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 Thesis abstract 

 The rapid growth in the number of individual whole genome sequences and metagenomic 

 datasets is generating an unprecedented volume of genomic data. This is partly due to the 

 continuous drop in the cost of sequencing as well as growth in the utility of sequencing for 

 research and clinical purposes. We are now reaching a point whereby the lion share of the 

 cost is shifting from the actual sequencing to processing and storing the resulting data. 

 With genomic datasets reaching the petabyte scale in hospitals and medium to large 

 research groups, it is clear that there is an urgent need to store the data more efficiently - not 

 only to reduce current costs, but also to make sequencing even more affordable to an even 

 larger set of use cases, thereby accelerating the pace of adoption of genomic data for a 

 widening range of research projects and clinical applications. 

 In Chapter 1 of this thesis, I lay the groundwork for a new approach to compressing genomic 

 data—one that is based on an extensible software platform, which I called Genozip. This 

 initial proof of concept allows compression of data in a widely used format, namely the 

 Variant Call Format, or VCF  (Danecek et al. 2011)  .  In Chapter 2, I expand on the work of 

 Chapter 1, showing how the software architecture is designed to support the addition of 

 genomic file formats,  compression methods, and codecs. Benchmarking results show that 

 Genozip generally performs better and faster than the leading tools for compression of 

 common genomic data formats such as VCF, SAM  (Li et  al. 2009)  and FASTQ  (Cock et al. 

 2010)  . 

 In Chapter 3, I take a detour from compression, and demonstrate how potentially Genozip, 

 with its detailed internal data structures for genomic file processing, could be used for other 

 types of data manipulation. As an example, I introduce DVCF, or Dual-coordinate VCF—an 

 extension of the VCF format that allows representation of genetic variants concurrently in 

 two coordinate systems defined by two different reference genomes  (Lan 2021)  . It is 

 possible to use a DVCF file in a pipeline where each step of the pipeline accesses the data 

 in either of the coordinate systems. I also developed novel methods for lifting over data from 

 one coordinate system to another, and show the superiority of my methods compared to the 

 two leading tools in that space, namely GATK LiftoverVCF  (McKenna et al. 2010)  and 

 CrossMap  (Zhao et al. 2014)  . 
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 Overall, the Genozip software package is a high quality and versatile bioinformatic tool that 

 is already adopted by dozens of research and clinical laboratories worldwide. Through 

 reduction of the cost of whole genome sequencing data processing and storage, Genozip is 

 likely to further encourage the use of genomics in research and clinical settings. 



 Thesis declaration 

 I certify that this work contains no material which has been accepted for the award of any 

 other degree or diploma in my name, in any university or other tertiary institution and, to the 

 best of my knowledge and belief, contains no material previously published or written by 

 another person, except where due reference has been made in the text. In addition, I certify 

 that no part of this work will, in the future, be used in a submission in my name, for any other 

 degree or diploma in any university or other tertiary institution without the prior approval of 

 the University of Adelaide and where applicable, any partner institution responsible for the 

 joint award of this degree. 

 The author acknowledges that copyright of published works contained within the thesis 

 resides with the copyright holder(s) of those works. 

 I give permission for the digital version of my thesis to be made available on the web, via the 

 University’s digital research repository, the Library Search and also through web search 

 engines, unless permission has been granted by the University to restrict access for a period 

 of time. 



 Acknowledgements 

 To my supervisors, Bastien Llamas, Yassine Souilmi and Ray Tobler, thank you for taking the 
 risk with a PhD student who is double the age of his peers and with no background in 
 biology. I have learnt a tremendous amount from you - not just in the domains of 
 bioinformatics, population genetics and ancient DNA, but also about how the academic world 
 works (a foreign land to me, coming from industry) and how to go about conducting 
 academic research. 

 To João Teixeira, both for the initial introduction, as well as the long and fascinating 
 conversations. 

 To  Channé  , my wife, my best friend, for following  me to Australia, for tolerating the long 
 nights in which I would teleport to an alternative universe of coding, and for keeping me 
 grounded. 



 Preface 

 I spent my late 30s and most of my 40s travelling around developing countries in Africa and 

 Asia - 9 years out of those on behalf of Google and after that on my own ventures. At 

 Google, I initially worked as a member of a small team that started Google’s operations in 

 Africa, before Africa had any submarine cables connecting it to the Internet. At the time, the 

 only connectivity available was through satellite connections and a 1 Mb/s connection would 

 cost around US$10,000/month. The urge to bring the benefits of the Internet to the people 

 and with it the promise of unrestricted access to information and knowledge was burning in 

 my bones. I had one foot in Google’s engineering organisation, working with many of the 

 product and engineering teams in Mountain View, California and other offices around the 

 globe, on product features, adjustments and localisation for developing countries. The other 

 foot was in Africa where I worked with governments, telecom companies, the media and 

 early local technology innovators to spread the gospel of the Internet and facilitate physical 

 and cultural access to its infrastructure. Over time, as Google opened offices and hired local 

 teams in several of the leading countries in Africa with booming economies, I found myself 

 following the frontier of Internet access deeper into Africa’s more challenging environments. 

 It is there, in the war-torn tropical hills of the stunningly beautiful Kivu province of the 

 Democratic Republic of Congo, in next door Rwanda, in the arid plains of Hargeisa in 

 Somalia, in the busy lawless markets of Bujumbura, Burundi or the city of Monrovia, 

 Liberia—cautiously recovering from the “blood diamonds” war—that I found the most 

 committed, inspiring individuals which, with a grand vision and minimal material resources, 

 were transforming the capacity of their fellow citizens to access information. This gave me a 

 tremendous sense of purpose, and a reason to continue to do my work. Over time, my role 

 expanded to cover the world’s 100 or so least developed countries, and my travel itinerary 

 grew to cover places like Afghanistan, Myanmar, Kyrgyzstan, Bhutan and Papua New 

 Guinea. On one of those trips, to Cambodia, I was giving a presentation at a conference on 

 behalf of Google, when a Cambodian woman sitting in the front row was busy tweeting 

 seemingly everything I was saying. Being media-aware, that made me extremely nervous 

 and unnaturally cagey about my choice of words. Later, the same woman turned up to 

 several of the other meetings I attended during that week—with many of the private sector 

 and government actors in the Internet ecosystem in Cambodia. She was one of those 

 inspiring people and had her hands in everything. Six months later Channé and I were 

 married, and I unexpectedly spent the following 7 years living in Cambodia. We recently 

 celebrated our 10th anniversary. 



 Over all these years of wandering around the world, and in particular dealing with languages 

 (I was involved in localising Google user interface and its various machine learning 

 algorithms to the languages of “my” countries), I had become increasingly interested in 

 linguistics, anthropology, ethnography, the hard-to-understand issue of ethnic identity and 

 how it ties to language and to perceived ancestry. Later, at age 47, I felt the need for a 

 quantum change in my life. That feeling was now familiar—I had followed it in the past 

 several times, bungee-jumping to an unknown future and never regretting it. I decided to 

 embark on my long-delayed vague plan of pursuing a PhD—and for just a short while, to 

 stop being a jack of all trades and master of none, and immerse myself in pure research 

 without distractions. However, I had no clue  what  I would research? I began canvassing the 

 Internet for ideas—what could I possibly do that ties the only hard-skill that I actually 

 possess, computer science, with my interest in humanities stuff? It was then that I stumbled 

 upon a population genetics project in need of a PhD student, related to a particular region of 

 Papua New Guinea, on some Internet website (its name I have since forgotten), and I 

 reached out to the researchers. Shortly after, I was at my desk in my condominium in 

 Bangkok, on a Skype video call with Ray Tobler and João Teixeira, the authors of the article 

 on the website, from the Australian Centre for Ancient DNA at the University of Adelaide in 

 Australia. They told me about the challenge of deciphering the population history of this 

 little-researched region of Papua New Guinea, and how they are planning to go about it 

 using analysis of DNA samples. Since I knew approximately nothing about population 

 genetics at the time and precisely nothing about this region of Papua New Guinea, this 

 looked like a perfect abyss to bungee-jump into and I decided to apply for the project. 

 Shortly after landing in Adelaide with my family—Channé and our then-3-year old son 

 Sela—in August of 2019, I began getting up to speed with the new world (for me) of 

 bioinformatics, in parallel to reaching out to old friends in Papua New Guinea to plan a field 

 trip, and starting to establish relationships with collaborators at other research institutions. 

 While processing mountains of genomic data, I grew frustrated with how inefficiently the data 

 is represented, and played around with developing a small compression tool for my own 

 VCF files. Then the Covid-19 pandemic started, and all my travel plans got shelved, for what 

 I anticipated would be 3-6 months. I decided to use this “downtime” to work on my 

 compression tool. Since the tool, which I called Genozip, ended up performing quite nicely, 

 my supervisors encouraged me to publish a paper, which became Chapter 1 of this thesis. 

 The pandemic raged on, and the state of South Australia voluntarily cut itself off from the 

 rest of Australia and the world. The city of Adelaide, while enjoying one of the lowest Covid 

 infection rates in the world, essentially became its own planet with no travel permitted to 

 other large cities in Australia or overseas. While my work on the Papua New Guinea project 



 was progressing very slowly, Genozip was progressing in leaps and bounds. More than once 

 I found myself in a near-24 hours of a hyper-focused programming session that would end 

 with sunrise—something I had not done in almost 20 years and was pleasantly surprised to 

 discover that I could still do. After a 9-month sprint, which resulted in publishing another 

 paper (Chapter 2 in this thesis), I swore to myself and to the world that I was done with 

 coding for the foreseeable future, and went back to playing with my bioinformatics toys on a 

 growing pile of DNA samples from Papua New Guinea sitting in my home directory and 

 staring back at me with reproach. Then I ran into a problem where some of the tools I 

 wanted to use required a specific version of the human reference genome (e.g., GRCh37), 

 while others supported only another (GRCh38). Since at the time my analysis pipeline was 

 already based on Genozip-compressed files, I thought that just having VCF files containing 

 both coordinate systems concurrently would be an elegant solution to this problem, and that 

 I could probably just add it to Genozip in a couple of weeks worth of work. Despite knowing 

 better, I submerged into yet another coding project and when I re-surfaced, it turned out that 

 another half year had zoomed by. Chapter 3 is the result of this lapse in self-discipline of 

 mine. At that point, I stopped and looked back, and realised I had inadvertently created a 

 rather useful tool, consisting of many novel methods, and most importantly, which had been 

 adopted and used by hundreds of researchers and clinical geneticists in 41 countries. I then 

 decided, with support of my supervisors, to move Genozip to be the focus of this PhD 

 project, while postponing the completion of the Papua New Guinea project to a later, 

 postdoctoral, time. 



 Thesis Introduction 

 Genomic data: an introduction 

 Processing genomic and other *omic data is a major component of modern biological and 

 medical research that stands at the cross-section of biology and computer science. This 

 activity has given rise to the relatively new field of Bioinformatics, a term that only started 

 appearing in literature in the late 1980s (Figure 1). Moreover, prior to the advent of Next 

 Generation Sequencing in 2005  (Goodwin  et al.  , 2016)  ,  the difficulty and cost of genome 

 sequencing was substantial  (Sboner  et al.  , 2011)  ,  and as a result the volume of data was 

 relatively modest  (Narayanasamy  et al.  , 2020)  . Researchers  typically worked with software 

 tools developed by academic peers, which displayed highly variable levels of quality and 

 performance, and clinicians rarely had the need to directly handle genomic files. Indeed, the 

 interest in Bioinformatics, judging by the frequency of the use of the term in the literature, 

 peaked roughly around the time Next Generation Sequencing became available to the 

 research community (red line in Figure 1). 

 Figure 1  : The relative frequency of the word “Bioinformatics”  in all books as a % of all words, 

 by year of publication (Source: 

 https://books.google.com/ngrams/graph?content=Bioinformatics&year_start=1960&year_end 

 =2019&corpus=26&smoothing=0  ). The red line indicates  the approximate time Next 

 Generation Sequencing (NGS, aka High Throughput Sequencing) became available to the 

 research community. 
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 In recent years, we have seen a dramatic increase in the quantity of genomic data being 

 generated (Figure 2), driven by the continuous reduction in the price of genomic sequencing 

 that is dropping at a rate faster than Moore’s Law  (Moore, 1965)  . Gordon Moore, the founder 

 of Intel, predicted in 1965 that the density of transistors on computer chips, which can be 

 used as a proxy for computation power, would double every two years. This prediction was 

 surprisingly accurate, and continues to hold true until this day. 

 These price decreases have coincided and even enabled increased usefulness of genomic 

 sequencing in general, and for clinical purposes in particular, driving even more growth in 

 genomic sequencing than expected by improved affordability alone. This increase in volume 

 of genomic sequencing then contributed to economies of scale, further pushing costs down. 

 Moreover, we can expect this trend to further accelerate in the near future—as of today, the 

 typical non-genetics-specialist community doctor does not have the tools to interpret 

 genomic data, in the same way they may do for CT scans or results of a blood test, and as a 

 result current demand for genomic sequencing is mostly driven by genetics specialists  (Ha  et 

 al.  , 2018; Nisselle  et al.  , 2021)  . However, high quality,  professional software is now starting 

 to emerge that allows doctors to immediately derive clinically relevant information from 

 genomic sequencing irrespective of their prior genetics expertise. Consequently, we can 

 expect further exponential growth in sequencing in the near future, as a much broader 

 subset of the medical community begins ordering sequence data as a matter of routine 

 practice  (Nisselle  et al.  , 2021)  . 

 The affordability of sequencing is also a catalyst for the adoption of genomic sequence data 

 in biodiversity analysis, and conservation and evolutionary biology applications, with several 

 large-scale projects such as the Earth BioGenome set to sequence the genomes of the 1.8 

 million described eukaryotic species  (Toward a genome  sequence for every animal: Where 

 are we now?; Lewin  et al.  , 2022)  . Beyond genomics,  metagenomic research is booming, the 

 Earth Microbiome Project for example aims to characterise microbial life on Earth 

 (Thompson  et al.  , 2017)  . Omics has become pervasive  across the research landscape, and 

 the announced revolution is truly underway. 
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 Figure 2  : Size of NCBI SRA database between 2008 and  2022 in Petabases (1 Petabase = 

 10  15  base pairs) - data downloaded from  https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/ 

 An interesting result of this concurrent drop in price of sequencing and increase in its 

 volume, is the shift of the share of cost attributable to the sequencing itself versus the 

 in-silico processing of the resulting genomic data  (Sboner  et al.  , 2011)  . The Human Genome 

 Project, a project initiated by the Clinton administration in the US that aimed to provide the 

 first fully-assembled human genome, started in 1990. The first incomplete draft was released 

 13 years later, with the total project cost adding up to US$2.7B  (Human Genome Project 

 FAQ)  . Today, one can sequence a single human individual’s  complete set of DNA for 

 substantially less than US$1000 in less than 24 hours, though this in fairness is not an 

 apples-to-apples comparison - comparing the total costs involved in an initial de-novo 

 assembly versus just the sequencing costs of a high coverage short-read whole-genome 

 sequencing. Accordingly, the costs associated with genomic data are becoming increasingly 

 dominated by in-silico data processing to convert the raw sequence data, typically received 

 from a sequencing service provider encoded in the FASTQ format, into aligned genomic 

 sequences (e.g., BAM files) and summary files that capture individual genetic features (e.g., 

 genetic variants recorded in VCF files)  (Plöthner  et al.  , 2017; Sboner  et al.  , 2011; Schwarze 

 et al.  , 2020)  .  Even more significant are the costs  arising from subsequent data storage that 

 typically extends beyond the lifetime of the project or participant/patient  (Krumm and 

 Hoffman, 2020)  . 
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 Previous genomic data compression methods 

 Given these cost structure dynamics, the need to compress genomic data has never been 

 more urgent. Unsurprisingly then, there have been a number of attempts to tackle the 

 problem, though most have been piecemeal solutions tailored to specific genomic data types 

 (Table 1). 

 At present, the most common way to compress genomic files is through use of the gzip 

 format  (RFC-1952,1996)  - a compression format that  will be celebrating its 30th anniversary 

 this year (2022). At the time of its publication in 1992, it represented a major improvement 

 over the previous popular compression tool in the Unix environment, known simply as 

 “compress” that uses the LZW algorithm  (Welch, 1984)  ,  and as a result quickly gained 

 popularity. The gzip format consists of a small header containing metadata followed by the 

 compressed data itself, and the format allows application-specific custom fields to be added 

 to this metadata. Genomic tools typically use the custom-field capability of gzip to add fields 

 that support indexing of the file, enabling rapid random-access to particular data – an 

 extension of gzip called BGZF. BGZF was made popular by the samtools  (Li  et al.  , 2009) 

 and bcftools  (Danecek  et al.  , 2021)  software, and  their associated library htslib  (Bonfield  et 

 al.  , 2021)  . 

 Gzip’s success over its predecessor,  compress  , was  partly due to consuming significantly 

 more CPU and memory than  compress  , which was enabled  by the rapid improvements in 

 hardware at the time. While the authors of  compress  were targeting the hardware common 

 at the time of its publication (1984), it appears that by 1992 the gzip authors could allow 

 themselves to be significantly more generous, resulting in much better compression, despite 

 the stated motivation for replacing  compress  being  a legal rather than technical one  (see 

 https://www.gnu.org/software/gzip/)  . 

 Three decades have passed since gzip’s release, and, using Moore’s law as an 

 approximation, hardware has become ~30,000 times more powerful. Accordingly, software 

 developers can leverage this significant increase in modern computing power to devise 

 algorithms able to exploit the availability of giga-bytes of memory and dozens of CPU cores, 

 in return for significantly better compression. 

 A partial list of the previous attempts to replace gzip for alternate genomic compression 

 formats is provided in Table 1. Notably, every one of these software packages can only 

 operate on a small subset of genomic file formats, and most of them only operate on a single 
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 file format. In addition, most projects were written as an academic exercise resulting in a 

 manuscript publication, and did not have the economic structure needed to sustain the 

 software for the long term. I deem a software package to be “Abandoned”, if it has no 

 commit on github since 1 Sep 2021 (appoximately 6 months prior to the time that this text 

 was written). This issue of abandonment is a serious one that goes to the core of the funding 

 structure of the genomics space. I will discuss my plans on how to avoid a similar fate for 

 Genozip in the Discussion section. 

 Table 1  : Partial list of genomic compression tools 

 Software  File types  Key novelty  Ongoing source of 
 funding  1 

 Status 

 CRAM  (Bonfield, 
 2022) 

 BAM  Intended to be 
 a standard, 
 replacing BAM 

 Taxpayer funded: 
 European 
 Bioinformatics Institute 

 Taxpayer 
 funded - 
 viable 

 Illumina ORA 
 (Hnortonill, 
 2021) 

 FASTQ  Unpublished  Enancio - startup 
 company acquired by 
 Illumina in 2020 
 (Enancio) 

 Commercial - 
 viable 

 PetaSuite 
 (Genomic data 
 compression and 
 encryption - 
 PetaSuite, 2018) 

 FASTQ, 
 BAM 

 Unpublished  PetaSuite - startup 
 company, raised 
 US$2.4M from 
 investors  (PetaGene) 

 Commercial - 
 viable 

 GTZ  (Xing  et al.  , 
 2017) 

 FASTQ, 
 BAM 

 Compression of 
 SEQ  2 

 Genetalks - biotech 
 startup company, 
 raised  CN¥270M 
 (approx US$42M) from 
 investors  (Genetalks) 

 Commercial - 
 viable 

 Spring  (Chandak 
 et al.  , 2019) 

 FASTQ  Compression of 
 SEQ  2  using De 
 novo assembly 

 None  Abandoned 
 June 2021 

 IonCRAM 
 (Shokrof and 
 Abouelhoda, 
 2020) 

 BAM 
 (IonExpres 
 s only) 

 Compression of 
 IonExpress 
 signals 

 None  Abandoned 
 2020 

 DeeZ  (Hach  et 
 al.  , 2014) 

 BAM  None  Abandoned 
 2019 

 Lfqc  (Nicolae  et 
 al.  , 2015) 

 FASTQ  None  Abandoned 
 2016 

 DSRC  (Roguski 
 and Deorowicz, 
 2014) 

 FASTQ  None  Abandoned 
 2020 
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 ENANO  (Dufort 
 Y Álvarez  et al.  , 
 2020) 

 FASTQ  Compression of 
 Nanopore 
 QUAL  3 

 None  Abandoned 
 July 2020 

 RENANO  (Dufort 
 Y Álvarez  et al.  , 
 2021) 

 FASTQ  Compression of 
 Nanopore 
 SEQ  2 

 None  Abandoned 
 June 2021 

 GTC  (Danek and 
 Deorowicz, 
 2018) 

 VCF  Compression of 
 GT  4 

 None  Abandoned 
 June 2020 

 GTShark 
 (Deorowicz and 
 Danek, 2019) 

 VCF  Compression of 
 GT  4  using 
 PBWT 

 None  Abandoned 
 Jan 2020 

 VCFShark 
 (Deorowicz  et 
 al.  , 2021) 

 VCF  Improvements 
 of GTShark 

 None  Abandoned 
 Feb 2021 

 FastqCLS  (Lee 
 and Song, 2021) 

 FASTQ  Compression of 
 long-read SEQ  2 

 None  Abandoned 
 Dec 2020 

 NanoSpring 
 (Meng  et al.  , 
 2021) 

 FASTQ  Compression of 
 Nanopore 
 SEQ  2 

 None  New 

 CoLoRd  (Kokot 
 et al.  , 2022) 

 FASTQ  Compression of 
 long-read 
 FASTQ 

 None  New 

 1  Data gathered from public sources. It might not be  fully accurate, as by its nature, not all 

 funding information is made public. 
 2  SEQ means the nucleotide sequence data in a FASTQ,  FASTA or SAM/BAM file. 
 3  QUAL means the quality score data in a FASTQ or SAM/BAM  file. 
 4  GT means the genotype (FORMAT/GT) data in a VCF file. 

 Compressing genomic data is incredibly complex, because the data itself is very diverse - 

 each file format is composed of several different data types, with the compression of each 

 data type possibly benefitting from its own tailored approaches. Some file formats are rather 

 simple - for example, FASTQ contains just three data types: the description text (sequence 

 name and any metadata), the sequence data, and the quality score data. In contrast, BAM 

 and VCF files may contain tens of different fields each ideally requiring its own methods of 

 compression. Moreover, new types of fields are added all the time, as new tools are 

 developed for specific types of analysis, emitting BAM and VCF files with their own 

 proprietary fields - all needing compression. 
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 It is no wonder then, that most of the academic tools listed in Table 1 focus on introducing a 

 new method for one or two fields found within one or two file formats. Genozip, in contrast, is 

 built on an extensible architecture devised to accommodate compression of a large number 

 of types of genomic data. However, for each data type, specific methods are still required. 

 Genozip not only contains many novel methods covering the various data types (see 

 Chapters 1 and 2), but also takes advantage of state-of-the-art techniques already available. 

 For example, recent versions of Genozip use a novel implementation of PBWT  (Durbin, 

 2014)  for compressing VCF FORMAT/GT data  that is  inspired by GTShark  (Deorowicz and 

 Danek, 2019)  , though the PBWT-derived algorithm in  Genozip has several important 

 differences. Another example is an algorithm for compressing long-read quality scores 

 inspired by ENANO  (Dufort Y Álvarez  et al.  , 2020)  ,  which has been modified in Genozip to 

 compress both Oxford Nanopore Technology (aka ONT) and Pacific Bioscience (aka 

 PacBio) data, with further modifications extending its utility to both FASTQ and BAM data 

 (the original ENANO only works on Oxford Nanopore FASTQ files). Other methods, notably 

 the methods in SPRING and NanoSpring that use approximate de-novo assembly for 

 reference-free compression of FASTQ sequence data from short-reads and Nanopore long 

 reads respectively, are notable for their originality and excellence, but have not been 

 adopted in Genozip because they have fundamental differences with Genozip’s internal data 

 processing pipeline. 

 Genozip - a different approach 

 With Genozip, I set out to explore the following hypothesis: 

 methods tailored to the structure of genomic data will improve compression rates  . 

 The approach I have taken in Genozip is radically different from both general-purpose 

 compressors and from specialised genomic compressors. In the following, I outline several 

 key features and innovations that distinguish Genozip from alternate genomic compressors 

 that are currently available. 

 First, owing to my background in the software industry, Genozip was designed as a real 

 product with which users can entrust their precious data - i.e., designed and built with robust 

 software engineering and quality assurance, to ensure quality and maintainability over the 

 years and decades to come. This stands in stark contrast to the majority of specialised 

 genomic compressors that were built at a proof-of-concept level aiming for an academic 

 publication, only to be abandoned shortly after (Table 1,  Matthews 2022  ). 
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 Second, Genozip is founded upon an extensible framework that allows easy evolution along 

 three axes: 1) additional support for more genomic file formats, 2) the addition of “special 

 algorithms” for specific fields within file formats, and 3) the addition of codecs used for final 

 compression of the data from each field, after they are processed by the appropriate 

 field-specific algorithms. Indeed, following Genozip’s initial release in 2020 as a VCF 

 compressor, it has acquired the ability to compress nine further genomic file formats (i.e. 

 SAM/BAM/CRAM, FASTQ, FASTA, GFF3/GVF, 23andMe, PHYLIP, Chain files, Kraken, 

 Illumina locs) as well as generic (i.e., not necessarily genomic) files. The number of codecs 

 employed has grown from 2 to 15 - some of them derived from 3rd party libraries, and some 

 originally developed for Genozip. Within each file format, Genozip is improving with each 

 release, as new special algorithms are added and existing ones improved, to handle the 

 plethora of field types being generated by the rapidly expanding omics disciplines. BAM and 

 VCF files, for example, are generated by many different bioinformatics tools, each 

 generating specialised fields to fit their analysis objective. Genozip has special algorithms to 

 compress fields generated by many popular bioinformatics tools. At the time of writing, 

 Genozip (version 13.0.13) has 49 special algorithms. In addition, constantly evolving 

 sequencing technologies as well as specialised library preparation protocols (for example, 

 treatment with Bisulfite for methylation detection  (Frommer  et al.  , 1992)  ), result in nucleotide 

 and quality score sequences with different statistical properties  (Guo  et al.  , 2013; Farrell  et 

 al.  , 2021)  that Genozip handles with algorithms and  codecs tailored for each case. 

 Third, any genomics compressor faces a tradeoff between the depth of compression and the 

 speed of random access to a subset of the data within the compressed file, should the 

 compressed file be used in a bioinformatics pipeline. CRAM for example, which aims to 

 replace BAM as the de-facto standard short read alignment format in bioinformatics pipelines 

 (see: https://www.ga4gh.org/cram/)  , offers very fast  access to subsets of data, enabled by 

 making certain design decisions. For example, both CRAM and Genozip divide the source 

 file into blocks and compress each block separately (called  vblocks  in Genozip and 

 containers  in CRAM) but CRAM’s blocks are relatively  small and it does little in terms of 

 exploitation of correlation between fields in the file - two design decisions that inevitably limit 

 compression  (Bonfield, 2022)  . Genozip, on the other  hand, optimises for compression, even 

 at the expense of slower random access to subsets of data. Despite this, there are some 

 cases where data subsetting is actually faster in Genozip than CRAM, for example when 

 accessing summary statistics (the --count option in both genozip and samtools). 
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 Fourth, Genozip guarantees losslessness (unless specified otherwise by the user): i.e., 

 compressing a file, and then decompressing it, results in an identical file, byte-by-byte, as 

 verified by MD5  (Rivest, 1992)  or Adler32  (Deutsch  and Gailly, 1996)  . This means that all 

 fields need to be reconstructed precisely at the byte level - it is not sufficient that they 

 contain semantically similar information. Table 4 lists some examples in which CRAM 

 produces semantically similar information, but yet is not lossless, while Genozip is. As one 

 can appreciate from these examples, while the lack of lossnessness in CRAM is not 

 significant for pipeline analysis purposes, it is critical for any integrity-verification process that 

 might be used in a long term archival system - a key use case for Genozip. Similar to CRAM, 

 Genozip offers an option of lossy compression in which some fields are modified in ways 

 that usually do not have a significant impact on downstream analysis yet improve 

 compression significantly (see Chapter 1, section 2). However, judging from my direct 

 interaction with Genozip users, almost all of them refrain from using the lossy option and 

 very much value the MD5-verifiable lossless capability of Genozip. 

 Table 4  - examples of losslessness violations in CRAM 

 Field  Issue  Source file data  CRAM 
 reconstruction 

 Genozip 
 reconstruction 

 Any XX:f or 
 XX:B:f field 

 Floating point - 
 representation 

 SAM: 0.100  0.1  0.100 

 Any XX:f or 
 XX:B:f field 

 Floating point - 
 precision 

 SAM: 
 0.1000000000 
 000000000001 

 0.1  0.1000000000 
 000000000001 

 QUAL  Representation of 
 “missing quality” in 
 BAM files  produced 
 by the Pysam library 
 used by most 
 bioinformatics tools 
 written in Python  1 

 BAM: 
 0xff000000 

 0xffffffff  0xff000000 

 SEQ  Sequence case 
 actg->ACTG 

 SAM: acctgt  ACCTGT  acctgt 

 1  In march 2022, following my advice, Pysam was fixed  to avoid this issue in files generated 
 going forward: https://github.com/pysam-developers/pysam/issues/1089 

 Fifth, Genozip takes full advantage of IT environments typical in modern bioinformatics 

 analysis settings: owing to its sophisticated parallelisation algorithms that reduce thread 

 synchronisation points, Genozip can fully utilise tens of CPU cores to accelerate 

 computation. It also takes full advantage of the low seek times of modern solid state drives 
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 (SSD;  (El Maghraoui  et al.  , 2010)  ) to access a Genozip compressed file, in a highly 

 non-linear fashion in some cases, resulting in better compression algorithms that would be 

 significantly more difficult to implement if a Genozip sought linear or near-linear access to 

 the file that is required for optimising seek time in spinning disks. 

 Sixth, DNA data, in particular human DNA data, may have strict privacy requirements. As the 

 public awareness of the risks of mishandling of DNA data is growing, so too are the ethical 

 and regulatory requirements incumbent upon clinical and research labs (  (Rahimzadeh  et al.  , 

 2016; Office for Civil Rights (OCR), 2021)  ). It is  my anecdotal impression based on my 

 interactions with research and clinical labs around Genozip, that sadly, security and privacy 

 are still implemented as an afterthought in many contemporary bioinformatics projects, and 

 the level of protection of patients’ DNA data is questionable. In Genozip, privacy is built-in 

 with powerful industry-standard encryption being enabled with a simple  --password 

 command line option. In addition, cryptographic MD5 is used to sign files, protecting them 

 both from a modification caused by technical glitch, as well as from malicious tampering. 

 Seventh, while most bioinformatic analyses are typically conducted in Linux environments, it 

 is also common for bioinformaticians to develop pipelines on their Mac or Windows personal 

 computers prior to deploying to a Linux environment, and it is common for students to use 

 their personal computers for training. These environments, and Windows in particular, are 

 too often neglected by bioinformatics tools. In Genozip, all three operating systems are 

 first-class citizens. While Mac and Linux are fairly similar in most aspects relevant to 

 Genozip owing to their shared Unix ancestry, the Microsoft Windows operating system has a 

 fundamentally different architecture (of which we are concerned mostly with differences in 

 process management, thread synchronisation, and the NTFS file system), which required 

 significant effort to support. At the time of writing, 82% of Genozip installations are on Linux 

 machines, 11% on Mac and 7% on Windows. 

 Overview of thesis Chapters 1, 2 and 3 

 The three chapters in this thesis each outline central operational aspects of the Genozip 

 platform, and are presented in chronological order in accordance with the ongoing 

 development of the platform. 

 Chapter 1 is a paper titled “genozip: a fast and efficient compression tool for VCF files”  that 

 was published in Bioinformatics in July 2020  (Lan  et al.  , 2020)  . It reports the first iteration of 
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 Genozip, as a compressor of VCF files, and sets the foundations for the Genozip 

 architecture. It includes benchmarks against other VCF compressors, and demonstrates the 

 merits of Genozip’s approach. 

 Chapter 2 is a paper titled “Genozip - A Universal Extensible Genomic Data Compressor” 

 that was  published in Bioinformatics in February 2021  (Lan  et al.  , 2021)  . It describes 

 Genozip’s advancement to becoming a fully-fledged extensible genomic compressor for 

 multiple types of genomic file formats. It describes the architecture enabling Genozip’s 

 extensibility as well as some of the novel algorithms devised, such as Genozip’s aligner 

 algorithm that operates at the bit level rather than the traditional k-mer level, allowing very 

 fast compression of FASTQ and unaligned BAM files based on approximate alignment. 

 Chapter 3 consists of two related but separate bodies of work. First, I developed an 

 extension of the VCF file format, which I called Dual-coordinate VCF (or DVCF), designed to 

 accommodate descriptions of genetic variants in two genomic coordinate systems within a 

 single file (for example, human reference genome versions GRCh37 and GRCh38). The key 

 property of the new format is the concept of dual-renditions: each DVCF file can be  rendered 

 in either of its two coordinate systems, with each rendition being a VCF file adhering to the 

 VCF specification describing the variants in one of the coordinates, while also retaining the 

 information pertaining to the other coordinate system, thereby maintaining information 

 equivalence between the two renditions and lossless back-and-forth convertibility between 

 them. As I intend to recommend this document as a basis for a possible extension of the 

 VCF, I was not interested in assigning any IP rights in it to a journal, and instead deposited it 

 in the open-access repository Figshare  (Lan, 2021)  .  It appears in Appendix 1 of this 

 dissertation. 

 The second, related, body of work is a manuscript that has been submitted to a journal and 

 deposited on bioRxiv. It is the first attempt to extend Genozip into the analysis space - 

 implementing DVCF in Genozip, together with novel algorithms for lifting over variants from 

 one coordinate system to another. I benchmarked the liftover in Genozip versus the two 

 most widely used tools in the space, namely CrossMap  (Zhao  et al.  , 2014)  and GATK 

 LiftoverVcf  (Broad Institute, 2016)  , and demonstrate  that Genozip is significantly more 

 accurate and also solves certain biases introduced by the liftover process in the other tools. 
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 Abstract 

 Summary 

 genozip  is a new lossless compression tool for VCF  (Variant Call Format) files. By applying 

 field-specific algorithms and fully utilising the available computational hardware,  genozip 

 achieves the highest compression ratios amongst existing lossless compression tools known 

 to the authors, at speeds comparable with the fastest multi-threaded compressors. 

 Availability and implementation 

 genozip  is freely available to non-commercial users.  It can be installed via conda-forge, 

 Docker Hub, or downloaded from  github.com/divonlan/genozip  . 

 1. Introduction 

 Large genomic projects are becoming increasingly common, resulting in VCF (Variant Call 

 Format;  (Danecek  et al.  , 2011)  ) files comprising thousands  of individual genomic datasets. 

 Even in their compressed form, such files are very large (typically several GB), rapidly 

 driving up the cost of long-term data storage and file transfer, and spurring the development 

 of more efficient compression algorithms. 

 While a handful of new compression algorithms have recently emerged that work by 

 compressing genotypes within VCF files; e.g.  (Durbin,  2014; Deorowicz and Danek, 2019; 

 Kelleher  et al.  , 2019)  , genotypes are only one data  type represented in a VCF file, and are 

 often only a minor contributor to the total data content. For example, in the file used as the 

 real-world example in  (Durbin, 2014)  – File1 in our  benchmarks – the genotypes represent 

 only 7.1% of the uncompressed VCF file data. Thus, it is clear that just compressing the 

 genotypes is not sufficient as a compression strategy for VCF files. 

 Here, we present  genozip  , a lossless compression tool  that greatly improves genomic data 

 compression by utilising algorithms specific to the data types common to VCF files. 

 genozip  can handle VCF files of any ploidy, phasing  structure, or variant type with up to 99 

 alternate alleles per variant, along with any FORMAT and INFO data. While the primary 
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 objective of  genozip  is optimal packaging of genomic data for efficient and secure storage 

 and distribution, it also includes capabilities for pipeline analyses. 

 2. Software description 

 The  genozip  package runs on all popular operating  systems and includes four command 

 line tools –  genozip, genounzip, genocat  and  genols  .  genozip  receives one or 

 more .vcf, .vcf.gz, .vcf.bz2, .vcf.xz, or .bcf files or urls (FTP or HTTP) as input, and outputs 

 one or more .vcf.genozip files, while  genounzip  decompresses  .vcf.genozip files back to 

 .vcf or .vcf.gz format and  genols  provides statistics  regarding the contents of .genozip files. 

 For supporting seamless integration into analytical pipelines,  genocat  is provided for 

 accessing data within .vcf.genozip files, and includes options like  --regions  and 

 --samples  that allow random access to data. Indexing  is done as part of the compression 

 and there is no separate indexing step or index file. In addition, the toolset is designed to 

 enable use of standard input/output streams. 

 For supporting efficient and secure distribution of genomic files that complies with stringent 

 privacy requirements,  genozip  offers encryption of  the data with  --password  (using 256 

 bit AES), including an MD5 signature to ensure data integrity with  --md5  , and the ability to 

 concatenate VCF files with identical samples with  --output  and later split concatenated 

 files back to their components with  genounzip --split  . 

 We have included several additional options that allow the user to optimise compression for 

 their needs. First, the  --optimize  option improves  compression by modifying data in some 

 INFO and FORMAT subfields that do not ultimately impact analytical results — by rounding 

 floating point numbers to 2 significant digits and capping Phred values. Note that in this case 

 the VCF data are modified, and therefore the compression is not lossless. Second, The 

 --gtshark  option makes use of  GTShark  (Deorowicz and  Danek, 2019)  as described in 

 the Supplementary Material, resulting in compression ratios that are better than either 

 genozip  or  GTShark  alone. Finally, the  --vblock  and  --sblock  options allow the user 

 to control the tradeoff between compression and speed of subsetting regions and samples. 

 Note that some options require the appropriate tools to be installed: compressing .bcf files 

 into .genozip format requires  bcftools  , compressing  .xz files requires  xz  (Collin, 2011)  , 
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 decompressing into .vcf.gz requires  bgzip  , using  --gtshark  requires  GTShark  and 

 compressing from a URL requires  cURL  (Hostetter  et  al.  , 1997)  . 

 3. Benchmark 

 To evaluate  genozip  ’s performance, we compared its  compression ratios and speeds on 

 two different VCF files from the 1000 Genome Project  (1000 Genomes Project Consortium 

 et al.  , 2012)  – ‘File1’ and ‘File2’ (see Supplementary  Material) – against a wide range of 

 tools  .  All benchmarks were conducted on the same machine  that has 56 physical cores (4 X 

 Intel® Xeon® Gold 6132 CPU @ 2.60GHz) and 755GB of usable memory. More details, 

 including benchmarks against genotype compression tools including BGT  (Li, 2016)  and 

 GTC  (Danek and Deorowicz, 2018)  that are not capable  of losslessly compressing arbitrary 

 VCF files are available in the Supplementary Material. 

 For both tested VCF files, File1 which is rich in FORMAT subfields and File2 that is rich in 

 genotype data (see Supplementary Table S1), the compression ratios achieved by  genozip 

 are considerably higher than other tested tools (Figure 1a). Further,  genozip  offers one of 

 the fastest compression/decompression speeds amongst the tested tools (Figure 1b), 

 indicating that performance gains are achieved without negatively impacting run times. To 

 achieve high processing speeds,  genozip  implements  an advanced memory and thread 

 management strategy that scales across 10s of cores (Figure 1c). 

 4. Conclusion 

 genozip  is a user friendly and fully featured compression  software that readily integrates 

 into any standard bioinformatics pipeline.  genozip  achieves compression ratios significantly 

 better than other standard tools, by exploiting redundancies in the data that are specific to 

 biological data and that are not evident by textual analysis alone. Moreover,  genozip 

 achieves significant gains to compression speed relative to other tools by taking full 

 advantage of modern computational hardware, including multi-core processors and 

 multi-gigabyte RAM, whenever available. By default,  genozip  dynamically balances its 

 internal execution pipelines to maximize utilization of all the available resources. 
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 Fig. 1. Benchmarking  genozip  performance  . (  a  ) Compression  ratios for  genozip  using 

 three different options relative to five other commonly used compression tools (see labels) 

 for two VCF files, the FORMAT-subfields-rich data (x-axis) and genotype-rich data dominant 

 (y-axis). (  b  ) Compression (x-axis) and decompression  (y-axis) rates for  genozip  and five 

 other tools on the two VCF files (see inset key), and the rates (  c  )  genozip  execution 

 scalability with used CPU cores (see Supplementary Material). 
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 SI.1. Full list of options of  genozip, genounzip, 
 genocat  and  genols 

 Compress VCF (Variant Call Format) files 

 Usage:  genozip  [options]... [files or urls]... 

 See also: genounzip genocat genols 

 Supported input file types: .vcf .vcf.gz .vcf.bgz .vcf.bz2 .vcf 
 .xz .bcf .bcf.gz .bcf.bgz 

 Note: for .bcf files, bcftools needs to be installed, and for 
 .xz files, xz needs to be installed 

 Examples: genozip file1.vcf file2.vcf -o concat.vcf.genozip 
 genozip --optimize --password 12345 ftp://ftp.ncbi.nlm 

 .nih.gov/file2.vcf.gz 

 Actions - use at most one of these actions: 
 -d --decompress   Same as running genounzip. For more details, 

 run: genounzip --help 

 -l --list         Same as running genols. For more details, 
 run: genols --help 

 -h --help         Show this help page. Use with -f to see 
 developer options. 

 -L --license      Show the license terms and conditions for 
 this product 

 -V --version      Display version number 

 Flags: 
 -c --stdout       Send output to standard output instead of a 

 file 

 -f --force        Force overwrite of the output file, or 
 force writing .vcf.genozip data to standard 
 output 

 -^ --replace      Replace the source file with the result 
 file, rather than leaving it unchanged 

 -o --output       <output-filename>. This option can also be 
 used to concatenate multiple input files 
 with the same individuals, into a single 



 concatenated output file 

 -p --password     <password>. Password-protected - encrypted 
 with 256-bit AES 

 -m --md5          Calculate the MD5 hash of the VCF file. 
 When the resulting file is decompressed, 
 this MD5 will be compared to the MD5 of the 
 decompressed VCF. 
 Note: for compressed files, e.g. myfile.vcf 
 .gz, the MD5 calculated is that of the 
 original, uncompressed file. 

 -q --quiet        Do not show the progress indicator or 
 warnings 

 -Q --noisy        Stop the suppression of warnings 

 -t --test         After compressing normally, decompress in 
 memory (i.e. without writing the 
 decompressed file to disk) - comparing the 
 MD5 of the resulting decompressed file to 
 that of the original VCF. This option also 
 activates --md5. 

 -@ --threads      <number>. Specify the maximum number of 
 threads. By default, this is set to the 
 number of cores available. The number of 
 threads actually used may be less, if 
 sufficient to balance CPU and I/O. 
 Tip: if you're concerned about sharing the 
 computer with other users, rather than 
 using --threads to reduce the number of 
 threads, a better option would be to use 
 the command nice, e.g. 'nice genozip....'. 
 This yields CPU to other users if needed, 
 but still uses all the cores that are 
 available 

 --show-content    Show the information content of VCF files 
 and the compression ratios of each 
 component 

 Optimizing: 
 -9 --optimize     Modify the VCF file in ways that are likely 

 insignificant for analytical purposes, but 
 make a significant difference for 
 compression. At the moment, these 



 optimizations include: 
 - PL data: Phred values of over 60 are 
 changed to 60.     Example: '0,18,270' -> 
 '0,18,60' 
 - GL data: Numbers are rounded to 2 
 significant digits.   Example: '-2.61618,-0 
 .447624,-0.193264' -> '-2.6,-0.45,-0.19' 
 - GP data: Numbers are rounded to 2 
 significant digits, as with GL. 
 - VQSLOD data: Number is rounded to 2 
 significant digits. Example: '-4.19494' -> 
 '-4.2' 
 Note: due to these data modifications, 
 files compressed with --optimized are NOT 
 identical as the original VCF after 
 decompression. For this reason, it is not 
 possible to use this option in combination 
 with --test or --md5 

 -B --vblock       <number between 1 and 2048>. Set the 
 maximum size of memory (in megabytes) of 
 VCF file data that can go into one variant 
 block. By default, this is set to 128 MB. 
 The variant block is the basic unit of data 
 on which genozip and genounzip operate. 
 This value affects a number of things: 1. 
 Memory consumption of both compression and 
 decompression are linear with the variant 
 block size. 2. Compression is sometimes 
 better with larger block sizes, in 
 particular if the number of samples is 
 small. 3. Smaller blocks will result in 
 faster 'genocat --regions' lookups 

 -S --sblock       <number>. Set the number of samples per 
 sample block. By default, it is set to 4096. 
 When compressing or decompressing a 
 variant block, the samples within the block 
 are divided to sample blocks which are 
 compressed separately. A higher value will 
 result in a better compression ratio, while 
 a lower value will result in faster 
 'genocat --samples' lookups 

 --gtshark         Use gtshark instead of the default bzlib as 
 the final compression step for allele data 
 (the GT subfield in the sample data). 
 Note: For this to work, gtshark needs to be 



 installed - it is a separate software 
 package that is not affiliated with genozip 
 in any way. It can be found here: https:/ 
 /github.com/refresh-bio/GTShark. 
 Note: gtshark also needs to be installed 
 for decompressing files that were 
 compressed with this option. 

 One or more file names may be given, or if omitted, standard input 
 is used instead 



 Uncompress VCF (Variant Call Format) files previously compressed 
 with genozip 

 Usage:  genounzip  [options]... [files]... 

 See also: genozip genocat genols 

 Examples: genounzip file1.vcf.genozip file2.vcf.genozip 
 genounzip file.vcf.genozip --output file.vcf.gz 
 genounzip concat.vcf.genozip --split 

 Options: 
 -c --stdout       Send output to standard output instead of a 

 file 

 -z --bgzip        Compress the output VCF file(s) with bgzip. 
 Note: this option is implicit if --output 
 specifies a filename ending with .gz or .bgz. 
 Note: bgzip needs to be installed for this 
 option to work 

 -f --force        Force overwrite of the output file 

 -^ --replace      Replace the source file with the result 
 file, rather than leaving it unchanged 

 -O --split        Split a concatenated file back to its 
 original components 

 -o --output       <output-filename>. Output to this filename 
 instead of the default one 

 -p --password     <password>. Provide password to access file 
 (s) that were compressed with --password 

 -m --md5          Shows the MD5 hash of the decompressed VCF 
 file. If the file was originally compressed 
 with --md5, it also verifies that the MD5 
 of the original VCF file is identical to 
 the MD5 of the decompressed VCF. 
 Note: for compressed files, e.g. myfile.vcf. 
 gz, the MD5 calculated is that of the 
 original, uncompressed file. 

 -q --quiet        Do not show the progress indicator or 
 warnings 

 -Q --noisy        Stop the suppression of warnings 



 -t --test         Decompress in memory (i.e. without writing 
 the decompressed file to disk) - comparing 
 the MD5 of the resulting decompressed file 
 to that of the original VCF. Works only if 
 the file was compressed with --md5 

 -@ --threads      <number>. Specify the maximum number of 
 threads. By default, this is set to the 
 number of cores available. The number of 
 threads actually used may be less, if 
 sufficient to balance CPU and I/O. 
 Tip: if you are concerned about sharing the 
 computer with other users, rather than 
 using --threads to reduce the number of 
 threads, a better option would be to use 
 the command nice, e.g. 'nice genozip....'. 
 This yields CPU to other users if needed, 
 but still uses all the cores that are 
 available 

 -h --help         Show this help page. Use with -f to see 
 developer options. 

