002). ‘The class imbalance problem: A
systematic study’. In: Intelligent Data Analysis 6.5, pp. 429–449.

Johnson, Rie and Tong Zhang (2013). ‘Accelerating stochastic gradient descent using
predictive variance reduction’. In: Advances in Neural Information Processing
Systems 26, pp. 315–323.

Kaiser, Łukasz, Ofir Nachum, Aurko Roy and Samy Bengio (2017). ‘Learning to
remember rare events’. In: International Conference on Learning Representations.

Khodak, Mikhail, Maria-Florina F Balcan and Ameet S Talwalkar (2019). ‘Adaptive
gradient-based meta-learning methods’. In: Advances in Neural Information
Processing Systems 32, pp. 5917–5928.

Kingma, Diederik P and Jimmy Ba (2014). ‘Adam: A method for stochastic optimiz-
ation’. In: International Conference on Learning Representations.

— (2015). ‘Adam: A method for stochastic optimization’. In: International Confer-
ence on Learning Representations.

Kingma, Diederik P and Max Welling (2014a). ‘Auto-encoding variational Bayes’.
In: International Conference on Learning Representations.

— (2014b). ‘Auto-encoding variational Bayes’. In: International Conference on
Learning Representations.

Koch, Gregory, Richard Zemel and Ruslan Salakhutdinov (2015). ‘Siamese neural
networks for one-shot image recognition’. In: ICML Deep Learning Workshop.
Vol. 2.

Krizhevsky, Alex, Ilya Sutskever and Geoffrey E Hinton (2012). ‘Imagenet classifica-
tion with deep convolutional neural networks’. In: Advances in Neural Information
Processing Systems, pp. 1097–1105.

Kumar, M Pawan, Benjamin Packer and Daphne Koller (2010). ‘Self-Paced learning
for latent variable models.’ In: Advances in Neural Information Processing Systems.
Vol. 1, p. 2.

Lake, Brenden M, Ruslan Salakhutdinov and Joshua B Tenenbaum (2015). ‘Human-
level concept learning through probabilistic program induction’. In: Science
350.6266.

112

Bibliography Bibliography

Lee, Kwonjoon, Subhransu Maji, Avinash Ravichandran and Stefano Soatto (2019).
‘Meta-learning with differentiable convex optimization’. In: Conference on Com-
puter Vision and Pattern Recognition, pp. 10657–10665.

Levine, Sergey and Vladlen Koltun (2013). ‘Guided policy search’. In: International
Conference on Machine Learning, pp. 1–9.

— (2014). ‘Learning complex neural network policies with trajectory optimization’.
In: International Conference on Machine Learning, pp. 829–837.

Li, Da, Yongxin Yang, Yi-Zhe Song and Timothy M Hospedales (2018). ‘Learning to
generalize: Meta-learning for domain generalization’. In: AAAI Conference on
Artificial Intelligence.

Li, Fei-Fei, Rob Fergus and Pietro Perona (2006). ‘One-shot learning of object
categories’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
28.4, pp. 594–611.

Li, Fei-Fei and Pietro Perona (2005). ‘A Bayesian hierarchical model for learn-
ing natural scene categories’. In: Conference on Computer Vision and Pattern
Recognition. Vol. 2, pp. 524–531.

Li, Huaiyu, Weiming Dong, Xing Mei, Chongyang Ma, Feiyue Huang and Bao-Gang
Hu (2019). ‘LGM-Net: Learning to Generate Matching Networks for Few-Shot
Learning’. In: International Conference on Machine Learning, pp. 3825–3834.

Li, Ke and Jitendra Malik (2017). ‘Learning to optimize’. In: International Conference
on Learning Representations.

Li, Yiying, Yongxin Yang, Wei Zhou and Timothy Hospedales (2019). ‘Feature-critic
networks for heterogeneous domain generalization’. In: International Conference
on Machine Learning, pp. 3915–3924.

Li, Zhenguo, Fengwei Zhou, Fei Chen and Hang Li (2017). ‘Meta-sgd: Learning to
learn quickly for few-shot learning’. In: arXiv preprint arXiv:1707.09835.

Liu, Liyang, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang,
Qingmin Liao and Wayne Zhang (2021). ‘Towards Impartial Multi-task Learning’.
In: International Conference on Learning Representations.

Liu, Yanbin, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang
and Yi Yang (2018). ‘Transductive propagation network for few-shot learning’.
In: International Conference on Learning Representations.

Loaiza-Ganem, Gabriel and John P Cunningham (2019). ‘The continuous Bernoulli:
fixing a pervasive error in variational autoencoders’. In: Advances in Neural
Information Processing Systems.

Lorraine, Jonathan, Paul Vicol and David Duvenaud (2020). ‘Optimizing millions
of hyperparameters by implicit differentiation’. In: International Conference on
Artificial Intelligence and Statistics, pp. 1540–1552.

113

Bibliography Bibliography

MacKay, David JC (1992). ‘The evidence framework applied to classification networks’.
In: Neural computation 4.5, pp. 720–736.

Martens, James (2010). ‘Deep learning via hessian-free optimization.’ In: International
Conference on Machine Learning. Vol. 27, pp. 735–742.

Maurer, Andreas and Tommi Jaakkola (2005). ‘Algorithmic stability and meta-
learning.’ In: Journal of Machine Learning Research 6.6.

Maurer, Andreas, Massimiliano Pontil and Bernardino Romera-Paredes (2016). ‘The
benefit of multitask representation learning’. In: Journal of Machine Learning
Research 17.81, pp. 1–32.

McAllester, David A (1999). ‘PAC-Bayesian model averaging’. In: Conference on
Computational Learning Theory. Vol. 99, pp. 164–170.

Minka, Thomas (2000). Estimating a Dirichlet distribution.
Mishra, Nikhil, Mostafa Rohaninejad, Xi Chen and Pieter Abbeel (2018). ‘A simple

neural attentive meta-learner’. In: International Conference on Learning Repres-
entations.

Munkhdalai, Tsendsuren and Hong Yu (2017). ‘Meta networks’. In: International
Conference on Machine Learning.

Munkhdalai, Tsendsuren, Xingdi Yuan, Soroush Mehri and Adam Trischler (2018).
‘Rapid adaptation with conditionally shifted neurons’. In: International Conference
on Machine Learning, pp. 3661–3670.

Murray, DM and SJ Yakowitz (1984). ‘Differential dynamic programming and New-
ton’s method for discrete optimal control problems’. In: Journal of Optimization
Theory and Applications 43.3, pp. 395–414.

Nagabandi, Anusha, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel,
Sergey Levine and Chelsea Finn (2019). ‘Learning to adapt in dynamic, real-world
environments through meta-reinforcement learning’. In: International Conference
on Learning Representations.

Naik, Devang K and RJ Mammone (1992). ‘Meta-neural networks that learn by
learning’. In: International Joint Conference on Neural Networks. Vol. 1. IEEE,
pp. 437–442.

Nguyen, Cuong, Thanh-Toan Do and Gustavo Carneiro (2020). ‘Uncertainty in
model-agnostic meta-learning using variational inference’. In: Winter Conference
on Applications of Computer Vision, pp. 3090–3100.

— (2021). ‘Probabilistic task modelling for meta-learning’. In: Conference on Uncer-
tainty in Artificial Intelligence.

— (2022). ‘PAC-Bayes meta-learning with implicit task-specific posteriors’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.
2022.3147798.

114

https://doi.org/10.1109/TPAMI.2022.3147798
https://doi.org/10.1109/TPAMI.2022.3147798

Bibliography Bibliography

Nguyen, Cuong V, Tal Hassner, Cedric Archambeau and Matthias Seeger (2020).
‘LEEP: A new measure to evaluate transferability of learned representations’. In:
International Conference on Machine Learning.

Nichol, Alex, Joshua Achiam and John Schulman (2018). ‘On first-order meta-learning
algorithms’. In: arXiv preprint arXiv:1803.02999.

Oreshkin, Boris N, Alexandre Lacoste and Pau Rodriguez (2018). ‘TADAM: Task
dependent adaptive metric for improved few-shot learning’. In: Advances in Neural
Information Processing Systems, pp. 719–729.

Parisi, German I, Ronald Kemker, Jose L Part, Christopher Kanan and Stefan
Wermter (2019). ‘Continual lifelong learning with neural networks: A review’. In:
Neural Networks 113, pp. 54–71.

Pearlmutter, Barak A. (1994). ‘Fast exact multiplication by the Hessian’. In: Neural
Computation 6, pp. 147–160.

Pentina, Anastasia and Christoph Lampert (2014). ‘A PAC-Bayesian bound for
lifelong learning’. In: International Conference on Machine Learning, pp. 991–
999.

Polak, Elijah (1971). Computational methods in optimization: a unified approach.
Vol. 77. Academic press.

Pratt, Lorien Y, Jack Mostow, Candace A Kamm and Ace A Kamm (1991). ‘Direct
transfer of learned information among neural networks.’ In: AAAI Conference on
Artificial Intelligence. Vol. 91, pp. 584–589.

Pritchard, Jonathan K, Matthew Stephens and Peter Donnelly (2000). ‘Inference of
population structure using multilocus genotype data’. In: Genetics 155.2, pp. 945–
959.

Rajeswaran, Aravind, Chelsea Finn, Sham Kakade and Sergey Levine (2019). ‘Meta-
learning with implicit gradients’. In: Advances in Neural Information Processing
Systems.

Ravi, Sachin and Alex Beatson (2019). ‘Amortized Bayesian meta-Learning’. In:
International Conference on Learning Representations.

Ravi, Sachin and Hugo Larochelle (2018). ‘Optimization as a model for few-shot
learning’. In: International Conference on Learning Representations.

Ren, Mengye, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B
Tenenbaum, Hugo Larochelle and Richard S Zemel (2018). ‘Meta-learning for
semi-supervised few-shot classification’. In: International Conference on Learning
Representations.

Rendell, Larry A, Raj Sheshu and David K Tcheng (1987). ‘Layered concept-learning
and dynamically variable bias management.’ In: International Joint Conference
on Artificial Intelligence, pp. 308–314.

115

Bibliography Bibliography

Robbins, Herbert and Sutton Monro (1951). ‘A stochastic approximation method’.
In: The Annals of Mathematical Statistics, pp. 400–407.

Rosenstein, Michael T, Zvika Marx, Leslie Pack Kaelbling and Thomas G Dietterich
(2005). ‘To transfer or not to transfer’. In: NIPS 2005 workshop on transfer
learning. Vol. 898, pp. 1–4.

Rothfuss, Jonas, Vincent Fortuin, Martin Josifoski and Andreas Krause (2021).
‘PACOH: Bayes-optimal meta-learning with PAC-guarantees’. In: International
Conference on Machine Learning, pp. 9116–9126.

Russakovsky, Olga et al. (2015). ‘ImageNet large scale visual recognition challenge’.
In: International Journal of Computer Vision 115.3, pp. 211–252.

Rusu, Andrei A, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero and Raia Hadsell (2019). ‘Meta-learning with latent embedding
optimization’. In: International Conference on Learning Representations.

Ruvolo, Paul and Eric Eaton (2013). ‘Active task selection for lifelong machine
learning’. In: AAAI Conference on Artificial Intelligence. Vol. 27.

Santoro, Adam, Sergey Bartunov, Matthew Botvinick, Daan Wierstra and Timothy
Lillicrap (2016). ‘Meta-learning with memory-augmented neural networks’. In:
International Conference on Machine Learning, pp. 1842–1850.

Schmidhuber, Jürgen (1987). ‘Evolutionary principles in self-referential learning
(On learning how to learn: the meta-meta-... hook)’. Diploma thesis. Technische
Universität München.

Sener, Ozan and Vladlen Koltun (2018). ‘Multi-Task Learning as Multi-Objective
Optimization’. In: Advances in Neural Information Processing Systems.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning:
From theory to algorithms. Cambridge university press.

Al-Shedivat, Maruan, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch and
Pieter Abbeel (2018). ‘Continuous adaptation via meta-learning in nonstation-
ary and competitive environments’. In: International Conference on Learning
Representations.

Shimodaira, Hidetoshi (2000). ‘Improving predictive inference under covariate shift
by weighting the log-likelihood function’. In: Journal of Statistical Planning and
Inference 90.2, pp. 227–244.

Shui, Changjian, Mahdieh Abbasi, Louis-Emile Robitaille, Boyu Wang and Christian
Gagné (2019). ‘A principled approach for learning task similarity in multitask
learning’. In: International Joint Conference on Artificial Intelligence, pp. 3446–
3452.

Simonyan, Karen and Andrew Zisserman (2015). ‘Very deep convolutional networks
for large-scale image recognition’. In: International Conference on Learning
Representations.

116

Bibliography Bibliography

Snell, Jake, Kevin Swersky and Richard Zemel (2017). ‘Prototypical networks for few-
shot learning’. In: Advances in Neural Information Processing Systems, pp. 4077–
4087.

Song, Hao, Tom Diethe, Meelis Kull and Peter Flach (June 2019). ‘Distribution
calibration for regression’. In: International Conference on Machine Learning,
pp. 5897–5906.

Sung, Flood, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr and Timothy M.
Hospedales (2018). ‘Learning to compare: relation network for few-shot learning’.
In: Conference on Computer Vision and Pattern Recognition.

Tassa, Yuval, Tom Erez and Emanuel Todorov (2012). ‘Synthesis and stabilization
of complex behaviors through online trajectory optimization’. In: International
Conference on Intelligent Robots and Systems. IEEE, pp. 4906–4913.

Teh, Yee W, David Newman and Max Welling (2007). ‘A collapsed variational
Bayesian inference algorithm for latent Dirichlet allocation’. In: Advances in
Neural Information Processing Systems, pp. 1353–1360.

Thrun, Sebastian and Joseph O’Sullivan (1996). ‘Discovering structure in multiple
learning tasks: The TC algorithm’. In: International Conference on Machine
Learning. Vol. 96, pp. 489–497.

Thrun, Sebastian and Lorien Pratt (1998). Learning to learn. Springer Science &
Business Media.

Todorov, Emanuel and Weiwei Li (2005). ‘A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic systems’. In:
American Control Conference. IEEE, pp. 300–306.

Tran, Anh T, Cuong V Nguyen and Tal Hassner (2019). ‘Transferability and hardness
of supervised classification tasks’. In: International Conference on Computer
Vision, pp. 1395–1405.

