
 Advances in Genomic Data Compression

 Divon Mordechai Lan

 Australian Centre for Ancient DNA
 School of Biological Sciences

 Faculty of Sciences, Engineering and Technology
 University of Adelaide

 This thesis is submitted in fulfilment of the requirements for the degree of
 Doctor of Philosophy

 July 2022

 Citation listing 5

 Thesis abstract 6

 Thesis declaration 8

 Acknowledgements 9

 Preface 10

 Thesis Introduction 13
 Genomic data: an introduction 13
 Previous genomic data compression methods 16
 Genozip - a different approach 19
 Overview of thesis Chapters 1, 2 and 3 22
 References 24

 Chapter 1 26
 Abstract 29
 1. Introduction 29
 2. Software description 30
 3. Benchmark 31
 4. Conclusion 31
 References 33
 SI.1. Full list of options of genozip, genounzip, genocat and genols 36
 SI.2. Implementation 48
 SI.3. Compression ratio and speed benchmarks in more detail 50
 SI.4. Benchmarking of genotype-only compression algorithms 55
 SI.5. Core scalability test - raw data 56
 SI. References 57

 Chapter 2 58
 Abstract 62
 1 Introduction 63
 2 Software description 64
 3. Methods 65
 4 Results 73
 5 Conclusion 75
 References 79
 SI.1. Genozip high level architecture 82
 SI.2. The Segmenter 85
 SI.3. Optimisations 107
 SI.4. Compression against a reference and the Genozip Aligner 108
 SI.5. Compression of FASTQ paired end read files 121
 SI.6. Specific codecs 122
 SI.7. Random access, subsetting & pipeline integration 126
 SI.8. Tools for obtaining statistics and metadata 128

 SI.9. CPU scalability: synchronisation and thread management 130
 SI.10. Security 132
 SI.11. Genozip file format 133
 SI.12. Detailed results data 136

 Chapter 3 141
 Abstract 144
 Main 144
 References 149
 SI.1. DVCF Implementation in Genozip 154
 SI.2. Benchmark 163
 SI.3. ClinVar analysis 214
 SI.4. GRCh38 and Telomere-to-Telomere 225
 SI.Appendix. Analysis script output 230

 Thesis discussion 243
 Thesis summary and significance 243
 Conclusion and future directions 245
 References 248

 Appendix 1: The DVCF Specification 249
 Background 251
 Definitions 252
 Scope of this specification 253
 An Example 254
 Meta-information lines 256
 Variants 259
 Rejection and reasons 267

 Appendix 2: Compression of cancer VCF files 268

 Appendix 3: List of institutions in which Genozip is being used 269

 Citation listing

 The publications included in this thesis:

 Chapter 1 :

 Divon Lan, Raymond Tobler, Yassine Souilmi, Bastien Llamas, genozip: a fast and
 efficient compression tool for VCF files, Bioinformatics , Volume 36, Issue 13, July 2020,
 Pages 4091–4092, https://doi.org/10.1093/bioinformatics/btaa290

 Chapter 2 :

 Divon Lan, Ray Tobler, Yassine Souilmi, Bastien Llamas, Genozip: a universal extensible
 genomic data compressor, Bioinformatics , Volume 37, Issue 16, 15 August 2021, Pages
 2225–2230, https://doi.org/10.1093/bioinformatics/btab102

 Chapter 3:

 Divon Lan, Glughug Purnomo, Ray Tobler, Yassine Souilmi, Bastien Llamas: Genozip
 Dual-Coordinate VCF format enables efficient genomic analyses and alleviates liftover
 limitations (preprint) bioRxiv 2022.07.17.500374, https://doi.org/10.1101/2022.07.17.500374

 Appendix (online open access) :

 Lan, Divon, The Variant Call Format - Dual Coordinate Extension (DVCF) Specification.
 figshare. 2021, online open access. https://doi.org/10.6084/m9.figshare.14685816.v3

https://doi.org/10.1093/bioinformatics/btaa290
https://doi.org/10.1093/bioinformatics/btab102
https://doi.org/10.1101/2022.07.17.500374

 Thesis abstract

 The rapid growth in the number of individual whole genome sequences and metagenomic

 datasets is generating an unprecedented volume of genomic data. This is partly due to the

 continuous drop in the cost of sequencing as well as growth in the utility of sequencing for

 research and clinical purposes. We are now reaching a point whereby the lion share of the

 cost is shifting from the actual sequencing to processing and storing the resulting data.

 With genomic datasets reaching the petabyte scale in hospitals and medium to large

 research groups, it is clear that there is an urgent need to store the data more efficiently - not

 only to reduce current costs, but also to make sequencing even more affordable to an even

 larger set of use cases, thereby accelerating the pace of adoption of genomic data for a

 widening range of research projects and clinical applications.

 In Chapter 1 of this thesis, I lay the groundwork for a new approach to compressing genomic

 data—one that is based on an extensible software platform, which I called Genozip. This

 initial proof of concept allows compression of data in a widely used format, namely the

 Variant Call Format, or VCF (Danecek et al. 2011) . In Chapter 2, I expand on the work of

 Chapter 1, showing how the software architecture is designed to support the addition of

 genomic file formats, compression methods, and codecs. Benchmarking results show that

 Genozip generally performs better and faster than the leading tools for compression of

 common genomic data formats such as VCF, SAM (Li et al. 2009) and FASTQ (Cock et al.

 2010) .

 In Chapter 3, I take a detour from compression, and demonstrate how potentially Genozip,

 with its detailed internal data structures for genomic file processing, could be used for other

 types of data manipulation. As an example, I introduce DVCF, or Dual-coordinate VCF—an

 extension of the VCF format that allows representation of genetic variants concurrently in

 two coordinate systems defined by two different reference genomes (Lan 2021) . It is

 possible to use a DVCF file in a pipeline where each step of the pipeline accesses the data

 in either of the coordinate systems. I also developed novel methods for lifting over data from

 one coordinate system to another, and show the superiority of my methods compared to the

 two leading tools in that space, namely GATK LiftoverVCF (McKenna et al. 2010) and

 CrossMap (Zhao et al. 2014) .

https://paperpile.com/c/VrkJXc/F36b5
https://paperpile.com/c/VrkJXc/yInCq
https://paperpile.com/c/VrkJXc/3blu
https://paperpile.com/c/VrkJXc/3blu
https://paperpile.com/c/VrkJXc/sv4t
https://paperpile.com/c/VrkJXc/ZWrq
https://paperpile.com/c/VrkJXc/VaaI

 Overall, the Genozip software package is a high quality and versatile bioinformatic tool that

 is already adopted by dozens of research and clinical laboratories worldwide. Through

 reduction of the cost of whole genome sequencing data processing and storage, Genozip is

 likely to further encourage the use of genomics in research and clinical settings.

 Thesis declaration

 I certify that this work contains no material which has been accepted for the award of any

 other degree or diploma in my name, in any university or other tertiary institution and, to the

 best of my knowledge and belief, contains no material previously published or written by

 another person, except where due reference has been made in the text. In addition, I certify

 that no part of this work will, in the future, be used in a submission in my name, for any other

 degree or diploma in any university or other tertiary institution without the prior approval of

 the University of Adelaide and where applicable, any partner institution responsible for the

 joint award of this degree.

 The author acknowledges that copyright of published works contained within the thesis

 resides with the copyright holder(s) of those works.

 I give permission for the digital version of my thesis to be made available on the web, via the

 University’s digital research repository, the Library Search and also through web search

 engines, unless permission has been granted by the University to restrict access for a period

 of time.

 Acknowledgements

 To my supervisors, Bastien Llamas, Yassine Souilmi and Ray Tobler, thank you for taking the
 risk with a PhD student who is double the age of his peers and with no background in
 biology. I have learnt a tremendous amount from you - not just in the domains of
 bioinformatics, population genetics and ancient DNA, but also about how the academic world
 works (a foreign land to me, coming from industry) and how to go about conducting
 academic research.

 To João Teixeira, both for the initial introduction, as well as the long and fascinating
 conversations.

 To Channé , my wife, my best friend, for following me to Australia, for tolerating the long
 nights in which I would teleport to an alternative universe of coding, and for keeping me
 grounded.

 Preface

 I spent my late 30s and most of my 40s travelling around developing countries in Africa and

 Asia - 9 years out of those on behalf of Google and after that on my own ventures. At

 Google, I initially worked as a member of a small team that started Google’s operations in

 Africa, before Africa had any submarine cables connecting it to the Internet. At the time, the

 only connectivity available was through satellite connections and a 1 Mb/s connection would

 cost around US$10,000/month. The urge to bring the benefits of the Internet to the people

 and with it the promise of unrestricted access to information and knowledge was burning in

 my bones. I had one foot in Google’s engineering organisation, working with many of the

 product and engineering teams in Mountain View, California and other offices around the

 globe, on product features, adjustments and localisation for developing countries. The other

 foot was in Africa where I worked with governments, telecom companies, the media and

 early local technology innovators to spread the gospel of the Internet and facilitate physical

 and cultural access to its infrastructure. Over time, as Google opened offices and hired local

 teams in several of the leading countries in Africa with booming economies, I found myself

 following the frontier of Internet access deeper into Africa’s more challenging environments.

 It is there, in the war-torn tropical hills of the stunningly beautiful Kivu province of the

 Democratic Republic of Congo, in next door Rwanda, in the arid plains of Hargeisa in

 Somalia, in the busy lawless markets of Bujumbura, Burundi or the city of Monrovia,

 Liberia—cautiously recovering from the “blood diamonds” war—that I found the most

 committed, inspiring individuals which, with a grand vision and minimal material resources,

 were transforming the capacity of their fellow citizens to access information. This gave me a

 tremendous sense of purpose, and a reason to continue to do my work. Over time, my role

 expanded to cover the world’s 100 or so least developed countries, and my travel itinerary

 grew to cover places like Afghanistan, Myanmar, Kyrgyzstan, Bhutan and Papua New

 Guinea. On one of those trips, to Cambodia, I was giving a presentation at a conference on

 behalf of Google, when a Cambodian woman sitting in the front row was busy tweeting

 seemingly everything I was saying. Being media-aware, that made me extremely nervous

 and unnaturally cagey about my choice of words. Later, the same woman turned up to

 several of the other meetings I attended during that week—with many of the private sector

 and government actors in the Internet ecosystem in Cambodia. She was one of those

 inspiring people and had her hands in everything. Six months later Channé and I were

 married, and I unexpectedly spent the following 7 years living in Cambodia. We recently

 celebrated our 10th anniversary.

 Over all these years of wandering around the world, and in particular dealing with languages

 (I was involved in localising Google user interface and its various machine learning

 algorithms to the languages of “my” countries), I had become increasingly interested in

 linguistics, anthropology, ethnography, the hard-to-understand issue of ethnic identity and

 how it ties to language and to perceived ancestry. Later, at age 47, I felt the need for a

 quantum change in my life. That feeling was now familiar—I had followed it in the past

 several times, bungee-jumping to an unknown future and never regretting it. I decided to

 embark on my long-delayed vague plan of pursuing a PhD—and for just a short while, to

 stop being a jack of all trades and master of none, and immerse myself in pure research

 without distractions. However, I had no clue what I would research? I began canvassing the

 Internet for ideas—what could I possibly do that ties the only hard-skill that I actually

 possess, computer science, with my interest in humanities stuff? It was then that I stumbled

 upon a population genetics project in need of a PhD student, related to a particular region of

 Papua New Guinea, on some Internet website (its name I have since forgotten), and I

 reached out to the researchers. Shortly after, I was at my desk in my condominium in

 Bangkok, on a Skype video call with Ray Tobler and João Teixeira, the authors of the article

 on the website, from the Australian Centre for Ancient DNA at the University of Adelaide in

 Australia. They told me about the challenge of deciphering the population history of this

 little-researched region of Papua New Guinea, and how they are planning to go about it

 using analysis of DNA samples. Since I knew approximately nothing about population

 genetics at the time and precisely nothing about this region of Papua New Guinea, this

 looked like a perfect abyss to bungee-jump into and I decided to apply for the project.

 Shortly after landing in Adelaide with my family—Channé and our then-3-year old son

 Sela—in August of 2019, I began getting up to speed with the new world (for me) of

 bioinformatics, in parallel to reaching out to old friends in Papua New Guinea to plan a field

 trip, and starting to establish relationships with collaborators at other research institutions.

 While processing mountains of genomic data, I grew frustrated with how inefficiently the data

 is represented, and played around with developing a small compression tool for my own

 VCF files. Then the Covid-19 pandemic started, and all my travel plans got shelved, for what

 I anticipated would be 3-6 months. I decided to use this “downtime” to work on my

 compression tool. Since the tool, which I called Genozip, ended up performing quite nicely,

 my supervisors encouraged me to publish a paper, which became Chapter 1 of this thesis.

 The pandemic raged on, and the state of South Australia voluntarily cut itself off from the

 rest of Australia and the world. The city of Adelaide, while enjoying one of the lowest Covid

 infection rates in the world, essentially became its own planet with no travel permitted to

 other large cities in Australia or overseas. While my work on the Papua New Guinea project

 was progressing very slowly, Genozip was progressing in leaps and bounds. More than once

 I found myself in a near-24 hours of a hyper-focused programming session that would end

 with sunrise—something I had not done in almost 20 years and was pleasantly surprised to

 discover that I could still do. After a 9-month sprint, which resulted in publishing another

 paper (Chapter 2 in this thesis), I swore to myself and to the world that I was done with

 coding for the foreseeable future, and went back to playing with my bioinformatics toys on a

 growing pile of DNA samples from Papua New Guinea sitting in my home directory and

 staring back at me with reproach. Then I ran into a problem where some of the tools I

 wanted to use required a specific version of the human reference genome (e.g., GRCh37),

 while others supported only another (GRCh38). Since at the time my analysis pipeline was

 already based on Genozip-compressed files, I thought that just having VCF files containing

 both coordinate systems concurrently would be an elegant solution to this problem, and that

 I could probably just add it to Genozip in a couple of weeks worth of work. Despite knowing

 better, I submerged into yet another coding project and when I re-surfaced, it turned out that

 another half year had zoomed by. Chapter 3 is the result of this lapse in self-discipline of

 mine. At that point, I stopped and looked back, and realised I had inadvertently created a

 rather useful tool, consisting of many novel methods, and most importantly, which had been

 adopted and used by hundreds of researchers and clinical geneticists in 41 countries. I then

 decided, with support of my supervisors, to move Genozip to be the focus of this PhD

 project, while postponing the completion of the Papua New Guinea project to a later,

 postdoctoral, time.

 Thesis Introduction

 Genomic data: an introduction

 Processing genomic and other *omic data is a major component of modern biological and

 medical research that stands at the cross-section of biology and computer science. This

 activity has given rise to the relatively new field of Bioinformatics, a term that only started

 appearing in literature in the late 1980s (Figure 1). Moreover, prior to the advent of Next

 Generation Sequencing in 2005 (Goodwin et al. , 2016) , the difficulty and cost of genome

 sequencing was substantial (Sboner et al. , 2011) , and as a result the volume of data was

 relatively modest (Narayanasamy et al. , 2020) . Researchers typically worked with software

 tools developed by academic peers, which displayed highly variable levels of quality and

 performance, and clinicians rarely had the need to directly handle genomic files. Indeed, the

 interest in Bioinformatics, judging by the frequency of the use of the term in the literature,

 peaked roughly around the time Next Generation Sequencing became available to the

 research community (red line in Figure 1).

 Figure 1 : The relative frequency of the word “Bioinformatics” in all books as a % of all words,

 by year of publication (Source:

 https://books.google.com/ngrams/graph?content=Bioinformatics&year_start=1960&year_end

 =2019&corpus=26&smoothing=0). The red line indicates the approximate time Next

 Generation Sequencing (NGS, aka High Throughput Sequencing) became available to the

 research community.

https://paperpile.com/c/kc9m8k/7Snio
https://paperpile.com/c/kc9m8k/YMSjP
https://paperpile.com/c/kc9m8k/TqShJ
https://books.google.com/ngrams/graph?content=Bioinformatics&year_start=1960&year_end=2019&corpus=26&smoothing=0
https://books.google.com/ngrams/graph?content=Bioinformatics&year_start=1960&year_end=2019&corpus=26&smoothing=0

 In recent years, we have seen a dramatic increase in the quantity of genomic data being

 generated (Figure 2), driven by the continuous reduction in the price of genomic sequencing

 that is dropping at a rate faster than Moore’s Law (Moore, 1965) . Gordon Moore, the founder

 of Intel, predicted in 1965 that the density of transistors on computer chips, which can be

 used as a proxy for computation power, would double every two years. This prediction was

 surprisingly accurate, and continues to hold true until this day.

 These price decreases have coincided and even enabled increased usefulness of genomic

 sequencing in general, and for clinical purposes in particular, driving even more growth in

 genomic sequencing than expected by improved affordability alone. This increase in volume

 of genomic sequencing then contributed to economies of scale, further pushing costs down.

 Moreover, we can expect this trend to further accelerate in the near future—as of today, the

 typical non-genetics-specialist community doctor does not have the tools to interpret

 genomic data, in the same way they may do for CT scans or results of a blood test, and as a

 result current demand for genomic sequencing is mostly driven by genetics specialists (Ha et

 al. , 2018; Nisselle et al. , 2021) . However, high quality, professional software is now starting

 to emerge that allows doctors to immediately derive clinically relevant information from

 genomic sequencing irrespective of their prior genetics expertise. Consequently, we can

 expect further exponential growth in sequencing in the near future, as a much broader

 subset of the medical community begins ordering sequence data as a matter of routine

 practice (Nisselle et al. , 2021) .

 The affordability of sequencing is also a catalyst for the adoption of genomic sequence data

 in biodiversity analysis, and conservation and evolutionary biology applications, with several

 large-scale projects such as the Earth BioGenome set to sequence the genomes of the 1.8

 million described eukaryotic species (Toward a genome sequence for every animal: Where

 are we now?; Lewin et al. , 2022) . Beyond genomics, metagenomic research is booming, the

 Earth Microbiome Project for example aims to characterise microbial life on Earth

 (Thompson et al. , 2017) . Omics has become pervasive across the research landscape, and

 the announced revolution is truly underway.

https://paperpile.com/c/kc9m8k/AQBG
https://paperpile.com/c/kc9m8k/CJPCL+15bGS
https://paperpile.com/c/kc9m8k/CJPCL+15bGS
https://paperpile.com/c/kc9m8k/15bGS
https://paperpile.com/c/kc9m8k/CbTTX+7YgRc
https://paperpile.com/c/kc9m8k/CbTTX+7YgRc
https://paperpile.com/c/kc9m8k/iDNnd

 Figure 2 : Size of NCBI SRA database between 2008 and 2022 in Petabases (1 Petabase =

 10 15 base pairs) - data downloaded from https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

 An interesting result of this concurrent drop in price of sequencing and increase in its

 volume, is the shift of the share of cost attributable to the sequencing itself versus the

 in-silico processing of the resulting genomic data (Sboner et al. , 2011) . The Human Genome

 Project, a project initiated by the Clinton administration in the US that aimed to provide the

 first fully-assembled human genome, started in 1990. The first incomplete draft was released

 13 years later, with the total project cost adding up to US$2.7B (Human Genome Project

 FAQ) . Today, one can sequence a single human individual’s complete set of DNA for

 substantially less than US$1000 in less than 24 hours, though this in fairness is not an

 apples-to-apples comparison - comparing the total costs involved in an initial de-novo

 assembly versus just the sequencing costs of a high coverage short-read whole-genome

 sequencing. Accordingly, the costs associated with genomic data are becoming increasingly

 dominated by in-silico data processing to convert the raw sequence data, typically received

 from a sequencing service provider encoded in the FASTQ format, into aligned genomic

 sequences (e.g., BAM files) and summary files that capture individual genetic features (e.g.,

 genetic variants recorded in VCF files) (Plöthner et al. , 2017; Sboner et al. , 2011; Schwarze

 et al. , 2020) . Even more significant are the costs arising from subsequent data storage that

 typically extends beyond the lifetime of the project or participant/patient (Krumm and

 Hoffman, 2020) .

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
https://paperpile.com/c/kc9m8k/YMSjP
https://paperpile.com/c/kc9m8k/MvNH
https://paperpile.com/c/kc9m8k/MvNH
https://paperpile.com/c/kc9m8k/5f4Wa+YMSjP+nLbYd
https://paperpile.com/c/kc9m8k/5f4Wa+YMSjP+nLbYd
https://paperpile.com/c/kc9m8k/wvpF1
https://paperpile.com/c/kc9m8k/wvpF1

 Previous genomic data compression methods

 Given these cost structure dynamics, the need to compress genomic data has never been

 more urgent. Unsurprisingly then, there have been a number of attempts to tackle the

 problem, though most have been piecemeal solutions tailored to specific genomic data types

 (Table 1).

 At present, the most common way to compress genomic files is through use of the gzip

 format (RFC-1952,1996) - a compression format that will be celebrating its 30th anniversary

 this year (2022). At the time of its publication in 1992, it represented a major improvement

 over the previous popular compression tool in the Unix environment, known simply as

 “compress” that uses the LZW algorithm (Welch, 1984) , and as a result quickly gained

 popularity. The gzip format consists of a small header containing metadata followed by the

 compressed data itself, and the format allows application-specific custom fields to be added

 to this metadata. Genomic tools typically use the custom-field capability of gzip to add fields

 that support indexing of the file, enabling rapid random-access to particular data – an

 extension of gzip called BGZF. BGZF was made popular by the samtools (Li et al. , 2009)

 and bcftools (Danecek et al. , 2021) software, and their associated library htslib (Bonfield et

 al. , 2021) .

 Gzip’s success over its predecessor, compress , was partly due to consuming significantly

 more CPU and memory than compress , which was enabled by the rapid improvements in

 hardware at the time. While the authors of compress were targeting the hardware common

 at the time of its publication (1984), it appears that by 1992 the gzip authors could allow

 themselves to be significantly more generous, resulting in much better compression, despite

 the stated motivation for replacing compress being a legal rather than technical one (see

 https://www.gnu.org/software/gzip/) .

 Three decades have passed since gzip’s release, and, using Moore’s law as an

 approximation, hardware has become ~30,000 times more powerful. Accordingly, software

 developers can leverage this significant increase in modern computing power to devise

 algorithms able to exploit the availability of giga-bytes of memory and dozens of CPU cores,

 in return for significantly better compression.

 A partial list of the previous attempts to replace gzip for alternate genomic compression

 formats is provided in Table 1. Notably, every one of these software packages can only

 operate on a small subset of genomic file formats, and most of them only operate on a single

https://paperpile.com/c/kc9m8k/ci3h
https://paperpile.com/c/kc9m8k/30Gi
https://paperpile.com/c/kc9m8k/0xP9
https://paperpile.com/c/kc9m8k/4lsS
https://paperpile.com/c/kc9m8k/9hf0
https://paperpile.com/c/kc9m8k/9hf0
https://paperpile.com/c/kc9m8k/BZwd
https://paperpile.com/c/kc9m8k/BZwd

 file format. In addition, most projects were written as an academic exercise resulting in a

 manuscript publication, and did not have the economic structure needed to sustain the

 software for the long term. I deem a software package to be “Abandoned”, if it has no

 commit on github since 1 Sep 2021 (appoximately 6 months prior to the time that this text

 was written). This issue of abandonment is a serious one that goes to the core of the funding

 structure of the genomics space. I will discuss my plans on how to avoid a similar fate for

 Genozip in the Discussion section.

 Table 1 : Partial list of genomic compression tools

 Software File types Key novelty Ongoing source of
 funding 1

 Status

 CRAM (Bonfield,
 2022)

 BAM Intended to be
 a standard,
 replacing BAM

 Taxpayer funded:
 European
 Bioinformatics Institute

 Taxpayer
 funded -
 viable

 Illumina ORA
 (Hnortonill,
 2021)

 FASTQ Unpublished Enancio - startup
 company acquired by
 Illumina in 2020
 (Enancio)

 Commercial -
 viable

 PetaSuite
 (Genomic data
 compression and
 encryption -
 PetaSuite, 2018)

 FASTQ,
 BAM

 Unpublished PetaSuite - startup
 company, raised
 US$2.4M from
 investors (PetaGene)

 Commercial -
 viable

 GTZ (Xing et al. ,
 2017)

 FASTQ,
 BAM

 Compression of
 SEQ 2

 Genetalks - biotech
 startup company,
 raised CN¥270M
 (approx US$42M) from
 investors (Genetalks)

 Commercial -
 viable

 Spring (Chandak
 et al. , 2019)

 FASTQ Compression of
 SEQ 2 using De
 novo assembly

 None Abandoned
 June 2021

 IonCRAM
 (Shokrof and
 Abouelhoda,
 2020)

 BAM
 (IonExpres
 s only)

 Compression of
 IonExpress
 signals

 None Abandoned
 2020

 DeeZ (Hach et
 al. , 2014)

 BAM None Abandoned
 2019

 Lfqc (Nicolae et
 al. , 2015)

 FASTQ None Abandoned
 2016

 DSRC (Roguski
 and Deorowicz,
 2014)

 FASTQ None Abandoned
 2020

https://paperpile.com/c/kc9m8k/ZSPe
https://paperpile.com/c/kc9m8k/ZSPe
https://paperpile.com/c/kc9m8k/6kmY
https://paperpile.com/c/kc9m8k/6kmY
https://paperpile.com/c/kc9m8k/CPRJ
https://paperpile.com/c/kc9m8k/xzV4
https://paperpile.com/c/kc9m8k/xzV4
https://paperpile.com/c/kc9m8k/xzV4
https://paperpile.com/c/kc9m8k/xzV4
https://paperpile.com/c/kc9m8k/Qmep
https://paperpile.com/c/kc9m8k/VaPs
https://paperpile.com/c/kc9m8k/VaPs
https://paperpile.com/c/kc9m8k/CI5w
https://paperpile.com/c/kc9m8k/YOdN
https://paperpile.com/c/kc9m8k/YOdN
https://paperpile.com/c/kc9m8k/F6hb
https://paperpile.com/c/kc9m8k/F6hb
https://paperpile.com/c/kc9m8k/F6hb
https://paperpile.com/c/kc9m8k/FWxS
https://paperpile.com/c/kc9m8k/FWxS
https://paperpile.com/c/kc9m8k/zDeO
https://paperpile.com/c/kc9m8k/zDeO
https://paperpile.com/c/kc9m8k/uE0a
https://paperpile.com/c/kc9m8k/uE0a
https://paperpile.com/c/kc9m8k/uE0a

 ENANO (Dufort
 Y Álvarez et al. ,
 2020)

 FASTQ Compression of
 Nanopore
 QUAL 3

 None Abandoned
 July 2020

 RENANO (Dufort
 Y Álvarez et al. ,
 2021)

 FASTQ Compression of
 Nanopore
 SEQ 2

 None Abandoned
 June 2021

 GTC (Danek and
 Deorowicz,
 2018)

 VCF Compression of
 GT 4

 None Abandoned
 June 2020

 GTShark
 (Deorowicz and
 Danek, 2019)

 VCF Compression of
 GT 4 using
 PBWT

 None Abandoned
 Jan 2020

 VCFShark
 (Deorowicz et
 al. , 2021)

 VCF Improvements
 of GTShark

 None Abandoned
 Feb 2021

 FastqCLS (Lee
 and Song, 2021)

 FASTQ Compression of
 long-read SEQ 2

 None Abandoned
 Dec 2020

 NanoSpring
 (Meng et al. ,
 2021)

 FASTQ Compression of
 Nanopore
 SEQ 2

 None New

 CoLoRd (Kokot
 et al. , 2022)

 FASTQ Compression of
 long-read
 FASTQ

 None New

 1 Data gathered from public sources. It might not be fully accurate, as by its nature, not all

 funding information is made public.
 2 SEQ means the nucleotide sequence data in a FASTQ, FASTA or SAM/BAM file.
 3 QUAL means the quality score data in a FASTQ or SAM/BAM file.
 4 GT means the genotype (FORMAT/GT) data in a VCF file.

 Compressing genomic data is incredibly complex, because the data itself is very diverse -

 each file format is composed of several different data types, with the compression of each

 data type possibly benefitting from its own tailored approaches. Some file formats are rather

 simple - for example, FASTQ contains just three data types: the description text (sequence

 name and any metadata), the sequence data, and the quality score data. In contrast, BAM

 and VCF files may contain tens of different fields each ideally requiring its own methods of

 compression. Moreover, new types of fields are added all the time, as new tools are

 developed for specific types of analysis, emitting BAM and VCF files with their own

 proprietary fields - all needing compression.

https://paperpile.com/c/kc9m8k/QR6J
https://paperpile.com/c/kc9m8k/QR6J
https://paperpile.com/c/kc9m8k/QR6J
https://paperpile.com/c/kc9m8k/AeQv
https://paperpile.com/c/kc9m8k/AeQv
https://paperpile.com/c/kc9m8k/AeQv
https://paperpile.com/c/kc9m8k/OkZo
https://paperpile.com/c/kc9m8k/OkZo
https://paperpile.com/c/kc9m8k/OkZo
https://paperpile.com/c/kc9m8k/2LS3
https://paperpile.com/c/kc9m8k/2LS3
https://paperpile.com/c/kc9m8k/u6cb
https://paperpile.com/c/kc9m8k/u6cb
https://paperpile.com/c/kc9m8k/MmVx
https://paperpile.com/c/kc9m8k/MmVx
https://paperpile.com/c/kc9m8k/MMbS
https://paperpile.com/c/kc9m8k/MMbS
https://paperpile.com/c/kc9m8k/ywgs
https://paperpile.com/c/kc9m8k/ywgs

 It is no wonder then, that most of the academic tools listed in Table 1 focus on introducing a

 new method for one or two fields found within one or two file formats. Genozip, in contrast, is

 built on an extensible architecture devised to accommodate compression of a large number

 of types of genomic data. However, for each data type, specific methods are still required.

 Genozip not only contains many novel methods covering the various data types (see

 Chapters 1 and 2), but also takes advantage of state-of-the-art techniques already available.

 For example, recent versions of Genozip use a novel implementation of PBWT (Durbin,

 2014) for compressing VCF FORMAT/GT data that is inspired by GTShark (Deorowicz and

 Danek, 2019) , though the PBWT-derived algorithm in Genozip has several important

 differences. Another example is an algorithm for compressing long-read quality scores

 inspired by ENANO (Dufort Y Álvarez et al. , 2020) , which has been modified in Genozip to

 compress both Oxford Nanopore Technology (aka ONT) and Pacific Bioscience (aka

 PacBio) data, with further modifications extending its utility to both FASTQ and BAM data

 (the original ENANO only works on Oxford Nanopore FASTQ files). Other methods, notably

 the methods in SPRING and NanoSpring that use approximate de-novo assembly for

 reference-free compression of FASTQ sequence data from short-reads and Nanopore long

 reads respectively, are notable for their originality and excellence, but have not been

 adopted in Genozip because they have fundamental differences with Genozip’s internal data

 processing pipeline.

 Genozip - a different approach

 With Genozip, I set out to explore the following hypothesis:

 methods tailored to the structure of genomic data will improve compression rates .

 The approach I have taken in Genozip is radically different from both general-purpose

 compressors and from specialised genomic compressors. In the following, I outline several

 key features and innovations that distinguish Genozip from alternate genomic compressors

 that are currently available.

 First, owing to my background in the software industry, Genozip was designed as a real

 product with which users can entrust their precious data - i.e., designed and built with robust

 software engineering and quality assurance, to ensure quality and maintainability over the

 years and decades to come. This stands in stark contrast to the majority of specialised

 genomic compressors that were built at a proof-of-concept level aiming for an academic

 publication, only to be abandoned shortly after (Table 1, Matthews 2022).

https://paperpile.com/c/kc9m8k/vWSCS
https://paperpile.com/c/kc9m8k/vWSCS
https://paperpile.com/c/kc9m8k/2LS3
https://paperpile.com/c/kc9m8k/2LS3
https://paperpile.com/c/kc9m8k/QR6J
https://paperpile.com/c/VrkJXc/wPOp

 Second, Genozip is founded upon an extensible framework that allows easy evolution along

 three axes: 1) additional support for more genomic file formats, 2) the addition of “special

 algorithms” for specific fields within file formats, and 3) the addition of codecs used for final

 compression of the data from each field, after they are processed by the appropriate

 field-specific algorithms. Indeed, following Genozip’s initial release in 2020 as a VCF

 compressor, it has acquired the ability to compress nine further genomic file formats (i.e.

 SAM/BAM/CRAM, FASTQ, FASTA, GFF3/GVF, 23andMe, PHYLIP, Chain files, Kraken,

 Illumina locs) as well as generic (i.e., not necessarily genomic) files. The number of codecs

 employed has grown from 2 to 15 - some of them derived from 3rd party libraries, and some

 originally developed for Genozip. Within each file format, Genozip is improving with each

 release, as new special algorithms are added and existing ones improved, to handle the

 plethora of field types being generated by the rapidly expanding omics disciplines. BAM and

 VCF files, for example, are generated by many different bioinformatics tools, each

 generating specialised fields to fit their analysis objective. Genozip has special algorithms to

 compress fields generated by many popular bioinformatics tools. At the time of writing,

 Genozip (version 13.0.13) has 49 special algorithms. In addition, constantly evolving

 sequencing technologies as well as specialised library preparation protocols (for example,

 treatment with Bisulfite for methylation detection (Frommer et al. , 1992)), result in nucleotide

 and quality score sequences with different statistical properties (Guo et al. , 2013; Farrell et

 al. , 2021) that Genozip handles with algorithms and codecs tailored for each case.

 Third, any genomics compressor faces a tradeoff between the depth of compression and the

 speed of random access to a subset of the data within the compressed file, should the

 compressed file be used in a bioinformatics pipeline. CRAM for example, which aims to

 replace BAM as the de-facto standard short read alignment format in bioinformatics pipelines

 (see: https://www.ga4gh.org/cram/) , offers very fast access to subsets of data, enabled by

 making certain design decisions. For example, both CRAM and Genozip divide the source

 file into blocks and compress each block separately (called vblocks in Genozip and

 containers in CRAM) but CRAM’s blocks are relatively small and it does little in terms of

 exploitation of correlation between fields in the file - two design decisions that inevitably limit

 compression (Bonfield, 2022) . Genozip, on the other hand, optimises for compression, even

 at the expense of slower random access to subsets of data. Despite this, there are some

 cases where data subsetting is actually faster in Genozip than CRAM, for example when

 accessing summary statistics (the --count option in both genozip and samtools).

https://paperpile.com/c/kc9m8k/ez2C
https://paperpile.com/c/kc9m8k/ZI8C+NUOu
https://paperpile.com/c/kc9m8k/ZI8C+NUOu
https://paperpile.com/c/kc9m8k/apbc
https://paperpile.com/c/kc9m8k/ZSPe

 Fourth, Genozip guarantees losslessness (unless specified otherwise by the user): i.e.,

 compressing a file, and then decompressing it, results in an identical file, byte-by-byte, as

 verified by MD5 (Rivest, 1992) or Adler32 (Deutsch and Gailly, 1996) . This means that all

 fields need to be reconstructed precisely at the byte level - it is not sufficient that they

 contain semantically similar information. Table 4 lists some examples in which CRAM

 produces semantically similar information, but yet is not lossless, while Genozip is. As one

 can appreciate from these examples, while the lack of lossnessness in CRAM is not

 significant for pipeline analysis purposes, it is critical for any integrity-verification process that

 might be used in a long term archival system - a key use case for Genozip. Similar to CRAM,

 Genozip offers an option of lossy compression in which some fields are modified in ways

 that usually do not have a significant impact on downstream analysis yet improve

 compression significantly (see Chapter 1, section 2). However, judging from my direct

 interaction with Genozip users, almost all of them refrain from using the lossy option and

 very much value the MD5-verifiable lossless capability of Genozip.

 Table 4 - examples of losslessness violations in CRAM

 Field Issue Source file data CRAM
 reconstruction

 Genozip
 reconstruction

 Any XX:f or
 XX:B:f field

 Floating point -
 representation

 SAM: 0.100 0.1 0.100

 Any XX:f or
 XX:B:f field

 Floating point -
 precision

 SAM:
 0.1000000000
 000000000001

 0.1 0.1000000000
 000000000001

 QUAL Representation of
 “missing quality” in
 BAM files produced
 by the Pysam library
 used by most
 bioinformatics tools
 written in Python 1

 BAM:
 0xff000000

 0xffffffff 0xff000000

 SEQ Sequence case
 actg->ACTG

 SAM: acctgt ACCTGT acctgt

 1 In march 2022, following my advice, Pysam was fixed to avoid this issue in files generated
 going forward: https://github.com/pysam-developers/pysam/issues/1089

 Fifth, Genozip takes full advantage of IT environments typical in modern bioinformatics

 analysis settings: owing to its sophisticated parallelisation algorithms that reduce thread

 synchronisation points, Genozip can fully utilise tens of CPU cores to accelerate

 computation. It also takes full advantage of the low seek times of modern solid state drives

https://paperpile.com/c/kc9m8k/yMQd
https://paperpile.com/c/kc9m8k/kEAU

 (SSD; (El Maghraoui et al. , 2010)) to access a Genozip compressed file, in a highly

 non-linear fashion in some cases, resulting in better compression algorithms that would be

 significantly more difficult to implement if a Genozip sought linear or near-linear access to

 the file that is required for optimising seek time in spinning disks.

 Sixth, DNA data, in particular human DNA data, may have strict privacy requirements. As the

 public awareness of the risks of mishandling of DNA data is growing, so too are the ethical

 and regulatory requirements incumbent upon clinical and research labs ((Rahimzadeh et al. ,

 2016; Office for Civil Rights (OCR), 2021)). It is my anecdotal impression based on my

 interactions with research and clinical labs around Genozip, that sadly, security and privacy

 are still implemented as an afterthought in many contemporary bioinformatics projects, and

 the level of protection of patients’ DNA data is questionable. In Genozip, privacy is built-in

 with powerful industry-standard encryption being enabled with a simple --password

 command line option. In addition, cryptographic MD5 is used to sign files, protecting them

 both from a modification caused by technical glitch, as well as from malicious tampering.

 Seventh, while most bioinformatic analyses are typically conducted in Linux environments, it

 is also common for bioinformaticians to develop pipelines on their Mac or Windows personal

 computers prior to deploying to a Linux environment, and it is common for students to use

 their personal computers for training. These environments, and Windows in particular, are

 too often neglected by bioinformatics tools. In Genozip, all three operating systems are

 first-class citizens. While Mac and Linux are fairly similar in most aspects relevant to

 Genozip owing to their shared Unix ancestry, the Microsoft Windows operating system has a

 fundamentally different architecture (of which we are concerned mostly with differences in

 process management, thread synchronisation, and the NTFS file system), which required

 significant effort to support. At the time of writing, 82% of Genozip installations are on Linux

 machines, 11% on Mac and 7% on Windows.

 Overview of thesis Chapters 1, 2 and 3

 The three chapters in this thesis each outline central operational aspects of the Genozip

 platform, and are presented in chronological order in accordance with the ongoing

 development of the platform.

 Chapter 1 is a paper titled “genozip: a fast and efficient compression tool for VCF files” that

 was published in Bioinformatics in July 2020 (Lan et al. , 2020) . It reports the first iteration of

https://paperpile.com/c/kc9m8k/FtBG
https://paperpile.com/c/kc9m8k/qdYN+5nge
https://paperpile.com/c/kc9m8k/qdYN+5nge
https://paperpile.com/c/kc9m8k/vRhA

 Genozip, as a compressor of VCF files, and sets the foundations for the Genozip

 architecture. It includes benchmarks against other VCF compressors, and demonstrates the

 merits of Genozip’s approach.

 Chapter 2 is a paper titled “Genozip - A Universal Extensible Genomic Data Compressor”

 that was published in Bioinformatics in February 2021 (Lan et al. , 2021) . It describes

 Genozip’s advancement to becoming a fully-fledged extensible genomic compressor for

 multiple types of genomic file formats. It describes the architecture enabling Genozip’s

 extensibility as well as some of the novel algorithms devised, such as Genozip’s aligner

 algorithm that operates at the bit level rather than the traditional k-mer level, allowing very

 fast compression of FASTQ and unaligned BAM files based on approximate alignment.

 Chapter 3 consists of two related but separate bodies of work. First, I developed an

 extension of the VCF file format, which I called Dual-coordinate VCF (or DVCF), designed to

 accommodate descriptions of genetic variants in two genomic coordinate systems within a

 single file (for example, human reference genome versions GRCh37 and GRCh38). The key

 property of the new format is the concept of dual-renditions: each DVCF file can be rendered

 in either of its two coordinate systems, with each rendition being a VCF file adhering to the

 VCF specification describing the variants in one of the coordinates, while also retaining the

 information pertaining to the other coordinate system, thereby maintaining information

 equivalence between the two renditions and lossless back-and-forth convertibility between

 them. As I intend to recommend this document as a basis for a possible extension of the

 VCF, I was not interested in assigning any IP rights in it to a journal, and instead deposited it

 in the open-access repository Figshare (Lan, 2021) . It appears in Appendix 1 of this

 dissertation.

 The second, related, body of work is a manuscript that has been submitted to a journal and

 deposited on bioRxiv. It is the first attempt to extend Genozip into the analysis space -

 implementing DVCF in Genozip, together with novel algorithms for lifting over variants from

 one coordinate system to another. I benchmarked the liftover in Genozip versus the two

 most widely used tools in the space, namely CrossMap (Zhao et al. , 2014) and GATK

 LiftoverVcf (Broad Institute, 2016) , and demonstrate that Genozip is significantly more

 accurate and also solves certain biases introduced by the liftover process in the other tools.

https://paperpile.com/c/kc9m8k/S5JL
https://paperpile.com/c/kc9m8k/mbXD
https://paperpile.com/c/kc9m8k/b4Sy
https://paperpile.com/c/kc9m8k/TsgS

 References

 Bonfield,J.K. (2022) CRAM 3.1: Advances in the CRAM File Format. Bioinformatics .
 Bonfield,J.K. et al. (2021) HTSlib: C library for reading/writing high-throughput sequencing

 data. GigaScience , 10 .
 Broad Institute (2016) Picard tools.
 Chandak,S. et al. (2019) SPRING: a next-generation compressor for FASTQ data.

 Bioinformatics , 35 , 2674–2676.
 Danecek,P. et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience , 10 .
 Danek,A. and Deorowicz,S. (2018) GTC: how to maintain huge genotype collections in a

 compressed form. Bioinformatics , 34 , 1834–1840.
 Deorowicz,S. et al. (2021) VCFShark: how to squeeze a VCF file. Bioinformatics .
 Deorowicz,S. and Danek,A. (2019) GTShark: genotype compression in large projects.

 Bioinformatics , 35 , 4791–4793.
 Deutsch,P. and Gailly,J.-L. (1996) Zlib compressed data format specification version 3.3 RFC

 1950, May.
 DNA sequencing costs: Data Genome.gov .
 Dufort Y Álvarez,G. et al. (2020) ENANO: Encoder for NANOpore FASTQ files.

 Bioinformatics , 36 , 4506–4507.
 Dufort Y Álvarez,G. et al. (2021) RENANO: a REference-based compressor for NANOpore

 FASTQ files. Bioinformatics .
 Durbin,R. (2014) Efficient haplotype matching and storage using the positional

 Burrows–Wheeler transform (PBWT). Bioinformatics , 30 , 1266–1272.
 El Maghraoui,K. et al. (2010) Modeling and simulating flash based solid-state disks for

 operating systems. In, Proceedings of the first joint WOSP/SIPEW international
 conference on Performance engineering , WOSP/SIPEW ’10. Association for Computing
 Machinery, New York, NY, USA, pp. 15–26.

 Enancio Crunchbase .
 Farrell,C. et al. (2021) BiSulfite Bolt: A bisulfite sequencing analysis platform. Gigascience ,

 10 .
 Frommer,M. et al. (1992) A genomic sequencing protocol that yields a positive display of

 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. , 89 ,
 1827–1831.

 Genetalks Crunchbase .
 Genomic data compression and encryption - PetaSuite (2018) PetaGene .
 Goodwin,S. et al. (2016) Coming of age: ten years of next-generation sequencing

 technologies. Nat. Rev. Genet. , 17 , 333–351.
 Guo,W. et al. (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data.