 -L --license      Show the license terms and conditions for 
 this product 

 -V --version      Display version number 

 One or more file names must be given 



 Print VCF (Variant Call Format) file(s) previously compressed with 
 genozip 

 Usage:  genocat  [options]... [files]... 

 See also: genozip genounzip genols 

 Options: 
 -r --regions      [^]chr|chr:pos|pos|chr:from-to|chr:from- 

 |chr:-to|from-to|from-|-to[,...] 
 Show one or more regions of the file. 
 Examples: 

 genocat myfile.vcf.genozip -r22 
 :1000000-2000000  (A range of chromosome 22) 

 genocat myfile.vcf.genozip -r 
 -2000000,2500000-   (Two ranges of all 
 chromosomes) 

 genocat myfile.vcf.genozip -r21 
 ,22               (All of chromosome 21 and 
 22) 

 genocat myfile.vcf.genozip -r^MT 
 ,Y               (All of chromosomes except 
 for MT and Y) 

 genocat myfile.vcf.genozip -r^ 
 -10000             (All sites on all 
 chromosomes, except positions up to 10000) 
 Note: genozip files are indexed 
 automatically during compression. There is 
 no separate indexing step or separate index 
 file. 
 Note: Indels are considered part of a 
 region if their start position is. 
 Note: Multiple -r arguments may be 
 specified - this is equivalent to chaining 
 their regions with a comma separator in a 
 single argument 

 -t --targets      Identical to --regions, provided for 
 pipeline compatibility 

 -s --samples      [^]sample[,...] 
 Show a subset of samples (individuals). 
 Examples: 

 genocat myfile.vcf.genozip -s 
 HG00255,HG00256    (show two samples) 

 genocat myfile.vcf.genozip -s 
 ̂HG00255,HG00256   (show all samples except 
 these two) 



 Note: This does not change the INFO data 
 (including the AC and AN tags). 
 Note: sample names are case-sensitive. 
 Note: Multiple -s arguments may be 
 specified - this is equivalent to chaining 
 their samples with a comma separator in a 
 single argument 

 -G --drop-genotypes Output the data without the individual 
 genotypes and FORMAT column 

 -H --no-header    Do not output the VCF header 

 --header-only  Output only the VCF header 

 --GT-only      For samples, output only genotype (GT) data, 
 dropping the other subfields 

 --strip        Do not output values for ID, QUAL, FILTER, 
 INFO; FORMAT is only GT (at most); Samples 
 include allele values (i.e. GT subfield) 
 only 

 -o --output       <output-filename>. Output to this filename 
 instead of stdout 

 -p --password     Provide password to access file(s) that 
 were compressed with --password 

 -@ --threads      Specify the maximum number of threads. By 
 default, this is set to the number of cores 
 available. The number of threads actually 
 used may be less, if sufficient to balance 
 CPU and I/O. 
 Tip: if you're concerned about sharing the 
 computer with other users, rather than 
 using --threads to reduce the number of 
 threads, a better option would be to use 
 the command nice, e.g. 'nice genozip....'. 
 This yields CPU to other users if needed, 
 but still uses all the cores that are 
 available 

 -q --quiet        Do not show warnings 

 -Q --noisy        Stop the suppression of warnings 
 -h --help         Show this help page. Use with -f to see 

 developer options. Use --header-only if 



 that is what you are looking for 

 -L --license      Show the license terms and conditions for 
 this product 

 -V --version      Display version number 

 One or more file names must be given 



 View metadata of VCF (Variant Call Format) files previously 
 compressed with genozip 

 Usage:  genols  [options]... [files or directories]... 

 See also: genozip genounzip genocat 

 Options: 
 -q --quiet        Do not show warnings 

 -h --help         Show this help page 

 -L --license      Show the license terms and conditions for 
 this product 

 -V --version      Display version number 

 One or more file or directory names may be given, or if omitted, 
 genols runs on the current directory 



 Options useful mostly for developers of genozip: 

 --show-time       Show what functions are consuming the most 
 time 

 --show-memory     Show what buffers are consuming the most 
 memory 

 --show-sections   Show the section types of the output 
 genozip file and the compression ratios of 
 each component 

 --show-alleles    Output allele values to stdout. Each row 
 corresponds to a row in the VCF file. Mixed- 
 ploidy regions are padded, and 2-digit 
 allele values are replaced by an ascii 
 character 

 --show-dict       Show dictionary fragments written for each 
 variant block (works for genounzip too) 

 --show-one-dict   <field-name>. Show the dictionary for this 
 field in a tab-separated list - <field-name> 
 may be one of the fields 1-9 (CHROM to 
 FORMAT) or a INFO tag or a FORMAT tag 
 (works for genounzip too) 

 --show-gt-nodes   Show transposed GT matrix - each value is 
 an index into its dictionary 

 --show-b250       Show fields 1-9 (CHROM to FORMAT) as well 
 as INFO tags - each value shows the line 
 (counting from 1) and the index into its 
 dictionary (note: REF and ALT are 
 compressed together as they are correlated.) 
 This also works with genounzip, but 
 without the line numbers. 

 --show-one-b250   <field-name>. Show the values for this field - 
 may be one of the fields 1-9 (CHROM to 
 FORMAT) or an INFO tag 

 --dump-one-b250   <field-name>. Dump the binary content of 
 this field, exactly as they appear in the 
 genozip format, to stdout - may be one of 
 the fields 1-9 (CHROM to FORMAT) or an INFO 
 tag 



 --show-headers    Show the sections headers (works for 
 genounzip too) 

 --show-index      Show the content of the random access index 

 --show-gheader    Show the content of the genozip header 
 (which also includes the list of all 
 sections in the file) 

 --show-threads    Show thread dispatcher activity 

 --debug-memory    Buffer allocations and destructions 



 SI.2. Implementation 

 genozip  operates by segmenting the VCF file into separate  sections defined by data type 

 and appropriately processing each section, before applying a general purpose data 

 compressor,  bzip2  (Seward, 1996)  , to each section.  genozip  executes a number of 

 data transformations that take advantage of data covariance due to linkage disequilibrium, 

 population structure, and potential lab biases, as well as non-textual relationships between 

 numeric values in the file. 

 First, the VCF file is divided into  variant blocks  of up to 128 MB each (configurable with 

 --vblock  ), and the samples within each variant block  are further divided into  sample blocks 

 of up to 4,096 samples each (configurable with  --sblock  ),  from which the genotypes are 

 extracted and transposed to create a  haplotype matrix  .  Prior to compression, each haplotype 

 matrix is further transformed by padding the ploidy to the maximal ploidy represented in the 

 matrix, substituting 2-digit allele values with a single ascii character, and clustering the rows 

 of haplotypes so that similar haplotypes are adjacent to one other. If the  --gtshark  option 

 is used, clustering is skipped, and  GTShark  (Deorowicz  and Danek, 2019)  is used as the 

 final-stage compressor of the  haplotype matrix  , instead  of  bzip2  . 

 Second, the phase state data (i.e. | or / ) are compressed – in the common case where the 

 entire variant block has the same phase state, we drop the phase data entirely and just note 

 the phase state in the variant block header. 

 Third, the data from each field (CHROM to FORMAT) and subfields of INFO and the sample 

 data (as defined in the FORMAT field) are extracted into separate dictionaries, and their data 

 are replaced with a dictionary index. An exception is the correlated REF and ALT fields that 

 are combined into one field. For each field, a global dictionary is created for the entire file (or 

 multiple files in case of concatenation), with new values added incrementally as each variant 

 block is parsed, so that only a single pass is needed over the file, and crucially, the 

 compressed file size grows sub-linearly with the number of VCF rows. For the first variant 

 block, the dictionary entries are sorted by frequency, so that the highest frequency entries 

 are efficiently encoded. The dictionaries for each field and the associated index data are 

 then compressed separately. Index data from FORMAT subfields are compressed together 

 as they are often correlated (for example, the DP and AD subfields). Dictionary search is 

 implemented efficiently using hash tables, and an algorithm is run after the analysis of the 

 first variant block to predict their size of the hash table for each field. This algorithm 
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 estimates the expected number of unique words of a particular field in the entire file from the 

 gradient of the rate of appearance of new unique words within the first variant block. 

 Extrapolating from the second derivative is obviously error prone, so an algorithm is in place 

 for growing a hash table in run time, if its size was underestimated, while not affecting 

 threads that are concurrently operating on it. 

 For the non-genotype indexed sample data we apply an additional optimization step of 

 transposing the matrix prior to compressing it, to take advantage of experimental lab bias. In 

 files with a large number of individuals, such as a File1 here, we have observed data 

 differences between individuals that likely result from subtle differences in analysis tools 

 used – for example, different floating point truncation conventions. 

 The POS field is often a large contributor to the overall entropy in single or small-sample 

 files. To improve the compression of this field, we compress the difference between 

 successive POS values rather than the POS value itself, thereby reducing the range of 

 values and increasing compressibility. 



 SI.3. Compression ratio and speed benchmarks in more detail 

 To benchmark genozip’s compression ratio compared to other popular and state-of-the-art 

 compression tools, we used two different files from the 1000 Genome Project  (1000 

 Genomes Project Consortium  et al.  , 2012; Sudmant  et  al.  , 2015)  that we refer to here as 

 ‘File1’ and ‘File2’. We chose the two files for their substantial difference in their content 

 characteristics (Table S1): 

 Table S1: Data content of File1 and File2 

 File 1 VCF  File 2 VCF 

 Allele values  6.1GB  7.1%  30.2GB  49.2% 

 Other sample data  80.1GB  92.3%  30.2GB  49.2% 

 Header and columns 1-9  0.5GB  0.6%  0.95GB  1.5% 

 File1: 1000 Genome Project phase 1 (The 1000 Genomes Project Consortium, 2012; chr1 

 ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3. 

 20101123.snps_indels_svs.genotypes.vcf.gz  ). The file  contains 1,092 individuals, 3,007,196 

 variants, and “Other sample data” consisting mostly of the sample fields other than GT, and 

 is the dominant data component in this file. 

 File2: 1000 Genome Project phase 3 (  (Sudmant  et al.  ,  2015)  ; chr1 

 ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mv 

 ncall_integrated_v5a.20130502.genotypes.vcf.gz  ). The  file contains 2,504 individuals, 

 6,468,347 variants, and Allele values (i.e. the GT subfield) representing ~50% of this file. In 

 this case, “Other sample data” is comprised of the phase state (/ or |) and the tab character 

 that separates the samples – both of which are trivial in terms of compression. Therefore the 

 allele values are about 97% of the remaining data content. 

 The differences in data content between these two files result in dramatically different 

 compression ratios in all tools. In both cases, though,  genozip  achieves the best 

 compression ratios (Table S2, Figure S1, Figure S2).  genozip  achieves the highest 

 compression ratio amongst the all lossless compression tools, and offers competitive 

 compression even compared to lossy tools such as  GTshark  . 
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 genozip  was tested in three ways - the first, is its default mode. The second, is with the 

 --optimize  option which modifies some data in the FORMAT and INFO subfields of VCF 

 file in ways that are typically not significant for analytical purposes, but are quite significant 

 for compression - namely, rounding some floating point numbers to two significant digits and 

 capping some Phred values (see  genozip --help  for  a detailed list). This compression by 

 definition is not lossless. As can be seen in Table S2  --optimize  significantly improves the 

 compression of File1 that consists mainly for FORMAT subfield data, but no has no impact 

 on File2 that has no FORMAT subfield data, The third, is using the  --gtshark  which 

 utilizes  GTShark  for the final stage of compression  of the genotype component of the VCF 

 file, instead of the default  bzlib  . This significantly  improves compression in File2 which is 

 enriched in genotype data, but not as much in File1 that consists primarily of FORMAT 

 subfield data. 

 We faced a number of challenges with the some of other compression tools: 

 Hail  failed to decompress because it attempted to  create very large intermediate files in 

 the /tmp filesystem. This is a faulty software design as /tmp is typically quite small, and 

 hence decompression of large files is bound to fail due to space constraints as happened in 

 our case. To test a workaround and to allow at least partial inclusion of Hail  (Hail Team)  in 

 this benchmark despite its malfunctioning, we chose File2 and used Hail’s option to shard 

 the decompressed file to many smaller files with its  parallel='separate_header' 

 option, and then concatenated the file together with the Linux  cat  command. The time shown is 

 the combined time of  Hail  and  cat  . 

 bcftools  failed to compress File1 - likely because  it is a file created in 2011 prior to the 

 latest versions of  bcftools. 

 GTShark  is not capable of processing FORMAT subfields,  and hence is not capable of 

 compressing File1. 

 bcftools, Hail  and  GTShark  are not lossless - the  decompressed file differs from the 

 original. 
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 Table S2: Compression ratio comparison 
 Tool  File 1 (MB)  vs. 

 VCF 
 File 2 
 (MB) 

 vs. 
 VCF 

 ORIGINAL  88,775  1X  62,728 
 genozip  4,430  21X  257  244X 
 genozip --optimize  3,360  26X  257  244X 
 genozip --gtshark  4,298  21X  120  523X 
 gzip  10,282  9X  1026  61X 
 bcftools -Ob  Incapable  -  1007  62X 
 bgzip  10,873  8X  1187  52X 
 bzip2  5,767  15X  528  119X 
 xz  7,014  13X  367  171X 
 pigz  10287  9X  1030  61X 
 gtshark  Incapable  -  128  491X 
 Hail  18280  4.9X  1258  50X 



 Figure S1: Compression factor for File1 

 Figure S2: Compression factor for File2 



 In terms of execution time, genozip is designed to fully leverage the hardware available, 

 unless explicitly restricted by the user. As such, it includes advanced memory and thread 

 management components that allow almost linear scaling to tens of cores. In table S3, we 

 have the execution time of each tool on our test machine that has 56 physical cores (4 X 

 Intel® Xeon® Gold 6132 CPU @ 2.60GHz) and 755GB of usable memory, running an XFS 

 file system with its default configuration on top of an SSD storage device. While generally 

 multiple users have access to this computer, the benchmark was run one tool at time, and 

 done so at a time when no other users or significant processes were running on the 

 machine. 

 bcftools  ,  bgzip  and  xz  allow specification on number  of threads, and were set to allow 

 them to maximise the utilisation of the hardware - "  --threads 56  " for  bgzip  and 

 bcftools  and "  --threads 0  " for  xz  . 

 Table S3: Execution time comparison 

 Tool  Compress  Decompress 

 File 1  File 2  File 1  File 2 

 genozip  1’22”  1’3”  1’56”  2’23” 

 gzip  45’19”  10’17”  6’41”  3’47” 

 bcftools  N/A  17’27”  N/A  13’8” 

 bgzip  1’57”  35”  1’2”  46” 

 bzip2  244’30”  207’31”  39’33”  22’9” 

 pigz  1’19”  32”  2’58”  1’17” 

 xz  21’30”  1’36”  8’26”  2”16 

 gtshark  N/A  24’49”  N/A  19’42” 

 Hail  4’18”  2’32”  ³  N/A  3’14” 



 SI.4. Benchmarking of genotype-only compression algorithms 

 There are a number of algorithms published in recent years focused on compressing 

 genotypes (allele values) within VCF files, while not being capable of compressing arbitrary 

 VCF files. Some are also not capable of decompressing, and all do not guarantee lossless 

 decompression. 

 Nevertheless, it is interesting to compare the performance of these algorithms on genotype 

 data. In this benchmark we included comparing  genozip  in two modes – its default mode, 

 and with the options  --gtshark -B2048  which would  result in the best genotype-data-only 

 compression. We compare against three genotype compression algorithms -  bgt  (Li, 2016)  , 

 GTC  (Danek and Deorowicz, 2018)  and  GTShark  (Deorowicz  and Danek, 2019)  . We also 

 included the standard tools  gzip  and  bgzip  in this  comparison, to appreciate how well all 

 the genotype compression algorithms perform compared to generic compressors 

 To compare just the genotype data component of a VCF file, we started with File2 from our 

 compression benchmark, and used the  --strip  option  of  genocat  to strip out all data, 

 except genotypes, CHROM, POS, REF and ALT fields, and set the FORMAT field to “GT”: 
 genocat ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes. 

 3.vcf.genozip --strip > file2.stripped.vcf 

 In the results we can see that  genozip  in its default  mode results in a better compression 

 ratio of the stripped file than all tools except  GTShark  and  GTC  , while  genozip  with 

 --gtshark -B2048  is better than any other tool. 

 Table S4: Compression comparison of a genotype-only file 

 Bytes 
 Compression 
 ratio 

 Original:  file2.stripped.vcf  64,956,779,894 

 genozip  201,369,011  323 
 genozip --gtshark -B2048  60,041,662  1082 
 gzip  851,248,722  76 

 bgzip  939,705,276  69 

 bgt  298,990,428  217 

 GTC  138,182,645  470 

 GTShark  60,297,201  1077 
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 SI.5. Core scalability test - raw data 

 To test the scalability of genozip with the number of available cores, we ran a compression 

 and decompression test using File1 of our benchmark. We repeated the compression and 

 decompression cycle scaling the number of used cores from 1 to 50 while recording the 

 execution time (see Table S5). We observed that genozip compression scaled approximately 

 linearly up about 28 cores, and then again about linearly up to 50 cores, but with a smaller 

 slope. Decompression, on the other hand, scaled linearly up to about 20 cores after which 

 adding additional cores had no benefit (see Figure 1b). A fundamental constraint on scaling 

 is the need to access the disk file. In the case of genozip, the compressed file is between 

 one and three orders of magnitude smaller than the original file, so it is the original file that is 

 the constraint. We speculate that at least part of the difference in scaling between 

 compression and decompression is the fact that SSD storage is faster in read operations 

 (compression in our case) than write (decompression). 



 Table S5: execution time in core scalability test 

 Cores 
 Compress 
 time (sec) 

 Uncompress 
 time (sec) 

 genozip 
 variants/sec 

 genounzip 
 variants/sec 

 1  1,859  1,039  1,618  2,894 
 2  993  551  3,028  5,458 
 3  687  377  4,377  7,977 
 4  520  292  5,783  10,299 
 5  430  239  6,993  12,582 
 6  360  201  8,353  14,961 
 7  320  175  9,397  17,184 
 8  276  159  10,896  18,913 
 9  252  142  11,933  21,177 

 10  228  130  13,189  23,132 
 11  210  119  14,320  25,271 
 12  192  114  15,662  26,379 
 13  179  103  16,800  29,196 
 14  169  98  17,794  30,686 
 15  157  99  19,154  30,376 
 16  149  96  20,183  31,325 
 17  142  96  21,177  31,325 
 18  134  98  22,442  30,686 
 19  130  87  23,132  34,565 
 20  123  93  24,449  32,335 
 21  121  93  24,853  32,335 
 22  115  96  26,150  31,325 
 23  112  108  26,850  27,844 
 24  107  95  28,105  31,655 
 25  104  113  28,915  26,612 

 Cores 
 Compress 
 time (sec) 

 Uncompress 
 time (sec) 

 genozip 
 variants/sec 

 genounzip 
 variants/sec 

 26  101  110  29,774  27,338 
 27  100  101  30,072  29,774 
 28  98  118  30,686  25,485 
 29  95  103  31,655  29,196 
 30  95  101  31,655  29,774 
 31  96  120  31,325  25,060 
 32  94  101  31,991  29,774 
 33  93  104  32,335  28,915 
 34  93  103  32,335  29,196 
 35  94  102  31,991  29,482 
 36  94  107  31,991  28,105 
 37  92  103  32,687  29,196 
 38  90  103  33,413  29,196 
 39  93  106  32,335  28,370 
 40  89  103  33,789  29,196 
 41  90  123  33,413  24,449 
 42  91  106  33,046  28,370 
 43  88  104  34,173  28,915 
 44  88  114  34,173  26,379 
 45  91  112  33,046  26,850 
 46  89  110  33,789  27,338 
 47  86  110  34,967  27,338 
 48  86  110  34,967  27,338 
 49  87  107  34,565  28,105 
 50  84  109  35,800  27,589 
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 Abstract 

 We present Genozip, a universal and fully featured compression software for genomic data. 

 Genozip is designed to be a general-purpose software and a development framework for 

 genomic compression by providing five core capabilities – universality (support for all 

 common genomic file formats), high compression ratios, speed, feature-richness, and 

 extensibility. 

 Genozip delivers high-performance compression for widely-used genomic data formats in 

 genomics research, namely FASTQ, SAM/BAM/CRAM, VCF, GVF, FASTA, PHYLIP, and 

 23andMe formats. Our test results show that Genozip is fast and achieves greatly improved 

 compression ratios, even when the files are already compressed. 

 Further, Genozip is architected with a separation of the Genozip  Framework  from 

 file-format-specific  Segmenters  and data-type-specific  Codecs  . With this, we intend for 

 Genozip to be a general-purpose compression platform where researchers can implement 

 compression for additional file formats, as well as new codecs for data types or fields within 

 files, in the future. We anticipate that this will ultimately increase the visibility and adoption of 

 these algorithms by the user community, thereby accelerating further innovation in this 

 space. 

 Availability and implementation 

 Genozip is written in C. The code is open-source and available on GitHub 

 (https://github.com/divonlan/genozip). The package is free for non-commercial use. It is 

 distributed as a Docker container on DockerHub and through the conda package manager. 

 Genozip is tested on Linux, Mac, and Windows. 

 Supplementary information 

 Supplementary data are available at Bioinformatics online. 



 1 Introduction 

 Genomic data production is growing rapidly as sequencing prices continue to drop, making 

 data storage and transfer a core issue for researchers, healthcare providers, service 

 facilities, and private companies. To date, most users have relied upon compression 

 software that implements the RFC 1951 format  (Deutsch,  1996)  ; e.g., gzip  (Gailly and Adler, 

 2010)  , bgzip  (Li, 2011b)  and others), a general-purpose  compression format that was 

 designed decades ago and is not specifically tailored for genomic data. 

 Many novel algorithms have emerged in recent years that effectively compress one or more 

 of the data types embedded in genomic files (e.g., GTShark  (Deorowicz and Danek, 2019) 

 and SPRING  (Chandak  et al.  , 2019)  ). However, these  algorithms are typically implemented 

 within a rudimentary software package that inadvertently lacks the breadth of features 

 required for a software to be useful in many real-world use cases; most importantly, most 

 work with only one of the common file formats. These limitations have meant that none of 

 these software packages are currently widely used by the genomic researcher and 

 practitioner community. 

 Here we introduce a new version of the compression software Genozip, which has been 

 nearly completely re-written from an earlier version designed to compress VCF files  (Lan  et 

 al.  , 2020)  . Genozip now offers five core capabilities: 

 1.  Universality - Genozip supports all common genomic file formats - FASTQ, 

 SAM/BAM/CRAM, VCF, GVF, FASTA, PHYLIP, and 23andMe. 

 2.  High compression ratios - better than all other universal tools tested. 

 3.  Speed - in most cases, faster than other tools. 

 4.  Feature richness - providing an array of features that allow integration into pipelines, 

 specification of compression options, and development tools to allow developers to 

 extend Genozip easily. 

 5.  Extensibility - with a clear separation of the Genozip  Framework  from the file formats 

 being compressed and from the codecs used for compression, it is fairly easy to add 

 support for more file formats as well as new codecs to improve compression of 
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 specific data types of any specific fields within genomic files. 

 2 Software description 

 Genozip provides a command line interface that consists of four commands:  genozip  for 

 compression,  genounzip  for decompression,  genocat  to display or subset a compressed 

 file, and  genols  to show metadata associated with  the compressed files. 

 Genozip is currently optimised to compress FASTQ, FASTA, SAM/BAM/CRAM, VCF/BCF, 

 GVF, PHYLIP, and 23andMe files, including files that are already compressed into .  gz  , .  bz2, 

 or .  xz  formats. However, Genozip can also compress  any other file format. Compression of 

 .cram, .bcf, or .xz files requires the software packages samtools, bcftools, or xz, respectively, 

 to be available in the PATH environment variable. Genozip allows multiple files of identical or 

 different formats to be specified in the command line. Files that share a common format can 

 be  bound  together with  genozip --output  and subsequently  unbound with  genounzip 

 --unbind  . This functionality is beneficial for packaging  a large number of samples together 

 for delivery or archiving. 

 Genozip can be integrated into analytical pipelines in two ways.  First,  genozip  and 

 genounzip  may be used with pipes. Second,  genocat  provides random-access to 

 user-specified sections of a  .genozip  file and facilitates  file subsetting. When using 

 genocat  to subset files, the targeted data are identified  using the  --samples option 

 for VCF files and the  --regions  option for SAM, VCF,  FASTA, GVF, and 23andMe file 

 types.  --downsample  downsamples any file type. Further,  because  .genozip  files are 

 indexed during data compression, a separate indexing step is not required. 

 In addition,  genocat  offers built-in file format  translation  ,  and currently offers  translations 

 between SAM and BAM, from SAM or BAM to FASTQ, between FASTA and PHYLIP and 

 from 23andMe to VCF, using  genounzip  ‘s  --bam, --sam,  --fastq, --phylip, 

 --fasta  and  --vcf  options, respectively. 

 Genozip offers a range of data integrity and security options. To support data security 

 requirements that comply with ethical standards now expected for modern genomic projects, 

 Genozip allows encryption of the data using the  --password  option. With this option, data 



 are encrypted with the standard Advanced Encryption Standard (AES) algorithm  (Fips, 

 2009)  , using the strongest mode available (256 bits).  To ensure data integrity, Genozip 

 includes a built-in MD5  (Rivest, 1992)  option triggered  by using  --md5  or  --test  . This 

 calculates (in  genozip  ) or verifies (in  genounzip  and  genocat  ) the MD5 sum of the 

 source data on the fly and stores it within the compressed genozip file. This MD5 sum is 

 then viewable using  genols  . 

 Genozip offers two lossless compression modes:  --best,  which is the default and results 

 in the highest compression ratio, and  --fast,  which  optimises compression speed at the 

 cost of somewhat reduced compression ratios (see Supplementary Information section 12). 

 While Genozip is strictly lossless by default, a lossy  --optimise  (or  --optimize  ) option 

 is also offered, which further improves compression by modifying the data in ways that 

 typically do not impact downstream analysis (See Supplementary Information section 3). 

 Additionally, Genozip supports compression with or without a reference genome sequence. 

 Providing a reference improves compression of the sequence data component in 

 SAM/BAM/CRAM, FASTQ, and VCF files. A reference file may be generated from a FASTA 

 file with  genozip --make-reference  and used with  genozip  --reference  or 

 --REFERENCE  . The latter option stores information  from the reference within the resulting 

 compressed file, obviating the need to provide the reference as a separate file during the 

 decompression step. Including the reference information within the compressed file is 

 particularly useful when binding several genomic data files together for delivery. 

 Finally, fine level information on various aspects of the data compression can be accessed 

 by the user via the large suite of  --show  options  (see Supplementary Information section 

 8)  .  For instance,  --show-stats  provides compression  statistics broken down by data type 

 within the file. We anticipate that such information will be insightful for end-users and 

 particularly useful when developing new compression algorithms. 

 3. Methods 

 3.1 Framework and architecture 
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 The Genozip framework (Figure 1) interprets the user’s command line, reads the source 

 genomic file (referred to as the  txt file  ), and divides  it into  vblocks  . Each vblock comprises a 

 certain number of full  txt file  lines, limited by  size that is determined by the user with the 

 --vblock  option (default: 16MB). By default, a  line  means an actual ASCII line in the  txt 

 file  ; however, this is flexible—e.g., for FASTQ, a  line  comprises four textual lines, and for 

 BAM it comprises one alignment record. 

 Once the Genozip framework has read the  vblock txt  data  into memory using its main thread 

 (called the  I/O thread  ; Figure 1), a separate  compute  thread  is spawned to segment the 

 vblock  . This segmentation step is followed by the  final compression step that ultimately 

 generates  z data  , which is the final compressed data  for the  vblock  . When the compression 

 step is completed, the compute thread terminates, and the compressed  vblock  is handed 

 back to the  I/O thread  that appends it to the  .genozip  compressed file being generated on 

 disk. 

 3.2. The segmentation step 

 A  segmenter  is a module that is specific to the file  format being compressed. Genozip 

 currently has nine segmenters, one each for FASTQ, FASTA, SAM, BAM, VCF, GVF, 

 PHYLIP, 23andMe, and Generic. If samtools  (Li  et al.  ,  2009)  is also installed, the SAM 

 segmenter can also handle CRAM files by reading them as SAM. The  Generic  segmenter 

 handles all other file formats for which genozip does not have a  segmenter  in a default 

 manner. Importantly, interested parties can add more segmenters to Genozip in the future. 

 The  segmenter  is called by the Genozip framework to  work on one line of  txt data  at a time, 

 and the job of the  segmenter  is to segment this line  into its individual data components, store 

 these in  contexts  (which are described in detail in  Supplementary Information section 2), and 

 declare how each context should be handled in the compression stage. 

 The segmenter starts by breaking up the  txt line  into  the top-level data fields and deciding 

 what to do with each data field. Broadly, it has six options: 

 1.  Placing the data directly in its appropriate  context  .  We refer to a short string of data 

 inserted into a context as a  snip  . Each new  snip  encountered  by the Genozip 

 framework is added to a  dictionary  within each  context  ,  and an index is added to the 

 dictionary  entry in a data buffer for this  context  called the  b250 buffer.  Accordingly, 
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 the  .genozip  file stores each  snip  only once and uses a numeric index to point to it 

 throughout the file. 

 2.  Further segmenting a field into its subfields  : Rather  than making a  snip  of the entire 

 field data as it appears in the file, the segmenter can insert a special  snip  type called 

 a  Container  , which defines the structure of the data  of this field, where the data itself 

 is stored in other  contexts  that are named in the  container.  Containers  can define 

 records containing multiple types of data, as well as arrays of similar data elements 

 or arrays of records. The entire  vblock  is described  as a single  Container snip  placed 

 in the TOPLEVEL  context  . 

 This is a key feature that enables the decompressor to be generic. Indeed, in most 

 cases, the decompressor need not have any built-in awareness of the details of each 

 file format. The file format structure is encoded in the data itself, and a  vblock  may be 

 reconstructed by traversing the data starting from the TOPLEVEL. 

 3.  Exploiting known relationships between fields, subsequent lines, and/or external data 

 to improve the compression. For that, the segmenter may define  contexts  as needed 

 — for example, it may store multiple fields in a single context or may decompose a 

 field into multiple contexts. It can be as simple as exploiting a mathematical 

 relationship between fields, but it can also be complex - for example, the sequence 

 data in FASTQ and SAM are aligned to a reference if the  --reference  option is 

 used. 

 4.  Using one of the Genozip’s framework built-in algorithms  .  Some relationships occur 

 frequently, for which Genozip has built-in algorithms. These include the  seg_pos 

 algorithm that exploits the nearness of position data in subsequent lines, if it exists 

 and  seg_id  algorithm that handles ID data that starts  with an alphabetical prefix 

 followed by a number (such as “rs23424”) as well as LOOKUP and DELTA vs. 

 another field on the same line or vs. the same field in a previous line or vs. the pair 

 file (in case of paired-end FASTQ files). Details about these built-in algorithms can be 

 found in Supplementary Information section 2. 

 5.  Preparing the data for a  specific  codec  . Rather than  inserting a  snip  , the segmenter 

 can store the data of a field in the  local  buffer  of the  context  in any proprietary way, in 

 preparation for consumption by a  specific  codec in  the compression stage. 



 6.  Declaring a  context  to be an  alias.  There are cases  where multiple fields contain data 

 with similar characteristics, in which case storing them in a single  context  can 

 improve compression. To achieve this, we can define a  context  as an  alias  of 

 another, essentially sharing their data. For example, in SAM format, there are 

 multiple Optional tags that express data in CIGAR format (MC:Z, OC:Z, and others), 

 which are all defined as aliases of a  context  named  @CIGAR  . 

 In the  Generic  segmenter used for unrecognized file  formats, the segmenter is trivial and 

 does not actually segment the data - instead, the entire  vblock  data is placed in a the  local 

 buffer of a single context. 

 A detailed example of how these six options work, as well as a full list of how each of the 

 nine segmenters in Genozip handles each data field appears in Supplementary Information 

 section 2. 

 3.3. Context management 

 Segmentation step: Each  vblock  maintains its own set  of  contexts  – the set consisting of one 

 context  for each data component. A context is a data  structure that includes the  dictionary  , 

 b250,  and  local  data buffers as well as additional  information. 

 Context merging step: We maintain one global set of similar  contexts  within an object called 

 the  z_file  to which we merge vblock  contexts’  dictionary  data after the segmentation is 

 completed for a  vblock  , thereby incrementally creating  a global dictionary containing, in a 

 particular  z_data  context  , all values of that appear  for that data component in the entire file 

 (except for singletons - see Supplementary Information section 2). 

 Cloning step: When a new  vblock  is created, the current  dictionary and related information of 

 each  context  are  cloned  from the  z_file  to the new  vblock  by the framework. 

 Writing step: After the compute thread terminates and the  vblock  is handed back to the I/O 

 thread, the I/O thread writes the  vblock  ’s  z_data  (containing  b250 and local  sections) to the 

 output  .genozip  file. The merged dictionary data is  written upon the completion of 

 computing of all  vblocks  . 



 Context  cloning, concurrent  dictionary  access and  context  merging in a multi-threaded 

 environment are difficult, and doing so with minimal synchronisation between threads to 

 avoid a bottleneck that would limit scaling CPU cores, is even more so. We employ 

 advanced multi-threading mechanisms that ensure that all threads can operate on the same 

 dictionaries concurrently while minimising the use of synchronisation objects like mutexes, 

 minimising memory copies, and ensuring O(1) dictionary lookups, uniqueness of dictionary 

 entries, and thread-safety. Details of how this is done are in Supplementary Information 

 section 6. 

 3.4 The compression step 

 Within the  compute thread  of any specific  vblock  ,  and once the segmentation is complete for 

 all lines and the contexts dictionaries have been merged back into  z_file  , the framework 

 proceeds to compress the two buffers of each  context  present in this vblock—namely, the 

 b250  and the  local  buffers. Each buffer is compressed  with one of the available codecs. 

 There are two types of codecs in Genozip: 

 Generic  codecs - these are lzma  (Pavlov, 2007)  , bz2  (Seward, 1996)  , bsc 

 (  http://libbsc.com/  ), and  none  . The first three are  standard codecs for which Genozip utilises 

 a modified version of the standard libraries, and the fourth is a codec that essentially keeps 

 the data as-is. 

 Specific  codecs - these are additional codecs that  compress a specific data type better than 

 the generic codecs and would often be  complex  codecs—which  means that they will perform 

 some processing of the data, and then complete the compression by applying one or more 

 of the built-in codecs.  Specific  codecs can be added  to compress any specific field of any 

 genomic file format. 

 For the  b250  and  local  buffers of each  context  , the  codec is selected automatically by 

 sampling approximately 100KB of the buffer data in the first  vblock  in which this  context  is 

 first encountered, and compressing it with each of the four codecs. The best codec is 

 selected by an algorithm that chooses the codec with the best compression ratio unless the 

 compression ratio between the best two codecs is close enough, and the execution time is 

 different enough, in which case it selects the faster codec of the two. Subsequent  vblocks 

 use the same codec and need not test again. In  --fast  mode, a modified selection 

 algorithm is used that is biased towards speed even at the expense of a small difference in 

 compression. 
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 A segmenter may specify a codec for the  local  buffer  of any particular  context  , overriding the 

 automatic selection. In the segmenters provided, we use this privilege only when we set the 

 codec to a  specific  codec. 

 Genozip currently has four  specific  codecs: 

 A.  acgt  - used for compression of a sequence of nucleotides,  which is expected to 

 contain mostly, but not necessarily exclusively, ‘A’, ‘C’, ‘G’ or ‘T’ characters. It is used 

 to compress FASTA sequence data and characters (bases) from the SEQ field of 

 FASTQ and SAM file formats that are not mapped to a reference. 

 B.  domqual  - used for compression of a string of Phred  quality-scores in SAM and 

 FASTQ formats, in the common case where there is one dominant score value. 

 C.  hapmat  - used for compression of a matrix of haplotypes  derived from FORMAT/GT 

 fields in VCF. The algorithm is described in  (Lan  et al.  , 2020)  and has been 

 re-implemented to serve as a codec. 

 D.  gtshark  - triggered by the  --gtshark  option, utilises  the software package GTShark 

 (Deorowicz and Danek, 2019)  as a codec for the same  haplotype matrix as  hapmat 

 as an alternative to  hapmat  . This was already implemented  in  (Lan  et al.  , 2020)  , 

 where we have shown it to be significantly better but significantly slower than  hapmat 

 for the FORMAT/GT data component in VCF files that have a large number of 

 samples. It has been re-implemented as a codec for FORMAT/GT on top of the new 

 framework and with a new fast in-memory  (rather than disk-based) communication 

 channel between  genozip  and  gtshark  . This is an example  of how Genozip can 

 be easily extended to incorporate new codecs for specific data types. 

 More details on the algorithms for each of these codecs can be found in the Supplementary 

 Information section 6. 

 3.5 Compressing against a reference 

 Genozip does not require a reference but takes advantage if one is available to better 

 compress FASTQ, SAM/BAM, and VCF data. 
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 To use a reference with Genozip, a  Genozip reference  file  must first be created using 

 genozip --make-reference  . This is a one-time step  for any particular reference FASTA 

 file. The Genozip reference file creation is implemented by segmenting the reference FASTA 

 data with a specialised segmenter, which generates a Genozip file containing a 

 pre-processed version of the reference data in a format that is readily usable by Genozip, as 

 well as hash tables for use of the Genozip Aligner, indexing data and additional metadata. 

 When using a particular Genozip reference file to compress data for the first time, Genozip 

 generates two cache files. These files are used to accelerate the loading of the reference 

 data and the Genozip Aligner hash tables in subsequent executions of Genozip, and may be 

 deleted if such acceleration is not needed. The acceleration is achieved by loading the 

 cache files, if they exist, using the operating system’s paging system rather than libc 

 allocated memory, allowing portions of the reference data to be paged-in as needed, and 

 also enables sharing of the loaded pages between concurrently running Genozip processes, 

 resulting in reduced memory consumption and instantaneous loading in the case of 

 concurrent Genozip instances. 

 The VCF segmenter uses reference data to avoid storing REF and/or ALT data and referring 

 to the reference if possible. Since the REF and ALT fields usually represent only a small 

 fraction of the information content of a VCF file, the gains are modest, however. 

 The SAM and BAM segmenters use reference data in two different ways, depending on 

 whether the  txt line  being segmented is aligned (i.e.,  contains values in the RNAME, POS, 

 and CIGAR fields) or not, and the FASTQ segmenter uses the reference similar unaligned 

 SAM/BAM: 

 1.  For an aligned SAM/BAM/CRAM  txt line  , the segmenter  decomposes the data into 

 three  contexts  :  SQBITMAP  ,  NONREF,  and  NONREF_X  .  SQBITMAP  is a bitmap 

 consisting of a bit for every base in the sequence that “consumes a reference”, as 

 defined in the SAM specification (  https://samtools.github.io/hts-specs/SAMv1.pdf 

 page 8) according to the CIGAR string. The bit is set to 1 if the base is the same as 

 the base in the reference data at its position. If not, the bit is set to 0, and the base 

 character is placed in  NONREF  . Bases in the sequence  that “do not consume a 

 reference”, according to the CIGAR string, are also placed in  NONREF  .  NONREF  is set 

 to be compressed with the  acgt  codec that requires  a second  context  for the 
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 CODEC_XCGT data, which is  NONREF_X  (see Supplementary Information section 

 6). 

 2.  For an unaligned SAM/BAM/CRAM  txt line  and a FASTQ  sequence line, the Genozip 

 Aligner is used. It utilises the same three  contexts  described above and two 

 additional ones:  GPOS  and  STRAND  . The Aligner algorithm  (see Supplementary 

 Information section 4) finds the position in the reference to which the sequence string 

 at hand best aligns. This algorithm is extremely fast as it does not attempt to find the 

 biologically correct alignment, just one that compresses well. The aligner determines 

 the location in the reference, using a coordinate called  gpos  (Global Position) - which 

 is a single 32-bit unsigned integer covering the entire reference genome, and 

 indicates whether it is forward or reverse complement relative to the sequence (which 

 we call  strand  ). The segmenter then stores the  gpos  and  strand  in the  local  buffers of 

 the  GPOS  and  STRAND  contexts, respectively (the strand  is stored as a bitmap with 

 ‘1’ meaning forward) and proceeds to populate the  SQBITMAP  and  NONREF 

 contexts as before, based on whether or not each base in the sequence matches the 

 corresponding base in the forward or reverse complement reference. 

 3.6 Indexing 

 While Genozip is designed as a compression tool rather than a data analysis tool, it also 

 contains some capabilities that allow direct integration into analysis pipelines. Chief among 

 these, is indexing of the data done by the Genozip framework during segmentation, which 

 then allows subsetting the data with the  genocat --regions  option: a Segmenter may 

 notify the Genozip framework of the chromosome (or contig) and position of each line being 

 segmented. As the segmentation progresses, the framework collects data per vblock - 

 namely, it records which chromosomes appear in the vblock, and the minimum and 

 maximum position of each chromosome within the vblock. These data are then emitted to 

 the generated compressed genozip file as the SEC_RANDOM_ACCESS section. 

 During  genocat --regions,  vblocks that contain no data  from the requested regions are 

 skipped entirely, while vblocks that do contain data from the requested regions are 

 decompressed, but only lines that are included in the requested regions are emitted. 

 In addition, Genozip reference files are also indexed in the same way, so when subsetting a 

 file that requires a reference (i.e. the  --reference  option is used), Genozip only reads the 



 vblocks of the reference file that overlap with the regions requested. 

 Currently, the segmenters for VCF, SAM, BAM, GVF and 23andMe implement this capability. 

 This indexing method is more coarse-grained than the BGZF-block level indexing that is 

 common in standard indexes of genomic file formats, as subsetting requires decompression 

 of entire vblocks (16MB of txt data in the default configuration) vs just BGZF blocks (64KB of 

 data), and hence subsetting is significantly slower. However, in practice, this may be 

 sufficient for many analysis applications. 

 4 Results 

 We evaluated the performance of Genozip by compressing genomic files as they most 

 commonly appear in real-world research and clinical situations - namely, already 

 compressed in fastq.gz, BAM, CRAM, and vcf.gz formats. Regarding CRAM, we tested two 

 different commonly used versions of  CRAM files - a version containing the same data as the 

 BAM file and a version optimised by binning quality data. For VCF, we tested a 

 single-sample file. We previously reported the compression performance of multi-sample 

 VCF using an earlier version of the HapMat codec in  (Lan  et al.  , 2020)  . For BAM, CRAM, 

 and FASTQ, we also tested with Genozip’s  --optimise  option. 

 The FASTQ, BAM, and VCF files (Table 1 and Supplementary Information Table S10) were 

 obtained from a public FTP server of the National Center for Biotechnology Information 

 (NCBI), while the CRAM files were generated from the BAM file using Scramble  (Bonfield, 

 2014)  with the highest compression ratio (-9 option)  and, in addition, for the binned-quality 

 CRAM, with the quality-binning option -B (Table 1). The reference file used was based on a 

 modified version of GRCh37 as required by the particular BAM file tested (see 

 Supplementary Information section 12) and was prepared with:  genozip 

 --make-reference $grch37-fasta-file  . 

 Genozip improved the compression of these already-compressed files in every scenario we 

 tested by a 1.2–5.7 factor (Figure 2 as well as Table S11 in the Supplementary Information). 

 In addition, we performed tests comparing Genozip’s compression ratio on raw 

 (uncompressed) files (Table S8 in the Supplementary Information), as well as compression 
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 and decompression time, to several popular tools. These additional results can be found in 

 the Supplementary Information section 12 and illustrated in Figure 3, Table 2 and 

 Supplementary Information Table S9. Again, in all cases tested, Genozip outperformed other 

 software for compression ratio by a 1.3-4.4 factor, while also faster than other tools in most, 

 but not all, cases. 

 Table 1: Files used for testing against already-compressed files.  These files are of five 
 formats commonly used in research and clinical settings. We demonstrate that Genozip can 
 significantly improve the compression for each of these files. See details of these files in 
 Supplementary Information Table S10 

 File type  File size  Genozip command 
 --optimise  added for the 
 Optimised test 

 .fastq.gz  3.6 GB 
 (R1+R2) 

 genozip --pair 
 $file-R1 $file-R2 -e 
 $ref-file 

 .bam  147 GB  genozip $file 
 -e $ref-file 

 .cram 
 (lossless) 

 102 GB  genozip $file 
 -e $ref-file 

 .cram 
 (binned) 

 79.5 GB  genozip $file 
 -e $ref-file 

 .vcf.gz  128 MB  genozip $file 
 -e $ref-file 



 Table 2: Raw-file benchmark results.  Results of compression  of uncompressed genomic 
 files with genozip and other commonly used tools for each file format. More details are 
 available in Supplementary Information Table S9 

 Tool  Ra�o  Compress �me  Decompress t. 
 VCF 
 pigz  15.9  1.9 sec  3.1 sec 
 bc�ools  11.7  23.82 sec  21.02 sec 
 bzip2  25.3  260.05 sec  43.37 sec 
 genozip  33.6  7.1 sec  6.53 sec 

 SAM 
 pigz  3.4  00:12:40.3  00:34:17.4 
 samtools  3.2  00:23:16.7  00:29:48.5 
 scramble -9  4.7  00:27:58.4  00:17:34.4 
 genozip -e  5.8  00:33:41.1  00:27:55.3 

 Op�mized cram: 
 scramble -9B  6.0  00:48:56.1  00:19:10.4 

 Op�mized genozip -9  7.6  00:30:51.1  00:20:38.0 

 FASTQ 
 pigz  4.2  00:14:34.5  00:34:17.4 

 bwa mem | samtools 
 sort | scramble -9  5.4  03:42:54.0  00:48:24.7 
 genozip -e  6.8  00:16:40.1  00:08:31.7 

 genozip -9e  18.6  00:08:52.3  00:05:26.4 

 5 Conclusion 

 Genozip provides not only excellent compression for raw (uncompressed) genomic files, but 

 also provides excellent compression when applied directly to already-compressed genomic 

 files, as is common in real-world applications. Genozip is also universal and works on all 

 common genomic files, uniquely so amongst currently available genomic file compressors. 

 Further, by providing a modular and extensible architecture, Genozip is also a framework 

 that can be used for rapid development and deployment of new compression algorithms for 

 established or emerging genomic data types and file formats. 
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 Fig.1. Genozip high-level architecture.  The Genozip  framework interprets and reads the 

 input file(s) in the main thread (I/O thread) and divides them into vblocks, which are then 

 segmented. Segmentation is followed by the compression step. Compressed vblocks are 

 sent back to the I/O thread to create the .genozip output(s). 



 Fig. 2. Sizes of Genozip-compressed files relative to already-compressed source files. 
 The blue bars represent the source files (see Table 1), with the corresponding file extensions 

 at the bottom. The orange and grey bars are for Genozip compression with the default, 

 lossless mode and the  --optimise  option, respectively.  See also results in Supplementary 

 Information Table S11. 



 Fig. 3. Raw (uncompressed) files benchmark results.  The three panels show 

 compression ratios of various relevant compression formats indicated at the bottom relative 

 to uncompressed VCF (left), SAM (middle) and FASTQ (right) files relative. See 

 Supplementary Information section 12 for more details. 
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 SI.1. Genozip high level architecture 

 Figure S1 (same as Figure 1 in main text) -  Genozip high-level architecture.  The 

 Genozip framework interprets and reads the input file(s) in the main thread (I/O thread) and 

 divides them into vblocks, which are then segmented. Segmentation is followed by the 

 compression step. Compressed vblocks are sent back to the I/O thread to create the 

 .genozip output(s). 