Tversky, Amos (1977). ‘Features of similarity.’ In: Psychological Review 84.4, p. 327.
Utgoff, Paul E (1986). ‘Shift of bias for inductive concept learning’. In: Machine

learning: An Artificial Intelligence Approach 2, pp. 107–148.
Vinyals, Oriol, Charles Blundell, Timothy Lillicrap, Daan Wierstra et al. (2016).

‘Matching networks for one shot learning’. In: Advances in Neural Information
Processing Systems. Vol. 29, pp. 3630–3638.

Wang, Yixin, Alp Kucukelbir and David M Blei (2017). ‘Robust probabilistic model-
ing with bayesian data reweighting’. In: International Conference on Machine
Learning, pp. 3646–3655.

Xu, Zhixiong, Xiliang Chen, Wei Tang, Jun Lai and Lei Cao (2021). ‘Meta weight
learning via model-agnostic meta-learning’. In: Neurocomputing 432, pp. 124–132.

117

Bibliography Bibliography

Xue, Ya, Xuejun Liao, Lawrence Carin and Balaji Krishnapuram (2007). ‘Multi-task
learning for classification with Dirichlet process priors’. In: Journal of Machine
Learning Research 8.Jan, pp. 35–63.

Yakowitz, Sidney and Brian Rutherford (1984). ‘Computational aspects of discrete-
time optimal control’. In: Applied Mathematics and Computation 15.1, pp. 29–
45.

Yao, Zhewei, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer and
Michael Mahoney (2021). ‘ADAHESSIAN: An Adaptive Second Order Optimizer
for Machine Learning’. In: AAAI Conference on Artificial Intelligence, pp. 10665–
10673.

Yoon, Jaesik, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio and
Sungjin Ahn (2018). ‘Bayesian model-agnostic meta-learning’. In: Advances in
Neural Information Processing Systems, pp. 7332–7342.

Yosinski, Jason, Jeff Clune, Yoshua Bengio and Hod Lipson (2014). ‘How transfer-
able are features in deep neural networks?’ In: Advances in Neural Information
Processing Systems.

Zamir, Amir R, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik
and Silvio Savarese (2018). ‘Taskonomy: Disentangling task transfer learning’. In:
Conference on Computer Vision and Pattern Recognition, pp. 3712–3722.

Zhang, Ruixiang, Tong Che, Zoubin Ghahramani, Yoshua Bengio and Yangqiu Song
(2018). ‘MetaGAN: An adversarial approach to few-shot learning’. In: Advances
in Neural Information Processing Systems, pp. 2371–2380.

Zhang, Yu and Dit-Yan Yeung (2012). ‘A convex formulation for learning task
relationships in multi-task learning’. In: Conference on Uncertainty in Artificial
Intelligence.

118

Appendix A

Variational inference
meta-learning

A.1 Multi-modal regression from sinusoidal and
linear task distribution

A.1.1 Training configuration

As mentioned in Subsection 3.5.1, the experiment is carried out on a multi-modal
structured data, where a half of tasks are generated from sinusoidal functions, while
the other half of tasks are from linear functions. The sinusoidal functions are in the
form of A sin(x+ ϕ), where the amplitude A and the phase ϕ are uniformly sampled
from [0.1, 5] and [0, π], respectively. The linear functions are in the form of ax+ b,
where the slope a and the intercept b are sampled from the uniform distribution on
[-3, 3]. The input x is uniformly sampled from [-5, 5]. In addition, a Gaussian noise
with zero-ed mean and a standard deviation of 0.3 is added to the output.

The model used in this experiment is a 3-hidden fully connected neural network
with 100 hidden units per each hidden layer. Output from each layer is activated
by ReLU without batch normalisation. The optimisation for the objective function
in (3.5) is carried out by Adam. Note that for regression, there is we do not place
any weighting factor for the KL divergence term of VFE. Please refer to Table A.1
for the details of hyperparameters used.

A.1.2 Additional results

We also implement many Bayesian meta-learning methods, such as PLATIPUS,
BMAML and Amortised Meta-learner, to compare with VAMPIRE using reliability
diagram. We train all the methods of interest in the same setting used for VAMPIRE
to obtain a fair comparison. The mean-squared error (MSE) of each method after

119

A.2. Classification experiments Appendix A. Variational inference meta-learning

Table A.1: Hyper-parameters used in the regression experiments on multi-modal structured
data.

Hyper-parameters Notation Value
Learning rate for variational parameters α 0.001
Number of gradient updates for variational parameters 5
Number of Monte Carlo samples for variational parameters Lt 128
Number of tasks before updating meta-parameters T 10
Learning rate for meta-parameters γ 0.001
Number of Monte Carlo samples for meta-parameters Lv 128

training can be referred to Table A.2. Please note that for probabilistic methods,
MSE is the average value across many Monte Carlo samples or particles sampled
from the posterior distribution of model parameters.

Table A.2: Mean squared error of many meta-learning methods after being trained in the
same setting are tested on 1000 tasks.

Method MSE
MAML 1.96
PLATIPUS 1.86
BMAML 1.12
Amortised Meta-learner 2.32
VAMPIRE 2.24

A.2 Classification experiments
This section describes the detailed setup to train and validate the few-shot learning on
Omniglot and mini-ImageNet presented in Subsection 3.5.2. Following the notation
used in Subsection 3.4.1, each task or episode i has N classes, where the support set
S

(t)
i has k samples per class, and the query set S(v)

i has 15 samples per class. This
is to be consistent with the previous works in the literature (Ravi and Larochelle,
2018; Finn et al., 2017). The training is carried out by using Adam to minimise the
cross-entropy loss of the softmax output. The learning rate of the meta-parameters θ
is set to be γ = 10−3 across all trainings, and decayed by a factor of 0.99 after every
10,000 tasks. Other hyperparameters used are specified in Table A.3. We select the
number of ensemble models Lt and Lv to fit into the memory of one Nvidia 1080
Ti GPU. Higher values of Lt and Lv are desirable to achieve a better Monte Carlo
approximation.

For the experiments using extracted features (Rusu et al., 2019) presented in
Table A.4 for mini-ImageNet, and the bottom part of Table 3.2 for tiered-ImageNet,

120

Appendix A. Variational inference meta-learning A.2. Classification experiments

Table A.3: Hyper-parameters used in the few-shot classification presented in Section 3.5.

Description Notation Omniglot mini-ImageNet
5-way 20-way 5-way

Number tasks per meta-update T 32 16 2
Number of ensemble models (train) Lt (train) 1 1 10
Number of ensemble models (train) Lv (train) 1 1 10
Number of ensemble models (test) Lt (test) 10 10 10
Number of ensemble models (test) Lv (test) 10 10 10
Learning rate for wi α 0.1 0.1 0.01
Learning rate for θ γ 10−3 10−3 10−3

Number of inner gradient updates 5 5 5

we used a 2-hidden fully connected layer with 128 and 32 hidden units. The learning
rate α is set as 0.01 and 5 gradient updates were carried out. The learning rate for
meta-parameters was γ = 0.001.

Both the experiments for classification re-weight the KL divergence term of VFE
by a factor of 0.1.

Table A.4: Accuracy for 5-way classification on mini-ImageNet tasks (in percentage) of
many methods which uses extra parameters, deeper network architectures or different
training settings.

Mini-ImageNet (Ravi and Larochelle, 2018)
1-shot 5-shot

Non-standard CNN

Relation nets (Sung et al., 2018) 50.44 ± 0.82 65.32 ± 0.70
VERSA (Gordon et al., 2019) 53.40 ± 1.82 67.37 ± 0.86
SNAIL (Mishra et al., 2018) 55.71 ± 0.99 68.88 ± 0.92
adaResNet (Munkhdalai et al., 2018) 56.88 ± 0.62 71.94 ± 0.57
TADAM (Oreshkin et al., 2018) 58.5 ± 0.30 76.7 ± 0.30
LEO (Rusu et al., 2019) 61.76 ± 0.08 77.59 ± 0.12
MetaOptNet (Lee et al., 2019) 64.09 ± 0.62 80.00 ± 0.45
VAMPIRE 62.16 ± 0.24 76.72 ± 0.37

A.2.1 Model calibration for classification - ECE and MCE

We provide the results of model calibration, in particular, ECE and MCE in the
numeric form. We also include the 95% confidence interval in Table A.5, although
they are extremely small due to the large number of unseen tasks.

121

A.3. Pseudo-code for evaluation Appendix A. Variational inference meta-learning

Table A.5: Results of ECE and MCE of several meta-learning methods that are tested in
5-way 1-shot setting over 15504 unseen tasks sampled from mini-ImageNet dataset.

Method ECE MCE
MAML 0.0410± 0.005 0.124
PLATIPUS 0.032± 0.005 0.108
BMAML 0.025± 0.006 0.092
Amortised Meta-learner 0.026± 0.003 0.058
VAMPIRE 0.008± 0.002 0.038

A.3 Pseudo-code for evaluation

Algorithm 6 VAMPIRE testing
1: Require: a new task TT+1, θ, Lt, Lv, and α
2: λT+1 ← θ

3: sample ŵ(l)
T+1 ∼ q(wT+1|λT+1), where lt = 1 : Lt

4: approximate L(S(t)
T+1, λT+1) in (3.10) via Monte Carlo

5: update: λ∗T+1 ← λT+1 − α∇λT+1L(S(t)
T+1, λT+1)

6: draw Lv ensemble model parameters ŵ(lv)
i ∼ q(wi;λ∗T+1)

7: compute prediction ŷ(v)(lv)
(T+1),j = h(x(T+1),j; ŵ(lv)

i)

122

Appendix B

PAC-Bayes meta-learning

B.1 Proof of PAC-Bayes upper-bound for meta-
learning

The derivation is divided into three steps. The first two steps are to derive the PAC-
Bayes bound for the generalisation errors induced by the unseen queried examples
within each task (Appendix B.1.1) and the unseen tasks (Appendix B.1.2). The
novel bound is then constructed by combining the results obtained in the first two
steps and presented in Theorem 4.2.

B.1.1 PAC-Bayes upper-bound of the validation loss for a
single task

This subsection presents a PAC-Bayes upper-bound of the validation loss for task
Ti, and in particular, Eq(θ;ψ)E(D(v)

i ,fi)
Eq(wi;λ∗i)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]
. Note that this loss is

different from the left hand-side term of Theorem 4.1 used for single-task learning
(presented in Subsection 4.3.4) at the additional expectation over the posterior
q(θ;ψ).

Lemma B.1

If S(v)
i consists of m(v)

i input x(v)
ik sampled from a data probability distribution Di

and labelled by fi, H is a hypothesis class with each hypothesis h parameterised
by wi, ` : H × Y → [0, 1] is a loss function, q(wi;λ∗i) is a “posterior” over the
hypothesis parameter and p(wi) is a prior, then the following holds with the

123

B.1. Proof of PAC-Bayes meta-learning Appendix B. PAC-Bayes meta-learning

probability at least 1− εi:

Eq(θ;ψ)E(D(v)
i ,fi)

Eq(wi;λ∗i)
[
`
(
x(v)
ij , y

(v)
ij ; wi

)]

≤ 1
m

(v)
i

m
(v)
i∑

k=1
Eq(θ;ψ)Eq(wi;λ∗i)

[
`
(
x(v)
ik , y

(v)
ik ; wi

)]
+Ri

where: εi ∈ (0, 1], and

Ri =

√√√√√√Eq(θ;ψ) [KL [q(wi;λ∗i)||p(wi)]] + lnm(v)
i

εi

2
(
m

(v)
i − 1

) (B.1)

Proof. To simplify the proof, let ∆L be the difference between the true loss and
empirical loss:

∆L = E(D(v)
i ,fi)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]
− 1
m

(v)
i

m
(v)
i∑

k=1
`
(
x(v)
ik , y

(v)
ik ; wi

)
.

Given the Fubini’s theorem to interchange the expectations, the problem can be
re-written as:

Pr

Eq(θ;ψ)Eq(wi;λ∗i) [∆L] ≤

√√√√√√Eq(θ;ψ) [KL [q(wi;λ∗i)||p(wi)]] + lnm(v)
i

εi

2
(
m

(v)
i − 1

)
 ≥ 1− εi.

(B.2)
We are now proceeding to prove the lemma. First, applying Lemma 4.3 (presented

in Subsection 4.4.3 and proved in Appendix B.2) with 2(m(v)
i − 1)∆L2 as φ(h) gives:

2
(
m

(v)
i − 1

)
Eq(wi;λ∗i)

[
∆L2

]
≤ KL [q(wi;λ∗i)||p(wi)]+lnEp(wi)

[
e2(m(v)

i −1)∆L2
]
. (B.3)

The next steps are to lower-bound the left-hand side term in (B.3), while upper-
bounding the last term of the right-hand side in (B.3).

To lower-bound the left-hand side term of (B.3), Jensen’s inequality is applied
on the convex function x2 to obtain:

2
(
m

(v)
i − 1

) (
Eq(wi;λ∗i) [∆L]

)2 ≤ 2
(
m

(v)
i − 1

)
Eq(wi;λ∗i)

[
∆L2

]
. (B.4)

The results in (B.3) and (B.4) lead to:
√

2
(
m

(v)
i − 1

)
Eq(wi;λ∗i) [∆L] ≤

√
KL [q(wi;λ∗i)||p(wi)] + lnEp(wi)

[
e2(m(v)

i −1)∆L2
]
.