 BMC Genomics , 14 , 774.
 Hach,F. et al. (2014) DeeZ: reference-based compression by local assembly. Nat. Methods ,

 11 , 1082–1084.
 Ha,V.T.D. et al. (2018) Adopting clinical genomics: a systematic review of genomic literacy

 among physicians in cancer care. BMC Med. Genomics , 11 , 18.
 Hnortonill,V.A.P. (2021) Introducing DRAGEN original read archive (ORA) - Illumina®

 informatics blog. Illumina® Informatics Blog .
 Human Genome Project FAQ Genome.gov .
 Kokot,M. et al. (2022) CoLoRd: compressing long reads. Nat. Methods , 19 , 441–444.
 Krumm,N. and Hoffman,N. (2020) Practical estimation of cloud storage costs for clinical

 genomic data. Pract Lab Med , 21 , e00168.
 Lan,D. et al. (2020) genozip: a fast and efficient compression tool for VCF files.

 Bioinformatics , 36 , 4091–4092.
 Lan,D. et al. (2021) Genozip - A Universal Extensible Genomic Data Compressor.

 Bioinformatics .

http://paperpile.com/b/kc9m8k/ZSPe
http://paperpile.com/b/kc9m8k/9hf0
http://paperpile.com/b/kc9m8k/9hf0
http://paperpile.com/b/kc9m8k/TsgS
http://paperpile.com/b/kc9m8k/YOdN
http://paperpile.com/b/kc9m8k/YOdN
http://paperpile.com/b/kc9m8k/4lsS
http://paperpile.com/b/kc9m8k/OkZo
http://paperpile.com/b/kc9m8k/OkZo
http://paperpile.com/b/kc9m8k/u6cb
http://paperpile.com/b/kc9m8k/2LS3
http://paperpile.com/b/kc9m8k/2LS3
http://paperpile.com/b/kc9m8k/kEAU
http://paperpile.com/b/kc9m8k/kEAU
http://paperpile.com/b/kc9m8k/QeMyc
http://paperpile.com/b/kc9m8k/QR6J
http://paperpile.com/b/kc9m8k/QR6J
http://paperpile.com/b/kc9m8k/AeQv
http://paperpile.com/b/kc9m8k/AeQv
http://paperpile.com/b/kc9m8k/vWSCS
http://paperpile.com/b/kc9m8k/vWSCS
http://paperpile.com/b/kc9m8k/FtBG
http://paperpile.com/b/kc9m8k/FtBG
http://paperpile.com/b/kc9m8k/FtBG
http://paperpile.com/b/kc9m8k/FtBG
http://paperpile.com/b/kc9m8k/CPRJ
http://paperpile.com/b/kc9m8k/NUOu
http://paperpile.com/b/kc9m8k/NUOu
http://paperpile.com/b/kc9m8k/ez2C
http://paperpile.com/b/kc9m8k/ez2C
http://paperpile.com/b/kc9m8k/ez2C
http://paperpile.com/b/kc9m8k/CI5w
http://paperpile.com/b/kc9m8k/xzV4
http://paperpile.com/b/kc9m8k/7Snio
http://paperpile.com/b/kc9m8k/7Snio
http://paperpile.com/b/kc9m8k/ZI8C
http://paperpile.com/b/kc9m8k/ZI8C
http://paperpile.com/b/kc9m8k/FWxS
http://paperpile.com/b/kc9m8k/FWxS
http://paperpile.com/b/kc9m8k/CJPCL
http://paperpile.com/b/kc9m8k/CJPCL
http://paperpile.com/b/kc9m8k/6kmY
http://paperpile.com/b/kc9m8k/6kmY
http://paperpile.com/b/kc9m8k/MvNH
http://paperpile.com/b/kc9m8k/ywgs
http://paperpile.com/b/kc9m8k/wvpF1
http://paperpile.com/b/kc9m8k/wvpF1
http://paperpile.com/b/kc9m8k/vRhA
http://paperpile.com/b/kc9m8k/vRhA
http://paperpile.com/b/kc9m8k/S5JL
http://paperpile.com/b/kc9m8k/S5JL

 Lan,D. (2021) The variant call format - Dual Coordinates extension (DVCF) specification.
 Lee,D. and Song,G. (2021) FastqCLS: a FASTQ Compressor for Long-read Sequencing via

 read reordering using a novel scoring model. Bioinformatics .
 Lewin,H.A. et al. (2022) The Earth BioGenome Project 2020: Starting the clock. Proc. Natl.

 Acad. Sci. U. S. A. , 119 .
 Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics , 25 ,

 2078–2079.
 Matthews, D. (2022) Ex-Google chief’s venture aims to save neglected science software.

 Nature , 607 , 410-411
 Meng,Q. et al. (2021) NanoSpring: reference-free lossless compression of nanopore

 sequencing reads using an approximate assembly approach. bioRxiv ,
 2021.06.09.447198.

 Moore,G. (1965) Moore’s law. Electronics Magazine , 38 , 114.
 Narayanasamy,S. et al. (2020) Genomic Sequencing Capacity, Data Retention, and

 Personal Access to Raw Data in Europe. Front. Genet. , 11 , 303.
 Nicolae,M. et al. (2015) LFQC: a lossless compression algorithm for FASTQ files.

 Bioinformatics , 31 , 3276–3281.
 Nisselle,A. et al. (2021) Measuring physician practice, preparedness and preferences for

 genomic medicine: a national survey. BMJ Open , 11 , e044408.
 Office for Civil Rights (OCR) (2021) HIPAA. HHS.gov .
 PetaGene Crunchbase .
 Plöthner,M. et al. (2017) Cost analysis of whole genome sequencing in German clinical

 practice. Eur. J. Health Econ. , 18 , 623–633.
 Rahimzadeh,V. et al. (2016) An International Framework for Data Sharing: Moving Forward

 with the Global Alliance for Genomics and Health. Biopreserv. Biobank. , 14 , 256–259.
 RFC 1952 - GZIP file format specification version 4.3
 Rivest,R. (1992) RFC1321: The MD5 Message-Digest Algorithm RFC Editor, USA.
 Roguski,Ł. and Deorowicz,S. (2014) DSRC 2—Industry-oriented compression of FASTQ

 files. Bioinformatics , 30 , 2213–2215.
 Sboner,A. et al. (2011) The real cost of sequencing: higher than you think! Genome Biol. , 12 ,

 125.
 Schwarze,K. et al. (2020) The complete costs of genome sequencing: a microcosting study

 in cancer and rare diseases from a single center in the United Kingdom. Genet. Med. ,
 22 , 85–94.

 Shokrof,M. and Abouelhoda,M. (2020) IonCRAM: a reference-based compression tool for
 ion torrent sequence files. BMC Bioinformatics , 21 , 397.

 Thompson,L.R. et al. (2017) A communal catalogue reveals Earth’s multiscale microbial
 diversity. Nature , 551 , 457–463.

 Toward a genome sequence for every animal: Where are we now? PNAS .
 Welch (1984) A Technique for High-Performance Data Compression. 17 , 8–19.
 Xing,Y. et al. (2017) GTZ: a fast compression and cloud transmission tool optimized for

 FASTQ files. BMC Bioinformatics , 18 , 549.
 Zhao,H. et al. (2014) CrossMap: a versatile tool for coordinate conversion between genome

 assemblies. Bioinformatics , 30 , 1006–1007.

http://paperpile.com/b/kc9m8k/mbXD
http://paperpile.com/b/kc9m8k/MmVx
http://paperpile.com/b/kc9m8k/MmVx
http://paperpile.com/b/kc9m8k/7YgRc
http://paperpile.com/b/kc9m8k/7YgRc
http://paperpile.com/b/kc9m8k/0xP9
http://paperpile.com/b/kc9m8k/0xP9
http://paperpile.com/b/kc9m8k/MMbS
http://paperpile.com/b/kc9m8k/MMbS
http://paperpile.com/b/kc9m8k/MMbS
http://paperpile.com/b/kc9m8k/MMbS
http://paperpile.com/b/kc9m8k/MMbS
http://paperpile.com/b/kc9m8k/AQBG
http://paperpile.com/b/kc9m8k/TqShJ
http://paperpile.com/b/kc9m8k/TqShJ
http://paperpile.com/b/kc9m8k/zDeO
http://paperpile.com/b/kc9m8k/zDeO
http://paperpile.com/b/kc9m8k/15bGS
http://paperpile.com/b/kc9m8k/15bGS
http://paperpile.com/b/kc9m8k/5nge
http://paperpile.com/b/kc9m8k/Qmep
http://paperpile.com/b/kc9m8k/5f4Wa
http://paperpile.com/b/kc9m8k/5f4Wa
http://paperpile.com/b/kc9m8k/qdYN
http://paperpile.com/b/kc9m8k/qdYN
http://paperpile.com/b/kc9m8k/ci3h
http://paperpile.com/b/kc9m8k/yMQd
http://paperpile.com/b/kc9m8k/uE0a
http://paperpile.com/b/kc9m8k/uE0a
http://paperpile.com/b/kc9m8k/YMSjP
http://paperpile.com/b/kc9m8k/YMSjP
http://paperpile.com/b/kc9m8k/nLbYd
http://paperpile.com/b/kc9m8k/nLbYd
http://paperpile.com/b/kc9m8k/nLbYd
http://paperpile.com/b/kc9m8k/F6hb
http://paperpile.com/b/kc9m8k/F6hb
http://paperpile.com/b/kc9m8k/iDNnd
http://paperpile.com/b/kc9m8k/iDNnd
http://paperpile.com/b/kc9m8k/CbTTX
http://paperpile.com/b/kc9m8k/30Gi
http://paperpile.com/b/kc9m8k/VaPs
http://paperpile.com/b/kc9m8k/VaPs
http://paperpile.com/b/kc9m8k/b4Sy
http://paperpile.com/b/kc9m8k/b4Sy

 Chapter 1

 genozip: a fast and efficient compression tool for VCF files

 Divon Lan 1 *, Ray Tobler 1 , Yassine Souilmi 1✝ , Bastien Llamas 1✝ *

 1 School of Biological Sciences, The Environment Institute, Faculty of Sciences, The

 University of Adelaide, Adelaide SA 5005, Australia

 ✝ Equal contribution

 * Corresponding authors: DL (divon.lan@adelaide.edu.au) and BL

 (bastien.llamas@adelaide.edu.au)

 Citation : Divon Lan, Raymond Tobler, Yassine Souilmi, Bastien Llamas, genozip: a fast

 and efficient compression tool for VCF files, Bioinformatics , Volume 36, Issue 13, July

 2020, Pages 4091–4092, https://doi.org/10.1093/bioinformatics/btaa290

 Article history :

 Received: 15 January 2020

 Revision received: 01 April 2020

 Accepted: 27 April 2020

 Published: 14 May 2020

https://doi.org/10.1093/bioinformatics/btaa290

 Abstract

 Summary

 genozip is a new lossless compression tool for VCF (Variant Call Format) files. By applying

 field-specific algorithms and fully utilising the available computational hardware, genozip

 achieves the highest compression ratios amongst existing lossless compression tools known

 to the authors, at speeds comparable with the fastest multi-threaded compressors.

 Availability and implementation

 genozip is freely available to non-commercial users. It can be installed via conda-forge,

 Docker Hub, or downloaded from github.com/divonlan/genozip .

 1. Introduction

 Large genomic projects are becoming increasingly common, resulting in VCF (Variant Call

 Format; (Danecek et al. , 2011)) files comprising thousands of individual genomic datasets.

 Even in their compressed form, such files are very large (typically several GB), rapidly

 driving up the cost of long-term data storage and file transfer, and spurring the development

 of more efficient compression algorithms.

 While a handful of new compression algorithms have recently emerged that work by

 compressing genotypes within VCF files; e.g. (Durbin, 2014; Deorowicz and Danek, 2019;

 Kelleher et al. , 2019) , genotypes are only one data type represented in a VCF file, and are

 often only a minor contributor to the total data content. For example, in the file used as the

 real-world example in (Durbin, 2014) – File1 in our benchmarks – the genotypes represent

 only 7.1% of the uncompressed VCF file data. Thus, it is clear that just compressing the

 genotypes is not sufficient as a compression strategy for VCF files.

 Here, we present genozip , a lossless compression tool that greatly improves genomic data

 compression by utilising algorithms specific to the data types common to VCF files.

 genozip can handle VCF files of any ploidy, phasing structure, or variant type with up to 99

 alternate alleles per variant, along with any FORMAT and INFO data. While the primary

https://github.com/divonlan/vczip
https://paperpile.com/c/VrkJXc/F36b5
https://paperpile.com/c/VrkJXc/TQ6Xb+33fF7+Vq3kI
https://paperpile.com/c/VrkJXc/TQ6Xb+33fF7+Vq3kI
https://paperpile.com/c/VrkJXc/TQ6Xb

 objective of genozip is optimal packaging of genomic data for efficient and secure storage

 and distribution, it also includes capabilities for pipeline analyses.

 2. Software description

 The genozip package runs on all popular operating systems and includes four command

 line tools – genozip, genounzip, genocat and genols . genozip receives one or

 more .vcf, .vcf.gz, .vcf.bz2, .vcf.xz, or .bcf files or urls (FTP or HTTP) as input, and outputs

 one or more .vcf.genozip files, while genounzip decompresses .vcf.genozip files back to

 .vcf or .vcf.gz format and genols provides statistics regarding the contents of .genozip files.

 For supporting seamless integration into analytical pipelines, genocat is provided for

 accessing data within .vcf.genozip files, and includes options like --regions and

 --samples that allow random access to data. Indexing is done as part of the compression

 and there is no separate indexing step or index file. In addition, the toolset is designed to

 enable use of standard input/output streams.

 For supporting efficient and secure distribution of genomic files that complies with stringent

 privacy requirements, genozip offers encryption of the data with --password (using 256

 bit AES), including an MD5 signature to ensure data integrity with --md5 , and the ability to

 concatenate VCF files with identical samples with --output and later split concatenated

 files back to their components with genounzip --split .

 We have included several additional options that allow the user to optimise compression for

 their needs. First, the --optimize option improves compression by modifying data in some

 INFO and FORMAT subfields that do not ultimately impact analytical results — by rounding

 floating point numbers to 2 significant digits and capping Phred values. Note that in this case

 the VCF data are modified, and therefore the compression is not lossless. Second, The

 --gtshark option makes use of GTShark (Deorowicz and Danek, 2019) as described in

 the Supplementary Material, resulting in compression ratios that are better than either

 genozip or GTShark alone. Finally, the --vblock and --sblock options allow the user

 to control the tradeoff between compression and speed of subsetting regions and samples.

 Note that some options require the appropriate tools to be installed: compressing .bcf files

 into .genozip format requires bcftools , compressing .xz files requires xz (Collin, 2011) ,

https://paperpile.com/c/VrkJXc/33fF7
https://paperpile.com/c/VrkJXc/xEKY2

 decompressing into .vcf.gz requires bgzip , using --gtshark requires GTShark and

 compressing from a URL requires cURL (Hostetter et al. , 1997) .

 3. Benchmark

 To evaluate genozip ’s performance, we compared its compression ratios and speeds on

 two different VCF files from the 1000 Genome Project (1000 Genomes Project Consortium

 et al. , 2012) – ‘File1’ and ‘File2’ (see Supplementary Material) – against a wide range of

 tools . All benchmarks were conducted on the same machine that has 56 physical cores (4 X

 Intel® Xeon® Gold 6132 CPU @ 2.60GHz) and 755GB of usable memory. More details,

 including benchmarks against genotype compression tools including BGT (Li, 2016) and

 GTC (Danek and Deorowicz, 2018) that are not capable of losslessly compressing arbitrary

 VCF files are available in the Supplementary Material.

 For both tested VCF files, File1 which is rich in FORMAT subfields and File2 that is rich in

 genotype data (see Supplementary Table S1), the compression ratios achieved by genozip

 are considerably higher than other tested tools (Figure 1a). Further, genozip offers one of

 the fastest compression/decompression speeds amongst the tested tools (Figure 1b),

 indicating that performance gains are achieved without negatively impacting run times. To

 achieve high processing speeds, genozip implements an advanced memory and thread

 management strategy that scales across 10s of cores (Figure 1c).

 4. Conclusion

 genozip is a user friendly and fully featured compression software that readily integrates

 into any standard bioinformatics pipeline. genozip achieves compression ratios significantly

 better than other standard tools, by exploiting redundancies in the data that are specific to

 biological data and that are not evident by textual analysis alone. Moreover, genozip

 achieves significant gains to compression speed relative to other tools by taking full

 advantage of modern computational hardware, including multi-core processors and

 multi-gigabyte RAM, whenever available. By default, genozip dynamically balances its

 internal execution pipelines to maximize utilization of all the available resources.

 Funding

https://paperpile.com/c/VrkJXc/nrvWq
https://paperpile.com/c/VrkJXc/fRr3h
https://paperpile.com/c/VrkJXc/fRr3h
https://paperpile.com/c/VrkJXc/oKsSC
https://paperpile.com/c/VrkJXc/VpHCH

 DL is supported by a scholarship from the University of Adelaide. YS is supported by the

 Australian Research Council (ARC DP190103705). RT is an ARC DECRA fellow

 (DE190101069). BL is an ARC Future Fellow (FT170100448).

 Conflict of Interest : DL intends to receive royalties from commercial users of genozip.

 ACKNOWLEDGMENTS
 The authors thank Christian Huber, Heng Li and two anonymous reviewers for comments on

 the manuscript.

 References

 1000 Genomes Project Consortium et al. (2012) An integrated map of genetic variation from
 1,092 human genomes. Nature , 491 , 56–65.

 Adler,M. (2014) Pigz: Parallel Gzip.
 Bonfield,J.K. (2014) The Scramble conversion tool. Bioinformatics , 30 , 2818–2819.
 Chandak,S. et al. (2019) SPRING: a next-generation compressor for FASTQ data.

 Bioinformatics , 35 , 2674–2676.
 Collin,L. (2011) The xz utils software package. XZ Utils .
 Danecek,P. et al. (2011) The variant call format and VCFtools. Bioinformatics , 27 ,

 2156–2158.
 Danek,A. and Deorowicz,S. (2018) GTC: how to maintain huge genotype collections in a

 compressed form. Bioinformatics , 34 , 1834–1840.
 Deorowicz,S. and Danek,A. (2019) GTShark: genotype compression in large projects.

 Bioinformatics , 35 , 4791–4793.
 Deutsch,P. (1996) DEFLATE Compressed Data Format Specification version 1.3 RFC Editor.
 DNA sequencing costs: Data Genome.gov .
 Durbin,R. (2014) Efficient haplotype matching and storage using the positional

 Burrows–Wheeler transform (PBWT). Bioinformatics , 30 , 1266–1272.
 Fips,P. (2009) 197, Advanced Encryption Standard (AES), National Institute of Standards

 and Technology, US Department of Commerce, November 2001. Link in: http://csrc. nist.
 gov/publications/fips/fips197/fips-197. pdf .

 Gailly,J.-L. and Adler,M. (2010) GNU gzip.
 Goodwin,S. et al. (2016) Coming of age: ten years of next-generation sequencing

 technologies. Nat. Rev. Genet. , 17 , 333–351.
 Hail Team hail Github.
 Hostetter,M. et al. (1997) Curl: a gentle slope language for the Web. World Wide Web J.

 Biol. , 2 , 121–134.
 Kelleher,J. et al. (2019) Inferring whole-genome histories in large population datasets. Nat.

 Genet. , 51 , 1330–1338.
 Lan,D. et al. (2020) genozip: a fast and efficient compression tool for VCF files.

 Bioinformatics , 36 , 4091–4092.
 Lan,D. et al. (2021) Genozip - A Universal Extensible Genomic Data Compressor.

 Bioinformatics .
 Li,H. (2011a) A statistical framework for SNP calling, mutation discovery, association

 mapping and population genetical parameter estimation from sequencing data.
 Bioinformatics , 27 , 2987–2993.

 Li,H. (2016) BGT: efficient and flexible genotype query across many samples. Bioinformatics ,
 32 , 590–592.

 Li,H. (2011b) Tabix: fast retrieval of sequence features from generic TAB-delimited files.
 Bioinformatics , 27 , 718–719.

 Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics , 25 ,
 2078–2079.

 Meyering,J. gzip-1.10 released [stable]. gzip-1.10 released [stable] .
 Pavlov,I. (2007) Lzma sdk (software development kit).
 Rivest,R. (1992) RFC1321: The MD5 Message-Digest Algorithm RFC Editor, USA.
 Sadedin,S.P. and Oshlack,A. (2019) Bazam: a rapid method for read extraction and

 realignment of high-throughput sequencing data. Genome Biol. , 20 , 78.
 Seward,J. (1996) bzip2 and libbzip2. avaliable at http://www. bzip. org .
 Sudmant,P.H. et al. (2015) An integrated map of structural variation in 2,504 human

 genomes. Nature , 526 , 75–81.

http://paperpile.com/b/VrkJXc/fRr3h
http://paperpile.com/b/VrkJXc/fRr3h
http://paperpile.com/b/VrkJXc/Ov1bV
http://paperpile.com/b/VrkJXc/eVISB
http://paperpile.com/b/VrkJXc/VpHgP
http://paperpile.com/b/VrkJXc/VpHgP
http://paperpile.com/b/VrkJXc/xEKY2
http://paperpile.com/b/VrkJXc/F36b5
http://paperpile.com/b/VrkJXc/F36b5
http://paperpile.com/b/VrkJXc/VpHCH
http://paperpile.com/b/VrkJXc/VpHCH
http://paperpile.com/b/VrkJXc/33fF7
http://paperpile.com/b/VrkJXc/33fF7
http://paperpile.com/b/VrkJXc/hSdOu
http://paperpile.com/b/VrkJXc/o1Mi
http://paperpile.com/b/VrkJXc/TQ6Xb
http://paperpile.com/b/VrkJXc/TQ6Xb
http://paperpile.com/b/VrkJXc/imnFs
http://paperpile.com/b/VrkJXc/imnFs
http://paperpile.com/b/VrkJXc/imnFs
http://paperpile.com/b/VrkJXc/gJsL3
http://paperpile.com/b/VrkJXc/T4BJ
http://paperpile.com/b/VrkJXc/T4BJ
http://paperpile.com/b/VrkJXc/2VAAr
http://paperpile.com/b/VrkJXc/nrvWq
http://paperpile.com/b/VrkJXc/nrvWq
http://paperpile.com/b/VrkJXc/Vq3kI
http://paperpile.com/b/VrkJXc/Vq3kI
http://paperpile.com/b/VrkJXc/Kn3FK
http://paperpile.com/b/VrkJXc/Kn3FK
http://paperpile.com/b/VrkJXc/IvN2r
http://paperpile.com/b/VrkJXc/IvN2r
http://paperpile.com/b/VrkJXc/Ddw5j
http://paperpile.com/b/VrkJXc/Ddw5j
http://paperpile.com/b/VrkJXc/Ddw5j
http://paperpile.com/b/VrkJXc/oKsSC
http://paperpile.com/b/VrkJXc/oKsSC
http://paperpile.com/b/VrkJXc/BHhqd
http://paperpile.com/b/VrkJXc/BHhqd
http://paperpile.com/b/VrkJXc/yInCq
http://paperpile.com/b/VrkJXc/yInCq
http://paperpile.com/b/VrkJXc/ASJbJ
http://paperpile.com/b/VrkJXc/LtA9h
http://paperpile.com/b/VrkJXc/53ZT6
http://paperpile.com/b/VrkJXc/9DzPv
http://paperpile.com/b/VrkJXc/9DzPv
http://paperpile.com/b/VrkJXc/VOXyZ
http://paperpile.com/b/VrkJXc/1SxZK
http://paperpile.com/b/VrkJXc/1SxZK

 Fig. 1. Benchmarking genozip performance . (a) Compression ratios for genozip using

 three different options relative to five other commonly used compression tools (see labels)

 for two VCF files, the FORMAT-subfields-rich data (x-axis) and genotype-rich data dominant

 (y-axis). (b) Compression (x-axis) and decompression (y-axis) rates for genozip and five

 other tools on the two VCF files (see inset key), and the rates (c) genozip execution

 scalability with used CPU cores (see Supplementary Material).

 Supplementary Information
 for

 genozip: a fast and efficient compression tool for VCF files

 Divon Lan 1 *, Ray Tobler 1 , Yassine Souilmi 1✝ , Bastien Llamas 1✝ *

 1 School of Biological Sciences, The Environment Institute, Faculty of Sciences, The

 University of Adelaide, Adelaide SA 5005, Australia

 ✝ Equal contribution

 * Corresponding authors: DL (divon.lan@adelaide.edu.au) and BL

 (bastien.llamas@adelaide.edu.au)

 Content

 1. Full list of options of genozip, genounzip, genocat and genols

 2. Implementation

 3. Compression ratio and speed benchmarks in more detail

 4. Benchmarking of genotype-only compression algorithms

 5. Core scalability test - raw data

 SI.1. Full list of options of genozip, genounzip,
 genocat and genols

 Compress VCF (Variant Call Format) files

 Usage: genozip [options]... [files or urls]...

 See also: genounzip genocat genols

 Supported input file types: .vcf .vcf.gz .vcf.bgz .vcf.bz2 .vcf
 .xz .bcf .bcf.gz .bcf.bgz

 Note: for .bcf files, bcftools needs to be installed, and for
 .xz files, xz needs to be installed

 Examples: genozip file1.vcf file2.vcf -o concat.vcf.genozip
 genozip --optimize --password 12345 ftp://ftp.ncbi.nlm

 .nih.gov/file2.vcf.gz

 Actions - use at most one of these actions:
 -d --decompress Same as running genounzip. For more details,

 run: genounzip --help

 -l --list Same as running genols. For more details,
 run: genols --help

 -h --help Show this help page. Use with -f to see
 developer options.

 -L --license Show the license terms and conditions for
 this product

 -V --version Display version number

 Flags:
 -c --stdout Send output to standard output instead of a

 file

 -f --force Force overwrite of the output file, or
 force writing .vcf.genozip data to standard
 output

 -^ --replace Replace the source file with the result
 file, rather than leaving it unchanged

 -o --output <output-filename>. This option can also be
 used to concatenate multiple input files
 with the same individuals, into a single

 concatenated output file

 -p --password <password>. Password-protected - encrypted
 with 256-bit AES

 -m --md5 Calculate the MD5 hash of the VCF file.
 When the resulting file is decompressed,
 this MD5 will be compared to the MD5 of the
 decompressed VCF.
 Note: for compressed files, e.g. myfile.vcf
 .gz, the MD5 calculated is that of the
 original, uncompressed file.

 -q --quiet Do not show the progress indicator or
 warnings

 -Q --noisy Stop the suppression of warnings

 -t --test After compressing normally, decompress in
 memory (i.e. without writing the
 decompressed file to disk) - comparing the
 MD5 of the resulting decompressed file to
 that of the original VCF. This option also
 activates --md5.

 -@ --threads <number>. Specify the maximum number of
 threads. By default, this is set to the
 number of cores available. The number of
 threads actually used may be less, if
 sufficient to balance CPU and I/O.
 Tip: if you're concerned about sharing the
 computer with other users, rather than
 using --threads to reduce the number of
 threads, a better option would be to use
 the command nice, e.g. 'nice genozip....'.
 This yields CPU to other users if needed,
 but still uses all the cores that are
 available

 --show-content Show the information content of VCF files
 and the compression ratios of each
 component

 Optimizing:
 -9 --optimize Modify the VCF file in ways that are likely

 insignificant for analytical purposes, but
 make a significant difference for
 compression. At the moment, these

 optimizations include:
 - PL data: Phred values of over 60 are
 changed to 60. Example: '0,18,270' ->
 '0,18,60'
 - GL data: Numbers are rounded to 2
 significant digits. Example: '-2.61618,-0
 .447624,-0.193264' -> '-2.6,-0.45,-0.19'
 - GP data: Numbers are rounded to 2
 significant digits, as with GL.
 - VQSLOD data: Number is rounded to 2
 significant digits. Example: '-4.19494' ->
 '-4.2'
 Note: due to these data modifications,
 files compressed with --optimized are NOT
 identical as the original VCF after
 decompression. For this reason, it is not
 possible to use this option in combination
 with --test or --md5

 -B --vblock <number between 1 and 2048>. Set the
 maximum size of memory (in megabytes) of
 VCF file data that can go into one variant
 block. By default, this is set to 128 MB.
 The variant block is the basic unit of data
 on which genozip and genounzip operate.
 This value affects a number of things: 1.
 Memory consumption of both compression and
 decompression are linear with the variant
 block size. 2. Compression is sometimes
 better with larger block sizes, in
 particular if the number of samples is
 small. 3. Smaller blocks will result in
 faster 'genocat --regions' lookups

 -S --sblock <number>. Set the number of samples per
 sample block. By default, it is set to 4096.
 When compressing or decompressing a
 variant block, the samples within the block
 are divided to sample blocks which are
 compressed separately. A higher value will
 result in a better compression ratio, while
 a lower value will result in faster
 'genocat --samples' lookups

 --gtshark Use gtshark instead of the default bzlib as
 the final compression step for allele data
 (the GT subfield in the sample data).
 Note: For this to work, gtshark needs to be

 installed - it is a separate software
 package that is not affiliated with genozip
 in any way. It can be found here: https:/
 /github.com/refresh-bio/GTShark.
 Note: gtshark also needs to be installed
 for decompressing files that were
 compressed with this option.

 One or more file names may be given, or if omitted, standard input
 is used instead

 Uncompress VCF (Variant Call Format) files previously compressed
 with genozip

 Usage: genounzip [options]... [files]...

 See also: genozip genocat genols

 Examples: genounzip file1.vcf.genozip file2.vcf.genozip
 genounzip file.vcf.genozip --output file.vcf.gz
 genounzip concat.vcf.genozip --split

 Options:
 -c --stdout Send output to standard output instead of a

 file

 -z --bgzip Compress the output VCF file(s) with bgzip.
 Note: this option is implicit if --output
 specifies a filename ending with .gz or .bgz.
 Note: bgzip needs to be installed for this
 option to work

 -f --force Force overwrite of the output file

 -^ --replace Replace the source file with the result
 file, rather than leaving it unchanged

 -O --split Split a concatenated file back to its
 original components

 -o --output <output-filename>. Output to this filename
 instead of the default one

 -p --password <password>. Provide password to access file
 (s) that were compressed with --password

 -m --md5 Shows the MD5 hash of the decompressed VCF
 file. If the file was originally compressed
 with --md5, it also verifies that the MD5
 of the original VCF file is identical to
 the MD5 of the decompressed VCF.
 Note: for compressed files, e.g. myfile.vcf.
 gz, the MD5 calculated is that of the
 original, uncompressed file.

 -q --quiet Do not show the progress indicator or
 warnings

 -Q --noisy Stop the suppression of warnings

 -t --test Decompress in memory (i.e. without writing
 the decompressed file to disk) - comparing
 the MD5 of the resulting decompressed file
 to that of the original VCF. Works only if
 the file was compressed with --md5

 -@ --threads <number>. Specify the maximum number of
 threads. By default, this is set to the
 number of cores available. The number of
 threads actually used may be less, if
 sufficient to balance CPU and I/O.
 Tip: if you are concerned about sharing the
 computer with other users, rather than
 using --threads to reduce the number of
 threads, a better option would be to use
 the command nice, e.g. 'nice genozip....'.
 This yields CPU to other users if needed,
 but still uses all the cores that are
 available

 -h --help Show this help page. Use with -f to see
 developer options.

 -L --license Show the license terms and conditions for
 this product

 -V --version Display version number

 One or more file names must be given

 Print VCF (Variant Call Format) file(s) previously compressed with
 genozip

 Usage: genocat [options]... [files]...

 See also: genozip genounzip genols

 Options:
 -r --regions [^]chr|chr:pos|pos|chr:from-to|chr:from-

 |chr:-to|from-to|from-|-to[,...]
 Show one or more regions of the file.
 Examples:

 genocat myfile.vcf.genozip -r22
 :1000000-2000000 (A range of chromosome 22)

 genocat myfile.vcf.genozip -r
 -2000000,2500000- (Two ranges of all
 chromosomes)

 genocat myfile.vcf.genozip -r21
 ,22 (All of chromosome 21 and
 22)

 genocat myfile.vcf.genozip -r^MT
 ,Y (All of chromosomes except
 for MT and Y)

 genocat myfile.vcf.genozip -r^
 -10000 (All sites on all
 chromosomes, except positions up to 10000)
 Note: genozip files are indexed
 automatically during compression. There is
 no separate indexing step or separate index
 file.
 Note: Indels are considered part of a
 region if their start position is.
 Note: Multiple -r arguments may be
 specified - this is equivalent to chaining
 their regions with a comma separator in a
 single argument

 -t --targets Identical to --regions, provided for
 pipeline compatibility

 -s --samples [^]sample[,...]
 Show a subset of samples (individuals).
 Examples:

 genocat myfile.vcf.genozip -s
 HG00255,HG00256 (show two samples)

 genocat myfile.vcf.genozip -s
 ̂HG00255,HG00256 (show all samples except
 these two)

 Note: This does not change the INFO data
 (including the AC and AN tags).
 Note: sample names are case-sensitive.
 Note: Multiple -s arguments may be
 specified - this is equivalent to chaining
 their samples with a comma separator in a
 single argument

 -G --drop-genotypes Output the data without the individual
 genotypes and FORMAT column

 -H --no-header Do not output the VCF header

 --header-only Output only the VCF header

 --GT-only For samples, output only genotype (GT) data,
 dropping the other subfields

 --strip Do not output values for ID, QUAL, FILTER,
 INFO; FORMAT is only GT (at most); Samples
 include allele values (i.e. GT subfield)
 only

 -o --output <output-filename>. Output to this filename
 instead of stdout

 -p --password Provide password to access file(s) that
 were compressed with --password

 -@ --threads Specify the maximum number of threads. By
 default, this is set to the number of cores
 available. The number of threads actually
 used may be less, if sufficient to balance
 CPU and I/O.
 Tip: if you're concerned about sharing the
 computer with other users, rather than
 using --threads to reduce the number of
 threads, a better option would be to use
 the command nice, e.g. 'nice genozip....'.
 This yields CPU to other users if needed,
 but still uses all the cores that are
 available

 -q --quiet Do not show warnings

 -Q --noisy Stop the suppression of warnings
 -h --help Show this help page. Use with -f to see

 developer options. Use --header-only if

 that is what you are looking for

 -L --license Show the license terms and conditions for
 this product

 -V --version Display version number

 One or more file names must be given

 View metadata of VCF (Variant Call Format) files previously
 compressed with genozip

 Usage: genols [options]... [files or directories]...

 See also: genozip genounzip genocat

 Options:
 -q --quiet Do not show warnings

 -h --help Show this help page

 -L --license Show the license terms and conditions for
 this product

 -V --version Display version number

 One or more file or directory names may be given, or if omitted,
 genols runs on the current directory

 Options useful mostly for developers of genozip:

 --show-time Show what functions are consuming the most
 time

 --show-memory Show what buffers are consuming the most
 memory

 --show-sections Show the section types of the output
 genozip file and the compression ratios of
 each component

 --show-alleles Output allele values to stdout. Each row
 corresponds to a row in the VCF file. Mixed-
 ploidy regions are padded, and 2-digit
 allele values are replaced by an ascii
 character

 --show-dict Show dictionary fragments written for each
 variant block (works for genounzip too)

 --show-one-dict <field-name>. Show the dictionary for this
 field in a tab-separated list - <field-name>
 may be one of the fields 1-9 (CHROM to
 FORMAT) or a INFO tag or a FORMAT tag
 (works for genounzip too)

 --show-gt-nodes Show transposed GT matrix - each value is
 an index into its dictionary

 --show-b250 Show fields 1-9 (CHROM to FORMAT) as well
 as INFO tags - each value shows the line
 (counting from 1) and the index into its
 dictionary (note: REF and ALT are
 compressed together as they are correlated.)
 This also works with genounzip, but
 without the line numbers.

 --show-one-b250 <field-name>. Show the values for this field -
 may be one of the fields 1-9 (CHROM to
 FORMAT) or an INFO tag

 --dump-one-b250 <field-name>. Dump the binary content of
 this field, exactly as they appear in the
 genozip format, to stdout - may be one of
 the fields 1-9 (CHROM to FORMAT) or an INFO
 tag

 --show-headers Show the sections headers (works for
 genounzip too)

 --show-index Show the content of the random access index

 --show-gheader Show the content of the genozip header
 (which also includes the list of all
 sections in the file)

 --show-threads Show thread dispatcher activity

 --debug-memory Buffer allocations and destructions

 SI.2. Implementation

 genozip operates by segmenting the VCF file into separate sections defined by data type

 and appropriately processing each section, before applying a general purpose data

 compressor, bzip2 (Seward, 1996) , to each section. genozip executes a number of

 data transformations that take advantage of data covariance due to linkage disequilibrium,

 population structure, and potential lab biases, as well as non-textual relationships between

 numeric values in the file.

 First, the VCF file is divided into variant blocks of up to 128 MB each (configurable with

 --vblock), and the samples within each variant block are further divided into sample blocks

 of up to 4,096 samples each (configurable with --sblock), from which the genotypes are

 extracted and transposed to create a haplotype matrix . Prior to compression, each haplotype

 matrix is further transformed by padding the ploidy to the maximal ploidy represented in the

 matrix, substituting 2-digit allele values with a single ascii character, and clustering the rows

 of haplotypes so that similar haplotypes are adjacent to one other. If the --gtshark option

 is used, clustering is skipped, and GTShark (Deorowicz and Danek, 2019) is used as the

 final-stage compressor of the haplotype matrix , instead of bzip2 .

 Second, the phase state data (i.e. | or /) are compressed – in the common case where the

 entire variant block has the same phase state, we drop the phase data entirely and just note

 the phase state in the variant block header.

 Third, the data from each field (CHROM to FORMAT) and subfields of INFO and the sample

 data (as defined in the FORMAT field) are extracted into separate dictionaries, and their data

 are replaced with a dictionary index. An exception is the correlated REF and ALT fields that

 are combined into one field. For each field, a global dictionary is created for the entire file (or

 multiple files in case of concatenation), with new values added incrementally as each variant

 block is parsed, so that only a single pass is needed over the file, and crucially, the

 compressed file size grows sub-linearly with the number of VCF rows. For the first variant

 block, the dictionary entries are sorted by frequency, so that the highest frequency entries

 are efficiently encoded. The dictionaries for each field and the associated index data are

 then compressed separately. Index data from FORMAT subfields are compressed together

 as they are often correlated (for example, the DP and AD subfields). Dictionary search is

 implemented efficiently using hash tables, and an algorithm is run after the analysis of the

 first variant block to predict their size of the hash table for each field. This algorithm

https://paperpile.com/c/VrkJXc/VOXyZ
https://paperpile.com/c/VrkJXc/33fF7

 estimates the expected number of unique words of a particular field in the entire file from the

 gradient of the rate of appearance of new unique words within the first variant block.

 Extrapolating from the second derivative is obviously error prone, so an algorithm is in place

 for growing a hash table in run time, if its size was underestimated, while not affecting

 threads that are concurrently operating on it.

 For the non-genotype indexed sample data we apply an additional optimization step of

 transposing the matrix prior to compressing it, to take advantage of experimental lab bias. In

 files with a large number of individuals, such as a File1 here, we have observed data

 differences between individuals that likely result from subtle differences in analysis tools

 used – for example, different floating point truncation conventions.

 The POS field is often a large contributor to the overall entropy in single or small-sample

 files. To improve the compression of this field, we compress the difference between

 successive POS values rather than the POS value itself, thereby reducing the range of

 values and increasing compressibility.

 SI.3. Compression ratio and speed benchmarks in more detail

 To benchmark genozip’s compression ratio compared to other popular and state-of-the-art

 compression tools, we used two different files from the 1000 Genome Project (1000

 Genomes Project Consortium et al. , 2012; Sudmant et al. , 2015) that we refer to here as

 ‘File1’ and ‘File2’. We chose the two files for their substantial difference in their content

 characteristics (Table S1):

 Table S1: Data content of File1 and File2

 File 1 VCF File 2 VCF

 Allele values 6.1GB 7.1% 30.2GB 49.2%

 Other sample data 80.1GB 92.3% 30.2GB 49.2%

 Header and columns 1-9 0.5GB 0.6% 0.95GB 1.5%

 File1: 1000 Genome Project phase 1 (The 1000 Genomes Project Consortium, 2012; chr1

 ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3.

 20101123.snps_indels_svs.genotypes.vcf.gz). The file contains 1,092 individuals, 3,007,196

 variants, and “Other sample data” consisting mostly of the sample fields other than GT, and

 is the dominant data component in this file.

 File2: 1000 Genome Project phase 3 ((Sudmant et al. , 2015) ; chr1

 ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mv

 ncall_integrated_v5a.20130502.genotypes.vcf.gz). The file contains 2,504 individuals,

 6,468,347 variants, and Allele values (i.e. the GT subfield) representing ~50% of this file. In

 this case, “Other sample data” is comprised of the phase state (/ or |) and the tab character

 that separates the samples – both of which are trivial in terms of compression. Therefore the

 allele values are about 97% of the remaining data content.

 The differences in data content between these two files result in dramatically different

 compression ratios in all tools. In both cases, though, genozip achieves the best

 compression ratios (Table S2, Figure S1, Figure S2). genozip achieves the highest

 compression ratio amongst the all lossless compression tools, and offers competitive

 compression even compared to lossy tools such as GTshark .

https://paperpile.com/c/VrkJXc/fRr3h+1SxZK
https://paperpile.com/c/VrkJXc/fRr3h+1SxZK
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz
https://paperpile.com/c/VrkJXc/1SxZK
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz

 genozip was tested in three ways - the first, is its default mode. The second, is with the

 --optimize option which modifies some data in the FORMAT and INFO subfields of VCF

 file in ways that are typically not significant for analytical purposes, but are quite significant

 for compression - namely, rounding some floating point numbers to two significant digits and

 capping some Phred values (see genozip --help for a detailed list). This compression by

 definition is not lossless. As can be seen in Table S2 --optimize significantly improves the

 compression of File1 that consists mainly for FORMAT subfield data, but no has no impact

 on File2 that has no FORMAT subfield data, The third, is using the --gtshark which

 utilizes GTShark for the final stage of compression of the genotype component of the VCF

 file, instead of the default bzlib . This significantly improves compression in File2 which is

 enriched in genotype data, but not as much in File1 that consists primarily of FORMAT

 subfield data.

 We faced a number of challenges with the some of other compression tools:

 Hail failed to decompress because it attempted to create very large intermediate files in

 the /tmp filesystem. This is a faulty software design as /tmp is typically quite small, and

 hence decompression of large files is bound to fail due to space constraints as happened in

 our case. To test a workaround and to allow at least partial inclusion of Hail (Hail Team) in

 this benchmark despite its malfunctioning, we chose File2 and used Hail’s option to shard

 the decompressed file to many smaller files with its parallel='separate_header'

 option, and then concatenated the file together with the Linux cat command. The time shown is

 the combined time of Hail and cat .

 bcftools failed to compress File1 - likely because it is a file created in 2011 prior to the

 latest versions of bcftools.

 GTShark is not capable of processing FORMAT subfields, and hence is not capable of

 compressing File1.

 bcftools, Hail and GTShark are not lossless - the decompressed file differs from the

 original.

https://paperpile.com/c/VrkJXc/2VAAr

 Table S2: Compression ratio comparison
 Tool File 1 (MB) vs.

 VCF
 File 2
 (MB)

 vs.
 VCF

 ORIGINAL 88,775 1X 62,728
 genozip 4,430 21X 257 244X
 genozip --optimize 3,360 26X 257 244X
 genozip --gtshark 4,298 21X 120 523X
 gzip 10,282 9X 1026 61X
 bcftools -Ob Incapable - 1007 62X
 bgzip 10,873 8X 1187 52X
 bzip2 5,767 15X 528 119X
 xz 7,014 13X 367 171X
 pigz 10287 9X 1030 61X
 gtshark Incapable - 128 491X
 Hail 18280 4.9X 1258 50X

 Figure S1: Compression factor for File1

 Figure S2: Compression factor for File2

 In terms of execution time, genozip is designed to fully leverage the hardware available,

 unless explicitly restricted by the user. As such, it includes advanced memory and thread

 management components that allow almost linear scaling to tens of cores. In table S3, we

 have the execution time of each tool on our test machine that has 56 physical cores (4 X

 Intel® Xeon® Gold 6132 CPU @ 2.60GHz) and 755GB of usable memory, running an XFS

 file system with its default configuration on top of an SSD storage device. While generally

 multiple users have access to this computer, the benchmark was run one tool at time, and

 done so at a time when no other users or significant processes were running on the

 machine.

 bcftools , bgzip and xz allow specification on number of threads, and were set to allow

 them to maximise the utilisation of the hardware - " --threads 56 " for bgzip and

 bcftools and " --threads 0 " for xz .