 At a high level, Genozip is a C language program tested to run on Linux, MacOS and 

 Windows (64bit). The same C program may be invoked by 4 command line commands: 

 genozip  ,  genounzip  ,  genocat  , and  genols  . The first  two have major code components 

 associated with them, described below.  genocat  essentially  executes  genounzip  where the 

 output goes to stdout and flags useful in pipeline analysis are made available.  genols  is lists 

 the genozip files in a disk directory along with some metadata. 

 Here we will describe the ZIP side (i.e. the compression side). The PIZ side (decompression) 

 follows a very similar architecture, where the inverse operations are carried out as expected. 

 The system was designed so that the logic related to compression of specific data elements 

 is mostly coded in the ZIP side, while the PIZ side is as generic as possible. The reason for 

 this is to allow the compressor to evolve, adding compression algorithms to an ever growing 

 list of data elements, without needing to change the decompressor or the file format. There 

 are a few exceptions to this that will be discussed. 

 When run, a Genozip process consists of one main thread (called the  I/O thread  ) that is 

 responsible for parsing the user’s command line, reading and writing files to disk, as well as 

 splitting the data stream into  vblocks  and spawning  additional threads (called  compute 

 threads  ) to do the CPU-intensive compression or decompression  work. 

 On the ZIP side, a  compute thread  consists of two  main stages: 

 ●  First to run is the  Segmenter  : this parses the uncompressed  file data (called  txt data  ) 

 first into individual logical lines (that are actual ASCII lines in all supported formats, 

 with the exception of FASTQ where every 4 ASCII lines are counted as one logical 

 line), and then parsing each line into its components, and finally applying a 

 compression algorithm specific to the type of each component. The output of these 

 component compression algorithms is stored in data structures called  contexts  . The 

 Segmenter is where most of the logic related to specific data types (SAM, FASTQ 

 etc) is located, while the rest of the Genozip code is not data-type specific. 

 ●  Second is the  Compressor  : it compresses each context  using the appropriate codec 

 that can be a  generic  or  specific  codec, as listed  in the main text. 

 On the PIZ side, a  compute thread  does the inverse: 



 ●  First to run is the  Decompressor,  which decompresses the  sections  as read from 

 disk to recreate the  contexts 

 ●  Second to run is the  Reconstructor  that is data-type  specific,  querying the various 

 contexts to losslessly reconstruct the original data. The instructions of which 

 algorithms to use for reconstruction are part of the data themselves and not hard 

 coded in the  Reconstructor  (with some exceptions)  — i.e., the  Reconstructor 

 effectively pulls data from contexts and applies various algorithms as directed by 

 instructions in the data. Upon completion, the  txt  data  is reconstructed in the  vblock  , 

 ready to hand back to the  I/O thread  . 

 Each  compute thread  receives a single  vblock  from  the I/O thread, processes it, and hands it 

 back to the  I/O thread  upon completion.  Compute threads  run in parallel and might complete 

 out-of-order. The  I/O thread  receives back the processed  vblocks  , writes them to disk in the 

 correct order, with each  context  within the  vblock  written as one or more  sections  in the final 

 Genozip output file. Genozip utilises as many processor cores as it can, unless the user 

 limits the number of threads with  --threads  . A substantial  part of Genozip consists of 

 thread synchronisation algorithms that are designed to ensure maximum CPU core 

 scalability with minimum bottlenecks. 



 SI.2. The Segmenter 

 General 

 This section expands and adds details to the segmenter description in the main paper. 

 A  segmenter  is a module that is specific to the file  format being compressed. Genozip 

 currently has eight segmenters, one each for SAM, VCF, FASTQ, FASTA, GVF, PHYLIP, 

 23andMe, and Generic. More segmenters can be added to the open source code by 

 interested parties. 

 The  segmenter  is called by the framework with one  line of  txt data  at the time, and the job of 

 the  segmenter  is to segment this line into its individual  data components, store these in 

 contexts  which will be described hereinafter, and  declare how each context should be 

 handled during the compression stage. 

 The segmentation process from the Segmenter’s viewpoint 

 We now explain how a segmenter works and how the framework interacts with one by 

 walking through a simple example of a single  txt line  ,  and explain in detail the logic related to 

 it. As an example, we use the following VCF line (the VCF header line is provided here only 

 for clarity) and the VCF segmenter. 

 CHROM POS ID    REF ALT QUAL FILTER INFO             FORMAT Smp1   Smp2 

 chr12 0   rs123 G   A   100  PASS   AC=1;AN=2;AF=0.5 GT:DP  1|1:37 1|0:32 

 The first step for the VCF segmenter is to break the  txt line  into the top-level data fields, 

 which are separated by a tab character in the case of VCF. This is a trivial task using macros 

 provided by the framework. 

 Next, the VCF segmenter needs to decide what to do with each data field. Broadly, it has six 

 options: 

 1.  The segmenter may  place the data directly in its appropriate  context  . This is the 

 simplest case, and indeed the most common one. In the case of the  txt line  above, 

 the VCF segmenter applies this strategy to the CHROM, QUAL, FILTER 



 fields—placing them in the CHROM, QUAL and FILTER  contexts  respectively. 

 The Genozip framework, in turn, would add these  snips  ,  to a  dictionary  within each 

 context  , if they are not already in this  context’s  dictionary, and would place an index 

 to the  dictionary  entry in a data buffer for this  context  called the  b250 buffer.  This way 

 the Genozip file stores each  snip  only once, and uses  a numeric index to point to it 

 throughout the file. 

 2.  The segmenter may  further segment a field into its  subfields  , and then for each 

 subfield recursively apply one of these six options. In this particular  txt line  , the VCF 

 segmenter  segments the INFO field to its subfields,  with each INFO tag being 

 considered a field. The structure of the INFO field, including the number of subfields 

 the tag prefixes (eg “AC=”) is represented in a data structure called a  Container  . This 

 Container  is created for this INFO field, and placed  as a  snip  in the INFO  context  . 

 The  Container  contains only the description of each  item  which together the  record 

 that is the INFO field (not the values themselves), so that  txt lines  that have the same 

 tag names in the same order in their INFO field will have the same INFO  snip,  and 

 hence the same index placed in the  b250  buffer. The  VCF segmenter will now need 

 to consider the values of the AC, AN and AF fields (“1”, “2” and “0.5”) and recursively 

 apply one of these six options to each of them. 

 A  Container  can also contain an array—in our example,  the entire set of samples in a 

 VCF line goes into one  Container  that describes the  tags (GT and DP in this case), 

 as well as the number of  repeats  (= the number of  samples; in this case, 2)—and is 

 placed in the SAMPLES  context  . As before, the GT and  DP values are not included 

 in the  Container  , and the VCF segmenter needs to recursively  choose one of these 

 six options for each of them. 

 The GT field is further segmented into its individual haplotype values as well as its 

 phasing value (‘|’ in this case). The VCF segmenter encodes this as a  Container 

 which contains an array where  repeats  =ploidy, and  each array entry has a single 

 item—the haplotype. The phase value is treated as the separator between repeats, 

 which is also defined in the  Container  data. This  Container  , once again not 

 containing the haplotype values themselves, is placed in the GT  context  . 

 Similarly, Optional fields in SAM are an array of records, and any specific Optional 

 field that is an array (i.e. SAM type ‘B’) is itself stored as a  Container  that is the array. 



 The INFO field in VCF and the ATTRS field in GVF are a  Container  containing a 

 record, with the items being the tags, etc. 

 All segmenters are required to have a single  Container  per  vblock  that goes into the 

 TOPLEVEL  context  . This  Container  describes the entire  vblock  —it is an array with 

 repeats  =number of lines in the  vblock  , and the items  describe the structure of a line 

 as defined for this file format. In the case of our example  txt line:  the TOPLEVEL has 

 10 items (CHROM, POS, ID, REF+ALT, QUAL, FILTER, INFO, FORMAT, SAMPLES 

 and EOL), where INFO and SAMPLES are themselves  Container  s  as described 

 above. 

 This is a key feature in enabling the decompressor to be generic. Indeed, the 

 decompressor need not have any built-in awareness of the details of each file format 

 because the file format structure is encoded in the data itself, and a  vblock  may be 

 reconstructed by traversing the data starting from the TOPLEVEL. 

 3.  The segmenter may  exploit known correlation between  fields  in order to improve the 

 compression. In the case of the  txt line  above, the  VCF segmenter employs this 

 strategy in two occurrences: 

 a.  Since the REF and ALT field are highly correlated, they are stored together 

 (“G A” in this  txt line  example) in a single context  REF+ALT. 

 b.  In the case of AC, AN, AF, the segmenter checks whether AC equals AN*AF 

 as expected with the common use of these tags in VCF files. If this is indeed 

 the case, the AN and AF fields are stored normally in the AN and AF  contexts 

 while the AC is simply stored as the  snip  “SPECIAL  AC”. Since normally we 

 would expect all AC values in a  vblock  to be AN*AF,  the AC dictionary will 

 contain in this case only a single entry “SPECIAL AC” and the  b250  data for 

 each  vblock  will have an entry for each line in the  vblock  for which we have 

 these INFO tags, but all values will be the same: the  dictionary  index of the 

 “SPECIAL AC” snip. This will cause the  b250  data to  compress to a trivial size 

 in the compression step. 

 Using SPECIAL AC will then require providing an extension to the 

 uncompress side called a  special reconstructor  for  AC.  genounzip  , when 

 encountering the “SPECIAL AC” snip in the  b250  of  the AC  context  , will call 



 the AC  special reconstructor  that will implement the specific special 

 reconstruction algorithm, in this case simply emitting the value of AN*AF. 

 Typically, we have a handful of special reconstructors for each file format that 

 represent opportunities to compress based on relationships between fields or 

 even use of external information. 

 Important to note, it is not an error if AN*AF is not equal to AC. It is not the 

 role of Genozip to enforce correctness of field values and it is always tolerant 

 if the value is not as expected. In this case, it will simply store the value of AC 

 in the AC context instead of “SPECIAL AC”. 

 SPECIAL algorithms may be as simple as multiplying AN and AF, or may be 

 as complex as needed. For example, we use the same mechanism to analyse 

 the SEQ field (nucleotide sequence data) in SAM and FASTQ files against an 

 external reference file. 

 SPECIAL algorithms are a powerful tool for encoding any type of relationship 

 between fields, and as such, may contribute significantly to the compression 

 ratio. However, this power comes at a cost, namely that the reverse algorithm 

 for retrieving the original value from the encoded value in combination with 

 the value of the related fields, must be encoded as a  SPECIAL reconstructor 

 on the decompressor side, thereby adding data-type-specific code to the 

 decompressor side, which we are attempting to minimize. 

 4.  The segmenter may:  use one of the genozip’s framework  built-in algorithms  . In our 

 txt line  example, we have two occurrences of this  strategy: 

 a.  The POS field uses the built-in  seg_pos  interface.  This inspects the POS 

 value compared to the previous line.If the absolute value of the difference is 

 at most 32000, it stores the snip “DELTA (  this_pos  - prev_pos)  ” in the POS 

 context  . If it is more than 32000, it stores “LOOKUP”  snip in the POS 

 context’s  dictionary  /  b250  , and the value of POS  itself as a 32 bit unsigned 

 integer in the POS context’s  local  buffer.  genounzip  ,  when encountering a 

 “LOOKUP” snip, reconstructs the value from the  local  buffer. 



 b.  The ID field uses the built  seg_id  interface. This attempts to split a  snip  into 

 an alphabetical and a numeric part—“rs” and “123” in our example. The  snip 

 stored in the  context  ’s  dictionary  would be “LOOKUP  rs” and the unsigned 

 integer value 123 will be stored in the  context  ’s  local buffer. 

 5.  The segmenter may  prepare the data for a  specific  codec  . The segmenter may store 

 the data of a field in any proprietary way, in preparation for consumption by a  specific 

 codec in the compression stage. In our example, the VCF segmenter stores the 

 haplotype data in a haplotype matrix stored in this  vblock  data structure, which will be 

 later compressed using the  hapmat  or  gtshark  codecs. 

 6.  The segmenter may  declare the field to be an  alias.  Sometimes it is beneficial to 

 store more than one field in a single  context  . For  example, the INFO/END tag (not in 

 our  txt line  example) is normally an integer with  a value between this line’s and the 

 next line’s POS value. Therefore, we alias INFO/END with the POS context, which 

 combined with the  seg_pos  interface normally creates  a series of DELTA  snips  with 

 delta values smaller than either POS or INFO/END would have on their own. 

 A full list of how each of the eight segmenters in Genozip handles each data field appears in 

 the Table S4  . 

 Pre-segmentation  Cloning  and post-segmentation  Merging 

 When the  segmenter  for a particular  vblock  is complete,  the framework merges each  context 

 created in this  vblock  , with the corresponding global  context  held in memory in an object 

 called the  z_file  . This merge does not affect the  b250  and  local  data that remains private to 

 the  vblock  , and is focused mostly on the  dictionary  data. Since segmentation of many 

 vblocks  happens in parallel in multiple threads, each  thread adding  snips  to their private 

 dictionary  fragment, with the possibility of multiple  parallel threads adding some identical 

 snips to their respective dictionary fragments, careful merger of the dictionary fragments into 

 the  z_file  global dictionary, as well as re-writing  the indices in the  vblocks  ’  b250  buffer is 

 required. 

 When the segmentation of a new  vblock  begins, the  global dictionary is  cloned  from the 

 z_file  to the local  context  in the new  vblock  . For  efficiency, no memory is actually copied but 

 rather a set of parameters is set to determine which dictionary entries within the  z_file 

 dictionary are available to each  vblock  . This synchronisation  algorithm is written carefully so 



 that merging of completed  vblocks  into the global dictionaries may occur at the same time as 

 active segmenters in other threads are accessing the very same dictionaries, and the access 

 by segmenting threads can be done without the use of synchronisation objects like mutexes, 

 which would create a bottleneck and limit the scaling to a large number of cores. 

 Singleton detection 

 The framework also includes a singleton detector: if a  snip  appears for the first time in a 

 particular  vblock  , and appears only once in this  vblock  ,  then it is placed in the context’s  local 

 buffer instead of in the  dictionary  and  b250  . This  way, we avoid bloating global dictionaries 

 with singletons and keep singletons local to the context. This is important, since  vblock 

 memory is freed once the output data of this  vblock  is written to disk, while the global 

 dictionaries remain in memory until compression of the entire file is complete. 

 Hash tables & the Snip Diversity Estimation Algorithm 

 When a  segmenter  calls the framework to enter a  snip  into a context, the framework first 

 needs to lookup that  snip  a the dictionary to know  whether it is new and should be added to 

 the context’s local dictionary fragment, a new index generated, and that new index added to 

 the local  b250  data, or whether this  snip  already  exists, in which case the existing dictionary 

 index should be added to the local  b250  . To perform  this lookup in O(1), each context also 

 contains a hash table that allows rapid lookup. To achieve O(1), it is necessary for the target 

 range of the hash function, and hence the initial size of the hash table, to be proportionate 

 with the total number of distinct  snips  across the  entire file for any particular  context  . This 

 varies drastically between  contexts  , and indeed, it  can be very large for contexts for which 

 we expect millions of distinct snips (resulting in a hash table size of tens of MBs of RAM or 

 more) , or very small (in case the file has only a handful of unique values of a particular field) 

 for contexts like FORMAT in VCF. 

 The challenge we face, is to estimate, without reading the entire file, how many unique 

 values exist in the entire file for each particular context. For this we have developed the  snip 

 diversity estimation algorithm  : 

 In most  contexts  , many new snips appear early in the  file, but as we progress in the file, 

 since many of the snips were already observed before, less new snips are encountered. To 

 estimate the expected total number of snips of a particular  context  , we analyse the data for 

 this  context  for the first  vblock  in which this  context  is encountered. We look at the first 



 derivative within this  vblock  :the density of new  snips  within a context—d(new_snips)/d(lines), 

 as well as the second derivative—d(density)/d(lines). We then estimate the total file size, 

 which might not be known if the file is compressed (with gzip, bzip2, xz, bgzip, bam or bcf) or 

 if it is piped from stdin. We use the values of the first and second derivative and the 

 estimated file size to estimate the number of unique  snips  across the entire file. Performing a 

 simple mathematical integral to reach the results yields a poor match to the real values, and 

 hence we enhance this with several heuristics based on observations of real world data. The 

 full algorithm can be found in the function  hash_get_estimated_entries()  . 

 The Snip format 

 Snips stored by a Segmenter in a context may be simply the text of the data field itself; 

 indeed, this is most often the case. However, Genozip has a number of snip opcodes that 

 allow storing the data in a more compressible format, where applicable. In this case, rather 

 than storing the data string as the snip, we construct a snip starting with one of the opcodes 

 in the table below (each being one byte), followed by the required parameters. The 

 decompression side has built-in algorithms for reconstructing the data field’s string based on 

 the data in the snip, while the  b250  array consisting  of these snips is expected to be less 

 random and/or with a smaller dictionary, and hence compress better than if we were to insert 

 the data itself. 

 Table S1: Snip opcodes.  When a snip has one of these  values as its first byte, it is 
 reconstructed as prescribed in this table, rather than just copying the snip. 

 Name  Parameters  Reconstruction algorithm 

 LOOKUP  prefix  (optional)  prefix  followed by the next value from  local 

 OTHER_LOOKUP  other_context 
 length  (optional) 

 The value from  local  of  other_context  . If local 
 is of type LT_SEQUENCE, then use  length 
 characters. 

 PAIR_LOOKUP  -  Copy value in the matching row in the paired 
 file (when compressing FASTQ with  --pair  ) 

 CONTAINER  structure  Recursively reconstruct the values from the 
 contexts listed in structure, and combine 
 them as specified 

 SELF_DELTA  delta  Value on previous line +  delta  (  delta  may be 
 negative) 

 OTHER_DELTA  other_context 
 delta 

 Last value from  other_context + delta 



 PAIR_DELTA  delta  Value of matching row in paired file +  delta 

 SPECIAL  algorithm 
 params (optional) 

 Reconstructor to use the requested  algorithm 
 with  params 

 The  Context  data structure 

 Genozip achieves its flexibility relative to file formats, by compressing individual data 

 components of files into  contexts  , which are based  on a recursive data format called  snips 

 which allows arbitrarily complex component-specific logic. It is recursive in the sense that 

 snips  might themselves be containers containing other  snips. 

 Each context contains three data  buffers  : 

 1.  The  dictionary.  This buffer is generated as the txt  file is segmented, containing a 

 single entry for each snip that appeared so far in the file. When a  vblock 

 segmentation commences, the dictionaries of all contexts, as updated by previously 

 completed vblocks, are cloned into this vblock as are accessed on a read-only basis. 

 If new snips are discovered in this vblock that are not already in their respective 

 dictionary, vblock-private dictionary fragments are created. When a vblock 

 segmentation completes, these fragments are integrated back into the global 

 dictionary. Care is taken to make sure the global dictionary contains exactly one entry 

 per snip, even though multiple vblocks running in parallel might discover the same 

 snip and add it to their respective dictionary fragments. 

 2.  The  b250.  This buffer contains 32-bit indices into  the dictionary of all the snips of this 

 context  in a particular  vblock  , in the order they  will be read by the decompressor. If 

 no  b250  buffer exists, the decompressor will take  the data from  local  (see below), but 

 if it does exist, it must contain exactly one entry for each related data component in 

 the txt file. To improve compression of the b250 buffer, some 8-bit values (instead of 

 32 bit) are used in some cases: A. if the snip the most, 2nd most or 3rd most frequent 

 snip (as measured in the first vblock in which this context is used) B. If the snip index 

 is one higher than the index of the previous snip in this b250 (this will result in a 

 highly compressible run in some cases) C. missing non-GT values in VCF samples. 

 3.  The  local  buffer. This buffer contains data that is  private to this  vblock  and is not in 

 the dictionary. Some contexts use the  local  buffer  to contain singleton snips that are 



 expected to appear, as determined by a heuristic algorithm, only in a single  vblock  , 

 while some contexts use the  local  buffer to store  all the data, when this data is 

 expected to be mostly private to this  vblock  , rather  than using a dictionary. A context 

 may utilise  local  to store either  snips  or alternatively  simple data, such as integers or 

 bitmaps. 

 This context based data structure is extremely flexible because it is independent of any 

 particular genomic file format: when coding a segmenter for a particular file format we may 

 pick and choose the most appropriate algorithms for each context, or develop new ones if 

 needed, and  genozip  as a system may evolve fast in  the future, by easily updating 

 algorithms for specific contexts. Indeed,  genozip  can also serve as a good testing platform 

 for new algorithms that focus on specific data elements of genomic data, by allowing 

 creating or modifying contexts these specific elements. 

 We illustrate this by describing four contexts: POS (as it appears in VCF, SAM and 

 23andMe), ID (as it appears VCF, 23andMe, GVF), XA tag in SAM and Compound Field. A 

 full list of all algorithms follows. 

 As explained above, a snip is created by the Segmenter (compressor side) is usually 

 reconstructed as-is by the Reconstructor (decompress side), unless it begins with one of the 

 special opcodes, which may be followed by parameters. 

 The built-in  POS  algorithm 

 The POS algorithm is one of the built-in framework algorithms that segmenters may use. It is 

 designed for numeric fields that contain a 32-bit unsigned value, and have the property that 

 subsequent lines tend to have values that are quite near each other. This is a characteristic 

 of the fields that are a coordinate within a specific chromosome, and hence the name. For 

 example, this is the case for the POS field in VCF, the POS and PNEXT fields in SAM, the 

 POS field in 23andMe. It also appears in various optional fields. 

 This is a good example of how a particular algorithm, in this case one designed to handle 

 POS data, works with the three context buffers. 

 In this example, let’s assume we have 3 lines in a particular vblock of a txt file (for example a 

 VCF or SAM file), with POS values of 1000, 1500 and 10000000: 



 Table S2: SELF_DELTA example.  Example the contents  of the  b250  and  local  buffers of a 

 POS  context  , after segmenting the values 1000, 1500,  and 10000000 

 Value  dictionary  b250  local 

 1000  “LOOKUP”  0  1000 

 1500  “  SELF_DELTA  500”  1 

 1000000  0  1000000 

 As we can see, 1000 is the first POS value in this  vblock  . Since this is the first POS value, it 

 will be stored as an unsigned 32bit integer in  local  ,  and the snip “LOOKUP” is added to the 

 dictionary—telling the decompressor to lookup the value in local. Finally, the value 0, the 

 index of the snip “LOOKUP” in the dictionary, is added to  b250  . 1500, the second POS 

 value, is encoded as a delta vs. the previous line. Hence we add the snip “  SELF_DELTA 500” 

 to the dictionary, store the dictionary index of this snip, 1, in  b250  , and nothing in  local.  The third 

 POS value, 1000000, is deemed to be too distant from the previous value 1500—beyond the 

 defined threshold which is 32000—to be worthy of a delta. It is therefore stored as a “LOOKUP” 

 snip. We already have a “LOOKUP” in the dictionary, so we needn’t add another one: just place 

 its index, 0, in our  b250  and the value, 1000000,  in  local  . 

 The built-in  ID  algorithm 

 This is another build-in algorithm the framework provides segmenters. 

 Genomic data often contains IDs that are structured as a string containing a letter prefix, 

 followed by a numeric suffix. Examples include the ID field in VCF, Dbxref attribute in GVF 

 and EnstID identifiers that often appear in GVF attributes. 

 Table S3: ID example  . Example the contents of the  b250  and  local  buffers of an ID  context  , 
 after segmenting the values “rs999”, “strange_id” and “rs123” 

 Value  dictionary  b250  local 

 rs999  “LOOKUP rs”  0  999 

 strange_id  “  strange_id  ”  1 

 rs123  0  123 

 In this example, rs999 is the first ID value in this  vblock  . It is separated to its numeric 



 component, 999, which is stored in local, and its letter component, rs, which is combined 

 with LOOKUP to create the snip “LOOKUP rs”. This instructs the decompressor to output 

 “rs” followed by the value looked up from  local  . Finally,  the dictionary index of this snip, 0, is 

 placed in  b250  . 

 The second ID value, strange_id, does not comply with our assumption regarding the format 

 of IDs, namely being composed of letters followed by numeric characters. We therefore 

 stored it as a simple snip “strange_id”, with the dictionary index of this snip, 1, placed in 

 b250  . This demonstrates the general approach of the  various context algorithms: a specific 

 algorithm is designed to optimise the compression based on assumed data format, but the 

 algorithm can always handle data which is not compliant to the format, as long as the 

 general file format rules (as defined in the file format specification—e.g., the VCF or SAM) 

 are not violated. 

 The third ID value, rs123, is similarly decomposed with the index of the already existing 

 “LOOKUP rs” snip, 0, placed in  b250  and the numeric  value in  local  . 



 The built-in  Container  algorithm 

 A Segmenter may define  Container  snips. 

 We saw some examples of  Container  snips above. Here  we take a closer look at how a 

 Container  snip is formed. 

 A  Container  snip is one that contains 0 or more  repeats  of a collection of items, collectively 

 called a record: 

 -  All elements of an array have the same structure—each is a record of items 

 -  The items are defined by their  context 

 -  Each item within a record might be of a different type and its values go into a specific 

 context. 

 -  Each item may have prefix—the same prefix is used for this item in all records 

 -  Each item and the entire record might have a one or two character separator. The 

 same separator is used for all records. 

 Note that the  Container  snip only defines the structure  of data; the values themselves of 

 each item are stored in their respective contexts. These values may themselves be 

 Container  snips, enabling the ability of genozip to  define data formats recursively. 

 Let’s look at an example—the SA:Z optional tag in SAM: 
 SA:Z:chr1,1000,+,151M,10,2;chr2,2000,-,151M,10,2 

 This tag is defined in  REF  as as an array of records: 

 “SA:Z:(rname ,pos ,strand ,CIGAR ,mapQ ,NM ;)+” 

 In this case of SA, the  Container  snip will look like  this: 

 (prefix=”SA:Z:”, repeats=2, (@RNAME,’,’), (@POS,’,’), (@STRAND,’,’), (CIGAR,’,’), 

 (@MAPQ,’,’), (NM:i,’;’)) 

 This  Container snip  contains a prefix, and 2 repeats  of 6 items each. The first 5 items have a 

 ‘,’ separator and the 6th has a ‘;’ separator. The decompressor reconstructing this snip will 

 reconstruct the data by querying these six contexts (@RNAME, @POS, @STRAND, 

 CIGAR, @MAPQ and NM:i), twice for each, as well as insert the prefix separators in the 

 appropriate places. 

http://samtools.github.io/hts-specs/SAMtags.pdf


 In this case, @RNAME, @POS, @STRAND and @MAPQ are contexts that are shared 

 between the SA:Z, OA:Z and XA:Z tags in SAM. CIGAR is shared with the primary CIGAR 

 field of SAM, an NM:i is shared with the NM:i tag in SAM. 

 The  Container snip  logic is extremely flexible in  its ability to represent different types of data. 

 The number of items in a  Container  snip  as well as  the number of repeats and the 

 separators is in no way fixed; indeed, every individual  snip  can be defined as needed. 

 The built-in  Compound Field  algorithm 

 A segmenter may use this algorithm to decompose a string value into logical components, 

 by breaking it at predefined separators. The number of subfields is variable, and each 

 occurrence may have a different number of subfields. 

 This context algorithm is used for the QNAME field in SAM and the Description lines in 

 FASTQ and FASTA. 

 The  Compound Field  is built on top of a  Segmented  snip: it creates  contexts  for each 

 subfield, and results in a  Segmented  snip with one  record and all subfields. The Container 

 snip itself is stored in the main context, while each subfield is stored in its own subfield 

 context. 

 Let’s look at an example: a QNAME field in the first two lines of a SAM file: 
 A00488:21621:1078 

 A00488:21766:1078 

 When processing each one of these values, the  Compound  Field  algorithm splits this string 

 by the separator which is ‘:’ (colon) in this case. Each component is then placed in its ordinal 

 Q*NAME context, with * being 0 for the first component, 1 for the second etc (we used the 

 numerals 0-9 followed by A-Z). It then places a  Container  snip  in the QNAME context: 

 The first value  A00488:21621:1078  causes 4 contexts  to update: 

 Q0NAME.dictionary ← ‘A00488’   Q0NAME.b250 ←0  (index into the dictionary) 

 Q1NAME.dictionary ← ‘  21621  ’   Q1NAME.b250 ←0 

 Q2NAME.dictionary ← ‘  1078  ’     Q2NAME.b250 ←0 



 QNAME.dictionary ← CONTAINER  (repeats=1, (Q0NAME,’:’), (Q1NAME,’:’), (Q2NAME, ‘’))’ 

 QNAME.b250 ← 0 (index into the dictionary) 

 The second value  A00488:21766:1078  causes 4 contexts  to update: 

 Q0NAME.b250 ← 0 (identical to previous line, index into an existing snip in the dictionary) 

 Q1NAME.dictionary ← ‘  SELF_DELTA 145  ’   Q1NAME.b250  ←1 (delta vs previous line) 

 Q2NAME.dictionary ← ‘  SELF_DELTA 0  ’       Q2NAME.b250  ←1  (delta vs previous line) 

 QNAME.b250 ← 0 (  Container snip  is identical to previous  line, i.e., same index) 

 Note that in the common case where the entire file has QNAME data of the same format, we 

 will have only one one item (one  Container snip  ) in  the QNAME context dictionary, and the 

 entire QNAME b250 will be a run of 0’s, compressing to a trivial size. Similarly, the other 

 components also typically compress very well either because they are frequently identical 

 between consecutive lines, or a small delta between consecutive lines. 

 The built-in  Special Snip  mechanism 

 In most contexts, the Segmenter (i.e. compression side) forms snips with one of the built-in 

 algorithms, therefore, no code is required on the Reconstructor (i.e. decompress) side that is 

 specific to this context. This gives us flexibility of evolving genozip by improving how we 

 compress various contexts by coding the Segmenter only, allowing older genozip 

 decompressors to still correctly reconstruct the new files. 

 However, in a few cases the desired algorithm is specific to the data component at hand, 

 and cannot be generalised—as described above for the INFO/AC field in VCF. In these 

 cases, we create a “  Special snip  ” that redirects the  Reconstructor to execute a special 

 algorithm. This requires code in both the Segmenter and Reconstructor. 

 A  Special snip  contains the ID of the algorithm, and  optionally parameters of the algorithm. 

 Two C functions implementing the logic of any particular special snip must be provided: one 

 for segmenting during, and the other for reconstructing during decompression, and the 

 special snips must be declared in the header file of their data type (eg vcf.h, sam.h etc). 

 When a Special Snip algorithm is defined by a Segmenter, the Segmenter need not use it for 

 all lines. Indeed, for any particular data component, the segmenter may choose to store a 

 Special Snip for some lines and it may store data directly for other lines. This is commonly 

 done when we  expect  , based on our knowledge that a  value of a field may be expressible by 



 a formula of data in other fields and/or external data. The segmenter will check for any 

 particular line, whether our formula is indeed correct for the data of that line—and if it is, 

 store the Special Snip providing the information needed by the Special Snip’s reconstructor 

 function to reconstruct the data—or whether our formula is not correct for this line, in which 

 case the segmenter can just store the data as is. 



 Full list of contexts used, by file type 

 Table S4: List contexts by data (file) type.  Each  data type as a default set of contexts 
 listed in this table. Additional contexts may be created to store optional fields (INFO and 
 FORMAT fields in VCF, Optional fields in SAM/BAM etc). 

 Name  Snip  local  use 

 SAM 

 RNAME  As-is. Used for both RNAME and RNEXT 
 fields. 

 - 

 QNAME  Container: Compound field  - 

 Q?NAME  Components of compound field: 
 If  numeric 

 SELF_DELTA 
 Else 

 As-is 

 FLAG  As-is  TEXT: Singleton snips 

 POS  POS algorithm as described above  UINT32: POS values if too 
 distant from previous POS 
 for delta 

 MAPQ  As-is  TEXT: Singleton snips 

 CIGAR  As-is  TEXT: Singleton snips 

 PNEXT  OTHER_DELTA POS  delta  UINT32: PNEXT value if too 
 distant from POS for delta 

 TLEN  if  a non-zero value that is the negative of 
 the previous line: “  Δ  -” 
 Else if  tlen>0 and pnext_pos_delta>0 and 
 seq_len>0:  SPECIAL (  TLEN, tlen - 
 pnext_pos_delta - seq_len) 
 Else  : As is 

 TEXT: Singleton snips 

 OPTIONAL  Container—one item per SAM tag  TEXT: Singleton snips 

 SQBITMAP  -  BITMAP: 0 if the base 
 should be taken from the 
 reference, 1 if it should be 
 taken from NONREF (used 
 for SEQ and E2:Z) 

 NONREF  -  TEXT: Based that differ from 
 the reference 
 (used for SEQ and E2:Z) 



 GPOS  -  UINT32: Position within the 
 reference 
 (used for SEQ and E2:Z) 

 STRAND  -  BITMAP: 1 if forward, 0 if 
 reverse complement 
 (used for SEQ and E2:Z) 

 QUAL  -  TEXT: QUAL data  or 
 DOMQUAL: data 
 (used for QUAL and U2:Z) 

 QDOMRUNS  -  UINT8: Dom run lengths if 
 DomQual algorithm is used 
 (used for QUAL and U2:Z) 

 SA:Z  Container—array of: (@RNAME, @POS, 
 @STRAND, CIGAR, @MAPQ and NM:i) 

 TEXT: Singleton snips 

 OA:Z  Container—array of: (@RNAME, @POS 
 @STRAND, CIGAR, @MAPQ and NM:i) 

 TEXT: Singleton snips 

 XA:Z  Container—array of: (@RNAME, @POS, 
 @STRAND, CIGAR and NM:i) 

 TEXT: Singleton snips 

 @RNAME  As-is (a subfield of SA/OA/XA)  TEXT: Singleton snips 

 @POS  -  UINT32: numeric values (a 
 subfield of SA/OA/XA) 

 @STRAND  As-is for SA,OA ; sign of POS for XA  TEXT: Singleton snips 

 @MAPQ  As-is (a subfield of SA/OA)  TEXT: Singleton snips 

 NM:i  As-is—shared between NM:i tag and NM 
 values within SA,OA,XA 

 TEXT: Singleton snips 

 MD:Z  If  seq_len implied by MD:Z is identical to 
 seq_len implied by CIGAR: 
 SPECIAL (MD  , value where final number is 
 replaced with ‘*’). For example:  119C31 
 →  119C*  . In many cases there will be just 
 a number that equals the seq_len which 
 will be replaced ‘*’, thereby making a highly 
 compressible  b250  . 
 Else  : As-is 

 TEXT: Singleton snips 

 BD:Z 
 BI:Z 

 If  the length is equal to seq_len: 
 The data is stored in  local  of BD_BI 
 context, with each two bytes representing 
 one byte from BD and one byte which is 
 the delta between the byte from BD and the 
 corresponding byte from BI. 
 The BD and BI Snips themselves are: 
 SPECIAL  (BD_BI) 

 BI data (either delta vs BD 
 or As-is) 



 Else  : As-is 

 AS:i  If  seq_len >= value 
 SPECIAL (AS, seq_len - value) 
 Else 
 As is 

 TEXT: Singleton snips 

 Numeric 
 array tags *:B 

 Container—one item, repeats=array_len  TEXT: Singleton snips 

 All other 
 SAM tags 

 As-is  TEXT: Singleton snips 

 EOL  As-is End of line—either ‘\n’ (Unix-style) or 
 ‘\r\n’ (Windows-style) 

 TEXT: Singleton snips 

 VCF 

 CHROM  As-is  - 

 POS  POS algorithm as described above. Used 
 for both the POS field and the INFO/END 
 tag 

 UINT32: POS values if too 
 distant from previous POS 
 for delta 

 ID  ID algorithm as described above  UINT32: numeric 
 component of ID 

 REFALT  If  --reference  /  --REFERENCE  is used: 
 If  REF = reference value, set REF to ‘-’ 
 If  ALT = reference value, set ALT to ‘-’ 

 If  ALT is a single base (i.e. SNP) that is the 
 common ALT of REF (A  ↔G; C↔T), set ALT 
 to ‘+’ 

 If  either ALT or REF are ‘+’ or ‘-’ 
 Special (REFALT, REF, ALT) 

 Else 
 As-is 

 TEXT: Singleton snips 

 QUAL  As-is  TEXT: Singleton snips 

 FILTER  As-is  TEXT: Singleton snips 

 INFO  Prefix followed by Container: 

 Prefix is the INFO string including the tag 
 names, ‘=’ and ‘;’ but excluding the values 

 Container contains an item (context) for 
 each INFO tag which has a value 
 (repeats=1) 

 Example: “AC=1;AN=2;MYFILTER” 
 “AC=;AN=;MYFILTER 
 Container  (repeats=1, (AC,’’), (AN,’’))” 

 TEXT: Singleton snips 



 INFO/SVLEN  If  a SVLEN is negative and equal to 
 POS-END 

 Special  (SVLEN) 
 Else 

 As-is 

 TEXT: Singleton snips 

 INFO/AC  If  AC = AN * AF 
 Special  (AC) 

 Else 
 As-is 

 TEXT: Singleton snips 

 INFO/END  Alias of POS 

 All other 
 INFO tags 

 As-is  TEXT: Singleton snips 

 FORMAT  As-is  TEXT: Singleton snips 

 FORMAT/GT  Container with one item, and 
 repeats=ploidy, with item separator being 
 the phase character (‘/’ or ‘|’). 

 The haplotype data is stored in  GT.local  , as 
 a matrix of lines x haplotypes. The matrix 
 padded as needed to the maximum ploidy 
 in this vblock, or in case of missing 
 samples or lines in the vblock without GT. 
 This matrix is then compressed at the 
 compression stage with a  specific  codec, 
 either  hapmat  (  REF  ) or  gtshark  (  REF) 

 FORMAT/DP  If  equal to INFO/DP 
 OTHER_DELTA  (INFO/DP, 0) 

 Else 
 As-is 

 - 

 FORMAT/ 
 MIN_DP 

 OTHER_DELTA  (FORMAT/DP, 
 DP-MIN_DP) 

 - 

 FORMAT/GL  If  largest probability value can be 
 calculated from the other values: 

 Remove the largest probability value 
 Else 

 As-is 

 - 

 All other 
 sample 
 subfields 

 As-is  There is no  b250  or  local 
 sections for sample data; 
 b250  data is stored for all 
 subfields together in a 
 special  genotype  section as 
 described in REF 

 EOL  As-is End of line—either ‘\n’ (Unix-style) or 
 ‘\r\n’ (Windows-style) 

 TEXT: Singleton snips 



 GVF 

 SEQID  As-is  - 

 SOURCE  As-is  TEXT: Singleton snips 

 TYPE  As-is  TEXT: Singleton snips 

 START  POS algorithm as described above.  UINT32: START values if 
 too distant from previous 
 START for delta 

 END  POS algorithm as described above, with 
 OTHER_DELTA  vs START 

 UINT32: END values if too 
 distant from START for delta 

 SCORE  As-is  TEXT: Singleton snips 

 STRAND  As-is  TEXT: Singleton snips 

 PHASE  As-is  TEXT: Singleton snips 

 ATTRS  Same as VCF INFO  TEXT: Singleton snips 

 ATTRS/ID  POS algorithm  UINT32: ID values if too 
 distant from START for delta 

 ATTRS/ 
 Dbxref 

 ID algorithm  UINT32: numeric 
 component of ID 

 ATTRS/Varia 
 nt_effect 

 Container  with repeats as appears in the 
 value, and 4 items: V0arEff, V1arEff, 
 V2arEff, ENSTid 

 TEXT: Singleton snips 

 ATTRS/sift_p 
 rediction 

 Container  with repeats as appears in the 
 value, and 4 items: S0iftPr, S1iftPr, S2iftPr, 
 ENSTid 

 TEXT: Singleton snips 

 ATTRS/ 
 polyphen_pre 
 diction 

 Container  with repeats as appears in the 
 value, and 4 items: P0olyPhp, P1olyPhp, 
 P2olyPhp, ENSTid 

 TEXT: Singleton snips 

 ATTRS/ 
 variant_pepti 
 de 

 Container  with repeats as appears in the 
 value, and 3 items: V0arPep, V1arPep, 
 ENSTid 

 TEXT: Singleton snips 

 ENSTid  ID algorithm  UINT32: numeric 
 component of ID 

 V?arEff 
 S?iftPr 
 P?olyPhp 
 V?arPep 

 As-is  TEXT: Singleton snips 

 ATTRS/Refer 
 ence_seq 

 As-is (also used to store Variant_seq 
 and ancestral_allele) 

 TEXT: Singleton snips 



 ATTRS/ 
 Variant_seq 

 Alias of ATTRS/Reference_seq 

 ATTRS/ance 
 stral_allele 

 Alias of ATTRS/Reference_seq 

 All other 
 ATTRS tags 

 As-is  TEXT: Singleton snips 

 EOL  As-is End of line—either ‘\n’ (Unix-style) or 
 ‘\r\n’ (Windows-style) 

 TEXT: Singleton snips 

 23andMe 

 CHROM  As-is  - 

 POS  POS algorithm as described above.  UINT32: POS values if too 
 distant from previous POS 
 for delta 

 ID  ID algorithm  UINT32: numeric 
 component of ID 

 GENOTYPE  -  TEXT: 2 characters per 
 genotype 

 EOL  As-is End of line—either ‘\n’ (Unix-style) or 
 ‘\r\n’ (Windows-style) 

 TEXT: Singleton snips 

 FASTQ 

 CONTIG  As-is  - 

 DESC  Container: Compound field  TEXT: Singleton snips 

 D?ESC  Components of compound field: 
 If  numeric 

 SELF_DELTA 
 Else 

 As-is 

 E1L 
 E2L 
 E3L 
 E4L 

 As-is End of line for each one of the 4 txt 
 lines that make up a FASTQ logical line 

 TEXT: Singleton snips 

 SQBITMAP  -  Same as in SAM 

 NONREF  -  Same as in SAM 

 GPOS  -  Same as in SAM 

 STRAND  -  Same as in SAM 

 QUAL  -  Same as in SAM 



 QDOMRUNS  -  Same as in SAM 

 FASTA 

 CONTIG  As-is (first component of description)  - 

 DESC  Container: Compound field  TEXT: Singleton snips 

 D?ESC  Components of compound field: 
 If  numeric 

 SELF_DELTA 
 Else 

 As-is 

 LINEMETA  Special snip  containing instructions on how 
 to reconstruct a contig or part of a contig in 
 this vblock 

 TEXT: Singleton snips 

 SEQ  -  TEXT: sequence 

 COMMENT  -  TEXT: comment lines 

 GENERIC 

 DATA  -  All data 

 PHYLIP 

 ID  -  SEQUENCE: ID data 

 SEQ  -  SEQUENCE: SEQ data 

 EOL  As-is End of line (Unix / Windows)  TEXT: Singleton snips 



 SI.3. Optimisations 

 Genozip, by default, is strictly lossless. However, it also offers optimisations that modify the 

 data—modifications that are designed to be harmless for typical downstream analysis but 

 significantly improve the compression ratio. The user may activate all optimisations with 

 --optimise  (or  --optimize  or  -9  ) or alternatively,  only specific optimisations with their 

 respective command line options listed in Tables S5. 

 Table S5: Optimisations.  Options that can be used  with  genozip  that modify the data to 
 make it more compressible.  --optimise  (or  --optimize  )  combines all these options 

 Command line  File 
 types 

 Algorithm 

 --optimize-sort  VCF 
 GVF 

 INFO (VCF) and ATTRS (GVF): Within each line, tags 
 are sorted alphabetically 

 --optimize-PL  VCF  PL: Phred values of over 60 are changed to 60 

 --optimize-GP  VCF  GP: Numbers are rounded to 2 significant digits 

 --optimize-VQSLOD  VCF  VQSLOD: Rounded to 2 significant digits 

 --optimize-QUAL  SAM 
 FASTQ 

 QUAL (SAM, FASTQ) and U2:Z (SAM): quality phred 
 scores are binned, an similar to Illumina binning, but 
 extended 

 --optimize-ZM  SAM  ZM:B: Negatives are changed to zero, and positives 
 are rounded to the nearest 10 

 --optimize-DESC  FASTQ  Replaces the description line with 
 '@filename:read_number' 

 --optimize-Vf  GVF  Variant_freq: Rounded to 2 significant digits 



 SI.4. Compression against a reference and the Genozip Aligner 

 Overview 

 Genozip provides the ability to compress against a reference genome, in four cases: 

 a.  FASTQ files 

 b.  Unaligned SAM files 

 c.  Aligned SAM files 

 d.  VCF files (REF and ALT fields) 

 The reference is used in two distinct ways: in cases c and d, the file contains the position in 

 the reference file, and we simply compare the file data to the reference data at the position 

 provided. In cases a and b, the file does not contain positional information regarding the 

 location of a particular read, and we use the Genozip Aligner to generate this position. In 

 some cases where SAM files contain lines with and without POS information, we may 

 compress the lines relying on the POS information where it is provided, and use the Genozip 

 Aligner where it is not. 

 Most (if not all) aligners currently available have the objective of finding the true location an 

 actual DNA fragment had in the original DNA molecule prior to the sequencing process. In 

 contrast, the Genozip Aligner doesn’t attempt to find the true location of a read, all we need 

 to find is a location in the reference file that is significantly similar to the read so that we can 

 use this similarity for better compression. This subtle difference in objective allows us to 

 create an algorithm that is radically different from traditional aligners, trading off positional 

 accuracy for speed. 

 The algorithm is divided into two: 

 1.  Processing of a FASTA file into a reference file with  genozip --make-reference  . 

 This step needs to be run only once, and the resulting reference file may be used to 

 compress subsequent data files of the same species. The resulting reference file, 

 distinguished by an extension  .ref.genozip  , contains  mostly sections of two types 

 REFERENCE and REF_HASH which shall be described below. 

 2.  Compressing a data file against a reference file with either  genozip --reference 

 or  genozip --REFERENCE.  In the former the reference  file needs to be provided to 



 genounzip  when decompressing, while in the latter the needed parts of the 

 reference are stored as part of the compressed file, so the reference file is not 

 needed for  genounzip.  This is particularly useful  when binding together (i.e. 

 compressing into a single  genozip  file) multiple files  for delivering to a customer, as 

 the cost in file size of storing the reference is amortised across multiple data files, 

 and the customer doesn’t need to worry about dealing with a reference file. 

 The REFERENCE data 

 When generating a reference file with  genozip --make-reference  fasta-file.fa  a 

 REFERENCE section is outputted for each  vblock  of  FASTA data processed. The division of 

 the fasta file into vblocks is constrained so that each  vblock  contains data from only a single 

 contig—possibly the whole contig if it is short enough to fit in a  vblock  . 

 The REFERENCE data is simply a 2-bit representation of the FASTA data, where ‘A’ and ‘a’ 

 are represented by 00, ‘C’ and ‘c’ by ‘10’ (1) ; ‘G’ and ‘g’ by ‘01’ (2) ; ‘T’ and ‘t’ by ‘11’ (3). Any 

 other character contained in the FASTA data, including ‘N’, is represented by 00 as well. 

 Every four characters are fit into a 8-bit byte, and the section is further compressed with 

 lzma  . 

 Note regarding bit notation: throughout Genozip, we store bits in bit arrays. These bit arrays 

 are made out of 64 bit words, which is the native word size in most modern CPUs. When 

 describing these bit arrays in this paper, we do so in two equivalent ways: 

 1.  Little Endian: thinking of the bit array as a string of bits corresponding to a string of 

 nucleotides—we write it e.g. ‘ACG’ as ‘001001’—enclosed in a single quote. 