(B.5)

124

Appendix B. PAC-Bayes meta-learning B.1. Proof of PAC-Bayes meta-learning

Taking expectation over q(θ;ψ) on both sides gives:
√

2
(
m

(v)
i − 1

)
Eq(θ;ψ)Eq(wi;λ∗i) [∆L]

≤ Eq(θ;ψ)

[√
KL [q(wi;λ∗i)||p(wi)] + lnEp(wi)

[
e2(m(v)

i −1)∆L2
]]
. (B.6)

Note that
√
x is a concave function. Hence, one can apply Jensen’s inequality on

the right-hand side term to obtain an upper-bound. This results in:
√

2
(
m

(v)
i − 1

)
Eq(θ;ψ)Eq(wi;λ∗i) [∆L]

≤
√
Eq(θ;ψ) [KL [q(wi;λ∗i)||p(wi)]] + Eq(θ;ψ)

[
lnEp(wi)

[
e2(m(v)

i −1)∆L2
]]
. (B.7)

To upper-bound the last term in (B.7), Lemma B.4 (presented in Appendix B.2)
is then used. To do that, ∆L is required to satisfied the assumption of Lemma B.4.
This can be done by applying the Hoeffding’s inequality. Consider each loss value
`(x(v)

ik , yik; wi) ∈ [0, 1] as an i.i.d. random variable where its true mean and empirical
mean are E(D(v)

i ,fi)
[`(x(v)

ij , y
(v)
ij ; wi)] and 1

m
(v)
i

∑m
(v)
i

k=1 `(x
(v)
ik , y

(v)
ik ; wi), respectively. Hence,

applying Hoeffding’s inequality gives:

Pr (|∆L| ≥ ε) ≤ e−2m(v)
i ε2 ,∀ε ≥ 0 (B.8)

Therefore, this allows to apply Lemma B.4 to upper-bound the last term in the
right-hand side of (B.7) to obtain:

E(D(v)
i ,f)

[
e2(m(v)

i −1)∆L2
]
≤ m

(v)
i . (B.9)

Taking the expectation w.r.t. the prior p(wi)on both sides gives:

E(D(v)
i ,f)Ep(wi)

[
e2(m(v)

i −1)∆L2
]
≤ m

(v)
i . (B.10)

Note that the two expectations on the left-hand side term are interchanged due
to Fubini’s theorem. Taking the logarithm on both side, and applying Jensen’s
inequality to lower-bound the left-hand side term give:

E(D(v)
i ,f) lnEp(wi)

[
e2(m(v)

i −1)∆L2
]
≤ lnE(D(v)

i ,f)Ep(wi)

[
e2(m(v)

i −1)∆L2
]
≤ lnm(v)

i . (B.11)

Taking the expectation over the distribution q(θ;ψ) on both sides and applying
Fubini’s theorem to interchange the two expectations on the left-hand side give:

E(D(v)
i ,f)Eq(θ;ψ) lnEp(wi)

[
e2(m(v)

i −1)∆L2
]
≤ lnm(v)

i . (B.12)

125

B.1. Proof of PAC-Bayes meta-learning Appendix B. PAC-Bayes meta-learning

The lower-bound (or the term in the left-hand side of the above inequality) can
be lower-bounded further by applying Markov’s inequality:

Pr
(
Eq(θ;ψ) lnEp(wi)

[
e2(m(v)

i −1)∆L2
]
≥ ε

)
≤

E(D(v)
i ,f)Eq(θ;ψ) lnEp(wi)

[
e2(m(v)

i −1)∆L2
]

ε
,

(B.13)
where ε > 0.

This implies that:

Pr
(
Eq(θ;ψ) lnEp(wi)

[
e2(m(v)

i −1)∆L2
]
≥ ε

)
≤ lnm(v)

i

ε
,∀ε > 0. (B.14)

Equivalently, one can write the above inequality as:

Pr
(
Eq(θ;ψ) lnEp(wi)

[
e

2
(
m

(v)
i −1

)
∆L2

]
≤ ε

)
≥ 1− lnm(v)

i

ε
,∀ε > 0. (B.15)

Hence, adding an expectation of a KL divergence on both sides of the inequality
inside the probability function and taking square root gives:

Pr
(√

Eq(θ;ψ) [KL [q(wi;λ∗i)||p(wi)]] + Eq(θ;ψ)
[
lnEp(wi)

[
e2(m(v)

i −1)∆L2
]]
≤

≤
√
Eq(θ;ψ) [KL [q(wi;λ∗i)||p(wi)]] + ε

)
≥ 1− lnm(v)

i

ε
,∀ε > 0. (B.16)

The results in (B.7) and (B.16) lead to:

Pr
(√

2
(
m

(v)
i − 1

)
Eq(θ;ψ)Eq(wi;λ∗i) [∆L] ≤

√
Eq(θ;ψ) [KL [q(wi;λ∗i)||p(wi)]] + ε

)

≥ 1− lnm(v)
i

ε
, ∀ε > 0.

(B.17)

Setting εi = lnm(v)
i

ε
and dividing both sides of the inequality inside the probability

function by
√

2
(
m

(v)
i − 1

)
give:

Pr

Eq(θ;ψ)Eq(wi;λ∗i) [∆L] ≤

√√√√√√Eq(θ;ψ) [KL [q(wi;λ∗i)||p(wi)]] + lnm(v)
i

εi

2
(
m

(v)
i − 1

)
 ≥ 1− εi.

(B.18)

126

Appendix B. PAC-Bayes meta-learning B.1. Proof of PAC-Bayes meta-learning

B.1.2 PAC-Bayes upper-bound for unseen tasks

The PAC-Bayes upper-bound on the generalisation loss for unseen tasks can be
obtained as a corollary of Theorem 4.1 (presented in Subsection 4.3.4). In particular,
if:

• the loss function is defined as Eq(wi;λ∗i)E(D(v)
i ,fi)

[`(x(v)
ij , y

(v)
ij ; wi)],

• data generation is the task environment p(D, f),

• dataset consists of T > 1 tasks i.i.d. sampled from the task environment,

• hypothesis is θ,

• posterior is q(θ;ψ),

• and prior is p(θ),

then one can apply Theorem 4.1 to obtain a PAC-Bayes upper-bound for unseen
tasks as shown in Corollary B.2.

Corollary B.2

Pr
(
Eq(θ;ψ)Ep(D,f)Eq(wi;λ∗i)E(D(v)

i ,fi)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]
≤

≤ 1
T

T∑
i=1

Eq(θ;ψ)Eq(wi;λ∗i)E(D(v)
i ,fi)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]
+R0

)
≥ 1− ε0,

where: ε0 ∈ (0, 1], and

R0 =

√√√√KL [q(θ;ψ)||p(θ)] + lnT
ε0

2(T − 1) . (B.19)

B.1.3 PAC-Bayes upper-bound for meta-learning

Theorem 4.2

Given T tasks sampled from the same task environment p(D, f), where each
task has an associated pair of datasets (S(t)

i , S
(v)
i) with samples generated from

the task-specific data generation model (D(t)
i ,D(v)

i , fi), then for a bounded loss
function ` :W×Y → [0, 1] and any distributions q(θ;ψ) of meta-parameter θ and
q(wi;λi) of task-specific parameter wi, the following holds with the probability

127

B.2. Auxiliary lemmas Appendix B. PAC-Bayes meta-learning

at least 1− ε,∀ε ∈ (0, 1]:

Eq(θ;ψ)Ep(D,f)Eq(wi;λi)E(D(v)
i ,fi)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]

≤ 1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

k=1
Eq(θ;ψ)Eq(wi;λ)

[
`
(
x(v)
ik , y

(v)
ik ; wi

)]

+

√√√√√Eq(θ;ψ) [KL [q(wi;λi)||p(wi)]] + T 2

(T−1)ε lnm(v)
i

2
(
m

(v)
i − 1

)
+

√√√√KL [q(θ;ψ)||p(θ)] + T lnT
ε

2(T − 1) ,

where p(wi), ∀i ∈ {1, . . . , T} is the prior of task-specific parameter wi and p(θ)
is the prior of meta-parameter θ.

Proof. First, the upper-bound for the unseen examples of a single-task obtained from
Lemma B.1 (presented in Appendix B.1.1) is extended for T training tasks by using
Lemma B.7 (presented in Appendix B.2) with the following substitution:

• Xi := Eq(θ;ψ)E(D(v)
i ,fi)

Eq(wi;λ∗i)
[
`
(
x(v)
ij , y

(v)
ij ; wi

)]

• Yi := 1
m

(v)
i

∑m
(v)
i

k=1 Eq(θ;ψ)Eq(wi;λ∗i)
[
`
(
x(v)
ik , y

(v)
ik ; wi

)]
+Ri

to obtain:

Pr
(

1
T

T∑
i=1

Eq(θ;ψ)E(D(v)
i ,fi)

Eq(wi;λ∗i)
[
`
(
x(v)
ij , y

(v)
ij ; wi

)]

≤ 1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

k=1
Eq(θ;ψ)Eq(wi;λ∗i)

[
`
(
x(v)
ik , y

(v)
ik ; wi

)]
+Ri

 ≥ 1−
T∑
i=1

εi. (B.20)

Given Corollary B.2 (presented in Appendix B.1.2) and the result in (B.20), one
can apply Corollary B.8 (presented in Appendix B.2) to obtain the following:

Pr
(
Eq(θ;ψ)E(D,f)E(D(v)

i ,fi)
Eq(wi;λ∗i)

[
`
(
x(v)
ij , y

(v)
ij ; wi

)]

≤ 1
T

T∑
i=1

1
m

(v)
i

m
(v)
i∑

k=1
Eq(θ;ψ)Eq(wi;λ∗i)

[
`
(
x(v)
ik , y

(v)
ik ; wi

)]
+Ri +R0

 ≥ 1−
T∑
j=0

εj.

(B.21)
Setting ε0 = ε

T
and εi = (T−1)ε

T 2 ,∀i ∈ {1, . . . , T} completes the proof.

B.2 Auxiliary lemmas

128

Appendix B. PAC-Bayes meta-learning B.2. Auxiliary lemmas

Lemma 4.3: Compression lemma (Banerjee, 2006)

For any measurable function φ(h) on a set of predictors under consideration H,
and any distributions P and Q on H, the following holds:

EQ [φ(h)]− lnEP
[
eφ(h)

]
≤ KL [Q‖P] .

Further,
sup
φ

EQ [φ(h)]− lnEP
[
eφ(h)

]
= KL [Q‖P] .

Proof. For a measurable function φ(h):

EQ [φ(h)] = EQ
[
ln
(
eφ(h)Q(h)

P (h)
P (h)
Q(h)

)]
= KL [Q||P] + EQ

[
ln
(
eφ(h)P (h)

Q(h)

)]
.

(B.22)
Applying Jensen’s inequality on the last term gives:

EQ [φ(h)] ≤ KL [Q||P] + lnEQ
[
eφ(h)P (h)

Q(h)

]
= KL [Q||P] + lnEP

[
eφ(h)

]
. (B.23)

Re-arrange the term proves the first part of the lemma, which is the lower-bound of
the KL divergence.

To prove the second part of the lemma, we simply show that there exists a
function φ(h) that makes the lower-bound achieve the maximal value which is the
KL divergence. Let:

φ(h) = ln Q(h)
P (h) , (B.24)

then the lower-bound can be expressed as:

EQ [φ(h)]− lnEP
[
eφ(h)

]
= KL [Q||P]− lnEP

[
Q(h)
P (h)

]
= KL [Q||P] . (B.25)

That completes the proof.

Lemma B.4: Exercise 31.1 in (Shalev-Shwartz and Ben-David, 2014)

If X is a random variable that satisfies: Pr (X ≥ ε) ≤ e−2mε2 ,∀ε ≥ 0, then:

E
[
e2(m−1)X2] ≤ m.

Proof. For simplicity, let Y = e2(m−1)X2 . Since X2 ∈ [0,+∞), then Y ∈ [1,+∞).
Thus, we can write the value of Y as the following:

Y =
∫ Y

0
dt =

∫ +∞

1
1 (Y ≥ t) dt+ 1,

129

B.2. Auxiliary lemmas Appendix B. PAC-Bayes meta-learning

where 1(A) is the indicator function of event A. The equality is equivalent to the
area of a rectangle in which its height is 1 and its width is Y .

One important property of indicator function is that:

E [1 (Y ≥ t)] = Pr (Y ≥ t) .

With the above representation, we can express the expectation of interest as:

E [Y] = E
[∫ +∞

1
1 (Y ≥ t) dt

]
+ 1

=
∫ +∞

1
E [1 (Y ≥ t)] dt+ 1 (Fubini’s theorem)

=
∫ +∞

1
Pr (Y ≥ t) dt+ 1.

Or:
E
[
e2(m−1)X2] =

∫ +∞

1
Pr
(
e2(m−1)X2 ≥ x

)
dx+ 1.

We will change the variable from x to ε to utilise the given inequality Pr (X ≥ ε) ≤
e−2mε2 ,∀ε ≥ 0. Let:

x = e2(m−1)ε2 ,

where ε ≥ 0. This leads to the followings:

ε =
√

ln x
2(m− 1) , (B.26)

and
dx = 4(m− 1)εe2(m−1)ε2dε.

And since x ∈ [1,+∞), ε ∈ [0,+∞) due to Eq. (B.26). The expectation of interest
can then be written in term of the changed variable ε as follows:

E
[
e2(m−1)X2] =

∫ +∞

0
Pr
(
e2(m−1)X2 ≥ e2(m−1)ε2

)
4(m− 1)εe2(m−1)ε2dε+ 1

=
∫ +∞

0
Pr (X ≥ ε)︸ ︷︷ ︸
≤e−2mε2

4(m− 1)εe2(m−1)ε2dε+ 1

≤ 4(m− 1)
∫ +∞

0
εe−2ε2dε︸ ︷︷ ︸
1/4

+1 = m.

Lemma B.5

130

Appendix B. PAC-Bayes meta-learning B.2. Auxiliary lemmas

For i = 1 : n, if Xi and Yi are random variables, then:

p

(
n∑
i=1

Xi ≤
n∑
i=1

Yi

)
≥ p

(
n⋂
i=1

(Xi ≤ Yi)
)
.

Proof. The proof is quite direct:

Xi ≤ Yi =⇒
n∑
i=1

Xi ≤
n∑
i=1

Yi. (B.27)

Hence, applying the probability for implication completes the proof.

Lemma B.6
For n events Ai with i = 1 : n, the following holds:

p

(
n⋂
i=1

Ai

)
≥
(

n∑
i=1

p(Ai)
)
− (n− 1), ∀n ≥ 2.

Proof. Proof can be done by induction.
For n = 2:

p(A1 ∩ A2) = p(A1) + p(A2)− p(A1 ∪ A2) ≥ p(A1) + p(A2)− 1.

Suppose that it is true for case n:

p

(
n⋂
i=1

Ai

)
≥
(

n∑
i=1

p(Ai)
)
− (n− 1).

We prove that this is also true for case (n+ 1):

p

(
n+1⋂
i=1

Ai

)
= p

(
n⋂
i=1

Ai

)
+ p(An+1)− p

((
n⋂
i=1

Ai

)⋃
An+1

)

≥ p

(
n⋂
i=1

Ai

)
+ p(An+1)− 1

≥
(

n∑
i=1

p(Ai)
)
− (n− 1) + p(An+1)− 1

(assumption of induction for case n)

≥
(
n+1∑
i=1

p(Ai)
)
− ((n+ 1)− 1) .

It is, therefore, true for (n+ 1), and hence, the proof.

131

B.3. Complexity analysis Appendix B. PAC-Bayes meta-learning

Lemma B.7

Let Xi and Yi are random variables with i = 1 : n. If p(Xi ≤ Yi) ≥ 1− δi with
δi ∈ (0, 1], then:

p

(
n∑
i=1

Xi ≤
n∑
i=1

Yi

)
≥ 1−

n∑
i=1

δi.