 Table S3: Execution time comparison

 Tool Compress Decompress

 File 1 File 2 File 1 File 2

 genozip 1’22” 1’3” 1’56” 2’23”

 gzip 45’19” 10’17” 6’41” 3’47”

 bcftools N/A 17’27” N/A 13’8”

 bgzip 1’57” 35” 1’2” 46”

 bzip2 244’30” 207’31” 39’33” 22’9”

 pigz 1’19” 32” 2’58” 1’17”

 xz 21’30” 1’36” 8’26” 2”16

 gtshark N/A 24’49” N/A 19’42”

 Hail 4’18” 2’32” ³ N/A 3’14”

 SI.4. Benchmarking of genotype-only compression algorithms

 There are a number of algorithms published in recent years focused on compressing

 genotypes (allele values) within VCF files, while not being capable of compressing arbitrary

 VCF files. Some are also not capable of decompressing, and all do not guarantee lossless

 decompression.

 Nevertheless, it is interesting to compare the performance of these algorithms on genotype

 data. In this benchmark we included comparing genozip in two modes – its default mode,

 and with the options --gtshark -B2048 which would result in the best genotype-data-only

 compression. We compare against three genotype compression algorithms - bgt (Li, 2016) ,

 GTC (Danek and Deorowicz, 2018) and GTShark (Deorowicz and Danek, 2019) . We also

 included the standard tools gzip and bgzip in this comparison, to appreciate how well all

 the genotype compression algorithms perform compared to generic compressors

 To compare just the genotype data component of a VCF file, we started with File2 from our

 compression benchmark, and used the --strip option of genocat to strip out all data,

 except genotypes, CHROM, POS, REF and ALT fields, and set the FORMAT field to “GT”:
 genocat ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.

 3.vcf.genozip --strip > file2.stripped.vcf

 In the results we can see that genozip in its default mode results in a better compression

 ratio of the stripped file than all tools except GTShark and GTC , while genozip with

 --gtshark -B2048 is better than any other tool.

 Table S4: Compression comparison of a genotype-only file

 Bytes
 Compression
 ratio

 Original: file2.stripped.vcf 64,956,779,894

 genozip 201,369,011 323
 genozip --gtshark -B2048 60,041,662 1082
 gzip 851,248,722 76

 bgzip 939,705,276 69

 bgt 298,990,428 217

 GTC 138,182,645 470

 GTShark 60,297,201 1077

https://paperpile.com/c/VrkJXc/oKsSC
https://paperpile.com/c/VrkJXc/VpHCH
https://paperpile.com/c/VrkJXc/33fF7

 SI.5. Core scalability test - raw data

 To test the scalability of genozip with the number of available cores, we ran a compression

 and decompression test using File1 of our benchmark. We repeated the compression and

 decompression cycle scaling the number of used cores from 1 to 50 while recording the

 execution time (see Table S5). We observed that genozip compression scaled approximately

 linearly up about 28 cores, and then again about linearly up to 50 cores, but with a smaller

 slope. Decompression, on the other hand, scaled linearly up to about 20 cores after which

 adding additional cores had no benefit (see Figure 1b). A fundamental constraint on scaling

 is the need to access the disk file. In the case of genozip, the compressed file is between

 one and three orders of magnitude smaller than the original file, so it is the original file that is

 the constraint. We speculate that at least part of the difference in scaling between

 compression and decompression is the fact that SSD storage is faster in read operations

 (compression in our case) than write (decompression).

 Table S5: execution time in core scalability test

 Cores
 Compress
 time (sec)

 Uncompress
 time (sec)

 genozip
 variants/sec

 genounzip
 variants/sec

 1 1,859 1,039 1,618 2,894
 2 993 551 3,028 5,458
 3 687 377 4,377 7,977
 4 520 292 5,783 10,299
 5 430 239 6,993 12,582
 6 360 201 8,353 14,961
 7 320 175 9,397 17,184
 8 276 159 10,896 18,913
 9 252 142 11,933 21,177

 10 228 130 13,189 23,132
 11 210 119 14,320 25,271
 12 192 114 15,662 26,379
 13 179 103 16,800 29,196
 14 169 98 17,794 30,686
 15 157 99 19,154 30,376
 16 149 96 20,183 31,325
 17 142 96 21,177 31,325
 18 134 98 22,442 30,686
 19 130 87 23,132 34,565
 20 123 93 24,449 32,335
 21 121 93 24,853 32,335
 22 115 96 26,150 31,325
 23 112 108 26,850 27,844
 24 107 95 28,105 31,655
 25 104 113 28,915 26,612

 Cores
 Compress
 time (sec)

 Uncompress
 time (sec)

 genozip
 variants/sec

 genounzip
 variants/sec

 26 101 110 29,774 27,338
 27 100 101 30,072 29,774
 28 98 118 30,686 25,485
 29 95 103 31,655 29,196
 30 95 101 31,655 29,774
 31 96 120 31,325 25,060
 32 94 101 31,991 29,774
 33 93 104 32,335 28,915
 34 93 103 32,335 29,196
 35 94 102 31,991 29,482
 36 94 107 31,991 28,105
 37 92 103 32,687 29,196
 38 90 103 33,413 29,196
 39 93 106 32,335 28,370
 40 89 103 33,789 29,196
 41 90 123 33,413 24,449
 42 91 106 33,046 28,370
 43 88 104 34,173 28,915
 44 88 114 34,173 26,379
 45 91 112 33,046 26,850
 46 89 110 33,789 27,338
 47 86 110 34,967 27,338
 48 86 110 34,967 27,338
 49 87 107 34,565 28,105
 50 84 109 35,800 27,589

 SI. References

 Danek,A. and Deorowicz,S. (2018) GTC: how to maintain huge genotype collections in a
 compressed form. Bioinformatics , 34, 1834–1840.

 Deorowicz,S. and Danek,A. (2019) GTShark: genotype compression in large projects.
 Bioinformatics , 35, 4791–4793.

 Hail Team Hail.
 Li,H. (2016) BGT: efficient and flexible genotype query across many samples. Bioinformatics ,

 32, 590–592.
 Seward,J. (1996) bzip2 and libbzip2. avaliable at http://www. bzip. org .
 Sudmant,P.H. et al. (2015) An integrated map of structural variation in 2,504 human

 genomes. Nature , 526, 75–81.
 The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from

 1,092 human genomes. Nature , 491, 56–65.

http://paperpile.com/b/K0FCjf/5nVx
http://paperpile.com/b/K0FCjf/5nVx
http://paperpile.com/b/K0FCjf/nwUb
http://paperpile.com/b/K0FCjf/nwUb
http://paperpile.com/b/K0FCjf/RzE7
http://paperpile.com/b/K0FCjf/XDAQ
http://paperpile.com/b/K0FCjf/XDAQ
http://paperpile.com/b/K0FCjf/wVsbF
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/cxQp
http://paperpile.com/b/K0FCjf/cxQp

 Chapter 2

 Genozip - A Universal Extensible Genomic Data Compressor

 Divon Lan 1, *, Ray Tobler 1,2 , Yassine Souilmi 1,3,✝, *, Bastien Llamas 1,2,3,✝, *

 1 Australian Centre for Ancient DNA, School of Biological Sciences, The Environment

 Institute, Faculty of Sciences, The University of Adelaide, Adelaide SA 5005, Australia
 2 Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological

 Sciences, University of Adelaide, Adelaide, SA 5005, Australia
 3 National Centre for Indigenous Genomics, Australian National University, Canberra, ACT

 0200, Australia

 ✝ Equal contribution

 * Corresponding authors: DL (divon.lan@adelaide.edu.au), YS

 (yassine.souilmi@adelaide.edu.au), and BL (bastien.llamas@adelaide.edu.au)

 Citation : Divon Lan, Ray Tobler, Yassine Souilmi, Bastien Llamas, Genozip: a universal

 extensible genomic data compressor, Bioinformatics , Volume 37, Issue 16, 15 August 2021,

 Pages 2225–2230, https://doi.org/10.1093/bioinformatics/btab102

 Article history :

 Received: 09 December 2020

 Revision received: 25 January 2021

 Editorial decision: 10 February 2021

 Accepted: 12 February 2021

https://doi.org/10.1093/bioinformatics/btab102

 Published: 15 February 2021

 Corrected and typeset: 17 May 2021

 Abstract

 We present Genozip, a universal and fully featured compression software for genomic data.

 Genozip is designed to be a general-purpose software and a development framework for

 genomic compression by providing five core capabilities – universality (support for all

 common genomic file formats), high compression ratios, speed, feature-richness, and

 extensibility.

 Genozip delivers high-performance compression for widely-used genomic data formats in

 genomics research, namely FASTQ, SAM/BAM/CRAM, VCF, GVF, FASTA, PHYLIP, and

 23andMe formats. Our test results show that Genozip is fast and achieves greatly improved

 compression ratios, even when the files are already compressed.

 Further, Genozip is architected with a separation of the Genozip Framework from

 file-format-specific Segmenters and data-type-specific Codecs . With this, we intend for

 Genozip to be a general-purpose compression platform where researchers can implement

 compression for additional file formats, as well as new codecs for data types or fields within

 files, in the future. We anticipate that this will ultimately increase the visibility and adoption of

 these algorithms by the user community, thereby accelerating further innovation in this

 space.

 Availability and implementation

 Genozip is written in C. The code is open-source and available on GitHub

 (https://github.com/divonlan/genozip). The package is free for non-commercial use. It is

 distributed as a Docker container on DockerHub and through the conda package manager.

 Genozip is tested on Linux, Mac, and Windows.

 Supplementary information

 Supplementary data are available at Bioinformatics online.

 1 Introduction

 Genomic data production is growing rapidly as sequencing prices continue to drop, making

 data storage and transfer a core issue for researchers, healthcare providers, service

 facilities, and private companies. To date, most users have relied upon compression

 software that implements the RFC 1951 format (Deutsch, 1996) ; e.g., gzip (Gailly and Adler,

 2010) , bgzip (Li, 2011b) and others), a general-purpose compression format that was

 designed decades ago and is not specifically tailored for genomic data.

 Many novel algorithms have emerged in recent years that effectively compress one or more

 of the data types embedded in genomic files (e.g., GTShark (Deorowicz and Danek, 2019)

 and SPRING (Chandak et al. , 2019)). However, these algorithms are typically implemented

 within a rudimentary software package that inadvertently lacks the breadth of features

 required for a software to be useful in many real-world use cases; most importantly, most

 work with only one of the common file formats. These limitations have meant that none of

 these software packages are currently widely used by the genomic researcher and

 practitioner community.

 Here we introduce a new version of the compression software Genozip, which has been

 nearly completely re-written from an earlier version designed to compress VCF files (Lan et

 al. , 2020) . Genozip now offers five core capabilities:

 1. Universality - Genozip supports all common genomic file formats - FASTQ,

 SAM/BAM/CRAM, VCF, GVF, FASTA, PHYLIP, and 23andMe.

 2. High compression ratios - better than all other universal tools tested.

 3. Speed - in most cases, faster than other tools.

 4. Feature richness - providing an array of features that allow integration into pipelines,

 specification of compression options, and development tools to allow developers to

 extend Genozip easily.

 5. Extensibility - with a clear separation of the Genozip Framework from the file formats

 being compressed and from the codecs used for compression, it is fairly easy to add

 support for more file formats as well as new codecs to improve compression of

https://paperpile.com/c/VrkJXc/hSdOu
https://paperpile.com/c/VrkJXc/gJsL3
https://paperpile.com/c/VrkJXc/gJsL3
https://paperpile.com/c/VrkJXc/BHhqd
https://paperpile.com/c/VrkJXc/33fF7
https://paperpile.com/c/VrkJXc/VpHgP
https://paperpile.com/c/VrkJXc/Kn3FK
https://paperpile.com/c/VrkJXc/Kn3FK

 specific data types of any specific fields within genomic files.

 2 Software description

 Genozip provides a command line interface that consists of four commands: genozip for

 compression, genounzip for decompression, genocat to display or subset a compressed

 file, and genols to show metadata associated with the compressed files.

 Genozip is currently optimised to compress FASTQ, FASTA, SAM/BAM/CRAM, VCF/BCF,

 GVF, PHYLIP, and 23andMe files, including files that are already compressed into . gz , . bz2,

 or . xz formats. However, Genozip can also compress any other file format. Compression of

 .cram, .bcf, or .xz files requires the software packages samtools, bcftools, or xz, respectively,

 to be available in the PATH environment variable. Genozip allows multiple files of identical or

 different formats to be specified in the command line. Files that share a common format can

 be bound together with genozip --output and subsequently unbound with genounzip

 --unbind . This functionality is beneficial for packaging a large number of samples together

 for delivery or archiving.

 Genozip can be integrated into analytical pipelines in two ways. First, genozip and

 genounzip may be used with pipes. Second, genocat provides random-access to

 user-specified sections of a .genozip file and facilitates file subsetting. When using

 genocat to subset files, the targeted data are identified using the --samples option

 for VCF files and the --regions option for SAM, VCF, FASTA, GVF, and 23andMe file

 types. --downsample downsamples any file type. Further, because .genozip files are

 indexed during data compression, a separate indexing step is not required.

 In addition, genocat offers built-in file format translation , and currently offers translations

 between SAM and BAM, from SAM or BAM to FASTQ, between FASTA and PHYLIP and

 from 23andMe to VCF, using genounzip ‘s --bam, --sam, --fastq, --phylip,

 --fasta and --vcf options, respectively.

 Genozip offers a range of data integrity and security options. To support data security

 requirements that comply with ethical standards now expected for modern genomic projects,

 Genozip allows encryption of the data using the --password option. With this option, data

 are encrypted with the standard Advanced Encryption Standard (AES) algorithm (Fips,

 2009) , using the strongest mode available (256 bits). To ensure data integrity, Genozip

 includes a built-in MD5 (Rivest, 1992) option triggered by using --md5 or --test . This

 calculates (in genozip) or verifies (in genounzip and genocat) the MD5 sum of the

 source data on the fly and stores it within the compressed genozip file. This MD5 sum is

 then viewable using genols .

 Genozip offers two lossless compression modes: --best, which is the default and results

 in the highest compression ratio, and --fast, which optimises compression speed at the

 cost of somewhat reduced compression ratios (see Supplementary Information section 12).

 While Genozip is strictly lossless by default, a lossy --optimise (or --optimize) option

 is also offered, which further improves compression by modifying the data in ways that

 typically do not impact downstream analysis (See Supplementary Information section 3).

 Additionally, Genozip supports compression with or without a reference genome sequence.

 Providing a reference improves compression of the sequence data component in

 SAM/BAM/CRAM, FASTQ, and VCF files. A reference file may be generated from a FASTA

 file with genozip --make-reference and used with genozip --reference or

 --REFERENCE . The latter option stores information from the reference within the resulting

 compressed file, obviating the need to provide the reference as a separate file during the

 decompression step. Including the reference information within the compressed file is

 particularly useful when binding several genomic data files together for delivery.

 Finally, fine level information on various aspects of the data compression can be accessed

 by the user via the large suite of --show options (see Supplementary Information section

 8) . For instance, --show-stats provides compression statistics broken down by data type

 within the file. We anticipate that such information will be insightful for end-users and

 particularly useful when developing new compression algorithms.

 3. Methods

 3.1 Framework and architecture

https://paperpile.com/c/VrkJXc/imnFs
https://paperpile.com/c/VrkJXc/imnFs
https://paperpile.com/c/VrkJXc/53ZT6

 The Genozip framework (Figure 1) interprets the user’s command line, reads the source

 genomic file (referred to as the txt file), and divides it into vblocks . Each vblock comprises a

 certain number of full txt file lines, limited by size that is determined by the user with the

 --vblock option (default: 16MB). By default, a line means an actual ASCII line in the txt

 file ; however, this is flexible—e.g., for FASTQ, a line comprises four textual lines, and for

 BAM it comprises one alignment record.

 Once the Genozip framework has read the vblock txt data into memory using its main thread

 (called the I/O thread ; Figure 1), a separate compute thread is spawned to segment the

 vblock . This segmentation step is followed by the final compression step that ultimately

 generates z data , which is the final compressed data for the vblock . When the compression

 step is completed, the compute thread terminates, and the compressed vblock is handed

 back to the I/O thread that appends it to the .genozip compressed file being generated on

 disk.

 3.2. The segmentation step

 A segmenter is a module that is specific to the file format being compressed. Genozip

 currently has nine segmenters, one each for FASTQ, FASTA, SAM, BAM, VCF, GVF,

 PHYLIP, 23andMe, and Generic. If samtools (Li et al. , 2009) is also installed, the SAM

 segmenter can also handle CRAM files by reading them as SAM. The Generic segmenter

 handles all other file formats for which genozip does not have a segmenter in a default

 manner. Importantly, interested parties can add more segmenters to Genozip in the future.

 The segmenter is called by the Genozip framework to work on one line of txt data at a time,

 and the job of the segmenter is to segment this line into its individual data components, store

 these in contexts (which are described in detail in Supplementary Information section 2), and

 declare how each context should be handled in the compression stage.

 The segmenter starts by breaking up the txt line into the top-level data fields and deciding

 what to do with each data field. Broadly, it has six options:

 1. Placing the data directly in its appropriate context . We refer to a short string of data

 inserted into a context as a snip . Each new snip encountered by the Genozip

 framework is added to a dictionary within each context , and an index is added to the

 dictionary entry in a data buffer for this context called the b250 buffer. Accordingly,

https://paperpile.com/c/VrkJXc/yInCq

 the .genozip file stores each snip only once and uses a numeric index to point to it

 throughout the file.

 2. Further segmenting a field into its subfields : Rather than making a snip of the entire

 field data as it appears in the file, the segmenter can insert a special snip type called

 a Container , which defines the structure of the data of this field, where the data itself

 is stored in other contexts that are named in the container. Containers can define

 records containing multiple types of data, as well as arrays of similar data elements

 or arrays of records. The entire vblock is described as a single Container snip placed

 in the TOPLEVEL context .

 This is a key feature that enables the decompressor to be generic. Indeed, in most

 cases, the decompressor need not have any built-in awareness of the details of each

 file format. The file format structure is encoded in the data itself, and a vblock may be

 reconstructed by traversing the data starting from the TOPLEVEL.

 3. Exploiting known relationships between fields, subsequent lines, and/or external data

 to improve the compression. For that, the segmenter may define contexts as needed

 — for example, it may store multiple fields in a single context or may decompose a

 field into multiple contexts. It can be as simple as exploiting a mathematical

 relationship between fields, but it can also be complex - for example, the sequence

 data in FASTQ and SAM are aligned to a reference if the --reference option is

 used.

 4. Using one of the Genozip’s framework built-in algorithms . Some relationships occur

 frequently, for which Genozip has built-in algorithms. These include the seg_pos

 algorithm that exploits the nearness of position data in subsequent lines, if it exists

 and seg_id algorithm that handles ID data that starts with an alphabetical prefix

 followed by a number (such as “rs23424”) as well as LOOKUP and DELTA vs.

 another field on the same line or vs. the same field in a previous line or vs. the pair

 file (in case of paired-end FASTQ files). Details about these built-in algorithms can be

 found in Supplementary Information section 2.

 5. Preparing the data for a specific codec . Rather than inserting a snip , the segmenter

 can store the data of a field in the local buffer of the context in any proprietary way, in

 preparation for consumption by a specific codec in the compression stage.

 6. Declaring a context to be an alias. There are cases where multiple fields contain data

 with similar characteristics, in which case storing them in a single context can

 improve compression. To achieve this, we can define a context as an alias of

 another, essentially sharing their data. For example, in SAM format, there are

 multiple Optional tags that express data in CIGAR format (MC:Z, OC:Z, and others),

 which are all defined as aliases of a context named @CIGAR .

 In the Generic segmenter used for unrecognized file formats, the segmenter is trivial and

 does not actually segment the data - instead, the entire vblock data is placed in a the local

 buffer of a single context.

 A detailed example of how these six options work, as well as a full list of how each of the

 nine segmenters in Genozip handles each data field appears in Supplementary Information

 section 2.

 3.3. Context management

 Segmentation step: Each vblock maintains its own set of contexts – the set consisting of one

 context for each data component. A context is a data structure that includes the dictionary ,

 b250, and local data buffers as well as additional information.

 Context merging step: We maintain one global set of similar contexts within an object called

 the z_file to which we merge vblock contexts’ dictionary data after the segmentation is

 completed for a vblock , thereby incrementally creating a global dictionary containing, in a

 particular z_data context , all values of that appear for that data component in the entire file

 (except for singletons - see Supplementary Information section 2).

 Cloning step: When a new vblock is created, the current dictionary and related information of

 each context are cloned from the z_file to the new vblock by the framework.

 Writing step: After the compute thread terminates and the vblock is handed back to the I/O

 thread, the I/O thread writes the vblock ’s z_data (containing b250 and local sections) to the

 output .genozip file. The merged dictionary data is written upon the completion of

 computing of all vblocks .

 Context cloning, concurrent dictionary access and context merging in a multi-threaded

 environment are difficult, and doing so with minimal synchronisation between threads to

 avoid a bottleneck that would limit scaling CPU cores, is even more so. We employ

 advanced multi-threading mechanisms that ensure that all threads can operate on the same

 dictionaries concurrently while minimising the use of synchronisation objects like mutexes,

 minimising memory copies, and ensuring O(1) dictionary lookups, uniqueness of dictionary

 entries, and thread-safety. Details of how this is done are in Supplementary Information

 section 6.

 3.4 The compression step

 Within the compute thread of any specific vblock , and once the segmentation is complete for

 all lines and the contexts dictionaries have been merged back into z_file , the framework

 proceeds to compress the two buffers of each context present in this vblock—namely, the

 b250 and the local buffers. Each buffer is compressed with one of the available codecs.

 There are two types of codecs in Genozip:

 Generic codecs - these are lzma (Pavlov, 2007) , bz2 (Seward, 1996) , bsc

 (http://libbsc.com/), and none . The first three are standard codecs for which Genozip utilises

 a modified version of the standard libraries, and the fourth is a codec that essentially keeps

 the data as-is.

 Specific codecs - these are additional codecs that compress a specific data type better than

 the generic codecs and would often be complex codecs—which means that they will perform

 some processing of the data, and then complete the compression by applying one or more

 of the built-in codecs. Specific codecs can be added to compress any specific field of any

 genomic file format.

 For the b250 and local buffers of each context , the codec is selected automatically by

 sampling approximately 100KB of the buffer data in the first vblock in which this context is

 first encountered, and compressing it with each of the four codecs. The best codec is

 selected by an algorithm that chooses the codec with the best compression ratio unless the

 compression ratio between the best two codecs is close enough, and the execution time is

 different enough, in which case it selects the faster codec of the two. Subsequent vblocks

 use the same codec and need not test again. In --fast mode, a modified selection

 algorithm is used that is biased towards speed even at the expense of a small difference in

 compression.

https://paperpile.com/c/VrkJXc/LtA9h
https://paperpile.com/c/VrkJXc/VOXyZ
http://libbsc.com/

 A segmenter may specify a codec for the local buffer of any particular context , overriding the

 automatic selection. In the segmenters provided, we use this privilege only when we set the

 codec to a specific codec.

 Genozip currently has four specific codecs:

 A. acgt - used for compression of a sequence of nucleotides, which is expected to

 contain mostly, but not necessarily exclusively, ‘A’, ‘C’, ‘G’ or ‘T’ characters. It is used

 to compress FASTA sequence data and characters (bases) from the SEQ field of

 FASTQ and SAM file formats that are not mapped to a reference.

 B. domqual - used for compression of a string of Phred quality-scores in SAM and

 FASTQ formats, in the common case where there is one dominant score value.

 C. hapmat - used for compression of a matrix of haplotypes derived from FORMAT/GT

 fields in VCF. The algorithm is described in (Lan et al. , 2020) and has been

 re-implemented to serve as a codec.

 D. gtshark - triggered by the --gtshark option, utilises the software package GTShark

 (Deorowicz and Danek, 2019) as a codec for the same haplotype matrix as hapmat

 as an alternative to hapmat . This was already implemented in (Lan et al. , 2020) ,

 where we have shown it to be significantly better but significantly slower than hapmat

 for the FORMAT/GT data component in VCF files that have a large number of

 samples. It has been re-implemented as a codec for FORMAT/GT on top of the new

 framework and with a new fast in-memory (rather than disk-based) communication

 channel between genozip and gtshark . This is an example of how Genozip can

 be easily extended to incorporate new codecs for specific data types.

 More details on the algorithms for each of these codecs can be found in the Supplementary

 Information section 6.

 3.5 Compressing against a reference

 Genozip does not require a reference but takes advantage if one is available to better

 compress FASTQ, SAM/BAM, and VCF data.

https://paperpile.com/c/VrkJXc/Kn3FK
https://paperpile.com/c/VrkJXc/33fF7
https://paperpile.com/c/VrkJXc/Kn3FK

 To use a reference with Genozip, a Genozip reference file must first be created using

 genozip --make-reference . This is a one-time step for any particular reference FASTA

 file. The Genozip reference file creation is implemented by segmenting the reference FASTA

 data with a specialised segmenter, which generates a Genozip file containing a

 pre-processed version of the reference data in a format that is readily usable by Genozip, as

 well as hash tables for use of the Genozip Aligner, indexing data and additional metadata.

 When using a particular Genozip reference file to compress data for the first time, Genozip

 generates two cache files. These files are used to accelerate the loading of the reference

 data and the Genozip Aligner hash tables in subsequent executions of Genozip, and may be

 deleted if such acceleration is not needed. The acceleration is achieved by loading the

 cache files, if they exist, using the operating system’s paging system rather than libc

 allocated memory, allowing portions of the reference data to be paged-in as needed, and

 also enables sharing of the loaded pages between concurrently running Genozip processes,

 resulting in reduced memory consumption and instantaneous loading in the case of

 concurrent Genozip instances.

 The VCF segmenter uses reference data to avoid storing REF and/or ALT data and referring

 to the reference if possible. Since the REF and ALT fields usually represent only a small

 fraction of the information content of a VCF file, the gains are modest, however.

 The SAM and BAM segmenters use reference data in two different ways, depending on

 whether the txt line being segmented is aligned (i.e., contains values in the RNAME, POS,

 and CIGAR fields) or not, and the FASTQ segmenter uses the reference similar unaligned

 SAM/BAM:

 1. For an aligned SAM/BAM/CRAM txt line , the segmenter decomposes the data into

 three contexts : SQBITMAP , NONREF, and NONREF_X . SQBITMAP is a bitmap

 consisting of a bit for every base in the sequence that “consumes a reference”, as

 defined in the SAM specification (https://samtools.github.io/hts-specs/SAMv1.pdf

 page 8) according to the CIGAR string. The bit is set to 1 if the base is the same as

 the base in the reference data at its position. If not, the bit is set to 0, and the base

 character is placed in NONREF . Bases in the sequence that “do not consume a

 reference”, according to the CIGAR string, are also placed in NONREF . NONREF is set

 to be compressed with the acgt codec that requires a second context for the

https://samtools.github.io/hts-specs/SAMv1.pdf

 CODEC_XCGT data, which is NONREF_X (see Supplementary Information section

 6).

 2. For an unaligned SAM/BAM/CRAM txt line and a FASTQ sequence line, the Genozip

 Aligner is used. It utilises the same three contexts described above and two

 additional ones: GPOS and STRAND . The Aligner algorithm (see Supplementary

 Information section 4) finds the position in the reference to which the sequence string

 at hand best aligns. This algorithm is extremely fast as it does not attempt to find the

 biologically correct alignment, just one that compresses well. The aligner determines

 the location in the reference, using a coordinate called gpos (Global Position) - which

 is a single 32-bit unsigned integer covering the entire reference genome, and

 indicates whether it is forward or reverse complement relative to the sequence (which

 we call strand). The segmenter then stores the gpos and strand in the local buffers of

 the GPOS and STRAND contexts, respectively (the strand is stored as a bitmap with

 ‘1’ meaning forward) and proceeds to populate the SQBITMAP and NONREF

 contexts as before, based on whether or not each base in the sequence matches the

 corresponding base in the forward or reverse complement reference.

 3.6 Indexing

 While Genozip is designed as a compression tool rather than a data analysis tool, it also

 contains some capabilities that allow direct integration into analysis pipelines. Chief among

 these, is indexing of the data done by the Genozip framework during segmentation, which

 then allows subsetting the data with the genocat --regions option: a Segmenter may

 notify the Genozip framework of the chromosome (or contig) and position of each line being

 segmented. As the segmentation progresses, the framework collects data per vblock -

 namely, it records which chromosomes appear in the vblock, and the minimum and

 maximum position of each chromosome within the vblock. These data are then emitted to

 the generated compressed genozip file as the SEC_RANDOM_ACCESS section.

 During genocat --regions, vblocks that contain no data from the requested regions are

 skipped entirely, while vblocks that do contain data from the requested regions are

 decompressed, but only lines that are included in the requested regions are emitted.

 In addition, Genozip reference files are also indexed in the same way, so when subsetting a

 file that requires a reference (i.e. the --reference option is used), Genozip only reads the

 vblocks of the reference file that overlap with the regions requested.

 Currently, the segmenters for VCF, SAM, BAM, GVF and 23andMe implement this capability.

 This indexing method is more coarse-grained than the BGZF-block level indexing that is

 common in standard indexes of genomic file formats, as subsetting requires decompression

 of entire vblocks (16MB of txt data in the default configuration) vs just BGZF blocks (64KB of

 data), and hence subsetting is significantly slower. However, in practice, this may be

 sufficient for many analysis applications.

 4 Results

 We evaluated the performance of Genozip by compressing genomic files as they most

 commonly appear in real-world research and clinical situations - namely, already

 compressed in fastq.gz, BAM, CRAM, and vcf.gz formats. Regarding CRAM, we tested two

 different commonly used versions of CRAM files - a version containing the same data as the

 BAM file and a version optimised by binning quality data. For VCF, we tested a

 single-sample file. We previously reported the compression performance of multi-sample

 VCF using an earlier version of the HapMat codec in (Lan et al. , 2020) . For BAM, CRAM,

 and FASTQ, we also tested with Genozip’s --optimise option.

 The FASTQ, BAM, and VCF files (Table 1 and Supplementary Information Table S10) were

 obtained from a public FTP server of the National Center for Biotechnology Information

 (NCBI), while the CRAM files were generated from the BAM file using Scramble (Bonfield,

 2014) with the highest compression ratio (-9 option) and, in addition, for the binned-quality

 CRAM, with the quality-binning option -B (Table 1). The reference file used was based on a

 modified version of GRCh37 as required by the particular BAM file tested (see

 Supplementary Information section 12) and was prepared with: genozip

 --make-reference $grch37-fasta-file .

 Genozip improved the compression of these already-compressed files in every scenario we

 tested by a 1.2–5.7 factor (Figure 2 as well as Table S11 in the Supplementary Information).

 In addition, we performed tests comparing Genozip’s compression ratio on raw

 (uncompressed) files (Table S8 in the Supplementary Information), as well as compression

https://paperpile.com/c/VrkJXc/Kn3FK
https://paperpile.com/c/VrkJXc/eVISB
https://paperpile.com/c/VrkJXc/eVISB

 and decompression time, to several popular tools. These additional results can be found in

 the Supplementary Information section 12 and illustrated in Figure 3, Table 2 and

 Supplementary Information Table S9. Again, in all cases tested, Genozip outperformed other

 software for compression ratio by a 1.3-4.4 factor, while also faster than other tools in most,

 but not all, cases.

 Table 1: Files used for testing against already-compressed files. These files are of five
 formats commonly used in research and clinical settings. We demonstrate that Genozip can
 significantly improve the compression for each of these files. See details of these files in
 Supplementary Information Table S10

 File type File size Genozip command
 --optimise added for the
 Optimised test

 .fastq.gz 3.6 GB
 (R1+R2)

 genozip --pair
 $file-R1 $file-R2 -e
 $ref-file

 .bam 147 GB genozip $file
 -e $ref-file

 .cram
 (lossless)

 102 GB genozip $file
 -e $ref-file

 .cram
 (binned)

 79.5 GB genozip $file
 -e $ref-file

 .vcf.gz 128 MB genozip $file
 -e $ref-file

 Table 2: Raw-file benchmark results. Results of compression of uncompressed genomic
 files with genozip and other commonly used tools for each file format. More details are
 available in Supplementary Information Table S9

 Tool Ra�o Compress �me Decompress t.
 VCF
 pigz 15.9 1.9 sec 3.1 sec
 bc�ools 11.7 23.82 sec 21.02 sec
 bzip2 25.3 260.05 sec 43.37 sec
 genozip 33.6 7.1 sec 6.53 sec

 SAM
 pigz 3.4 00:12:40.3 00:34:17.4
 samtools 3.2 00:23:16.7 00:29:48.5
 scramble -9 4.7 00:27:58.4 00:17:34.4
 genozip -e 5.8 00:33:41.1 00:27:55.3

 Op�mized cram:
 scramble -9B 6.0 00:48:56.1 00:19:10.4

 Op�mized genozip -9 7.6 00:30:51.1 00:20:38.0

 FASTQ
 pigz 4.2 00:14:34.5 00:34:17.4

 bwa mem | samtools
 sort | scramble -9 5.4 03:42:54.0 00:48:24.7
 genozip -e 6.8 00:16:40.1 00:08:31.7

 genozip -9e 18.6 00:08:52.3 00:05:26.4

 5 Conclusion

 Genozip provides not only excellent compression for raw (uncompressed) genomic files, but

 also provides excellent compression when applied directly to already-compressed genomic

 files, as is common in real-world applications. Genozip is also universal and works on all

 common genomic files, uniquely so amongst currently available genomic file compressors.

 Further, by providing a modular and extensible architecture, Genozip is also a framework

 that can be used for rapid development and deployment of new compression algorithms for

 established or emerging genomic data types and file formats.

 Funding

 D.L. is supported by a scholarship from the University of Adelaide. Y.S. is supported by the

 Australian Research Council (ARC DP190103705). R.T. is an ARC DECRA fellow

 (DE190101069). B.L. is an ARC Future Fellow (FT170100448).

 Fig.1. Genozip high-level architecture. The Genozip framework interprets and reads the

 input file(s) in the main thread (I/O thread) and divides them into vblocks, which are then

 segmented. Segmentation is followed by the compression step. Compressed vblocks are

 sent back to the I/O thread to create the .genozip output(s).

 Fig. 2. Sizes of Genozip-compressed files relative to already-compressed source files.
 The blue bars represent the source files (see Table 1), with the corresponding file extensions

 at the bottom. The orange and grey bars are for Genozip compression with the default,

 lossless mode and the --optimise option, respectively. See also results in Supplementary

 Information Table S11.

 Fig. 3. Raw (uncompressed) files benchmark results. The three panels show

 compression ratios of various relevant compression formats indicated at the bottom relative

 to uncompressed VCF (left), SAM (middle) and FASTQ (right) files relative. See

 Supplementary Information section 12 for more details.

 References

 Bonfield,J.K. (2014) The Scramble conversion tool. Bioinformatics , 30 , 2818–2819.

 Chandak,S. et al. (2019) SPRING: a next-generation compressor for FASTQ data.

 Bioinformatics , 35 , 2674–2676.

 Deorowicz,S. and Danek,A. (2019) GTShark: genotype compression in large projects.

 Bioinformatics , 35 , 4791–4793.

 Deutsch,P. (1996) DEFLATE Compressed Data Format Specification version 1.3 RFC Editor.

 Fips,P. (2009) 197, Advanced Encryption Standard (AES), National Institute of Standards

 and Technology, US Department of Commerce, November 2001. Link in: http://csrc. nist.

 gov/publications/fips/fips197/fips-197. pdf .

 Gailly,J.-L. and Adler,M. (2010) GNU gzip.

 Lan,D. et al. (2020) genozip: a fast and efficient compression tool for VCF files.

 Bioinformatics , 36 , 4091–4092.

 Li,H. (2011) Tabix: fast retrieval of sequence features from generic TAB-delimited files.

 Bioinformatics , 27 , 718–719.

 Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics , 25 ,
 2078–2079.

 Pavlov,I. (2007) Lzma sdk (software development kit).

 Rivest,R. (1992) RFC1321: The MD5 Message-Digest Algorithm RFC Editor, USA.

 Seward,J. (1996) bzip2 and libbzip2. available at http://www.bzip.org .

http://paperpile.com/b/3SQ74n/wtnB
http://paperpile.com/b/3SQ74n/lyTX
http://paperpile.com/b/3SQ74n/lyTX
http://paperpile.com/b/3SQ74n/vOPV
http://paperpile.com/b/3SQ74n/vOPV
http://paperpile.com/b/3SQ74n/APyX
http://paperpile.com/b/3SQ74n/Behl
http://paperpile.com/b/3SQ74n/Behl
http://paperpile.com/b/3SQ74n/Behl
http://paperpile.com/b/3SQ74n/MlMS
http://paperpile.com/b/3SQ74n/2zgW
http://paperpile.com/b/3SQ74n/2zgW
http://paperpile.com/b/3SQ74n/vCBD
http://paperpile.com/b/3SQ74n/vCBD
http://paperpile.com/b/3SQ74n/to7q
http://paperpile.com/b/3SQ74n/to7q
http://paperpile.com/b/3SQ74n/3mT4
http://paperpile.com/b/3SQ74n/Ybx0
http://paperpile.com/b/3SQ74n/MOPv

 Genozip - A Universal Extensible Genomic Data Compressor

 Supplementary Information

 Divon Lan 1, *, Ray Tobler 1,2 , Yassine Souilmi 1,3,✝, *, Bastien Llamas 1,2,3,✝, *

 1 Australian Centre for Ancient DNA, School of Biological Sciences, The Environment

 Institute, Faculty of Sciences, The University of Adelaide, Adelaide SA 5005, Australia
 2 Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological

 Sciences, University of Adelaide, Adelaide, SA 5005, Australia
 3 National Centre for Indigenous Genomics, Australian National University, Canberra, ACT

 0200, Australia

 ✝ Equal contribution

 * Corresponding authors: DL (divon.lan@adelaide.edu.au) and BL

 (bastien.llamas@adelaide.edu.au)

 TABLE OF CONTENTS

 1. Genozip high level architecture 3

 2. The Segmenter 5

 General 5

 The segmentation process from the Segmenter’s viewpoint 5

 Pre-segmentation Cloning and post-segmentation Merging 8

 Singleton detection 9

 Hash tables & the Snip Diversity Estimation Algorithm 9

 The Snip format 10

 The Context data structure 11

 The built-in POS algorithm 12

 The built-in ID algorithm 13

 The built-in Container algorithm 14

 The built-in Compound Field algorithm 15

 The built-in Special Snip mechanism 16

 Full list of contexts used, by file type 17

 3. Optimisations 24

 4. Compression against a reference and the Genozip Aligner 25

 Overview 25

 The REFERENCE data 26

 The REF_HASH data 27

 Compressing aligned SAM data 28

 Compressing VCF data (REF and ALT fields) with a reference 30

 Compression of FASTQ sequence data and SEQ fields in unaligned lines in SAM data 31

 Alternative contig names 34

 Discussion 34

 5. Compression of FASTQ paired end read files 36

 6. Specific codecs 37

 acgt: A specific codec for compression of nucleotide sequences 37

 hapmat: A specific codec for compression of a haplotype matrix 38

 DomQual: a specific codec for compression of base quality scores 39

 7. Random access, subsetting & pipeline integration 41

 8. Tools for obtaining statistics and metadata 43

 9. CPU scalability: synchronisation and thread management 45

 10. Security 46

 11. Genozip file format 47

 12. Detailed results data 49

 SI.1. Genozip high level architecture

 Figure S1 (same as Figure 1 in main text) - Genozip high-level architecture. The

 Genozip framework interprets and reads the input file(s) in the main thread (I/O thread) and

 divides them into vblocks, which are then segmented. Segmentation is followed by the

 compression step. Compressed vblocks are sent back to the I/O thread to create the

 .genozip output(s).

 At a high level, Genozip is a C language program tested to run on Linux, MacOS and

 Windows (64bit). The same C program may be invoked by 4 command line commands:

 genozip , genounzip , genocat , and genols . The first two have major code components

 associated with them, described below. genocat essentially executes genounzip where the

 output goes to stdout and flags useful in pipeline analysis are made available. genols is lists

 the genozip files in a disk directory along with some metadata.

 Here we will describe the ZIP side (i.e. the compression side). The PIZ side (decompression)

 follows a very similar architecture, where the inverse operations are carried out as expected.

 The system was designed so that the logic related to compression of specific data elements

 is mostly coded in the ZIP side, while the PIZ side is as generic as possible. The reason for

 this is to allow the compressor to evolve, adding compression algorithms to an ever growing

 list of data elements, without needing to change the decompressor or the file format. There

 are a few exceptions to this that will be discussed.

 When run, a Genozip process consists of one main thread (called the I/O thread) that is

 responsible for parsing the user’s command line, reading and writing files to disk, as well as

 splitting the data stream into vblocks and spawning additional threads (called compute

 threads) to do the CPU-intensive compression or decompression work.

 On the ZIP side, a compute thread consists of two main stages:

 ● First to run is the Segmenter : this parses the uncompressed file data (called txt data)

 first into individual logical lines (that are actual ASCII lines in all supported formats,

 with the exception of FASTQ where every 4 ASCII lines are counted as one logical

 line), and then parsing each line into its components, and finally applying a

 compression algorithm specific to the type of each component. The output of these

 component compression algorithms is stored in data structures called contexts . The

 Segmenter is where most of the logic related to specific data types (SAM, FASTQ

 etc) is located, while the rest of the Genozip code is not data-type specific.

 ● Second is the Compressor : it compresses each context using the appropriate codec

 that can be a generic or specific codec, as listed in the main text.

 On the PIZ side, a compute thread does the inverse:

 ● First to run is the Decompressor, which decompresses the sections as read from

 disk to recreate the contexts

 ● Second to run is the Reconstructor that is data-type specific, querying the various

 contexts to losslessly reconstruct the original data. The instructions of which

 algorithms to use for reconstruction are part of the data themselves and not hard

 coded in the Reconstructor (with some exceptions) — i.e., the Reconstructor

 effectively pulls data from contexts and applies various algorithms as directed by

 instructions in the data. Upon completion, the txt data is reconstructed in the vblock ,

 ready to hand back to the I/O thread .

 Each compute thread receives a single vblock from the I/O thread, processes it, and hands it

 back to the I/O thread upon completion. Compute threads run in parallel and might complete

 out-of-order. The I/O thread receives back the processed vblocks , writes them to disk in the

 correct order, with each context within the vblock written as one or more sections in the final

 Genozip output file. Genozip utilises as many processor cores as it can, unless the user

 limits the number of threads with --threads . A substantial part of Genozip consists of

 thread synchronisation algorithms that are designed to ensure maximum CPU core

 scalability with minimum bottlenecks.

 SI.2. The Segmenter

 General

 This section expands and adds details to the segmenter description in the main paper.

 A segmenter is a module that is specific to the file format being compressed. Genozip

 currently has eight segmenters, one each for SAM, VCF, FASTQ, FASTA, GVF, PHYLIP,

 23andMe, and Generic. More segmenters can be added to the open source code by

 interested parties.

 The segmenter is called by the framework with one line of txt data at the time, and the job of

 the segmenter is to segment this line into its individual data components, store these in

 contexts which will be described hereinafter, and declare how each context should be

 handled during the compression stage.

 The segmentation process from the Segmenter’s viewpoint

 We now explain how a segmenter works and how the framework interacts with one by

 walking through a simple example of a single txt line , and explain in detail the logic related to

 it. As an example, we use the following VCF line (the VCF header line is provided here only

 for clarity) and the VCF segmenter.

 CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Smp1 Smp2

 chr12 0 rs123 G A 100 PASS AC=1;AN=2;AF=0.5 GT:DP 1|1:37 1|0:32

 The first step for the VCF segmenter is to break the txt line into the top-level data fields,

 which are separated by a tab character in the case of VCF. This is a trivial task using macros

 provided by the framework.

 Next, the VCF segmenter needs to decide what to do with each data field. Broadly, it has six

 options:

 1. The segmenter may place the data directly in its appropriate context . This is the

 simplest case, and indeed the most common one. In the case of the txt line above,

 the VCF segmenter applies this strategy to the CHROM, QUAL, FILTER

 fields—placing them in the CHROM, QUAL and FILTER contexts respectively.

 The Genozip framework, in turn, would add these snips , to a dictionary within each

 context , if they are not already in this context’s dictionary, and would place an index

 to the dictionary entry in a data buffer for this context called the b250 buffer. This way

 the Genozip file stores each snip only once, and uses a numeric index to point to it

 throughout the file.