 2.  Big Endian: we can also think of the bit array as a binary number. Consistent with the 

 normal way of describing numbers, we start with the most significant bit(without 

 quotes, and prefixed with 0b) 0b100100 in this example, which is 36 in decimal. 

 We also store for each contig its GPOS (short for Global Position), a 32-bit unsigned integer 

 that starts from 0 for the first contig, and is set for each subsequent contig to be higher than 

 the (GPOS + length) of the previous contig. 

 The Genozip Aligner uses GPOS for describing the position of reads in the reference rather 

 than (contig, pos). 



 We chose to store GPOS in an unsigned 32-bit integer, thereby limiting our Genozip Aligner 

 to the first 4 Gbp of a reference. This is sufficient for single-species references commonly 

 used today. For example, GRCh38 contains about 3.2 Gbp. 

 In the future, we might want to support references larger than 4 Gbp, in particular 

 multi-species references that might be useful in metagenomics, which will require GPOS to 

 be longer than 32 bits. Genozip already treats all position data (POS and GPOS) as 64-bit 

 integers internally, so this could be relatively easily supported, but with the cost being 

 achieving slightly worse compression ratios as GPOS data is also contained in  genozip 

 files of data files compressed using the Genozip Aligner. 



 The REF_HASH data 

 The second big chunk of data generated when generating a reference file with  genozip 

 --make-reference  fasta-file.fa  is REF_HASH data.  This is a pyramid of 

 num_layers=  4  hash tables, of levels [0, 3], where  each hash table contains 2  28-  layer  entries. 

 Each entry is a 32-bit unsigned integer, which will contain a particular GPOS, or remains at 

 the initial value 0xffffffff if not used. 

 Figure S2: ref_hash tables.  Layer 0 is attempted first,  and if it is occupied, progressively 

 higher layers are utilised 

 The ref_hash tables are created by a single traversal of the reference data described above, 

 from  gpos  =0 to the last GPOS value: 

 create_ref_hash: 

 Initialise all ref_hash table entries to 0xffffffff 

 Foreach locus  gpos  in  reference  which is 11 (i.e.  ‘G’ or ‘g’) { 

 If base at (  gpos  +1) is not also 11 { 

 Let  idx  ← value of the next 28 bits (i.e. 14 bases)  following the G 

 Insert  (  idx  ,  gpos  ) 
 } 

 } 

 Insert (  idx  ,  gpos  )  : 
 If         (ref_hash[0][  idx  ] == 0xffffffff) then  ref_hash[  layer  ][  idx  ]  ←  gpos 
 Else If (ref_hash[1][  idx  ] == 0xffffffff) then ref_hash[  layer  ][  idx  ]  ←  gpos 
 Else If (ref_hash[2][  idx  ] == 0xffffffff) then ref_hash[  layer  ][  idx  ]  ←  gpos 
 Else If (ref_hash[3][  idx  ] == 0xffffffff) then ref_hash[  layer  ][  idx  ]  ←  gpos 



 Else if (random chance of 25%) 

 ref_hash[random(0 to 3)][  idx  ] ←  gpos 

 Notes: 

 -  The notation ref_hash[  layer  ][  idx  ] means the ref_hash  table at layer  layer  , at the 

 index  idx  where only the needed least significant  bits of idx are used (28 bits for level 

 0 down to 25 bits for level 3). 

 The resulting 4 ref_hash tables are compressed with  lzma  and written to the genozip 

 reference file. 



 Compressing aligned SAM data 

 When compressing aligned SAM data (i.e. a SAM line for which we have the RNAME and 

 POS), we use the  reference  data in the reference file,  however we don’t need the  ref_hash 
 tables and the GPOS data. 

 We process the data into the following data structures: 

 ●  SQ_BITMAP context: a bit array for which we have 1 bit for each base in the 

 sequence which according to the line’s CIGAR string consumes both Query and 

 Reference as defined in the SAM spec  REF  page 8. The  bit will be one if the 

 decompressor should copy this base from the  reference  and 0 if it should get it from 

 NONREF. 

 ●  NONREF context: a character array that stores all the bases that are different from 

 the reference or that are not one of ‘A’,’C’,’G’,’T’. 

 ●  REF_IS_SET: a bit array that contains one bit for each base (2 bits) in  reference  . 
 The bit is 1 if and only if the value of  reference  at this location will be needed for 

 reconstructing the data during  genounzip  . It is used  only in case of --REFERENCE 

 (i.e. not --reference), to determine which parts of the reference should be written to 

 the file. 

 The SAM segmenter, when segmenting a particular line within a  vblock  of SAM data, 

 traverses the SEQ data according to the CIGAR data: 

 Foreach  base  in SEQ: 

 Let  cigar  be the Op in CIGAR string covering  base  (as defined in  REF  ): 
 If  cigar  ∈  { ‘M’, ‘=’, ‘X’ } 

 If (  base  ==  reference  [  RNAME,POS(base)  ]  ) 
 SQ_BITMAP ← 1 

 REF_IS_SET  [  RNAME,POS(base)  ]  ← 1 

 Else 

 SQ_BITMAP ← 0 

 NONREF ←  base 
 Else if  cigar  ∈  { ‘I’, ‘S’ } 

 NONREF ←  base 

https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88


 Notes: 

 -  POS  (  base  ) is the POS value of base calculated from  the POS value in the line, and 

 the CIGAR string, relative to the position of the base in the SEQ string 

 -  Assignment to SQ_BITMAP and NONREF means adding one value at the end of the 

 array 



 Compressing VCF data (REF and ALT fields) with a reference 

 When compressed without a reference, we store the REF and ALT data together (separated 

 by a tab character) in the REFALT context. We do this as they are obviously correlated and 

 hence storing them together results in better compression than storing them in separate 

 contexts. 

 We the user specifies a  reference  (using  --reference  or  --REFERENCE  ) we do the 

 modify the string stored in the context in the following way: 

 If REF or ALT is the same base as in (CHROM,POS) in  reference  , we store ‘-’ 

 instead of the base. 

 If ALT is the  common_snp  (REF), then we store ‘+’ instead  of the base. 

 Notes: 

 -  common_snp:  A↔G ; C↔T 

 -  Since we don’t force the user to use the same reference for compressing as used for 

 generating the VCF, we can’t assume the value of the REF field is the same as in 

 reference  . However, we expect this to be the usual  case. In this case, all the REF 

 values will be replaced with ‘-’ 

 -  We also set REF_IS_SET exactly as described above for aligned SAM compression 

 The effect of this is to make the b250 data of the REFALT context a lot more compressible 

 due to both the reduction of the dictionary size as well as the abundance of the “-\t+” word. 

 The significance of this algorithm on the overall VCF compression ratio depends on the 

 significance of the REFALT contribution to the file’s information content. In files that don’t 

 contain any samples or INFO data, the REFALT data tends to be a major contributor to the 

 information content, while in files that are rich in INFO data and contain many samples with 

 multiple subfields, the contribution of REFALT information to the file’s information content will 

 be minor. 



 Compression of FASTQ sequence data and SEQ fields in unaligned lines in SAM data 

 For a read sequence data (which we will refer as SEQ hereinafter) for which we don’t have 

 alignment information, as is the case in FASTQ and unaligned lines of a SAM file, we use 

 the REF_HASH data to find the a  gpos  value which represents  the beginning of a region of 

 the  reference  that we choose to compress against.  We attempt to find a  reference  region 

 identical to the sequence at hand, or with a small amount difference. 

 When loading the  reference  data from the reference  file, we store two copies of it in 

 memory—one forward copy and one reverse complement copy. 

 Notes: 

 -  We do not attempt to find the region with the absolutely smallest amount of 

 difference, however this is very often the outcome nevertheless, in particular in the 

 common case where there is only a single region in the genome with which the SEQ 

 aligns reasonably well. 

 -  We do not handle insertions and deletions (Indels), resulting in reads which contain 

 Indels typically aligning well only to the longest sub-read segregated by Indels. 

 However, since typically insertion and deletions appear only in a small percentage of 

 the reads, this has minimal effect on the compression ratio. 

 -  When comparing sequences to the  reference  , we compare  to both the forward and 

 the reverse complement references. The  gpos  value  stored is the lowest gpos of a 

 base, which is the first base in case SEQ aligns to the forward reference, and the last 

 base in case it aligns to the reverse complement. 

 -  In SAM, It is possible that a  vblock  contains both  aligned and unaligned reads. In this 

 case, we will compress each read with the appropriate algorithm, resulting in the 

 SQ_BITMAP and NONREF contexts containing data used to compress both types of 

 lines. 

 -  Since the Genozip Aligner algorithm does not handle Indels, it will not generate good 

 compression ratios for reads created using long read sequencing technologies, such 

 as PacBio SMRT or Oxford Nanopore, that are rich in erroneous Indels. These files 



 will compress better if the data is first aligned into a SAM/BAM file using an 

 appropriate aligner, and then compressed as an aligned SAM. 

 We process the data into the following data structures: 

 ●  SQ_BITMAP context: a bit array for which we have 1 bit for each base in the 

 sequence at hand. The bit will be one if the decompressor should copy this base 

 from the  reference  and 0 if it should get it from  NONREF. Note that unlike 

 compressing aligned SAM reads described above, here we have no CIGAR. 

 ●  NONREF context: a character array that stores all the bases that are different from 

 the reference or that are not one of ‘A’,’C’,’G’,’T’. 

 ●  GPOS context: the context  local  data stores unsigned  int GPOS values, one for each 

 read. This is the lowest GPOS value of the sequence at hand as explained above. 

 ●  STRAND context: the context  local  data stores a bitmap,  one bit for each read, which 

 is 1 if this read is to be reconstructed against the forward reference and 0 if it is to be 

 reconstructed against the reverse complement reference. 

 ●  REF_IS_SET: used exactly as described for aligned SAM compression. 

 align (SEQ)  : 

 Foreach  base  in SEQ: 

 If  base  is a ‘G’ and the preceding base is not a ‘G’: 

 score, gpos  =  score_match  (SEQ, location of ‘G’ in  SEQ, ‘  forward’  ) 

 If  score  is the highest so far for SEQ 

 best_match ← score, gpos, ‘  forward’ 

 If  base  is a ‘C’ and the next base is not a ‘C’” 

 score, gpos  =  score_match  (SEQ, location of ‘G’ in  SEQ, ‘reverse’) 

 If  score  is the highest so far for SEQ 

 best_match ← score, gpos, ‘  reverse-complement’ 

 score_match (  seq  , ‘G’ location,  strand  )  : 
 idx ←  numeric_value(14 nucleotides following the G) 



 gpos  ← ref_hash[  idx  ] 
 ref ←  copy of the region of  reference  or  reverse-complement-reference 
 (determined by  strand  ) which is aligned to  seq  according  to  gpos 

 Implementation details: at this point  seq  and  ref  are two bit arrays of identical length. 

 Every two bits represent a nucleotide (0=A,1=C,2=G,3=T). The arrays are 

 implemented as 64-bit words, so that each 64 bit word contains (up to) 32 

 nucleotides, starting at the first bit of the first word, and with the redundant bits of the 

 last word set to zero. 

 score  ←  length (  seq  ) -  count_1_bits  (  seq  bitwise-XOR  ref  ) 

 Note:  count_1_bits  counts the number of bits that  are ‘1’ in a bit array 

 Example  : 

 SEQ=”  CACTCT  G  TTCGCAGCAGTCTG  CGCCCTTACACAAAATG” 

 Consider the 14 nucleotides following the G: for example: 
 “CACTCT  G  TTCGCAGCAGTCTG  CGCCCTTACACAAAATG” 

 Or, the 28 bits representing the same 14 nucleotides: 

 ‘1111100110000110000111101101’  which is numerically 

 0b1011011110000110000110011111 (in binary) or 192,438,687 (in decimal). 

 gpos  ← refhash[192,438,687] = 500000000 (example) 

 500000000 in this example is the coordinate in the whole-genome reference of the  G 
 Consider the reference segment around this G, so that it is aligned to SEQ: 

 SNP                                                           SNP             DEL 

 REF:”CA  T  TCT  G  TTCGCAGCAGTCTG  CGCCCTT  T  CACAAA  G  AT” 

 Using 64-bit words, bitwise-XOR the reference segment and SEQ 
 SEQ:’1000  10  111011  01  1111100110000110000111101101  10011010101111  00  100010  000000  001101  ’ 

 REF:’1000  11  111011  01  1111100110000110000111101101  10011010101111  11  100010  000000  010011  ’ 

 XOR:’00000  1  00000000000000000000000000000000000000000000000000  11  000000  0000000  11111  ’ 

 WORD #1                                                          WORD  #2 

 score = seq_len_in_bits - count_1_bits(XOR) = 74 - 8 = 66 



 Alternative contig names 

 When compressing a file using a reference, if a contig name that appears in the file does not 

 appear in the reference, we attempt to search for it using alternative names: 

 ●  A number eg “22” is also searched with a “chr” prefix, “chr22” 

 ●  “M” and “chrM” are also searched as “chrMT” 

 The alternative contig names are searched and assigned during compression, and the 

 mapping is stored in the genozip file in the  SEC_ALT_CHROMS  section. 

 Discussion 

 The algorithm scores candidate matches (alignments) by doing bitwise operations on entire 

 64-bit words containing 32 bases each. The entire scoring takes only a few CPU operations 

 per 64-bit word, as little as 16 (depending on the CPU). This is the key component that 

 makes the Genozip Aligner extremely fast. 

 Note that rather than counting the number of mismatching bases, we count the number of 

 mismatching bits, and select the “match” (i.e. the reference locus) with the least mismatching 

 bits. This is done with a single CPU instruction per 64-bit word on most modern CPUs (for 

 example,  popcntq  on Intel CPUs). As a result, we don’t  necessarily select the match with 

 the least mismatching bases. However, in practice, the majority of reads will have exactly 

 one locus which provides a good match which will be selected, and in the case where we 

 have two or more loci that are all good matches (i.e., very low mismatching bases) and the 

 one we select, with the lowest mismatching bits, is not the one with the lowest mismatching 

 bases; this minute difference would be insignificant for compression purposes. 

 Sensitivity to Indels: since we compare whole bit arrays, we don’t handle Indels. This usually 

 means that the match selected for a read that contains an Indel would be the one matching 

 the largest sub-read, as segregated by Indels. For typical short-read data, the percentage of 

 reads containing Indels is sufficiently small that this approach results in very good 

 compression ratios. However, long read technologies available at this time often generate 

 reads that are enriched in Indels that are not correct biologically but are rather artifact of 

 limitations of these technologies. This algorithm does not work well with this type of long 



 read data, and we advise users to first align the data using an appropriate aligner, and then 

 compress the resulting SAM (or BAM) file, which would use the aligned SAM algorithm 

 described earlier. 

 Computational complexity: Since the number of loci we test is proportional to the length of 

 the read (we test all ‘G’ bases for forward matching and all ‘C’ bases for reverse complement 

 matching), and each test compares the entire read to the candidate region in the reference; 

 the complexity of aligning a SAM or FASTQ file is O(r  2  n) with r being the read length and n 

 being the number of reads. 

 Optimisation: if the command line option  --fast  is  specified, we test every 5th base to see 

 if it is a ‘G’ or ‘C’ rather than every base. On our test data, this resulted in a speed up of the 

 alignment by about 4X at the cost of a 20% worse compression ratio. 



 SI.5. Compression of FASTQ paired end read files 

 Genozip provides a command line option  --pair  that  further optimises compression in case 

 of paired-end FASTQ files, such as Illumina. When using this option, every two consecutive 

 input files on the command line are assumed to be a pair. 

 This optimisation consists of: 

 1.  For each component of the Description (i.e. the D?ESC contexts): if the value of the 

 second paired file is identical to the first, store the snip LOOKUP_PAIR instead of the 

 value. For most D?ESC contexts (all but one in Illumina files), the entire  b250  data 

 would be a run of LOOKUP_PAIR compressing to a trivial size. 

 2.  For GPOS in the second paired file: we store it as a PAIR_DELTA snip vs the GPOS 

 of the first file. 

 3.  For STRAND (in the second pair file): we store ‘1’ if the second paired read direction 

 (i.e. forward or reverse complement) is identical to that of the first paired read, and 0 

 otherwise. This is expected to result in long, highly-compressible runs. 



 SI.6. Specific codecs 

 acgt  : A  specific  codec for compression of nucleotide  sequences 

 We observe that  lzma  compresses nucleotide sequence  data well, however it is very slow. 

 acgt  is a new codec we present here, specifically  for nucleotide sequences, which is about 

 25X faster on our test data at a cost of only 5% worse compression than  lzma  . We use  acgt 

 for compressing NONREF data in FASTQ as well as aligned and unaligned SAM, unless the 

 user specifies  --optimize-SEQ  or  --optimize  in the  command line, in which case we 

 compress NONREF with  lzma  . 

 acgt  compression is designed for nucleotide sequence  data in which ‘A’, ‘C’, ‘G’ and ‘T’ 

 characters make up the vast majority of the data, while other characters, such as ‘N’, are 

 rare. The source data is expected to be textual ASCII data. 

 acgt  splits the data into two streams, each which  is outputted to a separate section in the 

 genozip output file. 

 The first stream, CODEC_ACGT, is simply the sequence encoded in 2-bit as we do in 

 REFERENCE explained above: ‘A’/’a’ are encoded as 0b00, ‘C’/’c’ as 0b01, ‘G’/’g’ as 0b10, 

 ‘T’/’t’ as 0b11 and everything else as 0b00. The size of the data is ¼ of the original size since 

 we’re converting each byte into 2-bits. We then further compress the CODEC_ACGT with 

 lzma  . 

 The second stream, CODEC_XCGT, is used only if we have one or more characters that are 

 not ‘A’, ‘C’, ‘G’ or ‘T’. This is an array of bytes of the same length as the source data. We set 

 it to 0 for every character that is ‘A’, ‘C’, ‘G’ or ‘T’ in the source data, 1 for every character 

 that is ‘a’, ‘c’, ‘g’ or ‘t’ (i.e. lowercase) and we leave other characters as they are in the 

 source data for all other characters. We then compress CODEC_XCGT with  bz2  . Since the 

 bz2  algorithm contains run-length encoding, and since  we expect the vast majority of 

 characters to be 0, this compresses to a very small size in real world cases we tested. 



 hapmat  : A  specific  codec for compression of a haplotype  matrix 

 For FORMAT/GT data in VCF files, we use the algorithm described in REF to compress a 

 matrix, who’s lines represent variants, columns represent haplotypes (here, we loosely use 

 the term  haplotype  to describe the column of a specific  sample at a specific location in the 

 GT value, even if the sample is not phased), and each entry in the matrix is a single 

 character representing the allele. genozip supports alleles up to 99, where alleles 10 and 

 above are rewritten as a single ASCII character. This algorithm has been now implemented 

 as a codec: 

 -  For each haplotype column, count the number of alternate alleles (allele 1 to 99) 

 -  Sort the haplotype columns by the count alternate alleles 

 -  Transpose the sorted matrix 

 -  Compress the transposed matrix with bzip2 

 The results of this compression are stored in two contexts: 

 GT_HT.local  stores the compressed matrix 

 GT_HT_INDEX.local  stores the permutation index that  describes how to un-sort the matrix 

 back to its origin. 

 We note that there are better algorithms for compression of a haplotype matrix based on 

 Positional Burrows Wheeler Transform, as described in (  REF  ), and this might be an area for 

 improvement in the future. 



 DomQual  : a specific codec for compression of base  quality scores 

 Compression of sequences of base quality scores, as they appear in FASTQ files and in the 

 QUAL field of SAM files, are often a harder problem than that of nucleotide sequences, 

 because there is no reference data to which we can compare base quality scores. Further, 

 different sequencing technologies and even different versions or options selected within the 

 same sequencing technology, generate quality scores with radically different patterns. 

 Here, we introduce a novel algorithm to address a specific pattern of quality scores that is 

 very common. This pattern is defined by having a single quality score that dominates the 

 sequence. 

 In Genozip, we decide for each particular  vblock  of  FASTQ or SAM data whether to use 

 DomQual  by sampling the first 500 quality scores (i.e.  characters) of the base quality data of 

 each of the first 5 lines of the  vblock  (in FASTQ  a  vblock  line means a 4 textual lines of the 

 FASTQ file). If there is a single character that accounts for at least 50% of the number of 

 characters sampled, then we use  DomQual  for the base  quality data in this  vblock  , and set 

 dom  to the dominant character of the sample. 

 In real-world data we tested,  DomQual  will usually  triggered in Illumina files with quality 

 binning (  REF  ) where the dominant character is usually  ‘F’, Pac Bio CCS data where the 

 dominant character is usually ‘~’, and quality data that has been binned with the genozip 

 option  --optimize-QUAL  or  --optimize  . 

 We consider the entire base quality data of the vblock as a single long sequence of quality 

 scores.  DomQual  segments this sequence data into the  local  data of two contexts: 

 ●  QUAL context contains a copy of the sequence, with two changes: 

 1.  All  dom  characters removed 

 2.  For each remaining character (which by definition is a non-  dom  ): if this character is 

 NOT preceded in the source sequence by a  dom run  (which  we hereby define as one 

 or more consecutive  dom  characters), a byte with the  value of 1 is inserted before 

 this non-  dom  in QUAL. 

 ●  QDOMRUNS context contains a length of each  dom run  ,  the sub-sequence of the 

 source sequence containing one or more  dom  characters,  preceding each non-  dom 
 character, except those we marked with 1. These are represented by a single byte 



 indicating the length (between 1 and 254). If the length of the  dom run  is more than 

 254, then we add 1 or more 0xff characters each, representing a length of 254. 

 Example: 0xff 0xff 0x08 indicates a  dom run  of length  254 + 254 + 8 = 516. 

 The  local  data of both the QUAL and QDOMRUNS contexts  is compressed with  lzma  . 

 Testing with Illumina binned quality data, we see that  bz2  achieves superior compression to 

 lzma  , and is faster than it. On our test data, the  DomQual  codec achieves 12% better 

 compression than  bz2  , and is slower than  bz2  by a  factor of 3.5X. 

 If the user specified the command line option  --fast  ,  we compress these contexts with  bz2 

 instead of  lzma  . On our test data, this resulted in  a compression that is about 3% better and 

 about 10% faster than  bz2  on the source quality sequence. 



 SI.7. Random access, subsetting & pipeline integration 

 Genozip contains capabilities to allow genozip files to be directly integrated in analysis 

 pipelines, as well as some internal subsetting capabilities. 

 genozip  supports reading and writing txt files from  a pipe, for example: 

 cat myfile.fq | genozip - --output myfile.fq.genozip 

 genocat myfile.fq.genozip | analysistool 

 Some analysis tools require random access to the txt file and hence cannot accept an input 

 file on a pipe. In these cases, it would be necessary to genounzip the file first. 

 genocat  is a tool for viewing the data within genozip  file, and potentially subsetting it. The 

 subsetting command line options are summarised in Table S6, more details are available by 

 running  genocat --help  . 

 Random access (  --regions  ) is implemented by a two  global sections in the genozip file: 

 1.  The  SEC_RANDOM_ACCESS  section is included in all genozip  files of file formats on 

 which  --regions  is supported. It contains an array  for a record for each  vblock  (the 

 list of contigs appearing in the  vblock)  , and for  each contig, the first and last position 

 within the contig appearing in the  vblock.  The contents  of this section may be viewed 

 using the  --show-index  command line option. 

 2.  The  SEC_REF_RAND_ACC  section is included in reference  files, and also in genozip 

 files that are compressed with  --REFERENCE  . contains  a similar array, but with a 

 record for each  SEC_REFERENCE  section.The contents  of this section may be viewed 

 using the  --show-ref-index  command line option. 

 When using  genocat --regions  , genozip uses the information  from these two sections to 

 refrain from reading from disk  vblocks,  SEC_DICT  sections  and  SEC_REFERENCE  sections 

 that contain no data from the requested regions. 



 Table S6: genocat options.  A partial list of the options  of  genocat  - those options that 
 subset the file. See  genocat --help  for a full list  of options. 

 genocat  option  File formats  Action 

 --downsample 
 <rate> 

 All  Include only one line (or read for FASTQ) 
 per  rate  lines. 

 --regions 
 <  region-list  > 

 VCF, SAM, FASTA, 
 GVF, 23andMe, 
 reference file 

 Include or exclude specific contigs and/or 
 positions 

 --samples 
 <  sample-list  > 

 VCF  Include or exclude specific samples 

 --grep  <string>  FASTQ, FASTA  Show only reads (FASTQ) or contigs 
 (FASTA) whose describe contains the  string 

 --drop-genotypes  VCF  Exclude the FORMAT and samples 
 columns 

 --no-header  All  Exclude the header lines 

 --header-only  All  Include only the header lines 

 --header-one  VCF, FASTA  In VCF, includes only the last of the header 
 lines (with the field sane sample names). 
 In FASTA, includes only the first component 
 of the description line (until the first space). 

 --GT-only  VCF  Exclude all sample subfields, except for GT 

 --sequential  FASTA  Output the sequence of each contig as a 
 single line, removing any newlines 

 --list-chroms  VCF, SAM, FASTA, 
 GVF, 23andMe, 
 reference file 

 List the names of the chromosomes 
 (contigs) 



 SI.8. Tools for obtaining statistics and metadata 

 Genozip contains tools for obtaining additional information about the contents of files. These 

 are summarized below. More details can be obtained by running  genozip --help -f  . 

 Table S7: Statistics and metadata options,  provide  deep insight into the data in the files 
 being processes, as well as the execution flow of the Genozip algorithms 

 Option  Availability: 
 Z  genozip 
 U  genounzip 
 C  genocat 
 L  genols 

 Action 

 --show-time  ZUCL 
 Show profiling information of where execution time 
 was spent 

 --show-memory  ZUCL  Show memory consumption information 

 --show-stats  Z  Show compression performance by context 

 --SHOW-STATS  Z  Show detailed context information 

 --show-alleles  Z  (VCF only) show alleles 

 --show-dict  ZUC  Show all dictionary fragments 

 --show-one-dict 
 <context>  ZUC 

 Show dictionary fragments of  context 

 --list-chroms  ZUC  List the names of the chromosomes (contigs) 

 --show-gt-nodes  Z 
 (VCF only) show the GT values matrix 
 (transposed) 

 --show-b250  ZUC  Show contents of all  b250  sections (textual) 

 --show-one-b250 
 <context>  ZU 

 Show contents of one  b250  section (textual) 

 --dump-one-b250 
 <context>  ZUC 

 Dump the contents of a  b250  as it appears in the 
 file (binary) 

 --dump-one-local 
 <context>  ZUC 

 Dump the contents of a  local  as it appears in the 
 file (binary) 

 --show-headers  ZUC 
 Show a subset of the contents of the genozip file 
 section headers as they are read or written 

 --show-index  ZUC 
 Show the contents of the  SEC_RANDOM_ACCESS 
 section 



 Continued from previous page 

 Option  Availability: 
 Z  genozip 
 U  genounzip 
 C  genocat 
 L  genols 

 Action 

 --show-reference  ZUC 
 Show the ranges included the  SEC_REFERENCE 
 sections 

 --show-ref-seq  ZUC  Show the reference sequences 

 --show-ref-index  ZUC 
 Show the contents of the  SEC_REF_RAND_ACC 
 section 

 --show-ref-hash  ZUC  Show details of  SEC_REF_HASH  sections 

 --show-ref-contigs  ZUC  Show the details of the reference contigs 

 --show-ref-alts  ZUC  Show contents of  SEC_ALT_CHROMS  section 

 --show-gheader  ZUC 
 Show list of sections in this file, as it appears in the 
 SEC_GENOZIP_HEADER  section 

 --show-vblocks  ZUC  Show vblock headers as they are read / written 

 --show-threads  ZUC  Show thread dispatcher activity 

 --show-hash  Z 
 See the values of the parameters used for 
 calculating the hash table size for each context 

 --show-aliases  ZUC  Show the  SEC_DICT_ID_ALIASES  section 

 --debug-memory  ZUCL  Show memory buffer allocations and destructions 

 --debug-progress  ZUC  See data related to the progress indicator 

 --show-reference  ZUC  Show details of the  SEC_REFERENCE  sections 

 --show-is-set 
 <contig>  UC 

 Shows the contents of  SEC_REF_IS_SET 
 sections of  contig 

 --show-bgzf  ZUC  Show details of BGZF blocks 

 --show-containers  UC  Show flow of container reconstruction 

 --show-txt-contigs  ZUC  Show contigs from the SAM/BAM header 

 --show-mutex  ZUCL  Show locks and unlocks of a particular mutex 

 --show-digest  ZUC  Show MD5 and Adler32 updates 

 source: the data in this table is based on the output of  genozip --help=dev 



 SI.9. CPU scalability: synchronisation and thread management 

 Genonzip threads are managed by a thread dispatcher. The dispatcher is used both by the 

 main I/O thread loop as described in the architecture diagram, as well as for various 

 secondary tasks throughout the code. The dispatcher dispatches raw  vblocks  to threads, 

 collects processed  vblocks  upon thread completion,  and updates the progress indicator. 

 The maximum number of concurrent threads is either set by the user with the  --threads 

 command line option, or is set to the available number of logical cores as retrieved from the 

 operating system. 

 Actually utilizing a large number of cores is a challenge, as genozip contexted-oriented 

 compression implies that the dictionary of each context is potentially grown by every  vblock 

 which contributes values to a dictionary that were not observed before. When multiple 

 threads are running in parallel each attempting to update dictionaries, the synchronisation 

 required (for example, blocking on a mutex while updating a dictionary), if implemented 

 naively, would severely limit the number of threads that can actually run concurrently. 

 In addition to the dictionaries themselves, genozip also maintains a hash table per context, 

 which allows an efficient search when a  compute thread  is searching for a dictionary index of 

 a particular snip. These hash tables also evolve with each snip that is added to a dictionary. 

 To address this, genozip  context manager  maintains,  for each context, a  z  _  context  . When a 

 compute thread for a specific vblock starts, the  z  _  context  and associated hash tables are 

 cloned into the vblock context. This cloning doesn’t actually copy memory, but rather points 

 z  _  context  and hash tables, and includes various parameters  to limit this compute thread’s 

 access to only the parts of the data that were available at the point in time of the 

 cloning—effectively creating a read-only replica of the  z  _  context  at this point in time, but 

 without the expensive operation of copying memory. 

 As the compute thread processes the vblock, it adds new discovered snips to its own private 

 fragments, and its own hash tables. 



 After the vblock processing is complete, the context manager (running in the compute 

 thread) merges this context’s data back into the zfile data. Since multiple compute threads 

 running in parallel may have added the same snip, these merges needed to be serialised 

 and make sure that the snips added were not already added by a previous compute thread. 

 For this synchronisation, we use mutexes in the most sparing way possible, and opting for 

 carefully crafted sequences of CPU-atomic operations, therefore not blocking threads, in lieu 

 of mutexes, wherever possible. 



 SI.10. Security 

 DNA data is legally considered in many jurisdictions as “personally identifiable information” 

 (PII) and as such is required to be secured. 

 Genozip provides built-in security that is easy to use. 

 When the  --password  is used, the genozip file is encrypted  with the standard AES 

 encryption, using the a 256-bit encryption key is generated for each section, derived from the 

 password, the vblock number (  vb_i  ) and the section  type. 

 For padding the last block of each section to the 16-byte AES block size, a secure padding 

 derived from the MD5 hash of the last 100 bytes of the section. 

 Accessing this file using  genounzip  or  genocat  is  made possible only if the same 

 password is provided. 

 In addition, using  genozip  with the  --md5  or  --test  options calculates the MD5 signature 

 of the original txt file(s). Then, when using  genounzip  with  --md5  , the MD5 signature of 

 the actual output file is compared to the MD5 stored in the genozip file, to ensure the file was 

 not tampered with intentionally or accidentally. 

 Note that the MD5 calculated is that of the underlying textual file. For example, when 

 compressing a .sam.gz or .bam file, the MD5 will be that of the underlying .sam file. 



 SI.11. Genozip file format 

 The genozip file consists of  sections  , where each  section is of a particular  section type  and 

 consists of a  header  and a  body  . The header is a structure  determined by the section type, 

 while the body contains the actual data. 

 All numeric data is stored in Big Endian. 

 Genozip supports binding multiple files together into a single genozip file. We will refer to the 

 compressed data of these each txt files as a  component  of the genozip file. 

 First to appear in the genozip file, are sections related to the  component  data. Each 

 component consists of a  SEC_TXT_HEADER  section followed  by 1 or more  vblocks  . Each 

 vblock consists of a  SEC_VB_HEADER  section and all  the contexts of this vblock which 

 include any number of  SEC_B250  and  SEC_LOCAL  sections.  In the case of VCF, these may 

 also include  SEC_VCF_GT_DATA, SEC_VCF_PHASE_DATA,  SEC_VCF_HT_DATA  and 

 SEC_VCF_HT_GTSHARK  sections. 

 Following the components, we have  global sections  that apply to the entire file. 

 As the last section of the file, we have the  SEC_GENOZIP_HEADER  section. This contains the 

 header, a body which is the list of sections in this genozip file and their offsets, and, unlike 

 other sections, this section also has a  footer  which  appears at the very end of the file, and 

 contains the offset of the beginning of the section. 

 When a genozip file is read (for example during  genounzip  ),  the footer is consulted first for 

 the the offset of the  SEC_GENOZIP_HEADER  section,  then the  SEC_GENOZIP_HEADER  is read, 

 and then the required sections from the rest of the file, based on the section offsets that are 

 in the body of the  SEC_GENOZIP_HEADER  section. 

 Below is an example of the sections of a VCF file. This is a very small VCF file containing 

 3494 lines of the VCF header data, followed by 6 data lines, each with just a handful of INFO 

 tags, one sample and a few sample subfields. The list below is taken from the output of 

 running genozip with the  --show-gheader  command line  option. 



 Real-world genozip files can often contain tens of thousands of sections. 

 The full list of section types and format of the header of each appear in 
 https://github.com/divonlan/genozip/blob/master/sections.h 

 The first section is the  component  header, whose body  is the VCF txt file header. This small genozip 

 file contains only one component, but genozip supports multiple components. 
 0. SEC_TXT_HEADER                    vb_i=0 offset=0 size=22277 

 First (  vb_i=1  )  vblock  header. This is a small VCF  file that contains only one  vblock 

 1. SEC_VB_HEADER                     vb_i=1 offset=22277 size=93 

 2. SEC_B250                 CHROM    vb_i=1 offset=22370 size=46 

 3. SEC_B250                 POS      vb_i=1 offset=22416 size=46 

 4. SEC_B250                 ID       vb_i=1 offset=22462 size=46 

 5. SEC_B250                 REF+ALT  vb_i=1 offset=22508 size=46 

 6. SEC_B250                 QUAL     vb_i=1 offset=22554 size=46 

 7. SEC_B250                 FILTER   vb_i=1 offset=22600 size=46 

 8. SEC_B250                 INFO     vb_i=1 offset=22646 size=46 

 9. SEC_B250                 FORMAT   vb_i=1 offset=22692 size=46 

 10. SEC_B250                 AF       vb_i=1 offset=22738 size=41 

 11. SEC_B250                 AN       vb_i=1 offset=22779 size=41 

 12. SEC_LOCAL                AC       vb_i=1 offset=22820 size=41 

 13. SEC_VCF_GT_DATA                   vb_i=1 offset=22861 size=40 

 14. SEC_VCF_HT_DATA                   vb_i=1 offset=22901 size=40 

 This is the global area of the file. It starts with dictionary fragment sections—each  vblock  may or may 

 not contribute a dictionary fragment to each context. 
 15. SEC_DICT                 CHROM    vb_i=0 offset=22941 size=999 

 16. SEC_DICT                 POS      vb_i=1 offset=23940 size=43 

 17. SEC_DICT                 ID       vb_i=1 offset=23983 size=42 

 18. SEC_DICT                 REF+ALT  vb_i=1 offset=24025 size=44 

 19. SEC_DICT                 QUAL     vb_i=1 offset=24069 size=42 

 20. SEC_DICT                 FILTER   vb_i=1 offset=24111 size=47 

 21. SEC_DICT                 INFO     vb_i=1 offset=24158 size=133 

 22. SEC_DICT                 FORMAT   vb_i=1 offset=24291 size=50 

 23. SEC_DICT                 AF       vb_i=1 offset=24341 size=42 

 24. SEC_DICT                 AN       vb_i=1 offset=24383 size=42 

 25. SEC_DICT                 AC       vb_i=1 offset=24425 size=45 

 26. SEC_DICT                 DP       vb_i=1 offset=24470 size=42 

 27. SEC_DICT                 RGQ      vb_i=1 offset=24512 size=42 



 This file was compressed with  --REFERENCE  and therefore  contains the relevant parts of the 

 reference data. First, in the list of all contigs in the reference file, followed by the reference data itself. 
 28. SEC_REF_CONTIGS                   vb_i=0 offset=24554 size=2665 

 29. SEC_REFERENCE                     vb_i=1 offset=27219 size=60 

 A list of context aliases 
 30. SEC_DICT_ID_ALIASES               vb_i=0 offset=27279 size=44 

 These are an index describing the contigs and their position range within each  vblock  allowing for 

 efficient random access, such as when subsetting with  genocat --regions 

 31. SEC_RANDOM_ACCESS                 vb_i=0 offset=27323 size=52 

 32. SEC_REF_RAND_ACC                  vb_i=0 offset=27375 size=52 

 The genozip header 
 33. SEC_GENOZIP_HEADER                vb_i=0 offset=27427 size=758 



 SI.12. Detailed results data 

 Compressing against raw files 

 We evaluated the performance of Genozip by comparing it to several widely adopted 

 genomic data compression tools using a set of standard benchmarking files provided by the 

 National Institute of Standards and Technology's Genome in a Bottle (GIAB) project (Table 

 S8). 

 Variant Call Format (VCF) 

 To benchmark Genozip’s VCF compression performance, we compressed the GIAB v3.3.2 

 NA12878 single-sample VCF and compared the results against several other popular 

 compression tools – gzip  (Meyering)  , pigz  (Adler,  2014)  , BCF compression implemented in 

 BCFtools  (Li, 2011a)  , and bzip2  (Seward, 1996)  . 

 Sequence Alignment Map (SAM) 

 To benchmark Genozip’s SAM compression performance, we used the 30X downsampled 

 BAM file from GIAB that was converted to SAM format using samtools v1.9  (Li  et al.  , 2009)  . 

 Genozip performance was compared to CRAM compression, both with and without 

 sequencing quality binning (8 bins), obtained using Scramble v1.14.11  (Bonfield, 2014)  , and 

 also BAM compression (implemented in samtools v1.9;  (Li  et al.  , 2009)  ) and pigz  (Adler, 

 2014)  . For the reference-based compression methods  (i.e. CRAM and genozip --reference) 

 we used a slightly modified version of human reference GRCh37 that was created using the 

 steps described by Luca Santuari (  https://github.com/GooglingTheCancer 

 Genome/sv-callers/wiki/Building-the-b37-human-decoy-reference-genome  ). 

 FASTQ 

 FASTQ is a widely used text format that stores sequence data and the corresponding 

 qualities for each nucleotide. We used Bazam  (Sadedin  and Oshlack, 2019)  to generate 

 paired-end FASTQ files from the same BAM file that was used for the VCF benchmark. We 

 compared Genozip against several widely used file compression methods – i.e. gzip, pigz, 

 unaligned BAM, and unaligned CRAM –  as well as alignment-based methods that take 

 advantage of sequence similarity to reduce data redundancy (providing similar comparisons 

 to the tools tested in the SAM benchmarks). 

 The tests were conducted on a Linux machine with 56 cores. 

https://paperpile.com/c/VrkJXc/ASJbJ
https://paperpile.com/c/VrkJXc/Ov1bV
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https://paperpile.com/c/VrkJXc/Ov1bV
https://github.com/GooglingTheCancerGenome/sv-callers/wiki/Building-the-b37-human-decoy-reference-genome
https://github.com/GooglingTheCancerGenome/sv-callers/wiki/Building-the-b37-human-decoy-reference-genome
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 In Table 2 and Figure 3 we describe the compression ratio achieved by Genozip vs other 

 tools, as well as wall time observed. 

 Table S8: Benchmark files.  Uncompressed files used  for benchmarking compression of 
 raw (i.e. uncompressed) files against other common tools. 

 File type  File size  Source 

 VCF  128 MB  ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/releas 
 e/NA12878_HG001/latest/GRCh37/ 

 SAM  147 GB  ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ 
 NA12878/NIST_NA12878_HG001_HiSeq_300x/ 

 FASTQ  2 x 112 GB  Derived from SAM file using Bazam  (Sadedin and Oshlack, 
 2019) 

 Table S9: Raw-file benchmark results.  Results of compression  of uncompressed genomic 
 files with genozip and other commonly used tools for each file format. 

 Tool  Compression  Ra�o  Compress �me  Decompress t. 
 VCF  1,807,059,769 
 .vcf 

 pigz  .vcf.gz  113,699,782  15.9  1.9 sec  3.1 sec 
 bc�ools  .bcf  153,988,419  11.7  23.82 sec  21.02 sec 
 bzip2  .vcf.bz2  71,358,351  25.3  260.05 sec  43.37 sec 
 genozip  .vcf.genozip  53,819,306  33.6  7.1 sec  6.53 sec 

 SAM  510,942,582,641 
 pigz  .sam.gz  148,212,447,723  3.4  00:12:40.3  00:34:17.4 
 samtools  .bam  157,455,536,282  3.2  00:23:16.7  00:29:48.5 
 scramble -9  .cram  109,288,249,883  4.7  00:27:58.4  00:17:34.4 
 genozip -e  .sam.genozip  88,329,235,177  5.8  00:33:41.1  00:27:55.3 

 Op�mized cram: 
 scramble -9B  .cram (-B)  85,327,476,246  6.0  00:48:56.1  00:19:10.4 

 Op�mized genozip -9 
 .sam.genozip 
 (-9)  67,589,616,986  7.6  00:30:51.1  00:20:38.0 

 FASTQ  238,958,297,328 
 pigz  .fq.gz  57,228,032,622  4.2  00:14:34.5  00:34:17.4 

 bwa mem | samtools 
 sort | scramble -9  .cram  44,248,758,235  5.4  03:42:54.0  00:48:24.7 
 genozip -e  .fq.genozip  35,098,350,704  6.8  00:16:40.1  00:08:31.7 

 genozip -9e 
 .fq..genozip 
 (-9)  12,837,612,728  18.6  00:08:52.3  00:05:26.4 

ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/latest/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/latest/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/
https://paperpile.com/c/VrkJXc/9DzPv
https://paperpile.com/c/VrkJXc/9DzPv


 Compressing against already-compressed files 

 Table S10: Genozip on already compressed files  - Files  used 

 File type  File size  Source 

 .fastq.gz  3.6 GB 
 (R1+R2) 

 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG 
 001_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R1_001.fastq.gz 
 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG 
 001_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R2_001.fastq.gz 

 .bam  147 GB  ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST_ 
 NA12878_HG001_HiSeq_300x/RMNISTHS_30xdownsample.bam 

 .cram 
 (lossless) 

 102 GB  Generated from the BAM file with: 
 scramble -9 

 .cram 
 (binned) 

 79.5 GB  Generated from the BAM file with: 
 scramble -9 -B 

 .vcf.gz  128 MB  ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_H 
 G001/latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC 
 -Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vc 
 f.gz 

 Table S11: Genozip on already compressed files.  Results  of compression with Genozip of 
 already-compressed files in formats in common use in research and medical settings. These 
 results are also reflected in Figure 2 in the main text. 

 Source file  Genozip command 
 --optimise  added for 
 the Optimised test 

 Genozip lossless  Genozip optimised 

 File  File size  Size  Factor  Size  Factor 

 .fastq.gz  3.60 GB  genozip --pair 
 $file-R1 $file-R2 
 -e $ref-file 

 1.24 GB  2.9 X  0.63 GB  5.7 X 

 .bam  147 GB  genozip $file 
 -e $ref-file 

 82.3 GB  1.8 X  62.9 GB  2.3 X 

 .cram 
 (lossless) 

 101 GB  genozip $file 
 -e $ref-file 

 82.9 GB  1.2 X  63.6 GB  1.6 X 

 .cram 
 (binned) 

 79.5 GB  genozip $file 
 -e $ref-file 

 63.6 GB  1.2 X  63.6 GB  1.2 X 

 .vcf.gz  128 MB  genozip $file 
 -e $ref-file 

 51 MB  2.5 X  50 MB  2.6 X 



 Compressing BAM vs compressing CRAM 

 In this test, we compared several aspects of Genozip’s performance - compression ratio, 

 time, memory and CPU usage, of compressing a CRAM file vs compressing the same data 

 in BAM format. The tests were run on the same machine as the previous tests - one with 56 

 cores and over 700GB of RAM. 

 The CRAM file used was a 14GB file downloaded from 

 ftp://  ftp.sra.ebi.ac.uk/vol1/run/ERR324/ERR3241754/HG00731.final.cram  and the BAM file 

 used was a 37GB GB file generated from this CRAM file with  samtools view  . The results 

 are in Table S12. 

 Genozip compresses CRAM files by using  samtools view  to first convert CRAM to SAM. 

 In the decompression step, we piped  genounzip --stdout  into  samtools view 

 -OCRAM  to recreate the CRAM file. The wallclock time  in Table S12 represents the combined 

 operation Genozip and  samtools  , while the CPU time  and memory reflect only Genozip’s, 

 and not samtools’, resource consumption. 

 In contrast, Genozip compresses and decompresses BAM files natively, without relying on 

 samtools  or  htslib  . Consequently, Genozip is free  to scale to a much larger number of 

 CPUs and complete the processing faster. The higher memory consumption in the BAM 

 case (Table S12)  is a reflection of Genozip’s ability to scale to a larger number of CPU 

 cores, and hence threads, in this case. The higher CPU time is mostly due to Genozip also 

 decompressing the BAM BGZF compression (in  genozip  )  and recreating BAM in 

 compressed BGZF format (in  genounzip  ) which it does  not do in the case of CRAM, 

 because the plain SAM data is piped in from or piped out to  samtools  . 

http://ftp.sra.ebi.ac.uk/vol1/run/ERR324/ERR3241754/HG00731.final.cram


 Table S12: Compressing CRAM vs compressing BAM.  Results  showing Genozip’s 
 performance when compressing CRAM and BAM files containing identical data. With BAM, 
 Genozip can scale to a larger number of CPUs. 

 CRAM - 
 compress 

 BAM - 
 compress 

 CRAM - 
 decompress 

 BAM - 
 decompress 

 Orig file size  14482707829  38828072041 

 Compressed 
 size 

 13190514012  13530076092 

 Ratio  1.1 X  2.9 X 

 Wall clock time  14m 9s  7m 57s  13m 40s  5m 52s 

 CPU time  19017 sec  23211  8076 sec  18188 

 Max memory  14.5 GB  20.8 GB  10.8 GB  12.4 GB 

 CPUs utilized  22.4  48.7  9.8  51.6 
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 Abstract 
 We introduce Dual Coordinate VCF (DVCF), a file format that records genomic variants 

 against two different reference genomes simultaneously and is fully compliant with the 

 current VCF specification. As implemented in the Genozip platform, DVCF enables 

 bioinformatics pipelines to seamlessly operate across two coordinate systems by leveraging 

 the system most advantageous to each pipeline step, simplifying bioinformatics workflows 

 and reducing file generation and associated data storage burden. Moreover, our 

 benchmarking of Genozip DVCF shows that it produces more complete, less erroneous, and 

 less biased translations across coordinate systems than two widely used alternative tools 

 (i.e., LiftoverVcf and CrossMap). 