Proof. Applying Lemmas B.5 and B.6 for the left-hand side term of this lemma gives:

p

(
n∑
i=1

Xi ≤
n∑
i=1

Yi

)
≥ p

(
n⋂
i=1

(Xi ≤ Yi)
)

(Lemma B.5)

≥
n∑
i=1

p ((Xi ≤ Yi))− (n− 1) (Lemma B.6)

≥
n∑
i=1

(1− δi)− (n− 1)

= 1−
n∑
i=1

δi. (B.28)

Corollary B.8

If p(a ≤ b) ≥ 1− δ1 and p(b ≤ c) ≥ 1− δ2 with δ1, δ2 ∈ (0, 1], then:

p(a ≤ c) ≥ 1− δ1 − δ2.

B.3 Complexity analysis
In this section, we analyse the running time complexity of different meta-learning
algorithms related to SImPa per one gradient update for the parameter of interest.
These methods include:

• point estimate such as MAML (Finn et al., 2017),

• probabilistic modelling based on variational inference where the posterior is
approximated by a multivariate normal distribution with a diagonal covariance
matrix (Ravi and Beatson, 2019; C. Nguyen et al., 2020),

• SImPa.

For simplicity, we assume that the number of samples within each training subset
S

(t)
i is the same across all tasks: m(t)

0 = m
(t)
i ,∀i ∈ {1, . . . , T}, and so is the validation

subset. In addition, as all the methods mentioned are implemented with their
first-order versions, the analysis also relies on such assumption. Furthermore, given

132

Appendix B. PAC-Bayes meta-learning B.3. Complexity analysis

that such algorithms are implemented with automatic differentiation, the running
time complexity of a back-propagation is linear w.r.t. the number of the model’s
parameters.

To ease the analysis, we re-state the definition of some notations and define some
new ones as shown in Table B.1.

B.3.1 Deterministic point estimate meta-learning (MAML)

Lower-level optimisation for each task

The back-propagation of a single gradient update is O(m(t)
0 n). This is then repeated

Nlower times. Hence, the total complexity to adapt to each task is O(Nlowerm
(t)
0 n).

Upper-level optimisation

Given the task-specific parameter wi obtained in the lower-level of (4.3), one can
calculate the gradient of the validation loss on each task w.r.t. the meta-parameter
similarly to back-propagation. The complexity is, therefore, O(m(v)

0 n). And since
there are T tasks in total, the complexity of this step is O(m(v)

0 Tn).
The total complexity of the whole algorithm is: O((Nlowerm

(t)
0 +m

(v)
0 T)n).

B.3.2 Probabilistic meta-learning with multivariate normal
distributions

These methods have similar complexity as the deterministic point estimate method,
except the association of Monte Carlo sampling to draw wi from q(wi;λi) when
evaluating the training and validation losses.

Lower-level optimisation for each task

The optimisation for the lower-level in (4.3) now has 2 steps:

• Sampling for task-specific parameter: wi ∼ q(wi;λi), resulting in a complexity
of O(n)

• Back-propagation with complexity of O(m(t)
0 n).

These steps are repeated from mw samples, and iterated Nlower, resulting in a total
complexity of O(mwNlower(m(t)

0 + 1)n).

133

B.3.
C
om

plexity
analysis

A
ppendix

B.
PA

C
-Bayes

m
eta-learning

Table B.1: Notations used in the running time complexity analysis.

Notations Description
n the number of base model parameters = |wi|
n′ the number of the hyper-parameters = |µθ| = |θ|
Nlower the number of gradient updates to minimise lower-level function in (4.3)
Nφ the number of gradient updates to learn the task-specific φ-net
mw the number of Monte Carlo samples drawn from task-specific posterior q(wi;λi)
mθ the number of Monte Carlo samples drawn from hyper-meta posterior q(θ;ψ)
m

(t)
0 the number of samples in the training subset of each task

m
(v)
0 the number of samples in the validation subset of each task

mφ the number of samples generated to train the φ network in SImPa
T the number of tasks within a mini-batch to update the meta-parameter of interest

134

Appendix B. PAC-Bayes meta-learning B.3. Complexity analysis

Upper-level optimisation

Similarly, the upper-level is also affected by the Monte Carlo sampling of task-specific
parameter wi from q(wi;λi). This results in a complexity of O(mwT (m(v)

0 + 1)n).
The total running time complexity is, therefore:

O(mw(Nlower(m(t)
0 + 1) + T (m(v)

0 + 1))n).

B.3.3 SImPa

The forward pass of SImPa is more complicated than the deterministic point estimate
and the probabilistic modelling mentioned above. The reason is that the parameter
of interest is not the meta-parameter θ, but the hyper-parameter ψ or µθ, which is
one level higher in the hierarchical structure.

In addition, we assume that the generator is much larger than the base model:

n′ � n

Lower-level optimisation

The optimisation for the lower-level is carried out in 2 main steps. The first step is
to train the φ network which consists of:

• Sample mφ latent noise vectors {zκ}mφκ=1: O(mφz) with z being assumed to be
much less than n′

• Forward pass to generate wi from the generator represented by the implicit
distribution q(wi;λi): O(mφn

′)

• Sample wi from the prior p(w): O(mφn)

• Back-propagate to train the φ network: O(2mφn
′)

This process is repeated Nφ times, resulting in a total complexity of O(3Nφmφn
′) to

train φ-network.
Given the trained φ-network for a particular task, the second step is to adapt

the meta-parameter to the task-specific parameter:

• Generate wi from the generator: O(n′)

• Back-propagation to train the task-specific generator: O(m(t)
0 n′).

135

B.3. Complexity analysis Appendix B. PAC-Bayes meta-learning

Table B.2: Running time complexity per one gradient update of different meta-learning
methods.

Method Complexity
General In practice1

Deterministic O((Nlowerm
(t)
0 +m

(v)
0 T)n) O(100n)

Probabilistic O(mw(Nlower(m(t)
0 + 1) + T (m(v)

0 + 1))n) O(440n)
SImPa O(mθ(Nlower(mw(m(t)

0 + 1) + 3Nφmφ) + T (m(v)
0 + 1))n′) O(125n′)

This is repeated mw times, resulting in a complexity of O(mw(m(t)
0 + 1)n′.

And again, this whole process of training both the φ-network and the generator
is repeated Nlower times. Thus, the total complexity is O(Nlower(mw(m(t)

0 + 1) +
3Nφmφ)n′).

Upper-level optimisation

Given the task-specific generator obtained in the optimisation of the lower-level in
(4.3), the gradient of the hyper-meta-parameter in the upper-level can be calculated
in 2 steps:

• Sample θ from q(θ;ψ): O(n′)

• Backward to calculate the gradient: O(m(v)
0 n′)

This is done for T tasks, resulting in a complexity of O(T (m(v)
0 + 1)n′) per a single θ.

The optimisation in both the lower- and upper-levels is then repeated mθ times
for mθ samples of θ. Thus, the total complexity of SImPa is: O(mθ(Nlower(mw(m(t)

0 +
1) + 3Nφmφ) + T (m(v)

0 + 1))n′).
To ease the analysis, we specify the running time complexity of the three methods

in Table B.2.
To make it even easier to compare, we also add a “practical” setting into Table B.2.

This setting is the one done in our experiments with the following hyper-parameter
values: Nlower = 5, Nφ = 1, m(t)

0 = 5 and m(v)
0 = 15, mθ = mw = 1 for SImPa and

mw = 4 for probabilistic methods that are based on multivariate normal distributions
with diagonal covariance matrices, T = 5, and Nφ = 256.

We note that despite the difference of the running time complexity, in the
implementation using GPU, some operations, such as matrix multiplication, are
implemented efficiently in parallel or vectorisation. Hence, the difference of running
time in practice might not be the same as the one analysed in this appendix.

1assume the sampling of Nφ samples is parallel in GPU

136

Appendix C

Probabilistic task modelling for
meta-learning

C.1 Calculation of each term in the ELBO

As described in Section 5.3, the variational distributions for u, z and π are:

q(uin;φ) = N
(
uin; min, (sin)2 I

)
(5.4)

q(πi; γi) = Dirichlet (πi; γi) (5.10)
q(zin; rin) = Categorical (zin; rin) . (5.11)

C.1.1 Eq(ui;µui ,Σui
)Eq(zi,πi) [ln p(ui|zi,µ,Σ)]

Eq(zi,πi) [ln p(ui|zi,µ,Σ)] =
N∑
n=1

K∑
k=1

rink ln p(uin|µk,Σk)

=
N∑
n=1

K∑
k=1

rink lnN (uin|µk,Σk). (C.1)

Hence:
Eq(ui;µui ,Σui)Eq(zi,πi) [ln p(ui|zi,µ,Σ)]

=
N∑
n=1

K∑
k=1

rink Eq(ui;µui ,Σui) [lnN (ui|µk,Σk)]︸ ︷︷ ︸
cross-entropy between 2 Gaussians

=
N∑
n=1

K∑
k=1

rink

[
−1

2tr(Σ−1
k Σuin) + lnN (µuin ; µk,Σk)

]
. (C.2)

137

C.2. Maximisation of the ELBO Appendix C. Probabilistic task modelling

C.1.2 Eq(ui;µui ,Σui
)Eq(zi,πi) [ln p(zi|πi)]

Eq(ui;µui ,Σui)Eq(zi,πi) [ln p(zi|πi)] =
N∑
n=1

K∑
k=1

rink

∫
DirK(πi; γi) ln πik dπik

=
N∑
n=1

K∑
k=1

rink ln π̃ik, (C.3)

where:

ln π̃ik = ψ(γik)− ψ
 K∑
j=1

γij

 . (C.4)

C.1.3 Eq(ui;µui ,Σui
)Eq(zi,πi) [ln p(πi|α)]

Eq(ui;µui ,Σui)Eq(zi,πi) [ln p(πi|α)]

= EDir(πi;γi)

ln Γ
 K∑
j=1

αj

− [K∑
k=1

ln Γ(αk)− (αk − 1) ln πik
]

=
ln Γ

 K∑
j=1

αj

− K∑
k=1

ln Γ(αk)
+

K∑
k=1

(αk − 1) ln π̃ik. (C.5)

C.1.4 Eq(ui;µui ,Σui
)Eq(zi,πi) [ln q(zi|ri)]

Eq(ui;µui ,Σui)Eq(zi,πi) [ln q(zi|ri)] =
N∑
n=1

K∑
k=1

rink ln rink. (C.6)

C.1.5 Eq(ui;µui ,Σui
)Eq(zi,πi) [ln q(πi|γi)]

Eq(ui;µui ,Σui)Eq(zi,πi) [ln q(πi|γi)] = ln Γ
 K∑
j=1

γij

− K∑
k=1

[ln Γ(γik)− (γik − 1) ln π̃ik] .

(C.7)

C.2 Maximisation of the ELBO

Since the ELBO can be evaluated as shown in Appendix C.1, we can maximise the
ELBO w.r.t. “task-specific” variational parameters by taking derivative, setting it to
zero and solving for the parameters of interest.

C.2.1 Variational categorical distribution

Note that:
K∑
k=1

rink = 1. (C.8)

138

Appendix C. Probabilistic task modelling C.2. Maximisation of the ELBO

The derivative of Li with respect to rink can be expressed as:

∂L
∂rink

= −1
2tr(Σ−1

k Σuin) + lnN (µuin ; µk,Σk) + ln π̃ik − ln rink − 1 + λ, (C.9)

where: λ is the Lagrange multiplier and ln π̃ik is defined in Eq. (C.4). Setting the
derivative to zero and solving for rink give:

rink ∝ exp
[
−1

2tr(Σ−1
k Σuin) + lnN (µuin ; µk,Σk) + ln π̃ik

]
. (C.10)

C.2.2 Variational Dirichlet distribution

The lower-bound related to γik can be written as:

L =
K∑
k=1

N∑
n=1

rink ln π̃ik +
K∑
k=1

(αk − 1) ln π̃ik − ln Γ
 K∑
j=1

γij

+

K∑
k=1

[ln Γ(γik)− (γik − 1) ln π̃ik]

= − ln Γ
 K∑
j=1

γij

+
K∑
k=1

ln π̃ik
(
αk − γik +

N∑
n=1

rink

)
+ ln Γ(γik)

= − ln Γ
 K∑
j=1

γij

+
K∑
k=1

ψ(γik)− ψ
 K∑
j=1

γij

(αk − γik +
N∑
n=1

rink

)

+ ln Γ(γik). (C.11)

Hence, the lower-bound related to γik is:

L[γik] = − ln Γ
 K∑
j=1

γij

+ ψ(γik)
(
αk − γik +

N∑
n=1

rink

)

− ψ
 K∑
j=1

γij

 K∑
j=1

αj − γij +
N∑
n=1

rinj

+ ln Γ(γik) (C.12)

Taking derivative w.r.t. γik gives:

∂L
∂γik

= −ψ
 K∑
j=1

γij

+ Ψ(γik)
(
αk − γik +

N∑
n=1

rink

)
− ψ(γik)

−Ψ
 K∑
j=1

 K∑
j=1

αj − γij +
N∑
n=1

rinj

+ ψ

 K∑
j=1

γij

+ ψ(γik)

= Ψ(γik)
(
αk − γik +

N∑
n=1

rink

)
−Ψ

 K∑
j=1

 K∑
j=1

αj − γij +
N∑
n=1

rinj, (C.13)

where Ψ(.) is the trigamma function.