 2. The segmenter may further segment a field into its subfields , and then for each

 subfield recursively apply one of these six options. In this particular txt line , the VCF

 segmenter segments the INFO field to its subfields, with each INFO tag being

 considered a field. The structure of the INFO field, including the number of subfields

 the tag prefixes (eg “AC=”) is represented in a data structure called a Container . This

 Container is created for this INFO field, and placed as a snip in the INFO context .

 The Container contains only the description of each item which together the record

 that is the INFO field (not the values themselves), so that txt lines that have the same

 tag names in the same order in their INFO field will have the same INFO snip, and

 hence the same index placed in the b250 buffer. The VCF segmenter will now need

 to consider the values of the AC, AN and AF fields (“1”, “2” and “0.5”) and recursively

 apply one of these six options to each of them.

 A Container can also contain an array—in our example, the entire set of samples in a

 VCF line goes into one Container that describes the tags (GT and DP in this case),

 as well as the number of repeats (= the number of samples; in this case, 2)—and is

 placed in the SAMPLES context . As before, the GT and DP values are not included

 in the Container , and the VCF segmenter needs to recursively choose one of these

 six options for each of them.

 The GT field is further segmented into its individual haplotype values as well as its

 phasing value (‘|’ in this case). The VCF segmenter encodes this as a Container

 which contains an array where repeats =ploidy, and each array entry has a single

 item—the haplotype. The phase value is treated as the separator between repeats,

 which is also defined in the Container data. This Container , once again not

 containing the haplotype values themselves, is placed in the GT context .

 Similarly, Optional fields in SAM are an array of records, and any specific Optional

 field that is an array (i.e. SAM type ‘B’) is itself stored as a Container that is the array.

 The INFO field in VCF and the ATTRS field in GVF are a Container containing a

 record, with the items being the tags, etc.

 All segmenters are required to have a single Container per vblock that goes into the

 TOPLEVEL context . This Container describes the entire vblock —it is an array with

 repeats =number of lines in the vblock , and the items describe the structure of a line

 as defined for this file format. In the case of our example txt line: the TOPLEVEL has

 10 items (CHROM, POS, ID, REF+ALT, QUAL, FILTER, INFO, FORMAT, SAMPLES

 and EOL), where INFO and SAMPLES are themselves Container s as described

 above.

 This is a key feature in enabling the decompressor to be generic. Indeed, the

 decompressor need not have any built-in awareness of the details of each file format

 because the file format structure is encoded in the data itself, and a vblock may be

 reconstructed by traversing the data starting from the TOPLEVEL.

 3. The segmenter may exploit known correlation between fields in order to improve the

 compression. In the case of the txt line above, the VCF segmenter employs this

 strategy in two occurrences:

 a. Since the REF and ALT field are highly correlated, they are stored together

 (“G A” in this txt line example) in a single context REF+ALT.

 b. In the case of AC, AN, AF, the segmenter checks whether AC equals AN*AF

 as expected with the common use of these tags in VCF files. If this is indeed

 the case, the AN and AF fields are stored normally in the AN and AF contexts

 while the AC is simply stored as the snip “SPECIAL AC”. Since normally we

 would expect all AC values in a vblock to be AN*AF, the AC dictionary will

 contain in this case only a single entry “SPECIAL AC” and the b250 data for

 each vblock will have an entry for each line in the vblock for which we have

 these INFO tags, but all values will be the same: the dictionary index of the

 “SPECIAL AC” snip. This will cause the b250 data to compress to a trivial size

 in the compression step.

 Using SPECIAL AC will then require providing an extension to the

 uncompress side called a special reconstructor for AC. genounzip , when

 encountering the “SPECIAL AC” snip in the b250 of the AC context , will call

 the AC special reconstructor that will implement the specific special

 reconstruction algorithm, in this case simply emitting the value of AN*AF.

 Typically, we have a handful of special reconstructors for each file format that

 represent opportunities to compress based on relationships between fields or

 even use of external information.

 Important to note, it is not an error if AN*AF is not equal to AC. It is not the

 role of Genozip to enforce correctness of field values and it is always tolerant

 if the value is not as expected. In this case, it will simply store the value of AC

 in the AC context instead of “SPECIAL AC”.

 SPECIAL algorithms may be as simple as multiplying AN and AF, or may be

 as complex as needed. For example, we use the same mechanism to analyse

 the SEQ field (nucleotide sequence data) in SAM and FASTQ files against an

 external reference file.

 SPECIAL algorithms are a powerful tool for encoding any type of relationship

 between fields, and as such, may contribute significantly to the compression

 ratio. However, this power comes at a cost, namely that the reverse algorithm

 for retrieving the original value from the encoded value in combination with

 the value of the related fields, must be encoded as a SPECIAL reconstructor

 on the decompressor side, thereby adding data-type-specific code to the

 decompressor side, which we are attempting to minimize.

 4. The segmenter may: use one of the genozip’s framework built-in algorithms . In our

 txt line example, we have two occurrences of this strategy:

 a. The POS field uses the built-in seg_pos interface. This inspects the POS

 value compared to the previous line.If the absolute value of the difference is

 at most 32000, it stores the snip “DELTA (this_pos - prev_pos) ” in the POS

 context . If it is more than 32000, it stores “LOOKUP” snip in the POS

 context’s dictionary / b250 , and the value of POS itself as a 32 bit unsigned

 integer in the POS context’s local buffer. genounzip , when encountering a

 “LOOKUP” snip, reconstructs the value from the local buffer.

 b. The ID field uses the built seg_id interface. This attempts to split a snip into

 an alphabetical and a numeric part—“rs” and “123” in our example. The snip

 stored in the context ’s dictionary would be “LOOKUP rs” and the unsigned

 integer value 123 will be stored in the context ’s local buffer.

 5. The segmenter may prepare the data for a specific codec . The segmenter may store

 the data of a field in any proprietary way, in preparation for consumption by a specific

 codec in the compression stage. In our example, the VCF segmenter stores the

 haplotype data in a haplotype matrix stored in this vblock data structure, which will be

 later compressed using the hapmat or gtshark codecs.

 6. The segmenter may declare the field to be an alias. Sometimes it is beneficial to

 store more than one field in a single context . For example, the INFO/END tag (not in

 our txt line example) is normally an integer with a value between this line’s and the

 next line’s POS value. Therefore, we alias INFO/END with the POS context, which

 combined with the seg_pos interface normally creates a series of DELTA snips with

 delta values smaller than either POS or INFO/END would have on their own.

 A full list of how each of the eight segmenters in Genozip handles each data field appears in

 the Table S4 .

 Pre-segmentation Cloning and post-segmentation Merging

 When the segmenter for a particular vblock is complete, the framework merges each context

 created in this vblock , with the corresponding global context held in memory in an object

 called the z_file . This merge does not affect the b250 and local data that remains private to

 the vblock , and is focused mostly on the dictionary data. Since segmentation of many

 vblocks happens in parallel in multiple threads, each thread adding snips to their private

 dictionary fragment, with the possibility of multiple parallel threads adding some identical

 snips to their respective dictionary fragments, careful merger of the dictionary fragments into

 the z_file global dictionary, as well as re-writing the indices in the vblocks ’ b250 buffer is

 required.

 When the segmentation of a new vblock begins, the global dictionary is cloned from the

 z_file to the local context in the new vblock . For efficiency, no memory is actually copied but

 rather a set of parameters is set to determine which dictionary entries within the z_file

 dictionary are available to each vblock . This synchronisation algorithm is written carefully so

 that merging of completed vblocks into the global dictionaries may occur at the same time as

 active segmenters in other threads are accessing the very same dictionaries, and the access

 by segmenting threads can be done without the use of synchronisation objects like mutexes,

 which would create a bottleneck and limit the scaling to a large number of cores.

 Singleton detection

 The framework also includes a singleton detector: if a snip appears for the first time in a

 particular vblock , and appears only once in this vblock , then it is placed in the context’s local

 buffer instead of in the dictionary and b250 . This way, we avoid bloating global dictionaries

 with singletons and keep singletons local to the context. This is important, since vblock

 memory is freed once the output data of this vblock is written to disk, while the global

 dictionaries remain in memory until compression of the entire file is complete.

 Hash tables & the Snip Diversity Estimation Algorithm

 When a segmenter calls the framework to enter a snip into a context, the framework first

 needs to lookup that snip a the dictionary to know whether it is new and should be added to

 the context’s local dictionary fragment, a new index generated, and that new index added to

 the local b250 data, or whether this snip already exists, in which case the existing dictionary

 index should be added to the local b250 . To perform this lookup in O(1), each context also

 contains a hash table that allows rapid lookup. To achieve O(1), it is necessary for the target

 range of the hash function, and hence the initial size of the hash table, to be proportionate

 with the total number of distinct snips across the entire file for any particular context . This

 varies drastically between contexts , and indeed, it can be very large for contexts for which

 we expect millions of distinct snips (resulting in a hash table size of tens of MBs of RAM or

 more) , or very small (in case the file has only a handful of unique values of a particular field)

 for contexts like FORMAT in VCF.

 The challenge we face, is to estimate, without reading the entire file, how many unique

 values exist in the entire file for each particular context. For this we have developed the snip

 diversity estimation algorithm :

 In most contexts , many new snips appear early in the file, but as we progress in the file,

 since many of the snips were already observed before, less new snips are encountered. To

 estimate the expected total number of snips of a particular context , we analyse the data for

 this context for the first vblock in which this context is encountered. We look at the first

 derivative within this vblock :the density of new snips within a context—d(new_snips)/d(lines),

 as well as the second derivative—d(density)/d(lines). We then estimate the total file size,

 which might not be known if the file is compressed (with gzip, bzip2, xz, bgzip, bam or bcf) or

 if it is piped from stdin. We use the values of the first and second derivative and the

 estimated file size to estimate the number of unique snips across the entire file. Performing a

 simple mathematical integral to reach the results yields a poor match to the real values, and

 hence we enhance this with several heuristics based on observations of real world data. The

 full algorithm can be found in the function hash_get_estimated_entries() .

 The Snip format

 Snips stored by a Segmenter in a context may be simply the text of the data field itself;

 indeed, this is most often the case. However, Genozip has a number of snip opcodes that

 allow storing the data in a more compressible format, where applicable. In this case, rather

 than storing the data string as the snip, we construct a snip starting with one of the opcodes

 in the table below (each being one byte), followed by the required parameters. The

 decompression side has built-in algorithms for reconstructing the data field’s string based on

 the data in the snip, while the b250 array consisting of these snips is expected to be less

 random and/or with a smaller dictionary, and hence compress better than if we were to insert

 the data itself.

 Table S1: Snip opcodes. When a snip has one of these values as its first byte, it is
 reconstructed as prescribed in this table, rather than just copying the snip.

 Name Parameters Reconstruction algorithm

 LOOKUP prefix (optional) prefix followed by the next value from local

 OTHER_LOOKUP other_context
 length (optional)

 The value from local of other_context . If local
 is of type LT_SEQUENCE, then use length
 characters.

 PAIR_LOOKUP - Copy value in the matching row in the paired
 file (when compressing FASTQ with --pair)

 CONTAINER structure Recursively reconstruct the values from the
 contexts listed in structure, and combine
 them as specified

 SELF_DELTA delta Value on previous line + delta (delta may be
 negative)

 OTHER_DELTA other_context
 delta

 Last value from other_context + delta

 PAIR_DELTA delta Value of matching row in paired file + delta

 SPECIAL algorithm
 params (optional)

 Reconstructor to use the requested algorithm
 with params

 The Context data structure

 Genozip achieves its flexibility relative to file formats, by compressing individual data

 components of files into contexts , which are based on a recursive data format called snips

 which allows arbitrarily complex component-specific logic. It is recursive in the sense that

 snips might themselves be containers containing other snips.

 Each context contains three data buffers :

 1. The dictionary. This buffer is generated as the txt file is segmented, containing a

 single entry for each snip that appeared so far in the file. When a vblock

 segmentation commences, the dictionaries of all contexts, as updated by previously

 completed vblocks, are cloned into this vblock as are accessed on a read-only basis.

 If new snips are discovered in this vblock that are not already in their respective

 dictionary, vblock-private dictionary fragments are created. When a vblock

 segmentation completes, these fragments are integrated back into the global

 dictionary. Care is taken to make sure the global dictionary contains exactly one entry

 per snip, even though multiple vblocks running in parallel might discover the same

 snip and add it to their respective dictionary fragments.

 2. The b250. This buffer contains 32-bit indices into the dictionary of all the snips of this

 context in a particular vblock , in the order they will be read by the decompressor. If

 no b250 buffer exists, the decompressor will take the data from local (see below), but

 if it does exist, it must contain exactly one entry for each related data component in

 the txt file. To improve compression of the b250 buffer, some 8-bit values (instead of

 32 bit) are used in some cases: A. if the snip the most, 2nd most or 3rd most frequent

 snip (as measured in the first vblock in which this context is used) B. If the snip index

 is one higher than the index of the previous snip in this b250 (this will result in a

 highly compressible run in some cases) C. missing non-GT values in VCF samples.

 3. The local buffer. This buffer contains data that is private to this vblock and is not in

 the dictionary. Some contexts use the local buffer to contain singleton snips that are

 expected to appear, as determined by a heuristic algorithm, only in a single vblock ,

 while some contexts use the local buffer to store all the data, when this data is

 expected to be mostly private to this vblock , rather than using a dictionary. A context

 may utilise local to store either snips or alternatively simple data, such as integers or

 bitmaps.

 This context based data structure is extremely flexible because it is independent of any

 particular genomic file format: when coding a segmenter for a particular file format we may

 pick and choose the most appropriate algorithms for each context, or develop new ones if

 needed, and genozip as a system may evolve fast in the future, by easily updating

 algorithms for specific contexts. Indeed, genozip can also serve as a good testing platform

 for new algorithms that focus on specific data elements of genomic data, by allowing

 creating or modifying contexts these specific elements.

 We illustrate this by describing four contexts: POS (as it appears in VCF, SAM and

 23andMe), ID (as it appears VCF, 23andMe, GVF), XA tag in SAM and Compound Field. A

 full list of all algorithms follows.

 As explained above, a snip is created by the Segmenter (compressor side) is usually

 reconstructed as-is by the Reconstructor (decompress side), unless it begins with one of the

 special opcodes, which may be followed by parameters.

 The built-in POS algorithm

 The POS algorithm is one of the built-in framework algorithms that segmenters may use. It is

 designed for numeric fields that contain a 32-bit unsigned value, and have the property that

 subsequent lines tend to have values that are quite near each other. This is a characteristic

 of the fields that are a coordinate within a specific chromosome, and hence the name. For

 example, this is the case for the POS field in VCF, the POS and PNEXT fields in SAM, the

 POS field in 23andMe. It also appears in various optional fields.

 This is a good example of how a particular algorithm, in this case one designed to handle

 POS data, works with the three context buffers.

 In this example, let’s assume we have 3 lines in a particular vblock of a txt file (for example a

 VCF or SAM file), with POS values of 1000, 1500 and 10000000:

 Table S2: SELF_DELTA example. Example the contents of the b250 and local buffers of a

 POS context , after segmenting the values 1000, 1500, and 10000000

 Value dictionary b250 local

 1000 “LOOKUP” 0 1000

 1500 “ SELF_DELTA 500” 1

 1000000 0 1000000

 As we can see, 1000 is the first POS value in this vblock . Since this is the first POS value, it

 will be stored as an unsigned 32bit integer in local , and the snip “LOOKUP” is added to the

 dictionary—telling the decompressor to lookup the value in local. Finally, the value 0, the

 index of the snip “LOOKUP” in the dictionary, is added to b250 . 1500, the second POS

 value, is encoded as a delta vs. the previous line. Hence we add the snip “ SELF_DELTA 500”

 to the dictionary, store the dictionary index of this snip, 1, in b250 , and nothing in local. The third

 POS value, 1000000, is deemed to be too distant from the previous value 1500—beyond the

 defined threshold which is 32000—to be worthy of a delta. It is therefore stored as a “LOOKUP”

 snip. We already have a “LOOKUP” in the dictionary, so we needn’t add another one: just place

 its index, 0, in our b250 and the value, 1000000, in local .

 The built-in ID algorithm

 This is another build-in algorithm the framework provides segmenters.

 Genomic data often contains IDs that are structured as a string containing a letter prefix,

 followed by a numeric suffix. Examples include the ID field in VCF, Dbxref attribute in GVF

 and EnstID identifiers that often appear in GVF attributes.

 Table S3: ID example . Example the contents of the b250 and local buffers of an ID context ,
 after segmenting the values “rs999”, “strange_id” and “rs123”

 Value dictionary b250 local

 rs999 “LOOKUP rs” 0 999

 strange_id “ strange_id ” 1

 rs123 0 123

 In this example, rs999 is the first ID value in this vblock . It is separated to its numeric

 component, 999, which is stored in local, and its letter component, rs, which is combined

 with LOOKUP to create the snip “LOOKUP rs”. This instructs the decompressor to output

 “rs” followed by the value looked up from local . Finally, the dictionary index of this snip, 0, is

 placed in b250 .

 The second ID value, strange_id, does not comply with our assumption regarding the format

 of IDs, namely being composed of letters followed by numeric characters. We therefore

 stored it as a simple snip “strange_id”, with the dictionary index of this snip, 1, placed in

 b250 . This demonstrates the general approach of the various context algorithms: a specific

 algorithm is designed to optimise the compression based on assumed data format, but the

 algorithm can always handle data which is not compliant to the format, as long as the

 general file format rules (as defined in the file format specification—e.g., the VCF or SAM)

 are not violated.

 The third ID value, rs123, is similarly decomposed with the index of the already existing

 “LOOKUP rs” snip, 0, placed in b250 and the numeric value in local .

 The built-in Container algorithm

 A Segmenter may define Container snips.

 We saw some examples of Container snips above. Here we take a closer look at how a

 Container snip is formed.

 A Container snip is one that contains 0 or more repeats of a collection of items, collectively

 called a record:

 - All elements of an array have the same structure—each is a record of items

 - The items are defined by their context

 - Each item within a record might be of a different type and its values go into a specific

 context.

 - Each item may have prefix—the same prefix is used for this item in all records

 - Each item and the entire record might have a one or two character separator. The

 same separator is used for all records.

 Note that the Container snip only defines the structure of data; the values themselves of

 each item are stored in their respective contexts. These values may themselves be

 Container snips, enabling the ability of genozip to define data formats recursively.

 Let’s look at an example—the SA:Z optional tag in SAM:
 SA:Z:chr1,1000,+,151M,10,2;chr2,2000,-,151M,10,2

 This tag is defined in REF as as an array of records:

 “SA:Z:(rname ,pos ,strand ,CIGAR ,mapQ ,NM ;)+”

 In this case of SA, the Container snip will look like this:

 (prefix=”SA:Z:”, repeats=2, (@RNAME,’,’), (@POS,’,’), (@STRAND,’,’), (CIGAR,’,’),

 (@MAPQ,’,’), (NM:i,’;’))

 This Container snip contains a prefix, and 2 repeats of 6 items each. The first 5 items have a

 ‘,’ separator and the 6th has a ‘;’ separator. The decompressor reconstructing this snip will

 reconstruct the data by querying these six contexts (@RNAME, @POS, @STRAND,

 CIGAR, @MAPQ and NM:i), twice for each, as well as insert the prefix separators in the

 appropriate places.

http://samtools.github.io/hts-specs/SAMtags.pdf

 In this case, @RNAME, @POS, @STRAND and @MAPQ are contexts that are shared

 between the SA:Z, OA:Z and XA:Z tags in SAM. CIGAR is shared with the primary CIGAR

 field of SAM, an NM:i is shared with the NM:i tag in SAM.

 The Container snip logic is extremely flexible in its ability to represent different types of data.

 The number of items in a Container snip as well as the number of repeats and the

 separators is in no way fixed; indeed, every individual snip can be defined as needed.

 The built-in Compound Field algorithm

 A segmenter may use this algorithm to decompose a string value into logical components,

 by breaking it at predefined separators. The number of subfields is variable, and each

 occurrence may have a different number of subfields.

 This context algorithm is used for the QNAME field in SAM and the Description lines in

 FASTQ and FASTA.

 The Compound Field is built on top of a Segmented snip: it creates contexts for each

 subfield, and results in a Segmented snip with one record and all subfields. The Container

 snip itself is stored in the main context, while each subfield is stored in its own subfield

 context.

 Let’s look at an example: a QNAME field in the first two lines of a SAM file:
 A00488:21621:1078

 A00488:21766:1078

 When processing each one of these values, the Compound Field algorithm splits this string

 by the separator which is ‘:’ (colon) in this case. Each component is then placed in its ordinal

 Q*NAME context, with * being 0 for the first component, 1 for the second etc (we used the

 numerals 0-9 followed by A-Z). It then places a Container snip in the QNAME context:

 The first value A00488:21621:1078 causes 4 contexts to update:

 Q0NAME.dictionary ← ‘A00488’ Q0NAME.b250 ←0 (index into the dictionary)

 Q1NAME.dictionary ← ‘ 21621 ’ Q1NAME.b250 ←0

 Q2NAME.dictionary ← ‘ 1078 ’ Q2NAME.b250 ←0

 QNAME.dictionary ← CONTAINER (repeats=1, (Q0NAME,’:’), (Q1NAME,’:’), (Q2NAME, ‘’))’

 QNAME.b250 ← 0 (index into the dictionary)

 The second value A00488:21766:1078 causes 4 contexts to update:

 Q0NAME.b250 ← 0 (identical to previous line, index into an existing snip in the dictionary)

 Q1NAME.dictionary ← ‘ SELF_DELTA 145 ’ Q1NAME.b250 ←1 (delta vs previous line)

 Q2NAME.dictionary ← ‘ SELF_DELTA 0 ’ Q2NAME.b250 ←1 (delta vs previous line)

 QNAME.b250 ← 0 (Container snip is identical to previous line, i.e., same index)

 Note that in the common case where the entire file has QNAME data of the same format, we

 will have only one one item (one Container snip) in the QNAME context dictionary, and the

 entire QNAME b250 will be a run of 0’s, compressing to a trivial size. Similarly, the other

 components also typically compress very well either because they are frequently identical

 between consecutive lines, or a small delta between consecutive lines.

 The built-in Special Snip mechanism

 In most contexts, the Segmenter (i.e. compression side) forms snips with one of the built-in

 algorithms, therefore, no code is required on the Reconstructor (i.e. decompress) side that is

 specific to this context. This gives us flexibility of evolving genozip by improving how we

 compress various contexts by coding the Segmenter only, allowing older genozip

 decompressors to still correctly reconstruct the new files.

 However, in a few cases the desired algorithm is specific to the data component at hand,

 and cannot be generalised—as described above for the INFO/AC field in VCF. In these

 cases, we create a “ Special snip ” that redirects the Reconstructor to execute a special

 algorithm. This requires code in both the Segmenter and Reconstructor.

 A Special snip contains the ID of the algorithm, and optionally parameters of the algorithm.

 Two C functions implementing the logic of any particular special snip must be provided: one

 for segmenting during, and the other for reconstructing during decompression, and the

 special snips must be declared in the header file of their data type (eg vcf.h, sam.h etc).

 When a Special Snip algorithm is defined by a Segmenter, the Segmenter need not use it for

 all lines. Indeed, for any particular data component, the segmenter may choose to store a

 Special Snip for some lines and it may store data directly for other lines. This is commonly

 done when we expect , based on our knowledge that a value of a field may be expressible by

 a formula of data in other fields and/or external data. The segmenter will check for any

 particular line, whether our formula is indeed correct for the data of that line—and if it is,

 store the Special Snip providing the information needed by the Special Snip’s reconstructor

 function to reconstruct the data—or whether our formula is not correct for this line, in which

 case the segmenter can just store the data as is.

 Full list of contexts used, by file type

 Table S4: List contexts by data (file) type. Each data type as a default set of contexts
 listed in this table. Additional contexts may be created to store optional fields (INFO and
 FORMAT fields in VCF, Optional fields in SAM/BAM etc).

 Name Snip local use

 SAM

 RNAME As-is. Used for both RNAME and RNEXT
 fields.

 -

 QNAME Container: Compound field -

 Q?NAME Components of compound field:
 If numeric

 SELF_DELTA
 Else

 As-is

 FLAG As-is TEXT: Singleton snips

 POS POS algorithm as described above UINT32: POS values if too
 distant from previous POS
 for delta

 MAPQ As-is TEXT: Singleton snips

 CIGAR As-is TEXT: Singleton snips

 PNEXT OTHER_DELTA POS delta UINT32: PNEXT value if too
 distant from POS for delta

 TLEN if a non-zero value that is the negative of
 the previous line: “ Δ -”
 Else if tlen>0 and pnext_pos_delta>0 and
 seq_len>0: SPECIAL (TLEN, tlen -
 pnext_pos_delta - seq_len)
 Else : As is

 TEXT: Singleton snips

 OPTIONAL Container—one item per SAM tag TEXT: Singleton snips

 SQBITMAP - BITMAP: 0 if the base
 should be taken from the
 reference, 1 if it should be
 taken from NONREF (used
 for SEQ and E2:Z)

 NONREF - TEXT: Based that differ from
 the reference
 (used for SEQ and E2:Z)

 GPOS - UINT32: Position within the
 reference
 (used for SEQ and E2:Z)

 STRAND - BITMAP: 1 if forward, 0 if
 reverse complement
 (used for SEQ and E2:Z)

 QUAL - TEXT: QUAL data or
 DOMQUAL: data
 (used for QUAL and U2:Z)

 QDOMRUNS - UINT8: Dom run lengths if
 DomQual algorithm is used
 (used for QUAL and U2:Z)

 SA:Z Container—array of: (@RNAME, @POS,
 @STRAND, CIGAR, @MAPQ and NM:i)

 TEXT: Singleton snips

 OA:Z Container—array of: (@RNAME, @POS
 @STRAND, CIGAR, @MAPQ and NM:i)

 TEXT: Singleton snips

 XA:Z Container—array of: (@RNAME, @POS,
 @STRAND, CIGAR and NM:i)

 TEXT: Singleton snips

 @RNAME As-is (a subfield of SA/OA/XA) TEXT: Singleton snips

 @POS - UINT32: numeric values (a
 subfield of SA/OA/XA)

 @STRAND As-is for SA,OA ; sign of POS for XA TEXT: Singleton snips

 @MAPQ As-is (a subfield of SA/OA) TEXT: Singleton snips

 NM:i As-is—shared between NM:i tag and NM
 values within SA,OA,XA

 TEXT: Singleton snips

 MD:Z If seq_len implied by MD:Z is identical to
 seq_len implied by CIGAR:
 SPECIAL (MD , value where final number is
 replaced with ‘*’). For example: 119C31
 → 119C* . In many cases there will be just
 a number that equals the seq_len which
 will be replaced ‘*’, thereby making a highly
 compressible b250 .
 Else : As-is

 TEXT: Singleton snips

 BD:Z
 BI:Z

 If the length is equal to seq_len:
 The data is stored in local of BD_BI
 context, with each two bytes representing
 one byte from BD and one byte which is
 the delta between the byte from BD and the
 corresponding byte from BI.
 The BD and BI Snips themselves are:
 SPECIAL (BD_BI)

 BI data (either delta vs BD
 or As-is)

 Else : As-is

 AS:i If seq_len >= value
 SPECIAL (AS, seq_len - value)
 Else
 As is

 TEXT: Singleton snips

 Numeric
 array tags *:B

 Container—one item, repeats=array_len TEXT: Singleton snips

 All other
 SAM tags

 As-is TEXT: Singleton snips

 EOL As-is End of line—either ‘\n’ (Unix-style) or
 ‘\r\n’ (Windows-style)

 TEXT: Singleton snips

 VCF

 CHROM As-is -

 POS POS algorithm as described above. Used
 for both the POS field and the INFO/END
 tag

 UINT32: POS values if too
 distant from previous POS
 for delta

 ID ID algorithm as described above UINT32: numeric
 component of ID

 REFALT If --reference / --REFERENCE is used:
 If REF = reference value, set REF to ‘-’
 If ALT = reference value, set ALT to ‘-’

 If ALT is a single base (i.e. SNP) that is the
 common ALT of REF (A ↔G; C↔T), set ALT
 to ‘+’

 If either ALT or REF are ‘+’ or ‘-’
 Special (REFALT, REF, ALT)

 Else
 As-is

 TEXT: Singleton snips

 QUAL As-is TEXT: Singleton snips

 FILTER As-is TEXT: Singleton snips

 INFO Prefix followed by Container:

 Prefix is the INFO string including the tag
 names, ‘=’ and ‘;’ but excluding the values

 Container contains an item (context) for
 each INFO tag which has a value
 (repeats=1)

 Example: “AC=1;AN=2;MYFILTER”
 “AC=;AN=;MYFILTER
 Container (repeats=1, (AC,’’), (AN,’’))”

 TEXT: Singleton snips

 INFO/SVLEN If a SVLEN is negative and equal to
 POS-END

 Special (SVLEN)
 Else

 As-is

 TEXT: Singleton snips

 INFO/AC If AC = AN * AF
 Special (AC)

 Else
 As-is

 TEXT: Singleton snips

 INFO/END Alias of POS

 All other
 INFO tags

 As-is TEXT: Singleton snips

 FORMAT As-is TEXT: Singleton snips

 FORMAT/GT Container with one item, and
 repeats=ploidy, with item separator being
 the phase character (‘/’ or ‘|’).

 The haplotype data is stored in GT.local , as
 a matrix of lines x haplotypes. The matrix
 padded as needed to the maximum ploidy
 in this vblock, or in case of missing
 samples or lines in the vblock without GT.
 This matrix is then compressed at the
 compression stage with a specific codec,
 either hapmat (REF) or gtshark (REF)

 FORMAT/DP If equal to INFO/DP
 OTHER_DELTA (INFO/DP, 0)

 Else
 As-is

 -

 FORMAT/
 MIN_DP

 OTHER_DELTA (FORMAT/DP,
 DP-MIN_DP)

 -

 FORMAT/GL If largest probability value can be
 calculated from the other values:

 Remove the largest probability value
 Else

 As-is

 -

 All other
 sample
 subfields

 As-is There is no b250 or local
 sections for sample data;
 b250 data is stored for all
 subfields together in a
 special genotype section as
 described in REF

 EOL As-is End of line—either ‘\n’ (Unix-style) or
 ‘\r\n’ (Windows-style)

 TEXT: Singleton snips

 GVF

 SEQID As-is -

 SOURCE As-is TEXT: Singleton snips

 TYPE As-is TEXT: Singleton snips

 START POS algorithm as described above. UINT32: START values if
 too distant from previous
 START for delta

 END POS algorithm as described above, with
 OTHER_DELTA vs START

 UINT32: END values if too
 distant from START for delta

 SCORE As-is TEXT: Singleton snips

 STRAND As-is TEXT: Singleton snips

 PHASE As-is TEXT: Singleton snips

 ATTRS Same as VCF INFO TEXT: Singleton snips

 ATTRS/ID POS algorithm UINT32: ID values if too
 distant from START for delta

 ATTRS/
 Dbxref

 ID algorithm UINT32: numeric
 component of ID

 ATTRS/Varia
 nt_effect

 Container with repeats as appears in the
 value, and 4 items: V0arEff, V1arEff,
 V2arEff, ENSTid

 TEXT: Singleton snips

 ATTRS/sift_p
 rediction

 Container with repeats as appears in the
 value, and 4 items: S0iftPr, S1iftPr, S2iftPr,
 ENSTid

 TEXT: Singleton snips

 ATTRS/
 polyphen_pre
 diction

 Container with repeats as appears in the
 value, and 4 items: P0olyPhp, P1olyPhp,
 P2olyPhp, ENSTid

 TEXT: Singleton snips

 ATTRS/
 variant_pepti
 de

 Container with repeats as appears in the
 value, and 3 items: V0arPep, V1arPep,
 ENSTid

 TEXT: Singleton snips

 ENSTid ID algorithm UINT32: numeric
 component of ID

 V?arEff
 S?iftPr
 P?olyPhp
 V?arPep

 As-is TEXT: Singleton snips

 ATTRS/Refer
 ence_seq

 As-is (also used to store Variant_seq
 and ancestral_allele)

 TEXT: Singleton snips

 ATTRS/
 Variant_seq

 Alias of ATTRS/Reference_seq

 ATTRS/ance
 stral_allele

 Alias of ATTRS/Reference_seq

 All other
 ATTRS tags

 As-is TEXT: Singleton snips

 EOL As-is End of line—either ‘\n’ (Unix-style) or
 ‘\r\n’ (Windows-style)

 TEXT: Singleton snips

 23andMe

 CHROM As-is -

 POS POS algorithm as described above. UINT32: POS values if too
 distant from previous POS
 for delta

 ID ID algorithm UINT32: numeric
 component of ID

 GENOTYPE - TEXT: 2 characters per
 genotype

 EOL As-is End of line—either ‘\n’ (Unix-style) or
 ‘\r\n’ (Windows-style)

 TEXT: Singleton snips

 FASTQ

 CONTIG As-is -

 DESC Container: Compound field TEXT: Singleton snips

 D?ESC Components of compound field:
 If numeric

 SELF_DELTA
 Else

 As-is

 E1L
 E2L
 E3L
 E4L

 As-is End of line for each one of the 4 txt
 lines that make up a FASTQ logical line

 TEXT: Singleton snips

 SQBITMAP - Same as in SAM

 NONREF - Same as in SAM

 GPOS - Same as in SAM

 STRAND - Same as in SAM

 QUAL - Same as in SAM

 QDOMRUNS - Same as in SAM

 FASTA

 CONTIG As-is (first component of description) -

 DESC Container: Compound field TEXT: Singleton snips

 D?ESC Components of compound field:
 If numeric

 SELF_DELTA
 Else

 As-is

 LINEMETA Special snip containing instructions on how
 to reconstruct a contig or part of a contig in
 this vblock

 TEXT: Singleton snips

 SEQ - TEXT: sequence

 COMMENT - TEXT: comment lines

 GENERIC

 DATA - All data

 PHYLIP

 ID - SEQUENCE: ID data

 SEQ - SEQUENCE: SEQ data

 EOL As-is End of line (Unix / Windows) TEXT: Singleton snips

 SI.3. Optimisations

 Genozip, by default, is strictly lossless. However, it also offers optimisations that modify the

 data—modifications that are designed to be harmless for typical downstream analysis but

 significantly improve the compression ratio. The user may activate all optimisations with

 --optimise (or --optimize or -9) or alternatively, only specific optimisations with their

 respective command line options listed in Tables S5.

 Table S5: Optimisations. Options that can be used with genozip that modify the data to
 make it more compressible. --optimise (or --optimize) combines all these options

 Command line File
 types

 Algorithm

 --optimize-sort VCF
 GVF

 INFO (VCF) and ATTRS (GVF): Within each line, tags
 are sorted alphabetically

 --optimize-PL VCF PL: Phred values of over 60 are changed to 60

 --optimize-GP VCF GP: Numbers are rounded to 2 significant digits

 --optimize-VQSLOD VCF VQSLOD: Rounded to 2 significant digits

 --optimize-QUAL SAM
 FASTQ

 QUAL (SAM, FASTQ) and U2:Z (SAM): quality phred
 scores are binned, an similar to Illumina binning, but
 extended

 --optimize-ZM SAM ZM:B: Negatives are changed to zero, and positives
 are rounded to the nearest 10

 --optimize-DESC FASTQ Replaces the description line with
 '@filename:read_number'

 --optimize-Vf GVF Variant_freq: Rounded to 2 significant digits

 SI.4. Compression against a reference and the Genozip Aligner

 Overview

 Genozip provides the ability to compress against a reference genome, in four cases:

 a. FASTQ files

 b. Unaligned SAM files

 c. Aligned SAM files

 d. VCF files (REF and ALT fields)

 The reference is used in two distinct ways: in cases c and d, the file contains the position in

 the reference file, and we simply compare the file data to the reference data at the position

 provided. In cases a and b, the file does not contain positional information regarding the

 location of a particular read, and we use the Genozip Aligner to generate this position. In

 some cases where SAM files contain lines with and without POS information, we may

 compress the lines relying on the POS information where it is provided, and use the Genozip

 Aligner where it is not.

 Most (if not all) aligners currently available have the objective of finding the true location an

 actual DNA fragment had in the original DNA molecule prior to the sequencing process. In

 contrast, the Genozip Aligner doesn’t attempt to find the true location of a read, all we need

 to find is a location in the reference file that is significantly similar to the read so that we can

 use this similarity for better compression. This subtle difference in objective allows us to

 create an algorithm that is radically different from traditional aligners, trading off positional

 accuracy for speed.

 The algorithm is divided into two:

 1. Processing of a FASTA file into a reference file with genozip --make-reference .

 This step needs to be run only once, and the resulting reference file may be used to

 compress subsequent data files of the same species. The resulting reference file,

 distinguished by an extension .ref.genozip , contains mostly sections of two types

 REFERENCE and REF_HASH which shall be described below.

 2. Compressing a data file against a reference file with either genozip --reference

 or genozip --REFERENCE. In the former the reference file needs to be provided to

 genounzip when decompressing, while in the latter the needed parts of the

 reference are stored as part of the compressed file, so the reference file is not

 needed for genounzip. This is particularly useful when binding together (i.e.

 compressing into a single genozip file) multiple files for delivering to a customer, as

 the cost in file size of storing the reference is amortised across multiple data files,

 and the customer doesn’t need to worry about dealing with a reference file.

 The REFERENCE data

 When generating a reference file with genozip --make-reference fasta-file.fa a

 REFERENCE section is outputted for each vblock of FASTA data processed. The division of

 the fasta file into vblocks is constrained so that each vblock contains data from only a single

 contig—possibly the whole contig if it is short enough to fit in a vblock .

 The REFERENCE data is simply a 2-bit representation of the FASTA data, where ‘A’ and ‘a’

 are represented by 00, ‘C’ and ‘c’ by ‘10’ (1) ; ‘G’ and ‘g’ by ‘01’ (2) ; ‘T’ and ‘t’ by ‘11’ (3). Any

 other character contained in the FASTA data, including ‘N’, is represented by 00 as well.

 Every four characters are fit into a 8-bit byte, and the section is further compressed with

 lzma .

 Note regarding bit notation: throughout Genozip, we store bits in bit arrays. These bit arrays

 are made out of 64 bit words, which is the native word size in most modern CPUs. When

 describing these bit arrays in this paper, we do so in two equivalent ways:

 1. Little Endian: thinking of the bit array as a string of bits corresponding to a string of

 nucleotides—we write it e.g. ‘ACG’ as ‘001001’—enclosed in a single quote.

 2. Big Endian: we can also think of the bit array as a binary number. Consistent with the

 normal way of describing numbers, we start with the most significant bit(without

 quotes, and prefixed with 0b) 0b100100 in this example, which is 36 in decimal.

 We also store for each contig its GPOS (short for Global Position), a 32-bit unsigned integer

 that starts from 0 for the first contig, and is set for each subsequent contig to be higher than

 the (GPOS + length) of the previous contig.

 The Genozip Aligner uses GPOS for describing the position of reads in the reference rather

 than (contig, pos).

 We chose to store GPOS in an unsigned 32-bit integer, thereby limiting our Genozip Aligner

 to the first 4 Gbp of a reference. This is sufficient for single-species references commonly

 used today. For example, GRCh38 contains about 3.2 Gbp.

 In the future, we might want to support references larger than 4 Gbp, in particular

 multi-species references that might be useful in metagenomics, which will require GPOS to

 be longer than 32 bits. Genozip already treats all position data (POS and GPOS) as 64-bit

 integers internally, so this could be relatively easily supported, but with the cost being

 achieving slightly worse compression ratios as GPOS data is also contained in genozip

 files of data files compressed using the Genozip Aligner.

 The REF_HASH data

 The second big chunk of data generated when generating a reference file with genozip

 --make-reference fasta-file.fa is REF_HASH data. This is a pyramid of

 num_layers= 4 hash tables, of levels [0, 3], where each hash table contains 2 28- layer entries.

 Each entry is a 32-bit unsigned integer, which will contain a particular GPOS, or remains at

 the initial value 0xffffffff if not used.

 Figure S2: ref_hash tables. Layer 0 is attempted first, and if it is occupied, progressively

 higher layers are utilised

 The ref_hash tables are created by a single traversal of the reference data described above,

 from gpos =0 to the last GPOS value:

 create_ref_hash:

 Initialise all ref_hash table entries to 0xffffffff

 Foreach locus gpos in reference which is 11 (i.e. ‘G’ or ‘g’) {

 If base at (gpos +1) is not also 11 {

 Let idx ← value of the next 28 bits (i.e. 14 bases) following the G

 Insert (idx , gpos)
 }

 }

 Insert (idx , gpos) :
 If (ref_hash[0][idx] == 0xffffffff) then ref_hash[layer][idx] ← gpos
 Else If (ref_hash[1][idx] == 0xffffffff) then ref_hash[layer][idx] ← gpos
 Else If (ref_hash[2][idx] == 0xffffffff) then ref_hash[layer][idx] ← gpos
 Else If (ref_hash[3][idx] == 0xffffffff) then ref_hash[layer][idx] ← gpos

 Else if (random chance of 25%)

 ref_hash[random(0 to 3)][idx] ← gpos

 Notes:

 - The notation ref_hash[layer][idx] means the ref_hash table at layer layer , at the

 index idx where only the needed least significant bits of idx are used (28 bits for level

 0 down to 25 bits for level 3).

 The resulting 4 ref_hash tables are compressed with lzma and written to the genozip

 reference file.

 Compressing aligned SAM data

 When compressing aligned SAM data (i.e. a SAM line for which we have the RNAME and

 POS), we use the reference data in the reference file, however we don’t need the ref_hash
 tables and the GPOS data.

 We process the data into the following data structures:

 ● SQ_BITMAP context: a bit array for which we have 1 bit for each base in the

 sequence which according to the line’s CIGAR string consumes both Query and

 Reference as defined in the SAM spec REF page 8. The bit will be one if the

 decompressor should copy this base from the reference and 0 if it should get it from

 NONREF.

 ● NONREF context: a character array that stores all the bases that are different from

 the reference or that are not one of ‘A’,’C’,’G’,’T’.

 ● REF_IS_SET: a bit array that contains one bit for each base (2 bits) in reference .
 The bit is 1 if and only if the value of reference at this location will be needed for

 reconstructing the data during genounzip . It is used only in case of --REFERENCE

 (i.e. not --reference), to determine which parts of the reference should be written to

 the file.

 The SAM segmenter, when segmenting a particular line within a vblock of SAM data,

 traverses the SEQ data according to the CIGAR data:

 Foreach base in SEQ:

 Let cigar be the Op in CIGAR string covering base (as defined in REF):
 If cigar ∈ { ‘M’, ‘=’, ‘X’ }

 If (base == reference [RNAME,POS(base)])
 SQ_BITMAP ← 1

 REF_IS_SET [RNAME,POS(base)] ← 1

 Else

 SQ_BITMAP ← 0

 NONREF ← base
 Else if cigar ∈ { ‘I’, ‘S’ }

 NONREF ← base

https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88

 Notes:

 - POS (base) is the POS value of base calculated from the POS value in the line, and

 the CIGAR string, relative to the position of the base in the SEQ string

 - Assignment to SQ_BITMAP and NONREF means adding one value at the end of the

 array

 Compressing VCF data (REF and ALT fields) with a reference

 When compressed without a reference, we store the REF and ALT data together (separated

 by a tab character) in the REFALT context. We do this as they are obviously correlated and

 hence storing them together results in better compression than storing them in separate

 contexts.

 We the user specifies a reference (using --reference or --REFERENCE) we do the

 modify the string stored in the context in the following way:

 If REF or ALT is the same base as in (CHROM,POS) in reference , we store ‘-’

 instead of the base.

 If ALT is the common_snp (REF), then we store ‘+’ instead of the base.

 Notes:

 - common_snp: A↔G ; C↔T

 - Since we don’t force the user to use the same reference for compressing as used for

 generating the VCF, we can’t assume the value of the REF field is the same as in

 reference . However, we expect this to be the usual case. In this case, all the REF

 values will be replaced with ‘-’

 - We also set REF_IS_SET exactly as described above for aligned SAM compression

 The effect of this is to make the b250 data of the REFALT context a lot more compressible

 due to both the reduction of the dictionary size as well as the abundance of the “-\t+” word.

 The significance of this algorithm on the overall VCF compression ratio depends on the

 significance of the REFALT contribution to the file’s information content. In files that don’t

 contain any samples or INFO data, the REFALT data tends to be a major contributor to the

 information content, while in files that are rich in INFO data and contain many samples with

 multiple subfields, the contribution of REFALT information to the file’s information content will

 be minor.