 Availability and Implementation:  Genozip is free for  academic use. Documentation is 

 available on  https://genozip.com/dvcf.html  . Genozip  user manual is available on 

 https://genozip.com/manual.html  . The source code is  available on 

 https://genozip.com/source.html  . The scripts for reproducing  the benchmarks are available 

 on  https://github.com/divonlan/genozip-dvcf-results  . 

 Main 
 Genomic sequencing and assembly technologies continue to evolve at a rapid pace, 

 enabling the creation of new and more accurate reference genomes for various species  [1]  . 

 While improved human reference genomes are welcomed by researchers and clinicians, 

 updated assemblies inevitably result in altered coordinates that can hinder their adoption as 

 it is common that legacy datasets and bioinformatics software required for some analyses 

 often still use the older coordinate system. Accordingly, for species such as humans where 

 multiple reference genomes (or versions thereof) are available, analytical pipelines often 

 need to alternate between two coordinate systems to accommodate these limitations. 

 To facilitate workflows involving data mapped against different reference genomes, software 

 such as CrossMap  [2]  and GATK LiftoverVcf  [3]  translate  genomic coordinates across the 

 assemblies using a chain file  [4]  . Variants, typically  encoded in a VCF (Variant Call Format) 

 [5]  file, are then lifted over from one coordinate  system to the other, resulting in file 

 duplication (i.e., one for each coordinate system). The liftover step is typically lossy, with 

 variants discarded due their coordinates lacking alignment in the chain file as well as 

 limitations of the liftover software used  [1, 6]  .  Moreover, errors may be introduced due to 

 incorrect chain file mapping of variants as well as incorrect annotation conversion, along with 

https://genozip.com/dvcf.html
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https://github.com/divonlan/genozip-dvcf-results
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 the introduction of potential biases due to the concentration of discarded variants in certain 

 genomic regions. 

 Here we introduce an implementation of the  Dual Coordinate  VCF  (DVCF)  [7]  format in the 

 Genozip platform  [8, 9]  , an extensible compression  software. DVCF is an extension to the 

 standard VCF format compliant with the VCF 4.3 specification, that includes variants with 

 coordinates pertaining to two different genome assemblies simultaneously (Fig. S1). Using 

 DVCF files, researchers can alternate between coordinate systems according to their needs 

 – without creating duplicate VCF files – thereby reducing workflow complexity and alleviating 

 demands on time, computational resources, and disk storage burden (the latter being further 

 improved by Genozip’s efficient data compression algorithms; Tables S16-17). Importantly, 

 the DVCF file format is independent of its implementation in Genozip, allowing its 

 implementation in any relevant bioinformatics software, thereby maintaining interoperability 

 between tools. 

 We refer to the process of converting a VCF file to the DVCF format as  lifting.  In order to lift 

 a VCF file to DVCF, Genozip requires three inputs: two reference files – one defining the 

 Primary  coordinates as used in the input VCF, and  the other defining the  Luft  coordinates to 

 be lifted over (“  luft  ” is a neologism representing  an alternative past-participle of “lift”) – and a 

 chain file defining alignments between the two reference assemblies. Once a DVCF file is 

 generated, users can render it  in either  Primary  or  Luft  coordinates by using Genozip’s 

 genocat  command (see Figs. 1A, S2).  Cross-rendering  consists of losslessly re-arranging 

 the information in the DVCF file to change the coordinate system in which the variants are 

 represented. This allows users to seamlessly alternate between coordinate systems 

 according to the particulars of their bioinformatic workflow. 

 While a DVCF has two possible renditions  (  Primary  and  Luft  ), the DVCF file format is 

 carefully designed so that the information contained in each rendition is identical, thereby 

 guaranteeing that the  cross-rendering  process is strictly  lossless  and invertible. Variants or 

 annotations that have representation in only one of the two coordinate systems due to the 

 lack of a chain file alignment or limitations of the lifting algorithm are nevertheless still 

 represented in both DVCF  renditions.  The missing variants  and annotations are stored in 

 VCF header lines and certain INFO annotations, respectively, as defined in the DVCF 

 specification (sections 5,6,7 in the specification  [7]  ). Since the DVCF file format complies 

 with the VCF standard, any tool that works with VCF files will also work with DVCF files. In 

 addition to rendering the complete VCF data, Genozip’s  genocat  command allows users to 

 render specific subsets of data  in either coordinate system, as well as perform a wide 

https://paperpile.com/c/YOUZPG/44Jl
https://paperpile.com/c/YOUZPG/9r35+UsTw
https://paperpile.com/c/YOUZPG/44Jl


 variety of downsampling and filtering procedures, by drawing upon Genozip’s internal 

 indexing facility (see the  genocat  user manual). 

 To compare the performance of Genozip DVCF against two widely used liftover tools, i.e., 

 LiftoverVcf and CrossMap, we conducted a series of benchmarks using publicly available 

 human genomic data (Supplementary Information section 2). For each file tested, we used 

 the same chain file with all three tools, but nevertheless, each of the three tools produced a 

 different lifted VCF file. We systematically investigated the differences in the lifted files 

 produced by the three tools, characterising and enumerating errors and biases that result 

 from underlying deficiencies in the algorithms of each liftover tool. In other words, we did not 

 evaluate the correctness of the chain files, but rather the correctness of the lifting algorithms 

 for any given chain file. 

 Genozip outperformed both incumbent tools when lifting a set ~19,000 indels, or ~4.1 million 

 SNPs from an older version of the human reference (i.e.,  GRCh  37) to the most recent 

 version (i.e.,  GRCh  38), reducing the proportion of  incorrect calls by nine-fold for indels (0.2% 

 vs 2.1–2.3%) and 463-fold for SNPs (0.002% vs 1.1%) (Fig. 1B, Tables S1-11). Notably, 

 CrossMap also dropped all instances of SNPs where the reference and alternate alleles had 

 been switched between the two reference versions (i.e., REF⇄ALT switches, which 

 accounted for 0.7% of all 4.1M SNPs), which may introduce biases into downstream 

 analyses that leverage SNP diversity patterns due to the highly non-uniform genomic 

 distribution of the REF⇄ALT switches (Figs. 1C, S3-4). We also applied the three tools to 

 ~970k clinically relevant variants obtained from the ClinVar website  [10]  and identified 

 multiple cases of data corruption introduced by CrossMap and LiftoverVcf, which included 

 known pathogenic variants, that are entirely absent from Genozip DVCF (Fig. 1D; Tables 

 S13-15). 

 In conclusion, the implementation of DVCF within the Genozip software platform provides 

 researchers with a user-friendly and flexible tool that facilitates the construction of 

 bioinformatic pipelines capable of working across dual coordinate systems. This is essential 

 whenever researchers wish to exploit the advantages of working with sequence data aligned 

 to the latest version of the reference genome, while still being able to draw upon abundant 

 legacy data or tools that use an older reference genome version. 

 Genozip DVCF also correctly lifts more variants and eliminates key errors identified in our 

 benchmarks of two widely used liftover tools, CrossMap and LiftoverVcf. Failure of these 

 latter tools to correctly liftover variants in regions of the genome causally associated with 

 phenotypes (Fig. 1D) could negatively impact genetic analyses that rely on regional genomic 

https://paperpile.com/c/YOUZPG/eON3


 signals—such as genomic scans for disease-associated and/or selected variants. Moreover, 

 liftover errors have documented impacts on variant effect interpretation  [6]  , which could 

 result in important clinically significant variants being overlooked or leading to misdiagnoses 

 [1]  . 

 Overall, DVCF represents a new and fundamentally different approach for working 

 concurrently within coordinate systems from two different genome assemblies—a reality that 

 many genomics researchers will likely face as improved sequencing technologies lead to 

 increasingly complete reference genomes  [1]  —greatly  simplifying bioinformatic workflows 

 without compromising the robustness of downstream analytical results. Importantly, 

 Genozip’s extensible framework means that further improving DVCF functionality (e.g., by 

 including new algorithms to handle liftover errors, or supporting an arbitrary number of 

 reference genomes, thereby enabling recording of homologous genes in different species) 

 will be an active area of future research. 
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 Figure 1.  DVCF command line usage and performance  vs. CrossMap and LiftoverVcf.  A.  Generation 

 of primary (  Primary  ) and alternate (  Luft  ) renditions  and their integration into a bioinformatics pipeline. 

 Commands are shown along the connecting arrows and file names are indicated in blue text. File 

 suffixes are automatically generated by genozip.  B.  When lifting ~4.1M SNPs and ~19k indels from 

 GRCh37 to GRCh38 (right and left subpanels, respectively),  Genozip DVCF results in substantially 

 fewer lost variants (orange bar portions) and eradicates all forms of data corruption (red bar portions) 

 (see Tables S1 & S9).  C.  Genomic distribution of the  ~30k SNPs (from a set of ~4.1M SNPs) where 

 the reference and alternative allele are switched (i.e. REF⇄ALT allele switches) between human 

 reference  GRCh37 and GRCh38. While Genozip DVCF correctly  lifted all ~30k SNPs,  CrossMap 



 drops these variants (see Table S9), which may lead to biases in downstream analyses due to the 

 genomic clustering of REF⇄ALT allele switches.  D.  Similar results are observed when lifting a set 

 ~970k variants with clinical annotations from  GRCh37  to GRCh38  , with CrossMap and LiftoverVcf 

 producing many more dropped variants (orange blocks) than Genozip DVCF and also generating 

 multiple corrupted variants (red blocks) – including pathogenic and likely pathogenic cases (see 

 associated key) – that are entirely absent from Genozip DVCF (see tables S13-15). 
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 SI.1. DVCF Implementation in Genozip 

 1.1 The DVCF format 

 DVCF files are a type of VCF file, compliant with the VCF v4.3 specification, which contain 

 information about variants represented in two different coordinate systems. Like any VCF 

 file, it consists of meta-information lines prefixed with a double hash (i.e. ##), a header line 

 prefixed with #CHROM, and data lines that each contain information about a single variant 

 (Figure S1). Importantly, the DVCF specification  6  only defines the DVCF file format and 

 does not prescribe liftover algorithms, making it independent of any specific software 

 implementation (including Genozip) and we expect other bioinformatics software packages to 

 implement DVCF as well, thereby maintaining interoperability between tools. For example, 

 existing liftover tools could add a command line option that enables the generation of DVCF 

 formatted outputs. 

 We refer to the process of converting a VCF file to the DVCF format as  lifting. Lifting 

 requires information external to the VCF file itself, in a format defined by the 

 implementation. The DVCF implementation in Genozip, for example, requires two reference 

 files—i.e. the reference file that underlies the coordinate system used in the VCF, and the 

 alternate reference file that contains the coordinates to be lifted over—and a chain file 

 describing the mapping of variants between these two systems, but future implementations 

 could work differently. The coordinate system of the input VCF file is referred to as the 

 Primary  coordinates, and the  lifting  process updates  this VCF by incorporating the required 

 information from the alternate coordinate system, which we refer to as the  Luft  coordinate 

 system (  Luft  being a term we introduce as an alternative  past-participle of  Lift  ). 

 Thereafter, a DVCF can be  rendered  in either  Primary  coordinates or  Luft  coordinates, and 

 can be  cross-rendered  from  Primary  to  Luft  coordinates  and vice versa. We refer to the 

 DVCF-format VCF files rendered in the  Primary  coordinates  as the  Primary rendition  and to 

 the corresponding VCF file in the  Luft  coordinates  as the  Luft rendition.  The coordinate 

 system in which a VCF file is rendered (i.e. the coordinates represented in the CHROM and 



 POS fields) is referred to as the  foreground  coordinate system (which may be  Primary  or 

 Luft  ), with the non-rendered coordinate system being  the  background  coordinate system. 

 Crucially, the information present in both  foreground  and the  background  coordinate systems 

 is present in both renditions: in particular, the CHROM and POS fields are encoded in 

 foreground  coordinates and the allelic states represented  in the REF and ALT fields are 

 defined relative to the  foreground  reference genome.  Simultaneously, the  background 

 coordinate data are encoded in the INFO/LUFT or INFO/PRIM annotation in the  Primary  or 

 Luft  rendition respectively (Figure S1, notes 5 and  6) for each variant and also in the meta 

 information section (Figure S1, notes 1–5). 

 Annotations for some variants may differ between the  Primary  and  Luft  renditions  – for 

 example, annotations that are sensitive to a change in the reference allele (e.g. INFO/AF), or 

 to reference file strand reversal (e.g. INFO/BaseCounts) or coordinate changes (e.g. 

 INFO/END), will only be correct with respect to the  foreground  coordinate system. 

 Cross-rendering of variants with rendition-specific annotations is handled by  Rendering 

 Algorithms  (or  RendAlgs  ), which are a set of algorithms  that convert specific annotations 

 between renditions to ensure consistency with the foreground coordinates. Several standard 

 RendAlgs are defined in section 6.3 of the DVCF specification and implementation 

 developers are encouraged, but not mandated, to use the standard RendAlgs wherever 

 possible, but may also develop proprietary RendAlgs. 

 There are cases where the tag name itself, rather than the values contained in the annotation, 

 differs between renditions—for example, the FORMAT/ADR and FORMAT/ADF tags might 

 switch names (ADF becomes ADR and vice versa) in variants that have a reference genome 

 strand reversal. Another example of using tag renaming would be in case dropping a 

 particular annotation is desired. In this case, the tag name can be prefixed with DROP_. The 

 DVCF specification defines three  Tag Renaming  attributes  (see section 6.4 of the DVCF 

 specification). 

 A key benefit of the DVCF file format design is that  cross-rendering  consists of simply 

 rearranging information that is already present in the DVCF file and transforming affected 

 annotations, and therefore this process does not require external information (such as the 

 reference sequence or the chain files), making it computationally fast and efficient. Moreover, 



 since DVCF files are VCF files, they can be processed in the same manner as traditional VCF 

 files using appropriate bioinformatics tools, but provide users with the additional freedom to 

 choose which coordinate system to use when executing specific pipeline steps without having 

 to create duplicate VCF files, thereby reducing analytical complexity and saving considerable 

 disk space (SI section 4). 

 A likely outcome of the lifting process is that some variants may only be represented in one 

 of the two coordinate systems due to the lack of a specific chain file alignment or liftover 

 software limitations. To maintain information identicality across renditions, such 

 single-coordinate  variants are represented in both  renditions, by recording their  background 

 coordinates in the VCF meta-information (prefixed with either  ##primary_only=  or 

 ##luft_only=  in accordance with the coordinate system  that the variant is represented; 

 see Figure S1, note 1). We refer to such variants as  Primary-only  or  Luft-only  variants 

 depending on which reference version the variant is represented. In addition, meta 

 information lines describing the contigs and reference file of the  background  coordinate 

 system may also be added (DVCF specification section 5.3 and 5.6 ; Figure S1, note 3). 

 In conclusion, while a DVCF has two  renditions  (i.e.  Primary  and  Luft  ), the DVCF file 

 format is carefully designed so that the information contained in each  rendition  is identical, 

 thereby guaranteeing that the  cross-rendering  between  the  renditions  is a strictly lossless  and 

 invertible process. 



 1  ##primary_only=1        143163348       LN=170280  G       A       1066.01 

 .       AC=1;AF=0.500;AN=2;Lrej=NoMappingInChainFile   GT:AD:DP:GQ:PL:FL 

 0/1:152,74:1066,0,2824 
 2  ##contig=<ID=chr1,length=248956422> 

 2  ##reference=file://GRCh38_full_analysis_set_plus_decoy_hla.ref.genozip 

 3  ##primary_reference=file://hs37d5.ref.genozip 

 3  ##primary_contig=<ID=1,length=249250621> 

 4  ##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic  depths for the ref 

 and alt alleles in the order listed",RendAlg=R> 
 4  ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype",RendAlg=GT> 

 4  ##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized,  Phred-scaled 

 likelihoods for genotypes as defined in the VCF specification",RendAlg=G> 
 4  ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele  count in genotypes, for 

 each ALT allele, in the same order as listed",RendAlg=A_AN> 
 4  ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele  Frequency, for each ALT 

 allele, in the same order as listed",RendAlg=A_1> 
 4  ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total  number of alleles in 

 called genotypes",RendAlg=NONE> 
 5  ##INFO=<ID=LUFT,Number=4,Type=String,Description="Info  for rendering variant in 

 LUFT coords. See 

 https://genozip.com/dvcf.html",Source="genozip",Version="12.0.8",RendAlg=NONE  > 
 5  ##INFO=<ID=PRIM,Number=4,Type=String,Description="Info  for rendering variant in 

 PRIMARY coords",Source="genozip",Version="12.0.-1",RendAlg=NONE> 
 5  ##INFO=<ID=Lrej,Number=1,Type=String,Description="Reason  variant was rejected 

 for LUFT coords",Source="genozip",Version="12.0.-1",RendAlg=NONE> 
 5  ##INFO=<ID=Prej,Number=1,Type=String,Description="Reason  variant was rejected 

 for PRIMARY coords",Source="genozip",Version="12.0.-1",RendAlg=NONE> 

 #CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO    FORMAT  SS6004478 
 6  chr1    597733  LN=298  A       G       263.03  . 

 AC=2;AF=1.00;AN=2;PRIM=1,533113,A,-  GT:AD:PL       1/1:4,20:263,24,0 

 Figure S1  . A small subset of the Luft rendition of  our SNP test file (see section 4), 

 containing two variants. Notes: 1a Primary-only variant represented in a ##primary_only line. 

 2foreground (Luft in this case) coordinate data 3background (Primary) meta-information 

 lines are preserved with the prefix primary_. 4INFO and FORMAT meta-information lines 

 contain the RendAlg attribute 5Four DVCF INFO tags defined. 6PRIM contains the data 

 needed to cross-render to Primary. 

https://genozip.com/dvcf.html%22,Source=%22genozip%22,Version=%2212.0.8%22,RendAlg=NONE


 1.2 Genozip – a brief overview 

 Genozip is a software platform that stores genomic files in a compressed format. For VCF 

 files, compression is typically 2–8 times better than other standard compression tools such as 

 gzip and BCF  (Lan  et al.  , 2020)  . In Genozip’s implementation  of DVCF files, data are stored 

 in the Genozip format. Users may render  the data in  either coordinate system and have the 

 option of piping the data through an analytical tool or pipeline before returning the data to 

 Genozip format (see Figure 1A). In the following section, we outline the basic commands 

 involved in the  lifting  process and provide a brief  description of the algorithms involved in 

 cross-rendering  between coordinate systems. 

https://paperpile.com/c/lUEcVU/JqRG


 1.3 The  lift  process 

 Genozip can lift one or more VCF files into a DVCF using a suitable chain file available 

 from Ensembl (  https://ftp.ensembl.org/pub/assembly_mapping/  )  or the UCSC Genome 

 Browser (  https://hgdownload.soe.ucsc.edu/downloads.html  )  by invoking the following 

 command: 

 genozip --chain mychainfile.chain.genozip myvariants.vcf 

 This will generate a DVCF file in Genozip format: myvariants.d.vcf.genozip. 

 Genozip accepts chain files in the UCSC chain format 

 (genome.ucsc.edu/goldenPath/help/chain.html)  , which  must first be compressed with 

 genozip  using Primary and Luft reference files: 

 genozip --reference primary.ref.genozip --reference 

 luft.ref.genozip mychainfile.chain 

 Each reference file, in turn, is produced from the relevant reference genome FASTA file: 
 genozip --make-reference primary.fa.gz 

 During the lift process (i.e. executing  genozip --chain  ),  Genozip determines whether it 

 is possible to represent each variant in both coordinate systems, with all variants failing this 

 process (i.e. rejected variants) being retained as Primary-only variants. A variant may be 

 rejected for three reasons: (1) it lacks an alignment in the chain file, or (2) the lifted variant 

 has more than two alleles (either because it had more than two alleles in the input VCF file, 

 or the Luft REF allele is neither the Primary REF nor ALT allele), or (3) if any of the INFO 

 or FORMAT annotations cannot be cross-rendered due to the “Rejected If” condition of their 

 RendAlg (see next section). Known cases in which Genozip cannot lift variants are listed in 

 genozip.com/dvcf-limitations.html  . 

https://ftp.ensembl.org/pub/assembly_mapping/
https://hgdownload.soe.ucsc.edu/downloads.html
http://genome.ucsc.edu/goldenPath/help/chain.html
https://genozip.com/dvcf-limitations.html


 1.4 Rendering in  Primary  or  Luft  coordinates 

 When in the Genozip format, DVCF files may be rendered in Primary or Luft coordinates by 

 using either  genocat data.vcf.genozip  or  genocat --luft  data.vcf.genozip  , 

 respectively (Figure S2). The resulting VCF file is sorted according to its foreground (i.e., 

 rendered) coordinates. Running  genozip  on the rendered  file in either coordinate system 

 produces a compressed DVCF file in Genozip format containing identical information. 

 In addition to variants becoming single coordinate during the initial lift process, they can also 

 become single coordinate when compressing a DVCF rendition with the  genozip  command 

 if (1) new variants were added to the VCF following the initial lifting step and these variants 

 lack the INFO/PRIM or INFO/LUFT fields (i.e. they are single-coordinate), or (2) if an 

 annotation was added or modified in a way that satisfies its RendAlg’s “Rejected If” 

 condition (see next paragraph). 

 Since both renditions are DVCF files, each rendition contains all the information needed for 

 rendering in either coordinate system. Cross-rendering involves the translation of annotations 

 between the Primary and Luft coordinate systems. This process often implicates making 

 rendition-specific changes to one or more annotations for some variants, with each annotation 

 being handled by a Rendering Algorithm (or RendAlg). RendAlgs are stand-alone algorithms 

 that are not tied a priori to specific INFO and FORMAT tags, rather, they are assigned to tags 

 using a new RendAlg attribute added to each ##INFO and ##FORMAT meta-information 

 line. Thereafter, all INFO and FORMAT annotations (in the VCF data lines) of a specific tag 

 will be treated with the  RendAlg  assigned to that  tag. Importantly, Genozip adds the 

 RendAlg  attribute to each tag’s meta-information line  based on its ID and/or Number 

 attributes, but only if the  RendAlg  attribute is not  already present. This allows users to assign 

 RendAlgs differently than Genozip’s built-in assignments  . 

 Genozip implements eleven RendAlgs, listed in  genozip.com/dvcf-rendering.html  ,  which are 

 an implementation of the DVCF standard set of RendAlgs defined in the 

 specification6section 6.3; see also  genozip.com/dvcf-rendering.html  ).  Each RendAlg is 

 comprised of three elements: (1) a trigger; which is the class of event handled by the 

 RendAlg, (2) an action which is the effect the RendAlg has on the annotation, and (3) 

 “Rejected If” conditions, which describe circumstances in which the designated action cannot 

https://genozip.com/dvcf-rendering.html
https://genozip.com/dvcf-rendering.html


 be applied despite the trigger activating, in which case the variant is rejected (i.e., is 

 represented as a single-coordinate variant in the DVCF). To illustrate this mechanism, 

 consider the A_1 RendAlg which is useful for annotations in fields reporting allele frequency 

 information. The A_1 RendAlg trigger is a “REF⇄ALT switch” (i.e., a change of REF allele 

 across renditions), its action is to recalculate the value of the annotation as 1 - value, and the 

 variant is “Rejected If” the value of the annotation is outside of the range [0,1] or if the 

 variant has more than two alleles. By default, Genozip assigns the A_1 RendAlg to the 

 FORMAT/AF  ,  INFO/AF  ,  INFO/MLEAF  ,  INFO/LDAF  fields and  any additional INFO tag that 

 begins with  AF_  or ends with  _  AF  (except  MAX_AF  )  .  Another example is the RendAlg named 

 END that Genozip assigns by default to the  INFO/END  field. Its trigger event is “Always” 

 (i.e., it triggers on all  INFO/END  annotations in  the data), its action is to modify the 

 annotation to which it is assigned to maintain the same distance from POS in both renditions, 

 whereby the variant is “Rejected If” the position indicated by the annotation and POS are not 

 both on the same chain file alignment. A final example is the XREV RendAlg whose trigger 

 event is “strand reversal” (as indicated by the chain file alignment) and its action is to reverse 

 the elements of an array. Genozip assigns the XREV RendAlg to the  INFO/BaseCounts 

 field. 

 > genocat SS.d.vcf.genozip -H -s 1 -g LN=632  # PRIMARY RENDITION 

 1       770568  LN=632  A       G  809.01  . 

 AC=2;AF=1.00  ;AN=2;BaseCounts=0,0,31,1;DB;DP=32;Dels=0.00;FS=0.000;GC=47.1 

 3;HaplotypeScore=0.0000;  MLEAC=2;MLEAF=1.00  ;MQ=32.04;MQ0=4;QD=25.28;  LUFT=c 

 hr1,835188,G,-  GT:AD:DP:GQ:PL:FL  1/1:0,31  :31:63:  809,63,0  :N 

 > genocat SS.d.vcf.genozip -H -s 1 -g LN=632 --luft # LUFT RENDITION 

 chr1    835188  LN=632  G       A  809.01  . 

 AC=0;AF=0.00  ;AN=2;BaseCounts=0,0,31,1;DB;DP=32;Dels=0.00;FS=0.000;GC=47.1 

 3;HaplotypeScore=0.0000;  MLEAC=0;MLEAF=0.00  ;MQ=32.04;MQ0=4;QD=25.28;  PRIM=1 

 ,770568,A,-  GT:AD:DP:GQ:PL:FL  0/0:31,0  :31:63:  0,63,809  :N 

 Figure S2  . An example of rendering and cross rendering  with one variant. The differences 

 between the Primary rendition (top command line and output) and Luft rendition (bottom 

 command line and output) are highlighted in bold font. Notice that the LUFT and PRIM 

 subfields of the INFO field display the information that is used by Genozip to cross-render 

 this variant. 



 1.5 Disk space considerations 

 In addition to needing only a single DVCF file to represent variants in two coordinate 

 systems, rather than two separate VCF files, Genozip also stores VCF files using highly 

 efficient compression  (Lan et al. 2020)  . Together,  this amounts to significant saving of disk 

 space. 

 To demonstrate this, we compare the size of our SNP and Indel test files (SI section 1): 

 Table S16:  SNP file 

 Uncompressed  .gz compressed  Genozip DVCF 

 GRCh37  1  999 MB  199 MB  76 MB 

 GRCh38  2  1094 MB  175 MB 

 Total  2093 MB  374 MB  76 MB 

 Compression ratio  -  5.6X  27.5X 

 1  SS6004478.annotated.nh2.variants.vcf  2  snp.38.gatk.vcf 

 Table S17:  Indel file 

 Uncompressed  .gz compressed  Genozip DVCF 

 GRCh37  1  3961 KB  848 KB  443 KB 

 GRCh38  2  4470 KB  777 KB 

 Total  8431 KB  1625 KB  443 KB 

 Compression ratio  5.2X  19X 

 1  indel.37.vcf  2  indel.38.gatk.vcf 

https://paperpile.com/c/0bjWze/csDV


 SI.2. Benchmark 

 2.1 Categorizing variants by lift quality 

 We used chromosome 22 data from the 1000 Genome project phase 1 for benchmarking 

 indels (see Section 1.2) and a sample from 

 https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/  for benchmarking 

 SNPs (see Section 1.3). 

 We categorize the 18,857 indel variants in the indel test file and the  4,109,729 variants in the 

 SNP test file, in respect to  lifting  —the operation  of converting the VCF file from one 

 coordinate system to another, GRCh37 to GRCh38 in our case. 

 With respect to each of the three tools, Genozip, LiftoverVcf and CrossMap, we assign one of 

 five categories to each variant. Numbers 1 and 2 are good outcomes, and numbers 3 through 

 5 are bad outcomes, with increasing order of severity. 

 1)  Lifted  - The lift operation succeeded and the resulting  variant is correct. 

 2)  Unmapped  - The chain file has no mapping for the coordinate  of this variant, and 

 therefore the variant was correctly rejected from lifting by the tool. 

 3)  Annotation Loss  - The variant was lifted and the resulting  variant is correct but 

 incomplete—some of the annotations it originally contained were dropped by the tool. 

 4)  Variant Loss  - The variant was rejected from lifting  by the tool, despite having all the 

 information needed to successfully lift it. This happens when variants have some 

 complexities that are beyond the capabilities of the particular tool. 

 5)  Data Corruption  - The variant was lifted, but the  resulting variant contains incorrect 

 data. 

https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/


 In some cases, we decided to categorize a variant as  Lifted  even though it had a very  Minor 

 data loss  . This was done in cases where data loss almost certainly will not affect any 

 downstream analysis. These cases are explained where they occur in the sections below. 
 2.2 Indel benchmark 

 2.2.1 Data preparation 

 We developed a set of scripts that executes this benchmark in its entirely - from downloading 

 the data to producing the analysis files. It is available from 

 https://github.com/divonlan/genozip-dvcf-results  and  the entry point script is: 
 run-indl-37-38.sh 

 The key steps executed by this script are these: 

 Preparing the input files 

 The indel test file was generated from the chromosome 22 VCF file of the 1000 Genome 

 Project phase 1 obtained from 

 ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr22.phase1_release_v 

 3.20101123.snps_indels_svs.genotypes.vcf.gz  and filtered  to contain only its indel variants 

 (N=18,706 indels). 

   

 The GRCh37 reference was obtained from 

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_se 

 quence/hs37d5.fa.gz  , and prepared for Genozip use  with 

 > genozip --make-reference  hs37d5.fa.gz 

   

 The GRCh38 reference was downloaded from 

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/G 

 RCh38_full_analysis_set_plus_decoy_hla.fa  , and prepared  for Genozip use with: 

 > genozip --make-reference GRCh38_full_analysis_set_plus_decoy_hla.fa.gz -o 

 GRCh38.ref.genozip 

   

 The chain file mapping GRCh37 genomic features to their corresponding GRCh38 

 coordinates was obtained from 

https://github.com/divonlan/genozip-dvcf-results
http://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/GRCh37_to_GRCh38.chain.gz


 http://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/GRCh37_to_GRCh38.chain.gz 

 , and prepared with: 

 > genozip --echo GRCh37_to_GRCh38.chain.gz --reference hs37d5.ref.genozip 

 --reference GRCh38.ref.genozip --match-chrom-to-reference --force --output 

 GRCh37_to_GRCh38.matched.chain.genozip 

   

 Note the  --match-chrom-to-reference  : this modifies  the contig names in the chain file 

 to match those of the reference files (e.g. “22” vs “chr22”). 

   

 For our indels-test, we used a single sample, indels-only VCF file that was generated with 

 the following commands: 

 > genozip 

 ALL.chr22.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz 

   
 > genocat 

 ALL.chr22.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.genozip 

 --samples 1 --indels-only -o indel.37.vcf 

http://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/GRCh37_to_GRCh38.chain.gz


 Genozip DVCF liftover 

 Using the chain file, which itself uses the two reference files, we generated a DVCF file. For 

 the purpose of ease of comparison between corresponding VCF files in the two coordinate 

 systems, we replaced the ID field with a line number (e.g. “LN=452”) using the 

 --add-line-numbers  command line option, and modified  the contig names to match 

 those of the reference file and the chain file with  --match-chrom-to-reference  . 

   
 > genozip --echo --chain 

 GRCh37_to_GRCh38.matched.chain.genozip --add-line-numbers 

 --match-chrom-to-reference indel.37.vcf -o 

 indel-37-38/indel-37-38.d.vcf.genozip 

   

 In order to test the other tools with the VCF file that contains the updated ID field and contig 

 names, and also to allow is comparison of Genozip DVCF status to the outcome of the other 

 tools, we generated a GRCh37-only version of the VCF that contains the DVCF lifting status 

 (which we refer to as “oStatus”). The  --single  option  converts the dual-coordinate DVCF 

 file to a single-coordinate (GRCh37 in this case) VCF file.  --show-ostatus  adds an 

 INFO/oSTATUS  field to each variant, describing the  Genozip’s liftover status of this 

 variant. The ID field already contains the line number. 

   
 > genocat indel-37-38.d.vcf.genozip --single -o 

 indel.37.annotated.vcf --show-ostatus 

 CrossMap liftover 

 CrossMap.py version v0.5.2 was installed using conda and the test VCF file was lifted over to 

 GRCh38 coordinates using the following command: 

   
 > CrossMap.py vcf GRCh37_to_GRCh38.matched.chain 

 indel-37-38/indel.37.annotated.vcf 

 GRCh38_full_analysis_set_plus_decoy_hla.fa.gz 

 indel-37-38/indel.38.CrossMap.vcf 



 GATK LiftoverVcf liftover 

 GATK version 4.1.7 was used, and the indel test file lifted over to GRCh38 coordinates was 

 produced using  LiftoverVcf  : 

   
 > gatk --java-options '-Xmx16g -XX:ParallelGCThreads=1' 

 LiftoverVcf --INPUT indel-37-38/indel.37.annotated.vcf 

 --OUTPUT indel-37-38/indel.38.gatk.vcf --CHAIN 

 GRCh37_to_GRCh38.matched.chain --REJECT 

 indel-37-38/indel.38.gatk.rejects.vcf 

 --RECOVER_SWAPPED_REF_ALT --REFERENCE_SEQUENCE 

 GRCh38_full_analysis_set_plus_decoy_hla.fa.gz 

 --TAGS_TO_REVERSE AF --TAGS_TO_REVERSE AF_EUR 

 --TAGS_TO_REVERSE AF_EAS --TAGS_TO_REVERSE AF_AMR 

 --TAGS_TO_REVERSE AF_SAS --TAGS_TO_REVERSE AF_AFR 

 --TAGS_TO_REVERSE AF_EUR_unrel --TAGS_TO_REVERSE AF_EAS_unrel 

 --TAGS_TO_REVERSE AF_AMR_unrel --TAGS_TO_REVERSE AF_SAS_unrel 

 --TAGS_TO_REVERSE AF_AFR_unrel --TAGS_TO_DROP AC 

 --TAGS_TO_DROP AC_EUR --TAGS_TO_DROP AC_EAS --TAGS_TO_DROP 

 AC_AMR --TAGS_TO_DROP AC_SAS --TAGS_TO_DROP AC_AFR 

 --TAGS_TO_DROP AC_EUR_unrel --TAGS_TO_DROP AC_EAS_unrel 

 --TAGS_TO_DROP AC_AMR_unrel --TAGS_TO_DROP AC_SAS_unrel 

 --TAGS_TO_DROP AC_AFR_unrel --TAGS_TO_DROP AC_Hom_EUR 

 --TAGS_TO_DROP AC_Hom_EAS --TAGS_TO_DROP AC_Hom_AMR 

 --TAGS_TO_DROP AC_Hom_SAS --TAGS_TO_DROP AC_Hom_AFR 

 --TAGS_TO_DROP AC_Hom --TAGS_TO_DROP AC_Het_EUR --TAGS_TO_DROP 

 AC_Het_EAS --TAGS_TO_DROP AC_Het_AMR --TAGS_TO_DROP AC_Het_SAS 

 --TAGS_TO_DROP AC_Het_AFR --TAGS_TO_DROP AC_Het --TAGS_TO_DROP 

 AC_Hom_EUR_unrel --TAGS_TO_DROP AC_Hom_EAS_unrel 

 --TAGS_TO_DROP AC_Hom_AMR_unrel --TAGS_TO_DROP 

 AC_Hom_SAS_unrel --TAGS_TO_DROP AC_Hom_AFR_unrel 

 --TAGS_TO_DROP AC_Het_EUR_unrel --TAGS_TO_DROP 

 AC_Het_EAS_unrel --TAGS_TO_DROP AC_Het_AMR_unrel 



 --TAGS_TO_DROP AC_Het_SAS_unrel --TAGS_TO_DROP 

 AC_Het_AFR_unrel 

   

 Finally, our bash scripts perform analyses and output three summary files, one for each tool 

 (  analysis.CrossMap.txt  ,  analysis.gatk.txt  ,  analysis.Genozip.txt  ), 

 which describe the outcome of the variants (Lifted or Dropped) categorised from Genozip’s 

 oStatus categories. See Supplementary Information section 6 for the content of these files. 



 2.2.2 Indel benchmark results summary 

 Table S1  . Performance of three liftover tools for  indels, including handling of problematic 

 variants, according to standard categories reported by the Genozip software. 

 # 
 Variants 

 Category  Genozip  LiftoverVcf  CrossMap 

 18,201  Lifted without issues  🗸  Lifted  🗸  Lifted  🗸  Lifted 

 78  REF not mapped in chain file  🗸  Unmapped  🗸  Unmapped  🗸  Unmapped 

 153  REF  ⇄  ALT switch but REF unchanged 

 (switch in number of repeats) 

 🗸  Lifted  ✗  Data 

 Corruption 

 ✗  Data 

 Corruption 

 27  REF  ⇄  ALT switch but REF unchanged 

 (Flanking regions indicate switch) 

 🗸  Lifted  ✗  Data 

 Corruption 

 ✗  Data 

 Corruption 

 6  Simple Deletion->Insertion REF  ⇄  ALT 

 switch 

 🗸  Lifted  ✗  Variant 

 Loss 

 ✗  Data 

 corruption 

 71  Deletion->Insertion REF  ⇄  ALT switch called 

 by Deletion payload in chain file gap 

 🗸  Lifted  ✗  Variant 

 Loss 

 ✗  Variant 

 Loss 

 20  Deletion with payload partially in gap  🗸  Unmapped  🗸  Unmapped  ✗  Data 

 Corruption 

 40  Insertion with reverse strand  🗸  Lifted  ✗  Data 

 Corruption 
 (35) 
 🗸  Lifted (5) 

 ✗  Data 

 Corruption 

 67  Deletion with reverse strand  🗸  Lifted  ✗  Data 

 Corruption 
 (51) 
 🗸  Lifted (16) 

 ✗  Data 

 Corruption 

 9  Apparent REF<>ALT switch disqualified by 

 flanking regions 

 ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 ✗  Data 

 Corruption 

 13  REF changed in Deletion but not 

 REF  ⇄  ALT switch 

 ✗  Variant 

 Loss 

 ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 11  REF unchanged, but flanking regions show 

 that this is a new Insertion allele. 

 ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 ✗  Data 

 Corruption 



 6  The REF base mismatches between the 

 references 

 ✗  Variant 

 Loss 

 ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 4  REF unchanged, but flanking regions show 

 that this is a new Deletion allele. 

 ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 ✗  Data 

 Corruption 

 18,706  TOTAL 



 2.2.3 REF⇄ALT switch, entire variant mapped, no REF change 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 180  Lifted  Data Corruption  Data Corruption 

 Genozip oSTATUS:  OkRefAltSwitchIndelRpts  ,  OkRefAltSwitchIndelFlank 

 We found that both LiftoverVcf and CrossMap fail to identify 180 REF⇄ALT switches in 

 indel variants, respectively, resulting in incorrect variants with the REF and ALT reversed vs 

 their correct values, along with errors in many of the INFO and FORMAT annotations that 

 depend on the order of alleles (such as AC, AF, AD, GL, etc.). Genozip lifts all 186 

 REF⇄ALT switches, 

 Case 1  : simple insertion with REF⇄ALT switch 

 Consider this GRCh37 insertion variant, which maps to 16423118 in GRCh38: 

 #CHROM  POS       ID      REF     ALT 

 22      16903845  LN=133  T       TAC 

 > genocat --reference hs37d5.ref.genozip -r chr22:16903845+8 

 16903845-16903852  T  AGAGGCA 

 > genocat --reference GRCh38.ref.genozip -r chr22:16423118+10 

 16423118-16423127  TAC  AGAGGCA 

 It is easy to see that the insertion got incorporated in the GRCh38 reference, therefore the 

 haplotypes with GT=1 in the original VCF, indicating their samples have this insertion, are 

 the REF allele in the Luft reference, while those haplotypes that don’t have this insertion 

 would be a deletion variant relative to the Luft reference. In other words, this is a REF⇄ALT 

 switch. 



 Genozip correctly executes a REF⇄ALT switch (Table S2; note the fields that differ from the 

 original VCF in red), while both LiftoverVcf and CrossMap fail to detect this REF⇄ALT 

 switch and therefore generate a data-corrupted variant. 



 Table S2:  Example VCF of an insertion with REF  ⇄  ALT  switch. 

 Genozip (37)  Genozip (38)  LiftoverVcf (38)  CrossMap (38) 

 genocat 

 indel-37-38.d. 

 vcf.genozip 

 --luft 

 --samples 1 

 --no-header -g 

 LN=133 

 genocat 

 indel-37-38.d.v 

 cf.genozip 

 --luft 

 --samples 1 

 --no-header -g 

 LN=133 

 grep -w LN=133 

 indel.38.gatk. 

 vcf |cut 

 -f1-10 

 grep -w LN=133 

 indel.38.Cross 

 Map.vcf |cut 

 -f1-10 

 #CHROM  22  chr22  chr22  22 

 POS  16903845  16423118  16423118  16423118 

 ID  LN=133  LN=133  LN=133  LN=133 

 REF  T  TAC  T  T 

 ALT  TAC  T  TAC  TAC 

 QUAL  166  166  166  166 

 FILTER  PASS  PASS  PASS  PASS 

 INFO 

 AA=TAC;ERATE=0.0 

 118;RSQ=0.5469;A 

 N=2184;LDAF=0.27 

 50;VT=INDEL;THET 

 A=0.0057;AVGPOST 

 =0.7502;AC=455;A 

 F=0.21;ASN_AF=0. 

 14;AMR_AF=0.19;A 

 FR_AF=0.44;EUR_A 

 F=0.12;  LUFT=chr2 

 2,16423118,TAC,- 

 AA=TAC;ERATE=0.0 

 118;RSQ=0.5469;A 

 N=2184;  LDAF=0.72 

 50  ;VT=INDEL;THET 

 A=0.0057;AVGPOST 

 =0.7502;  AC=1729  ; 

 AF=0.79;ASN_AF=0 

 .86;AMR_AF=0.81; 

 AFR_AF=0.56;EUR_ 

 AF=0.88;PRIM=22, 

 16903845,T,- 

 AA=TAC;  AC=455;AF 

 =0.21;AFR_AF=0.4 

 4;AMR_AF=0.19  ;AN 

 =2184;  ASN_AF=0.1 

 4  ;AVGPOST=0.7502 

 ;ERATE=0.0118;EU 

 R_AF=0.12;LDAF=0 

 .2750  ;RSQ=0.5469 

 ;THETA=0.0057;VT 

 =INDEL 

 AA=TAC;ERATE=0.0 

 118;RSQ=0.5469;A 

 N=2184;  LDAF=0.27 

 50  ;VT=INDEL;THET 

 A=0.0057;AVGPOST 

 =0.7502;  AC=455;A 

 F=0.21;ASN_AF=0. 

 14;AMR_AF=0.19;A 

 FR_AF=0.44;EUR_A 

 F=0.12 

 FORMAT  GT:DS:GL  GT:DS:GL  GT:DS:GL  GT:DS:GL 

 HG00096 

 0|0:0.050:0.00,- 

 1.20,-18.40 

 1|1:1.950:-18.40 

 ,-1.20,0.00 

 0|0:0.050:0.00,- 

 1.20,-18.40 

 0|0:0.050:0.00,- 

 1.20,-18.40 

 GRCh version is in parentheses in the headers. The VCF lines are presented 

 transposed, for readability.  Red  :  changes vs. the  original VCF;  highlight:  errors. 



 Case 2:  Insertion with repeats with  REF  ⇄  ALT switch 

 Consider the variant at POS=22780917 that maps to 22426580 on GRCh38: 

 #CHROM  POS       ID        REF     ALT 

 22      22780917  LN=3114  C       CA 

 Viewing the Primary (37) and Luft references: Notice that the Insertion was incorporated in 

 the Luft reference—it has 3 As instead of 2: 

 > genocat -e hs37d5.ref.genozip -r chr22:22780917+9 

 22780917-22780925  CA  ATCGGTC 

 > genocat -e GRCh38.ref.genozip -r chr22:22426580+10 

 22426580-22426589  CAA  ATCGGTC 

 Genozip executed a  REF  ⇄  ALT switch while the other  tools failed to do so (Table S3). 

 Table S3:  Example VCF of an insertion with repeats  with REF  ⇄  ALT switch. 

 Genozip (37)  Genozip (38)  LiftoverVcf (38)  CrossMap (38) 

 genocat 

 indel-37-38.d. 

 vcf.genozip -H 

 -s1 -g LN=3114 

 genocat 

 indel-37-38.d.v 

 cf.genozip -H 

 -s1 --luft -g 

 LN=3114 

 grep -w 

 LN=3114 

 indel.38.gatk. 

 vcf |cut 

 -f1-10 

 grep -w 

 LN=3114 

 indel.38.Cross 

 Map.vcf |cut 

 -f1-10 

 #CHROM  22  chr22  chr22  22 

 POS  22780917  22426580  22426580  22426580 

 ID  LN=3114  LN=3114  LN=3114  LN=3114 

 REF  C  CA  C  C 

 ALT  CA  C  CA  CA 

 QUAL  763  763  763  763 

 FILTER  PASS  PASS  PASS  PASS 

 INFO 

 AA=.;ERATE=0.000 

 5;AN=2184;VT=IND 

 AA=.;ERATE=0.000 

 5;AN=2184;VT=IND 

 AA=.;  AC=1517;AF= 

 0.69;AFR_AF=0.86 

 AA=.;ERATE=0.000 

 5;AN=2184;VT=IND 



 EL;THETA=0.0005; 

 AC=1517;LDAF=0.6 

 930;RSQ=0.9505;A 

 VGPOST=0.9681;AF 

 =0.69;ASN_AF=0.6 

 3;AMR_AF=0.56;AF 

 R_AF=0.86;EUR_AF 

 =0.71;  LUFT=chr22 

 ,22426580,CA,- 

 EL;THETA=0.0005; 

 AC=667;LDAF=0.30 

 70  ;RSQ=0.9505;AV 

 GPOST=0.9681;  AF= 

 0.31;ASN_AF=0.37 

 ;AMR_AF=0.44;AFR 

 _AF=0.14;EUR_AF= 

 0.29;PRIM=22,227 

 80917,C,- 

 ;AMR_AF=0.56;AN= 

 2184;ASN_AF=0.63 

 ;AVGPOST=0.9681; 

 ERATE=0.0005;  EUR 

 _AF=0.71;LDAF=0. 

 6930  ;RSQ=0.9505; 

 THETA=0.0005;VT= 

 INDEL 

 EL;THETA=0.0005; 

 AC=1517;LDAF=0.6 

 930  ;RSQ=0.9505;A 

 VGPOST=0.9681;  AF 

 =0.69;ASN_AF=0.6 

 3;AMR_AF=0.56;AF 

 R_AF=0.86;EUR_AF 

 =0.71 

 FORMAT  GT:DS:GL  GT:DS:GL  GT:DS:GL  GT:DS:GL 

 HG00096 

 0|1:1.000:-7.40, 

 0.00,-6.20 

 1|0:1.000:-6.20, 

 0.00,-7.40 

 0|1:1.000:-7.40, 

 0.00,-6.20 

 0|1:1.000:-7.40, 

 0.00,-6.20 

 GRCh version is in parentheses in the headers. The VCF lines are presented 

 transposed, for readability.  Red  :  changes vs. the  original VCF;  highlight:  errors. 



 Case 3:  Deletion with repeats with  REF  ⇄  ALT switch 

 Consider the variant at POS=24483878 that maps to 24087925 on GRCh38: 

 #CHROM  POS       ID        REF     ALT 

 22      24483878  LN=4150  AT      A 

 Viewing the Primary (37) and Luft (38) references: Notice that the Deletion was incorporated 

 in the Luft reference - it has only 2 repeating Ts instead of 3: 

 > genocat -e hs37d5.ref.genozip -r chr22:24483878+10 

 24483878-24483887  AT  TTAGGGAC 

 > genocat -e GRCh38.ref.genozip -r chr22:24087925+9 

 24087925-24087933  A  TTAGGGAC 

 Genozip executed a  REF  ⇄  ALT switch while the other  tools failed to do so (Table S4). 