139

C.2. Maximisation of the ELBO Appendix C. Probabilistic task modelling

Setting the derivative to zero yields a maximum at:

γik = αk +Nik, (C.14)

where:
Nik =

N∑
n=1

rink. (C.15)

C.2.3 Maximum likelihood for the task-theme µk and Σk

The terms in the objective function relating to µk can be written as:

L[µk] =
T∑
i=1

N∑
n=1

rink lnN (µuin ; µk,Σk)

= −1
2

T∑
i=1

N∑
n=1

rink (µuin − µk)>Σ−1
k (µuin − µk) (C.16)

Taking gradient w.r.t. µk gives:

∇µkL =
T∑
i=1

N∑
n=1

rinkΣ−1
k (µuin − µk). (C.17)

Setting the gradient to zero yields a maximum at:

µk =
∑T
i=1

∑N
n=1 rinkµuin∑T
i=1Nik

. (C.18)

The terms in the objective function relating to Σk is given as:

L =
T∑
i=1

N∑
n=1

rink

[
−1

2tr(Σ−1
k Σuin) + lnN (µuin ; µk,Σk)

]

= −1
2

T∑
i=1

N∑
n=1

rink
[
tr(Σ−1

k Σuin) + d ln(2π) + ln |Σk|

+ (µuin − µk)>Σ−1
k (µuin − µk)

]
. (C.19)

Taking gradient w.r.t. Σk gives:

∇Σk
L = −1

2

T∑
i=1

N∑
n=1

rink
[
−Σ−1

k ΣuinΣ−1
k + Σ−1

k

−Σ−1
k (µuin − µk) (µuin − µk)>Σ−1

k

]
= 1

2

T∑
i=1

N∑
n=1

rink
[
Σ−1
k Σuin − I + Σ−1

k (µuin − µk) (µuin − µk)>
]
Σ−1
k . (C.20)

140

Appendix C. Probabilistic task modelling C.2. Maximisation of the ELBO

Setting the gradient to zero gives:

Σk = 1∑T
i=1Nik

T∑
i=1

N∑
n=1

rink
[
Σuin + (µuin − µk) (µuin − µk)>

]
. (C.21)

C.2.4 Maximum likelihood for α

The lower-bound with terms relating to αk can be expressed as:

L = T

ln Γ
 K∑
j=1

αj

− K∑
k=1

ln Γ(αk)
+

T∑
i=1

K∑
k=1

(αk − 1)
ψ(γik)− ψ

 K∑
j=1

γij

 .
(C.22)

Taking derivative w.r.t. αk gives:

gk = ∂L
∂αk

= T

ψ
 K∑
j=1

αj

− ψ(αk)
+

T∑
i=1

ψ(γik)− ψ
 K∑
j=1

γij

 . (C.23)

The second derivative is, therefore, obtained as:

∂2L
∂αk∂αk′

= T

Ψ
 K∑
j=1

αj

− δ(k − k′)Ψ(αk)
 . (C.24)

The Hessian can be written in matrix form (Minka, 2000) as:

H = Q + 11Ta (C.25)
qkk′ = −Tδ(k − k′)Ψ(αk) (C.26)

a = TΨ
 K∑
j=1

αj

 . (C.27)

One Newton step is therefore:

α← α−H−1g (C.28)

(H−1g)k = gk − b
qkk

, (C.29)

where:
b =

∑K
j=1 gj/qjj

1/a+∑K
j=1 1/qjj

. (C.30)

141

C.2. Maximisation of the ELBO Appendix C. Probabilistic task modelling

142

Appendix D

Task weighting for meta-learning

D.1 Derivation of iLQR

This section presents the derivation for one iteration of iLQR adopted from the
original iLQR papers (Todorov and W. Li, 2005; Tassa et al., 2012). One difference
is at the backtracking line-search where we employ a similar acceptance criterion as
in DDP.

For brevity, the finite-horizon discrete-time optimal control problem in (6.1) is
restated:

xt+1 = arg min
xt

u>t `̀̀(xt) s.t. ut ∈ Ut, (6.5)

where Ut is set of feasible weighting at time step t, corresponding to the weighting
criterion.

Let Qt be the cost-to-go defined as:

Qt(xt:T ,ut:T) =
T∑
j=t

c(xj,uj), (D.1)

and Vt be the value function at time step t which is the cost-to-go given the local
optimal action sequence:

Vt(xt) = min
ut:T

Qt(xt:T ,ut:T). (D.2)

According to the Dynamic Programming Principle, the objective function which
is the minimisation over an entire sequence of actions can be reduced to a sequence
of minimisation over a single action, proceeding backwards in time:

Vt(xt) = min
ut

[c(xt,ut) + V (xt+1)] = min
ut

[c(xt,ut) + V (f(xt,ut))] . (D.3)

By applying the Taylor’s series to the first order for the state-transition dynamics

143

D.1. Derivation of iLQR Appendix D. Task weighting

f and to the second order for the cost function c about a nominal trajectory {x̂t, ût},
the term inside the minimisation in (D.3) can be approximated to:

c(xt,ut) + V (f(xt,ut)) ≈
1
2

1
δxt
δut

>

0 q>xt q>ut
qxt Qxt,xt Qxt,ut

qut Qut,xt Qut,ut

1
δxt
δut

 , (D.4)

where δxt = xt − x̂t, δut = ut − ût, and

qxt = cxt + F>xtvt+1 qut = cut + F>utvt+1

Qxt,xt = Cxt,xt + F>xtVt+1Fxt Qut,ut = Cut,ut + F>utVt+1Fut

Qxt,ut = Q>ut,xt = Cxt,ut + F>xtVt+1Fut , (D.5)

with Fxt and Fut are the first derivatives of the state-transtition dynamics f w.r.t.
the variable in the subscripts, c(.) and C(.) are the first and second derivatives of the
cost function c w.r.t. the variables in the subscripts, and vt+1 and Vt+1 are the first
and second derivatives of the value function V w.r.t. the state xt+1.

Minimising the quadratic problem in (D.4) w.r.t. δut results in:

δu∗t = Ktδxt + kt, (D.6)

where:
Kt = −Q−1

ut,utQut,xt kt = −Q−1
ut,utqut , (D.7)

Substituting the action δut obtained in (D.6) into (D.4) gives a quadratic model:

Vt(xt) ≈
1
2δx

>
t Vtδxt + δx>t vt + const., (D.8)

where Vt and vt are the second and first derivatives of the value function Vt, which
can be expressed as:

Vt = Qxt,xt + Qxt,utKt vt = qxt + Qxt,utkt. (D.9)

Hence, one can recursively calculate the local quadratic model {Vt,vt} of the
value function Vt, and the linear controller {Kt,kt} backward through time. Once it
is completed, a new trajectory can be calculated using the forward pass with the
general non-linear state-transition dynamics f as follows:

x̂1 = x1

ut = Kt (xt − x̂t) + kt + ût
xt+1 = f (xt,ut) . (D.10)

144

Appendix D. Task weighting D.2. Convergence of iLQR

Although the trajectory obtained in (D.10) converges to a local minimum for the
approximate model of the value function Vt, it does not guarantee the convergence
for general non-linear models such as the one in (6.1). The reason is that the new
trajectory might deviate too far from the nominal trajectory, resulting in a poor
Taylor approximation of the true model. To overcome, a backtracking linear-search
with parameter ε ∈ (0, 1] is introduced:

ut = Kt (xt − x̂t) + εkt + ût. (D.11)

The criterion to accept the trajectory produced in the iteration with backtracking
line-search is similar to the one in DDP:

J(u1:T)− J(û1:T) < 1
2εθ1, (D.12)

where

J(u1:T) =
T∑
t=1

c(xt,ut) (D.13)

θt = θt+1 − q>utQut,utqut . (D.14)

Hence, in the worst case when the new trajectory strays too far from the model’s
region of validity, then ε→ 0 and the trajectory is the same as the nominal trajectory.
The procedure of one iLQR iteration is outlined in Algorithm 7 in Appendix D.5. In
addition, the convergence proof for iLQR adapted from DDP (Sidney Yakowitz and
Rutherford, 1984) is provided in Appendix D.2 to complete the analysis.

D.2 Convergence of iLQR
To prove the convergence of iLQR algorithm, we rely on Theorem 3 in (Polak, 1971,
p. 14), which is re-stated in Theorem D.1 in Appendix D.2.1

D.2.1 Auxiliary to prove convergence

Definition D.1: Algorithm model
Given a : T → T is an algorithm, and c : T → R is a function used as stopping
criterion, the algorithm model can be described as:

1. Compute a z0 ∈ T .

2. Set i = 0.

145

D.2. Convergence of iLQR Appendix D. Task weighting

3. Compute a(zi) .

4. Set zi+1 = a(zi).

5. If c(zi+1) ≥ c(zi), stop;a else set i = i+ 1 and go to step 3.

aA direct test for determining if zi is desirable may be substituted for the test c(zi+1) ≥ c(zi).

Theorem D.1 will show what such an algorithm will compute.

Theorem D.1: (Polak, 1971, Theorem 3, p. 14)
Suppose that:

(i) c(.) is either continuous at all non-desirable points z ∈ T , or else c(z) is
bounded from below for z ∈ T ;

(ii) for every z ∈ T which is not desirable, there exist an ε(z) > 0 and a
δ(z) < 0 such that:

c(a(z′))− c(z′) ≤ δ(z) < 0,∀z′ ∈ B(z, ε(z)) = {z ∈ T : ‖z′ − z‖B ≤ ε(z)}.
(D.15)

Then, either the sequence {zi} constructed by algorithm defined in Definition D.1
is finite and its next to last element is desirable, or else it is infinite and every
accumulation point of {zi} is desirable.

D.2.2 Proof of iLQR convergence

Since iLQR is an algorithm model as described in Definition D.1, to prove its
convergence property, one needs to assert that the 2 conditions in Theorem D.1 are
met.

First condition is satisfied since the cost J(u1:T) is continuous, and twice differ-
entiable. We will prove that iLQR satisfies the second condition of Theorem D.1.

From (D.11) and (D.14), the sequence of actions obtained from iLQR u1:T and θ1

depend on the nominal trajectory. Hence, we explicitly denote them as u(ε, û) and
θ1(û). In addition, since the loss function `(.) is assumed to be twice differentiable,
the cost function and state-transition dynamics are continuous. Hence, both u(ε, û)
and θ1(û) are also continuous.

The convergence proof for iLQR is presented in Appendix D.2.2. The proof
requires some auxiliary lemmas in Appendix D.2.2.

Auxiliary lemmas

146

Appendix D. Task weighting D.2. Convergence of iLQR

Lemma D.2

If u(ε, ū) is a non-stationary sequence of actions, then θ1 < 0.

Proof. It is apparent from the derivation of iLQR that qut = 0,∀t ∈ {1, . . . , T}
if and only if û is a stationary sequence of actions. Hence, by negation, if û is a
non-stationary sequence of actions, qut 6= 0 for some time steps t ∈ {1, . . . , T}.

Also note that, if u(ε, ū) is non-stationary, then û is also non-stationary. In
addition, if the Hessian matrix w.r.t. action u is assumed to be positive-definite
(PSD), then from the construction, Qut,ut and its inverse are also PSD.

The PSD of Q−1
ut,ut combining with (D.14) leads to the fact that θ1(û) < 0 for

any non-stationary sequence of actions û.

Lemma D.3

If u(ε, ū) is a non-stationary sequence of actions, then:

J(u(ε, ū))− J(ū) = εθ1(ū) +O(ε2). (D.16)

Proof. If we define ∆Qt as the resulting incremental change in the cost-to-go Q from
the perturbation ∆ut using Taylor expansion, then:

∆Qt = Qt(xt,ut + ∆ut)−Qt(xt,ut) = q>ut∆ut +O(‖∆ut‖2). (D.17)

Note that:

J(u(ε, û))− J(û) = J(u1:N + ∆u1:N)− J(u1:N)

=
T∑
t=1

∆Qt =
N∑
t=1

q>ut∆ut +O
(
‖∆u1:N‖2

)
. (D.18)

Taking the derivative w.r.t. ε gives:

∂J(u(ε))
∂ε

=
T∑
t=1

q>ut
dut
dε . (D.19)

From (D.11), ut is a linear function w.r.t. ε, resulting in:

dut
dε = kt = −Qut,utqut . (D.20)

Hence:
∂J(u(ε))

∂ε
= −

T∑
t=1

q>utQut,utqut = θ1(û), (D.21)

147

D.2. Convergence of iLQR Appendix D. Task weighting

which implies (D.16).

Lemma D.4

If u(ε, ū) is a non-stationary sequence of actions, then there exists ε1 such that:

J(u(ε, ū))− J(û) ≤ ηεθ1(û), ∀ε ∈ [0, ε1],∀η ∈ (0.5, 1). (D.22)

Proof. The result in Lemma D.3 can be re-written as:

J(u(ε, û))− J(û) = ηεθ1(û) + (1− η)εθ1(û) +O(ε2), ∀η ∈ (0.5, 1). (D.23)

Hence, there must exist a value ε = ε1 ≥ 0 such that: (1− η)θ1(û) +O(ε2) < 0. This
leads to:

J(u(ε, û))− J(û) ≤ ηε1θ1(û) ≤ ηεθ1(û),∀ε ∈ [0, ε1]. (D.24)

Note that the second inequality holds due to the negativity of θ1 proved in Lemma D.2.
This completes the proof.

Lemma D.5
Given that θ1 and any action sequence u are continuous, and for any δ > 0 such
that ‖û− u‖ < δ, there exists ε2 > 0 such that:

θ1(u)− ε2 < θ1(û) < θ1(u) + ε2.

Proof. Since θ1 is assumed to be continuous, and the variable u is also continuous,
we can employ the definition of continuity of function θ1 at u to obtain the following:

∀ε2 > 0 =⇒ ∃δ > 0 : |θ1(û)− θ1(u)| < ε2,∀û ∈ {û ∈ U : ‖û− u‖ < δ}. (D.25)

The negation form of the statement in (D.25) can be expressed as:

∀δ > 0 =⇒ ∃ε2 > 0 : |θ1(û)− θ1(u)| < ε2,∀û ∈ {û ∈ U : ‖û− u‖ < δ}. (D.26)

Solving the inequation above completes the proof.

Convergence of iLQR

148

Appendix D. Task weighting D.3. Linearisation of state-transition dynamics

Theorem D.6
Let the state-transition dynamics f and the cost function c have continuous
second partial derivatives w.r.t the continuous state x and action u. If u(ε, û)
denotes the successive application of iLQR, then any accumulation point of
u(ε, û) is stationary w.r.t the finite-horizon cost J(u1:T).

Proof. We first determine the condition that u(ε, û) calculated in (D.11) is the
successor of iLQR at û. According to iLQR algorithm, u(ε, û) = iLQR(û) only if:

J(u(ε, û))− J(û) ≤ ε

2θ1(û). (D.27)

Note that from Lemma D.4:

J(u(ε, û))− J(û) ≤ ηεθ1(û) < ε

2θ1(û),∀η ∈ (0.5, 1), ∀ε ∈ [0, ε1] (D.28)

which indicates that u(ε, û) is a successor of iLQR when ε ∈ [0, ε1].
If u(ε, û) is a successor of iLQR, the acceptance criterion combining with the

result in Lemma D.5 leads to:

J(iLQR(û))−J(û) ≤ ε

2θ1(û) < ε

2 [θ1(u) + ε2] ,∀û ∈ {û ∈ U : ‖û−u‖ < δ}. (D.29)

Note that if δ is set to be small enough, then ε2 is also very small, resulting in
θ1(u) + ε2 < 0. If we set δ(û) = δ and ε(û) = ε

2 [θ1(u) + ε2], then iLQR satisfies the
second condition in Theorem D.1.