 Compression of FASTQ sequence data and SEQ fields in unaligned lines in SAM data

 For a read sequence data (which we will refer as SEQ hereinafter) for which we don’t have

 alignment information, as is the case in FASTQ and unaligned lines of a SAM file, we use

 the REF_HASH data to find the a gpos value which represents the beginning of a region of

 the reference that we choose to compress against. We attempt to find a reference region

 identical to the sequence at hand, or with a small amount difference.

 When loading the reference data from the reference file, we store two copies of it in

 memory—one forward copy and one reverse complement copy.

 Notes:

 - We do not attempt to find the region with the absolutely smallest amount of

 difference, however this is very often the outcome nevertheless, in particular in the

 common case where there is only a single region in the genome with which the SEQ

 aligns reasonably well.

 - We do not handle insertions and deletions (Indels), resulting in reads which contain

 Indels typically aligning well only to the longest sub-read segregated by Indels.

 However, since typically insertion and deletions appear only in a small percentage of

 the reads, this has minimal effect on the compression ratio.

 - When comparing sequences to the reference , we compare to both the forward and

 the reverse complement references. The gpos value stored is the lowest gpos of a

 base, which is the first base in case SEQ aligns to the forward reference, and the last

 base in case it aligns to the reverse complement.

 - In SAM, It is possible that a vblock contains both aligned and unaligned reads. In this

 case, we will compress each read with the appropriate algorithm, resulting in the

 SQ_BITMAP and NONREF contexts containing data used to compress both types of

 lines.

 - Since the Genozip Aligner algorithm does not handle Indels, it will not generate good

 compression ratios for reads created using long read sequencing technologies, such

 as PacBio SMRT or Oxford Nanopore, that are rich in erroneous Indels. These files

 will compress better if the data is first aligned into a SAM/BAM file using an

 appropriate aligner, and then compressed as an aligned SAM.

 We process the data into the following data structures:

 ● SQ_BITMAP context: a bit array for which we have 1 bit for each base in the

 sequence at hand. The bit will be one if the decompressor should copy this base

 from the reference and 0 if it should get it from NONREF. Note that unlike

 compressing aligned SAM reads described above, here we have no CIGAR.

 ● NONREF context: a character array that stores all the bases that are different from

 the reference or that are not one of ‘A’,’C’,’G’,’T’.

 ● GPOS context: the context local data stores unsigned int GPOS values, one for each

 read. This is the lowest GPOS value of the sequence at hand as explained above.

 ● STRAND context: the context local data stores a bitmap, one bit for each read, which

 is 1 if this read is to be reconstructed against the forward reference and 0 if it is to be

 reconstructed against the reverse complement reference.

 ● REF_IS_SET: used exactly as described for aligned SAM compression.

 align (SEQ) :

 Foreach base in SEQ:

 If base is a ‘G’ and the preceding base is not a ‘G’:

 score, gpos = score_match (SEQ, location of ‘G’ in SEQ, ‘ forward’)

 If score is the highest so far for SEQ

 best_match ← score, gpos, ‘ forward’

 If base is a ‘C’ and the next base is not a ‘C’”

 score, gpos = score_match (SEQ, location of ‘G’ in SEQ, ‘reverse’)

 If score is the highest so far for SEQ

 best_match ← score, gpos, ‘ reverse-complement’

 score_match (seq , ‘G’ location, strand) :
 idx ← numeric_value(14 nucleotides following the G)

 gpos ← ref_hash[idx]
 ref ← copy of the region of reference or reverse-complement-reference
 (determined by strand) which is aligned to seq according to gpos

 Implementation details: at this point seq and ref are two bit arrays of identical length.

 Every two bits represent a nucleotide (0=A,1=C,2=G,3=T). The arrays are

 implemented as 64-bit words, so that each 64 bit word contains (up to) 32

 nucleotides, starting at the first bit of the first word, and with the redundant bits of the

 last word set to zero.

 score ← length (seq) - count_1_bits (seq bitwise-XOR ref)

 Note: count_1_bits counts the number of bits that are ‘1’ in a bit array

 Example :

 SEQ=” CACTCT G TTCGCAGCAGTCTG CGCCCTTACACAAAATG”

 Consider the 14 nucleotides following the G: for example:
 “CACTCT G TTCGCAGCAGTCTG CGCCCTTACACAAAATG”

 Or, the 28 bits representing the same 14 nucleotides:

 ‘1111100110000110000111101101’ which is numerically

 0b1011011110000110000110011111 (in binary) or 192,438,687 (in decimal).

 gpos ← refhash[192,438,687] = 500000000 (example)

 500000000 in this example is the coordinate in the whole-genome reference of the G
 Consider the reference segment around this G, so that it is aligned to SEQ:

 SNP SNP DEL

 REF:”CA T TCT G TTCGCAGCAGTCTG CGCCCTT T CACAAA G AT”

 Using 64-bit words, bitwise-XOR the reference segment and SEQ
 SEQ:’1000 10 111011 01 1111100110000110000111101101 10011010101111 00 100010 000000 001101 ’

 REF:’1000 11 111011 01 1111100110000110000111101101 10011010101111 11 100010 000000 010011 ’

 XOR:’00000 1 00 11 000000 0000000 11111 ’

 WORD #1 WORD #2

 score = seq_len_in_bits - count_1_bits(XOR) = 74 - 8 = 66

 Alternative contig names

 When compressing a file using a reference, if a contig name that appears in the file does not

 appear in the reference, we attempt to search for it using alternative names:

 ● A number eg “22” is also searched with a “chr” prefix, “chr22”

 ● “M” and “chrM” are also searched as “chrMT”

 The alternative contig names are searched and assigned during compression, and the

 mapping is stored in the genozip file in the SEC_ALT_CHROMS section.

 Discussion

 The algorithm scores candidate matches (alignments) by doing bitwise operations on entire

 64-bit words containing 32 bases each. The entire scoring takes only a few CPU operations

 per 64-bit word, as little as 16 (depending on the CPU). This is the key component that

 makes the Genozip Aligner extremely fast.

 Note that rather than counting the number of mismatching bases, we count the number of

 mismatching bits, and select the “match” (i.e. the reference locus) with the least mismatching

 bits. This is done with a single CPU instruction per 64-bit word on most modern CPUs (for

 example, popcntq on Intel CPUs). As a result, we don’t necessarily select the match with

 the least mismatching bases. However, in practice, the majority of reads will have exactly

 one locus which provides a good match which will be selected, and in the case where we

 have two or more loci that are all good matches (i.e., very low mismatching bases) and the

 one we select, with the lowest mismatching bits, is not the one with the lowest mismatching

 bases; this minute difference would be insignificant for compression purposes.

 Sensitivity to Indels: since we compare whole bit arrays, we don’t handle Indels. This usually

 means that the match selected for a read that contains an Indel would be the one matching

 the largest sub-read, as segregated by Indels. For typical short-read data, the percentage of

 reads containing Indels is sufficiently small that this approach results in very good

 compression ratios. However, long read technologies available at this time often generate

 reads that are enriched in Indels that are not correct biologically but are rather artifact of

 limitations of these technologies. This algorithm does not work well with this type of long

 read data, and we advise users to first align the data using an appropriate aligner, and then

 compress the resulting SAM (or BAM) file, which would use the aligned SAM algorithm

 described earlier.

 Computational complexity: Since the number of loci we test is proportional to the length of

 the read (we test all ‘G’ bases for forward matching and all ‘C’ bases for reverse complement

 matching), and each test compares the entire read to the candidate region in the reference;

 the complexity of aligning a SAM or FASTQ file is O(r 2 n) with r being the read length and n

 being the number of reads.

 Optimisation: if the command line option --fast is specified, we test every 5th base to see

 if it is a ‘G’ or ‘C’ rather than every base. On our test data, this resulted in a speed up of the

 alignment by about 4X at the cost of a 20% worse compression ratio.

 SI.5. Compression of FASTQ paired end read files

 Genozip provides a command line option --pair that further optimises compression in case

 of paired-end FASTQ files, such as Illumina. When using this option, every two consecutive

 input files on the command line are assumed to be a pair.

 This optimisation consists of:

 1. For each component of the Description (i.e. the D?ESC contexts): if the value of the

 second paired file is identical to the first, store the snip LOOKUP_PAIR instead of the

 value. For most D?ESC contexts (all but one in Illumina files), the entire b250 data

 would be a run of LOOKUP_PAIR compressing to a trivial size.

 2. For GPOS in the second paired file: we store it as a PAIR_DELTA snip vs the GPOS

 of the first file.

 3. For STRAND (in the second pair file): we store ‘1’ if the second paired read direction

 (i.e. forward or reverse complement) is identical to that of the first paired read, and 0

 otherwise. This is expected to result in long, highly-compressible runs.

 SI.6. Specific codecs

 acgt : A specific codec for compression of nucleotide sequences

 We observe that lzma compresses nucleotide sequence data well, however it is very slow.

 acgt is a new codec we present here, specifically for nucleotide sequences, which is about

 25X faster on our test data at a cost of only 5% worse compression than lzma . We use acgt

 for compressing NONREF data in FASTQ as well as aligned and unaligned SAM, unless the

 user specifies --optimize-SEQ or --optimize in the command line, in which case we

 compress NONREF with lzma .

 acgt compression is designed for nucleotide sequence data in which ‘A’, ‘C’, ‘G’ and ‘T’

 characters make up the vast majority of the data, while other characters, such as ‘N’, are

 rare. The source data is expected to be textual ASCII data.

 acgt splits the data into two streams, each which is outputted to a separate section in the

 genozip output file.

 The first stream, CODEC_ACGT, is simply the sequence encoded in 2-bit as we do in

 REFERENCE explained above: ‘A’/’a’ are encoded as 0b00, ‘C’/’c’ as 0b01, ‘G’/’g’ as 0b10,

 ‘T’/’t’ as 0b11 and everything else as 0b00. The size of the data is ¼ of the original size since

 we’re converting each byte into 2-bits. We then further compress the CODEC_ACGT with

 lzma .

 The second stream, CODEC_XCGT, is used only if we have one or more characters that are

 not ‘A’, ‘C’, ‘G’ or ‘T’. This is an array of bytes of the same length as the source data. We set

 it to 0 for every character that is ‘A’, ‘C’, ‘G’ or ‘T’ in the source data, 1 for every character

 that is ‘a’, ‘c’, ‘g’ or ‘t’ (i.e. lowercase) and we leave other characters as they are in the

 source data for all other characters. We then compress CODEC_XCGT with bz2 . Since the

 bz2 algorithm contains run-length encoding, and since we expect the vast majority of

 characters to be 0, this compresses to a very small size in real world cases we tested.

 hapmat : A specific codec for compression of a haplotype matrix

 For FORMAT/GT data in VCF files, we use the algorithm described in REF to compress a

 matrix, who’s lines represent variants, columns represent haplotypes (here, we loosely use

 the term haplotype to describe the column of a specific sample at a specific location in the

 GT value, even if the sample is not phased), and each entry in the matrix is a single

 character representing the allele. genozip supports alleles up to 99, where alleles 10 and

 above are rewritten as a single ASCII character. This algorithm has been now implemented

 as a codec:

 - For each haplotype column, count the number of alternate alleles (allele 1 to 99)

 - Sort the haplotype columns by the count alternate alleles

 - Transpose the sorted matrix

 - Compress the transposed matrix with bzip2

 The results of this compression are stored in two contexts:

 GT_HT.local stores the compressed matrix

 GT_HT_INDEX.local stores the permutation index that describes how to un-sort the matrix

 back to its origin.

 We note that there are better algorithms for compression of a haplotype matrix based on

 Positional Burrows Wheeler Transform, as described in (REF), and this might be an area for

 improvement in the future.

 DomQual : a specific codec for compression of base quality scores

 Compression of sequences of base quality scores, as they appear in FASTQ files and in the

 QUAL field of SAM files, are often a harder problem than that of nucleotide sequences,

 because there is no reference data to which we can compare base quality scores. Further,

 different sequencing technologies and even different versions or options selected within the

 same sequencing technology, generate quality scores with radically different patterns.

 Here, we introduce a novel algorithm to address a specific pattern of quality scores that is

 very common. This pattern is defined by having a single quality score that dominates the

 sequence.

 In Genozip, we decide for each particular vblock of FASTQ or SAM data whether to use

 DomQual by sampling the first 500 quality scores (i.e. characters) of the base quality data of

 each of the first 5 lines of the vblock (in FASTQ a vblock line means a 4 textual lines of the

 FASTQ file). If there is a single character that accounts for at least 50% of the number of

 characters sampled, then we use DomQual for the base quality data in this vblock , and set

 dom to the dominant character of the sample.

 In real-world data we tested, DomQual will usually triggered in Illumina files with quality

 binning (REF) where the dominant character is usually ‘F’, Pac Bio CCS data where the

 dominant character is usually ‘~’, and quality data that has been binned with the genozip

 option --optimize-QUAL or --optimize .

 We consider the entire base quality data of the vblock as a single long sequence of quality

 scores. DomQual segments this sequence data into the local data of two contexts:

 ● QUAL context contains a copy of the sequence, with two changes:

 1. All dom characters removed

 2. For each remaining character (which by definition is a non- dom): if this character is

 NOT preceded in the source sequence by a dom run (which we hereby define as one

 or more consecutive dom characters), a byte with the value of 1 is inserted before

 this non- dom in QUAL.

 ● QDOMRUNS context contains a length of each dom run , the sub-sequence of the

 source sequence containing one or more dom characters, preceding each non- dom
 character, except those we marked with 1. These are represented by a single byte

 indicating the length (between 1 and 254). If the length of the dom run is more than

 254, then we add 1 or more 0xff characters each, representing a length of 254.

 Example: 0xff 0xff 0x08 indicates a dom run of length 254 + 254 + 8 = 516.

 The local data of both the QUAL and QDOMRUNS contexts is compressed with lzma .

 Testing with Illumina binned quality data, we see that bz2 achieves superior compression to

 lzma , and is faster than it. On our test data, the DomQual codec achieves 12% better

 compression than bz2 , and is slower than bz2 by a factor of 3.5X.

 If the user specified the command line option --fast , we compress these contexts with bz2

 instead of lzma . On our test data, this resulted in a compression that is about 3% better and

 about 10% faster than bz2 on the source quality sequence.

 SI.7. Random access, subsetting & pipeline integration

 Genozip contains capabilities to allow genozip files to be directly integrated in analysis

 pipelines, as well as some internal subsetting capabilities.

 genozip supports reading and writing txt files from a pipe, for example:

 cat myfile.fq | genozip - --output myfile.fq.genozip

 genocat myfile.fq.genozip | analysistool

 Some analysis tools require random access to the txt file and hence cannot accept an input

 file on a pipe. In these cases, it would be necessary to genounzip the file first.

 genocat is a tool for viewing the data within genozip file, and potentially subsetting it. The

 subsetting command line options are summarised in Table S6, more details are available by

 running genocat --help .

 Random access (--regions) is implemented by a two global sections in the genozip file:

 1. The SEC_RANDOM_ACCESS section is included in all genozip files of file formats on

 which --regions is supported. It contains an array for a record for each vblock (the

 list of contigs appearing in the vblock) , and for each contig, the first and last position

 within the contig appearing in the vblock. The contents of this section may be viewed

 using the --show-index command line option.

 2. The SEC_REF_RAND_ACC section is included in reference files, and also in genozip

 files that are compressed with --REFERENCE . contains a similar array, but with a

 record for each SEC_REFERENCE section.The contents of this section may be viewed

 using the --show-ref-index command line option.

 When using genocat --regions , genozip uses the information from these two sections to

 refrain from reading from disk vblocks, SEC_DICT sections and SEC_REFERENCE sections

 that contain no data from the requested regions.

 Table S6: genocat options. A partial list of the options of genocat - those options that
 subset the file. See genocat --help for a full list of options.

 genocat option File formats Action

 --downsample
 <rate>

 All Include only one line (or read for FASTQ)
 per rate lines.

 --regions
 < region-list >

 VCF, SAM, FASTA,
 GVF, 23andMe,
 reference file

 Include or exclude specific contigs and/or
 positions

 --samples
 < sample-list >

 VCF Include or exclude specific samples

 --grep <string> FASTQ, FASTA Show only reads (FASTQ) or contigs
 (FASTA) whose describe contains the string

 --drop-genotypes VCF Exclude the FORMAT and samples
 columns

 --no-header All Exclude the header lines

 --header-only All Include only the header lines

 --header-one VCF, FASTA In VCF, includes only the last of the header
 lines (with the field sane sample names).
 In FASTA, includes only the first component
 of the description line (until the first space).

 --GT-only VCF Exclude all sample subfields, except for GT

 --sequential FASTA Output the sequence of each contig as a
 single line, removing any newlines

 --list-chroms VCF, SAM, FASTA,
 GVF, 23andMe,
 reference file

 List the names of the chromosomes
 (contigs)

 SI.8. Tools for obtaining statistics and metadata

 Genozip contains tools for obtaining additional information about the contents of files. These

 are summarized below. More details can be obtained by running genozip --help -f .

 Table S7: Statistics and metadata options, provide deep insight into the data in the files
 being processes, as well as the execution flow of the Genozip algorithms

 Option Availability:
 Z genozip
 U genounzip
 C genocat
 L genols

 Action

 --show-time ZUCL
 Show profiling information of where execution time
 was spent

 --show-memory ZUCL Show memory consumption information

 --show-stats Z Show compression performance by context

 --SHOW-STATS Z Show detailed context information

 --show-alleles Z (VCF only) show alleles

 --show-dict ZUC Show all dictionary fragments

 --show-one-dict
 <context> ZUC

 Show dictionary fragments of context

 --list-chroms ZUC List the names of the chromosomes (contigs)

 --show-gt-nodes Z
 (VCF only) show the GT values matrix
 (transposed)

 --show-b250 ZUC Show contents of all b250 sections (textual)

 --show-one-b250
 <context> ZU

 Show contents of one b250 section (textual)

 --dump-one-b250
 <context> ZUC

 Dump the contents of a b250 as it appears in the
 file (binary)

 --dump-one-local
 <context> ZUC

 Dump the contents of a local as it appears in the
 file (binary)

 --show-headers ZUC
 Show a subset of the contents of the genozip file
 section headers as they are read or written

 --show-index ZUC
 Show the contents of the SEC_RANDOM_ACCESS
 section

 Continued from previous page

 Option Availability:
 Z genozip
 U genounzip
 C genocat
 L genols

 Action

 --show-reference ZUC
 Show the ranges included the SEC_REFERENCE
 sections

 --show-ref-seq ZUC Show the reference sequences

 --show-ref-index ZUC
 Show the contents of the SEC_REF_RAND_ACC
 section

 --show-ref-hash ZUC Show details of SEC_REF_HASH sections

 --show-ref-contigs ZUC Show the details of the reference contigs

 --show-ref-alts ZUC Show contents of SEC_ALT_CHROMS section

 --show-gheader ZUC
 Show list of sections in this file, as it appears in the
 SEC_GENOZIP_HEADER section

 --show-vblocks ZUC Show vblock headers as they are read / written

 --show-threads ZUC Show thread dispatcher activity

 --show-hash Z
 See the values of the parameters used for
 calculating the hash table size for each context

 --show-aliases ZUC Show the SEC_DICT_ID_ALIASES section

 --debug-memory ZUCL Show memory buffer allocations and destructions

 --debug-progress ZUC See data related to the progress indicator

 --show-reference ZUC Show details of the SEC_REFERENCE sections

 --show-is-set
 <contig> UC

 Shows the contents of SEC_REF_IS_SET
 sections of contig

 --show-bgzf ZUC Show details of BGZF blocks

 --show-containers UC Show flow of container reconstruction

 --show-txt-contigs ZUC Show contigs from the SAM/BAM header

 --show-mutex ZUCL Show locks and unlocks of a particular mutex

 --show-digest ZUC Show MD5 and Adler32 updates

 source: the data in this table is based on the output of genozip --help=dev

 SI.9. CPU scalability: synchronisation and thread management

 Genonzip threads are managed by a thread dispatcher. The dispatcher is used both by the

 main I/O thread loop as described in the architecture diagram, as well as for various

 secondary tasks throughout the code. The dispatcher dispatches raw vblocks to threads,

 collects processed vblocks upon thread completion, and updates the progress indicator.

 The maximum number of concurrent threads is either set by the user with the --threads

 command line option, or is set to the available number of logical cores as retrieved from the

 operating system.

 Actually utilizing a large number of cores is a challenge, as genozip contexted-oriented

 compression implies that the dictionary of each context is potentially grown by every vblock

 which contributes values to a dictionary that were not observed before. When multiple

 threads are running in parallel each attempting to update dictionaries, the synchronisation

 required (for example, blocking on a mutex while updating a dictionary), if implemented

 naively, would severely limit the number of threads that can actually run concurrently.

 In addition to the dictionaries themselves, genozip also maintains a hash table per context,

 which allows an efficient search when a compute thread is searching for a dictionary index of

 a particular snip. These hash tables also evolve with each snip that is added to a dictionary.

 To address this, genozip context manager maintains, for each context, a z _ context . When a

 compute thread for a specific vblock starts, the z _ context and associated hash tables are

 cloned into the vblock context. This cloning doesn’t actually copy memory, but rather points

 z _ context and hash tables, and includes various parameters to limit this compute thread’s

 access to only the parts of the data that were available at the point in time of the

 cloning—effectively creating a read-only replica of the z _ context at this point in time, but

 without the expensive operation of copying memory.

 As the compute thread processes the vblock, it adds new discovered snips to its own private

 fragments, and its own hash tables.

 After the vblock processing is complete, the context manager (running in the compute

 thread) merges this context’s data back into the zfile data. Since multiple compute threads

 running in parallel may have added the same snip, these merges needed to be serialised

 and make sure that the snips added were not already added by a previous compute thread.

 For this synchronisation, we use mutexes in the most sparing way possible, and opting for

 carefully crafted sequences of CPU-atomic operations, therefore not blocking threads, in lieu

 of mutexes, wherever possible.

 SI.10. Security

 DNA data is legally considered in many jurisdictions as “personally identifiable information”

 (PII) and as such is required to be secured.

 Genozip provides built-in security that is easy to use.

 When the --password is used, the genozip file is encrypted with the standard AES

 encryption, using the a 256-bit encryption key is generated for each section, derived from the

 password, the vblock number (vb_i) and the section type.

 For padding the last block of each section to the 16-byte AES block size, a secure padding

 derived from the MD5 hash of the last 100 bytes of the section.

 Accessing this file using genounzip or genocat is made possible only if the same

 password is provided.

 In addition, using genozip with the --md5 or --test options calculates the MD5 signature

 of the original txt file(s). Then, when using genounzip with --md5 , the MD5 signature of

 the actual output file is compared to the MD5 stored in the genozip file, to ensure the file was

 not tampered with intentionally or accidentally.

 Note that the MD5 calculated is that of the underlying textual file. For example, when

 compressing a .sam.gz or .bam file, the MD5 will be that of the underlying .sam file.

 SI.11. Genozip file format

 The genozip file consists of sections , where each section is of a particular section type and

 consists of a header and a body . The header is a structure determined by the section type,

 while the body contains the actual data.

 All numeric data is stored in Big Endian.

 Genozip supports binding multiple files together into a single genozip file. We will refer to the

 compressed data of these each txt files as a component of the genozip file.

 First to appear in the genozip file, are sections related to the component data. Each

 component consists of a SEC_TXT_HEADER section followed by 1 or more vblocks . Each

 vblock consists of a SEC_VB_HEADER section and all the contexts of this vblock which

 include any number of SEC_B250 and SEC_LOCAL sections. In the case of VCF, these may

 also include SEC_VCF_GT_DATA, SEC_VCF_PHASE_DATA, SEC_VCF_HT_DATA and

 SEC_VCF_HT_GTSHARK sections.

 Following the components, we have global sections that apply to the entire file.

 As the last section of the file, we have the SEC_GENOZIP_HEADER section. This contains the

 header, a body which is the list of sections in this genozip file and their offsets, and, unlike

 other sections, this section also has a footer which appears at the very end of the file, and

 contains the offset of the beginning of the section.

 When a genozip file is read (for example during genounzip), the footer is consulted first for

 the the offset of the SEC_GENOZIP_HEADER section, then the SEC_GENOZIP_HEADER is read,

 and then the required sections from the rest of the file, based on the section offsets that are

 in the body of the SEC_GENOZIP_HEADER section.

 Below is an example of the sections of a VCF file. This is a very small VCF file containing

 3494 lines of the VCF header data, followed by 6 data lines, each with just a handful of INFO

 tags, one sample and a few sample subfields. The list below is taken from the output of

 running genozip with the --show-gheader command line option.

 Real-world genozip files can often contain tens of thousands of sections.

 The full list of section types and format of the header of each appear in
 https://github.com/divonlan/genozip/blob/master/sections.h

 The first section is the component header, whose body is the VCF txt file header. This small genozip

 file contains only one component, but genozip supports multiple components.
 0. SEC_TXT_HEADER vb_i=0 offset=0 size=22277

 First (vb_i=1) vblock header. This is a small VCF file that contains only one vblock

 1. SEC_VB_HEADER vb_i=1 offset=22277 size=93

 2. SEC_B250 CHROM vb_i=1 offset=22370 size=46

 3. SEC_B250 POS vb_i=1 offset=22416 size=46

 4. SEC_B250 ID vb_i=1 offset=22462 size=46

 5. SEC_B250 REF+ALT vb_i=1 offset=22508 size=46

 6. SEC_B250 QUAL vb_i=1 offset=22554 size=46

 7. SEC_B250 FILTER vb_i=1 offset=22600 size=46

 8. SEC_B250 INFO vb_i=1 offset=22646 size=46

 9. SEC_B250 FORMAT vb_i=1 offset=22692 size=46

 10. SEC_B250 AF vb_i=1 offset=22738 size=41

 11. SEC_B250 AN vb_i=1 offset=22779 size=41

 12. SEC_LOCAL AC vb_i=1 offset=22820 size=41

 13. SEC_VCF_GT_DATA vb_i=1 offset=22861 size=40

 14. SEC_VCF_HT_DATA vb_i=1 offset=22901 size=40

 This is the global area of the file. It starts with dictionary fragment sections—each vblock may or may

 not contribute a dictionary fragment to each context.
 15. SEC_DICT CHROM vb_i=0 offset=22941 size=999

 16. SEC_DICT POS vb_i=1 offset=23940 size=43

 17. SEC_DICT ID vb_i=1 offset=23983 size=42

 18. SEC_DICT REF+ALT vb_i=1 offset=24025 size=44

 19. SEC_DICT QUAL vb_i=1 offset=24069 size=42

 20. SEC_DICT FILTER vb_i=1 offset=24111 size=47

 21. SEC_DICT INFO vb_i=1 offset=24158 size=133

 22. SEC_DICT FORMAT vb_i=1 offset=24291 size=50

 23. SEC_DICT AF vb_i=1 offset=24341 size=42

 24. SEC_DICT AN vb_i=1 offset=24383 size=42

 25. SEC_DICT AC vb_i=1 offset=24425 size=45

 26. SEC_DICT DP vb_i=1 offset=24470 size=42

 27. SEC_DICT RGQ vb_i=1 offset=24512 size=42

 This file was compressed with --REFERENCE and therefore contains the relevant parts of the

 reference data. First, in the list of all contigs in the reference file, followed by the reference data itself.
 28. SEC_REF_CONTIGS vb_i=0 offset=24554 size=2665

 29. SEC_REFERENCE vb_i=1 offset=27219 size=60

 A list of context aliases
 30. SEC_DICT_ID_ALIASES vb_i=0 offset=27279 size=44

 These are an index describing the contigs and their position range within each vblock allowing for

 efficient random access, such as when subsetting with genocat --regions

 31. SEC_RANDOM_ACCESS vb_i=0 offset=27323 size=52

 32. SEC_REF_RAND_ACC vb_i=0 offset=27375 size=52

 The genozip header
 33. SEC_GENOZIP_HEADER vb_i=0 offset=27427 size=758

 SI.12. Detailed results data

 Compressing against raw files

 We evaluated the performance of Genozip by comparing it to several widely adopted

 genomic data compression tools using a set of standard benchmarking files provided by the

 National Institute of Standards and Technology's Genome in a Bottle (GIAB) project (Table

 S8).

 Variant Call Format (VCF)

 To benchmark Genozip’s VCF compression performance, we compressed the GIAB v3.3.2

 NA12878 single-sample VCF and compared the results against several other popular

 compression tools – gzip (Meyering) , pigz (Adler, 2014) , BCF compression implemented in

 BCFtools (Li, 2011a) , and bzip2 (Seward, 1996) .

 Sequence Alignment Map (SAM)

 To benchmark Genozip’s SAM compression performance, we used the 30X downsampled

 BAM file from GIAB that was converted to SAM format using samtools v1.9 (Li et al. , 2009) .

 Genozip performance was compared to CRAM compression, both with and without

 sequencing quality binning (8 bins), obtained using Scramble v1.14.11 (Bonfield, 2014) , and

 also BAM compression (implemented in samtools v1.9; (Li et al. , 2009)) and pigz (Adler,

 2014) . For the reference-based compression methods (i.e. CRAM and genozip --reference)

 we used a slightly modified version of human reference GRCh37 that was created using the

 steps described by Luca Santuari (https://github.com/GooglingTheCancer

 Genome/sv-callers/wiki/Building-the-b37-human-decoy-reference-genome).

 FASTQ

 FASTQ is a widely used text format that stores sequence data and the corresponding

 qualities for each nucleotide. We used Bazam (Sadedin and Oshlack, 2019) to generate

 paired-end FASTQ files from the same BAM file that was used for the VCF benchmark. We

 compared Genozip against several widely used file compression methods – i.e. gzip, pigz,

 unaligned BAM, and unaligned CRAM – as well as alignment-based methods that take

 advantage of sequence similarity to reduce data redundancy (providing similar comparisons

 to the tools tested in the SAM benchmarks).

 The tests were conducted on a Linux machine with 56 cores.

https://paperpile.com/c/VrkJXc/ASJbJ
https://paperpile.com/c/VrkJXc/Ov1bV
https://paperpile.com/c/VrkJXc/Ddw5j
https://paperpile.com/c/VrkJXc/VOXyZ
https://paperpile.com/c/VrkJXc/yInCq
https://paperpile.com/c/VrkJXc/eVISB
https://paperpile.com/c/VrkJXc/yInCq
https://paperpile.com/c/VrkJXc/Ov1bV
https://paperpile.com/c/VrkJXc/Ov1bV
https://github.com/GooglingTheCancerGenome/sv-callers/wiki/Building-the-b37-human-decoy-reference-genome
https://github.com/GooglingTheCancerGenome/sv-callers/wiki/Building-the-b37-human-decoy-reference-genome
https://paperpile.com/c/VrkJXc/9DzPv

 In Table 2 and Figure 3 we describe the compression ratio achieved by Genozip vs other

 tools, as well as wall time observed.

 Table S8: Benchmark files. Uncompressed files used for benchmarking compression of
 raw (i.e. uncompressed) files against other common tools.

 File type File size Source

 VCF 128 MB ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/releas
 e/NA12878_HG001/latest/GRCh37/

 SAM 147 GB ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
 NA12878/NIST_NA12878_HG001_HiSeq_300x/

 FASTQ 2 x 112 GB Derived from SAM file using Bazam (Sadedin and Oshlack,
 2019)

 Table S9: Raw-file benchmark results. Results of compression of uncompressed genomic
 files with genozip and other commonly used tools for each file format.

 Tool Compression Ra�o Compress �me Decompress t.
 VCF 1,807,059,769
 .vcf

 pigz .vcf.gz 113,699,782 15.9 1.9 sec 3.1 sec
 bc�ools .bcf 153,988,419 11.7 23.82 sec 21.02 sec
 bzip2 .vcf.bz2 71,358,351 25.3 260.05 sec 43.37 sec
 genozip .vcf.genozip 53,819,306 33.6 7.1 sec 6.53 sec

 SAM 510,942,582,641
 pigz .sam.gz 148,212,447,723 3.4 00:12:40.3 00:34:17.4
 samtools .bam 157,455,536,282 3.2 00:23:16.7 00:29:48.5
 scramble -9 .cram 109,288,249,883 4.7 00:27:58.4 00:17:34.4
 genozip -e .sam.genozip 88,329,235,177 5.8 00:33:41.1 00:27:55.3

 Op�mized cram:
 scramble -9B .cram (-B) 85,327,476,246 6.0 00:48:56.1 00:19:10.4

 Op�mized genozip -9
 .sam.genozip
 (-9) 67,589,616,986 7.6 00:30:51.1 00:20:38.0

 FASTQ 238,958,297,328
 pigz .fq.gz 57,228,032,622 4.2 00:14:34.5 00:34:17.4

 bwa mem | samtools
 sort | scramble -9 .cram 44,248,758,235 5.4 03:42:54.0 00:48:24.7
 genozip -e .fq.genozip 35,098,350,704 6.8 00:16:40.1 00:08:31.7

 genozip -9e
 .fq..genozip
 (-9) 12,837,612,728 18.6 00:08:52.3 00:05:26.4

ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/latest/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/latest/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/
https://paperpile.com/c/VrkJXc/9DzPv
https://paperpile.com/c/VrkJXc/9DzPv

 Compressing against already-compressed files

 Table S10: Genozip on already compressed files - Files used

 File type File size Source

 .fastq.gz 3.6 GB
 (R1+R2)

 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG
 001_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R1_001.fastq.gz
 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG
 001_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R2_001.fastq.gz

 .bam 147 GB ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST_
 NA12878_HG001_HiSeq_300x/RMNISTHS_30xdownsample.bam

 .cram
 (lossless)

 102 GB Generated from the BAM file with:
 scramble -9

 .cram
 (binned)

 79.5 GB Generated from the BAM file with:
 scramble -9 -B

 .vcf.gz 128 MB ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_H
 G001/latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC
 -Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vc
 f.gz

 Table S11: Genozip on already compressed files. Results of compression with Genozip of
 already-compressed files in formats in common use in research and medical settings. These
 results are also reflected in Figure 2 in the main text.

 Source file Genozip command
 --optimise added for
 the Optimised test

 Genozip lossless Genozip optimised

 File File size Size Factor Size Factor

 .fastq.gz 3.60 GB genozip --pair
 $file-R1 $file-R2
 -e $ref-file

 1.24 GB 2.9 X 0.63 GB 5.7 X

 .bam 147 GB genozip $file
 -e $ref-file

 82.3 GB 1.8 X 62.9 GB 2.3 X

 .cram
 (lossless)

 101 GB genozip $file
 -e $ref-file

 82.9 GB 1.2 X 63.6 GB 1.6 X

 .cram
 (binned)

 79.5 GB genozip $file
 -e $ref-file

 63.6 GB 1.2 X 63.6 GB 1.2 X

 .vcf.gz 128 MB genozip $file
 -e $ref-file

 51 MB 2.5 X 50 MB 2.6 X

 Compressing BAM vs compressing CRAM

 In this test, we compared several aspects of Genozip’s performance - compression ratio,

 time, memory and CPU usage, of compressing a CRAM file vs compressing the same data

 in BAM format. The tests were run on the same machine as the previous tests - one with 56

 cores and over 700GB of RAM.

 The CRAM file used was a 14GB file downloaded from

 ftp:// ftp.sra.ebi.ac.uk/vol1/run/ERR324/ERR3241754/HG00731.final.cram and the BAM file

 used was a 37GB GB file generated from this CRAM file with samtools view . The results

 are in Table S12.

 Genozip compresses CRAM files by using samtools view to first convert CRAM to SAM.

 In the decompression step, we piped genounzip --stdout into samtools view

 -OCRAM to recreate the CRAM file. The wallclock time in Table S12 represents the combined

 operation Genozip and samtools , while the CPU time and memory reflect only Genozip’s,

 and not samtools’, resource consumption.

 In contrast, Genozip compresses and decompresses BAM files natively, without relying on

 samtools or htslib . Consequently, Genozip is free to scale to a much larger number of

 CPUs and complete the processing faster. The higher memory consumption in the BAM

 case (Table S12) is a reflection of Genozip’s ability to scale to a larger number of CPU

 cores, and hence threads, in this case. The higher CPU time is mostly due to Genozip also

 decompressing the BAM BGZF compression (in genozip) and recreating BAM in

 compressed BGZF format (in genounzip) which it does not do in the case of CRAM,

 because the plain SAM data is piped in from or piped out to samtools .

http://ftp.sra.ebi.ac.uk/vol1/run/ERR324/ERR3241754/HG00731.final.cram

 Table S12: Compressing CRAM vs compressing BAM. Results showing Genozip’s
 performance when compressing CRAM and BAM files containing identical data. With BAM,
 Genozip can scale to a larger number of CPUs.

 CRAM -
 compress

 BAM -
 compress

 CRAM -
 decompress

 BAM -
 decompress

 Orig file size 14482707829 38828072041

 Compressed
 size

 13190514012 13530076092

 Ratio 1.1 X 2.9 X

 Wall clock time 14m 9s 7m 57s 13m 40s 5m 52s

 CPU time 19017 sec 23211 8076 sec 18188

 Max memory 14.5 GB 20.8 GB 10.8 GB 12.4 GB

 CPUs utilized 22.4 48.7 9.8 51.6

 Chapter 3

 Genozip Dual-Coordinate VCF format enables efficient genomic analyses and
 alleviates liftover limitations

 Divon Lan 1, *, Gludhug Purnomo 1,2 , Ray Tobler 1,2,3, † , Yassine Souilmi 1,4, † , Bastien

 Llamas 1,2,4,5,†, *

 1 Australian Centre for Ancient DNA, School of Biological Sciences, The Environment

 Institute, Faculty of Sciences, The University of Adelaide, Adelaide SA 5005, Australia
 2 Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of

 Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
 3 Evolution of Cultural Diversity Initiative, Australian National University, College of Asia and

 the Pacific, Canberra, ACT 0200, Australia
 4 National Centre for Indigenous Genomics, Australian National University, Canberra, ACT

 0200, Australia
 5 Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, SA 5000,

 Australia

 † Equal contribution

 * Correspondence: DL (divon@genozip.com) and BL (bastien.llamas@adelaide.edu.au)

 Abstract
 We introduce Dual Coordinate VCF (DVCF), a file format that records genomic variants

 against two different reference genomes simultaneously and is fully compliant with the

 current VCF specification. As implemented in the Genozip platform, DVCF enables

 bioinformatics pipelines to seamlessly operate across two coordinate systems by leveraging

 the system most advantageous to each pipeline step, simplifying bioinformatics workflows

 and reducing file generation and associated data storage burden. Moreover, our

 benchmarking of Genozip DVCF shows that it produces more complete, less erroneous, and

 less biased translations across coordinate systems than two widely used alternative tools

 (i.e., LiftoverVcf and CrossMap).

 Availability and Implementation: Genozip is free for academic use. Documentation is

 available on https://genozip.com/dvcf.html . Genozip user manual is available on

 https://genozip.com/manual.html . The source code is available on

 https://genozip.com/source.html . The scripts for reproducing the benchmarks are available

 on https://github.com/divonlan/genozip-dvcf-results .

 Main
 Genomic sequencing and assembly technologies continue to evolve at a rapid pace,

 enabling the creation of new and more accurate reference genomes for various species [1] .

 While improved human reference genomes are welcomed by researchers and clinicians,

 updated assemblies inevitably result in altered coordinates that can hinder their adoption as

 it is common that legacy datasets and bioinformatics software required for some analyses

 often still use the older coordinate system. Accordingly, for species such as humans where

 multiple reference genomes (or versions thereof) are available, analytical pipelines often

 need to alternate between two coordinate systems to accommodate these limitations.

 To facilitate workflows involving data mapped against different reference genomes, software

 such as CrossMap [2] and GATK LiftoverVcf [3] translate genomic coordinates across the

 assemblies using a chain file [4] . Variants, typically encoded in a VCF (Variant Call Format)

 [5] file, are then lifted over from one coordinate system to the other, resulting in file

 duplication (i.e., one for each coordinate system). The liftover step is typically lossy, with

 variants discarded due their coordinates lacking alignment in the chain file as well as

 limitations of the liftover software used [1, 6] . Moreover, errors may be introduced due to

 incorrect chain file mapping of variants as well as incorrect annotation conversion, along with

https://genozip.com/dvcf.html
https://genozip.com/manual.html
https://genozip.com/source.html
https://github.com/divonlan/genozip-dvcf-results
https://paperpile.com/c/YOUZPG/aDe7
https://paperpile.com/c/YOUZPG/thYL
https://paperpile.com/c/YOUZPG/oaDt
https://paperpile.com/c/YOUZPG/S8Xl
https://paperpile.com/c/YOUZPG/BnZG
https://paperpile.com/c/YOUZPG/BnZG
https://paperpile.com/c/YOUZPG/aDe7+qiJN

 the introduction of potential biases due to the concentration of discarded variants in certain

 genomic regions.

 Here we introduce an implementation of the Dual Coordinate VCF (DVCF) [7] format in the

 Genozip platform [8, 9] , an extensible compression software. DVCF is an extension to the

 standard VCF format compliant with the VCF 4.3 specification, that includes variants with

 coordinates pertaining to two different genome assemblies simultaneously (Fig. S1). Using

 DVCF files, researchers can alternate between coordinate systems according to their needs

 – without creating duplicate VCF files – thereby reducing workflow complexity and alleviating

 demands on time, computational resources, and disk storage burden (the latter being further

 improved by Genozip’s efficient data compression algorithms; Tables S16-17). Importantly,

 the DVCF file format is independent of its implementation in Genozip, allowing its

 implementation in any relevant bioinformatics software, thereby maintaining interoperability

 between tools.

 We refer to the process of converting a VCF file to the DVCF format as lifting. In order to lift

 a VCF file to DVCF, Genozip requires three inputs: two reference files – one defining the

 Primary coordinates as used in the input VCF, and the other defining the Luft coordinates to

 be lifted over (“ luft ” is a neologism representing an alternative past-participle of “lift”) – and a

 chain file defining alignments between the two reference assemblies. Once a DVCF file is

 generated, users can render it in either Primary or Luft coordinates by using Genozip’s

 genocat command (see Figs. 1A, S2). Cross-rendering consists of losslessly re-arranging

 the information in the DVCF file to change the coordinate system in which the variants are

 represented. This allows users to seamlessly alternate between coordinate systems

 according to the particulars of their bioinformatic workflow.

 While a DVCF has two possible renditions (Primary and Luft), the DVCF file format is

 carefully designed so that the information contained in each rendition is identical, thereby

 guaranteeing that the cross-rendering process is strictly lossless and invertible. Variants or

 annotations that have representation in only one of the two coordinate systems due to the

 lack of a chain file alignment or limitations of the lifting algorithm are nevertheless still

 represented in both DVCF renditions. The missing variants and annotations are stored in

 VCF header lines and certain INFO annotations, respectively, as defined in the DVCF

 specification (sections 5,6,7 in the specification [7]). Since the DVCF file format complies

 with the VCF standard, any tool that works with VCF files will also work with DVCF files. In

 addition to rendering the complete VCF data, Genozip’s genocat command allows users to

 render specific subsets of data in either coordinate system, as well as perform a wide

https://paperpile.com/c/YOUZPG/44Jl
https://paperpile.com/c/YOUZPG/9r35+UsTw
https://paperpile.com/c/YOUZPG/44Jl

 variety of downsampling and filtering procedures, by drawing upon Genozip’s internal

 indexing facility (see the genocat user manual).

 To compare the performance of Genozip DVCF against two widely used liftover tools, i.e.,

 LiftoverVcf and CrossMap, we conducted a series of benchmarks using publicly available

 human genomic data (Supplementary Information section 2). For each file tested, we used

 the same chain file with all three tools, but nevertheless, each of the three tools produced a

 different lifted VCF file. We systematically investigated the differences in the lifted files

 produced by the three tools, characterising and enumerating errors and biases that result

 from underlying deficiencies in the algorithms of each liftover tool. In other words, we did not

 evaluate the correctness of the chain files, but rather the correctness of the lifting algorithms

 for any given chain file.