 Table S4:  Example VCF of a deletion with REF  ⇄  ALT switch. 

 Genozip (37)  Genozip (38)  LiftoverVcf (38)  CrossMap (38) 

 genocat 

 indel-37-38.d.vcf 

 .genozip -H -s 1 

 -g LN=4150 

 genocat 

 indel-37-38.d.vcf 

 .genozip -H -s 1 

 --luft -g LN=4150 

 grep -w LN=4150 

 indel.38.gatk.vcf 

 | cut -f1-10 

 grep -w LN=4150 

 indel.38.CrossMap. 

 vcf | cut -f1-10 

 #CHROM  22  chr22  chr22  22 

 POS  24483878  24087925  24087925  24087925 

 ID  LN=4150  LN=4150  LN=4150  LN=4150 

 REF  AT  A  AT  AT 

 ALT  A  AT  A  A 

 QUAL  785  785  785  785 

 FILTER  PASS  PASS  PASS  PASS 

 INFO 

 AA=AT;AC=1441;AN= 

 2184;LDAF=0.6585; 

 VT=INDEL;THETA=0. 

 0006;AVGPOST=0.99 

 AA=AT;  AC=743  ;AN=2 

 184;  LDAF=0.3415  ;V 

 T=INDEL;THETA=0.0 

 006;AVGPOST=0.991 

 AA=AT;  AC=1441;AF= 

 0.66;AFR_AF=0.46; 

 AMR_AF=0.82  ;AN=21 

 84;  ASN_AF=0.55  ;AV 

 AA=AT;  AC=1441  ;AN=2 

 184;LDAF=0.6585;VT 

 =INDEL;THETA=0.000 

 6;AVGPOST=0.9913;R 



 13;RSQ=0.9854;ERA 

 TE=0.0006;AF=0.66 

 ;ASN_AF=0.55;AMR_ 

 AF=0.82;AFR_AF=0. 

 46;EUR_AF=0.80;  LU 

 FT=chr22,24087925 

 ,A,- 

 3;RSQ=0.9854;ERAT 

 E=0.0006;  AF=0.34; 

 ASN_AF=0.45;AMR_A 

 F=0.18;AFR_AF=0.5 

 4;EUR_AF=0.20;PRI 

 M=22,24483878,AT, 

 - 

 GPOST=0.9913;ERAT 

 E=0.0006;  EUR_AF=0 

 .80;LDAF=0.6585;  R 

 SQ=0.9854;THETA=0 

 .0006;VT=INDEL 

 SQ=0.9854;ERATE=0. 

 0006;  AF=0.66;ASN_A 

 F=0.55;AMR_AF=0.82 

 ;AFR_AF=0.46;EUR_A 

 F=0.80 

 FORMAT  GT:DS:GL  GT:DS:GL  GT:DS:GL  GT:DS:GL 

 HG00096 

 0|1:1.000:-2.20,0 

 .00,-15.80 

 1|0:1.000:-15.80, 

 0.00,-2.20 

 0|1:1.000:-2.20,0 

 .00,-15.80 

 0|1:1.000:-2.20,0. 

 00,-15.80 

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for 

 readability.  Red  :  changes vs. the original VCF;  highlight:  errors. 



 2.2.4 Deletion REF⇄ALT switch, REF change 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 6  Lifted  Variant Loss  Data Corruption 

 Genozip oSTATUS:  OkRefAltSwitchDelToIns 

 We found that 6 variants with REF⇄ALT switch resulting in a REF change are either 

 lost (LiftoverVcf) or mishandled leading to Data Corruption (CrossMap). Genozip 

 successfully lifted these variants. 

 Consider the variant at POS=17998325 that maps to 17519295 on GRCh38: 

 #CHROM  POS       ID        REF     ALT 

 22      17998325  LN=825    TTG     T 

 Viewing the Primary (37) and Luft (38) references in the local context: 

 > genocat -e hs37d5.ref.genozip -r chr22:17998325+10 

 17998322-17998344       GTT  T  TG  TTTTTTTTTTTTGAGAC 

 > genocat -e GRCh38.ref.genozip -r chr22:17519295  +10 

 17519292-17519314       GTT  T  TT  TTTTTTTTTTTTGAGAC 

 The variant observed in the samples might be a true deletion or might indeed mirror the 

 variation between the references, in which case it would have been better categorized as a 

 SNP rather than a deletion. Regardless, given that this is categorized as a deletion in the VCF 

 on hand, Genozip declares it a  REF  ⇄  ALT switch since  the haplotypes with this variant 

 become the REF allele in the Luft reference, and the ones without the variant are the ALT 

 allele. 



 In cases like this where the REF changes between the references (here: TTG->TTT), 

 LiftoverVcf rejects the  variant with “MismatchedRefAllele”, whereas CrossMap simply 

 updates the REF to TTT causing a Data Corruption (because the REF allele no longer 

 represents the true sequences of the haplotypes with GT=0) (Table S5). 



 Table S5:  Example VCF of a REF  ⇄  ALT switch with REF  change. 

 Genozip (37)  Genozip (38)  LiftoverVcf (38)  CrossMap (38) 

 genocat 

 indel-37-38.d.vcf 

 .genozip -H -s 1 

 -g LN=825 

 genocat 

 indel-37-38.d.vcf 

 .genozip -H -s 1 

 --luft -g LN=825 

 Variant lost 

 grep -w LN=825 

 indel.38.CrossMap. 

 vcf | cut -f1-10 

 #CHROM  22  chr22  22 

 POS  17998325  17519295  17519295 

 ID  LN=825  LN=825  LN=825 

 REF  TTG  T  TTT 

 ALT  T  TTG  T 

 QUAL  191  191  191 

 FILTER  PASS  PASS  PASS 

 INFO 

 AA=.;AC=1970;AF=0 

 .90;AFR_AF=0.99;A 

 MR_AF=0.85;AN=218 

 4;ASN_AF=0.96;AVG 

 POST=0.9826;ERATE 

 =0.0014;EUR_AF=0. 

 83;LDAF=0.8963;RS 

 Q=0.9295;THETA=0. 

 0003;VT=INDEL;LUF 

 T=chr22,17519295, 

 T,- 

 AA=.;  AC=214;AF=0. 

 10;AFR_AF=0.01;AM 

 R_AF=0.15;  AN=2184 

 ;  ASN_AF=0.04  ;AVGP 

 OST=0.9826;ERATE= 

 0.0014;  EUR_AF=0.1 

 7;LDAF=0.1037  ;RSQ 

 =0.9295;THETA=0.0 

 003;VT=INDEL  ;PRIM 

 =22,17998325,TTG, 

 - 

 AA=.;A  C=1970;AF=0. 

 90;AFR_AF=0.99;AMR 

 _AF=0.85  ;AN=2184;  A 

 SN_AF=0.96  ;AVGPOST 

 =0.9826;ERATE=0.00 

 14;  EUR_AF=0.83;LDA 

 F=0.8963  ;RSQ=0.929 

 5;THETA=0.0003;VT= 

 INDEL 

 FORMAT  GT:DS:GL  GT:DS:GL  GT:DS:GL 

 HG00096 

 1|1:2.000:-9.00,- 

 1.70,0.00 

 0|0:0.000:0.00,-1 

 .70,-9.00 

 1|1:2.000:-9.00,-1 

 .70,0.00 

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for 

 readability.  Red  :  changes vs. the original VCF;  highlight:  errors. 



 2.2.5 Deletion REF⇄ALT switch with payload in gap 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 71  Lifted  Variant Loss  Variant Loss 

 Genozip oSTATUS:  OkRefAltSwitchWithGap 

 When a deletion variant in the Primary reference enters the Luft reference, in other words, the 

 deletion payload that existed in the Primary reference no longer exists in the Luft reference, 

 this will often manifest itself as a gap in the chain file. We found 71 of these variants; lifting 

 over with LiftoverVcf and CrossMap resulted in Variant Loss, while Genozip handled these 

 variants correctly. 

 Consider for example: 

 #CHROM  POS       ID          REF          ALT 

 22      17995661  LN=821  T  TTGCTGTTG  T 

 In the chain file we have the following alignments: 

 > genocat GRCh37_to_GRCh38.chain.genozip --show-chain 

 … 

 Primary: 22  17995313-17995661  Luft:  chr22  17516283-17516631  Xstrand=- 

 Primary: 22  17995671-17996285  Luft:  chr22  17516632-17517246  Xstrand=- 

 … 

 As can be appreciated, the anchor base of the variant,  T  , is the final base on the first 

 alignment (that ends at 17995661), and the entire 9-base payload,  TTGCTGTTG  , precisely fits 

 in the gap between the alignments (17995662 to 17995670). 



 When inspecting the two references starting at the anchor base  T  , it is clear that the Luft 

 reference incorporates this deletion, and therefore the variant in a  REF  ⇄  ALT switch: 

 > genocat --reference hs37d5.ref.genozip -r chr22:17995661+15 

 17995661-17995675  T  TTGCTGTTG  TTGCC 

 > genocat -reference GRCh38.ref.genozip -r chr22:17516631+6 

 17516631-17516636  T  TTGCC 

 These variants are correctly categorized as a REF  ⇄  ALT  switch by Genozip. However, 

 LiftoverVcf rejects them with “NoTarget” and CrossMap rejects them with 

 “Fail(REF==ALT)”, leading to Variant Loss (Table S6). 



 Table S6:  Example VCF of a REF  ⇄  ALT switch with payload  in gap. 

 Genozip (37)  Genozip (38)  LiftoverVcf 

 (38) 

 CrossMap 

 (38) 

 genocat 

 indel-37-38.d.vcf.genoz 

 ip -r 17995661 -s 

 HG00104 --header-one 

 genocat 

 indel-37-38.d.vcf.geno 

 zip -r 17516631 -s 

 HG00104  --luft 

 Variant lost  Variant lost  #CHROM  22  chr22 

 POS  17995661  17516631 

 ID  LN=821  LN=821 

 REF  TTTGCTGTTG  T 

 ALT  T  TTTGCTGTTG 

 QUAL  1144  1144 

 FILTER  PASS  PASS 

 INFO 

 AA=TTTGCTGTTG;ERATE=0.0 

 124;AN=2184;VT=INDEL;TH 

 ETA=0.0005;AVGPOST=0.93 

 45;  AC=1914  ;  LDAF=0.8546  ; 

 RSQ=0.8066;  AF=0.88  ;  ASN_ 

 AF=0.94  ;  AMR_AF=0.84  ;  AFR 

 _AF=0.95  ;  EUR_AF=0.80  ;  LU 

 FT=chr22,17516631,T,- 

 AA=TTTGCTGTTG;ERATE=0. 

 0124;AN=2184;VT=INDEL; 

 THETA=0.0005;AVGPOST=0 

 .9345;  AC=270  ;  LDAF=0.14 

 54  ;RSQ=0.8066;  AF=0.12  ; 

 ASN_AF=0.06  ;  AMR_AF=0.1 

 6  ;  AFR_AF=0.05  ;  EUR_AF=0 

 .20  ;  PRIM=22,17995661,T 

 TTGCTGTTG,- 

 FORMAT  GT:DS:GL  GT:DS:GL 

 HG00104 

 0|1  :  0.550  :  0.00,-1.20,-4 

 1.70 

 1|0  :  1.450  :  -41.70,-1.20 

 ,0.00 

 GRCh version is in parentheses in the headers. The VCF lines are presented 

 transposed, for readability.  Red  :  changes vs. the  original VCF. 



 2.2.6 Deletion with payload partially in gap 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 20  Variant Loss  Variant Loss  Data Corruption 

 Genozip oSTATUS:  REFSplitInChain 

 When a deletion payload is partially in a chain file gap (other than the case where the entire 

 payload is in the gap), CrossMap updates the REF by removing the bases that fall in the gap. 

 This is incorrect: while with the lifted REF the haplotypes that contain the variant (GT=1) are 

 now correctly represented, the haplotypes with GT=0 are incorrectly represented as the actual 

 sequenced data contains the previous REF, not the lifted one. Rather, this should be a new 

 allele. 

 In contrast, since neither Genozip nor LiftoverVcf are capable of adding an allele they both 

 correctly reject these variants (with the resulting Variant Loss). 

 Example: the indel test file: 
 #CHROM  POS       ID          REF      ALT 

 22  17995306  LN=818  ATTATAT  A 

 CrossMap-lifted variant: 
 #CHROM  POS       ID          REF      ALT 

 22      17516277  LN=818      ATTATA   A 

 The chain file has the last base in REF (POS=17995312) in the gap between two alignments: 
 Primary: chr22 17992953-17995311 Luft: chr22 17513924-17516282 

 Primary: chr22 17995313-17995661 Luft: chr22 17516283-17516631 



 2.2.7 Insertion with reverse strand 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 40  Lifted  Data Corruption (35) 

 Lifted (5) 

 Data Corruption 

 Genozip oSTATUS:  OkRefSameInsRev 

 Consider the following Insertion variant in our indel test file (in GRCh37 coordinates): 

 #CHROM  POS             ID      REF     ALT     INFO(partial) 

 22      16566319        LN=75  A  A  CAAT  AC=13;AF=0.01;AN=2184 

 Per the chain file, POS maps to 15411644 in GRCh38, on the reverse strand. CrossMap lifts 

 this insertion by reverse complementing the REF and ALT: 

 #CHROM  POS             ID      REF     ALT     INFO(partial) 

 chr22   15411644        LN=75  T  ATTG  T  AC=13;AF=0.01;AN=2184 

 While the CrossMap-lifted variant contains precisely the same information as the original 

 variant, it is unfortunately non-compliant with the VCF specification (section 5.2) that 

 requires the variant’s anchor base (  A  lifted to  T  )  be on the left side, whereas here it is 

 right-anchored. This is likely to break downstream tools. 

 LiftoverVcf goes further, and left-aligns the resulting variant, leading to this: 

 #CHROM  POS             ID      REF     ALT     INFO(partial) 

 chr22   15411637        LN=75  C  C  TGAT  AC=13;AF=0.01;AN=2184 

 The algorithm LiftoverVcf applied here is as follows: 

 GRCh38 (Luft) in region 15411637-15411644 is  C  TGATTG  T  .  Since  TGATTG  is 1½ 

 repeats of the insertion variant payload  ATTG  (traversing  backwards from the anchor base 



 T  ), it seems that we can represent this variant in a canonical left-aligned way with  C  TGAT  at 

 POS=15411637, because the original insertion without left-aligning  C  TGATTG  ATTG  T  yields 

 precisely the same sequence as the insertion after left aligning:  C  TGAT  TGATTG  T  . 

 However, this is wrong. The reason is that there is no requirement in the VCF specification 

 that a VCF file must contain all the variants of its specific samples, and it is not true that any 

 loci lacking a variant is an indication that all the samples in the VCF file have a base equal to 

 the reference at that locus. Only the loci covered by the variants listed in the VCF file are 

 known, and we cannot make any assumption regarding the bases the specific samples in the 

 VCF file have at other loci. 

 Consider, for example, the LiftoverVcf-generated left-aligned variant above. This variant 

 now asserts that the 13 haplotypes (AC=13) with GT=1 for this variant, have the bases 

 C  TGAT  starting at position 15411637. This is simply  not knowable from the data at hand, 

 and might, in fact, be wrong for any of the 13 haplotypes. For these 13 haplotypes in this 

 VCF file, we know nothing at all about their bases in loci 15411637–15411643, all we know 

 is that they have an insertion of  ATTG  just before  locus 15411644. 

 This is therefore a risk of Data Corruption: if any one of the 13 haplotypes doesn’t have 

 C  TGAT  bases starting at 15311637, or if any one of  the other 2171 haplotypes doesn’t have 

 a  C  at this locus, then the VCF file is corrupted. 

 In addition to the above issue of Data Corruption, there is an additional issue of Data Loss: 

 the original VCF informed us that all 2184 haplotypes have a  T  at 15411644, and that 13 

 haplotypes have a  ATTG  just before 15411644. This  information is no longer present in the 

 LiftoverVcf-generated file, and therefore lost. 

 Genozip chooses to left-anchor the variant, but not left-align it: 

 #CHROM  POS             ID      REF     ALT     INFO(partial) 

 chr22   15411643        LN=75   G  G  ATTG  AC=13;AF=0.01;AN=2184 



 This is quite similar to the CrossMap variant, except Genozip’s anchor base  G  is to the left, 

 rather than the right, of the insertion payload  ATTG  ,  which is also reflected in POS. This 

 makes it compliant with the VCF specification, while not risking Data Corruption. 

 Note that this solution is still not perfect: namely, it asserts that all samples in the VCF have 

 G  at 15411643, which is not known from the data, and  it loses the information that all 

 samples have a  T  at 15411644. However, without access  to the full sequence of all samples, 

 or alternatively knowledge that the VCF contains all variants in the samples (and taking into 

 account neighboring variants in the computation), this is the best that can be done. We 

 consider this issue to be a  Minor data loss  that does  not affect the categorization. 

 All 40 variants with reverse strand Insertion were affected for CrossMap, but only 33 of them 

 for LiftoverVcf - the remaining 7 were cases where left-aligning resulted in the same variant 

 as left-anchoring. 

 An additional Data Corruption issue is that if an INFO/AA field exists, both CrossMap and 

 LiftoverVcf fail to update it appropriately. This issue affects 14 of the 40 variants, including 2 

 of the 7 for which LiftoverVcf correctly left-anchored. See the example in Table S7. 

 Finally, we note a  Minor Data Loss  in LiftoverVcf  is due to conversion of the FORMAT/GL 

 field to FORMAT/PL, with the loss of granularity. As discussed, a  Minor Data Loss  does not 

 affect the categorization. 



 Table S7:  Example VCF of insertion with reverse strand. 

 Genozip (37)  Genozip (38)  LiftoverVcf (38)  CrossMap (38) 

 genocat 

 indel-37-38.d.vcf 

 .genozip -H -s 1 

 -g LN=107 

 genocat 

 indel-37-38.d.vcf. 

 genozip -H -s 1 

 --luft -g LN=107 

 grep -w LN=107 

 indel.38.gatk.vcf 

 | cut -f1-10 

 grep -w LN=107 

 indel.38.CrossMap 

 .vcf | cut -f1-10 

 #CHROM  22  chr22  chr22  22 

 POS  16687501  15290461  15290461  15290462 

 ID  LN=107  LN=107  LN=107  LN=107 

 REF  C  C  C  G 

 ALT  CA  CT  CT  TG 

 QUAL  208  208  208  208 

 FILTER  PASS  PASS  PASS  PASS 

 INFO 

 AA=CA;AC=103;AF=0 

 .05;AFR_AF=0.07;A 

 MR_AF=0.04;AN=218 

 4;ASN_AF=0.05;AVG 

 POST=0.9793;ERATE 

 =0.0006;EUR_AF=0. 

 03;LDAF=0.0530;RS 

 Q=0.8577;THETA=0. 

 0152;VT=INDEL;  LUF 

 T=chr22,15290461, 

 C,X 

 AA=CT  ;AC=103;AF=0. 

 05;AFR_AF=0.07;AMR 

 _AF=0.04;AN=2184;A 

 SN_AF=0.05;AVGPOST 

 =0.9793;ERATE=0.00 

 06;EUR_AF=0.03;LDA 

 F=0.0530;RSQ=0.857 

 7;THETA=0.0152;VT= 

 INDEL;  PRIM=22,1668 

 7501,C,X 

 AA=CA  ;AC=103;AF=0. 

 05;AFR_AF=0.07;AMR 

 _AF=0.04;AN=2184;A 

 SN_AF=0.05;AVGPOST 

 =0.9793;ERATE=0.00 

 06;EUR_AF=0.03;LDA 

 F=0.0530;RSQ=0.857 

 7;  ReverseComplemen 

 tedAlleles  ;THETA=0 

 .0152;VT=INDEL 

 AA=CA  ;AC=103;AF=0 

 .05;AFR_AF=0.07;A 

 MR_AF=0.04;AN=218 

 4;ASN_AF=0.05;AVG 

 POST=0.9793;ERATE 

 =0.0006;EUR_AF=0. 

 03;LDAF=0.0530;RS 

 Q=0.8577;THETA=0. 

 0152;VT=INDEL 

 FORMAT  GT:DS:GL  GT:DS:GL  GT:DS:  PL  GT:DS:GL 

 HG00096 

 0|0:0.000:0.00,-0 

 .60,-8.40 

 0|0:0.000:0.00,-0. 

 60,-8.40  0|0:0.000:  0,6,84 

 0|0:0.000:0.00,-0 

 .60,-8.40 

 0|1:1.050:48,3,0 

 0|1:1.050:-4.80,- 

 0.30,0.00 

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for 

 readability.  Red  :  changes vs. the original VCF;  highlight:  errors. 



 2.2.8 Deletion with reverse strand 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 67  Lifted  Data Corruption (51) 

 Lifted (16) 

 Data Corruption 

 Genozip oSTATUS:  OkRefSameDelRev 

 This issue is similar to the previous one, just for deletions rather than insertions. 

 Consider the following deletion, in GRCh37 coordinates: 

 #CHROM  POS        ID      REF     ALT    INFO(partial) 

 22      16524572   LN=70  A  CACT  A  AC=112;AF=0.05;AN=2184 

 CrossMap lifts it by reverse-complementing REF and ALT and moving POS from what 

 became REF’s right-most base, 15453391, to its left-most base 15453387: 

 #CHROM  POS        ID      REF     ALT    INFO(partial) 

 chr22   15453387   LN=70  AGTG  T  T  AC=112;AF=0.05;AN=2184 

 As discussed for insertions, this variant contains correct information, however it is 

 non-compliant with the VCF specification, and hence we will consider it a Data Corruption. 

 LiftoverVcf, as in insertions, goes further, and left-aligns the resulting variant, creating the 

 following variant: 

 #CHROM POS       ID      REF     ALT    INFO(partial) 

 chr22  15453384  LN=70  C  TGAG  C  AC=112;AF=0.05;AN=2184 

 Brief explanation: GRCh38, chr22, region 15453384-15453391 is:  C  TGAGTG  T  . The 

 deletion generated by the original (CrossMap) variant  C  TG  AGTG  T  results in an identical 



 sequence as the deletion described by the LiftoverVcf’s left-aligned variant:  C  TGAG  TG  T  . 

 However, as before, this is wrong because it makes possibly incorrect assumptions about the 

 nucleotide sequences of the samples at loci 15453384–15453386 which are not in fact 

 knowable from the data. 

 Again, similar to the insertion case, Genozip left-anchors but does not left-align the variant, 

 which is the optimal (yet still imperfect) solution: 

 #CHROM  POS        ID      REF     ALT    INFO(partial) 

 chr22   15453386   LN=70  G  AGTG  G  AC=112;AF=0.05;AN=2184 

 All 67 variants with reverse strand deletion were affected for CrossMap, but only 46 of them 

 for LiftoverVcf—the remaining 21 were cases where left-aligning resulted in the same 

 variant as left-anchoring, however, 5 of the 21 are nevertheless corrupted due to failure to 

 update the INFO/AA field, bringing the total of corrupted LiftoverVcf variants to 51. 



 2.2.9 REF changed but not REF⇄ALT switch 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 19  Variant Loss  Variant Loss  Data Corruption 

 Genozip oSTATUS:  RefNewAlleleDelRefChanged  ,  RefNewAllelInsRefChanged 

 In indels, if the bases of the REF change between the two references, CrossMap simply 

 updates the REF field with the new bases. This is completely wrong, and is responsible for 

 corruption of 26 variants in our test file. In contrast, both Genozip and LiftoverVcf reject the 

 variants in this case (losing their data). 

 Example 1 (Insertion)  : 

 Consider the following insertion variant in our indel test file (in GRCh37 coordinates): 

 #CHROM  POS       ID       REF     ALT     INFO(partial) 

 22      18068419  LN=871  A  A  TT  AC=311;AF=0.14;AN=2184 

 POS=18068419 in GRCh37 maps to 17585653 in GRCh38, and this position has a base 

 change—from A in GRCh37 to T in GRCh38. Because of this base change, both Genozip 

 and LiftoverVcf reject this variant. However, CrossMap produced the following: 

 #CHROM  POS       ID       REF     ALT     INFO(partial) 

 22      17585653  LN=871  T  AT  T  AC=311;AF=0.14;AN=2184 

 This is obviously completely wrong. First, it changed a left-anchored insertion (with an A 

 anchor base) to a right-anchored insertion (with a T anchor base). Second, it is asserting that 

 all 311 haplotypes (AC=311) with GT=1 have a T at this position, while in fact the original 

 VCF informs us that they have an A. Finally, it is an invalid insertion variant per the VCF 

 specification 5.2. 

 Example 2 (Deletion)  : 



 Consider the following deletion variant in our indel test file (in GRCh37 coordinates): 

 #CHROM  POS       ID       REF     ALT     INFO(partial) 

 22      18068421  LN=872   TA      T       AC=631;AF=0.29;AN=2184 

 The CrossMap lifted variant: 

 #CHROM  POS       ID       REF     ALT     INFO(partial) 

 22      17585655  LN=872   TT      T       AC=631;AF=0.29;AN=2184 

 The reference has a base change in the second base of REF. Therefore, this would be a new 

 allele and the correct variant would be REF=TT ALT=TA,T. Since neither Genozip nor 

 LiftoverVcf are capable of adding an allele, they both reject this variant. However, 

 CrossMap’s variant asserts that all the (AN-AC)=1553 haplotypes with GT=0 have a TT at 

 this position, while in fact they have a TA. 



 2.2.10 New allele when REF unchanged 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 15  Variant Loss  Data Corruption  Data Corruption 

 Genozip oSTATUS:  RefNewAlleleInsSameRef  ,  RefNewAlleleDelSameRef 

 Cases where the bases of REF are identical in both references, yet the new reference contains 

 a new allele. These variants are lifted incorrectly by both CrossMap and LiftoverVcf yielding 

 corrupted variants. In contrast, Genozip rejects them because it is not capable of adding an 

 allele. 

 Example: 

 Original variant: 

 #CHROM  POS       ID  REF     ALT 

 22      22735735  LN=3091     T       TG 

 CrossMap and LiftoverVcf variant in GRCh38—unchanged REF and ALT: 

 #CHROM  POS       ID  REF     ALT 

 chr22   22381366  LN=3091     T       TG 

 Looking at the references: 

 > genocat -e hs37d5.ref.genozip -r chr22:22735735+10 

 22735735-22735744  T  AGGGAACTG 

 > genocat -e GRCh38.ref.genozip -r chr22:22381366+10 

 22381366-22381375  T  GGGGAACTG 



 At first glance, this might look like a REF  ⇄  ALT switch  since TG is present in the Luft 

 reference. However, looking at the variant in its local context, it is clear that the Luft 

 reference represents a new allele that is neither REF nor ALT, and the new variant would be: 

 #CHROM  POS       ID       REF     ALT 

 chr22   22381366  LN=3091  TG      TA,TAG 

 Genozip correctly identifies this as a case of a new allele, and rejects the variant as it is not 

 capable of adding another allele. CrossMap and LiftoverVcf in contrast, incorrectly lift the 

 variant resulting in Data Corruption. 



 2.2.11 New allele - not quite a REF⇄ALT switch 

 From Table S1: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 9  Variant Loss  Data Corruption  Data Corruption 

 Genozip oSTATUS:  RefNewAlleleIndelNoSwitch 

 Consider the following case: 

 #CHROM  POS       ID       REF     ALT 

 22      22484247  LN=2870  A       AC 

 Inspecting both references, with 4 flanking bases, we see: 

 Primary reference:  CAGG  A  A  A  TG 

 Luft reference:  CAGG  AC  A  G  TG 

 As first glance, it appears to be  a  REF  ⇄  ALT switch  where the insertion AC got incorporated 

 in the Luft reference. However, Genozip also compares the flanking 4 bases on either side to 

 verify that is indeed a REF  ⇄  ALT switch. In this case,  the region to the right is different - an 

 AATG in the Primary reference vs AGTG in the Luft reference, and therefore Genozip rejects 

 the REF  ⇄  ALT switch hypothesis and instead determines  that the Luft reference represents a 

 new allele that is neither the REF nor the ALT. Since Genozip cannot currently add new 

 alleles, it rejects this variant with  RefNewAlleleIndelNoSwitch  . 

 We also experimented with a value of 2 for the length of the flanking regions to be tested. 

 When this more permissive approach is used, we observed the following changes in the 

 oSTATUS categories of the variants in the indel test file (Table S8). 

 Table S8:  Variant categorisation changes if changing  the flanking regions test from four 

 bases on either side, to two. 



 oSTATUS  4 bases  2 bases 

 RefNewAlleleIndelNoSwitch  9  2 

 OkRefAltSwitchIndelFlank  27  34 

 RefNewAlleleDelRefChanged  13  10 

 RefNewAlleleInsSameRef  17  11 

 OkRefAltSwitchDelToIns  6  9 

 RefNewAllelInsRefChanged  0  6 

 Other categories - no change 



 2.3 SNP benchmark 

 2.3.1 Data preparation 

 We developed a set of scripts that executes this benchmark in its entirely - from downloading 

 the data to producing the analysis files. It is available from 

 https://github.com/divonlan/genozip-dvcf-results  and  the entry point script is: 

 run-snp-37-38.sh 

 The key steps executed by this script are these: 

 The SNP test file, SS6004478.annotated.nh2.variants.vcf.gz, containing 4,109,729 SNP 

 variants, was extracted from the tar archive: 

 https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/vcfs.variants.public_s 

 amples.279samples.tar  . 

 We used the same reference files and chain file as the indel test. 

 Similar to the indel test, we proceed to preparing the DVCF: 
 > genozip --chain GRCh37_to_GRCh38.chain.genozip 

 SS6004478.annotated.nh2.variants.vcf.gz --add-line-numbers 

 --match-chrom-to-reference -o snp-37-38.d.vcf.genozip 

 We then proceed to generate a GRCh37-only file with contains the add lines numbers, the 

 updated contig names and adding the INFO/oSTATUS field to each variant, reporting 

 Genozip’s lift-over status: 

 > genocat snp-37-38.d.vcf.genozip --single --show-ostatus -o 

 snp.37.annotated.vcf 

 Testing CrossMap: As in the indel test, CrossMap.py version v0.5.2 was used: 

 > CrossMap.py vcf GRCh37_to_GRCh38.chain.gz snp.37.annotated.vcf 

 GRCh38_full_analysis_set_plus_decoy_hla.fa snp.38.CrossMap.vcf 

https://github.com/divonlan/genozip-dvcf-results
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/vcfs.variants.public_samples.279samples.tar
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/vcfs.variants.public_samples.279samples.tar


 Testing GATK LiftoverVCF: As in the indel test, LiftoverVcf contained in GATK version 

 4.17 was used to lift over the snp test file to GRCh38: 

 > gatk --java-options '-Xmx16g -XX:ParallelGCThreads=1' LiftoverVcf 

 --INPUT snp.37.annotated.vcf --OUTPUT snp.38.gatk.vcf --CHAIN 

 GRCh37_to_GRCh38.matched.chain --REJECT snp.38.gatk.rejects.vcf 

 --RECOVER_SWAPPED_REF_ALT --REFERENCE_SEQUENCE 

 GRCh38_full_analysis_set_plus_decoy_hla.fa.gz --TAGS_TO_REVERSE AF 

 --TAGS_TO_REVERSE MLEAF --TAGS_TO_DROP AC --TAGS_TO_DROP MLEAC 

 As in the indel test, our bash script produces three files:  analysis.CrossMap.txt 

 analysis.gatk.txt analysis.Genozip.txt  . 



 2.3.2  SNP benchmark results summary 

 Table S9  . Performance of three liftover tools for  SNPs, including handling of problematic 

 variants, according to standard categories reported by the Genozip software. Note that 

 LiftoverVcf contains command line options that determine the handling of REF⇄ALT 

 switches. Variants can either be i) dropped (the default, which result in Variant Loss), ii) kept, 

 with updated annotations for a subset of variants that LiftoverVcf is able to revise (resulting 

 in Data Corruption due to a subset of variants maintaining incorrect annotations), or iii) kept, 

 with some annotations being converted or dropped (resulting in Annotation Loss). We chose 

 the latter option in our benchmarks, which we consider to be the least problematic. 

 #  Vars.  Category  Genozip  LiftoverVcf  CrossMap 

 4,037,520  No issues - lifted  🗸  Lifted  🗸  Lifted  🗸  Lifted 

 26,728  No issues - no mapping  🗸  Unmapped  🗸  Unmapped  🗸  Unmapped 

 29,635  REF  ⇄  ALT switch in SNPs  🗸  Lifted  ✗  Annotation 

 Loss 

 ✗  Variant 

 Loss 

 15,689  Annotation update upon 

 strand reversal 

 🗸  Lifted  ✗  Data 

 Corruption 

 ✗  Data 

 Corruption 

 12  IUPACs  🗸  Lifted  ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 68  REF change, not to ALT, in 

 bi-allelic SNPs when AF<1 

 ✗  Variant 

 Loss 

 ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 30  REF change in multi-allelic 

 SNPs when AF<1 

 ✗  Variant 

 Loss 

 ✗  Variant 

 Loss 

 ✗  Data 

 Corruption 

 47  REF change, not to ALT, in 

 bi-allelic SNPs when AF=1 

 🗸  Lifted  ✗  Variant 

 Loss 

 🗸  Lifted 

 4,109,729  TOTAL 



 2.3.3 REF⇄ALT switch in SNPs 

 From Table S9: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 29635  Lifted  Annotation Loss  Variant Loss 

 Genozip oSTATUS:  OkRefAltSwitchSNP 

 In case of a  REF  ⇄  ALT switch in a  bi-allelic SNP, Genozip  lifts the variant, updating all the 

 relevant annotations. CrossMap drops all these variants. LiftoverVcf drops these variants by 

 default, but is capable of lifting them with the --RECOVER_SWAPPED_REF_ALT option, 

 however this it offers very limited corrections (with --TAGS_TO_REVERSE and 

 --TAGS_TO_DROP), which would cause data loss (if fields are dropped) or corruption (if 

 they are not). 

 In the following example (Table S10), we used LiftoverVcf options 
 --RECOVER_SWAPPED_REF_ALT --TAGS_TO_REVERSE AF 

 --TAGS_TO_REVERSE MLEAF. 

 LiftoverVcf correctly updates the fields INFO/AF, INFO/MLEAF and FORMAT/GT, 

 FORMAT/AD, FORMAT/PL but fails to correct INFO/AC, INFO/MLEAC. We can avoid a 

 Data Corruption due to AC and MLEAC by also applying --TAGS_TO_DROP AC and 

 --TAGS_TO_DROP MLEAC, and hence we categorize LiftoverVcf as Annotation Loss for 

 these variants. 

 We also note that LiftoverVcf has an additional  Minor  Data Loss  due to re-ordering of the 

 FORMAT annotations, thereby losing the information of their original order. 



 Table S10:  Example VCF of REF⇄ALT switch in a SNP. 

 Genozip (37)  Genozip (38)  LiftoverVcf (38)  CrossMa 

 p (38) 

 genocat 

 snp-37-38.d.vcf.gen 

 ozip -H -s 1 -g 

 LN=632 

 genocat 

 snp-37-38.d.vcf.genozi 

 p -H -s 1 --luft -g 

 LN=632 

 grep -w LN=632 

 snp.38.gatk.vcf | cut 

 -f1-10 

 #CHROM  1  chr1  chr1 

 POS  770568  835188  835188 

 ID  LN=632  LN=632  LN=632 

 REF  A  G  G 

 ALT  G  A  A 

 QUAL  809.01  809.01  809.01 

 FILTER  .  .  PASS 

 INFO 

 AC=2;AF=1.00;AN=2;B 

 aseCounts=0,0,31,1; 

 DB;DP=32;Dels=0.00; 

 FS=0.000;GC=47.13;H 

 aplotypeScore=0.000 

 0;MLEAC=2;MLEAF=1.0 

 0;MQ=32.04;MQ0=4;QD 

 =25.28;  LUFT=chr1,83 

 5188,G,- 

 AC=0;AF=0.00  ;AN=2;Base 

 Counts=0,0,31,1;DB;DP= 

 32;Dels=0.00;FS=0.000; 

 GC=47.13;HaplotypeScor 

 e=0.0000;  MLEAC=0;MLEAF 

 =0.00  ;MQ=32.04;MQ0=4;Q 

 D=25.28;  PRIM=1,770568, 

 A,- 

 AF=0.00  ;AN=2;BaseCount 

 s=0,0,31,1;DB;DP=32;De 

 ls=0.00;FS=0.000;GC=47 

 .13;HaplotypeScore=0.0 

 000;  MLEAF=0.00  ;MQ=32.0 

 4;MQ0=4;QD=25.28;  Swapp 

 edAlleles 

 FORMAT  GT:AD:DP:GQ:PL:FL  GT:AD:DP:GQ:PL:FL  GT:AD:DP:FL:GQ:PL 

 SS60044 

 78 

 1/1:0,31:31:63:809, 

 63,0:N 

 0/0:31,0  :31:63:  0,63,80 

 9  :N 

 0/0:31,0  :31:N:63:  0,63, 

 809 

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for 

 readability.  Red  :  changes vs. the original VCF;  highlight:  errors. 



 2.3.4 Annotation update upon strand reversal 

 From Table S9: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 15689  Lifted  Data Corruption  Data Corruption 

 Genozip oSTATUS:  OkRefSameSNPRev 

 Sometimes when REF, ALT are reverse-complemented due to the chain file mapping being to 

 the reverse strand, it is necessary to update some annotations. Both LiftoverVcf and 

 CrossMap fail to do so, resulting in data-corrupted variants. In our test file, the affected 

 annotation is INFO/BaseCounts annotation (Table S11). 



 Table S11:  Example VCF of annotation update upon strand  reversal. 

 Genozip (37)  Genozip (38)  LiftoverVcf (38)  CrossMap (38) 

 genocat 

 snp-37-38.d.vcf.ge 

 nozip -H -s 1 -g 

 LN=253 

 genocat 

 snp-37-38.d.vcf.ge 

 nozip -H -s 1 

 --luft -g LN=253 

 grep -w LN=253 

 snp.38.gatk.vcf | 

 cut -f1-10 

 grep -w LN=253 

 snp.38.CrossMap. 

 vcf | cut -f1-10 

 #CHROM  1  chr1  chr1  1 

 POS  364127  455210  455210  455210 

 ID  LN=253  LN=253  LN=253  LN=253 

 REF  G  C  C  C 

 ALT  A  T  T  T 

 QUAL  26.78  26.78  26.78  26.78 

 FILTER  .  .  PASS  . 

 INFO 

 AC=2;AF=1.00;AN=2; 

 BaseCounts=5,0,23, 

 0;BaseQRankSum=0.8 

 04;DB;DP=28;Dels=0 

 .00;FS=0.000;GC=38 

 .65;HaplotypeScore 

 =0.0000;MLEAC=2;ML 

 EAF=1.00;MQ=4.61;M 

 Q0=26;MQRankSum=0. 

 804;QD=0.96;ReadPo 

 sRankSum=0.804;  LUF 

 T=chr1,455210,C,X 

 AC=2;AF=1.00;AN=2; 

 BaseCounts=0,23,0, 

 5  ;BaseQRankSum=0.8 

 04;DB;DP=28;Dels=0 

 .00;FS=0.000;GC=38 

 .65;HaplotypeScore 

 =0.0000;MLEAC=2;ML 

 EAF=1.00;MQ=4.61;M 

 Q0=26;MQRankSum=0. 

 804;QD=0.96;ReadPo 

 sRankSum=0.804;  PRI 

 M=1,364127,G,X 

 AC=2;AF=1.00;AN=2;  B 

 aseCounts=5,0,23,0  ; 

 BaseQRankSum=0.804; 

 DB;DP=28;Dels=0.00; 

 FS=0.000;GC=38.65;H 

 aplotypeScore=0.000 

 0;MLEAC=2;MLEAF=1.0 

 0;MQ=4.61;MQ0=26;MQ 

 RankSum=0.804;QD=0. 

 96;ReadPosRankSum=0 

 .804;  ReverseComplem 

 entedAlleles 

 AC=2;AF=1.00;AN= 

 2;  BaseCounts=5,0 

 ,23,0  ;BaseQRankS 

 um=0.804;DB;DP=2 

 8;Dels=0.00;FS=0 

 .000;GC=38.65;Ha 

 plotypeScore=0.0 

 000;MLEAC=2;MLEA 

 F=1.00;MQ=4.61;M 

 Q0=26;MQRankSum= 

 0.804;QD=0.96;Re 

 adPosRankSum=0.8 

 04 

 FORMAT  GT:AD:DP:GQ:PL:FL  GT:AD:DP:GQ:PL:FL  GT:AD:DP:FL:GQ:PL 

 GT:AD:DP:GQ:PL:F 

 L 

 SS60044 

 78 

 1/1:23,5:27:3:25,3 

 ,0:N 

 1/1:23,5:27:3:25,3 

 ,0:N 

 1/1:23,5:27:N:3:25, 

 3,0 

 1/1:23,5:27:3:25 

 ,3,0:N 

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for 

 readability.  Red  :  changes vs. the original VCF;  highlight:  errors. 



 2.3.5 IUPACs 

 From Table S9: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 12  Lifted  Variant Loss  Data Corruption 

 Genozip oSTATUS:  OkRefSameSNPIupac 

 The SNP test file has 12 variants at loci that contain a non-ACTGN IUPAC base in GRCh38. 

 All 12 variants have a REF that is a base that is included in the mapped IUPAC base in 

 GRCh38. For example (17, 81077361, T) is mapped to (chr17, 83129591, W). W is defined 

 as A or T. 

 Since T is included in W, Genozip calls this variant as  OkRefSameSNP  and lifts it. 

 LiftoverVcf rejects this variant because T  ≠  W, which  is a valid call but yet an unfortunate loss 

 of data. 

 CrossMap on the other hand, replaces the REF with the IUPAC base, thereby generating 

 variants that not only contain less information than the original variant (as the haplotypes 

 with GT=0 had a definite base as specified by the original REF, not an ambiguous one) and 

 hence represent a Data Loss, but are also noncompliant with the VCF 4.3 specification 

 (  violation of requirement 1.6.1-REF: “Each base must  be one of A,C,G,T,N”)  and hence are 

 likely to break downstream analysis tools: 

 #CHROM  POS             ID              REF     ALT 

 13      100973393       LN=3041971      K       T 

 13      100973395       LN=3041972      Y       T 

 17      83128871        LN=3550982      K       T 

 17      83128888        LN=3550984      Y       T 

 17      83129591        LN=3550985      W       A 

 17      83130798        LN=3550987      Y       T 

 17      83130998        LN=3550988      Y       T 

 17      83131245        LN=3550989      R       A 

 17      83131933        LN=3550990      Y       T 



 17      83133010        LN=3550991      R       A 

 17      83133390        LN=3550993      Y       T 

 17  83133686  LN=3550994      Y       T 



 2.3.6 REF change, not to ALT, in bi-allelic SNPs when AF<1 

 From Table S9: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 68  Variant Loss  Variant Loss  Data Corruption 

 Genozip oSTATUS:  RefNewAlleleSNP 

 When the REF base of a SNP changes between the references, and unless this is a  REF  ⇄  ALT 

 switch in a  bi-allelic SNP, CrossMap simply updates  the new REF without updating ALT. 

 This is correct only in the case  where there are no  haplotypes with the REF allele (i.e. 

 or  ). 
 𝑎𝑙𝑡 
∑  𝐴  𝐶 

 𝑎𝑙𝑡 
=  𝐴𝑁 

 𝑎𝑙𝑡 
∑  𝐴  𝐹 

 𝑎𝑙𝑡 
=  1 

 Example: 

 Original VCF (GRCh37): 

 #CHROM  POS       ID        REF     ALT    INFO(partial) 

 1       13808732  LN=20854  C       T      AC=1;AF=0.500;AN=2 

 CrossMap incorrectly-lifted VCF (GRCh38): 

 #CHROM  POS       ID  REF     ALT    INFO(partial) 

 1  13482278  LN=20854  G  T  AC=1;AF=0.500  ;AN=2 

 Since G is a new allele the correct lifting should have been: 
 #CHROM  POS       ID  REF     ALT    INFO(partial) 

 1  13482278  LN=20854  G       T,C  AC=1,1;AF=0.5,0.5  ;AN=2 

 Genozip and LiftoverVcf, in contrast, reject these variants as they cannot handle adding an 

 allele. 



 2.3.7 REF change in multi-allelic SNPs when AF<1 

 From Table S9: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 30  Variant Loss  Variant Loss  Data Corruption 

 Genozip oSTATUS:  RefMultiAltSwitchSNP 

 In cases of multi-allelic SNPs with a reference base change, CrossMap changes REF without 

 updating ALT, regardless of whether the new reference is one of the ALT alleles. 

 Example: 

 Original VCF (GRCh37): 

 #CHROM  POS       ID         REF     ALT  INFO(partial) 

 18      77831522  LN=3663131 G       C,T  AC=1,1;AF=0.500,0.500;AN=2 

 CrossMap incorrectly-lifted VCF (GRCh38): 

 #CHROM  POS       ID         REF     ALT  INFO(partial) 

 18  80073165  LN=3663131  C  C,T  AC=1,1;AF=0.500,0.500;AN=2 

 This correct lifting would have been a  REF  ⇄  ALT switch: 

 #CHROM  POS       ID         REF     ALT  INFO(partial) 

 18  80073165  LN=3663131  C  G  ,T  AC=0,1;AF=0,0.500  ;AN=2 

 Genozip and LiftoverVcf, in contrast, reject these variants as they cannot handle REF 

 changes in multi-allelic SNPs. 



 2.3.8 REF change, not to ALT, in bi-allelic SNPs when AF=1 

 From Table S9: 

 # Variants  Genozip  LiftoverVcf  CrossMap 

 47  Lifted  Variant Loss  Lifted 

 Genozip oSTATUS:  OkNewRefSNP 

 In these bi-allelic SNP variants, there is a reference base change, and the sample doesn’t 

 contain any haplotypes with the REF allele, i.e. AC=AN or AF=1. Therefore, it is permissible 

 to just update the REF (the old REF that would normally become one of the ALT alleles, is 

 redundant in this case since it has AF=0). However, LiftoverVcf fails to do so, needlessly 

 rejecting these variants. 

 Example: 

 Original VCF (GRCh37): 

 #CHROM  POS       ID  REF     ALT  INFO(partial) 

 1       99597759  LN=137361  C       G    AC=2;AF=1.00;AN=2 

 Genozip and CrossMap correctly-lifted VCF (GRCh38)—REF replacement OK if AF=1 

 #CHROM  POS       ID  REF     ALT  INFO(partial) 

 chr1    99132203  LN=137361  A  G    AC=2;AF=1.00;AN=2 



 2.3.9 REF⇄ALT switch proportions 

 We now turn our attention to the 0.7% (29,635 out of 4,109,729) of the variants in our test 

 file that are categorized as REF⇄ALT switches. These variants are dropped by CrossMap and 

 in LiftoverVcf, they are either dropped or some of their annotations are dropped, depending 

 on the command line options used. In contrast. Genozip lifts them over correctly, updating 

 the annotations that sensitive to REF⇄ALT switches (see 

 https://genozip.com/dvcf-rendering.html  ) 

 Here we show that despite the overall number of these variants being relatively small, they 

 are not uniformly distributed across the genome but rather preferentially located in certain 

 regions, and therefore dropping them may introduce bias in certain downstream analyses, 

 such as GWAS or selection scans. 