D.3 Linearisation of state-transition dynamics

D.3.1 Stochastic gradient descent

The transition dynamics is given as:

xt+1 = f(xt,ut) = xt − α∇xt

[
u>t `̀̀(xt)

]
. (D.30)

Applying Taylor’s expansion to the first order around a state-action pair (x̂t, ût)
gives:

xt+1 = x̂t+1 +
ID − α ∇2

xt

[
u>t `̀̀(xt)

] ∣∣∣∣xt=x̂t
ut=ût

 (xt − x̂t)

− α ∇>xt [`̀̀(xt)]
∣∣∣∣
xt=x̂t

(ut − ût) . (D.31)

149

D.3. Linearisation of state-transition dynamics Appendix D. Task weighting

It can also be written as:

δxt+1 =
ID − α ∇2

xt

[
u>t `̀̀(xt)

] ∣∣∣∣xt=x̂t
ut=ût

 δxt +
(
−α ∇>xt [`̀̀(xt)]

∣∣∣∣
xt=x̂t

)
δut. (D.32)

Hence, the coefficient matrices of the Taylor’s series for the state-transition
dynamics following the SGD update can be expressed as:

Fxt = ID − α ∇2
xt

[
u>t `̀̀(xt)

] ∣∣∣∣xt=x̂t
ut=ût

Fut = −α ∇>xt [`̀̀(xt)]
∣∣∣∣
xt=x̂t

.

(D.33a)

(D.33b)

D.3.2 Adam

The gradient-based update for the parameter of interest using Adam keeps track of
the mean and variance:mt = β1mt−1 + (1− β1)J>t ut

vt = β2vt−1 + (1− β2)
(
J>t ut

)
�
(
J>t ut

)
,

(D.34)

where:

• m0 = 000, v0 = 000,

• Jt is the Jacobian matrix of the validation losses for tasks in a minibatch t-th:

Jt = ∇xt [`̀̀(xt)] . (D.35)

• � is the elementwise multiplication.

The corrected-bias estimators are then defined as:
m̂t = mt

1− βt1
v̂t = vt

1− βt2
.

(D.36)

The update or state-transition dynamics is then given as:

xt+1 = f(xt,ut) = xt − α
m̂t√
v̂t + ε

. (D.37)

The update for a new state of the model parameter can also be written by
substitution:

xt+1 = xt − α
mt

1− βt1
1√ vt

1−βt2
+ ε

. (D.38)

150

Appendix D. Task weighting D.3. Linearisation of state-transition dynamics

The approximation using Taylor’s expansion up to the first order will result with
the following matrices:

Fxt = ID −
α

1− βt1
∇xt

 mt√ vt
1−βt2

+ ε

 ∣∣∣∣∣∣
x̂t,ût

Fut = − α

1− βt1
∇ut

 mt√ vt
1−βt2

+ ε

 ∣∣∣∣∣∣
x̂t,ût

.

(D.39a)

(D.39b)

For simplicity, we assume that mt−1 and vt−1 are constant w.r.t. both xt−1 and
ut−1.

The gradient w.r.t. ut on mt and vt can be expressed as:

∇ut [mt] = (1− β1)J>t
∇ut [vt] = 2(1− β2)J>t �

(
J>t ut

)
. (D.40)

Note that given two functions f (a notation for a general function, not the
state-transition dynamic) and g

∇ut

[
f

g

]
= ∇ut

[
f � 1

g

]

= ∇ut [f]� 1
g

+ f �∇ut

[
1
g

]

= ∇ut [f]� 1
g
− f � 1

g2 �∇ut [g] . (D.41)

Hence:

∇ut

 mt√ vt
1−βt2

+ ε

 = ∇ut [mt]√ vt
1−βt2

+ ε
− mt(√ vt

1−βt2
+ ε

)2 �
∇ut [vt]

2
√

(1− βt2)vt
. (D.42)

To calculate the gradient w.r.t. xt, the update of Adam is rewritten as:
mt = β1mt−1 + (1− β1)∇xt

[
u>t `̀̀(xt)

]
vt = β2vt−1 + (1− β2)∇xt

[
u>t `̀̀(xt)

]
�∇xt

[
u>t `̀̀(xt)

]
.

(D.43)

The gradient w.r.t. xt on mt and vt can be expressed as:

∇xt [mt] = (1− β1)∇2
xt

[
u>t `̀̀(xt)

]
∇xt [vt] = 2(1− β2)∇xt

[
u>t `̀̀(xt)

]
�∇2

xt

[
u>t `̀̀(xt)

]
. (D.44)

151

D.4. Quadraticise cost function w.r.t. state xt Appendix D. Task weighting

Hence:

∇xt

 mt√ vt
1−βt2

+ ε

 = ∇xt [mt]√ vt
1−βt2

+ ε
− mt(√ vt

1−βt2
+ ε

)2 �
∇xt [vt]

2
√

(1− βt2)vt
. (D.45)

D.4 Quadraticise cost function w.r.t. state xt

The cost function consists of two terms: validation loss on the query subset and
penalisation of the action ut.

D.4.1 Quadraticise validation loss

The loss term in (6.7) can be approximated to second order as:

111>M `̀̀(xt) ≈ 111>M `̀̀(xt)
∣∣∣∣
xt=x̂t

+ (xt − x̂t)> ∇xt

[
111>M `̀̀(xt)

] ∣∣∣∣
xt=x̂t

+ 1
2 (xt − x̂t)> ∇2

xt

[
111>M `̀̀(xt)

] ∣∣∣∣
xt=x̂t

(xt − x̂t) . (D.46)

D.4.2 Quadraticise the penalisation of the action ut

The penalisation term is already in the quadratic form. Here, it is rewritten to follow
the Taylor’s series form.

βu
2 (ut − µu111M)> (ut − µu111M)

= βu
2 [(ut − ût) + ût − µu111M]> [(ut − ût) + ût − µu111M]

= 1
2 (ut − ût)> (βuIM) (ut − ût) + (ut − ût)> βu (ût − µu111M) . (D.47)

Given the locally-quadratic approximation of the cost function in (D.46) and
(D.47), the coefficient matrices and vector of the quadratic form of the cost function
can be written as:

Cxt,xt = ∇2
xt

[
111>M `̀̀(xt)

] ∣∣∣∣
xt=x̂t

Cxt,ut = Cut,xt = 0
Cut,ut = βuIM

cxt = ∇xt

[
111>M `̀̀(xt)

] ∣∣∣∣
xt=x̂t

cut = βu (ût − µu111M) .

(D.48a)

(D.48b)
(D.48c)

(D.48d)

(D.48e)

152

Appendix D. Task weighting D.5. Trajectory optimisation algorithm(s)

D.5 Trajectory optimisation algorithm(s)

Algorithm 7 Implementation of iLQR backward
1: procedure ibackward({x̂t, ût}Tt=1)
2: VT+1 = 0, and vT+1 = 0 . Quadratic matrix and vector of cost-to-go
3: θT+1 = 0 . Stopping criterion for a nominal trajectory
4: for t = T : 1 do . Backward through time
5: Fxt ,Fut = linearise dynamics . see Appendix D.3
6: Cxt,xt ,Cxt,ut ,Cut,xt ,Cut,ut , cxt , cut = quadraticise cost function . see

Appendix D.4
7: Qxt,xt = Cxt,xt + F>xtVt+1Fxt . 2nd derivatives of cost-to-go
8: Qxt,ut = F>xtVt+1Fut

9: Qut,xt = F>utVt+1Fxt

10: Qut,ut = Cut,ut + F>utVt+1Fut

11: qxt = cxt + F>xtvt+1 . 1st derivatives of cost-to-go
12: qut = cut + F>utvt+1

13: Kt = −Q−1
ut,utQut,xt . Linear controller

14: kt = −Q−1
ut,utqut

15: Vt = Qxt,xt + Qxt,utKt . 2nd derivatives of value function
16: vt = qxt + Qxt,utkt . 1st derivatives of value function
17: θt = θt+1 − q>utQut,utqut

18: end for
19: return {Kt,kt}Tt=1, θ1

20: end procedure

D.6 Convergence analysis for TOW

D.6.1 Notations

The following notations are used throughout the paper:

• ||x|| is the L2 norm of a vector x ∈ RD, e.g.
√

x>x

• ‖A|| is the matrix norm of a matrix A ∈ RM×D induced by a vector norm:

||A|| = sup ||Ax||
||x|| ,∀x ∈ RD : ||x|| 6= 0.

Given the vector and matrix norm, two common inequalities used in this section
are:

153

D.6. Convergence analysis for TOW Appendix D. Task weighting

• Triangle inequality: ||A + B|| ≤ ||A||+ ||B||,∀A,B ∈ RM×D

• Sub-multiplication: ||Ax|| ≤ ||A||||x||.

D.6.2 Assumptions on boundedness and smoothness

Assumption 6.1

The loss function of interest ` mentioned in (6.3) is B-bounded and L-Lipschitz.

Formally, the loss function ` satisfies the following conditions:

• Boundedness: ∃B > 0 : ∀x ∈ RD, |`(sij, yij; x)| ≤ B,

• Lipschitz continuity:

∃L > 0 : ∀x̃,x ∈ RD, |`(sij, yij; x̃)− `(sij, yij; x)| ≤ L‖x̃− x‖.

This smoothness assumption for the loss function ` also implies that it has an
L-Lipschitz continuous gradient (see Lemma D.12):

‖∇x`(s, y; x)‖ ≤ L. (D.49)

Assumption 6.2

The gradient ∇x`(s, y; x) is S-Lipschitz.

This assumption means that:

∃S > 0 : ∀x̃,x ∈ RD, ‖∇x`(sij, yij; x̃)−∇x`(sij, yij; x)‖ ≤ S‖x̃− x‖.

In addition, such assumption also leads to the followings:

−SI �∇2
x`(s, y; x) � SI, (D.50)

where I is the identity matrix.

Assumption 6.3

The Hessian ∇2
x`(s, y; x) is ρ-Lipschitz.

This implies that:

∃ρ > 0 : ∀x̃,x ∈ RD,
∥∥∥∇2

x`(sij, yij; x̃)−∇2
x`(sij, yij; x)

∥∥∥ ≤ ρ‖x̃− x‖.

154

Appendix D. Task weighting D.6. Convergence analysis for TOW

Assumption 6.4

The variance of the gradient ∇x` is σ2-bounded.

This implies that:

∃σ > 0 : ∀x ∈ RD,E(sij ,y)∼Di

[∥∥∥∇x`(sij, yij; x)− E(sij ,y)∼Di [∇x`(sij, yij; x)]
∥∥∥2
]
≤ σ2.

D.6.3 Auxiliary lemmas

Boundedness of action (or weighting vector) u

Lemma 6.1
If ut is a stationary action of a nominal action ût obtained from iLQR, then:

∃δ > 0 : ‖ut − ût‖ ≤ δ.

Proof. According to the procedure of iLQR shown in (D.11):

ut − ût = Kt (xt − x̂t) + εkt. (D.51)

Since the matrix K, vectors k, x and x̂ are well-defined, the norm of u− û is also
well-defined.

In addition, δ is implicitly related to the Gaussian prior N (ut;µu111, 1/βuIM). A
larger value of βu in (6.7) would result in a smaller value for δ.

Corollary D.8

If ut1 and ut2 are stationary actions of two nominal actions ût1 = ût2 = 1/M 111
obtained from iLQR at time steps t1 and t2, respectively, then:

‖ut1 − ut2‖ ≤ 2δ (bounded L2 norm of difference)

‖ut1‖ ≤ δ + 1√
M

(bounded L2 norm)

111>ut1 ≤ δ
√
M + 1. (bounded L1 norm)

(D.52a)

(D.52b)

(D.52c)

Proof. The first inequality can be proved by simply applying triangle inequality on
the L2 norm and employing the result in Lemma 6.1:

‖ut1 − ut2‖ =
∥∥∥∥(ut1 − 1

M
111) + (1

M
111− ut2)

∥∥∥∥ ≤ ∥∥∥∥ut1 − 1
M

111
∥∥∥∥+

∥∥∥∥ut2 − 1
M

111
∥∥∥∥

≤ ‖ut1 − ût1‖+ ‖ut2 − ût2‖
≤ 2δ. (D.53)

155

D.6. Convergence analysis for TOW Appendix D. Task weighting

The second inequality can similarly be proved using triangle inequality:

‖ut1‖ =
∥∥∥∥(ut1 − 1

M
111) + 1

M
111
∥∥∥∥ ≤ ∥∥∥∥ut1 − 1

M
111
∥∥∥∥+

∥∥∥∥ 1
M

111
∥∥∥∥ ≤ δ + 1. (D.54)

The last inequality can be proved using Cauchy-Schwarz inequality:

111>ut1 ≤ |111>ut1| ≤
√
M ||ut1|| ≤ δ

√
M + 1. (D.55)

Boundedness and smoothness of validation loss

In this subsubsection, we prove Lemma 6.2 about the boundedness and smoothness
of validation loss. To make the subsubsectionself-contained, we re-state the definition
of the task-specific parameter φi(x and the true validation loss ¯̀̀̀

i(x) as follows:

φi(x) = x− γ

m
(s)
i

m
(s)
i∑

k=1
∇x

[
`
(
s(s)
ik , y

(s)
ik ; x

)]
(6.4)

¯̀̀̀
i(x) = E(s(q)

ij ,y
(q)
ij)∼D(q)

i

[
`
(
s(q)
ij , y

(q)
ij ;φ(x)

)]
. (6.9)

Lemma 6.2 and its proof are shown as follows:

Lemma 6.2

If the conditions in Assumptions 6.1, 6.2 and 6.3 hold, then ¯̀̀̀
i(x) defined in

Eq. (6.9) is S̃-smooth, where: S̃ = S(1 + γS)2 + γρL.

Proof. Before starting the proof, we abuse the notation of gradient of the loss function
at a point x = v as follows:

∇x`(s, y; v) = ∇x`(s, y; x)
∣∣∣∣
x=v.