 Genozip outperformed both incumbent tools when lifting a set ~19,000 indels, or ~4.1 million

 SNPs from an older version of the human reference (i.e., GRCh 37) to the most recent

 version (i.e., GRCh 38), reducing the proportion of incorrect calls by nine-fold for indels (0.2%

 vs 2.1–2.3%) and 463-fold for SNPs (0.002% vs 1.1%) (Fig. 1B, Tables S1-11). Notably,

 CrossMap also dropped all instances of SNPs where the reference and alternate alleles had

 been switched between the two reference versions (i.e., REF⇄ALT switches, which

 accounted for 0.7% of all 4.1M SNPs), which may introduce biases into downstream

 analyses that leverage SNP diversity patterns due to the highly non-uniform genomic

 distribution of the REF⇄ALT switches (Figs. 1C, S3-4). We also applied the three tools to

 ~970k clinically relevant variants obtained from the ClinVar website [10] and identified

 multiple cases of data corruption introduced by CrossMap and LiftoverVcf, which included

 known pathogenic variants, that are entirely absent from Genozip DVCF (Fig. 1D; Tables

 S13-15).

 In conclusion, the implementation of DVCF within the Genozip software platform provides

 researchers with a user-friendly and flexible tool that facilitates the construction of

 bioinformatic pipelines capable of working across dual coordinate systems. This is essential

 whenever researchers wish to exploit the advantages of working with sequence data aligned

 to the latest version of the reference genome, while still being able to draw upon abundant

 legacy data or tools that use an older reference genome version.

 Genozip DVCF also correctly lifts more variants and eliminates key errors identified in our

 benchmarks of two widely used liftover tools, CrossMap and LiftoverVcf. Failure of these

 latter tools to correctly liftover variants in regions of the genome causally associated with

 phenotypes (Fig. 1D) could negatively impact genetic analyses that rely on regional genomic

https://paperpile.com/c/YOUZPG/eON3

 signals—such as genomic scans for disease-associated and/or selected variants. Moreover,

 liftover errors have documented impacts on variant effect interpretation [6] , which could

 result in important clinically significant variants being overlooked or leading to misdiagnoses

 [1] .

 Overall, DVCF represents a new and fundamentally different approach for working

 concurrently within coordinate systems from two different genome assemblies—a reality that

 many genomics researchers will likely face as improved sequencing technologies lead to

 increasingly complete reference genomes [1] —greatly simplifying bioinformatic workflows

 without compromising the robustness of downstream analytical results. Importantly,

 Genozip’s extensible framework means that further improving DVCF functionality (e.g., by

 including new algorithms to handle liftover errors, or supporting an arbitrary number of

 reference genomes, thereby enabling recording of homologous genes in different species)

 will be an active area of future research.

https://paperpile.com/c/YOUZPG/qiJN
https://paperpile.com/c/YOUZPG/aDe7
https://paperpile.com/c/YOUZPG/aDe7
https://paperpile.com/c/YOUZPG/aDe7

 Figure 1. DVCF command line usage and performance vs. CrossMap and LiftoverVcf. A. Generation

 of primary (Primary) and alternate (Luft) renditions and their integration into a bioinformatics pipeline.

 Commands are shown along the connecting arrows and file names are indicated in blue text. File

 suffixes are automatically generated by genozip. B. When lifting ~4.1M SNPs and ~19k indels from

 GRCh37 to GRCh38 (right and left subpanels, respectively), Genozip DVCF results in substantially

 fewer lost variants (orange bar portions) and eradicates all forms of data corruption (red bar portions)

 (see Tables S1 & S9). C. Genomic distribution of the ~30k SNPs (from a set of ~4.1M SNPs) where

 the reference and alternative allele are switched (i.e. REF⇄ALT allele switches) between human

 reference GRCh37 and GRCh38. While Genozip DVCF correctly lifted all ~30k SNPs, CrossMap

 drops these variants (see Table S9), which may lead to biases in downstream analyses due to the

 genomic clustering of REF⇄ALT allele switches. D. Similar results are observed when lifting a set

 ~970k variants with clinical annotations from GRCh37 to GRCh38 , with CrossMap and LiftoverVcf

 producing many more dropped variants (orange blocks) than Genozip DVCF and also generating

 multiple corrupted variants (red blocks) – including pathogenic and likely pathogenic cases (see

 associated key) – that are entirely absent from Genozip DVCF (see tables S13-15).

 References
 1. Aganezov S, Yan SM, Soto DC, Kirsche M, Zarate S, Avdeyev P, et al. A complete

 reference genome improves analysis of human genetic variation. bioRxiv.

 2021;:2021.07.12.452063.

 2. Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, Wang L. CrossMap: a versatile tool for

 coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7.

 3. Broad Institute. Picard tools. {Broad Institute, GitHub repository}.

 4. Chain Format. https://genome.ucsc.edu/goldenPath/help/chain.html. Accessed 23 Feb

 2022.

 5. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call

 format and VCFtools. Bioinformatics. 2011;27:2156–8.

 6. Ormond C, Ryan NM, Corvin A, Heron EA. Converting single nucleotide variants between

 genome builds: from cautionary tale to solution. Brief Bioinform. 2021.

 https://doi.org/ 10.1093/bib/bbab069 .

 7. Lan D. The variant call format - Dual Coordinate extension (DVCF) specification. figshare;

 2021.

 8. Lan D, Tobler R, Souilmi Y, Llamas B. Genozip - A Universal Extensible Genomic Data

 Compressor. Bioinformatics. 2021. https://doi.org/ 10.1093/bioinformatics/btab102 .

 9. Lan D, Tobler R, Souilmi Y, Llamas B. genozip: a fast and efficient compression tool for

 VCF files. Bioinformatics. 2020;36:4091–2.

 10. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public

 archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2015;44:D862–8.

 Acknowledgements
 D.L. was supported by a scholarship from the University of Adelaide. Y.S. is supported by

 the Australian Research Council (DP190103705). R.T. is an ARC DECRA fellow

 (DE190101069). B.L. was an ARC Future Fellow (FT170100448).

 Conflict of Interest: D.L. intends to receive royalties from commercial users of genozip.

http://paperpile.com/b/YOUZPG/aDe7
http://paperpile.com/b/YOUZPG/aDe7
http://paperpile.com/b/YOUZPG/aDe7
http://paperpile.com/b/YOUZPG/thYL
http://paperpile.com/b/YOUZPG/thYL
http://paperpile.com/b/YOUZPG/oaDt
http://paperpile.com/b/YOUZPG/S8Xl
https://genome.ucsc.edu/goldenPath/help/chain.html.
http://paperpile.com/b/YOUZPG/S8Xl
http://paperpile.com/b/YOUZPG/S8Xl
http://paperpile.com/b/YOUZPG/BnZG
http://paperpile.com/b/YOUZPG/BnZG
http://paperpile.com/b/YOUZPG/qiJN
http://paperpile.com/b/YOUZPG/qiJN
http://paperpile.com/b/YOUZPG/qiJN
http://dx.doi.org/10.1093/bib/bbab069
http://paperpile.com/b/YOUZPG/qiJN
http://paperpile.com/b/YOUZPG/44Jl
http://paperpile.com/b/YOUZPG/44Jl
http://paperpile.com/b/YOUZPG/9r35
http://paperpile.com/b/YOUZPG/9r35
http://dx.doi.org/10.1093/bioinformatics/btab102
http://paperpile.com/b/YOUZPG/9r35
http://paperpile.com/b/YOUZPG/UsTw
http://paperpile.com/b/YOUZPG/UsTw
http://paperpile.com/b/YOUZPG/eON3
http://paperpile.com/b/YOUZPG/eON3

 Contributions
 DL wrote the software and the first draft of the manuscript. BL, RT and YS reviewed and

 edited the manuscript and provided guidance. GP provided feedback that helped improve

 the software.

 Corresponding author

 Correspondence to Divon Lan (divon@genozip.com) and Bastien Llamas

 (bastien.llamas@adelaide.edu.au).

 Supplementary Information
 Supplementary Information

 Supplementary text

 Supplementary Figs. S1-S4

 Supplementary Tables S1-S20

 Genozip Dual-Coordinate VCF format enables
 efficient genomic analyses and alleviates

 liftover limitations

 Supplementary Information

 Divon Lan 1, *, Gludhug Purnomo 1,2 , Ray Tobler 1,2,3,† , Yassine Souilmi 1,4, † , Bastien Llamas 1,2,4,5,†, *

 1 Australian Centre for Ancient DNA, School of Biological Sciences, The Environment Institute, Faculty

 of Sciences, The University of Adelaide, Adelaide SA 5005, Australia
 2 Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological

 Sciences, University of Adelaide, Adelaide, SA 5005, Australia
 3 Evolution of Cultural Diversity Initiative, Australian National University, College of Asia and the

 Pacific, Canberra, ACT 0200, Australia
 4 National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200,

 Australia
 5 Telethon Kids Institute, Adelaide, SA 5000, Australia

 † Equal contribution

 * Corresponding authors: DL (divon@genozip.com) and BL

 (bastien.llamas@adelaide.edu.au)

 Section 1: DVCF Implementation in Genozip 2

 1.1 The DVCF format 3

 1.2 Genozip – a brief overview 5

 1.3 The lift process 5

 1.4 Rendering in Primary or Luft coordinates 6

 1.5 Disk space considerations 7

 Section 2: Benchmark 8

 2.1 Categorizing variants by lift quality 9

 2.2 Indel benchmark 9

 2.2.1 Data preparation 10

 2.2.2 Indel benchmark results summary 12

 2.2.3 REF⇄ALT switch, entire variant mapped, no REF change 13

 2.2.4 Deletion REF⇄ALT switch, REF change 17

 2.2.5 Deletion REF⇄ALT switch with payload in gap 19

 2.2.6 Deletion with payload partially in gap 21

 2.2.7 Insertion with reverse strand 22

 2.2.8 Deletion with reverse strand 25

 2.2.9 REF changed but not REF⇄ALT switch 26

 2.2.10 New allele when REF unchanged 27

 2.2.11 New allele - not quite a REF⇄ALT switch 28

 2.3 SNP benchmark 29

 2.3.1 Data preparation 30

 2.3.2 SNP benchmark results summary 30

 2.3.3 REF⇄ALT switch in SNPs 31

 2.3.4 Annotation update upon strand reversal 33

 2.3.5 IUPACs 35

 2.3.6 REF change, not to ALT, in bi-allelic SNPs when AF<1 36

 2.3.7 REF change in multi-allelic SNPs when AF<1 37

 2.3.8 REF change, not to ALT, in bi-allelic SNPs when AF=1 38

 2.3.9 REF⇄ALT switch proportions 39

 2.4 Benchmark summary 42

 Section 3: ClinVar analysis 43

 3.1 Data preparation 44

 3.2 Genozip analysis 44

 3.3 CrossMap analysis 45

 3.4 LiftoverVcf analysis 47

 3.5 ClinVar benchmark – summary 48

 Section 4: GRCh38 and Telomere-to-Telomere 49

 Appendix: Analysis script output 53

 SI.1. DVCF Implementation in Genozip

 1.1 The DVCF format

 DVCF files are a type of VCF file, compliant with the VCF v4.3 specification, which contain

 information about variants represented in two different coordinate systems. Like any VCF

 file, it consists of meta-information lines prefixed with a double hash (i.e. ##), a header line

 prefixed with #CHROM, and data lines that each contain information about a single variant

 (Figure S1). Importantly, the DVCF specification 6 only defines the DVCF file format and

 does not prescribe liftover algorithms, making it independent of any specific software

 implementation (including Genozip) and we expect other bioinformatics software packages to

 implement DVCF as well, thereby maintaining interoperability between tools. For example,

 existing liftover tools could add a command line option that enables the generation of DVCF

 formatted outputs.

 We refer to the process of converting a VCF file to the DVCF format as lifting. Lifting

 requires information external to the VCF file itself, in a format defined by the

 implementation. The DVCF implementation in Genozip, for example, requires two reference

 files—i.e. the reference file that underlies the coordinate system used in the VCF, and the

 alternate reference file that contains the coordinates to be lifted over—and a chain file

 describing the mapping of variants between these two systems, but future implementations

 could work differently. The coordinate system of the input VCF file is referred to as the

 Primary coordinates, and the lifting process updates this VCF by incorporating the required

 information from the alternate coordinate system, which we refer to as the Luft coordinate

 system (Luft being a term we introduce as an alternative past-participle of Lift).

 Thereafter, a DVCF can be rendered in either Primary coordinates or Luft coordinates, and

 can be cross-rendered from Primary to Luft coordinates and vice versa. We refer to the

 DVCF-format VCF files rendered in the Primary coordinates as the Primary rendition and to

 the corresponding VCF file in the Luft coordinates as the Luft rendition. The coordinate

 system in which a VCF file is rendered (i.e. the coordinates represented in the CHROM and

 POS fields) is referred to as the foreground coordinate system (which may be Primary or

 Luft), with the non-rendered coordinate system being the background coordinate system.

 Crucially, the information present in both foreground and the background coordinate systems

 is present in both renditions: in particular, the CHROM and POS fields are encoded in

 foreground coordinates and the allelic states represented in the REF and ALT fields are

 defined relative to the foreground reference genome. Simultaneously, the background

 coordinate data are encoded in the INFO/LUFT or INFO/PRIM annotation in the Primary or

 Luft rendition respectively (Figure S1, notes 5 and 6) for each variant and also in the meta

 information section (Figure S1, notes 1–5).

 Annotations for some variants may differ between the Primary and Luft renditions – for

 example, annotations that are sensitive to a change in the reference allele (e.g. INFO/AF), or

 to reference file strand reversal (e.g. INFO/BaseCounts) or coordinate changes (e.g.

 INFO/END), will only be correct with respect to the foreground coordinate system.

 Cross-rendering of variants with rendition-specific annotations is handled by Rendering

 Algorithms (or RendAlgs), which are a set of algorithms that convert specific annotations

 between renditions to ensure consistency with the foreground coordinates. Several standard

 RendAlgs are defined in section 6.3 of the DVCF specification and implementation

 developers are encouraged, but not mandated, to use the standard RendAlgs wherever

 possible, but may also develop proprietary RendAlgs.

 There are cases where the tag name itself, rather than the values contained in the annotation,

 differs between renditions—for example, the FORMAT/ADR and FORMAT/ADF tags might

 switch names (ADF becomes ADR and vice versa) in variants that have a reference genome

 strand reversal. Another example of using tag renaming would be in case dropping a

 particular annotation is desired. In this case, the tag name can be prefixed with DROP_. The

 DVCF specification defines three Tag Renaming attributes (see section 6.4 of the DVCF

 specification).

 A key benefit of the DVCF file format design is that cross-rendering consists of simply

 rearranging information that is already present in the DVCF file and transforming affected

 annotations, and therefore this process does not require external information (such as the

 reference sequence or the chain files), making it computationally fast and efficient. Moreover,

 since DVCF files are VCF files, they can be processed in the same manner as traditional VCF

 files using appropriate bioinformatics tools, but provide users with the additional freedom to

 choose which coordinate system to use when executing specific pipeline steps without having

 to create duplicate VCF files, thereby reducing analytical complexity and saving considerable

 disk space (SI section 4).

 A likely outcome of the lifting process is that some variants may only be represented in one

 of the two coordinate systems due to the lack of a specific chain file alignment or liftover

 software limitations. To maintain information identicality across renditions, such

 single-coordinate variants are represented in both renditions, by recording their background

 coordinates in the VCF meta-information (prefixed with either ##primary_only= or

 ##luft_only= in accordance with the coordinate system that the variant is represented;

 see Figure S1, note 1). We refer to such variants as Primary-only or Luft-only variants

 depending on which reference version the variant is represented. In addition, meta

 information lines describing the contigs and reference file of the background coordinate

 system may also be added (DVCF specification section 5.3 and 5.6 ; Figure S1, note 3).

 In conclusion, while a DVCF has two renditions (i.e. Primary and Luft), the DVCF file

 format is carefully designed so that the information contained in each rendition is identical,

 thereby guaranteeing that the cross-rendering between the renditions is a strictly lossless and

 invertible process.

 1 ##primary_only=1 143163348 LN=170280 G A 1066.01

 . AC=1;AF=0.500;AN=2;Lrej=NoMappingInChainFile GT:AD:DP:GQ:PL:FL

 0/1:152,74:1066,0,2824
 2 ##contig=<ID=chr1,length=248956422>

 2 ##reference=file://GRCh38_full_analysis_set_plus_decoy_hla.ref.genozip

 3 ##primary_reference=file://hs37d5.ref.genozip

 3 ##primary_contig=<ID=1,length=249250621>

 4 ##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref

 and alt alleles in the order listed",RendAlg=R>
 4 ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype",RendAlg=GT>

 4 ##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled

 likelihoods for genotypes as defined in the VCF specification",RendAlg=G>
 4 ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for

 each ALT allele, in the same order as listed",RendAlg=A_AN>
 4 ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT

 allele, in the same order as listed",RendAlg=A_1>
 4 ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in

 called genotypes",RendAlg=NONE>
 5 ##INFO=<ID=LUFT,Number=4,Type=String,Description="Info for rendering variant in

 LUFT coords. See

 https://genozip.com/dvcf.html",Source="genozip",Version="12.0.8",RendAlg=NONE >
 5 ##INFO=<ID=PRIM,Number=4,Type=String,Description="Info for rendering variant in

 PRIMARY coords",Source="genozip",Version="12.0.-1",RendAlg=NONE>
 5 ##INFO=<ID=Lrej,Number=1,Type=String,Description="Reason variant was rejected

 for LUFT coords",Source="genozip",Version="12.0.-1",RendAlg=NONE>
 5 ##INFO=<ID=Prej,Number=1,Type=String,Description="Reason variant was rejected

 for PRIMARY coords",Source="genozip",Version="12.0.-1",RendAlg=NONE>

 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SS6004478
 6 chr1 597733 LN=298 A G 263.03 .

 AC=2;AF=1.00;AN=2;PRIM=1,533113,A,- GT:AD:PL 1/1:4,20:263,24,0

 Figure S1 . A small subset of the Luft rendition of our SNP test file (see section 4),

 containing two variants. Notes: 1a Primary-only variant represented in a ##primary_only line.

 2foreground (Luft in this case) coordinate data 3background (Primary) meta-information

 lines are preserved with the prefix primary_. 4INFO and FORMAT meta-information lines

 contain the RendAlg attribute 5Four DVCF INFO tags defined. 6PRIM contains the data

 needed to cross-render to Primary.

https://genozip.com/dvcf.html%22,Source=%22genozip%22,Version=%2212.0.8%22,RendAlg=NONE

 1.2 Genozip – a brief overview

 Genozip is a software platform that stores genomic files in a compressed format. For VCF

 files, compression is typically 2–8 times better than other standard compression tools such as

 gzip and BCF (Lan et al. , 2020) . In Genozip’s implementation of DVCF files, data are stored

 in the Genozip format. Users may render the data in either coordinate system and have the

 option of piping the data through an analytical tool or pipeline before returning the data to

 Genozip format (see Figure 1A). In the following section, we outline the basic commands

 involved in the lifting process and provide a brief description of the algorithms involved in

 cross-rendering between coordinate systems.

https://paperpile.com/c/lUEcVU/JqRG

 1.3 The lift process

 Genozip can lift one or more VCF files into a DVCF using a suitable chain file available

 from Ensembl (https://ftp.ensembl.org/pub/assembly_mapping/) or the UCSC Genome

 Browser (https://hgdownload.soe.ucsc.edu/downloads.html) by invoking the following

 command:

 genozip --chain mychainfile.chain.genozip myvariants.vcf

 This will generate a DVCF file in Genozip format: myvariants.d.vcf.genozip.

 Genozip accepts chain files in the UCSC chain format

 (genome.ucsc.edu/goldenPath/help/chain.html) , which must first be compressed with

 genozip using Primary and Luft reference files:

 genozip --reference primary.ref.genozip --reference

 luft.ref.genozip mychainfile.chain

 Each reference file, in turn, is produced from the relevant reference genome FASTA file:
 genozip --make-reference primary.fa.gz

 During the lift process (i.e. executing genozip --chain), Genozip determines whether it

 is possible to represent each variant in both coordinate systems, with all variants failing this

 process (i.e. rejected variants) being retained as Primary-only variants. A variant may be

 rejected for three reasons: (1) it lacks an alignment in the chain file, or (2) the lifted variant

 has more than two alleles (either because it had more than two alleles in the input VCF file,

 or the Luft REF allele is neither the Primary REF nor ALT allele), or (3) if any of the INFO

 or FORMAT annotations cannot be cross-rendered due to the “Rejected If” condition of their

 RendAlg (see next section). Known cases in which Genozip cannot lift variants are listed in

 genozip.com/dvcf-limitations.html .

https://ftp.ensembl.org/pub/assembly_mapping/
https://hgdownload.soe.ucsc.edu/downloads.html
http://genome.ucsc.edu/goldenPath/help/chain.html
https://genozip.com/dvcf-limitations.html

 1.4 Rendering in Primary or Luft coordinates

 When in the Genozip format, DVCF files may be rendered in Primary or Luft coordinates by

 using either genocat data.vcf.genozip or genocat --luft data.vcf.genozip ,

 respectively (Figure S2). The resulting VCF file is sorted according to its foreground (i.e.,

 rendered) coordinates. Running genozip on the rendered file in either coordinate system

 produces a compressed DVCF file in Genozip format containing identical information.

 In addition to variants becoming single coordinate during the initial lift process, they can also

 become single coordinate when compressing a DVCF rendition with the genozip command

 if (1) new variants were added to the VCF following the initial lifting step and these variants

 lack the INFO/PRIM or INFO/LUFT fields (i.e. they are single-coordinate), or (2) if an

 annotation was added or modified in a way that satisfies its RendAlg’s “Rejected If”

 condition (see next paragraph).

 Since both renditions are DVCF files, each rendition contains all the information needed for

 rendering in either coordinate system. Cross-rendering involves the translation of annotations

 between the Primary and Luft coordinate systems. This process often implicates making

 rendition-specific changes to one or more annotations for some variants, with each annotation

 being handled by a Rendering Algorithm (or RendAlg). RendAlgs are stand-alone algorithms

 that are not tied a priori to specific INFO and FORMAT tags, rather, they are assigned to tags

 using a new RendAlg attribute added to each ##INFO and ##FORMAT meta-information

 line. Thereafter, all INFO and FORMAT annotations (in the VCF data lines) of a specific tag

 will be treated with the RendAlg assigned to that tag. Importantly, Genozip adds the

 RendAlg attribute to each tag’s meta-information line based on its ID and/or Number

 attributes, but only if the RendAlg attribute is not already present. This allows users to assign

 RendAlgs differently than Genozip’s built-in assignments .

 Genozip implements eleven RendAlgs, listed in genozip.com/dvcf-rendering.html , which are

 an implementation of the DVCF standard set of RendAlgs defined in the

 specification6section 6.3; see also genozip.com/dvcf-rendering.html). Each RendAlg is

 comprised of three elements: (1) a trigger; which is the class of event handled by the

 RendAlg, (2) an action which is the effect the RendAlg has on the annotation, and (3)

 “Rejected If” conditions, which describe circumstances in which the designated action cannot

https://genozip.com/dvcf-rendering.html
https://genozip.com/dvcf-rendering.html

 be applied despite the trigger activating, in which case the variant is rejected (i.e., is

 represented as a single-coordinate variant in the DVCF). To illustrate this mechanism,

 consider the A_1 RendAlg which is useful for annotations in fields reporting allele frequency

 information. The A_1 RendAlg trigger is a “REF⇄ALT switch” (i.e., a change of REF allele

 across renditions), its action is to recalculate the value of the annotation as 1 - value, and the

 variant is “Rejected If” the value of the annotation is outside of the range [0,1] or if the

 variant has more than two alleles. By default, Genozip assigns the A_1 RendAlg to the

 FORMAT/AF , INFO/AF , INFO/MLEAF , INFO/LDAF fields and any additional INFO tag that

 begins with AF_ or ends with _ AF (except MAX_AF) . Another example is the RendAlg named

 END that Genozip assigns by default to the INFO/END field. Its trigger event is “Always”

 (i.e., it triggers on all INFO/END annotations in the data), its action is to modify the

 annotation to which it is assigned to maintain the same distance from POS in both renditions,

 whereby the variant is “Rejected If” the position indicated by the annotation and POS are not

 both on the same chain file alignment. A final example is the XREV RendAlg whose trigger

 event is “strand reversal” (as indicated by the chain file alignment) and its action is to reverse

 the elements of an array. Genozip assigns the XREV RendAlg to the INFO/BaseCounts

 field.

 > genocat SS.d.vcf.genozip -H -s 1 -g LN=632 # PRIMARY RENDITION

 1 770568 LN=632 A G 809.01 .

 AC=2;AF=1.00 ;AN=2;BaseCounts=0,0,31,1;DB;DP=32;Dels=0.00;FS=0.000;GC=47.1

 3;HaplotypeScore=0.0000; MLEAC=2;MLEAF=1.00 ;MQ=32.04;MQ0=4;QD=25.28; LUFT=c

 hr1,835188,G,- GT:AD:DP:GQ:PL:FL 1/1:0,31 :31:63: 809,63,0 :N

 > genocat SS.d.vcf.genozip -H -s 1 -g LN=632 --luft # LUFT RENDITION

 chr1 835188 LN=632 G A 809.01 .

 AC=0;AF=0.00 ;AN=2;BaseCounts=0,0,31,1;DB;DP=32;Dels=0.00;FS=0.000;GC=47.1

 3;HaplotypeScore=0.0000; MLEAC=0;MLEAF=0.00 ;MQ=32.04;MQ0=4;QD=25.28; PRIM=1

 ,770568,A,- GT:AD:DP:GQ:PL:FL 0/0:31,0 :31:63: 0,63,809 :N

 Figure S2 . An example of rendering and cross rendering with one variant. The differences

 between the Primary rendition (top command line and output) and Luft rendition (bottom

 command line and output) are highlighted in bold font. Notice that the LUFT and PRIM

 subfields of the INFO field display the information that is used by Genozip to cross-render

 this variant.

 1.5 Disk space considerations

 In addition to needing only a single DVCF file to represent variants in two coordinate

 systems, rather than two separate VCF files, Genozip also stores VCF files using highly

 efficient compression (Lan et al. 2020) . Together, this amounts to significant saving of disk

 space.

 To demonstrate this, we compare the size of our SNP and Indel test files (SI section 1):

 Table S16: SNP file

 Uncompressed .gz compressed Genozip DVCF

 GRCh37 1 999 MB 199 MB 76 MB

 GRCh38 2 1094 MB 175 MB

 Total 2093 MB 374 MB 76 MB

 Compression ratio - 5.6X 27.5X

 1 SS6004478.annotated.nh2.variants.vcf 2 snp.38.gatk.vcf

 Table S17: Indel file

 Uncompressed .gz compressed Genozip DVCF

 GRCh37 1 3961 KB 848 KB 443 KB

 GRCh38 2 4470 KB 777 KB

 Total 8431 KB 1625 KB 443 KB

 Compression ratio 5.2X 19X

 1 indel.37.vcf 2 indel.38.gatk.vcf

https://paperpile.com/c/0bjWze/csDV

 SI.2. Benchmark

 2.1 Categorizing variants by lift quality

 We used chromosome 22 data from the 1000 Genome project phase 1 for benchmarking

 indels (see Section 1.2) and a sample from

 https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/ for benchmarking

 SNPs (see Section 1.3).

 We categorize the 18,857 indel variants in the indel test file and the 4,109,729 variants in the

 SNP test file, in respect to lifting —the operation of converting the VCF file from one

 coordinate system to another, GRCh37 to GRCh38 in our case.

 With respect to each of the three tools, Genozip, LiftoverVcf and CrossMap, we assign one of

 five categories to each variant. Numbers 1 and 2 are good outcomes, and numbers 3 through

 5 are bad outcomes, with increasing order of severity.

 1) Lifted - The lift operation succeeded and the resulting variant is correct.

 2) Unmapped - The chain file has no mapping for the coordinate of this variant, and

 therefore the variant was correctly rejected from lifting by the tool.

 3) Annotation Loss - The variant was lifted and the resulting variant is correct but

 incomplete—some of the annotations it originally contained were dropped by the tool.

 4) Variant Loss - The variant was rejected from lifting by the tool, despite having all the

 information needed to successfully lift it. This happens when variants have some

 complexities that are beyond the capabilities of the particular tool.

 5) Data Corruption - The variant was lifted, but the resulting variant contains incorrect

 data.

https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/

 In some cases, we decided to categorize a variant as Lifted even though it had a very Minor

 data loss . This was done in cases where data loss almost certainly will not affect any

 downstream analysis. These cases are explained where they occur in the sections below.
 2.2 Indel benchmark

 2.2.1 Data preparation

 We developed a set of scripts that executes this benchmark in its entirely - from downloading

 the data to producing the analysis files. It is available from

 https://github.com/divonlan/genozip-dvcf-results and the entry point script is:
 run-indl-37-38.sh

 The key steps executed by this script are these:

 Preparing the input files

 The indel test file was generated from the chromosome 22 VCF file of the 1000 Genome

 Project phase 1 obtained from

 ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr22.phase1_release_v

 3.20101123.snps_indels_svs.genotypes.vcf.gz and filtered to contain only its indel variants

 (N=18,706 indels).

 The GRCh37 reference was obtained from

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_se

 quence/hs37d5.fa.gz , and prepared for Genozip use with

 > genozip --make-reference hs37d5.fa.gz

 The GRCh38 reference was downloaded from

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/G

 RCh38_full_analysis_set_plus_decoy_hla.fa , and prepared for Genozip use with:

 > genozip --make-reference GRCh38_full_analysis_set_plus_decoy_hla.fa.gz -o

 GRCh38.ref.genozip

 The chain file mapping GRCh37 genomic features to their corresponding GRCh38

 coordinates was obtained from

https://github.com/divonlan/genozip-dvcf-results
http://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/GRCh37_to_GRCh38.chain.gz

 http://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/GRCh37_to_GRCh38.chain.gz

 , and prepared with:

 > genozip --echo GRCh37_to_GRCh38.chain.gz --reference hs37d5.ref.genozip

 --reference GRCh38.ref.genozip --match-chrom-to-reference --force --output

 GRCh37_to_GRCh38.matched.chain.genozip

 Note the --match-chrom-to-reference : this modifies the contig names in the chain file

 to match those of the reference files (e.g. “22” vs “chr22”).

 For our indels-test, we used a single sample, indels-only VCF file that was generated with

 the following commands:

 > genozip

 ALL.chr22.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz

 > genocat

 ALL.chr22.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.genozip

 --samples 1 --indels-only -o indel.37.vcf

http://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/GRCh37_to_GRCh38.chain.gz

 Genozip DVCF liftover

 Using the chain file, which itself uses the two reference files, we generated a DVCF file. For

 the purpose of ease of comparison between corresponding VCF files in the two coordinate

 systems, we replaced the ID field with a line number (e.g. “LN=452”) using the

 --add-line-numbers command line option, and modified the contig names to match

 those of the reference file and the chain file with --match-chrom-to-reference .

 > genozip --echo --chain

 GRCh37_to_GRCh38.matched.chain.genozip --add-line-numbers

 --match-chrom-to-reference indel.37.vcf -o

 indel-37-38/indel-37-38.d.vcf.genozip

 In order to test the other tools with the VCF file that contains the updated ID field and contig

 names, and also to allow is comparison of Genozip DVCF status to the outcome of the other

 tools, we generated a GRCh37-only version of the VCF that contains the DVCF lifting status

 (which we refer to as “oStatus”). The --single option converts the dual-coordinate DVCF

 file to a single-coordinate (GRCh37 in this case) VCF file. --show-ostatus adds an

 INFO/oSTATUS field to each variant, describing the Genozip’s liftover status of this

 variant. The ID field already contains the line number.

 > genocat indel-37-38.d.vcf.genozip --single -o

 indel.37.annotated.vcf --show-ostatus

 CrossMap liftover

 CrossMap.py version v0.5.2 was installed using conda and the test VCF file was lifted over to

 GRCh38 coordinates using the following command:

 > CrossMap.py vcf GRCh37_to_GRCh38.matched.chain

 indel-37-38/indel.37.annotated.vcf

 GRCh38_full_analysis_set_plus_decoy_hla.fa.gz

 indel-37-38/indel.38.CrossMap.vcf

 GATK LiftoverVcf liftover

 GATK version 4.1.7 was used, and the indel test file lifted over to GRCh38 coordinates was

 produced using LiftoverVcf :

 > gatk --java-options '-Xmx16g -XX:ParallelGCThreads=1'

 LiftoverVcf --INPUT indel-37-38/indel.37.annotated.vcf

 --OUTPUT indel-37-38/indel.38.gatk.vcf --CHAIN

 GRCh37_to_GRCh38.matched.chain --REJECT

 indel-37-38/indel.38.gatk.rejects.vcf

 --RECOVER_SWAPPED_REF_ALT --REFERENCE_SEQUENCE

 GRCh38_full_analysis_set_plus_decoy_hla.fa.gz

 --TAGS_TO_REVERSE AF --TAGS_TO_REVERSE AF_EUR

 --TAGS_TO_REVERSE AF_EAS --TAGS_TO_REVERSE AF_AMR

 --TAGS_TO_REVERSE AF_SAS --TAGS_TO_REVERSE AF_AFR

 --TAGS_TO_REVERSE AF_EUR_unrel --TAGS_TO_REVERSE AF_EAS_unrel

 --TAGS_TO_REVERSE AF_AMR_unrel --TAGS_TO_REVERSE AF_SAS_unrel

 --TAGS_TO_REVERSE AF_AFR_unrel --TAGS_TO_DROP AC

 --TAGS_TO_DROP AC_EUR --TAGS_TO_DROP AC_EAS --TAGS_TO_DROP

 AC_AMR --TAGS_TO_DROP AC_SAS --TAGS_TO_DROP AC_AFR

 --TAGS_TO_DROP AC_EUR_unrel --TAGS_TO_DROP AC_EAS_unrel

 --TAGS_TO_DROP AC_AMR_unrel --TAGS_TO_DROP AC_SAS_unrel

 --TAGS_TO_DROP AC_AFR_unrel --TAGS_TO_DROP AC_Hom_EUR

 --TAGS_TO_DROP AC_Hom_EAS --TAGS_TO_DROP AC_Hom_AMR

 --TAGS_TO_DROP AC_Hom_SAS --TAGS_TO_DROP AC_Hom_AFR

 --TAGS_TO_DROP AC_Hom --TAGS_TO_DROP AC_Het_EUR --TAGS_TO_DROP

 AC_Het_EAS --TAGS_TO_DROP AC_Het_AMR --TAGS_TO_DROP AC_Het_SAS

 --TAGS_TO_DROP AC_Het_AFR --TAGS_TO_DROP AC_Het --TAGS_TO_DROP

 AC_Hom_EUR_unrel --TAGS_TO_DROP AC_Hom_EAS_unrel

 --TAGS_TO_DROP AC_Hom_AMR_unrel --TAGS_TO_DROP

 AC_Hom_SAS_unrel --TAGS_TO_DROP AC_Hom_AFR_unrel

 --TAGS_TO_DROP AC_Het_EUR_unrel --TAGS_TO_DROP

 AC_Het_EAS_unrel --TAGS_TO_DROP AC_Het_AMR_unrel

 --TAGS_TO_DROP AC_Het_SAS_unrel --TAGS_TO_DROP

 AC_Het_AFR_unrel

 Finally, our bash scripts perform analyses and output three summary files, one for each tool

 (analysis.CrossMap.txt , analysis.gatk.txt , analysis.Genozip.txt),

 which describe the outcome of the variants (Lifted or Dropped) categorised from Genozip’s

 oStatus categories. See Supplementary Information section 6 for the content of these files.

 2.2.2 Indel benchmark results summary

 Table S1 . Performance of three liftover tools for indels, including handling of problematic

 variants, according to standard categories reported by the Genozip software.

 #
 Variants

 Category Genozip LiftoverVcf CrossMap

 18,201 Lifted without issues 🗸 Lifted 🗸 Lifted 🗸 Lifted

 78 REF not mapped in chain file 🗸 Unmapped 🗸 Unmapped 🗸 Unmapped

 153 REF ⇄ ALT switch but REF unchanged

 (switch in number of repeats)

 🗸 Lifted ✗ Data

 Corruption

 ✗ Data

 Corruption

 27 REF ⇄ ALT switch but REF unchanged

 (Flanking regions indicate switch)

 🗸 Lifted ✗ Data

 Corruption

 ✗ Data

 Corruption

 6 Simple Deletion->Insertion REF ⇄ ALT

 switch

 🗸 Lifted ✗ Variant

 Loss

 ✗ Data

 corruption

 71 Deletion->Insertion REF ⇄ ALT switch called

 by Deletion payload in chain file gap

 🗸 Lifted ✗ Variant

 Loss

 ✗ Variant

 Loss

 20 Deletion with payload partially in gap 🗸 Unmapped 🗸 Unmapped ✗ Data

 Corruption

 40 Insertion with reverse strand 🗸 Lifted ✗ Data

 Corruption
 (35)
 🗸 Lifted (5)

 ✗ Data

 Corruption

 67 Deletion with reverse strand 🗸 Lifted ✗ Data

 Corruption
 (51)
 🗸 Lifted (16)

 ✗ Data

 Corruption

 9 Apparent REF<>ALT switch disqualified by

 flanking regions

 ✗ Variant

 Loss

 ✗ Data

 Corruption

 ✗ Data

 Corruption

 13 REF changed in Deletion but not

 REF ⇄ ALT switch

 ✗ Variant

 Loss

 ✗ Variant

 Loss

 ✗ Data

 Corruption

 11 REF unchanged, but flanking regions show

 that this is a new Insertion allele.

 ✗ Variant

 Loss

 ✗ Data

 Corruption

 ✗ Data

 Corruption

 6 The REF base mismatches between the

 references

 ✗ Variant

 Loss

 ✗ Variant

 Loss

 ✗ Data

 Corruption

 4 REF unchanged, but flanking regions show

 that this is a new Deletion allele.

 ✗ Variant

 Loss

 ✗ Data

 Corruption

 ✗ Data

 Corruption

 18,706 TOTAL

 2.2.3 REF⇄ALT switch, entire variant mapped, no REF change

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 180 Lifted Data Corruption Data Corruption

 Genozip oSTATUS: OkRefAltSwitchIndelRpts , OkRefAltSwitchIndelFlank

 We found that both LiftoverVcf and CrossMap fail to identify 180 REF⇄ALT switches in

 indel variants, respectively, resulting in incorrect variants with the REF and ALT reversed vs

 their correct values, along with errors in many of the INFO and FORMAT annotations that

 depend on the order of alleles (such as AC, AF, AD, GL, etc.). Genozip lifts all 186

 REF⇄ALT switches,

 Case 1 : simple insertion with REF⇄ALT switch

 Consider this GRCh37 insertion variant, which maps to 16423118 in GRCh38:

 #CHROM POS ID REF ALT

 22 16903845 LN=133 T TAC

 > genocat --reference hs37d5.ref.genozip -r chr22:16903845+8

 16903845-16903852 T AGAGGCA

 > genocat --reference GRCh38.ref.genozip -r chr22:16423118+10

 16423118-16423127 TAC AGAGGCA

 It is easy to see that the insertion got incorporated in the GRCh38 reference, therefore the

 haplotypes with GT=1 in the original VCF, indicating their samples have this insertion, are

 the REF allele in the Luft reference, while those haplotypes that don’t have this insertion

 would be a deletion variant relative to the Luft reference. In other words, this is a REF⇄ALT

 switch.

 Genozip correctly executes a REF⇄ALT switch (Table S2; note the fields that differ from the

 original VCF in red), while both LiftoverVcf and CrossMap fail to detect this REF⇄ALT

 switch and therefore generate a data-corrupted variant.

 Table S2: Example VCF of an insertion with REF ⇄ ALT switch.

 Genozip (37) Genozip (38) LiftoverVcf (38) CrossMap (38)

 genocat

 indel-37-38.d.

 vcf.genozip

 --luft

 --samples 1

 --no-header -g

 LN=133

 genocat

 indel-37-38.d.v

 cf.genozip

 --luft

 --samples 1

 --no-header -g

 LN=133

 grep -w LN=133

 indel.38.gatk.

 vcf |cut

 -f1-10

 grep -w LN=133

 indel.38.Cross

 Map.vcf |cut

 -f1-10

 #CHROM 22 chr22 chr22 22

 POS 16903845 16423118 16423118 16423118

 ID LN=133 LN=133 LN=133 LN=133

 REF T TAC T T

 ALT TAC T TAC TAC

 QUAL 166 166 166 166

 FILTER PASS PASS PASS PASS

 INFO

 AA=TAC;ERATE=0.0

 118;RSQ=0.5469;A

 N=2184;LDAF=0.27

 50;VT=INDEL;THET

 A=0.0057;AVGPOST

 =0.7502;AC=455;A

 F=0.21;ASN_AF=0.

 14;AMR_AF=0.19;A

 FR_AF=0.44;EUR_A

 F=0.12; LUFT=chr2

 2,16423118,TAC,-

 AA=TAC;ERATE=0.0

 118;RSQ=0.5469;A

 N=2184; LDAF=0.72

 50 ;VT=INDEL;THET

 A=0.0057;AVGPOST

 =0.7502; AC=1729 ;

 AF=0.79;ASN_AF=0

 .86;AMR_AF=0.81;

 AFR_AF=0.56;EUR_

 AF=0.88;PRIM=22,

 16903845,T,-

 AA=TAC; AC=455;AF

 =0.21;AFR_AF=0.4

 4;AMR_AF=0.19 ;AN

 =2184; ASN_AF=0.1

 4 ;AVGPOST=0.7502

 ;ERATE=0.0118;EU

 R_AF=0.12;LDAF=0

 .2750 ;RSQ=0.5469

 ;THETA=0.0057;VT

 =INDEL

 AA=TAC;ERATE=0.0

 118;RSQ=0.5469;A

 N=2184; LDAF=0.27

 50 ;VT=INDEL;THET

 A=0.0057;AVGPOST

 =0.7502; AC=455;A

 F=0.21;ASN_AF=0.

 14;AMR_AF=0.19;A

 FR_AF=0.44;EUR_A

 F=0.12

 FORMAT GT:DS:GL GT:DS:GL GT:DS:GL GT:DS:GL

 HG00096

 0|0:0.050:0.00,-

 1.20,-18.40

 1|1:1.950:-18.40

 ,-1.20,0.00

 0|0:0.050:0.00,-

 1.20,-18.40

 0|0:0.050:0.00,-

 1.20,-18.40

 GRCh version is in parentheses in the headers. The VCF lines are presented

 transposed, for readability. Red : changes vs. the original VCF; highlight: errors.

 Case 2: Insertion with repeats with REF ⇄ ALT switch

 Consider the variant at POS=22780917 that maps to 22426580 on GRCh38:

 #CHROM POS ID REF ALT

 22 22780917 LN=3114 C CA

 Viewing the Primary (37) and Luft references: Notice that the Insertion was incorporated in

 the Luft reference—it has 3 As instead of 2:

 > genocat -e hs37d5.ref.genozip -r chr22:22780917+9

 22780917-22780925 CA ATCGGTC

 > genocat -e GRCh38.ref.genozip -r chr22:22426580+10

 22426580-22426589 CAA ATCGGTC

 Genozip executed a REF ⇄ ALT switch while the other tools failed to do so (Table S3).

 Table S3: Example VCF of an insertion with repeats with REF ⇄ ALT switch.

 Genozip (37) Genozip (38) LiftoverVcf (38) CrossMap (38)

 genocat

 indel-37-38.d.

 vcf.genozip -H

 -s1 -g LN=3114

 genocat

 indel-37-38.d.v

 cf.genozip -H

 -s1 --luft -g

 LN=3114

 grep -w

 LN=3114

 indel.38.gatk.

 vcf |cut

 -f1-10

 grep -w

 LN=3114

 indel.38.Cross

 Map.vcf |cut

 -f1-10

 #CHROM 22 chr22 chr22 22

 POS 22780917 22426580 22426580 22426580

 ID LN=3114 LN=3114 LN=3114 LN=3114

 REF C CA C C

 ALT CA C CA CA

 QUAL 763 763 763 763

 FILTER PASS PASS PASS PASS

 INFO

 AA=.;ERATE=0.000

 5;AN=2184;VT=IND

 AA=.;ERATE=0.000

 5;AN=2184;VT=IND

 AA=.; AC=1517;AF=

 0.69;AFR_AF=0.86

 AA=.;ERATE=0.000

 5;AN=2184;VT=IND

 EL;THETA=0.0005;

 AC=1517;LDAF=0.6

 930;RSQ=0.9505;A

 VGPOST=0.9681;AF

 =0.69;ASN_AF=0.6

 3;AMR_AF=0.56;AF

 R_AF=0.86;EUR_AF

 =0.71; LUFT=chr22

 ,22426580,CA,-

 EL;THETA=0.0005;

 AC=667;LDAF=0.30

 70 ;RSQ=0.9505;AV

 GPOST=0.9681; AF=

 0.31;ASN_AF=0.37

 ;AMR_AF=0.44;AFR

 _AF=0.14;EUR_AF=

 0.29;PRIM=22,227

 80917,C,-

 ;AMR_AF=0.56;AN=

 2184;ASN_AF=0.63

 ;AVGPOST=0.9681;

 ERATE=0.0005; EUR

 _AF=0.71;LDAF=0.