 We divided the genome into 30,749  windows  of 100 kb  each, and counted for each 100-kb 

 window the total number of variants in the SNP test file within the window vs. the number of 

 those variants that are a REF⇄ALT switch. This was done by leveraging Genozip’s internal 

 genome-wide position called GPOS (for Global POSition). The position is that of the base as 

 it appears in the original FASTA file used to generate the reference file, when all contigs are 

 concatenated in the order they appear in the FASTA. 

 The first command, below, outputs the number of variants per 100-kb window in the test file. 

 The first column in the output is the count of variants in a 100-kb window and the second is 

 the sequential GPOS in units of 100k (the first line missing a number is window 0). For 

 brevity, we show here the first 6 lines. 

 > genocat snp-37-38.d.vcf.genozip -e hs37d5.ref.genozip --gpos 

 -HG | cut –f2 | rev | cut -c6- | rev | uniq -c 

 113 

 60 1 

 79 2 

 4 3 

 6 4 

 124 5 

https://genozip.com/dvcf-rendering.html


 The second command, below, outputs the number of variants with REF⇄ALT switch per 

 100-kb window in the test file. The first column of the output is the count of variants with 

 REF⇄ALT switch and the second is the sequential GPOS in units of 100k. For brevity, we 

 show here first 6 regions that have any REF⇄ALT switch variants at all): 

 > genocat snp-37-38.d.vcf.genozip -e hs37d5.ref.genozip --gpos 

 -HG --show-dvcf --grep OkRefAltSwitchSNP | cut –f4 | rev |cut 

 -c6- | rev | uniq -c 

 1 7 

 2 8 

 1 11 

 1 12 

 1 13 

 22 15 

 T  he proportion of REF⇄ALT switch variants compared  to the total number of variants for 

 each 100-kb window of our SNP test file are shown in Figure 1C. It is easy to see that 

 distribution of REF⇄ALT switch variants across the genome is highly non-uniform – the vast 

 majority of the 100kb windows have very few REF⇄ALT switch variants, while a small 

 number of windows have a very high percentage of REF⇄ALT switch variants – some in 

 which over 80% of the variants are switches. Therefore, when CrossMap or LiftoverVcf drop 

 all variants with a REF⇄ALT switch, they are potentially introducing bias to the data that 

 might impact downstream analyses. Another view of the same data is presented in Figure S3. 

 We then proceeded to compare the GRCh38 coordinates of REF⇄ALT switch variants to the 

 regions of the GRCh38 reference genome with known issues, downloaded from 

 https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p13_issues.gff3. 

 Indeed, there is significant overlap between the loci with REF⇄ALT switches and regions of 

 the reference genome known to be problematic, see Figure S4. The R script used for this 

 analysis and generate the Figure S4 is available from 

 https://github.com/divonlan/genozip-dvcf-results/tree/main/Fig-2A  . 

https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p13_issues.gff3.
https://github.com/divonlan/genozip-dvcf-results/tree/main/Fig-2A


 Figure S3  .  Distribution of the number of 100-kb windows  with at least  x  % REF  ⇄  ALT switch 
 variants  . A. The number of 100-kb windows was calculated  for increments of 1% of REF  ⇄  ALT switch 

 variants content. The y-axis on the right side of the figure indicates the corresponding percentage of 

 affected windows relative to all 100-kb windows. B. A close up of the distribution showing that nearly 

 5% (black bar) of all 100-kb windows in the human genome contain at least 2% REF  ⇄  ALT switch 

 variants amongst all variants in the window  . 



 Figure S4.  Distribution and functional impact of REF  ⇄  ALT  allele switches in SNP variants.  Circos 

 plot: the location of REF  ⇄  ALT allele switches are  shown in the blue rainfall plot, with GRC-identified 

 problematic regions shown as orange polygons. Bar plot: Number (bars) and percentage (blue text) of 

 REF  ⇄  ALT allele switches inside or outside problematic  GRC regions. 



 2.4 Benchmark summary 

 Table S12  : Summary of correctly (in green: Lifted  or Unmapped) vs incorrectly (in red: Data 

 Corruption or Variant Loss) lifted variants for each tested tool. For each lifting tool, we show 

 the number of variants and the percentage of variants falling under each major category, 

 including outcomes that could negatively impact downstream analyses (i.e., Data 

 Corruption). 

 Indels  SNPs 

 Genozip  LiftoverVcf  CrossMap  Genozip  LiftoverVcf  CrossMap 

 Total  18706  100%  18706  100%  18706  100%  4109729  100%  4109729  100%  4109729  100% 

 Correct  18663  99.8%  18304  97.9%  18279  97.7%  4109631  99.998%  4064248  98.9%  4064295  98.9% 

 Correct 
 that are 
 lifted over 

 18565  99.2%  18206  97.3%  18201  97.3%  4082903  99.3%  4037520  98.2%  4037567  98.2% 

 Incorrect  43  0.2%  402  2.1%  427  2.3%  98  0.002%  45481  1.1%  45434  1.1% 

 Incorrect 
 that lead to 
 Data 
 Corruption 

 0  0%  306  1.6%  356  1.9%  0  0%  15689  0.4%  15799  0.4% 

 Incorrect 
 that are 

 REF  ⇄  ALT 

 switches 

 0  0%  257  1.3%  257  1.3%  0  0%  29635  0.7%  29635  0.7% 



 SI.3. ClinVar analysis 

 3.1 Data preparation 

 We analysed the ClinVar file from the week of 03 Jan 2022 downloaded from 

 https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20220103.vcf.gz 

 The analysis can be run by executing the bash script  run-clinvar-37-38.sh  in the 

 github repository  https://github.com/divonlan/genozip-dvcf-results  .  The key parts of this script 

 are: 

 Lifting the file to a DVCF: 

 > genozip --echo --chain 

 shared/GRCh37_to_GRCh38.matched.chain.genozip --add-line-numbers 

 --match-chrom-to-reference shared/clinvar.37.vcf.gz -o 

 clinvar-37-38/clinvar-37-38.d.vcf.genozip 

 As before, to allow easy detection of variants with potential issues, we created a ClinVar 

 GRCh37 single-coordinate file that contains an extra  INFO/oSTATUS  field, as well as the 

 line numbers in the ID field: 

 > genocat clinvar-37-38/clinvar-37-38.d.vcf.genozip --single -o 

 clinvar-37-38/clinvar.37.annotated.vcf --show-ostatus 

 For CrossMap, we used the following command: 

 > CrossMap.py vcf shared/GRCh37_to_GRCh38.matched.chain 

 clinvar-37-38/clinvar.37.annotated.vcf 

 shared/GRCh38_full_analysis_set_plus_decoy_hla.fa.gz 

 clinvar-37-38/clinvar.38.CrossMap.vcf 

 For LiftoverVcf, we used the following command: 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20220103.vcf.gz
https://github.com/divonlan/genozip-dvcf-results


 > gatk --java-options '-Xmx16g -XX:ParallelGCThreads=1' LiftoverVcf 

 --INPUT clinvar-37-38/clinvar.37.annotated.vcf --OUTPUT 

 clinvar-37-38/clinvar.38.gatk.vcf --CHAIN 

 shared/GRCh37_to_GRCh38.matched.chain --REJECT 

 clinvar-37-38/clinvar.38.gatk.rejects.vcf --RECOVER_SWAPPED_REF_ALT 

 --REFERENCE_SEQUENCE 

 shared/GRCh38_full_analysis_set_plus_decoy_hla.fa.gz 

 --TAGS_TO_REVERSE AF_ESP --TAGS_TO_REVERSE AF_EXAC --TAGS_TO_REVERSE 

 AF_TGP --TAGS_TO_DROP DUMMY 



 3.2 Genozip analysis 

 Genozip has no variants with corrupted data, however it did drop 201 variants (133 SNPs, 68 

 non-SNPs) which have a valid mapping in the chain file, because the allele represented by the 

 GRCh38 reference is neither the REF nor the ALT allele. 

 Table S13:  ClinVar variants dropped by Genozip despite  having a mapping in the chain file. 

 This occurs because the allele in the GRCh38 (Luft) reference is a new allele, neither REF 

 nor ALT. This does not include variants correctly dropped due to lack of mapping in the chain 

 file. 

 Type  #  Issue  ALLELEID  CLNSIG 

 Data loss  201  Allele in 

 GRCh38 is 

 a new 

 allele 

 (neither 

 REF nor 

 ALT) 

 696043,799115,685731,15474,964796,11 

 70574,696055,696058,1167865,581994,6 

 96139,15681,696267,696378,696404,447 

 571,425007,392854,697512,286118,4510 

 10,286231,390508,221328,708391,11542 

 27,980680,963007,173441,697258,11540 

 60,698145,452738,453319,215271,33220, 

 455066,698872,174523,54118,1037727,1 

 037728,226789,700218,389801,710823,9 

 61851,699897,699899,699900,699901,69 

 9902,699903,711517,790800,1155979,45 

 9012,959873,700419,700425,700426,700 

 428,700429,700431,700436,700482,1008 

 398,1156206,851221,174261,174548,700 

 865,700867,1162096,800875,1162094,11 

 62095,487407,549956,700869,700871,70 

 0872,692808,701351,397737,622275,701 

 488,47952,240741,53156,701260,20181,1 

 67056,712775,390514,33351,838853,115 

 6807,1166021,167084,917805,244624,15 

 0504,1156610,712655,702499,175552,17 

 5851,702467,713776,461651,702807,702 

 808,703029,167190,529374,703257,7033 

 35,703373,242133,1157890,465467,8184 

 55,468332,1033832,343827,789384,1157 

 991,376201,375315,706355,704364,7043 

 65,715791,55368,705368,245748,245880, 

 245942,964061,536982,176732,705090,4 

 31872,334260,797925,682788,963904,11 

 135 Benign 

 17 Uncertain significance 

 15 Likely benign 

 10 Pathogenic 

 6 Likely pathogenic 

 6 Benign/Likely benign 

 3 not provided 

 3 association 

 2 risk factor 
 2 Conflicting interpretations of pathogenicity 

 1 other 

 1 drug response 



 69844,882486,882487,40517,1158756,68 

 4879,684881,1158835,705475,705477,68 

 0034,966169,705738,963022,390511,390 

 657,390590,390591,963023,705823,4390 

 50,38485,31934,47980,706250,706252,26 

 660,706257,706259,706260,706263,7062 

 77,243824,963026,706035,670963,79211 

 8,706116,549821,670737,706133,706162, 

 706163,706164,706168,706169,706170,7 

 06171,982298,472107,706177,706179,70 

 6180 



 3.3 CrossMap analysis 

 Of the 969,410 variants in the file, 967,781 were lifted, and 1628 failed to lift. Some of the 

 lifted variants were corrupt, and some of the dropped variants were unnecessarily dropped. 

 Table S14:  ClinVar variants incorrectly dropped by  CrossMap (excluding variants correctly 

 dropped due to lack of mapping in the chain file), and variants lifted incorrectly. 

 Type  #  Issue  ALLELEID  CLNSIG 

 Data loss  204  Failed to 

 lift 

 REF⇄AL 

 T switch 

 177885,191721,389423,106000,1163377, 

 1163378,862175,1153237,353057,227743 

 ,1164070,1153536,249770,655075,11539 

 62,389508,177658,141535,102135,38964 

 9,390440,670179,671101,291712,291961, 

 789736,193757,389612,251402,1168025, 

 167900,251996,36716,177851,54119,103 

 7729,141976,141771,178204,141770,390 

 476,390568,227764,389793,18435,69989 

 8,683010,1155956,684027,662663,66266 

 7,136076,1171823,304611,390475,31349 

 6,1156147,1156207,174544,54805,70086 

 6,800873,1171929,143080,654535,11719 

 32,790945,701352,701350,701349,70134 

 8,701347,270003,142604,53180,389879,3 

 89938,254076,175704,254276,389897,17 

 210,137366,701599,140343,54569,54553, 

 254491,54551,55703,1157066,190700,25 

 4805,791396,1157289,230590,1157471,3 

 39619,323041,873957,656305,433550,39 

 0078,132224,192275,1157931,1158130,2 

 56553,344888,1087130,345325,1173004, 

 791785,269599,506140,1163638,1173059 

 ,329799,256613,390307,791872,508906,3 

 44604,230979,257300,1168415,433895,1 

 42630,231042,257199,334255,177983,11 

 73294,169607,344231,349365,178100,45 

 542,353525,137338,257355,257356,2573 

 58,23429,716929,1158836,351613,11698 

 88,106610,1164570,1164571,1164572,11 

 64573,792021,817902,508193,817919,81 

 7923,817930,508196,818000,818032,818 

 037,818051,818053,818054,818055,8180 

 160 Benign 

 21 drug response 

 9 Likely benign 

 8 Benign/Likely benign 

 3  Conflicting interpretations of pathogenicity 

 2 Uncertain significance 

 1 Pathogenic 

https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve
https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve


 56,818057,818058,818060,818090,81809 

 4,818115,818122,717806,1159714,11597 

 20,1159723,101448,792471,352903,1346 

 97,99042,98295,52521,800324,52519,656 

 729,24924,670821,669859,25543,99678,1 

 01226,45455,352797,1159494,671190,35 

 2799,99399,25405,339086,99598 



 Table S14:  (continued from previous page) 

 Type  #  Issue  ALLELEID  CLNSIG 

 Data 

 Corrupti 

 on 

 201  Lifted has 

 bad REF 

 field 

 696043,799115,685731,15474,964796,11 

 70574,696055,696058,1167865,581994,6 

 96139,15681,696267,696378,696404,447 

 571,425007,392854,697512,286118,4510 

 10,286231,390508,221328,708391,11542 

 27,980680,963007,173441,697258,11540 

 60,698145,452738,453319,215271,33220, 

 455066,698872,174523,54118,1037727,1 

 037728,226789,700218,389801,710823,9 

 61851,699897,699899,699900,699901,69 

 9902,699903,711517,790800,1155979,45 

 9012,959873,700419,700425,700426,700 

 428,700429,700431,700436,700482,1008 

 398,1156206,851221,174261,174548,700 

 865,700867,1162096,800875,1162094,11 

 62095,487407,549956,700869,700871,70 

 0872,692808,701351,397737,622275,701 

 488,47952,240741,53156,701260,20181,1 

 67056,712775,390514,33351,838853,115 

 6807,1166021,167084,917805,244624,15 

 0504,1156610,712655,702499,175552,17 

 5851,702467,713776,461651,702807,702 

 808,703029,167190,529374,703257,7033 

 35,703373,242133,1157890,465467,8184 

 55,468332,1033832,343827,789384,1157 

 991,376201,375315,706355,704364,7043 

 65,715791,55368,705368,245748,245880, 

 245942,964061,536982,176732,705090,4 

 31872,334260,797925,682788,963904,11 

 69844,882486,882487,40517,1158756,68 

 4879,684881,1158835,705475,705477,68 

 0034,966169,705738,963022,390511,390 

 657,390590,390591,963023,705823,4390 

 50,38485,31934,47980,706250,706252,26 

 660,706257,706259,706260,706263,7062 

 77,243824,963026,706035,670963,79211 

 8,706116,549821,670737,706133,706162, 

 706163,706164,706168,706169,706170,7 

 06171,982298,472107,706177,706179,70 

 6180 

 135 Benign 

 17 Uncertain significance 

 15 Likely benign 

 10 Pathogenic 

 6 Likely pathogenic 

 6 Benign/Likely benign 

 3 not provided 

 3 association 

 2 risk factor 

 1 other 

 1 drug response 

 2  Conflicting interpretations of pathogenicity 



 Data 

 Corrupti 

 on 

 4  Lifted 

 failed to 

 switch 

 REF and 

 ALT 

 776998,657462,198367,438998  3 Benign 

 1 Likely benign 

 Data 

 Corrupti 

 on 

 4  Mapped 

 despite no 

 mapping 

 in chain 

 file 

 1097855,407586,1156794,1157524  2 Likely benign 

 2 Benign 



 3.4 LiftoverVcf analysis 

 Of the 969,410 variants in the file, 967,816 were lifted, and 1594 failed to lift. Some of the 

 lifted variants were corrupt, and some of the dropped variants were unnecessarily dropped: 

 Table S15:  ClinVar variants incorrectly dropped by  LiftoverVcf (excluding variants correctly 

 dropped due to lack of mapping in the chain file), and variants lifted incorrectly. 

 Type  #  Issue  ALLELEID  CLNSIG 

 Data loss  162  Allele in 

 GRCh38 is 

 a new 

 allele 

 (neither 

 REF nor 

 ALT) 

 696043,685731,15474,964796,1170574,696055 

 ,696058,581994,696139,15681,696267,696378 

 ,696404,447571,425007,392854,697512,45101 

 0,708391,173441,697258,698145,452738,4533 

 19,33220,455066,698872,174523,54118,10377 

 28,226789,700218,389801,710823,699897,699 

 899,699900,699901,699902,699903,711517,45 

 9012,959873,700419,700425,700426,700428,7 

 00429,700431,700436,700482,1008398,115620 

 6,851221,174261,174548,700865,700867,1162 

 096,800875,1162094,1162095,700869,700871, 

 700872,692808,701351,397737,622275,70148 

 8,47952,240741,53156,701260,20181,167056, 

 712775,33351,838853,1166021,167084,917805 

 ,150504,712655,702499,175552,175851,70246 

 7,713776,702807,702808,167190,529374,7032 

 57,703335,703373,242133,465467,818455,468 

 332,1033832,343827,789384,376201,375315,7 

 06355,704364,704365,715791,705368,245748, 

 245880,245942,536982,705090,431872,33426 

 0,797925,682788,963904,882486,882487,4051 

 7,684879,684881,705475,705477,680034,9661 

 69,705738,963022,390591,705823,38485,3193 

 4,47980,706250,706252,26660,706257,706259 

 ,706260,706263,706277,243824,963026,70603 

 5,706116,549821,706133,706162,706163,7061 

 64,706168,706169,706170,706171,982298,472 

 107,706177,706179,706180 

 107 Benign 

 13 Uncertain significance 

 11 Likely benign 

 9 Pathogenic 

 5 Likely pathogenic 

 5 Benign/Likely benign 

 3 not provided 

 3 association 

 2 risk factor 

 2  Conflicting interpretations of pathogenicity 

 1 other 

 1 drug response 

 Data loss  4  Failed to 

 lift 

 REF⇄AL 

 T switch 

 of 

 non-SNPs 

 1037729,178204,683010,800324,16  2 Uncertain significance 

 2 Benign 

https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve
https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve


 Data 

 corruptio 

 n 

 39  Incorrect 

 REF field 

 (GRCh38 

 is a new 

 allele) 

 964796,581994,1037728,389801,959873,8512 

 21,167056,167084,167190,818455,789384,245 

 748,245880,245942,536982,431872,797925,96 

 3904,966169,963022,26660,963026 

 28 Benign 

 4 Uncertain significance 

 4 Likely benign 

 1 Pathogenic 

 1 Likely pathogenic 

 1 Benign/Likely benign 

 Data 

 corruptio 

 n 

 4  Lifted 

 failed to 

 switch 

 REF and 

 ALT 

 1037729,683010  3 Benign 

 1 Likely benign 



 3.5 ClinVar benchmark – summary 

 All tools dropped variants of “Pathogenic” clinical significance, leading to the conclusion 

 that lift over techniques should never be used in a clinical setting. However, CrossMap and 

 LiftoverVcf did worse than that – they also  incorrectly  lifted 10 (CrossMap) or 1 

 (LiftoverVcf) variants of “Pathogenic” clinical significance, resulting in a corrupt REF field 

 of these variants, that could potentially lead to incorrect clinical diagnosis. 



 SI.4. GRCh38 and Telomere-to-Telomere 

 We repeated the tests described in section 1 and 3, but this time between the GRCh38 and 

 Telomere-to-Telomere v1.0 reference. 

 -  For the SNP test file, we used the GRCh38 file which was the output of the Genozip 

 lift-over from GRCh37 to GRCh38. 

 -  For the indels test file, we extracted the indel variants from a GRCh38 version of the 

 1000 Genome Project. This is an independent analysis of the 1KGP data, and  not  a 

 lift-over of the GRCh37 file we used for testing. The GRCh38 file contains 

 significantly more indel variants. The file was obtained from: 

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverag 

 e/working/20201028_3202_raw_GT_with_annot/ 

 -  For the ClinVar test file, we obtained the GRCh38 version of the same data used in 

 section 3, from: 

 ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/weekly/clinvar_20210724.vcf.gz 

 -  The GRCh38 to T2Tv1.0 chain file was obtained from: 

 http://t2t.gi.ucsc.edu/chm13/hub/t2t-chm13-v1.0/hg38Lastz/hg38.t2t-chm13-v1.0.ove 

 r.chain.gz 

 -  The T2Tv1.0 reference file was obtained from: 

 https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/c 

 hm13.draft_v1.0.fasta.gz 

 -  The GRCh38 reference, was obtained from: 

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_geno 

 me/GRCh38_full_analysis_set_plus_decoy_hla.fa 



 As before, we provide bash scripts which execute the entire analysis including downloading 

 the files. These scripts also serve as precise instructions for reproducing our results. They can 

 be found in  https://github.com/divonlan/genozip-dvcf-results  . 

 We observe that the mapping of GRCh38 to T2T is significantly more complex than the 

 mapping of GRCh37 to GRCh38, by the measure of the number of unique alignments in their 

 respective chain files: 

 > genocat --show-chain GRCh37_to_GRCh38.matched.chain.genozip | wc -l 

 18389 

 > genocat --show-chain hg38.t2t-chm13-v1.0.over.matched.chain.genozip|wc -l 

 865173 

 A mapping of how each of the three tools handles the various variant categories appears in 

 Tables S18, S19 and S20. We note that the tools diverge significantly with regards to how 

 they handle the various cases. Note that “lifted” merely means that the variant appears in the 

 output file—not that it is correct. In fact, there are many known cases in which the variant is 

 incorrect—these are documented in Sections 2.2 and 2.3 and a mapping to the relevant 

 section appears in the second column of each table. We also noted some new categories that 

 did not appear in the GRCh37-to-GRCh38 case; these are marked as “New”. We did not 

 perform a detailed analysis of the causes for the differences between the tools in this case of 

 GRCh38-to-T2T liftover, which should be the purpose of future research. 

https://github.com/divonlan/genozip-dvcf-results


 Table S18  . Categorization of indel variants and how  each tool handles problematic variants. 

 Genozip oStatus  Section  Count  Genozip  LiftoverVcf  CrossMap 

 OkRefSameIndel  N/A  155,695  Lifted  Lifted  Lifted 

 OkRefSameNotLeftAnc  N/A  30,654  Lifted 

 30123 Lifted 

 531 Dropped  Lifted 

 OkRefSameDelRev  2.2.8  3,823  Lifted 

 3535 Lifted 

 288 Dropped  Lifted 

 OkRefSameInsRev  2.2.7  2,010  Lifted 

 1998 Lifted 

 12 Dropped  Lifted 

 OkRefAltSwitchIndelRpts  2.2.3  1,738  Lifted 

 1735 Lifted 

 3 Dropped  Lifted 

 OkRefSameNDNIRev  New  1,575  Lifted 

 1271 Lifted 

 304 Dropped  Lifted 

 OkRefAltSwitchWithGap  2.2.5  871  Lifted  Variant dropped  Variant dropped 

 OkRefAltSwitchIndelFlank  2.2.3  389  Lifted  Lifted  Lifted 

 RefSplitInChain  2.2.6  12,147  Dropped  Dropped 

 Lifted 2554 

 Dropped 9593 

 RefNotMappedInChain  N/A  5,688  Dropped  Dropped 

 Lifted 2127 

 Dropped 3561 

 RefMultiAltSwitchIndel  New  3,002  Dropped 

 Lifted 1695 

 Dropped 1307  Lifted 

 RefNewAlleleNotLeftAnc  New  2,835  Dropped 

 Lifted 53 

 Dropped 2782  Lifted 

 RefNewAlleleNDNI  New  2,459  Dropped 

 Lifted 44 

 Dropped 2415  Lifted 

 RefNewAlleleDelRefChange 

 d  2.2.9  1,429  Dropped 

 Lifted 66 

 Dropped 1363  Lifted 

 RefNewAlleleInsSameRef  2.2.10  1,181  Dropped  Lifted  Lifted 

 RefNewAlleleDelSameRef  2.2.10  512  Dropped 

 Lifted 475 

 Dropped 37  Lifted 

 RefNewAlleleIndelNoSwitch  2.2.11  380  Dropped  Lifted  Lifted 

 RefNewAllelInsRefChanged  2.2.9  313  Dropped 

 Lifted 121 

 Dropped 192  Lifted 

 INFO/AF  New  167  Dropped  Dropped  Lifted 

 Total  226,868 



 Table S19  . Categorization of SNP variants and how each tool handles problematic variants. 

 Genozip oStatus  Section  Count  Genozip  LiftoverVcf  CrossMap 

 OkRefSameSNP  N/A  2,288,044  Lifted  Lifted  Lifted 

 OkRefAltSwitchSNP  2.3.3  1,705,586  Lifted  INFO/AC dropped  Dropped 

 OkRefSameSNPRev  2.3.4  22,266  Lifted  Lifted  Lifted 

 OkNewRefSNP  2.3.8  1,869  Lifted  Dropped  Lifted 

 NoMappingInChainFile  N/A  61,771  Dropped  Dropped  Dropped 

 RefNewAlleleSNP  2.3.6  1,934  Dropped  Dropped  Lifted 

 RefMultiAltSwitchSNP  2.3.7  1,433  Dropped  Dropped  Lifted 

 Total  4,060,637 



 Table S20  . Categorization of ClinVar variants and  how each tool handles problematic variants. 

 Genozip oStatus  Section  Count  Genozip  LiftoverVcf  CrossMap 

 OkRefSameSNP  N/A  857,612  Lifted  Lifted  Lifted 

 OkRefSameIndel  N/A  86,095  Lifted  Lifted  Lifted 

 OkRefAltSwitchSNP  2.3.3  11,055  Lifted  Lifted  Dropped 

 OkRefSameNotLeftAnc  N/A  5,972  Lifted  Lifted  Lifted 

 OkRefSameSNPRev  2.3.4  2,058  Lifted  Lifted  Lifted 

 OkRefAltSwitchIndelRpts  2.2.3  734  Lifted  Lifted  Lifted 

 OkRefAltSwitchWithGap  2.2.5  432  Lifted  Dropped 

 Dropped 431 

 Lifted 1 

 OkRefAltSwitchIndelFlank  2.2.3  152  Lifted  Lifted  Lifted 

 OkRefSameDelRev  2.2.8  89  Lifted 

 Lifted 87 

 Dropped 2  Lifted 

 OkRefAltSwitchDelToIns  2.2.4  53  Lifted  Dropped  Lifted 

 OkRefAltSwitchNotLeftAnc  New  50  Lifted  Dropped 

 Dropped 34 

 Lifted 16 

 OkRefSameInsRev  2.2.7  48  Lifted  Lifted  Lifted 

 RefNewAlleleInsSameRef  2.2.10  1,071  Dropped  Lifted  Lifted 

 RefSplitInChain  2.2.6  1,003  Dropped  Dropped 

 Dropped 897 

 Lifted 106 

 RefNotMappedInChain  N/A  859  Dropped  Dropped 

 Dropped 791 

 Lifted 68 

 RefNewAlleleSNP  2.3.6  732  Dropped  Dropped  Lifted 

 RefNewAlleleDelRefChanged  2.2.9  520  Dropped  Dropped  Lifted 

 RefNewAlleleNotLeftAnc  New  457  Dropped  Dropped 

 Lifted 457 

 Dropped 1 

 RefNewAlleleDelSameRef  2.2.10  340  Dropped  Lifted  Lifted 

 RefNewAllelInsRefChanged  2.2.9  111  Dropped 

 Dropped 109 

 Lifted 2  Lifted 

 RefNewAlleleIndelNoSwitch  2.2.11  42  Dropped  Lifted  Lifted 

 ChromNotInPrimReference  N/A  1  Dropped  Dropped  Dropped 

 Total  969,486 



 SI.Appendix. Analysis script output 

 Our analysis scripts in the  https://github.com/divonlan/genozip-dvcf-results  repository 

 generate analysis output files for each tool. The Genozip analysis file summarizes the number 

 of variants assigned to each category, while the analysis files for CrossMap and LiftoverVcf 

 summarize the number of variants in each Genozip category, that were either lifted or 

 dropped by the tool. 

 We therefore have analysis files for each of the three tools (Genozip, CrossMap and 

 LiftoverVcf), for each of the three tests (Indels, SNPs and ClinVar) for each of the two 

 datasets (GRCh37->GRCh38 and GRCh38->T2T): 

https://github.com/divonlan/genozip-dvcf-results


 1)  Indels – GRCh37 to GRCh38 

 Genozip 

 Showing counts of o$TATUS (did_i=17). Total items=18706 Number of 

 categories=14 

 OkRefSameIndel  18201  97.30% 

 OkRefAltSwitchIndelRpts  153  0.82% 

 RefNotMappedInChain  78  0.42% 

 OkRefAltSwitchWithGap  71  0.38% 

 OkRefSameDelRev  67  0.36% 

 OkRefSameInsRev  40  0.21% 

 OkRefAltSwitchIndelFlank  27  0.14% 

 RefSplitInChain  20  0.11% 

 RefNewAlleleDelRefChanged  13  0.07% 

 RefNewAlleleInsSameRef  11  0.06% 

 RefNewAlleleIndelNoSwitch  9  0.05% 

 OkRefAltSwitchDelToIns  6  0.03% 

 RefNewAlleleInsRefChanged  6  0.03% 

 RefNewAlleleDelSameRef  4  0.02% 

 CrossMap 

 data=indel primary=37 luft=38 tool=CrossMap 

 Lifted OkRefSameIndel: 18201 

 Lifted OkRefAltSwitchIndelRpts: 153 

 Lifted RefNotMappedInChain: 2 

 Failed RefNotMappedInChain: 76 

 Failed OkRefAltSwitchWithGap: 71 

 Lifted OkRefSameDelRev: 67 

 Lifted OkRefSameInsRev: 40 

 Lifted OkRefAltSwitchIndelFlank: 27 

 Lifted RefSplitInChain: 18 

 Failed RefSplitInChain: 2 

 Lifted RefNewAlleleDelRefChanged: 13 

 Lifted RefNewAlleleInsSameRef: 11 

 Lifted RefNewAlleleIndelNoSwitch: 9 

 Lifted OkRefAltSwitchDelToIns: 6 

 Lifted RefNewAlleleInsRefChanged: 6 



 Lifted RefNewAlleleDelSameRef: 4 

 LiftoverVcf 

 data=indel primary=37 luft=38 tool=gatk 

 Lifted OkRefSameIndel: 18201 

 Lifted OkRefAltSwitchIndelRpts: 153 

 Failed RefNotMappedInChain: 78 

 Failed OkRefAltSwitchWithGap: 71 

 Lifted OkRefSameDelRev: 67 

 Lifted OkRefSameInsRev: 40 

 Lifted OkRefAltSwitchIndelFlank: 27 

 Failed RefSplitInChain: 20 

 Failed RefNewAlleleDelRefChanged: 13 

 Lifted RefNewAlleleInsSameRef: 11 

 Lifted RefNewAlleleIndelNoSwitch: 9 

 Failed OkRefAltSwitchDelToIns: 6 

 Failed RefNewAlleleInsRefChanged: 6 

 Lifted RefNewAlleleDelSameRef: 4 



 2)  SNPs – GRCh37 to GRCh38 

 Genozip 

 Showing counts of o$TATUS (did_i=17). Total items=4109729 Number of 

 categories=8 

 OkRefSameSNP  4037520  98.24% 

 OkRefAltSwitchSNP  29635  0.72% 

 RefNotMappedInChain  26728  0.65% 

 OkRefSameSNPRev  15689  0.38% 

 RefNewAlleleSNP  68  0.00% 

 OkNewRefSNP  47  0.00% 

 RefMultiAltSwitchSNP  30  0.00% 

 OkRefSameSNPIupac  12  0.00% 

 CrossMap 

 data=snp primary=37 luft=38 tool=CrossMap 

 Lifted OkRefSameSNP: 4037520 

 Failed OkRefAltSwitchSNP: 29635 

 Failed RefNotMappedInChain: 26728 

 Lifted OkRefSameSNPRev: 15689 

 Lifted RefNewAlleleSNP: 68 

 Lifted OkNewRefSNP: 47 

 Lifted RefMultiAltSwitchSNP: 30 

 Lifted OkRefSameSNPIupac: 12 

 LiftoverVcf 

 data=snp primary=37 luft=38 tool=gatk 

 Lifted OkRefSameSNP: 4037520 

 Lifted OkRefAltSwitchSNP: 29635 

 Failed RefNotMappedInChain: 26728 

 Lifted OkRefSameSNPRev: 15689 

 Failed RefNewAlleleSNP: 68 

 Failed OkNewRefSNP: 47 

 Failed RefMultiAltSwitchSNP: 30 

 Failed OkRefSameSNPIupac: 12 



 3)  ClinVar – GRCh37 to GRCh38 

 Genozip 

 Showing counts of o$TATUS (did_i=17). Total items=969410 Number of 

 categories=19 

 OkRefSameSNP  870016  89.75% 

 OkRefSameIndel  90450  9.33% 

 OkRefSameNotLeftAnc  6557  0.68% 

 RefNotMappedInChain  1424  0.15% 

 OkRefSameSNPRev  501  0.05% 

 OkRefAltSwitchSNP  200  0.02% 

 RefNewAlleleSNP  133  0.01% 

 RefNewAlleleInsSameRef  36  0.00% 

 OkRefSameDelRev  33  0.00% 

 RefNewAlleleDelRefChanged  20  0.00% 

 OkRefSameInsRev  16  0.00% 

 RefNewAlleleNotLeftAnc  7  0.00% 

 OkRefAltSwitchIndelRpts  4  0.00% 

 RefSplitInChain  4  0.00% 

 OkRefAltSwitchWithGap  2  0.00% 

 OkRefAltSwitchNotLeftAnc  2  0.00% 

 RefNewAlleleInsRefChanged  2  0.00% 

 RefNewAlleleIndelNoSwitch  2  0.00% 

 RefNewAlleleDelSameRef  1  0.00% 

 CrossMap 

 data=clinvar primary=37 luft=38 tool=CrossMap 

 Lifted OkRefSameSNP: 870016 

 Lifted OkRefSameIndel: 90450 

 Lifted OkRefSameNotLeftAnc: 6557 

 Lifted RefNotMappedInChain: 2 

 Failed RefNotMappedInChain: 1422 

 Lifted OkRefSameSNPRev: 501 

 Failed OkRefAltSwitchSNP: 200 

 Lifted RefNewAlleleSNP: 133 

 Lifted RefNewAlleleInsSameRef: 36 

 Lifted OkRefSameDelRev: 33 



 Lifted RefNewAlleleDelRefChanged: 20 

 Lifted OkRefSameInsRev: 16 

 Lifted RefNewAlleleNotLeftAnc: 7 

 Lifted OkRefAltSwitchIndelRpts: 4 

 Lifted RefSplitInChain: 2 

 Failed RefSplitInChain: 2 

 Failed OkRefAltSwitchWithGap: 2 

 Failed OkRefAltSwitchNotLeftAnc: 2 

 Lifted RefNewAlleleInsRefChanged: 2 

 Lifted RefNewAlleleIndelNoSwitch: 2 

 Lifted RefNewAlleleDelSameRef: 1 

 LiftoverVcf 

 data=clinvar primary=37 luft=38 tool=gatk 

 Lifted OkRefSameSNP: 870016 

 Lifted OkRefSameIndel: 90450 

 Lifted OkRefSameNotLeftAnc: 6557 

 Failed RefNotMappedInChain: 1424 

 Lifted OkRefSameSNPRev: 501 

 Lifted OkRefAltSwitchSNP: 200 

 Failed RefNewAlleleSNP: 133 

 Lifted RefNewAlleleInsSameRef: 36 

 Lifted OkRefSameDelRev: 33 

 Failed RefNewAlleleDelRefChanged: 20 

 Lifted OkRefSameInsRev: 16 

 Failed RefNewAlleleNotLeftAnc: 7 

 Lifted OkRefAltSwitchIndelRpts: 4 

 Failed RefSplitInChain: 4 

 Failed OkRefAltSwitchWithGap: 2 

 Failed OkRefAltSwitchNotLeftAnc: 2 

 Failed RefNewAlleleInsRefChanged: 2 

 Lifted RefNewAlleleIndelNoSwitch: 2 

 Lifted RefNewAlleleDelSameRef: 1 



 4)  Indels – GRCh38 to T2T 

 Genozip 

 Showing counts of o$TATUS (did_i=17). Total items=227096 Number of 

 categories=20 

 OkRefSameIndel  155695  68.56% 

 OkRefSameNotLeftAnc  30654  13.50% 

 RefSplitInChain  12147  5.35% 

 RefNotMappedInChain  5688  2.50% 

 OkRefSameDelRev  3823  1.68% 

 RefMultiAltSwitchIndel  3002  1.32% 

 RefNewAlleleNotLeftAnc  2835  1.25% 

 RefNewAlleleNDNI  2459  1.08% 

 OkRefSameInsRev  2010  0.89% 

 OkRefAltSwitchIndelRpts  1738  0.77% 

 OkRefSameNDNIRev  1575  0.69% 

 RefNewAlleleDelRefChanged  1429  0.63% 

 RefNewAlleleInsSameRef  1181  0.52% 

 OkRefAltSwitchWithGap  871  0.38% 

 RefNewAlleleDelSameRef  512  0.23% 

 OkRefAltSwitchIndelFlank  389  0.17% 

 RefNewAlleleIndelNoSwitch  380  0.17% 

 RefNewAlleleInsRefChanged  313  0.14% 

 OkRefAltSwitchDelToIns  228  0.10% 

 INFO/AF  167  0.07% 

 CrossMap 

 data=indel primary=38 luft=t2t tool=CrossMap 

 Lifted OkRefSameIndel: 155695 

 Lifted OkRefSameNotLeftAnc: 30654 

 Lifted RefSplitInChain: 2554 

 Failed RefSplitInChain: 9593 

 Lifted RefNotMappedInChain: 2127 

 Failed RefNotMappedInChain: 3561 

 Lifted OkRefSameDelRev: 3823 

 Lifted RefMultiAltSwitchIndel: 3002 

 Lifted RefNewAlleleNotLeftAnc: 2835 



 Lifted RefNewAlleleNDNI: 2459 

 Lifted OkRefSameInsRev: 2010 

 Lifted OkRefAltSwitchIndelRpts: 1738 

 Lifted OkRefSameNDNIRev: 1575 

 Lifted RefNewAlleleDelRefChanged: 1429 

 Lifted RefNewAlleleInsSameRef: 1181 

 Failed OkRefAltSwitchWithGap: 871 

 Lifted RefNewAlleleDelSameRef: 512 

 Lifted OkRefAltSwitchIndelFlank: 389 

 Lifted RefNewAlleleIndelNoSwitch: 380 

 Lifted RefNewAlleleInsRefChanged: 313 

 Lifted OkRefAltSwitchDelToIns: 228 

 Lifted INFO/AF: 167 

 LiftoverVcf 

 data=indel primary=38 luft=t2t tool=gatk 

 Lifted OkRefSameIndel: 155695 

 Lifted OkRefSameNotLeftAnc: 30123 

 Failed OkRefSameNotLeftAnc: 531 

 Failed RefSplitInChain: 12147 

 Failed RefNotMappedInChain: 5688 

 Lifted OkRefSameDelRev: 3535 

 Failed OkRefSameDelRev: 288 

 Lifted RefMultiAltSwitchIndel: 1695 

 Failed RefMultiAltSwitchIndel: 1307 

 Lifted RefNewAlleleNotLeftAnc: 53 

 Failed RefNewAlleleNotLeftAnc: 2782 

 Lifted RefNewAlleleNDNI: 44 

 Failed RefNewAlleleNDNI: 2415 

 Lifted OkRefSameInsRev: 1998 

 Failed OkRefSameInsRev: 12 

 Lifted OkRefAltSwitchIndelRpts: 1735 

 Failed OkRefAltSwitchIndelRpts: 3 

 Lifted OkRefSameNDNIRev: 1271 

 Failed OkRefSameNDNIRev: 304 

 Lifted RefNewAlleleDelRefChanged: 66 

 Failed RefNewAlleleDelRefChanged: 1363 



 Lifted RefNewAlleleInsSameRef: 1181 

 Failed OkRefAltSwitchWithGap: 871 

 Lifted RefNewAlleleDelSameRef: 475 

 Failed RefNewAlleleDelSameRef: 37 

 Lifted OkRefAltSwitchIndelFlank: 389 

 Lifted RefNewAlleleIndelNoSwitch: 380 

 Lifted RefNewAlleleInsRefChanged: 121 

 Failed RefNewAlleleInsRefChanged: 192 

 Lifted OkRefAltSwitchDelToIns: 1 

 Failed OkRefAltSwitchDelToIns: 227 

 Failed INFO/AF: 167 



 5)  SNPs – GRCh38 to T2T 

 Genozip 

 Showing counts of o$TATUS (did_i=17). Total items=4082903 Number of 

 categories=7 

 OkRefSameSNP  2288044  56.04% 

 OkRefAltSwitchSNP  1705586  41.77% 

 RefNotMappedInChain  61771  1.51% 

 OkRefSameSNPRev  22266  0.55% 

 RefNewAlleleSNP  1934  0.05% 

 OkNewRefSNP  1869  0.05% 

 RefMultiAltSwitchSNP  1433  0.04% 

 CrossMap 

 data=snp primary=38 luft=t2t tool=CrossMap 

 Lifted OkRefSameSNP: 2288044 

 Failed OkRefAltSwitchSNP: 1705586 

 Failed RefNotMappedInChain: 61771 

 Lifted OkRefSameSNPRev: 22266 

 Lifted RefNewAlleleSNP: 1934 

 Lifted OkNewRefSNP: 1869 

 Lifted RefMultiAltSwitchSNP: 1433 

 LiftoverVcf 

 data=snp primary=38 luft=t2t tool=gatk 

 Lifted OkRefSameSNP: 2288044 

 Lifted OkRefAltSwitchSNP: 1705586 

 Failed RefNotMappedInChain: 61771 

 Lifted OkRefSameSNPRev: 22266 

 Failed RefNewAlleleSNP: 1934 

 Failed OkNewRefSNP: 1869 

 Failed RefMultiAltSwitchSNP: 1433 



 6)  ClinVar – GRCh38 to T2T 

 Genozip 

 Showing counts of o$TATUS (did_i=17). Total items=969486 Number of 

 categories=22 

 OkRefSameSNP  857612  88.46% 

 OkRefSameIndel  86095  8.88% 

 OkRefAltSwitchSNP  11055  1.14% 

 OkRefSameNotLeftAnc  5972  0.62% 

 OkRefSameSNPRev  2058  0.21% 

 RefNewAlleleInsSameRef  1071  0.11% 

 RefSplitInChain  1003  0.10% 

 RefNotMappedInChain  859  0.09% 

 OkRefAltSwitchIndelRpts  734  0.08% 

 RefNewAlleleSNP  732  0.08% 

 RefNewAlleleDelRefChanged  520  0.05% 

 RefNewAlleleNotLeftAnc  457  0.05% 

 OkRefAltSwitchWithGap  432  0.04% 

 RefNewAlleleDelSameRef  340  0.04% 

 OkRefAltSwitchIndelFlank  152  0.02% 

 RefNewAlleleInsRefChanged  111  0.01% 

 OkRefSameDelRev  89  0.01% 

 OkRefAltSwitchDelToIns  53  0.01% 

 OkRefAltSwitchNotLeftAnc  50  0.01% 

 OkRefSameInsRev  48  0.00% 

 RefNewAlleleIndelNoSwitch  42  0.00% 

 ChromNotInPrimReference  1  0.00% 

 CrossMap 

 data=clinvar primary=38 luft=t2t tool=CrossMap 

 Lifted OkRefSameSNP: 857612 

 Lifted OkRefSameIndel: 86095 

 Failed OkRefAltSwitchSNP: 11055 

 Lifted OkRefSameNotLeftAnc: 5972 

 Lifted OkRefSameSNPRev: 2058 

 Lifted RefNewAlleleInsSameRef: 1071 



 Lifted RefSplitInChain: 106 

 Failed RefSplitInChain: 897 

 Lifted RefNotMappedInChain: 68 

 Failed RefNotMappedInChain: 791 

 Lifted OkRefAltSwitchIndelRpts: 734 

 Lifted RefNewAlleleSNP: 732 

 Lifted RefNewAlleleDelRefChanged: 520 

 Lifted RefNewAlleleNotLeftAnc: 456 

 Failed RefNewAlleleNotLeftAnc: 1 

 Lifted OkRefAltSwitchWithGap: 1 

 Failed OkRefAltSwitchWithGap: 431 

 Lifted RefNewAlleleDelSameRef: 340 

 Lifted OkRefAltSwitchIndelFlank: 152 

 Lifted RefNewAlleleInsRefChanged: 111 

 Lifted OkRefSameDelRev: 89 

 Lifted OkRefAltSwitchDelToIns: 53 

 Lifted OkRefAltSwitchNotLeftAnc: 16 

 Failed OkRefAltSwitchNotLeftAnc: 34 

 Lifted OkRefSameInsRev: 48 

 Lifted RefNewAlleleIndelNoSwitch: 42 

 Failed ChromNotInPrimReference: 1 

 LiftoverVcf 

 data=clinvar primary=38 luft=t2t tool=gatk 

 Lifted OkRefSameSNP: 857612 

 Lifted OkRefSameIndel: 86095 

 Lifted OkRefAltSwitchSNP: 11055 

 Lifted OkRefSameNotLeftAnc: 5972 

 Lifted OkRefSameSNPRev: 2058 

 Lifted RefNewAlleleInsSameRef: 1071 

 Failed RefSplitInChain: 1003 

 Failed RefNotMappedInChain: 859 

 Lifted OkRefAltSwitchIndelRpts: 734 

 Failed RefNewAlleleSNP: 732 

 Failed RefNewAlleleDelRefChanged: 520 

 Failed RefNewAlleleNotLeftAnc: 457 

 Failed OkRefAltSwitchWithGap: 432 



 Lifted RefNewAlleleDelSameRef: 340 

 Lifted OkRefAltSwitchIndelFlank: 152 

 Lifted RefNewAlleleInsRefChanged: 2 

 Failed RefNewAlleleInsRefChanged: 109 

 Lifted OkRefSameDelRev: 87 

 Failed OkRefSameDelRev: 2 

 Failed OkRefAltSwitchDelToIns: 53 

 Failed OkRefAltSwitchNotLeftAnc: 50 

 Lifted OkRefSameInsRev: 48 

 Lifted RefNewAlleleIndelNoSwitch: 42 

 Failed ChromNotInPrimReference: 1 



 Thesis discussion 

 Thesis summary and significance 

 In this PhD project, my aim was to advance the field of genomic data compression, both at 

 the theoretical level by devising new algorithms and methods to achieve better compression, 

 as well as at the applied level by assembling the best software engineering models to create 

 a practical, reliable tool that researchers and clinicians can benefit from in the years and 

 decades to come. My hope is that with better storage management of genomic data, the 

 generation of genomic data and its usage will become more economically feasible, and this 

 small contribution of mine will have some impact at accelerating the pace of the genomics 

 revolution, in particular as it pertains to the clinical space, which translates directly to saving 

 or improving human lives. 

 Chapters 1 and 2 
 In chapters 1 and 2, I described the invention of several new methods for compressing 

 various elements of genomic data, as well as the architectural framework of the Genozip 

 software. Using a series of benchmarks, I demonstrated how the new compression methods 

 implemented in Genozip are superior to previous approaches in many important cases. 