(D.56)

Given the definition of the true validation loss in Eq. (6.9), its gradient w.r.t. x
can be calculated using chain rule as follows:

∇x¯̀̀̀
i(x) = ∇xE(s(q)

ij ,y
(q)
ij)∼D(q)

i

[
`
(
s(q)
ij , y

(q)
ij ;φi(x)

)]
= E(s(q)

ij ,y
(q)
ij)∼D(q)

i

[
∇xφi(x)×∇x`

(
s(q)
ij , y

(q)
ij ;φi(x)

)]
. (D.57)

Note that we abuse the notation and use E(s(s)
ij ,y

(s)
ij)∼S(s)

i
to indicate the average

evaluated on all data points in set Si.
Since φi(x) defined in Eq. (6.4) does not depends on validation (or query) samples,

156

Appendix D. Task weighting D.6. Convergence analysis for TOW

we can, therefore, rewrite the above gradient as:

∇x¯̀̀̀
i(x) = ∇xφi(x)× ED(q)

i

[
∇x`

(
s(q)
ij , y

(q)
ij ;φi(x)

)]
=
{
I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x

)]}
ED(q)

i

[
∇x`

(
s(q)
ij , y

(q)
ij ;φi(x)

)]
.

(D.58)

In the following, we omit sample (s, y) from the expectation to simplify the
notations. In particular, the above gradient can be re-written as:

∇x¯̀̀̀
i(x) =

{
I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x

)]}
ED(q)

i

[
∇x`

(
s(q)
ij , y

(q)
ij ;φi(x)

)]
.

(D.59)

Thus, we can calculate the difference of the gradient evaluated on the same task
Ti but with two different meta-parameters:

∥∥∥∇x¯̀̀̀
i (x̄)−∇x¯̀̀̀

i (x̃)
∥∥∥

=
∥∥∥∥{I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̄)

)]
−
{
I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̃

)]}
ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥
=
∥∥∥∥{I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̄)

)]
−
{
I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]
+ γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]
−γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̃

)]}
× ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥
=
∥∥∥∥{I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̄)

)
−∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]
− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)
−∇2

x`
(
s(s)
ik , y

(s)
ik ; x̃

)]
×ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥ .
(D.60)

Applying the triangle inequality gives:
∥∥∥∇x¯̀̀̀

i (x̄)−∇x¯̀̀̀
i (x̃)

∥∥∥
≤
∥∥∥∥{I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]}
ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̄)

)
−∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥+
∥∥∥∥γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)
−∇2

x`
(
s(s)
ik , y

(s)
ik ; x̃

)]
ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥ . (D.61)

Next, we upper-bound the two terms in the right-hand side of Ineq. (D.61). The

157

D.6. Convergence analysis for TOW Appendix D. Task weighting

first term can be upper-bounded as:

First term =
∥∥∥∥{I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]}
×ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̄)

)
−∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥
≤
∥∥∥∥I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥∥
×
∥∥∥∥ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̄)

)
−∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥ (D.62)

Applying Jensen’s inequality on the L2 norm of the expectation in the right-hand
side of the above inequality to bring the expectation outside of the L2 norm, then
employing the smoothness of ` in Assumption 6.2 to obtain the following:

First term ≤
∥∥∥∥I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥∥
× ED(q)

i

∥∥∥∇x`
(
s(q)
ik , y

(q)
ik ;φi(x̄)

)
−∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)∥∥∥
≤
∥∥∥∥I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥∥× S ‖φi(x̄)− φi(x̃)‖ . (D.63)

Given the definition of φ(x) in Eq. (6.4), we can obtain the following:

‖φi(x̄)− φi(x̃)‖ =
∥∥∥∥(x̄− x̃)− γES(s)

i

[
∇x`

(
s(s)
ik , y

(s)
ij ; x̄

)
−∇x`

(
s(s)
ik , y

(s)
ij ; x̃

)]∥∥∥∥
≤ ‖x̄− x̃‖+ γ

∥∥∥∥ES(s)
i

[
∇x`

(
s(s)
ik , y

(s)
ij ; x̄

)
−∇x`

(
s(s)
ik , y

(s)
ij ; x̃

)]∥∥∥∥
(triangle inequality)

≤ ‖x̄− x̃‖+ γES(s)
i

∥∥∥∇x`
(
s(s)
ik , y

(s)
ij ; x̄

)
−∇x`

(
s(s)
ik , y

(s)
ij ; x̃

)∥∥∥
(Jensen’s inequality)

≤ ‖x̄− x̃‖+ γS ‖x̄− x̃‖ (Assumption 6.2)
(D.64)

Thus, one can upper-bound further Ineq. (D.63) as follows:

First term ≤ S(1 + γS)
∥∥∥∥I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥∥× ‖x̄− x̃‖ . (D.65)

If {λd}Dd=1 are the eigenvalues of the Hessian matrix ES(s)
i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]
, then

due to Lemma D.11, the eigenvalues of I−γES(s)
i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]
are {1−γλd}Dd=1.

In addition, since I − γES(s)
i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]
is symmetric and positive semi-

definite, its norm equals to the largest eigenvalue (refer to Lemma D.13):
∥∥∥∥I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥∥ = max
d
|1− γλd| ≤ 1 + γmax

d
|λd|. (D.66)

158

Appendix D. Task weighting D.6. Convergence analysis for TOW

According to Assumption 6.2, one can imply that the eigenvalues of the Hessian
matrix ES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]
are smaller than S (Bubeck et al., 2015, section 3.2,

page 266). This results in:
∥∥∥∥I− γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)]∥∥∥∥ ≤ 1 + γS. (D.67)

Therefore, the first term on the right-hand side of (D.61) is upper-bounded by:

First term ≤ S (1 + γS)2 ‖x̄− x̃‖ . (D.68)

The second term in the right-hand side of (D.61) can be upper-bounded as:

Second term =
∥∥∥∥γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)
−∇2

x`
(
s(s)
ik , y

(s)
ik ; x̃

)]
×ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥
≤
∥∥∥∥γES(s)

i

[
∇2

x`
(
s(s)
ik , y

(s)
ik ; x̄

)
−∇2

x`
(
s(s)
ik , y

(s)
ik ; x̃

)]∥∥∥∥
×
∥∥∥∥ED(q)

i

[
∇x`

(
s(q)
ik , y

(q)
ik ;φi(x̃)

)]∥∥∥∥
≤ γES(s)

i

∥∥∥∇2
x`
(
s(s)
ik , y

(s)
ik ; x̄

)
−∇2

x`
(
s(s)
ik , y

(s)
ik ; x̃

)∥∥∥
× ED(q)

i

∥∥∥∇x`
(
s(q)
ik , y

(q)
ik ;φi(x̃)

)∥∥∥ (Jensen’s inequality)

≤ γρL ‖x̄− x̃‖ (Eq. (D.49) and Assumption 6.3). (D.69)

Combining the results in (D.61), (D.68) and (D.69) gives:
∥∥∥∇x¯̀̀̀

i (x̄)−∇x¯̀̀̀
i (x̃)

∥∥∥ ≤ [S(1 + γS)2 + γρL
]
‖x̄− x̃‖ . (D.70)

This completes the proof.

Lemma 6.3

If Assumption 6.4 holds, then the variance of ∇xu>t `̀̀(xt) is bounded by σ̃2 =
σ2 (δ +M−0.5)2.

Proof. We use the following well-known inequality for variance as a part of the proof.
If Xi,∀i ∈ {1, . . . , n} are random variables with finite variance: Var (Xi) < +∞,

then:
Var

(
n∑
i=1

Xi

)
≤ n

n∑
i=1

Var (Xi) .

Note that `̀̀i(xt) in (6.3) is the empirical expected values of loss ` evaluated on

159

D.6. Convergence analysis for TOW Appendix D. Task weighting

task i-th. Hence, applying the above inequality for variance gives:

Var (∇x`̀̀i(xt)) = Var
 1
mq

mq∑
j=1

∇x`

(
s(q)
ij , y

(q)
ij ; x− γ

ms

ms∑
k=1

∇x
[
`
(
s(s)
ik , y

(s)
ik ; xt

)])
≤ 1
mq

mq∑
j=1

Var (∇x`) ≤ σ2.

(D.71)
Hence, the variance of uti∇x¯̀̀̀(xt) is bounded by u2

tiσ
2. This leads to:

Var
(
∇xu>t ¯̀̀̀(xt)

)
= Var

(
M∑
i=1

uti∇x`̀̀i(xt)
)

=
M∑
i=1

u2
tiVar (∇x`̀̀i(xt))

≤ σ2
M∑
i=1

u2
ti = σ2‖ut‖2

≤ σ2
(
δ +M−0.5

)2
(Corollary D.8). (D.72)

D.6.4 Convergence of TOW

Theorem 6.4

If Assumptions 6.1 - 6.4 hold, the learning rate α < 2/S̃(δ√M+1), and z is randomly
sampled from {xt}Titer

t=1 returned by Algorithm 5, then:

Ez∼{xt}Titer
t=1

[
ED(q) t

1:M

[∥∥∥∇zu>t ¯̀̀̀1:M (z)
∥∥∥2
]]
≤ ε0 + κ

Titer
,

where:

ε0 =
4δB
√
M + α2σ̃2S̃

(
δ
√
M + 1

)
α
[
2− αS̃

(
δ
√
M + 1

)] > 0 (6.10)

κ = 2u>1 ¯̀̀̀1:M (x1)
α
[
2− αS̃

(
δ
√
M + 1

)] , (6.11)

with Titer as the number of gradient-update for the meta-parameter (or the
number of mini-batches of tasks used), and ED(q) t

1:M
as the expectation taken over

all data sampled from t mini-batches {D(q)
i }ti=1, each D(q)

i has M tasks.

Proof. According to Eq. 6.9, ¯̀̀̀
i(x) ∈ R is the expected validation loss of task i-th

using meta-parameter x. In addition, the notation D(q)
1:M indicates the data probability

that generates query data pairs for M tasks in a mini-batch.

160

Appendix D. Task weighting D.6. Convergence analysis for TOW

For convenience, we also denote ¯̀̀̀(x) ∈ RM is the vector consisting of expected
validation losses on M tasks in a mini-batch of tasks:

¯̀̀̀(x) =
[
¯̀̀̀1(x) ¯̀̀̀2(x) . . . ¯̀̀̀

M(x)
]>
. (D.73)

From Lemma 6.2, the validation loss ¯̀̀̀
i (x) is S̃-smooth, or its gradient is S̃-

Lipschitz continuous. Hence, applying Taylor’s theorem gives:

¯̀̀̀
i (xt+1) ≤ ¯̀̀̀

i (xt) + ∇>
x

¯̀̀̀
i (xt) (xt+1 − xt) + S̃

2 ‖xt+1 − xt‖2. (D.74)

Note that uti is constrained to be non-negative as mentioned in Subsection 6.3.1
or in step 18 of Algorithm 5. Hence, one can multiply both sides by uti ≥ 0, t ∈
{1, . . . , T}, i ∈ {1, . . . ,M} and sum side-by-side to obtain:

u>t ¯̀̀̀ (xt+1) ≤ u>t ¯̀̀̀ (xt) + ∇>
x

[
ut¯̀̀̀ (xt)

]
(xt+1 − xt) + S̃

2 ‖xt+1 − xt‖2 111>Mut. (D.75)

By conditioning on xt and taking the expectation over all data sampled from
{D(q)

i }Mi=1, which is used to calculate xt+1, we can obtain the following:

ED(q)
1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]
≤ ED(q)

1:M

[
u>t ¯̀̀̀ (xt) + ∇>

x

[
ut¯̀̀̀ (xt)

]
(xt+1 − xt)

+ S̃

2 ‖xt+1 − xt‖2 111>Mut
∣∣∣∣∣ xt

]
. (D.76)

Note that for simplicity, we assume that the state-transition dynamics is SGD:

xt+1 − xt = −α∇x
[
u>t `̀̀ (xt)

]
. (D.77)

Thus, one can simplify further to obtain:

ED(q)
1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]
≤ ED(q)

1:M

[
u>t ¯̀̀̀ (xt)− α∇>

x

[
ut¯̀̀̀ (xt)

]
∇x

[
u>t `̀̀ (xt)

]
+α

2S̃

2 ‖∇x
[
u>t `̀̀ (xt)

]
‖2111>Mut

∣∣∣∣∣ xt
]
. (D.78)

Note that one can use Eq. 6.9 to imply that: ∇x
[
ut¯̀̀̀ (xt)

]
= E

S(q)
1:M∼D

(q)m(q)
1:M

1:M

[
∇x

[
u>t `̀̀ (xt)

]]
,

which also implies:

∇x
[
ut¯̀̀̀ (xt)

]
= ED(q)

1:M

[
∇x

[
u>t `̀̀ (xt)

]]
. (D.79)

161

D.6. Convergence analysis for TOW Appendix D. Task weighting

Thus, the above inequality can be written as:

ED(q)
1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]
≤ u>t ¯̀̀̀ (xt)− α

∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2

+ α2S̃

2

[
Var

[
∇x

[
u>t `̀̀ (xt)

]]
+
∥∥∥∇x

[
ut¯̀̀̀ (xt)

]∥∥∥2
]

111>Mut

(since E[X2] = Var[X] + (E[X])2)

≤ u>t ¯̀̀̀ (xt)− α
(

1− αS̃

2 111>Mut
)∥∥∥∇x

[
ut¯̀̀̀ (xt)

]∥∥∥2

+ α2S̃

2 Var
[
∇x

[
u>t `̀̀ (xt)

]]
111>Mut.

(D.80)

Since:111>Mut ≤ δ
√
M + 1 (Corollary D.8 in Appendix D.6.3)

Var
[
∇x

[
u>t `̀̀ (xt)

]]
≤ σ̃2 (Lemma 6.3)

then:

ED(q)
1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]
≤ u>t ¯̀̀̀ (xt)− α

[
1− αS̃

2
(
δ
√
M + 1

)] ∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2

+ α2σ̃2S̃

2
(
δ
√
M + 1

)
.

(D.81)

Re-arranging the gradient norm of the weighted validation loss to the left-hand
side gives:

α

[
1− αS̃

2
(
δ
√
M + 1

)] ∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2 ≤ u>t ¯̀̀̀ (xt)− ED(q)
1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]

+ α2σ̃2S̃

2
(
δ
√
M + 1

)
.

(D.82)

The right-hand-side, excluding the constant term at the end, can be written as:

u>t ¯̀̀̀ (xt)− ED(q)
1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]
=
[
u>t ¯̀̀̀ (xt)− ED(q)

1:M

[
u>t+1

¯̀̀̀ (xt+1) |xt
]]

+
[
ED(q)

1:M

[
u>t+1

¯̀̀̀ (xt+1) |xt
]

−ED(q)
1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]]
(D.83)

The second part in the right-hand side of the above expression can be upper-

162

Appendix D. Task weighting D.6. Convergence analysis for TOW

bounded as:

ED(q)
1:M

[
u>t+1

¯̀̀̀ (xt+1) |xt
]
− ED(q)

1:M

[
u>t ¯̀̀̀ (xt+1) |xt

]
= ED(q)

1:M

[
(ut+1 − ut)> ¯̀̀̀ (xt+1) |xt

]
≤ ED(q)

1:M

‖ut+1 − ut‖
√√√√ M∑
i=1

¯̀̀̀2
i (xt+1)

∣∣∣∣∣∣xt
 (Cauchy-Schwarz inequality)

≤ B
√
M ED(q)

1:M
[‖ut+1 − ut‖ |xt] (` is B-bounded, and hence, ¯̀̀̀

i is B-bounded)

≤ 2δB
√
M (Corollary D.8).