 6930 ;RSQ=0.9505;

 THETA=0.0005;VT=

 INDEL

 EL;THETA=0.0005;

 AC=1517;LDAF=0.6

 930 ;RSQ=0.9505;A

 VGPOST=0.9681; AF

 =0.69;ASN_AF=0.6

 3;AMR_AF=0.56;AF

 R_AF=0.86;EUR_AF

 =0.71

 FORMAT GT:DS:GL GT:DS:GL GT:DS:GL GT:DS:GL

 HG00096

 0|1:1.000:-7.40,

 0.00,-6.20

 1|0:1.000:-6.20,

 0.00,-7.40

 0|1:1.000:-7.40,

 0.00,-6.20

 0|1:1.000:-7.40,

 0.00,-6.20

 GRCh version is in parentheses in the headers. The VCF lines are presented

 transposed, for readability. Red : changes vs. the original VCF; highlight: errors.

 Case 3: Deletion with repeats with REF ⇄ ALT switch

 Consider the variant at POS=24483878 that maps to 24087925 on GRCh38:

 #CHROM POS ID REF ALT

 22 24483878 LN=4150 AT A

 Viewing the Primary (37) and Luft (38) references: Notice that the Deletion was incorporated

 in the Luft reference - it has only 2 repeating Ts instead of 3:

 > genocat -e hs37d5.ref.genozip -r chr22:24483878+10

 24483878-24483887 AT TTAGGGAC

 > genocat -e GRCh38.ref.genozip -r chr22:24087925+9

 24087925-24087933 A TTAGGGAC

 Genozip executed a REF ⇄ ALT switch while the other tools failed to do so (Table S4).

 Table S4: Example VCF of a deletion with REF ⇄ ALT switch.

 Genozip (37) Genozip (38) LiftoverVcf (38) CrossMap (38)

 genocat

 indel-37-38.d.vcf

 .genozip -H -s 1

 -g LN=4150

 genocat

 indel-37-38.d.vcf

 .genozip -H -s 1

 --luft -g LN=4150

 grep -w LN=4150

 indel.38.gatk.vcf

 | cut -f1-10

 grep -w LN=4150

 indel.38.CrossMap.

 vcf | cut -f1-10

 #CHROM 22 chr22 chr22 22

 POS 24483878 24087925 24087925 24087925

 ID LN=4150 LN=4150 LN=4150 LN=4150

 REF AT A AT AT

 ALT A AT A A

 QUAL 785 785 785 785

 FILTER PASS PASS PASS PASS

 INFO

 AA=AT;AC=1441;AN=

 2184;LDAF=0.6585;

 VT=INDEL;THETA=0.

 0006;AVGPOST=0.99

 AA=AT; AC=743 ;AN=2

 184; LDAF=0.3415 ;V

 T=INDEL;THETA=0.0

 006;AVGPOST=0.991

 AA=AT; AC=1441;AF=

 0.66;AFR_AF=0.46;

 AMR_AF=0.82 ;AN=21

 84; ASN_AF=0.55 ;AV

 AA=AT; AC=1441 ;AN=2

 184;LDAF=0.6585;VT

 =INDEL;THETA=0.000

 6;AVGPOST=0.9913;R

 13;RSQ=0.9854;ERA

 TE=0.0006;AF=0.66

 ;ASN_AF=0.55;AMR_

 AF=0.82;AFR_AF=0.

 46;EUR_AF=0.80; LU

 FT=chr22,24087925

 ,A,-

 3;RSQ=0.9854;ERAT

 E=0.0006; AF=0.34;

 ASN_AF=0.45;AMR_A

 F=0.18;AFR_AF=0.5

 4;EUR_AF=0.20;PRI

 M=22,24483878,AT,

 -

 GPOST=0.9913;ERAT

 E=0.0006; EUR_AF=0

 .80;LDAF=0.6585; R

 SQ=0.9854;THETA=0

 .0006;VT=INDEL

 SQ=0.9854;ERATE=0.

 0006; AF=0.66;ASN_A

 F=0.55;AMR_AF=0.82

 ;AFR_AF=0.46;EUR_A

 F=0.80

 FORMAT GT:DS:GL GT:DS:GL GT:DS:GL GT:DS:GL

 HG00096

 0|1:1.000:-2.20,0

 .00,-15.80

 1|0:1.000:-15.80,

 0.00,-2.20

 0|1:1.000:-2.20,0

 .00,-15.80

 0|1:1.000:-2.20,0.

 00,-15.80

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for

 readability. Red : changes vs. the original VCF; highlight: errors.

 2.2.4 Deletion REF⇄ALT switch, REF change

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 6 Lifted Variant Loss Data Corruption

 Genozip oSTATUS: OkRefAltSwitchDelToIns

 We found that 6 variants with REF⇄ALT switch resulting in a REF change are either

 lost (LiftoverVcf) or mishandled leading to Data Corruption (CrossMap). Genozip

 successfully lifted these variants.

 Consider the variant at POS=17998325 that maps to 17519295 on GRCh38:

 #CHROM POS ID REF ALT

 22 17998325 LN=825 TTG T

 Viewing the Primary (37) and Luft (38) references in the local context:

 > genocat -e hs37d5.ref.genozip -r chr22:17998325+10

 17998322-17998344 GTT T TG TTTTTTTTTTTTGAGAC

 > genocat -e GRCh38.ref.genozip -r chr22:17519295 +10

 17519292-17519314 GTT T TT TTTTTTTTTTTTGAGAC

 The variant observed in the samples might be a true deletion or might indeed mirror the

 variation between the references, in which case it would have been better categorized as a

 SNP rather than a deletion. Regardless, given that this is categorized as a deletion in the VCF

 on hand, Genozip declares it a REF ⇄ ALT switch since the haplotypes with this variant

 become the REF allele in the Luft reference, and the ones without the variant are the ALT

 allele.

 In cases like this where the REF changes between the references (here: TTG->TTT),

 LiftoverVcf rejects the variant with “MismatchedRefAllele”, whereas CrossMap simply

 updates the REF to TTT causing a Data Corruption (because the REF allele no longer

 represents the true sequences of the haplotypes with GT=0) (Table S5).

 Table S5: Example VCF of a REF ⇄ ALT switch with REF change.

 Genozip (37) Genozip (38) LiftoverVcf (38) CrossMap (38)

 genocat

 indel-37-38.d.vcf

 .genozip -H -s 1

 -g LN=825

 genocat

 indel-37-38.d.vcf

 .genozip -H -s 1

 --luft -g LN=825

 Variant lost

 grep -w LN=825

 indel.38.CrossMap.

 vcf | cut -f1-10

 #CHROM 22 chr22 22

 POS 17998325 17519295 17519295

 ID LN=825 LN=825 LN=825

 REF TTG T TTT

 ALT T TTG T

 QUAL 191 191 191

 FILTER PASS PASS PASS

 INFO

 AA=.;AC=1970;AF=0

 .90;AFR_AF=0.99;A

 MR_AF=0.85;AN=218

 4;ASN_AF=0.96;AVG

 POST=0.9826;ERATE

 =0.0014;EUR_AF=0.

 83;LDAF=0.8963;RS

 Q=0.9295;THETA=0.

 0003;VT=INDEL;LUF

 T=chr22,17519295,

 T,-

 AA=.; AC=214;AF=0.

 10;AFR_AF=0.01;AM

 R_AF=0.15; AN=2184

 ; ASN_AF=0.04 ;AVGP

 OST=0.9826;ERATE=

 0.0014; EUR_AF=0.1

 7;LDAF=0.1037 ;RSQ

 =0.9295;THETA=0.0

 003;VT=INDEL ;PRIM

 =22,17998325,TTG,

 -

 AA=.;A C=1970;AF=0.

 90;AFR_AF=0.99;AMR

 _AF=0.85 ;AN=2184; A

 SN_AF=0.96 ;AVGPOST

 =0.9826;ERATE=0.00

 14; EUR_AF=0.83;LDA

 F=0.8963 ;RSQ=0.929

 5;THETA=0.0003;VT=

 INDEL

 FORMAT GT:DS:GL GT:DS:GL GT:DS:GL

 HG00096

 1|1:2.000:-9.00,-

 1.70,0.00

 0|0:0.000:0.00,-1

 .70,-9.00

 1|1:2.000:-9.00,-1

 .70,0.00

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for

 readability. Red : changes vs. the original VCF; highlight: errors.

 2.2.5 Deletion REF⇄ALT switch with payload in gap

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 71 Lifted Variant Loss Variant Loss

 Genozip oSTATUS: OkRefAltSwitchWithGap

 When a deletion variant in the Primary reference enters the Luft reference, in other words, the

 deletion payload that existed in the Primary reference no longer exists in the Luft reference,

 this will often manifest itself as a gap in the chain file. We found 71 of these variants; lifting

 over with LiftoverVcf and CrossMap resulted in Variant Loss, while Genozip handled these

 variants correctly.

 Consider for example:

 #CHROM POS ID REF ALT

 22 17995661 LN=821 T TTGCTGTTG T

 In the chain file we have the following alignments:

 > genocat GRCh37_to_GRCh38.chain.genozip --show-chain

 …

 Primary: 22 17995313-17995661 Luft: chr22 17516283-17516631 Xstrand=-

 Primary: 22 17995671-17996285 Luft: chr22 17516632-17517246 Xstrand=-

 …

 As can be appreciated, the anchor base of the variant, T , is the final base on the first

 alignment (that ends at 17995661), and the entire 9-base payload, TTGCTGTTG , precisely fits

 in the gap between the alignments (17995662 to 17995670).

 When inspecting the two references starting at the anchor base T , it is clear that the Luft

 reference incorporates this deletion, and therefore the variant in a REF ⇄ ALT switch:

 > genocat --reference hs37d5.ref.genozip -r chr22:17995661+15

 17995661-17995675 T TTGCTGTTG TTGCC

 > genocat -reference GRCh38.ref.genozip -r chr22:17516631+6

 17516631-17516636 T TTGCC

 These variants are correctly categorized as a REF ⇄ ALT switch by Genozip. However,

 LiftoverVcf rejects them with “NoTarget” and CrossMap rejects them with

 “Fail(REF==ALT)”, leading to Variant Loss (Table S6).

 Table S6: Example VCF of a REF ⇄ ALT switch with payload in gap.

 Genozip (37) Genozip (38) LiftoverVcf

 (38)

 CrossMap

 (38)

 genocat

 indel-37-38.d.vcf.genoz

 ip -r 17995661 -s

 HG00104 --header-one

 genocat

 indel-37-38.d.vcf.geno

 zip -r 17516631 -s

 HG00104 --luft

 Variant lost Variant lost #CHROM 22 chr22

 POS 17995661 17516631

 ID LN=821 LN=821

 REF TTTGCTGTTG T

 ALT T TTTGCTGTTG

 QUAL 1144 1144

 FILTER PASS PASS

 INFO

 AA=TTTGCTGTTG;ERATE=0.0

 124;AN=2184;VT=INDEL;TH

 ETA=0.0005;AVGPOST=0.93

 45; AC=1914 ; LDAF=0.8546 ;

 RSQ=0.8066; AF=0.88 ; ASN_

 AF=0.94 ; AMR_AF=0.84 ; AFR

 _AF=0.95 ; EUR_AF=0.80 ; LU

 FT=chr22,17516631,T,-

 AA=TTTGCTGTTG;ERATE=0.

 0124;AN=2184;VT=INDEL;

 THETA=0.0005;AVGPOST=0

 .9345; AC=270 ; LDAF=0.14

 54 ;RSQ=0.8066; AF=0.12 ;

 ASN_AF=0.06 ; AMR_AF=0.1

 6 ; AFR_AF=0.05 ; EUR_AF=0

 .20 ; PRIM=22,17995661,T

 TTGCTGTTG,-

 FORMAT GT:DS:GL GT:DS:GL

 HG00104

 0|1 : 0.550 : 0.00,-1.20,-4

 1.70

 1|0 : 1.450 : -41.70,-1.20

 ,0.00

 GRCh version is in parentheses in the headers. The VCF lines are presented

 transposed, for readability. Red : changes vs. the original VCF.

 2.2.6 Deletion with payload partially in gap

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 20 Variant Loss Variant Loss Data Corruption

 Genozip oSTATUS: REFSplitInChain

 When a deletion payload is partially in a chain file gap (other than the case where the entire

 payload is in the gap), CrossMap updates the REF by removing the bases that fall in the gap.

 This is incorrect: while with the lifted REF the haplotypes that contain the variant (GT=1) are

 now correctly represented, the haplotypes with GT=0 are incorrectly represented as the actual

 sequenced data contains the previous REF, not the lifted one. Rather, this should be a new

 allele.

 In contrast, since neither Genozip nor LiftoverVcf are capable of adding an allele they both

 correctly reject these variants (with the resulting Variant Loss).

 Example: the indel test file:
 #CHROM POS ID REF ALT

 22 17995306 LN=818 ATTATAT A

 CrossMap-lifted variant:
 #CHROM POS ID REF ALT

 22 17516277 LN=818 ATTATA A

 The chain file has the last base in REF (POS=17995312) in the gap between two alignments:
 Primary: chr22 17992953-17995311 Luft: chr22 17513924-17516282

 Primary: chr22 17995313-17995661 Luft: chr22 17516283-17516631

 2.2.7 Insertion with reverse strand

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 40 Lifted Data Corruption (35)

 Lifted (5)

 Data Corruption

 Genozip oSTATUS: OkRefSameInsRev

 Consider the following Insertion variant in our indel test file (in GRCh37 coordinates):

 #CHROM POS ID REF ALT INFO(partial)

 22 16566319 LN=75 A A CAAT AC=13;AF=0.01;AN=2184

 Per the chain file, POS maps to 15411644 in GRCh38, on the reverse strand. CrossMap lifts

 this insertion by reverse complementing the REF and ALT:

 #CHROM POS ID REF ALT INFO(partial)

 chr22 15411644 LN=75 T ATTG T AC=13;AF=0.01;AN=2184

 While the CrossMap-lifted variant contains precisely the same information as the original

 variant, it is unfortunately non-compliant with the VCF specification (section 5.2) that

 requires the variant’s anchor base (A lifted to T) be on the left side, whereas here it is

 right-anchored. This is likely to break downstream tools.

 LiftoverVcf goes further, and left-aligns the resulting variant, leading to this:

 #CHROM POS ID REF ALT INFO(partial)

 chr22 15411637 LN=75 C C TGAT AC=13;AF=0.01;AN=2184

 The algorithm LiftoverVcf applied here is as follows:

 GRCh38 (Luft) in region 15411637-15411644 is C TGATTG T . Since TGATTG is 1½

 repeats of the insertion variant payload ATTG (traversing backwards from the anchor base

 T), it seems that we can represent this variant in a canonical left-aligned way with C TGAT at

 POS=15411637, because the original insertion without left-aligning C TGATTG ATTG T yields

 precisely the same sequence as the insertion after left aligning: C TGAT TGATTG T .

 However, this is wrong. The reason is that there is no requirement in the VCF specification

 that a VCF file must contain all the variants of its specific samples, and it is not true that any

 loci lacking a variant is an indication that all the samples in the VCF file have a base equal to

 the reference at that locus. Only the loci covered by the variants listed in the VCF file are

 known, and we cannot make any assumption regarding the bases the specific samples in the

 VCF file have at other loci.

 Consider, for example, the LiftoverVcf-generated left-aligned variant above. This variant

 now asserts that the 13 haplotypes (AC=13) with GT=1 for this variant, have the bases

 C TGAT starting at position 15411637. This is simply not knowable from the data at hand,

 and might, in fact, be wrong for any of the 13 haplotypes. For these 13 haplotypes in this

 VCF file, we know nothing at all about their bases in loci 15411637–15411643, all we know

 is that they have an insertion of ATTG just before locus 15411644.

 This is therefore a risk of Data Corruption: if any one of the 13 haplotypes doesn’t have

 C TGAT bases starting at 15311637, or if any one of the other 2171 haplotypes doesn’t have

 a C at this locus, then the VCF file is corrupted.

 In addition to the above issue of Data Corruption, there is an additional issue of Data Loss:

 the original VCF informed us that all 2184 haplotypes have a T at 15411644, and that 13

 haplotypes have a ATTG just before 15411644. This information is no longer present in the

 LiftoverVcf-generated file, and therefore lost.

 Genozip chooses to left-anchor the variant, but not left-align it:

 #CHROM POS ID REF ALT INFO(partial)

 chr22 15411643 LN=75 G G ATTG AC=13;AF=0.01;AN=2184

 This is quite similar to the CrossMap variant, except Genozip’s anchor base G is to the left,

 rather than the right, of the insertion payload ATTG , which is also reflected in POS. This

 makes it compliant with the VCF specification, while not risking Data Corruption.

 Note that this solution is still not perfect: namely, it asserts that all samples in the VCF have

 G at 15411643, which is not known from the data, and it loses the information that all

 samples have a T at 15411644. However, without access to the full sequence of all samples,

 or alternatively knowledge that the VCF contains all variants in the samples (and taking into

 account neighboring variants in the computation), this is the best that can be done. We

 consider this issue to be a Minor data loss that does not affect the categorization.

 All 40 variants with reverse strand Insertion were affected for CrossMap, but only 33 of them

 for LiftoverVcf - the remaining 7 were cases where left-aligning resulted in the same variant

 as left-anchoring.

 An additional Data Corruption issue is that if an INFO/AA field exists, both CrossMap and

 LiftoverVcf fail to update it appropriately. This issue affects 14 of the 40 variants, including 2

 of the 7 for which LiftoverVcf correctly left-anchored. See the example in Table S7.

 Finally, we note a Minor Data Loss in LiftoverVcf is due to conversion of the FORMAT/GL

 field to FORMAT/PL, with the loss of granularity. As discussed, a Minor Data Loss does not

 affect the categorization.

 Table S7: Example VCF of insertion with reverse strand.

 Genozip (37) Genozip (38) LiftoverVcf (38) CrossMap (38)

 genocat

 indel-37-38.d.vcf

 .genozip -H -s 1

 -g LN=107

 genocat

 indel-37-38.d.vcf.

 genozip -H -s 1

 --luft -g LN=107

 grep -w LN=107

 indel.38.gatk.vcf

 | cut -f1-10

 grep -w LN=107

 indel.38.CrossMap

 .vcf | cut -f1-10

 #CHROM 22 chr22 chr22 22

 POS 16687501 15290461 15290461 15290462

 ID LN=107 LN=107 LN=107 LN=107

 REF C C C G

 ALT CA CT CT TG

 QUAL 208 208 208 208

 FILTER PASS PASS PASS PASS

 INFO

 AA=CA;AC=103;AF=0

 .05;AFR_AF=0.07;A

 MR_AF=0.04;AN=218

 4;ASN_AF=0.05;AVG

 POST=0.9793;ERATE

 =0.0006;EUR_AF=0.

 03;LDAF=0.0530;RS

 Q=0.8577;THETA=0.

 0152;VT=INDEL; LUF

 T=chr22,15290461,

 C,X

 AA=CT ;AC=103;AF=0.

 05;AFR_AF=0.07;AMR

 _AF=0.04;AN=2184;A

 SN_AF=0.05;AVGPOST

 =0.9793;ERATE=0.00

 06;EUR_AF=0.03;LDA

 F=0.0530;RSQ=0.857

 7;THETA=0.0152;VT=

 INDEL; PRIM=22,1668

 7501,C,X

 AA=CA ;AC=103;AF=0.

 05;AFR_AF=0.07;AMR

 _AF=0.04;AN=2184;A

 SN_AF=0.05;AVGPOST

 =0.9793;ERATE=0.00

 06;EUR_AF=0.03;LDA

 F=0.0530;RSQ=0.857

 7; ReverseComplemen

 tedAlleles ;THETA=0

 .0152;VT=INDEL

 AA=CA ;AC=103;AF=0

 .05;AFR_AF=0.07;A

 MR_AF=0.04;AN=218

 4;ASN_AF=0.05;AVG

 POST=0.9793;ERATE

 =0.0006;EUR_AF=0.

 03;LDAF=0.0530;RS

 Q=0.8577;THETA=0.

 0152;VT=INDEL

 FORMAT GT:DS:GL GT:DS:GL GT:DS: PL GT:DS:GL

 HG00096

 0|0:0.000:0.00,-0

 .60,-8.40

 0|0:0.000:0.00,-0.

 60,-8.40 0|0:0.000: 0,6,84

 0|0:0.000:0.00,-0

 .60,-8.40

 0|1:1.050:48,3,0

 0|1:1.050:-4.80,-

 0.30,0.00

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for

 readability. Red : changes vs. the original VCF; highlight: errors.

 2.2.8 Deletion with reverse strand

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 67 Lifted Data Corruption (51)

 Lifted (16)

 Data Corruption

 Genozip oSTATUS: OkRefSameDelRev

 This issue is similar to the previous one, just for deletions rather than insertions.

 Consider the following deletion, in GRCh37 coordinates:

 #CHROM POS ID REF ALT INFO(partial)

 22 16524572 LN=70 A CACT A AC=112;AF=0.05;AN=2184

 CrossMap lifts it by reverse-complementing REF and ALT and moving POS from what

 became REF’s right-most base, 15453391, to its left-most base 15453387:

 #CHROM POS ID REF ALT INFO(partial)

 chr22 15453387 LN=70 AGTG T T AC=112;AF=0.05;AN=2184

 As discussed for insertions, this variant contains correct information, however it is

 non-compliant with the VCF specification, and hence we will consider it a Data Corruption.

 LiftoverVcf, as in insertions, goes further, and left-aligns the resulting variant, creating the

 following variant:

 #CHROM POS ID REF ALT INFO(partial)

 chr22 15453384 LN=70 C TGAG C AC=112;AF=0.05;AN=2184

 Brief explanation: GRCh38, chr22, region 15453384-15453391 is: C TGAGTG T . The

 deletion generated by the original (CrossMap) variant C TG AGTG T results in an identical

 sequence as the deletion described by the LiftoverVcf’s left-aligned variant: C TGAG TG T .

 However, as before, this is wrong because it makes possibly incorrect assumptions about the

 nucleotide sequences of the samples at loci 15453384–15453386 which are not in fact

 knowable from the data.

 Again, similar to the insertion case, Genozip left-anchors but does not left-align the variant,

 which is the optimal (yet still imperfect) solution:

 #CHROM POS ID REF ALT INFO(partial)

 chr22 15453386 LN=70 G AGTG G AC=112;AF=0.05;AN=2184

 All 67 variants with reverse strand deletion were affected for CrossMap, but only 46 of them

 for LiftoverVcf—the remaining 21 were cases where left-aligning resulted in the same

 variant as left-anchoring, however, 5 of the 21 are nevertheless corrupted due to failure to

 update the INFO/AA field, bringing the total of corrupted LiftoverVcf variants to 51.

 2.2.9 REF changed but not REF⇄ALT switch

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 19 Variant Loss Variant Loss Data Corruption

 Genozip oSTATUS: RefNewAlleleDelRefChanged , RefNewAllelInsRefChanged

 In indels, if the bases of the REF change between the two references, CrossMap simply

 updates the REF field with the new bases. This is completely wrong, and is responsible for

 corruption of 26 variants in our test file. In contrast, both Genozip and LiftoverVcf reject the

 variants in this case (losing their data).

 Example 1 (Insertion) :

 Consider the following insertion variant in our indel test file (in GRCh37 coordinates):

 #CHROM POS ID REF ALT INFO(partial)

 22 18068419 LN=871 A A TT AC=311;AF=0.14;AN=2184

 POS=18068419 in GRCh37 maps to 17585653 in GRCh38, and this position has a base

 change—from A in GRCh37 to T in GRCh38. Because of this base change, both Genozip

 and LiftoverVcf reject this variant. However, CrossMap produced the following:

 #CHROM POS ID REF ALT INFO(partial)

 22 17585653 LN=871 T AT T AC=311;AF=0.14;AN=2184

 This is obviously completely wrong. First, it changed a left-anchored insertion (with an A

 anchor base) to a right-anchored insertion (with a T anchor base). Second, it is asserting that

 all 311 haplotypes (AC=311) with GT=1 have a T at this position, while in fact the original

 VCF informs us that they have an A. Finally, it is an invalid insertion variant per the VCF

 specification 5.2.

 Example 2 (Deletion) :

 Consider the following deletion variant in our indel test file (in GRCh37 coordinates):

 #CHROM POS ID REF ALT INFO(partial)

 22 18068421 LN=872 TA T AC=631;AF=0.29;AN=2184

 The CrossMap lifted variant:

 #CHROM POS ID REF ALT INFO(partial)

 22 17585655 LN=872 TT T AC=631;AF=0.29;AN=2184

 The reference has a base change in the second base of REF. Therefore, this would be a new

 allele and the correct variant would be REF=TT ALT=TA,T. Since neither Genozip nor

 LiftoverVcf are capable of adding an allele, they both reject this variant. However,

 CrossMap’s variant asserts that all the (AN-AC)=1553 haplotypes with GT=0 have a TT at

 this position, while in fact they have a TA.

 2.2.10 New allele when REF unchanged

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 15 Variant Loss Data Corruption Data Corruption

 Genozip oSTATUS: RefNewAlleleInsSameRef , RefNewAlleleDelSameRef

 Cases where the bases of REF are identical in both references, yet the new reference contains

 a new allele. These variants are lifted incorrectly by both CrossMap and LiftoverVcf yielding

 corrupted variants. In contrast, Genozip rejects them because it is not capable of adding an

 allele.

 Example:

 Original variant:

 #CHROM POS ID REF ALT

 22 22735735 LN=3091 T TG

 CrossMap and LiftoverVcf variant in GRCh38—unchanged REF and ALT:

 #CHROM POS ID REF ALT

 chr22 22381366 LN=3091 T TG

 Looking at the references:

 > genocat -e hs37d5.ref.genozip -r chr22:22735735+10

 22735735-22735744 T AGGGAACTG

 > genocat -e GRCh38.ref.genozip -r chr22:22381366+10

 22381366-22381375 T GGGGAACTG

 At first glance, this might look like a REF ⇄ ALT switch since TG is present in the Luft

 reference. However, looking at the variant in its local context, it is clear that the Luft

 reference represents a new allele that is neither REF nor ALT, and the new variant would be:

 #CHROM POS ID REF ALT

 chr22 22381366 LN=3091 TG TA,TAG

 Genozip correctly identifies this as a case of a new allele, and rejects the variant as it is not

 capable of adding another allele. CrossMap and LiftoverVcf in contrast, incorrectly lift the

 variant resulting in Data Corruption.

 2.2.11 New allele - not quite a REF⇄ALT switch

 From Table S1:

 # Variants Genozip LiftoverVcf CrossMap

 9 Variant Loss Data Corruption Data Corruption

 Genozip oSTATUS: RefNewAlleleIndelNoSwitch

 Consider the following case:

 #CHROM POS ID REF ALT

 22 22484247 LN=2870 A AC

 Inspecting both references, with 4 flanking bases, we see:

 Primary reference: CAGG A A A TG

 Luft reference: CAGG AC A G TG

 As first glance, it appears to be a REF ⇄ ALT switch where the insertion AC got incorporated

 in the Luft reference. However, Genozip also compares the flanking 4 bases on either side to

 verify that is indeed a REF ⇄ ALT switch. In this case, the region to the right is different - an

 AATG in the Primary reference vs AGTG in the Luft reference, and therefore Genozip rejects

 the REF ⇄ ALT switch hypothesis and instead determines that the Luft reference represents a

 new allele that is neither the REF nor the ALT. Since Genozip cannot currently add new

 alleles, it rejects this variant with RefNewAlleleIndelNoSwitch .

 We also experimented with a value of 2 for the length of the flanking regions to be tested.

 When this more permissive approach is used, we observed the following changes in the

 oSTATUS categories of the variants in the indel test file (Table S8).

 Table S8: Variant categorisation changes if changing the flanking regions test from four

 bases on either side, to two.

 oSTATUS 4 bases 2 bases

 RefNewAlleleIndelNoSwitch 9 2

 OkRefAltSwitchIndelFlank 27 34

 RefNewAlleleDelRefChanged 13 10

 RefNewAlleleInsSameRef 17 11

 OkRefAltSwitchDelToIns 6 9

 RefNewAllelInsRefChanged 0 6

 Other categories - no change

 2.3 SNP benchmark

 2.3.1 Data preparation

 We developed a set of scripts that executes this benchmark in its entirely - from downloading

 the data to producing the analysis files. It is available from

 https://github.com/divonlan/genozip-dvcf-results and the entry point script is:

 run-snp-37-38.sh

 The key steps executed by this script are these:

 The SNP test file, SS6004478.annotated.nh2.variants.vcf.gz, containing 4,109,729 SNP

 variants, was extracted from the tar archive:

 https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/vcfs.variants.public_s

 amples.279samples.tar .

 We used the same reference files and chain file as the indel test.

 Similar to the indel test, we proceed to preparing the DVCF:
 > genozip --chain GRCh37_to_GRCh38.chain.genozip

 SS6004478.annotated.nh2.variants.vcf.gz --add-line-numbers

 --match-chrom-to-reference -o snp-37-38.d.vcf.genozip

 We then proceed to generate a GRCh37-only file with contains the add lines numbers, the

 updated contig names and adding the INFO/oSTATUS field to each variant, reporting

 Genozip’s lift-over status:

 > genocat snp-37-38.d.vcf.genozip --single --show-ostatus -o

 snp.37.annotated.vcf

 Testing CrossMap: As in the indel test, CrossMap.py version v0.5.2 was used:

 > CrossMap.py vcf GRCh37_to_GRCh38.chain.gz snp.37.annotated.vcf

 GRCh38_full_analysis_set_plus_decoy_hla.fa snp.38.CrossMap.vcf

https://github.com/divonlan/genozip-dvcf-results
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/vcfs.variants.public_samples.279samples.tar
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/vcfs.variants.public_samples.279samples.tar

 Testing GATK LiftoverVCF: As in the indel test, LiftoverVcf contained in GATK version

 4.17 was used to lift over the snp test file to GRCh38:

 > gatk --java-options '-Xmx16g -XX:ParallelGCThreads=1' LiftoverVcf

 --INPUT snp.37.annotated.vcf --OUTPUT snp.38.gatk.vcf --CHAIN

 GRCh37_to_GRCh38.matched.chain --REJECT snp.38.gatk.rejects.vcf

 --RECOVER_SWAPPED_REF_ALT --REFERENCE_SEQUENCE

 GRCh38_full_analysis_set_plus_decoy_hla.fa.gz --TAGS_TO_REVERSE AF

 --TAGS_TO_REVERSE MLEAF --TAGS_TO_DROP AC --TAGS_TO_DROP MLEAC

 As in the indel test, our bash script produces three files: analysis.CrossMap.txt

 analysis.gatk.txt analysis.Genozip.txt .

 2.3.2 SNP benchmark results summary

 Table S9 . Performance of three liftover tools for SNPs, including handling of problematic

 variants, according to standard categories reported by the Genozip software. Note that

 LiftoverVcf contains command line options that determine the handling of REF⇄ALT

 switches. Variants can either be i) dropped (the default, which result in Variant Loss), ii) kept,

 with updated annotations for a subset of variants that LiftoverVcf is able to revise (resulting

 in Data Corruption due to a subset of variants maintaining incorrect annotations), or iii) kept,

 with some annotations being converted or dropped (resulting in Annotation Loss). We chose

 the latter option in our benchmarks, which we consider to be the least problematic.

 # Vars. Category Genozip LiftoverVcf CrossMap

 4,037,520 No issues - lifted 🗸 Lifted 🗸 Lifted 🗸 Lifted

 26,728 No issues - no mapping 🗸 Unmapped 🗸 Unmapped 🗸 Unmapped

 29,635 REF ⇄ ALT switch in SNPs 🗸 Lifted ✗ Annotation

 Loss

 ✗ Variant

 Loss

 15,689 Annotation update upon

 strand reversal

 🗸 Lifted ✗ Data

 Corruption

 ✗ Data

 Corruption

 12 IUPACs 🗸 Lifted ✗ Variant

 Loss

 ✗ Data

 Corruption

 68 REF change, not to ALT, in

 bi-allelic SNPs when AF<1

 ✗ Variant

 Loss

 ✗ Variant

 Loss

 ✗ Data

 Corruption

 30 REF change in multi-allelic

 SNPs when AF<1

 ✗ Variant

 Loss

 ✗ Variant

 Loss

 ✗ Data

 Corruption

 47 REF change, not to ALT, in

 bi-allelic SNPs when AF=1

 🗸 Lifted ✗ Variant

 Loss

 🗸 Lifted

 4,109,729 TOTAL

 2.3.3 REF⇄ALT switch in SNPs

 From Table S9:

 # Variants Genozip LiftoverVcf CrossMap

 29635 Lifted Annotation Loss Variant Loss

 Genozip oSTATUS: OkRefAltSwitchSNP

 In case of a REF ⇄ ALT switch in a bi-allelic SNP, Genozip lifts the variant, updating all the

 relevant annotations. CrossMap drops all these variants. LiftoverVcf drops these variants by

 default, but is capable of lifting them with the --RECOVER_SWAPPED_REF_ALT option,

 however this it offers very limited corrections (with --TAGS_TO_REVERSE and

 --TAGS_TO_DROP), which would cause data loss (if fields are dropped) or corruption (if

 they are not).

 In the following example (Table S10), we used LiftoverVcf options
 --RECOVER_SWAPPED_REF_ALT --TAGS_TO_REVERSE AF

 --TAGS_TO_REVERSE MLEAF.

 LiftoverVcf correctly updates the fields INFO/AF, INFO/MLEAF and FORMAT/GT,

 FORMAT/AD, FORMAT/PL but fails to correct INFO/AC, INFO/MLEAC. We can avoid a

 Data Corruption due to AC and MLEAC by also applying --TAGS_TO_DROP AC and

 --TAGS_TO_DROP MLEAC, and hence we categorize LiftoverVcf as Annotation Loss for

 these variants.

 We also note that LiftoverVcf has an additional Minor Data Loss due to re-ordering of the

 FORMAT annotations, thereby losing the information of their original order.

 Table S10: Example VCF of REF⇄ALT switch in a SNP.

 Genozip (37) Genozip (38) LiftoverVcf (38) CrossMa

 p (38)

 genocat

 snp-37-38.d.vcf.gen

 ozip -H -s 1 -g

 LN=632

 genocat

 snp-37-38.d.vcf.genozi

 p -H -s 1 --luft -g

 LN=632

 grep -w LN=632

 snp.38.gatk.vcf | cut

 -f1-10

 #CHROM 1 chr1 chr1

 POS 770568 835188 835188

 ID LN=632 LN=632 LN=632

 REF A G G

 ALT G A A

 QUAL 809.01 809.01 809.01

 FILTER . . PASS

 INFO

 AC=2;AF=1.00;AN=2;B

 aseCounts=0,0,31,1;

 DB;DP=32;Dels=0.00;

 FS=0.000;GC=47.13;H

 aplotypeScore=0.000

 0;MLEAC=2;MLEAF=1.0

 0;MQ=32.04;MQ0=4;QD

 =25.28; LUFT=chr1,83

 5188,G,-

 AC=0;AF=0.00 ;AN=2;Base

 Counts=0,0,31,1;DB;DP=

 32;Dels=0.00;FS=0.000;

 GC=47.13;HaplotypeScor

 e=0.0000; MLEAC=0;MLEAF

 =0.00 ;MQ=32.04;MQ0=4;Q

 D=25.28; PRIM=1,770568,

 A,-

 AF=0.00 ;AN=2;BaseCount

 s=0,0,31,1;DB;DP=32;De

 ls=0.00;FS=0.000;GC=47

 .13;HaplotypeScore=0.0

 000; MLEAF=0.00 ;MQ=32.0

 4;MQ0=4;QD=25.28; Swapp

 edAlleles

 FORMAT GT:AD:DP:GQ:PL:FL GT:AD:DP:GQ:PL:FL GT:AD:DP:FL:GQ:PL

 SS60044

 78

 1/1:0,31:31:63:809,

 63,0:N

 0/0:31,0 :31:63: 0,63,80

 9 :N

 0/0:31,0 :31:N:63: 0,63,

 809

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for

 readability. Red : changes vs. the original VCF; highlight: errors.

 2.3.4 Annotation update upon strand reversal

 From Table S9:

 # Variants Genozip LiftoverVcf CrossMap

 15689 Lifted Data Corruption Data Corruption

 Genozip oSTATUS: OkRefSameSNPRev

 Sometimes when REF, ALT are reverse-complemented due to the chain file mapping being to

 the reverse strand, it is necessary to update some annotations. Both LiftoverVcf and

 CrossMap fail to do so, resulting in data-corrupted variants. In our test file, the affected

 annotation is INFO/BaseCounts annotation (Table S11).

 Table S11: Example VCF of annotation update upon strand reversal.

 Genozip (37) Genozip (38) LiftoverVcf (38) CrossMap (38)

 genocat

 snp-37-38.d.vcf.ge

 nozip -H -s 1 -g

 LN=253

 genocat

 snp-37-38.d.vcf.ge

 nozip -H -s 1

 --luft -g LN=253

 grep -w LN=253

 snp.38.gatk.vcf |

 cut -f1-10

 grep -w LN=253

 snp.38.CrossMap.

 vcf | cut -f1-10

 #CHROM 1 chr1 chr1 1

 POS 364127 455210 455210 455210

 ID LN=253 LN=253 LN=253 LN=253

 REF G C C C

 ALT A T T T

 QUAL 26.78 26.78 26.78 26.78

 FILTER . . PASS .

 INFO

 AC=2;AF=1.00;AN=2;

 BaseCounts=5,0,23,

 0;BaseQRankSum=0.8

 04;DB;DP=28;Dels=0

 .00;FS=0.000;GC=38

 .65;HaplotypeScore

 =0.0000;MLEAC=2;ML

 EAF=1.00;MQ=4.61;M

 Q0=26;MQRankSum=0.

 804;QD=0.96;ReadPo

 sRankSum=0.804; LUF

 T=chr1,455210,C,X

 AC=2;AF=1.00;AN=2;

 BaseCounts=0,23,0,

 5 ;BaseQRankSum=0.8

 04;DB;DP=28;Dels=0

 .00;FS=0.000;GC=38

 .65;HaplotypeScore

 =0.0000;MLEAC=2;ML

 EAF=1.00;MQ=4.61;M

 Q0=26;MQRankSum=0.

 804;QD=0.96;ReadPo

 sRankSum=0.804; PRI

 M=1,364127,G,X

 AC=2;AF=1.00;AN=2; B

 aseCounts=5,0,23,0 ;

 BaseQRankSum=0.804;

 DB;DP=28;Dels=0.00;

 FS=0.000;GC=38.65;H

 aplotypeScore=0.000

 0;MLEAC=2;MLEAF=1.0

 0;MQ=4.61;MQ0=26;MQ

 RankSum=0.804;QD=0.

 96;ReadPosRankSum=0

 .804; ReverseComplem

 entedAlleles

 AC=2;AF=1.00;AN=

 2; BaseCounts=5,0

 ,23,0 ;BaseQRankS

 um=0.804;DB;DP=2

 8;Dels=0.00;FS=0

 .000;GC=38.65;Ha

 plotypeScore=0.0

 000;MLEAC=2;MLEA

 F=1.00;MQ=4.61;M

 Q0=26;MQRankSum=

 0.804;QD=0.96;Re

 adPosRankSum=0.8

 04

 FORMAT GT:AD:DP:GQ:PL:FL GT:AD:DP:GQ:PL:FL GT:AD:DP:FL:GQ:PL

 GT:AD:DP:GQ:PL:F

 L

 SS60044

 78

 1/1:23,5:27:3:25,3

 ,0:N

 1/1:23,5:27:3:25,3

 ,0:N

 1/1:23,5:27:N:3:25,

 3,0

 1/1:23,5:27:3:25

 ,3,0:N

 GRCh version is in parentheses in the headers. The VCF lines are presented transposed, for

 readability. Red : changes vs. the original VCF; highlight: errors.

 2.3.5 IUPACs

 From Table S9:

 # Variants Genozip LiftoverVcf CrossMap

 12 Lifted Variant Loss Data Corruption

 Genozip oSTATUS: OkRefSameSNPIupac

 The SNP test file has 12 variants at loci that contain a non-ACTGN IUPAC base in GRCh38.

 All 12 variants have a REF that is a base that is included in the mapped IUPAC base in

 GRCh38. For example (17, 81077361, T) is mapped to (chr17, 83129591, W). W is defined

 as A or T.

 Since T is included in W, Genozip calls this variant as OkRefSameSNP and lifts it.

 LiftoverVcf rejects this variant because T ≠ W, which is a valid call but yet an unfortunate loss

 of data.

 CrossMap on the other hand, replaces the REF with the IUPAC base, thereby generating

 variants that not only contain less information than the original variant (as the haplotypes

 with GT=0 had a definite base as specified by the original REF, not an ambiguous one) and

 hence represent a Data Loss, but are also noncompliant with the VCF 4.3 specification

 (violation of requirement 1.6.1-REF: “Each base must be one of A,C,G,T,N”) and hence are

 likely to break downstream analysis tools:

 #CHROM POS ID REF ALT

 13 100973393 LN=3041971 K T

 13 100973395 LN=3041972 Y T

 17 83128871 LN=3550982 K T

 17 83128888 LN=3550984 Y T

 17 83129591 LN=3550985 W A

 17 83130798 LN=3550987 Y T

 17 83130998 LN=3550988 Y T

 17 83131245 LN=3550989 R A

 17 83131933 LN=3550990 Y T

 17 83133010 LN=3550991 R A

 17 83133390 LN=3550993 Y T

 17 83133686 LN=3550994 Y T

 2.3.6 REF change, not to ALT, in bi-allelic SNPs when AF<1

 From Table S9:

 # Variants Genozip LiftoverVcf CrossMap

 68 Variant Loss Variant Loss Data Corruption

 Genozip oSTATUS: RefNewAlleleSNP

 When the REF base of a SNP changes between the references, and unless this is a REF ⇄ ALT

 switch in a bi-allelic SNP, CrossMap simply updates the new REF without updating ALT.

 This is correct only in the case where there are no haplotypes with the REF allele (i.e.

 or).
 𝑎𝑙𝑡
∑ 𝐴 𝐶

 𝑎𝑙𝑡
= 𝐴𝑁

 𝑎𝑙𝑡
∑ 𝐴 𝐹

 𝑎𝑙𝑡
= 1

 Example:

 Original VCF (GRCh37):

 #CHROM POS ID REF ALT INFO(partial)

 1 13808732 LN=20854 C T AC=1;AF=0.500;AN=2

 CrossMap incorrectly-lifted VCF (GRCh38):

 #CHROM POS ID REF ALT INFO(partial)

 1 13482278 LN=20854 G T AC=1;AF=0.500 ;AN=2

 Since G is a new allele the correct lifting should have been:
 #CHROM POS ID REF ALT INFO(partial)

 1 13482278 LN=20854 G T,C AC=1,1;AF=0.5,0.5 ;AN=2

 Genozip and LiftoverVcf, in contrast, reject these variants as they cannot handle adding an

 allele.

 2.3.7 REF change in multi-allelic SNPs when AF<1

 From Table S9:

 # Variants Genozip LiftoverVcf CrossMap

 30 Variant Loss Variant Loss Data Corruption

 Genozip oSTATUS: RefMultiAltSwitchSNP

 In cases of multi-allelic SNPs with a reference base change, CrossMap changes REF without

 updating ALT, regardless of whether the new reference is one of the ALT alleles.

 Example:

 Original VCF (GRCh37):

 #CHROM POS ID REF ALT INFO(partial)

 18 77831522 LN=3663131 G C,T AC=1,1;AF=0.500,0.500;AN=2

 CrossMap incorrectly-lifted VCF (GRCh38):

 #CHROM POS ID REF ALT INFO(partial)

 18 80073165 LN=3663131 C C,T AC=1,1;AF=0.500,0.500;AN=2

 This correct lifting would have been a REF ⇄ ALT switch:

 #CHROM POS ID REF ALT INFO(partial)

 18 80073165 LN=3663131 C G ,T AC=0,1;AF=0,0.500 ;AN=2

 Genozip and LiftoverVcf, in contrast, reject these variants as they cannot handle REF

 changes in multi-allelic SNPs.