 It is my opinion that the file formats that Genozip handles will still be the file formats used 

 decades ahead, despite their shortcomings. Indeed, there is current work being conducted to 

 address the limitations of genomic file formats - most notably, to support expression of 

 genomic coordinates on a pangenome graph rather than a linear reference  [1]  to better 

 address worldwide human genetic diversity and capture their underlying ancestries. A file 

 format called GAM  [2]  is proposed as a replacement  for BAM that is suitable for expressing 

 read alignment to a pangenome graph, and the VG format  [3]  is proposed as a pangenome 

 graph replacement for both a linear reference genome, which is typically expressed in 

 FASTA file, and the description of genetic variants within specific samples, for which the VCF 

 format is the current de-facto standard. 

 It is my estimation that these new formats will, with all likelihood, find their place in areas of 

 research where their advantages are critical, such as research of structural variants across 

 populations. However, I do not anticipate  that  they  will be adopted in the broad research and 

 clinical community, as the current formats are entrenched with hundreds of tools that are 

 dependent upon them, petabytes of legacy data, and the scores of trained users churned out 
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 by biological, medical, and bioinformatics programs worldwide over the past 15 years. More 

 crucially, for most common use cases, there is no obvious compelling reason to switch yet. 

 This conviction is based on following analogous development of standards in a related 

 rapidly evolving industry - the Internet.  During my time as a computer science 

 undergraduate student in the early 90s, there was work going on to solve the limitations of 

 IPv4, the Internet Protocol first used in the early 1980s that was designed to support up to 4 

 billion devices - seemingly more than enough, even in the minds of the wildest imaginators 

 of the time. In 1995, the Internet Engineering Task Force (IETF) - the body that governs the 

 technical standards of the Internet - published what became eventually known as IPv6 as a 

 recommendation  [4]  and as a standard in 1998  [5]  .  The industry consensus was that IPv6 

 would rapidly replace IPv4, as the latter is ill-suited to serve as the backbone of a network 

 that connects billions of devices worldwide. However, the end-users of computers and 

 phones and their Internet Service Providers had no compelling reason to switch, and the 

 limitations of IPv4 were addressed with a patchwork of hacky enhancements. As a result, to 

 this day, 25 years or so after the advent of IPv6 that is without question superior to IPv4, the 

 world is predominantly still using IPv4. Similarly, without a compelling reason to switch for a 

 broad population of bioinformatics users, I anticipate that we will still be using FASTA, 

 FASTQ, BAM/CRAM and VCF formats in the decades to come, and Genozip will still be 

 around to make their usage more efficient. 

 Chapter 3 
 In Chapter 3 I tackled the file format - VCF - that is often used as the workhorse of analysis 

 in a wide range of genomics subfields, including clinical genetics, population genetics and 

 others. This file format is over a decade old now and comes with many limitations, which 

 include not utilising common data standards such as XML or JSON, high levels of data 

 redundancy (and hence the need for compression), and is sufficiently complex to make 

 error-checking difficult  [6]  . However, as discussed  above, it is my forecast that the VCF 

 format will continue to be the primary format for expressing genetic variation for many years 

 to come, despite its known shortcomings, and will be improved incrementally with point 

 enhancements. In Chapter 3 and the dissertation Appendix, I proposed one such 

 enhancement - a new extension of VCF, called DVCF, and implemented it in Genozip. DVCF 

 allows users and bioinformatics tools to access genetic variants using coordinates of two 

 different reference genomes concurrently. While Genozip is designed to be a compression 

 tool, not an analysis tool, a by-product of its architecture is a fine grained internal 

 representation of genomic data, which then allows development of innovative 
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 transformations of the data. DVCF is one such example, and others might be added in the 

 future. 

 The importance of DVCF is elevated due to human genomics  research still transitioning 

 from GRCh37 to GRCh38 as the standard version of the human reference genome, and as a 

 result, it is not uncommon for a dataset to be processed in a bioinformatics pipeline that 

 contains steps alternating between these two reference genomes. GRCh38 was first 

 introduced in 2013, almost a decade ago, and the reason the transition to it is incomplete is 

 a similar lack of compelling reason to switch as described earlier. Compounding this problem 

 is the recent availability of a new human reference genome, T2T-CHM13, provided by the 

 Telomere-to-Telomere consortium  [7]  . Gradual adoption  of this reference genome by some 

 will inevitably result in three human reference genomes being commonly used by the 

 research community. 

 Conclusion and future directions 

 Reflecting on the hypothesis “  methods tailored to  the structure of genomic data will improve 

 compression rates  ”: Genozip has been implemented based  on this hypothesis - and as 

 demonstrated in chapters 1, 2, this approach indeed succeeded in improving compression 

 rates in a wide range of cases. 

 There are two equally important axes that are both required to sustain and improve Genozip 

 in the years to come. The first, is on the algorithmic axis - continuous improvement of the 

 algorithms, and support for new sequencing technologies and file formats created by new 

 bioinformatics methods as they emerge. The second, which is often overlooked in the 

 academic world, is creating a financial model that will sustain ongoing development and 

 support of Genozip. 

 On the algorithmic side, the current version of Genozip offers the best compression of 

 genomic files available for a wide range of common genetic data cases. However, there is 

 still work to be done to improve the compression, as there are many more data 

 redundancies to be exploited, as well as better compression for a variety of genomic file 

 types that are the products of common tools used in the field. 

 In addition, there is a need to make Genozip easier to integrate into existing bioinformatics 

 pipelines that requires only minimal modifications to the pipeline. There are a number of 

 different approaches for achieving this: one would be including access to Genozip into htslib, 
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 the underlying library used by many software packages for reading genomic files, while 

 another would be presenting compressed files as a virtual filesystem. 

 New sequencing technologies, which increasingly rely on complex machine learning 

 algorithms for base calling (e.g., Oxford Nanopore Technology, Ultima Genomics), pose new 

 compression challenges as the statistical properties of their data differ significantly from 

 traditional high-throughput DNA sequencing data, therefore different methods are needed for 

 their compression. A substantial research effort will be required for solving this problem. 

 An interesting potential application of DVCF not yet explored, is using it to generate VCF 

 files describing variants in homologous genes in related species. This remains an area of 

 future research. It might also be useful to extend DVCF from being “dual coordinate” to 

 supporting an arbitrary number of reference files. 

 Also for DVCF, the current lift-over algorithm covers significantly more cases than previous 

 lift-over software packages, but it still doesn’t cover all cases. Most notably, it doesn’t handle 

 structural variants (such variants remain in the DVCF file as “single-coordinate variants”, 

 encoded in the VCF header). The reason for this is that it is extremely tricky to lift over such 

 variants against a chain file that itself might contain structural changes. This is an area for 

 future research. 

 As good as the DVCF format may be, it will have little impact if it is not widely adopted by the 

 research community. To this end, it is my intention to engage with the VCF specification 

 community to attempt to get DVCF officially supported. 

 The sequence of development of the ideas that lead to DVCF, resulted in it being 

 implemented in Genozip, which is primarily used as a compression tool. It might be useful to 

 also have a standalone liftover tool based on the DVCF format which is separate from 

 Genozip and does not store data in the Genozip compressed format. 

 Genozip, at its core, is a system for storing genomic data in an efficient way. Decompressing 

 is simply re-writing the data from Genozip format back to its original format. However, there 

 could be other useful ways to manipulate the data, or present it in new and useful formats, 

 as demonstrated in DVCF. This is also an area for future research. 

 As data security is a growing concern in the area of genomics, Genozip comes with a built-in 

 encryption capability. The field of encryption, and in particular encryption algorithms resistant 



 to quantum-computing attacks, is evolving rapidly. For this reason, adding encryption 

 algorithms is supported by the current design of the Genozip file format - it would be fairly 

 straightforward to add additional encryption algorithms in the future. While quantum 

 computing is still only on the distant horizon of the average bioinformatician, there is some 

 hope that AES-256, the encryption algorithm currently used by Genozip, being S-Box-based 

 rather than based on a mathematical problem as in the RSA or Elliptic Curves algorithms, is 

 inherently more resistant to quantum attack algorithms  (Rao et al., 2017)  following the 

 concept introduced by  (Shor, 1994)  . Encryption algorithms recently selected by NIST for 

 their quantum-resistance might offer even more protection  (Boutin,  2022)  . 

 Apache ORC is a system for storing columnar data which is gaining popularity. To the extent 

 that in the future, usage of this system becomes common in the bioinformatics space, it 

 would be a good idea to extend Genozip to seamlessly integrate with it. 

 On the financial side, it is now clear that the open source model has significant challenges 

 when it comes to bioinformatics tools. Hundreds of potentially useful tools, which 

 cumulatively consumed a huge amount of effort and resources to build, are left to 

 “decompose” in github - i.e., becoming increasingly useless as needs and data formats 

 evolve, and as their original developers move on. The idea that “anyone” can maintain these 

 projects, while attractive, rarely materialises - most projects have no other contributors 

 beyond their original developers, and other developers would rarely be interested in 

 maintaining an existing project with neither payment nor potential publication being viable. 

 The successful open source tools that are continuously evolving are typically ones that are 

 supported by engineers who receive a regular salary to do so, from organisations who are 

 either taxpayer funded or who have a commercial interest to keep a particular open source 

 project alive. 

 It is therefore clear to me that in order for Genozip to continue to evolve into the future, there 

 is a need to commercialise it. The model I have chosen is to continue and provide it for free 

 for academic research purposes, while charging users who use Genozip as part of their 

 business - primarily in the clinical space, in the bioinformatics-services space and in the 

 product-development space (biotech, agrotech etc). In addition, I have made the choice to 

 keep the source code available on github (albeit with a restrictive licence, rather than open 

 source one) to ensure that files compressed with Genozip today would be accessible in the 

 decades to come regardless of my own personal circumstances, as well as to encourage 

 other compression researchers to critically review Genozip. 
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 All said, it is with great satisfaction that I inspect the list of research labs that are using 

 Genozip (Appendix 3), a list that is growing daily. My hope is that Genozip will prove to be a 

 useful tool for researchers and clinicians around the world, and have a small contribution to 

 the advancement of using genetics for improving human lives - that shall be my true reward 

 for this effort. 
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 1.  Background 

 This specification is fully compatible with the  VCFv4.3  specification  , and extends it. It is also fully 

 compatible with VCF v4.1 and v4.2. 

 The specification defines a derived format of VCF, fully compliant with the VCF specification, which is 

 called the Dual Coordinate VCF file (or  DVCF  ). A DVCF  file contains information about genetic variants 

 in two different coordinate systems. The key feature of DVCF is that it can be  rendered  in two different 

 ways - the  Primary rendition  and  Luft rendition  . Both  these renditions are VCF specification-compliant 

 files, that contain precisely the same information, merely  rendered  in two different coordinate systems. 

 Since these two renditions contain precisely the same information, they can be losslessly  cross-rendered 

 back and forth. Cross-rendering is a fast operation that does not require a reference or chain file. 

 Once a VCF file is  lifted  to a Dual Coordinate VCF  file - it can be processed through an analytical 

 pipeline, and since the data can be rendered in either coordinate system, each stage of the pipeline can 

 arbitrarily operate on either coordinate system. Importantly, the rendering continues to work as fields and 

 annotations are added, removed or modified, as the data works its way down the pipeline. 

 This specification was intentionally made to be similar to the VCF specification in format, structure and 

 terminology, and is designed to be read alongside it. All the definitions and requirements that appear in the 

 VCF specification apply here as well, and they are not repeated in this document. 

 A reference implementation is provided in Genozip, available on  genozip.com  (Lan  et al.  , 2021, 2020)  . 

 This specification was written in the context of a PhD project at the University of Adelaide, Australia. I 

 wish to thank my PhD supervisors Assoc. Prof. Bastien Llamas, Dr. Yassine Souilmi and Dr. Ray Tobler, 

 as well as my wife, Channé Suy Lan, for their support which has been absolutely essential. 
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 2.  Definitions 

 ●  A  Source VCF  is any VCF file that is compliant with  the VCF specification. 

 ●  The  Primary coordinate system  is the coordinate system  of the Source VCF. 

 ●  The  Luft coordinate system  is the other coordinate  system in which the variant data will be 

 expressed ("Luft" being a made-up past participle of "Lift"). 

 ●  A  Primary rendition  and a  Luft rendition  are VCF files  expressed in the Primary and Luft 

 coordinates respectively, which are equivalent to each other and contain all the information of a 

 Source VCF along with all the information needed to  cross-render  them (see below). A DVCF is 

 always rendered in one or both of these two renditions, and this specification defines no other 

 representation of a DVCF other than the renditions. 

 ●  A  Lifter  is a software functionality that converts,  or  Lifts  , a Source VCF to a DVCF. It may use 

 auxiliary information such as a reference file in the Luft coordinates and a chain file. 

 ●  A  Renderer  is a software functionality that generates  the Primary and Luft renditions. It may 

 cross-render  a Primary rendition to a Luft one or  vice versa, or may generate a Primary or Luft 

 rendition from some other data. Cross-rendering does not require any external information beyond 

 the input DVCF file itself. Specifically, it does not require a reference file or a chain file. 

 ●  A  Dual Coordinates VCF implementation  (or just  implementation  for brevity) means a particular 

 software package including the functionalities of a Lifter and/or a Renderer. 



 3.  Scope of this specification 

 This specification defines the formats of the DVCF Primary and Luft renditions. 

 It does not define the algorithms of a Lifter or Renderer, however it does set constraints on them, to ensure 

 that the Primary and Luft renditions contain precisely the same information, and to ensure interoperability 

 between implementations. While adhering to these constraints, different implementations of  Lifters  and 

 Renderers  might operate differently to address different  needs. 

 Complying with this specification will ensure that the resulting files are interoperable across different 

 systems. 

 It is desirable that any software that converts a VCF file from one coordinate system to another, shall be 

 capable of outputting VCF files in DVCF format. 



 4.  An Example 

 The following are the two  renditions  of the same DVCF  - they are two files containing precisely the same information - the first file is the  Primary rendition  in 

 GRCh37 coordinates, and the second is the  Luft rendition  in GRCh38 coordinates. This DVCF contains 3 variants and 2 samples. 

 A  Primary rendition VCF  file  : 

 ##fileformat=VCFv4.2 
 ##dual_coordinates=PRIMARY 
 ##chain=file:///data/GRCh37_to_GRCh38.chain.genozip 
 ##reference=file:///references/grch37/reference.bin 
 ##luft_reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.ref.genozip 
 ##FILTER=<ID=PASS,Description="All filters passed"> 
 ##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles",RendAlg=”R"> 
 ##FORMAT=<ID=AF,Number=A,Type=Float,Description="Allele fractions for alt alleles in the order listed",RendAlg="A_1"> 
 ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype",RendAlg="GT"> 
 ##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes",RendAlg="G"> 
 ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele",RendAlg="A_AN"> 
 ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes",RendAlg="NONE"> 
 ##INFO=<ID=LUFT,Number=4,Type=String,Description="Info for rendering variant in LUFT coords",RendAlg="NONE"> 
 ##INFO=<ID=PRIM,Number=4,Type=String,Description="Info for rendering variant in PRIMARY coords",RendAlg="NONE"> 
 ##INFO=<ID=Lrej,Number=1,Type=String,Description="Reason variant was rejected for LUFT coords",RendAlg="NONE"> 
 ##INFO=<ID=Prej,Number=1,Type=String,Description="Reason variant was rejected for PRIMARY coords",RendAlg="NONE"> 
 ##contig=<ID=1,length=249250621> 
 ##luft_contig=<ID=chr1,length=248956422> 
 #CHROM  POS  ID  REF  ALT  QUAL  FILTER  INFO  FORMAT  Person1  Person2 
 1  10285  .  T  C  4.4  PASS  AC=3;AN=4;LUFT=chr1,10285,T,-  GT:AD:AF:PL  0/1:31,18:0.367:37,0,46  1/1 
 1  329162  .  A  T  4.6  PASS  AC=3;AN=4;LUFT=chr1,248466248,T,-  GT:AD:AF:PL  0/1:28,9:0.3:36,0,0  1/1 
 1  366043  .  CA  A  100  PASS  Lrej=RefTooLong  GT  1|0  0|0 



 A  Luft rendition VCF  file corresponding to the  Primary rendition  on the previous page: 

 ##fileformat=VCFv4.2 
 ##dual_coordinates=LUFT 
 ##chain=file:///data/GRCh37_to_GRCh38.chain.genozip 
 ##reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.ref.genozip 
 ##primary_reference=file:///references/grch37/reference.bin 
 ##FILTER=<ID=PASS,Description="All filters passed"> 
 ##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles",RendAlg="R"> 
 ##FORMAT=<ID=AF,Number=A,Type=Float,Description="Allele fractions for alt alleles in the order listed",RendAlg="A_1"> 
 ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype",RendAlg="GT"> 
 ##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes",RendAlg="G"> 
 ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele",RendAlg="A_AN"> 
 ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes",RendAlg="NONE"> 
 ##INFO=<ID=LUFT,Number=4,Type=String,Description="Info for rendering variant in LUFT coords",RendAlg="NONE"> 
 ##INFO=<ID=PRIM,Number=4,Type=String,Description="Info for rendering variant in PRIMARY coords",RendAlg="NONE"> 
 ##INFO=<ID=Lrej,Number=1,Type=String,Description="Reason variant was rejected for LUFT coords",RendAlg="NONE"> 
 ##INFO=<ID=Prej,Number=1,Type=String,Description="Reason variant was rejected for PRIMARY coords",RendAlg="NONE"> 
 ##primary_contig=<ID=1,length=249250621> 
 ##contig=<ID=chr1,length=248956422> 
 ##primary_only=1  366043  .  CA  A  100  PASS  Lrej=RefTooLong  GT  1|0  0|0 
 #CHROM  POS  ID  REF  ALT  QUAL  FILTER  INFO  FORMAT  Person1  Person2 
 chr1  10285  .  T  C  4.4  PASS  AC=3;AN=4;PRIM=1,10285,T,-  GT:AD:AF:PL  0/1:31,18:0.367:37,0,46  1/1 
 chr1  248466248  .  T  A  4.6  PASS  AC=1;AN=4;PRIM=1,329162,A,-  GT:AD:AF:PL  1/0:9,28:0.7:0,0,36  0/0 



 5.  Meta-information lines 

 The following meta-information lines are added or modified. They may appear in any order. 

 5.1.  Coordinates 

 ##dual_coordinates=PRIMARY 

 This field is required. 

 Permitted values:  PRIMARY  ,  LUFT  . Defines the coordinates  of the current rendition. 

 5.2.  Chain file URL 

 This field is recommended. 

 ##chain=file:///data/GRCh37_to_GRCh38.chain.genozip 

 The URL of the chain file used by the Lifter to generate this DVCF. The file format and naming 

 conventions of the chain file are implementation-specific and out of scope of this specification. 

 5.3.  Reference files' URLs 

 These fields are recommended. 

 In a Primary rendition it is recommend to include the  ##reference  and  ##luft_reference  lines. 

 The former contains the URL of the reference file of the Primary coordinates, and  ##luft_reference 

 contains the URL of the reference file of the Luft coordinates. 

 ##reference=file:///data/hg19.p13.plusMT.full_analysis_set.ref.genozip 

 ##luft_reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.r 

 ef.genozip 



 Similarly, in a Luft rendition, it is recommended to include  ##reference  (Luft coordinates reference 

 file) and  ##primary_reference  : 

 ##reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.ref.ge 

 nozip 

 ##primary_reference=file:///data/hg19.p13.plusMT.full_analysis_set.ref. 

 genozip 

 The file format and naming conventions of the reference files are implementation-specific and out of scope 

 of this specification. 

 5.4.  RendAlg attribute of ##INFO and ##FORMAT 

 ##FORMAT=<ID=GL,Number=G,Type=Float,Description="Genotype 

 Likelihoods",RendAlg="G"> 

 ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in 

 genotypes, for each ALT allele, in the same order as 

 listed",RendAlg="A_AN"> 

 The  RendAlg  attribute  must  be present in all ##  INFO  and ##  FORMAT  meta-information lines. 

 The  Renderer must  add  RendAlg  to ##  INFO  or ##  FORMAT  meta-information lines that are missing them. 

 It  must not  modify a RendAlg value if one is already  present. Lines might be missing  RendAlg  if, for 

 example, the file acquired additional  INFO  or  FORMAT  fields in an analysis step. 

 5.5.  LUFT, PRIM, Lrej and Prej 

 DVCF files must contain the following four meta-information lines defining  INFO/LUFT  , 

 INFO/PRIM,INFO/Lrej  and  INFO/Prej  . The  ID  ,  Number,  Type  and  RendAlg  attributes  must 

 appear as below, other attributes (such as  Description  )  are optional. 

 ##INFO=<ID=LUFT,Number=4,Type=String,RendAlg="NONE"> 

 ##INFO=<ID=PRIM,Number=4,Type=String,RendAlg="NONE"> 

 ##INFO=<ID=Lrej,Number=1,Type=String,RendAlg="NONE"> 

 ##INFO=<ID=Prej,Number=1,Type=String,RendAlg="NONE"> 



 5.6.  Contigs 

 The  ##contig  key is as defined in the VCF specification.  It refers to contigs of the current coordinates. 

 In a Primary rendition file, meta-information lines with a  ##luft_contig  key may exist, and have the 

 same format as  ##contig  . They describe the contigs  that appear in the Luft rendition. Similarly, a Luft 

 rendition files may contain  ##primary_contig  keys,  describing the contigs in the Primary rendition. It 

 is recommended that a DVCF file includes a  ##luft_contig  or  ##primary_contig  line for each 

 contig that appears in the file. 

 Note that there is no requirement for a 1:1 mapping between contigs - indeed, it is possible that two 

 variants with a particular contig in one coordinate system, are mapped to two different contigs on the other 

 coordinate system. 

 5.7.  ##primary_only and ##lift_only 

 In the  Primary rendition  ##luft_only  meta-information  lines contain variants that are not renderable in 

 Primary coordinates, and similarly, in the  Luft rendition  ,  ##primary_only  meta-information lines 

 contain variants that are not renderable in Luft coordinates. Following the key at the ‘=’ character, the 

 remainder of the line is a normal VCF data line as defined in the VCF specification. 



 6.  Variants 

 6.1.  Overview 
 Each variant in the DVCF can be a dual-coordinate variant, or it could be a primary-coordinates-only 

 variant or a luft-coordinates-only variant. The latter two cases happen when a variant can only be 

 expressed in one of the coordinates but not in the other, in which case we also refer to it as  rejected  from 

 the other coordinates. There are many reasons a variant can be rejected, discussed below. 

 Each variant, in both renditions, contains exactly one  DVCF tag  , which is an INFO field carrying 

 DVCF-related information - one of: PRIM, LUFT, Prej or Lrej. 

 A dual-coordinate variant appears as a normal VCF variant in both renditions, and contains an 

 INFO/LUFT field in the Primary rendition with the information needed to cross-render this variant to Luft 

 coordinates, and similarly, in the Luft rendition, it contains an INFO/PRIM field with the information 

 needed to cross-render the variant to Primary coordinates. 

 A primary-coordinates-only variant contains an INFO/Lrej field with the reason it was rejected for 

 rendering in Luft coordinates. In the Primary rendition, the variant appears as a normal VCF data line, 

 while the Luft rendition, this variant will appear as-is (i.e. in Primary coordinates) in a meta-information 

 line with the key  ##primary_only  . 

 Likewise, luft-coordinates-only variants have a INFO/Prej field, and appear as a data line in the Luft 

 rendition, and as a meta-information line they key  ##luft_only  in the Primary rendition. 

 6.2.  CHROM, POS, REF, ALT 
 The  Lifter  , given a Source VCF and in consultation  with external information, typically a reference 

 file in the Luft coordinates and a chain file, should calculate the CHROM, POS, REF fields in the Luft 

 coordinates. These  must  be biologically correct (the  exact definition of  biologically correct  is left  to 

 the implementation) and either generate a  dual-coordinate  variant  or a  primary-only variant  , i.e. one 

 that was rejected from the Luft coordinates. 

 A  dual-coordinate variant  appears as a VCF data line  in both Primary and Luft  renditions: 

 ●  A dual-coordinate variant in the Primary rendition has the CHROM, POS, REF and ALT fields 

 appear as in the Source VCF. 

 It also has a INFO/LUFT field that contains four values, for example: 



 ”  LUFT=chr2,1000000,G,X  ”. The first two values are the CHROM and POS of this variant in 

 Luft coordinates. The third is the Luft reference value of this variant. The fourth value, which we 

 call XSTRAND, must be one of two options: it is  X  (capital letter X) if the alignment in the chain 

 file which includes this locus has opposite strands for the Primary and Luft references and  - 

 (hyphen) if the strands are the same. 

 ●  A dual-coordinate variant in the Luft rendition has the values of CHROM, POS and REF as they 

 appear in INFO/LUFT in the Primary rendition, and has the ALT calculated as described below. 

 It also has an INFO/PRIM field that contains four values, of the same structure as INFO/LUFT: 

 the first three values are the CHROM, POS and REF in Primary coordinates, and the fourth is the 

 XSTRAND of this variant. XSTRAND  must  be the same  value as in INFO/LUFT. 

 A primary-only variant appears in both renditions in primary coordinates. In the Primary rendition, it 

 appears as a normal VCF data line, while in the Luft rendition, it appears as a  ##primary_only 

 meta-information line. Apart from the  “  ##primary_only=  ”  prefix, the meta-information line is 

 identical to the VCF data line as it appears in the Primary rendition. 

 In both renditions a primary-only variant has an INFO/Lrej field which contains the reason for its rejection. 

 This specification defines a number of standard reasons, and an implementation may add additional 

 reasons. The standard reasons are listed in section 7 of this document. 

 The  lifter  uses the information in CHROM, POS, REF  and ALT as well as external information such as a 

 chain file and a Luft reference file, to generate either a INFO/LUFT of INFO/Lrej field, while the  renderer 

 uses the information in the CHROM, POS, REF, ALT and INFO/LUFT or INFO/PRIM fields to calculate 

 the CHROM, POS, REF, ALT and INFO/PRIM or INFO/LUFT respectively, of the other rendition, or it 

 may reject the cross-rendering resulting in a Primary-only variant with an INFO/Lrej field, or a Luft-only 

 variant with INFO/Prej field. 

 If the REF changes between Primary and Luft references, a  lifter  is free to either lift the variant or reject  it, 

 with the rejection reason placed in INFO/Lrej being one of the standard reasons listed in section 7, or an 

 implementation-defined reason. If as a result of the REF change,  the number of alleles grows because Luft 

 REF is not any of the Primary alleles, then the Primary REF  must  be last on the Luft ALT list. 

 When calculating the ALT field, the algorithm used by the  lifter  and  renderer must: 

 1.  Be biologically-correct (the definition of  biologically  correct  is left to the implementation). 



 2.  Be precisely invertible, so that cross-rendering from the Luft rendition to the Primary rendition 

 and back to the Luft rendition, as well as Primary  🠖 Luft 🠖 Primary results in the precisely 

 preserving the REF and ALT fields, including the case (upper or lower) of each character. 

 A  renderer,  when cross-rendering a file, may encounter  variants that are lacking a DVCF tag. This may 

 happen, for example, when a non-DVCF VCF file is merged into a DVCF file, resulting in variants added 

 that are lacking a DVCF tag. In this case, these variants become single-coordinate variants (in the 

 coordinates of the current rendition), and the  renderer  must  set the DVCF tag to  Lrej=AddedVariant 

 (Primary-only variant) or  Prej=AddedVariant  (Luft-only  variant). 

 A  renderer  , when cross-rendering a file, may encounter  variants that have both a PRIM/LUFT field as 

 well as a Prej/Lrej one. This can happen when rendering a DVCF that is a result of merging two 

 DVCF files. The renderer  must  discard one of these  fields. 

 If the  renderer  , when cross-rendering a Luft variant,  rejects it - that variant becomes a Luft-only variant, 

 the DVCF tag is set to Prej, and it appears in the Primary rendition as a  ##luft_only  meta-information 

 line, similar to the  ##primary_only  meta-information  line described above. 



 6.3.  INFO and FORMAT fields - RendAlg 

 Each FORMAT and INFO tag has a RendAlg algorithm associated with it. If the tag has no  ##INFO  or 

 ##FORMAT  meta-information line, or the line is lacking  a RendAlg attribute, the implementation may 

 decide to apply any of the RendAlgs. For example, it may decide that the field INFO/AF, in case it has no 

 ##INFO  meta-information line, will use the A_1 RendAlg. 

 Each RendAlg has an  ID  , which appears in the  RendAlg  attribute of the  ##INFO  and  ##FORMAT 

 meta-information lines, a  Trigger  , which is a description  of the circumstances in which the RendAlg 

 should be applied, and an  Action  , which is a description  of the transformation of the data that occurs when 

 the  Trigger  is activated. 

 The table below lists the standard RendAlgs. An implementation may or may not support any of the 

 standard RendAlgs, and may also add additional RendAlgs. For the  REF change  trigger, it may support all 

 or only certain types of REF changes. However, if a trigger which is supported by the implementation 

 occurs for any particular variant, then each field of the variant that is assigned a standard RendAlg  must  be 

 transformed according to the standard action listed. 

 When cross-rendering, a Renderer  must  cross-render  every INFO and FORMAT field according to its 

 RendAlg  , if the  Trigger  has occurred. 

 If cross-rendering fails for a particular field, then the variant will have an INFO/Lrej or INFO/Prej field, 

 with  Reason  set to the rejected INFO or FORMAT field  name, for example  Lrej=INFO/END  . 

 Any RendAlg algorithm  must  be losslessly invertible.  In other words, applying it to a variant in one 

 rendition, and then applying the inverse algorithm to the resulting other rendition, must result in getting 

 back the original rendition, precisely. For example, the GT RendAlg listed below, upon REF ⇆ALT switch 

 of a bi-allelic, triploid variant, will flip  allele numbers in an unphased FORMAT/GT field  0/1/1  to 

 1/0/0  . It may have been desirable to also sort the  result as common in representation of unphased 

 genotypes, so  1/0/0  becomes  0/0/1  . However, that would  cause the loss of the information regarding 

 the original order of allele values, and hence the non-existence of a losslessly invertible algorithm, and is 

 therefore prohibited. 

 While in most cases the RendAlg will only modify the INFO or FORMAT field on which it triggered, it is 

 not restricted in this way: A RendAlg algorithm may change, add or remove other fields of the variant, so 

 long as it is losslessly invertible. 



 While a  Lifter  transforming a Source VCF to a DVCF in the Primary rendition need not cross-render INFO 

 and FORMAT fields, it is recommended that it nevertheless validates that cross-rendering may be carried 

 out successfully, and sets an INFO/Lrej field if not. 

 Note that  REF change  and  Strand reversal  are orthogonal  events - just a strand reversal isn’t a  REF 

 change  , despite the REF being reverse complemented. 



 ID  Triggered 
 upon 

 Action  Recommended for 

 NONE  Never  Do nothing  Fields that don’t require 
 change 

 G  REF change  Re-order / expand the values of a 
 field that has one value per genotype 

 Fields with Number=G, such 
 as: FORMAT/GL 

 R  REF change  Re-order / expand the values of a 
 field that has one value per allele 

 Fields with Number=R, such 
 as: FORMAT/AD 

 R2  REF change  Re-order / expand the values of a 
 field that has 2 values per allele 

 Fields with 2 values per 
 allele, such as: 
 FORMAT/SAC 

 A_1  REF change  Re-calculate / expand the values of a 
 field, so that their sum plus the 
 implied value for the REF allele is 1. 

 Fields with Number=A, 
 whose values, including the 
 implied value for REF, add 
 up to 1. Examples: 
 FORMAT/AF, INFO/AF 

 A_  tag  REF change  Re-calculate / expand the values of a 
 field, so that their sum plus the 
 implied value for the REF allele 
 equals the value in INFO/  tag  . 

 Fields with Number=A, 
 whose values, including the 
 implied value for REF, add 
 up to the value in INFO/  tag  . 
 Example: INFO/AC would 
 have a RendAlg of A_AN. 

 MAX_  tag|tag...  REF change  Value is the maximum of the 
 INFO/  tag  values of the 1 or more 
 tags listed. 

 INFO/MAX_AF 

 PLOIDY  REF change  Recalculate: value = (ploidy - value)  FORMAT/DS (bi-allelic) 

 GT  REF change  Re-assign / add allele numbers based 
 on the new REF/ALT order. Alleles 
 in the genotype are not reordered. 

 FORMAT/GT 

 XREV  Strand 
 reversal 

 Reverse the order of the elements in 
 the array 

 Fields with a value per base 
 ACGT. E.g 
 INFO/BaseCounts 

 ALLELE  Always  Value is identical to one of the 
 alleles. It shall remain identical to 
 that allele even if it changes order or 
 is reverse-complemented and shifted 

 INFO/AA 

 END  Always  Recalculate the value so that (value - 
 POS) remains unchanged 

 INFO/END 



 6.4.  INFO and FORMAT fields - Tag Renaming 
 INFO and FORMAT meta-information lines may optionally have these attributes, possibly more 

 than one of them, describing changes to their tag name when cross-rendering, conditional on a 

 certain trigger occurring: 

 Tag Renaming Attribute  Triggers on variants that... 

 RenameStrand=  tag2  Have a strand reversal 

 RenameRefalt=  tag2  Have a REF⇆ALT switch 

 RenameTlafer=tag2  Have both a strand reversal and REF⇆ALT switch 

 RenameAlways=tag2  All variants 

 If a variant contains a ##INFO or ##FORMAT meta-information line with ID=  tag  and one or more 

 Rename*  attributes, and the trigger of that tag-renaming  attribute occurs, then the tag itself 

 rather than the value (as in  tag=value  in an INFO  field, or the tag name appearing in the 

 FORMAT field) is changed to  tag2  . 

 If the RendAlg attribute appears in addition to a Tag Renaming attribute, then both are applied. 

 If both  RenameStrand  and  RenameRefalt  are specified,  then  RenameTlafer  must  be 

 specified too, and conversely, if  RenameTlafer  is  specified, then both  RenameStrand  and 

 RenameRefalt  must  be specified too. If  RenameAlways  is specified, other tag renaming 

 attributes  must not  be specified. 

 For each ##INFO or ##FORMAT line  tag1  with a  Rename*  attribute with a value of  tag2  , a 

 corresponding ##INFO or ##FORMAT line must exist with  tag1  and  tag2  interchanged, which has 

 the same  Rename*  ,  Number  and  Type  attributes as the  tag1  line. 

 Examples: 

 ●  Switching FORMAT/  ADF ⇆  FORMAT/  ADR upon strand reversal: 

 ##FORMAT=<ID=ADF,Number=R,Type=Integer,Description="Allelic depths on 

 the forward strand",RendAlg="R”,  RenameStrand=”ADR”  > 

 Note: Having the corresponding ADR meta-information line as well is required: 



 ##FORMAT=<ID=ADR,Number=R,Type=Integer,Description="Allelic depths on 

 the reverse strand",RendAlg="R”,  RenameStrand=”ADF”  > 

 ●  Dropping an annotation INFO/CLNHGVS  in the opposite  rendition by renaming it to 

 DROP_CLNHGVS: 

 ##INFO=<ID=CLNHGVS,Number=1,Type=String,RenameAlways=”DROP_CLNHGVS”> 

 ●  Dropping the annotation INFO/MAX_AF in case of a  REF⇄ALT  switch  : 

 ##INFO=<ID=MAX_AF,Number=1,Type=Float,RenameRefalt=”DROP_MAX_AF”> 

 ●  Handling annotations that are sensitive to both  REF⇄ALT  switch  and a strand reversal: 

 ##FORMAT=<ID=REF_F2R1,Number=1,Type=Integer,RenameRefalt=”ALT_F2R1”,Ren 

 ameStrand=”REF_F1R2”,  RenameTlafer=”ALT_F1R2”  > 

 ##FORMAT=<ID=REF_F1R2,Number=1,Type=Integer,RenameRefalt=”ALT_F1R2”,Ren 

 ameStrand=”REF_F2R1”,  RenameTlafer=”ALT_F2R1”  > 

 ##FORMAT=<ID=ALT_F2R1,Number=1,Type=Integer,RenameRefalt=”REF_F2R1”,Ren 

 ameStrand=”ALT_F1R2”,  RenameTlafer=”REF_F1R2”  > 

 ##FORMAT=<ID=ALT_F1R2,Number=1,Type=Integer,RenameRefalt=”REF_F1R2”,Ren 

 ameStrand=”ALT_F2R1”,  RenameTlafer=”REF_F2R1”  > 

 6.5.  Sorting 

 The Primary and Luft renditions are both sorted by their respective coordinates, as required by the VCF 

 specification. 

 Variants appearing in  ##primary_only  and  ##lift_only  meta-information lines are not required to 

 be sorted. 

https://docs.google.com/document/d/1feCwFxy18NcoMDBeereAJH7cOj6DT0jX3Zl0iseOChk/edit#heading=h.m63abogtlt5o
https://docs.google.com/document/d/1feCwFxy18NcoMDBeereAJH7cOj6DT0jX3Zl0iseOChk/edit#heading=h.m63abogtlt5o


 7.  Rejection and reasons 

 The  Lifter  or  Renderer  may reject a variant, which  in effect declares it to be a single-coordinate 

 variant in the current coordinates. 

 The  Renderer  may also reject a variant that is already  a dual-coordinate variant, turning it into a 

 single-coordinate variant. This may happen, for example, if a new INFO or FORMAT field were 

 added that the  Renderer  cannot cross-render. 

 When cross-rendering, a  Renderer must  either render  the entire variant with all fields cross-rendered as 

 specified, or reject the variant. In other words, if there is a field of a variant which the  Renderer  cannot 

 cross-render for any reason - then the entire variant  must  be rejected, and set the DVCF tag to  Lrej  or 

 Prej  with the  Reason  . If there are multiple  Reasons  for rejection, the implementation must still list  just 

 one  Reason  . 

 An implementation may use the  Reasons  listed in the  table, in which case it  must  use them only when 

 the  Occurrence  in the table occurs. It may also use  implementation-specific reasons. 

 Reason  Occurrence 

 Mapping 
 reasons 

 ChromNotInPrimReference  CHROM does not appear in Primary reference 
 file 

 ChromNotInChainFile  CHROM has no alignment in chain file 

 NoMappingInChainFile  POS has no alignment in chain file 

 RendAlg 
 reasons 

 INFO/  tag  INFO/  tag  cannot be cross-rendered 

 FORMAT/  tag  FORMAT/  tag  cannot be cross-rendered 

 Other 
 reasons 

 AddedVariant  When cross-rendering, the variant had no 
 DVCF tag 

 Rejected  Other rejection reason 



 Appendix 2: Compression of cancer VCF files 

 A special case of VCF files are VCF files used in cancer research, usually containing 2 

 samples from the same individual - one sample coming for a normal cell and the other from 

 the tumour. 

 An assessment of Genozip’s capability to compress such files was performed on the file 

 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf obtained from 

 https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/  .  The result 

 hereinafter shows the Genozip compressed this file by a factor of 13.7, with 52.9% of the 

 information content of the compressed file being the CSQ (“consequences”) field. In 

 comparison, bgzip (which implements the gzip algorithm), compresses by a factor 6.9 and 

 bcftools (used to generate a .bcf file) by a factor of 6.1. 

 > ls -lGU HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.* 
 -rw-rw-r--+ 1 a1786210 1173619 Oct  7 17:09 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.bcf 
 -rw-rw-r--+ 1 a1786210 7116918 Oct  7 17:01 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf 
 -rw-rw-r--+ 1 a1786210  521328 Oct  6 22:47 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf.genozip 
 -rw-rw-r--+ 1 a1786210 1030024 Oct  7 17:01 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf.gz 

 Sections (sorted by % of genozip file): 
 NAME                   GENOZIP      %       TXT      %   RATIO 
 INFO/CSQ              267.2 KB  52.9%    2.5 MB  36.4%    9.5X 
 POS                    69.5 KB  13.8%  239.9 KB   3.5%    3.5X 
 FORMAT/AD              59.5 KB  11.8%  231.1 KB   3.3%    3.9X 
 FORMAT/AF              45.1 KB   8.9%  174.9 KB   2.5%    3.9X 
 REF+ALT                19.5 KB   3.9%  125.5 KB   1.8%    6.5X 
 TXT_HEADER             18.1 KB   3.6%  175.6 KB   2.5%    9.7X 
 INFO/CancerGeneCensu    6.3 KB   1.3%  359.4 KB   5.2%   56.8X 
 INFO/called_by          4.3 KB   0.9%  398.4 KB   5.7%   91.9X 
 INFO/num_callers        3.2 KB   0.6%   26.0 KB   0.4%    8.0X 
 ID                      3.0 KB   0.6%   58.6 KB   0.8%   19.5X 
 INFO                    2.4 KB   0.5%    1.7 MB  24.9%  715.2X 
 FORMAT/DP               2.3 KB   0.5%  110.8 KB   1.6%   48.1X 
 INFO/TYPE               1.7 KB   0.3%   77.9 KB   1.1%   46.2X 
 Other                   1.3 KB   0.3%  155.0 KB   2.2%  117.9X 
 CHROM                    418 B   0.1%  140.3 KB   2.0%  343.8X 
 FORMAT                   390 B   0.1%  232.3 KB   3.3%  609.9X 
 RandomAccessIndex        322 B   0.1%         -   0.0%    0.0X 
 INFO/supported_by        216 B   0.0%    4.4 KB   0.1%   21.1X 
 FORMAT/PS                 45 B   0.0%  129.8 KB   1.9%   2953X 
 QUAL                      42 B   0.0%   51.9 KB   0.7%   1266X 
 FORMAT/.                  42 B   0.0%     338 B   0.0%    8.0X 
 INFO/HighConfidence       41 B   0.0%         -   0.0%    0.0X 
 TOTAL                 505.0 KB 100.0%    6.8 MB 100.0%   13.8X 

https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/


 Appendix 3:  List of institutions in which Genozip  is 
 being used 

 This list, current as of April 2022, is based on the registration form users are required to 

 complete when they use Genozip for the first time. This is a partial list, including only 

 academic and public institutions. Companies and private hospitals using Genozip were 

 omitted for privacy reasons. The list is kept current on https://genozip.com/institutions.html. 

 Argentina 
 Universidad Nacional de Entre Ríos 

 Australia 
 University of Adelaide 
 The University of New South Wales - 
 Sydney 
 Griffith University 
 University of Tasmania 
 Flinders University 
 Peter MacCallum Cancer Centre 
 South Australian Health and Medical 
 Research Institute 
 Torrens University 
 Victorian Clinical Genetics Services 
 Telethon Kids Institute 
 PathWest 

 Belgium 
 Royal Museum of Central Africa 
 Université libre de Bruxelles 
 Biobix 

 Brazil 
 Brazilian Agricultural Research 
 Corporation 

 Canada 
 McGill University 
 Langara College 

 Chile 
 Universidad de Magallanes 

 China 
 Shanghai Cancer Institute 
 Institute of Hematology & Blood Diseases 
 Hospital 
 Oil Crops Research Institute 
 Yangzhou University 
 Nanjing University of Posts and 
 Telecommunications 
 South China Agricultural University 
 Northwest A&F University 
 Hunan University 
 Shanghai Center for Plant Stress Biology 
 Chongqing Medical University 
 Nanjing Medical University 
 Institute of Hematology & Blood Diseases 
 Hospital, Chinese Academy of Med 
 Shenzhen University 
 Tsinghua University 
 South China Normal University 
 Huazhong Agricultural University 
 Capital Normal University 
 Sichuan University 
 Shanghai Jiao Tong University 



 Czechia 
 Czech Technical University in Prague 
 Anne's University Hospital in Brno 

 Denmark 
 University of Copenhagen 

 Estonia 
 University of Tartu 

 France 
 National Research Institute for Agriculture, 
 Food and Environment (INRAE) 
 University of Lille 
 Centre national de la recherche 
 scientifique (CNRS) 
 Inserm 
 GenHotel 
 Assistance Publique - Hopitaux de Paris 

 Germany 
 Pediatric Oncology University Hospital 
 Düsseldorf 
 University Hospital Heidelberg 
 Max Planck Institute for Chemical Ecology 
 Max Planck Institute for Plant Breeding 
 Research 
 Universtatsklinikim Schleswig-Holstein 
 GEOMAR Helmholtz-Zentrum für 
 Ozeanforschung Kiel 
 Heinrich Heine University Düsseldorf 
 Leibniz Institute for the analysis of 
 Biodiversity Change 

 Greece 
 Institute of Molecular Biology and 
 Biotechnology-FORTH 

 Hungary 
 ELKH Centre for Agricultural Research 

 India 
 Regional Centre for Biotechnology 
 Institute of Life Science 
 Yenepoya University 

 Indonesia 
 Eijkman Institute 

 Israel 
 Tel Aviv University 

 Italy 
 University of Naples 

 Japan 
 Kyoto University 
 National Cancer Center Research Institute 
 Shizuoka Cancer Center 
 Nagoya University 
 Tokyo University of Agriculture and 
 Technology 
 University of Tokyo 
 Nippon Veterinary and Life Science 
 University 
 Tokyo Medical and Dental University 
 Kumamoto University 
 Human Genome Center 
 Ehime University 
 National Institute of Henetics 
 Tokyo Seiei College 
 Riken 



 Korea 
 Yonsei university 
 Seoul National University 
 Seoul National University Hospital 
 Korea Research Institute of Bioscience 
 and Biotechnology 
 Ulsan National Institute of Science and 
 Technology 
 Animal and Plant Quarantine Agency 
 Ewha Womans University 
 Sungkyunkwan University 

 Lithuania 
 Vilnius University 

 Luxembourg 
 Luxembourg Centre for Systems 
 Biomedicine 

 Malta 
 University of Malta 

 Mexico 
 Universidad Autonoma de Sinaloa 
 Universidad Nacional Autónoma de 
 México 

 Netherlands 
 University Medical Center Utrecht 
 Delft University of Technology 
 University Goettingen 

 Norway 
 University of Oslo 

 Poland 
 Silesian University of Technology 
 University of Warsaw 

 Russia 
 Institute of Chemical Biology and 
 Fundamental Medicine 
 Federal Research Center for Animal 
 Husbandry 
 Limnological institute 

 Singapore 
 National University of Singapore 
 National Cancer Centre Singapore 

 South Africa 
 University of Bayreuth 
 University of Witwatersrand 

 Spain 
 Spanish National Cancer Research 
 Center 
 Centre for research in agricultural 
 Genomics 
 Institut Hospital del Mar d'Investigacions 
 Mèdiques 

 Sweden 
 Uppsala University 
 Swedish National Genomics Infrastructure 
 University of Jyväskylä 
 Gothenburg University 

 Thailand 
 Mahidol University 
 Siriraj hospital 

 Taiwan 
 National Taiwan University 

 Turkey 
 Middle East Technical University 
 Hacettepe University 



 United Kingdom 
 University of Edinburgh 
 Wellcome Sanger Institute 
 University College London 
 University of East Anglia 
 University of Liverpool 

 United States of America 
 University of California San Diego 
 University of Michigan 
 National Institute of Child Health and 
 Human Development 
 University of Miami 
 Duke University 
 Iowa State University 
 Beth Israel Deaconess Medical Center 
 Auburn University 
 Vanderbilt University 
 Stanford University 
 Brown University 
 University of Wisconsin-Madison 
 University of Nevada, Las Vegas 
 Brigham Young University 
 University of North Texas 
 University of South Carolina 
 University of California San Francisco 
 Columbia University 
 Montana State University 
 Emory University 
 Cornell University 
 Harvard University 
 University of California Santa Barbara 
 Wistar Institute 
 Scripps Research 