(D.84)
Hence, one can upper-bound further the right-hand side of (D.82), resulting in:

α

[
1− αS̃

2
(
δ
√
M + 1

)] ∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2 ≤ u>t ¯̀̀̀ (xt)− ED(q)
1:M

[
u>t+1

¯̀̀̀ (xt+1) |xt
]

+ 2δB
√
M + α2σ̃2S̃

2
(
δ
√
M + 1

)
.

(D.85)
Note that the recursive gradient update is:

xt+1 = xt − α∇x
[
u>t `̀̀ (xt)

]
xt = xt−1 − α∇x

[
u>t−1`̀̀ (xt−1)

]
...

x2 = x1 − α∇x
[
u>1 `̀̀ (x1)

]
.

We take the expectation over all the mini-batches used at time step t, t− 1, . . . , 1
to remove the conditioning in (D.85). We denote this expectation as ED(q) t

1:M
, where

the superscript t indicates the power, meaning that the expectation is carried out
over t mini-batches that are used to calculate the state xt+1 from x1. This results in:

α

[
1− αS̃

2
(
δ
√
M + 1

)]
ED(q) t

1:M

[∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2
]

≤ ED(q) t
1:M

[
u>t ¯̀̀̀ (xt)

]
− ED(q) t

1:M

[
u>t+1

¯̀̀̀ (xt+1)
∣∣∣x1

]
+ 2δB

√
M + α2σ̃2S̃

2
(
δ
√
M + 1

)
.

(D.86)
Summing (D.86) from t = 1 to Titer gives:

α

[
1− αS̃

2
(
δ
√
M + 1

)] Titer∑
t=1

ED(q) t
1:M

[∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2
]

≤ u>1 ¯̀̀̀ (x1)− ED(q)Titer
1:M

[
u>Titer+1

¯̀̀̀ (xTiter+1)
]

+ Titer

[
2δB
√
M + α2σ̃2S̃

2
(
δ
√
M + 1

)]
.

(D.87)

163

D.6. Convergence analysis for TOW Appendix D. Task weighting

Note that uti ≥ 0 ∀t ∈ {1, . . . , Titer, i ∈ {1, . . . ,M}, and ¯̀̀̀
i ≥ 0 due to the

non-negativity of the loss function ` assumed in (6.3). Hence, we can upper-bound
further the right-hand side to:

α

[
1− αS̃

2
(
δ
√
M + 1

)] Titer∑
t=1

ED(q) t
1:M

[∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2
]

≤ u>1 ¯̀̀̀ (x1) + Titer

[
2δB
√
M + α2σ̃2S̃

2
(
δ
√
M + 1

)]
. (D.88)

If the learning rate α is selected such that: 1−αS̃/2
(
δ
√
M + 1

)
> 0, then dividing

both sides by αTiter
[
1− αS̃/2×

(
δ
√
M + 1

)]
gives:

1
Titer

Titer∑
t=1

ED(q) t
1:M

[∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2
]

≤
2u>1 ¯̀̀̀ (x1) + Titer

[
4δB
√
M + α2σ̃2S̃

(
δ
√
M + 1

)]
αTiter

[
2− αS̃

(
δ
√
M + 1

)] . (D.89)

Next, we use a similar trick in the SVRG paper (Johnson and T. Zhang, 2013) to
make the left-hand side term useful. The idea is to output some randomly chosen xt
rather than outputing xTiter . For simplicity, let z = xt with a uniform probability for
t ∈ {1, . . . , Titer}. The expectation of the gradient norm in this case can be expressed
as:

Ez∼{xt}Titer
t=1

[
ED(q) t

1:M

[∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2
]]

= 1
Titer

Titer∑
t=1

ED(q) t
1:M

[∥∥∥∇x
[
ut¯̀̀̀ (xt)

]∥∥∥2
]
. (D.90)

This combining with (D.89) leads to:

Ez∼{xt}Titer
t=1

[
ED(q) t

1:M

[∥∥∥∇z
[
ut¯̀̀̀ (z)

]∥∥∥2
]]

≤
2u>1 ¯̀̀̀ (x1) + Titer

[
4δB
√
M + α2σ̃2S̃

(
δ
√
M + 1

)]
αTiter

[
2− αS̃

(
δ
√
M + 1

)] . (D.91)

D.6.5 Miscellaneous lemmas

Lemma D.11
If λ is an eigenvalue of matrix A, then λ− 1 is an eigenvalue of matrix A− I,
where I is the identity matrix.

164

Appendix D. Task weighting D.6. Convergence analysis for TOW

Proof. According to the definition of eigenvalue, λ is an eigenvalue of A if:

det (A− λI) = 0.

Rewriting the above equation gives:

det ((A− I)− (λ− 1) I) = 0. (D.92)

Hence, λ− 1 is an eigenvalue of A− I.

Lemma D.12: Adpated from https://math.stackexchange.com/a/4303207/
274798

If a function f : Rn → Rm, where n,m ∈ N, is differentiable and L-Lipschitz,
then its gradient norm is bounded by L.

Proof. According to the definition of vector or matrix norm:

‖∇f(x)‖ = sup
v

‖∇f(x) v‖
‖v‖ ,∀x, v ∈ Rn : ‖v‖ 6= 0

= sup
v

lim
λ→0

|λ|‖∇f(x) v‖
|λ|‖v‖ , λ ∈ R, λ 6= 0

= sup
v

lim
λ→0

‖∇f(x) (λv)‖
‖λv‖ .

(D.93)

Applying the triangle inequality gives:

‖∇f(x)‖ ≤ sup
v

lim
λ→0

‖f(x+ λv)− f(x)−∇f(x) (λv)‖
‖λv‖ + ‖f(x+ λv)− f(x)‖

‖λv‖

≤ sup
v

lim
λ→0

‖f(x+ λv)− f(x)−∇f(x) (λv)‖
‖λv‖ + L‖x+ λv − x‖

‖λv‖
(f is L-Lipschitz)

≤ L.

(D.94)

The first term equals to 0 since it corresponds to the definition of Fréchet derivative.

Lemma D.13: Adapted from https://math.stackexchange.com/a/2193914/
274798

165

https://math.stackexchange.com/a/4303207/274798
https://math.stackexchange.com/a/4303207/274798
https://math.stackexchange.com/a/2193914/274798
https://math.stackexchange.com/a/2193914/274798

D.7. Results with full matrix Vt Appendix D. Task weighting

If A ∈ Rn×n is a positive definite symmetric matrix, then its largest eigenvalue is

λmax = max
{
‖Ax‖
‖x‖ : x 6= 0

}
. (D.95)

Proof. According to the spectral theorem, if A is a real and symmetric matrix,
then there exists an orthonormal basis consisting of eigenvectors of A, denoted
as v1, v2, . . . , vn. Without loss of generality, let’s assume that the corresponding
eigenvalues are: λ1, λ2, . . . , λn.

For any non-zero vector x, we can represent it in this orthonormal basis as:

x =
n∑
i=1

civi, ci ∈ R. (D.96)

Then, the function of interest can be calculated as follows:

‖Ax‖
‖x‖ = ‖

∑n
i=1 ciλivi‖√∑n

i=1 c
2
i

=

√√√√∑n
i=1 c

2
iλ

2
i∑n

i=1 c
2
i

({vi}ni=1 is an orthonormal basis)

≤ max
i∈{1,...,n}

λi.

(D.97)

The equality occurs when the vector x equals to the corresponding eigenvector of
the eigenvalue maxi∈{1,...,n} λi.

D.7 Results with full matrix Vt

In this Appendix, we provide additional results of prediction accuracy on tasks
formed from the evaluation sets of Omniglot and mini-ImageNet. These results are
based on the naive implementation of iLQR where the auxiliary Hessian matrix Vt

of the cost-to-go in (D.1) is exact without any approximation. We note that due to
the quadratic complexity of running time, we cannot train the one on mini-ImageNet
until convergence. The running time using the full matrix Vt is 160 GPU-hour for
Omniglot and 184 GPU-hour for mini-ImageNet.

D.8 Visualisation of weight values
To further understand how the weight ut varies along the training process, we conduct
a study to monitor the weights ut of a set of pre-defined Omniglot tasks. In the
first setting, we fix T = 5 mini-batches of tasks, each consisting of M = 5 tasks

166

Appendix D. Task weighting D.8. Visualisation of weight values

0 10 20 30
Number of tasks (x10,000)

86

88

90

92

94

96
Te

st
in

g
ac

cu
ra

cy
 (%

)

94

95

96

(a) MAML on Omniglot

0 5 10 15 20
Number of training tasks (x10,000)

25

30

35

40

Te
st

in
g

ac
cu

ra
cy

 (%
)

uniform
exploration
exploitation
TOW

(b) MAML on mini-ImageNet

Figure D.1: Additional results of prediction accuracy on 100 random validation tasks using
MAML when the matrix Vt is exact without any approximation.

formed from the same alphabet. In the second case, the configuration is similar, but
each mini-batch contains M = 5 tasks formed from 5 different alphabets. For each
case, we also run with tasks drawn from training and testing sets. Our desire is to
observe how the weight changes and whether there is a difference between training
and testing tasks. Figure D.2 shows the variation of the weights of the tasks of
interest with a common trend among all the tasks considered, in which the weights
are large at the beginning and gradually reduce when training progresses. This is,
indeed, expected since most tasks are unfamiliar to the model at the early state,
and gradually becomes more familiar. In addition, we observe that the weights for
testing tasks are slightly larger than the ones for training tasks.

0 5 10 15 20

0.18

0.2

0.22

0.24

№ of meta-updates (×10,000)

W
ei
gh

t
va
lu
e

train-same train-different
test-same test-different

Figure D.2: Visualisation of the weight values where tasks are drawn from the same
Omniglot alphabet (either training or testing set); the notation same means that all tasks
in a mini-batch are formed from one alphabet, while different indicates the mini-batch
consists of tasks formed from different alphabets.

We also conduct the same ablation study for mini-ImageNet tasks. Since in mini-
ImageNet, we do not have any information regarding to the hierarchical structure

167

D.8. Visualisation of weight values Appendix D. Task weighting

0 10 20 30 40
0.18

0.2

0.22

№ of meta-updates (×10,000)
W

ei
gh

t
va

lu
e

train test

Figure D.3: Visualisation of the weight values associated with mini-ImageNet tasks.

of classes, we carry out the experiment on training and testing tasks only. One
could, of course, utilise the word-net structure to categorise classes into “alphabet”
as Omniglot, but for the sake of simplicity, we proceed without including such
information. Figure D.3 shows the weight values of some tasks at each training
checkpoint, which also has a similar but noisier trend as the ones in Omniglot.

168

	Introduction
	Background
	Data generation model of a task
	Loss function of a task
	Task instance
	Hyper-parameter optimisation

	Formulation of meta-learning
	Second-order meta-learning
	First-order meta-learning

	Differentiation from other transfer learnings
	Fine-tuning
	Domain adaptation and generalisation
	Multi-task learning
	Continual learning

	Open questions and contributions
	Reliable meta-learning
	Effect of training tasks on meta-learning

	Thesis outline

	Literature review
	General meta-learning
	Probabilistic meta-learning
	PAC-Bayes meta-learning
	Task similarity
	Task weighting in meta-learning
	Summary

	Variational Bayesian meta-learning
	Addendum to the publication
	Maximum likelihood estimation and MAML
	Minimum variational-free energy and VAMPIRE-2

	Introduction
	Related work
	Methodology
	Few-shot Learning Problem Setup
	Point Estimate - MAML
	Gradient-based Variational Inference
	Differentiating VAMPIRE and Other Bayesian Meta-learning Methods

	Experiments
	Few-shot regression
	Few-shot classification

	Summary

	PAC-Bayesian meta-learning
	Introduction
	Related Work
	Background
	Data generation model of a task
	Task instance
	Meta-learning
	PAC-Bayes upper-bound in single-task learning

	Methodology
	PAC-Bayes meta-learning
	Practical meta-learning objective
	Meta-learning with implicit task-specific posterior

	Experiments
	Regression
	Few-shot classification
	Discussion

	Summary

	Probabilistic task modelling for meta-learning
	Introduction
	Related Work
	Methodology
	Experiments
	Task distance matrix and correlation diagrams
	Lifelong few-shot meta-learning

	Summary

	Task weighting
	Introduction
	Background
	Trajectory optimisation
	Meta-learning
	Task-weighting meta-learning

	Methodology
	Task-weighting as a trajectory optimisation
	Convergence analysis

	Related work
	Experiments
	Discussion

	Conclusion
	Variational inference meta-learning
	Multi-modal regression from sinusoidal and linear task distribution
	Training configuration
	Additional results

	Classification experiments
	Model calibration for classification - ECE and MCE

	Pseudo-code for evaluation

	PAC-Bayes meta-learning
	Proof of PAC-Bayes meta-learning
	PAC-Bayes upper-bound of the validation loss for a single task
	PAC-Bayes upper-bound for unseen tasks
	PAC-Bayes upper-bound for meta-learning

	Auxiliary lemmas
	Complexity analysis
	Deterministic point estimate meta-learning (MAML)
	Probabilistic meta-learning with multivariate normal distributions
	SImPa

	Probabilistic task modelling
	Calculation of each term in the ELBO
	
	
	
	
	

	Maximisation of the ELBO
	Variational categorical distribution
	Variational Dirichlet distribution
	Maximum likelihood for the task-theme
	Maximum likelihood for alpha

	Task weighting
	Derivation of iLQR
	Convergence of iLQR
	Auxiliary to prove convergence
	Proof of iLQR convergence

	Linearisation of state-transition dynamics
	Stochastic gradient descent
	Adam

	Quadraticise cost function w.r.t. state xt
	Quadraticise validation loss
	Quadraticise the penalisation of the action ut

	Trajectory optimisation algorithm(s)
	Convergence analysis for TOW
	Notations
	Assumptions on boundedness and smoothness
	Auxiliary lemmas
	Convergence of TOW
	Miscellaneous lemmas

	Results with full matrix Vt
	Visualisation of weight values