 2.3.8 REF change, not to ALT, in bi-allelic SNPs when AF=1

 From Table S9:

 # Variants Genozip LiftoverVcf CrossMap

 47 Lifted Variant Loss Lifted

 Genozip oSTATUS: OkNewRefSNP

 In these bi-allelic SNP variants, there is a reference base change, and the sample doesn’t

 contain any haplotypes with the REF allele, i.e. AC=AN or AF=1. Therefore, it is permissible

 to just update the REF (the old REF that would normally become one of the ALT alleles, is

 redundant in this case since it has AF=0). However, LiftoverVcf fails to do so, needlessly

 rejecting these variants.

 Example:

 Original VCF (GRCh37):

 #CHROM POS ID REF ALT INFO(partial)

 1 99597759 LN=137361 C G AC=2;AF=1.00;AN=2

 Genozip and CrossMap correctly-lifted VCF (GRCh38)—REF replacement OK if AF=1

 #CHROM POS ID REF ALT INFO(partial)

 chr1 99132203 LN=137361 A G AC=2;AF=1.00;AN=2

 2.3.9 REF⇄ALT switch proportions

 We now turn our attention to the 0.7% (29,635 out of 4,109,729) of the variants in our test

 file that are categorized as REF⇄ALT switches. These variants are dropped by CrossMap and

 in LiftoverVcf, they are either dropped or some of their annotations are dropped, depending

 on the command line options used. In contrast. Genozip lifts them over correctly, updating

 the annotations that sensitive to REF⇄ALT switches (see

 https://genozip.com/dvcf-rendering.html)

 Here we show that despite the overall number of these variants being relatively small, they

 are not uniformly distributed across the genome but rather preferentially located in certain

 regions, and therefore dropping them may introduce bias in certain downstream analyses,

 such as GWAS or selection scans.

 We divided the genome into 30,749 windows of 100 kb each, and counted for each 100-kb

 window the total number of variants in the SNP test file within the window vs. the number of

 those variants that are a REF⇄ALT switch. This was done by leveraging Genozip’s internal

 genome-wide position called GPOS (for Global POSition). The position is that of the base as

 it appears in the original FASTA file used to generate the reference file, when all contigs are

 concatenated in the order they appear in the FASTA.

 The first command, below, outputs the number of variants per 100-kb window in the test file.

 The first column in the output is the count of variants in a 100-kb window and the second is

 the sequential GPOS in units of 100k (the first line missing a number is window 0). For

 brevity, we show here the first 6 lines.

 > genocat snp-37-38.d.vcf.genozip -e hs37d5.ref.genozip --gpos

 -HG | cut –f2 | rev | cut -c6- | rev | uniq -c

 113

 60 1

 79 2

 4 3

 6 4

 124 5

https://genozip.com/dvcf-rendering.html

 The second command, below, outputs the number of variants with REF⇄ALT switch per

 100-kb window in the test file. The first column of the output is the count of variants with

 REF⇄ALT switch and the second is the sequential GPOS in units of 100k. For brevity, we

 show here first 6 regions that have any REF⇄ALT switch variants at all):

 > genocat snp-37-38.d.vcf.genozip -e hs37d5.ref.genozip --gpos

 -HG --show-dvcf --grep OkRefAltSwitchSNP | cut –f4 | rev |cut

 -c6- | rev | uniq -c

 1 7

 2 8

 1 11

 1 12

 1 13

 22 15

 T he proportion of REF⇄ALT switch variants compared to the total number of variants for

 each 100-kb window of our SNP test file are shown in Figure 1C. It is easy to see that

 distribution of REF⇄ALT switch variants across the genome is highly non-uniform – the vast

 majority of the 100kb windows have very few REF⇄ALT switch variants, while a small

 number of windows have a very high percentage of REF⇄ALT switch variants – some in

 which over 80% of the variants are switches. Therefore, when CrossMap or LiftoverVcf drop

 all variants with a REF⇄ALT switch, they are potentially introducing bias to the data that

 might impact downstream analyses. Another view of the same data is presented in Figure S3.

 We then proceeded to compare the GRCh38 coordinates of REF⇄ALT switch variants to the

 regions of the GRCh38 reference genome with known issues, downloaded from

 https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p13_issues.gff3.

 Indeed, there is significant overlap between the loci with REF⇄ALT switches and regions of

 the reference genome known to be problematic, see Figure S4. The R script used for this

 analysis and generate the Figure S4 is available from

 https://github.com/divonlan/genozip-dvcf-results/tree/main/Fig-2A .

https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p13_issues.gff3.
https://github.com/divonlan/genozip-dvcf-results/tree/main/Fig-2A

 Figure S3 . Distribution of the number of 100-kb windows with at least x % REF ⇄ ALT switch
 variants . A. The number of 100-kb windows was calculated for increments of 1% of REF ⇄ ALT switch

 variants content. The y-axis on the right side of the figure indicates the corresponding percentage of

 affected windows relative to all 100-kb windows. B. A close up of the distribution showing that nearly

 5% (black bar) of all 100-kb windows in the human genome contain at least 2% REF ⇄ ALT switch

 variants amongst all variants in the window .

 Figure S4. Distribution and functional impact of REF ⇄ ALT allele switches in SNP variants. Circos

 plot: the location of REF ⇄ ALT allele switches are shown in the blue rainfall plot, with GRC-identified

 problematic regions shown as orange polygons. Bar plot: Number (bars) and percentage (blue text) of

 REF ⇄ ALT allele switches inside or outside problematic GRC regions.

 2.4 Benchmark summary

 Table S12 : Summary of correctly (in green: Lifted or Unmapped) vs incorrectly (in red: Data

 Corruption or Variant Loss) lifted variants for each tested tool. For each lifting tool, we show

 the number of variants and the percentage of variants falling under each major category,

 including outcomes that could negatively impact downstream analyses (i.e., Data

 Corruption).

 Indels SNPs

 Genozip LiftoverVcf CrossMap Genozip LiftoverVcf CrossMap

 Total 18706 100% 18706 100% 18706 100% 4109729 100% 4109729 100% 4109729 100%

 Correct 18663 99.8% 18304 97.9% 18279 97.7% 4109631 99.998% 4064248 98.9% 4064295 98.9%

 Correct
 that are
 lifted over

 18565 99.2% 18206 97.3% 18201 97.3% 4082903 99.3% 4037520 98.2% 4037567 98.2%

 Incorrect 43 0.2% 402 2.1% 427 2.3% 98 0.002% 45481 1.1% 45434 1.1%

 Incorrect
 that lead to
 Data
 Corruption

 0 0% 306 1.6% 356 1.9% 0 0% 15689 0.4% 15799 0.4%

 Incorrect
 that are

 REF ⇄ ALT

 switches

 0 0% 257 1.3% 257 1.3% 0 0% 29635 0.7% 29635 0.7%

 SI.3. ClinVar analysis

 3.1 Data preparation

 We analysed the ClinVar file from the week of 03 Jan 2022 downloaded from

 https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20220103.vcf.gz

 The analysis can be run by executing the bash script run-clinvar-37-38.sh in the

 github repository https://github.com/divonlan/genozip-dvcf-results . The key parts of this script

 are:

 Lifting the file to a DVCF:

 > genozip --echo --chain

 shared/GRCh37_to_GRCh38.matched.chain.genozip --add-line-numbers

 --match-chrom-to-reference shared/clinvar.37.vcf.gz -o

 clinvar-37-38/clinvar-37-38.d.vcf.genozip

 As before, to allow easy detection of variants with potential issues, we created a ClinVar

 GRCh37 single-coordinate file that contains an extra INFO/oSTATUS field, as well as the

 line numbers in the ID field:

 > genocat clinvar-37-38/clinvar-37-38.d.vcf.genozip --single -o

 clinvar-37-38/clinvar.37.annotated.vcf --show-ostatus

 For CrossMap, we used the following command:

 > CrossMap.py vcf shared/GRCh37_to_GRCh38.matched.chain

 clinvar-37-38/clinvar.37.annotated.vcf

 shared/GRCh38_full_analysis_set_plus_decoy_hla.fa.gz

 clinvar-37-38/clinvar.38.CrossMap.vcf

 For LiftoverVcf, we used the following command:

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20220103.vcf.gz
https://github.com/divonlan/genozip-dvcf-results

 > gatk --java-options '-Xmx16g -XX:ParallelGCThreads=1' LiftoverVcf

 --INPUT clinvar-37-38/clinvar.37.annotated.vcf --OUTPUT

 clinvar-37-38/clinvar.38.gatk.vcf --CHAIN

 shared/GRCh37_to_GRCh38.matched.chain --REJECT

 clinvar-37-38/clinvar.38.gatk.rejects.vcf --RECOVER_SWAPPED_REF_ALT

 --REFERENCE_SEQUENCE

 shared/GRCh38_full_analysis_set_plus_decoy_hla.fa.gz

 --TAGS_TO_REVERSE AF_ESP --TAGS_TO_REVERSE AF_EXAC --TAGS_TO_REVERSE

 AF_TGP --TAGS_TO_DROP DUMMY

 3.2 Genozip analysis

 Genozip has no variants with corrupted data, however it did drop 201 variants (133 SNPs, 68

 non-SNPs) which have a valid mapping in the chain file, because the allele represented by the

 GRCh38 reference is neither the REF nor the ALT allele.

 Table S13: ClinVar variants dropped by Genozip despite having a mapping in the chain file.

 This occurs because the allele in the GRCh38 (Luft) reference is a new allele, neither REF

 nor ALT. This does not include variants correctly dropped due to lack of mapping in the chain

 file.

 Type # Issue ALLELEID CLNSIG

 Data loss 201 Allele in

 GRCh38 is

 a new

 allele

 (neither

 REF nor

 ALT)

 696043,799115,685731,15474,964796,11

 70574,696055,696058,1167865,581994,6

 96139,15681,696267,696378,696404,447

 571,425007,392854,697512,286118,4510

 10,286231,390508,221328,708391,11542

 27,980680,963007,173441,697258,11540

 60,698145,452738,453319,215271,33220,

 455066,698872,174523,54118,1037727,1

 037728,226789,700218,389801,710823,9

 61851,699897,699899,699900,699901,69

 9902,699903,711517,790800,1155979,45

 9012,959873,700419,700425,700426,700

 428,700429,700431,700436,700482,1008

 398,1156206,851221,174261,174548,700

 865,700867,1162096,800875,1162094,11

 62095,487407,549956,700869,700871,70

 0872,692808,701351,397737,622275,701

 488,47952,240741,53156,701260,20181,1

 67056,712775,390514,33351,838853,115

 6807,1166021,167084,917805,244624,15

 0504,1156610,712655,702499,175552,17

 5851,702467,713776,461651,702807,702

 808,703029,167190,529374,703257,7033

 35,703373,242133,1157890,465467,8184

 55,468332,1033832,343827,789384,1157

 991,376201,375315,706355,704364,7043

 65,715791,55368,705368,245748,245880,

 245942,964061,536982,176732,705090,4

 31872,334260,797925,682788,963904,11

 135 Benign

 17 Uncertain significance

 15 Likely benign

 10 Pathogenic

 6 Likely pathogenic

 6 Benign/Likely benign

 3 not provided

 3 association

 2 risk factor
 2 Conflicting interpretations of pathogenicity

 1 other

 1 drug response

 69844,882486,882487,40517,1158756,68

 4879,684881,1158835,705475,705477,68

 0034,966169,705738,963022,390511,390

 657,390590,390591,963023,705823,4390

 50,38485,31934,47980,706250,706252,26

 660,706257,706259,706260,706263,7062

 77,243824,963026,706035,670963,79211

 8,706116,549821,670737,706133,706162,

 706163,706164,706168,706169,706170,7

 06171,982298,472107,706177,706179,70

 6180

 3.3 CrossMap analysis

 Of the 969,410 variants in the file, 967,781 were lifted, and 1628 failed to lift. Some of the

 lifted variants were corrupt, and some of the dropped variants were unnecessarily dropped.

 Table S14: ClinVar variants incorrectly dropped by CrossMap (excluding variants correctly

 dropped due to lack of mapping in the chain file), and variants lifted incorrectly.

 Type # Issue ALLELEID CLNSIG

 Data loss 204 Failed to

 lift

 REF⇄AL

 T switch

 177885,191721,389423,106000,1163377,

 1163378,862175,1153237,353057,227743

 ,1164070,1153536,249770,655075,11539

 62,389508,177658,141535,102135,38964

 9,390440,670179,671101,291712,291961,

 789736,193757,389612,251402,1168025,

 167900,251996,36716,177851,54119,103

 7729,141976,141771,178204,141770,390

 476,390568,227764,389793,18435,69989

 8,683010,1155956,684027,662663,66266

 7,136076,1171823,304611,390475,31349

 6,1156147,1156207,174544,54805,70086

 6,800873,1171929,143080,654535,11719

 32,790945,701352,701350,701349,70134

 8,701347,270003,142604,53180,389879,3

 89938,254076,175704,254276,389897,17

 210,137366,701599,140343,54569,54553,

 254491,54551,55703,1157066,190700,25

 4805,791396,1157289,230590,1157471,3

 39619,323041,873957,656305,433550,39

 0078,132224,192275,1157931,1158130,2

 56553,344888,1087130,345325,1173004,

 791785,269599,506140,1163638,1173059

 ,329799,256613,390307,791872,508906,3

 44604,230979,257300,1168415,433895,1

 42630,231042,257199,334255,177983,11

 73294,169607,344231,349365,178100,45

 542,353525,137338,257355,257356,2573

 58,23429,716929,1158836,351613,11698

 88,106610,1164570,1164571,1164572,11

 64573,792021,817902,508193,817919,81

 7923,817930,508196,818000,818032,818

 037,818051,818053,818054,818055,8180

 160 Benign

 21 drug response

 9 Likely benign

 8 Benign/Likely benign

 3 Conflicting interpretations of pathogenicity

 2 Uncertain significance

 1 Pathogenic

https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve
https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve

 56,818057,818058,818060,818090,81809

 4,818115,818122,717806,1159714,11597

 20,1159723,101448,792471,352903,1346

 97,99042,98295,52521,800324,52519,656

 729,24924,670821,669859,25543,99678,1

 01226,45455,352797,1159494,671190,35

 2799,99399,25405,339086,99598

 Table S14: (continued from previous page)

 Type # Issue ALLELEID CLNSIG

 Data

 Corrupti

 on

 201 Lifted has

 bad REF

 field

 696043,799115,685731,15474,964796,11

 70574,696055,696058,1167865,581994,6

 96139,15681,696267,696378,696404,447

 571,425007,392854,697512,286118,4510

 10,286231,390508,221328,708391,11542

 27,980680,963007,173441,697258,11540

 60,698145,452738,453319,215271,33220,

 455066,698872,174523,54118,1037727,1

 037728,226789,700218,389801,710823,9

 61851,699897,699899,699900,699901,69

 9902,699903,711517,790800,1155979,45

 9012,959873,700419,700425,700426,700

 428,700429,700431,700436,700482,1008

 398,1156206,851221,174261,174548,700

 865,700867,1162096,800875,1162094,11

 62095,487407,549956,700869,700871,70

 0872,692808,701351,397737,622275,701

 488,47952,240741,53156,701260,20181,1

 67056,712775,390514,33351,838853,115

 6807,1166021,167084,917805,244624,15

 0504,1156610,712655,702499,175552,17

 5851,702467,713776,461651,702807,702

 808,703029,167190,529374,703257,7033

 35,703373,242133,1157890,465467,8184

 55,468332,1033832,343827,789384,1157

 991,376201,375315,706355,704364,7043

 65,715791,55368,705368,245748,245880,

 245942,964061,536982,176732,705090,4

 31872,334260,797925,682788,963904,11

 69844,882486,882487,40517,1158756,68

 4879,684881,1158835,705475,705477,68

 0034,966169,705738,963022,390511,390

 657,390590,390591,963023,705823,4390

 50,38485,31934,47980,706250,706252,26

 660,706257,706259,706260,706263,7062

 77,243824,963026,706035,670963,79211

 8,706116,549821,670737,706133,706162,

 706163,706164,706168,706169,706170,7

 06171,982298,472107,706177,706179,70

 6180

 135 Benign

 17 Uncertain significance

 15 Likely benign

 10 Pathogenic

 6 Likely pathogenic

 6 Benign/Likely benign

 3 not provided

 3 association

 2 risk factor

 1 other

 1 drug response

 2 Conflicting interpretations of pathogenicity

 Data

 Corrupti

 on

 4 Lifted

 failed to

 switch

 REF and

 ALT

 776998,657462,198367,438998 3 Benign

 1 Likely benign

 Data

 Corrupti

 on

 4 Mapped

 despite no

 mapping

 in chain

 file

 1097855,407586,1156794,1157524 2 Likely benign

 2 Benign

 3.4 LiftoverVcf analysis

 Of the 969,410 variants in the file, 967,816 were lifted, and 1594 failed to lift. Some of the

 lifted variants were corrupt, and some of the dropped variants were unnecessarily dropped:

 Table S15: ClinVar variants incorrectly dropped by LiftoverVcf (excluding variants correctly

 dropped due to lack of mapping in the chain file), and variants lifted incorrectly.

 Type # Issue ALLELEID CLNSIG

 Data loss 162 Allele in

 GRCh38 is

 a new

 allele

 (neither

 REF nor

 ALT)

 696043,685731,15474,964796,1170574,696055

 ,696058,581994,696139,15681,696267,696378

 ,696404,447571,425007,392854,697512,45101

 0,708391,173441,697258,698145,452738,4533

 19,33220,455066,698872,174523,54118,10377

 28,226789,700218,389801,710823,699897,699

 899,699900,699901,699902,699903,711517,45

 9012,959873,700419,700425,700426,700428,7

 00429,700431,700436,700482,1008398,115620

 6,851221,174261,174548,700865,700867,1162

 096,800875,1162094,1162095,700869,700871,

 700872,692808,701351,397737,622275,70148

 8,47952,240741,53156,701260,20181,167056,

 712775,33351,838853,1166021,167084,917805

 ,150504,712655,702499,175552,175851,70246

 7,713776,702807,702808,167190,529374,7032

 57,703335,703373,242133,465467,818455,468

 332,1033832,343827,789384,376201,375315,7

 06355,704364,704365,715791,705368,245748,

 245880,245942,536982,705090,431872,33426

 0,797925,682788,963904,882486,882487,4051

 7,684879,684881,705475,705477,680034,9661

 69,705738,963022,390591,705823,38485,3193

 4,47980,706250,706252,26660,706257,706259

 ,706260,706263,706277,243824,963026,70603

 5,706116,549821,706133,706162,706163,7061

 64,706168,706169,706170,706171,982298,472

 107,706177,706179,706180

 107 Benign

 13 Uncertain significance

 11 Likely benign

 9 Pathogenic

 5 Likely pathogenic

 5 Benign/Likely benign

 3 not provided

 3 association

 2 risk factor

 2 Conflicting interpretations of pathogenicity

 1 other

 1 drug response

 Data loss 4 Failed to

 lift

 REF⇄AL

 T switch

 of

 non-SNPs

 1037729,178204,683010,800324,16 2 Uncertain significance

 2 Benign

https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve
https://docs.google.com/document/d/1b3-Ps7Pyladks35BOEkdWX7ianVKOLh1/edit#heading=h.3hv69ve

 Data

 corruptio

 n

 39 Incorrect

 REF field

 (GRCh38

 is a new

 allele)

 964796,581994,1037728,389801,959873,8512

 21,167056,167084,167190,818455,789384,245

 748,245880,245942,536982,431872,797925,96

 3904,966169,963022,26660,963026

 28 Benign

 4 Uncertain significance

 4 Likely benign

 1 Pathogenic

 1 Likely pathogenic

 1 Benign/Likely benign

 Data

 corruptio

 n

 4 Lifted

 failed to

 switch

 REF and

 ALT

 1037729,683010 3 Benign

 1 Likely benign

 3.5 ClinVar benchmark – summary

 All tools dropped variants of “Pathogenic” clinical significance, leading to the conclusion

 that lift over techniques should never be used in a clinical setting. However, CrossMap and

 LiftoverVcf did worse than that – they also incorrectly lifted 10 (CrossMap) or 1

 (LiftoverVcf) variants of “Pathogenic” clinical significance, resulting in a corrupt REF field

 of these variants, that could potentially lead to incorrect clinical diagnosis.

 SI.4. GRCh38 and Telomere-to-Telomere

 We repeated the tests described in section 1 and 3, but this time between the GRCh38 and

 Telomere-to-Telomere v1.0 reference.

 - For the SNP test file, we used the GRCh38 file which was the output of the Genozip

 lift-over from GRCh37 to GRCh38.

 - For the indels test file, we extracted the indel variants from a GRCh38 version of the

 1000 Genome Project. This is an independent analysis of the 1KGP data, and not a

 lift-over of the GRCh37 file we used for testing. The GRCh38 file contains

 significantly more indel variants. The file was obtained from:

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverag

 e/working/20201028_3202_raw_GT_with_annot/

 - For the ClinVar test file, we obtained the GRCh38 version of the same data used in

 section 3, from:

 ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/weekly/clinvar_20210724.vcf.gz

 - The GRCh38 to T2Tv1.0 chain file was obtained from:

 http://t2t.gi.ucsc.edu/chm13/hub/t2t-chm13-v1.0/hg38Lastz/hg38.t2t-chm13-v1.0.ove

 r.chain.gz

 - The T2Tv1.0 reference file was obtained from:

 https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/c

 hm13.draft_v1.0.fasta.gz

 - The GRCh38 reference, was obtained from:

 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_geno

 me/GRCh38_full_analysis_set_plus_decoy_hla.fa

 As before, we provide bash scripts which execute the entire analysis including downloading

 the files. These scripts also serve as precise instructions for reproducing our results. They can

 be found in https://github.com/divonlan/genozip-dvcf-results .

 We observe that the mapping of GRCh38 to T2T is significantly more complex than the

 mapping of GRCh37 to GRCh38, by the measure of the number of unique alignments in their

 respective chain files:

 > genocat --show-chain GRCh37_to_GRCh38.matched.chain.genozip | wc -l

 18389

 > genocat --show-chain hg38.t2t-chm13-v1.0.over.matched.chain.genozip|wc -l

 865173

 A mapping of how each of the three tools handles the various variant categories appears in

 Tables S18, S19 and S20. We note that the tools diverge significantly with regards to how

 they handle the various cases. Note that “lifted” merely means that the variant appears in the

 output file—not that it is correct. In fact, there are many known cases in which the variant is

 incorrect—these are documented in Sections 2.2 and 2.3 and a mapping to the relevant

 section appears in the second column of each table. We also noted some new categories that

 did not appear in the GRCh37-to-GRCh38 case; these are marked as “New”. We did not

 perform a detailed analysis of the causes for the differences between the tools in this case of

 GRCh38-to-T2T liftover, which should be the purpose of future research.

https://github.com/divonlan/genozip-dvcf-results

 Table S18 . Categorization of indel variants and how each tool handles problematic variants.

 Genozip oStatus Section Count Genozip LiftoverVcf CrossMap

 OkRefSameIndel N/A 155,695 Lifted Lifted Lifted

 OkRefSameNotLeftAnc N/A 30,654 Lifted

 30123 Lifted

 531 Dropped Lifted

 OkRefSameDelRev 2.2.8 3,823 Lifted

 3535 Lifted

 288 Dropped Lifted

 OkRefSameInsRev 2.2.7 2,010 Lifted

 1998 Lifted

 12 Dropped Lifted

 OkRefAltSwitchIndelRpts 2.2.3 1,738 Lifted

 1735 Lifted

 3 Dropped Lifted

 OkRefSameNDNIRev New 1,575 Lifted

 1271 Lifted

 304 Dropped Lifted

 OkRefAltSwitchWithGap 2.2.5 871 Lifted Variant dropped Variant dropped

 OkRefAltSwitchIndelFlank 2.2.3 389 Lifted Lifted Lifted

 RefSplitInChain 2.2.6 12,147 Dropped Dropped

 Lifted 2554

 Dropped 9593

 RefNotMappedInChain N/A 5,688 Dropped Dropped

 Lifted 2127

 Dropped 3561

 RefMultiAltSwitchIndel New 3,002 Dropped

 Lifted 1695

 Dropped 1307 Lifted

 RefNewAlleleNotLeftAnc New 2,835 Dropped

 Lifted 53

 Dropped 2782 Lifted

 RefNewAlleleNDNI New 2,459 Dropped

 Lifted 44

 Dropped 2415 Lifted

 RefNewAlleleDelRefChange

 d 2.2.9 1,429 Dropped

 Lifted 66

 Dropped 1363 Lifted

 RefNewAlleleInsSameRef 2.2.10 1,181 Dropped Lifted Lifted

 RefNewAlleleDelSameRef 2.2.10 512 Dropped

 Lifted 475

 Dropped 37 Lifted

 RefNewAlleleIndelNoSwitch 2.2.11 380 Dropped Lifted Lifted

 RefNewAllelInsRefChanged 2.2.9 313 Dropped

 Lifted 121

 Dropped 192 Lifted

 INFO/AF New 167 Dropped Dropped Lifted

 Total 226,868

 Table S19 . Categorization of SNP variants and how each tool handles problematic variants.

 Genozip oStatus Section Count Genozip LiftoverVcf CrossMap

 OkRefSameSNP N/A 2,288,044 Lifted Lifted Lifted

 OkRefAltSwitchSNP 2.3.3 1,705,586 Lifted INFO/AC dropped Dropped

 OkRefSameSNPRev 2.3.4 22,266 Lifted Lifted Lifted

 OkNewRefSNP 2.3.8 1,869 Lifted Dropped Lifted

 NoMappingInChainFile N/A 61,771 Dropped Dropped Dropped

 RefNewAlleleSNP 2.3.6 1,934 Dropped Dropped Lifted

 RefMultiAltSwitchSNP 2.3.7 1,433 Dropped Dropped Lifted

 Total 4,060,637

 Table S20 . Categorization of ClinVar variants and how each tool handles problematic variants.

 Genozip oStatus Section Count Genozip LiftoverVcf CrossMap

 OkRefSameSNP N/A 857,612 Lifted Lifted Lifted

 OkRefSameIndel N/A 86,095 Lifted Lifted Lifted

 OkRefAltSwitchSNP 2.3.3 11,055 Lifted Lifted Dropped

 OkRefSameNotLeftAnc N/A 5,972 Lifted Lifted Lifted

 OkRefSameSNPRev 2.3.4 2,058 Lifted Lifted Lifted

 OkRefAltSwitchIndelRpts 2.2.3 734 Lifted Lifted Lifted

 OkRefAltSwitchWithGap 2.2.5 432 Lifted Dropped

 Dropped 431

 Lifted 1

 OkRefAltSwitchIndelFlank 2.2.3 152 Lifted Lifted Lifted

 OkRefSameDelRev 2.2.8 89 Lifted

 Lifted 87

 Dropped 2 Lifted

 OkRefAltSwitchDelToIns 2.2.4 53 Lifted Dropped Lifted

 OkRefAltSwitchNotLeftAnc New 50 Lifted Dropped

 Dropped 34

 Lifted 16

 OkRefSameInsRev 2.2.7 48 Lifted Lifted Lifted

 RefNewAlleleInsSameRef 2.2.10 1,071 Dropped Lifted Lifted

 RefSplitInChain 2.2.6 1,003 Dropped Dropped

 Dropped 897

 Lifted 106

 RefNotMappedInChain N/A 859 Dropped Dropped

 Dropped 791

 Lifted 68

 RefNewAlleleSNP 2.3.6 732 Dropped Dropped Lifted

 RefNewAlleleDelRefChanged 2.2.9 520 Dropped Dropped Lifted

 RefNewAlleleNotLeftAnc New 457 Dropped Dropped

 Lifted 457

 Dropped 1

 RefNewAlleleDelSameRef 2.2.10 340 Dropped Lifted Lifted

 RefNewAllelInsRefChanged 2.2.9 111 Dropped

 Dropped 109

 Lifted 2 Lifted

 RefNewAlleleIndelNoSwitch 2.2.11 42 Dropped Lifted Lifted

 ChromNotInPrimReference N/A 1 Dropped Dropped Dropped

 Total 969,486

 SI.Appendix. Analysis script output

 Our analysis scripts in the https://github.com/divonlan/genozip-dvcf-results repository

 generate analysis output files for each tool. The Genozip analysis file summarizes the number

 of variants assigned to each category, while the analysis files for CrossMap and LiftoverVcf

 summarize the number of variants in each Genozip category, that were either lifted or

 dropped by the tool.

 We therefore have analysis files for each of the three tools (Genozip, CrossMap and

 LiftoverVcf), for each of the three tests (Indels, SNPs and ClinVar) for each of the two

 datasets (GRCh37->GRCh38 and GRCh38->T2T):

https://github.com/divonlan/genozip-dvcf-results

 1) Indels – GRCh37 to GRCh38

 Genozip

 Showing counts of o$TATUS (did_i=17). Total items=18706 Number of

 categories=14

 OkRefSameIndel 18201 97.30%

 OkRefAltSwitchIndelRpts 153 0.82%

 RefNotMappedInChain 78 0.42%

 OkRefAltSwitchWithGap 71 0.38%

 OkRefSameDelRev 67 0.36%

 OkRefSameInsRev 40 0.21%

 OkRefAltSwitchIndelFlank 27 0.14%

 RefSplitInChain 20 0.11%

 RefNewAlleleDelRefChanged 13 0.07%

 RefNewAlleleInsSameRef 11 0.06%

 RefNewAlleleIndelNoSwitch 9 0.05%

 OkRefAltSwitchDelToIns 6 0.03%

 RefNewAlleleInsRefChanged 6 0.03%

 RefNewAlleleDelSameRef 4 0.02%

 CrossMap

 data=indel primary=37 luft=38 tool=CrossMap

 Lifted OkRefSameIndel: 18201

 Lifted OkRefAltSwitchIndelRpts: 153

 Lifted RefNotMappedInChain: 2

 Failed RefNotMappedInChain: 76

 Failed OkRefAltSwitchWithGap: 71

 Lifted OkRefSameDelRev: 67

 Lifted OkRefSameInsRev: 40

 Lifted OkRefAltSwitchIndelFlank: 27

 Lifted RefSplitInChain: 18

 Failed RefSplitInChain: 2

 Lifted RefNewAlleleDelRefChanged: 13

 Lifted RefNewAlleleInsSameRef: 11

 Lifted RefNewAlleleIndelNoSwitch: 9

 Lifted OkRefAltSwitchDelToIns: 6

 Lifted RefNewAlleleInsRefChanged: 6

 Lifted RefNewAlleleDelSameRef: 4

 LiftoverVcf

 data=indel primary=37 luft=38 tool=gatk

 Lifted OkRefSameIndel: 18201

 Lifted OkRefAltSwitchIndelRpts: 153

 Failed RefNotMappedInChain: 78

 Failed OkRefAltSwitchWithGap: 71

 Lifted OkRefSameDelRev: 67

 Lifted OkRefSameInsRev: 40

 Lifted OkRefAltSwitchIndelFlank: 27

 Failed RefSplitInChain: 20

 Failed RefNewAlleleDelRefChanged: 13

 Lifted RefNewAlleleInsSameRef: 11

 Lifted RefNewAlleleIndelNoSwitch: 9

 Failed OkRefAltSwitchDelToIns: 6

 Failed RefNewAlleleInsRefChanged: 6

 Lifted RefNewAlleleDelSameRef: 4

 2) SNPs – GRCh37 to GRCh38

 Genozip

 Showing counts of o$TATUS (did_i=17). Total items=4109729 Number of

 categories=8

 OkRefSameSNP 4037520 98.24%

 OkRefAltSwitchSNP 29635 0.72%

 RefNotMappedInChain 26728 0.65%

 OkRefSameSNPRev 15689 0.38%

 RefNewAlleleSNP 68 0.00%

 OkNewRefSNP 47 0.00%

 RefMultiAltSwitchSNP 30 0.00%

 OkRefSameSNPIupac 12 0.00%

 CrossMap

 data=snp primary=37 luft=38 tool=CrossMap

 Lifted OkRefSameSNP: 4037520

 Failed OkRefAltSwitchSNP: 29635

 Failed RefNotMappedInChain: 26728

 Lifted OkRefSameSNPRev: 15689

 Lifted RefNewAlleleSNP: 68

 Lifted OkNewRefSNP: 47

 Lifted RefMultiAltSwitchSNP: 30

 Lifted OkRefSameSNPIupac: 12

 LiftoverVcf

 data=snp primary=37 luft=38 tool=gatk

 Lifted OkRefSameSNP: 4037520

 Lifted OkRefAltSwitchSNP: 29635

 Failed RefNotMappedInChain: 26728

 Lifted OkRefSameSNPRev: 15689

 Failed RefNewAlleleSNP: 68

 Failed OkNewRefSNP: 47

 Failed RefMultiAltSwitchSNP: 30

 Failed OkRefSameSNPIupac: 12

 3) ClinVar – GRCh37 to GRCh38

 Genozip

 Showing counts of o$TATUS (did_i=17). Total items=969410 Number of

 categories=19

 OkRefSameSNP 870016 89.75%

 OkRefSameIndel 90450 9.33%

 OkRefSameNotLeftAnc 6557 0.68%

 RefNotMappedInChain 1424 0.15%

 OkRefSameSNPRev 501 0.05%

 OkRefAltSwitchSNP 200 0.02%

 RefNewAlleleSNP 133 0.01%

 RefNewAlleleInsSameRef 36 0.00%

 OkRefSameDelRev 33 0.00%

 RefNewAlleleDelRefChanged 20 0.00%

 OkRefSameInsRev 16 0.00%

 RefNewAlleleNotLeftAnc 7 0.00%

 OkRefAltSwitchIndelRpts 4 0.00%

 RefSplitInChain 4 0.00%

 OkRefAltSwitchWithGap 2 0.00%

 OkRefAltSwitchNotLeftAnc 2 0.00%

 RefNewAlleleInsRefChanged 2 0.00%

 RefNewAlleleIndelNoSwitch 2 0.00%

 RefNewAlleleDelSameRef 1 0.00%

 CrossMap

 data=clinvar primary=37 luft=38 tool=CrossMap

 Lifted OkRefSameSNP: 870016

 Lifted OkRefSameIndel: 90450

 Lifted OkRefSameNotLeftAnc: 6557

 Lifted RefNotMappedInChain: 2

 Failed RefNotMappedInChain: 1422

 Lifted OkRefSameSNPRev: 501

 Failed OkRefAltSwitchSNP: 200

 Lifted RefNewAlleleSNP: 133

 Lifted RefNewAlleleInsSameRef: 36

 Lifted OkRefSameDelRev: 33

 Lifted RefNewAlleleDelRefChanged: 20

 Lifted OkRefSameInsRev: 16

 Lifted RefNewAlleleNotLeftAnc: 7

 Lifted OkRefAltSwitchIndelRpts: 4

 Lifted RefSplitInChain: 2

 Failed RefSplitInChain: 2

 Failed OkRefAltSwitchWithGap: 2

 Failed OkRefAltSwitchNotLeftAnc: 2

 Lifted RefNewAlleleInsRefChanged: 2

 Lifted RefNewAlleleIndelNoSwitch: 2

 Lifted RefNewAlleleDelSameRef: 1

 LiftoverVcf

 data=clinvar primary=37 luft=38 tool=gatk

 Lifted OkRefSameSNP: 870016

 Lifted OkRefSameIndel: 90450

 Lifted OkRefSameNotLeftAnc: 6557

 Failed RefNotMappedInChain: 1424

 Lifted OkRefSameSNPRev: 501

 Lifted OkRefAltSwitchSNP: 200

 Failed RefNewAlleleSNP: 133

 Lifted RefNewAlleleInsSameRef: 36

 Lifted OkRefSameDelRev: 33

 Failed RefNewAlleleDelRefChanged: 20

 Lifted OkRefSameInsRev: 16

 Failed RefNewAlleleNotLeftAnc: 7

 Lifted OkRefAltSwitchIndelRpts: 4

 Failed RefSplitInChain: 4

 Failed OkRefAltSwitchWithGap: 2

 Failed OkRefAltSwitchNotLeftAnc: 2

 Failed RefNewAlleleInsRefChanged: 2

 Lifted RefNewAlleleIndelNoSwitch: 2

 Lifted RefNewAlleleDelSameRef: 1

 4) Indels – GRCh38 to T2T

 Genozip

 Showing counts of o$TATUS (did_i=17). Total items=227096 Number of

 categories=20

 OkRefSameIndel 155695 68.56%

 OkRefSameNotLeftAnc 30654 13.50%

 RefSplitInChain 12147 5.35%

 RefNotMappedInChain 5688 2.50%

 OkRefSameDelRev 3823 1.68%

 RefMultiAltSwitchIndel 3002 1.32%

 RefNewAlleleNotLeftAnc 2835 1.25%

 RefNewAlleleNDNI 2459 1.08%

 OkRefSameInsRev 2010 0.89%

 OkRefAltSwitchIndelRpts 1738 0.77%

 OkRefSameNDNIRev 1575 0.69%

 RefNewAlleleDelRefChanged 1429 0.63%

 RefNewAlleleInsSameRef 1181 0.52%

 OkRefAltSwitchWithGap 871 0.38%

 RefNewAlleleDelSameRef 512 0.23%

 OkRefAltSwitchIndelFlank 389 0.17%

 RefNewAlleleIndelNoSwitch 380 0.17%

 RefNewAlleleInsRefChanged 313 0.14%

 OkRefAltSwitchDelToIns 228 0.10%

 INFO/AF 167 0.07%

 CrossMap

 data=indel primary=38 luft=t2t tool=CrossMap

 Lifted OkRefSameIndel: 155695

 Lifted OkRefSameNotLeftAnc: 30654

 Lifted RefSplitInChain: 2554

 Failed RefSplitInChain: 9593

 Lifted RefNotMappedInChain: 2127

 Failed RefNotMappedInChain: 3561

 Lifted OkRefSameDelRev: 3823

 Lifted RefMultiAltSwitchIndel: 3002

 Lifted RefNewAlleleNotLeftAnc: 2835

 Lifted RefNewAlleleNDNI: 2459

 Lifted OkRefSameInsRev: 2010

 Lifted OkRefAltSwitchIndelRpts: 1738

 Lifted OkRefSameNDNIRev: 1575

 Lifted RefNewAlleleDelRefChanged: 1429

 Lifted RefNewAlleleInsSameRef: 1181

 Failed OkRefAltSwitchWithGap: 871

 Lifted RefNewAlleleDelSameRef: 512

 Lifted OkRefAltSwitchIndelFlank: 389

 Lifted RefNewAlleleIndelNoSwitch: 380

 Lifted RefNewAlleleInsRefChanged: 313

 Lifted OkRefAltSwitchDelToIns: 228

 Lifted INFO/AF: 167

 LiftoverVcf

 data=indel primary=38 luft=t2t tool=gatk

 Lifted OkRefSameIndel: 155695

 Lifted OkRefSameNotLeftAnc: 30123

 Failed OkRefSameNotLeftAnc: 531

 Failed RefSplitInChain: 12147

 Failed RefNotMappedInChain: 5688

 Lifted OkRefSameDelRev: 3535

 Failed OkRefSameDelRev: 288

 Lifted RefMultiAltSwitchIndel: 1695

 Failed RefMultiAltSwitchIndel: 1307

 Lifted RefNewAlleleNotLeftAnc: 53

 Failed RefNewAlleleNotLeftAnc: 2782

 Lifted RefNewAlleleNDNI: 44

 Failed RefNewAlleleNDNI: 2415

 Lifted OkRefSameInsRev: 1998

 Failed OkRefSameInsRev: 12

 Lifted OkRefAltSwitchIndelRpts: 1735

 Failed OkRefAltSwitchIndelRpts: 3

 Lifted OkRefSameNDNIRev: 1271

 Failed OkRefSameNDNIRev: 304

 Lifted RefNewAlleleDelRefChanged: 66

 Failed RefNewAlleleDelRefChanged: 1363

 Lifted RefNewAlleleInsSameRef: 1181

 Failed OkRefAltSwitchWithGap: 871

 Lifted RefNewAlleleDelSameRef: 475

 Failed RefNewAlleleDelSameRef: 37

 Lifted OkRefAltSwitchIndelFlank: 389

 Lifted RefNewAlleleIndelNoSwitch: 380

 Lifted RefNewAlleleInsRefChanged: 121

 Failed RefNewAlleleInsRefChanged: 192

 Lifted OkRefAltSwitchDelToIns: 1

 Failed OkRefAltSwitchDelToIns: 227

 Failed INFO/AF: 167

 5) SNPs – GRCh38 to T2T

 Genozip

 Showing counts of o$TATUS (did_i=17). Total items=4082903 Number of

 categories=7

 OkRefSameSNP 2288044 56.04%

 OkRefAltSwitchSNP 1705586 41.77%

 RefNotMappedInChain 61771 1.51%

 OkRefSameSNPRev 22266 0.55%

 RefNewAlleleSNP 1934 0.05%

 OkNewRefSNP 1869 0.05%

 RefMultiAltSwitchSNP 1433 0.04%

 CrossMap

 data=snp primary=38 luft=t2t tool=CrossMap

 Lifted OkRefSameSNP: 2288044

 Failed OkRefAltSwitchSNP: 1705586

 Failed RefNotMappedInChain: 61771

 Lifted OkRefSameSNPRev: 22266

 Lifted RefNewAlleleSNP: 1934

 Lifted OkNewRefSNP: 1869

 Lifted RefMultiAltSwitchSNP: 1433

 LiftoverVcf

 data=snp primary=38 luft=t2t tool=gatk

 Lifted OkRefSameSNP: 2288044

 Lifted OkRefAltSwitchSNP: 1705586

 Failed RefNotMappedInChain: 61771

 Lifted OkRefSameSNPRev: 22266

 Failed RefNewAlleleSNP: 1934

 Failed OkNewRefSNP: 1869

 Failed RefMultiAltSwitchSNP: 1433

 6) ClinVar – GRCh38 to T2T

 Genozip

 Showing counts of o$TATUS (did_i=17). Total items=969486 Number of

 categories=22

 OkRefSameSNP 857612 88.46%

 OkRefSameIndel 86095 8.88%

 OkRefAltSwitchSNP 11055 1.14%

 OkRefSameNotLeftAnc 5972 0.62%

 OkRefSameSNPRev 2058 0.21%

 RefNewAlleleInsSameRef 1071 0.11%

 RefSplitInChain 1003 0.10%

 RefNotMappedInChain 859 0.09%

 OkRefAltSwitchIndelRpts 734 0.08%

 RefNewAlleleSNP 732 0.08%

 RefNewAlleleDelRefChanged 520 0.05%

 RefNewAlleleNotLeftAnc 457 0.05%

 OkRefAltSwitchWithGap 432 0.04%

 RefNewAlleleDelSameRef 340 0.04%

 OkRefAltSwitchIndelFlank 152 0.02%

 RefNewAlleleInsRefChanged 111 0.01%

 OkRefSameDelRev 89 0.01%

 OkRefAltSwitchDelToIns 53 0.01%

 OkRefAltSwitchNotLeftAnc 50 0.01%

 OkRefSameInsRev 48 0.00%

 RefNewAlleleIndelNoSwitch 42 0.00%

 ChromNotInPrimReference 1 0.00%

 CrossMap

 data=clinvar primary=38 luft=t2t tool=CrossMap

 Lifted OkRefSameSNP: 857612

 Lifted OkRefSameIndel: 86095

 Failed OkRefAltSwitchSNP: 11055

 Lifted OkRefSameNotLeftAnc: 5972

 Lifted OkRefSameSNPRev: 2058

 Lifted RefNewAlleleInsSameRef: 1071

 Lifted RefSplitInChain: 106

 Failed RefSplitInChain: 897

 Lifted RefNotMappedInChain: 68

 Failed RefNotMappedInChain: 791

 Lifted OkRefAltSwitchIndelRpts: 734

 Lifted RefNewAlleleSNP: 732

 Lifted RefNewAlleleDelRefChanged: 520

 Lifted RefNewAlleleNotLeftAnc: 456

 Failed RefNewAlleleNotLeftAnc: 1

 Lifted OkRefAltSwitchWithGap: 1

 Failed OkRefAltSwitchWithGap: 431

 Lifted RefNewAlleleDelSameRef: 340

 Lifted OkRefAltSwitchIndelFlank: 152

 Lifted RefNewAlleleInsRefChanged: 111

 Lifted OkRefSameDelRev: 89

 Lifted OkRefAltSwitchDelToIns: 53

 Lifted OkRefAltSwitchNotLeftAnc: 16

 Failed OkRefAltSwitchNotLeftAnc: 34

 Lifted OkRefSameInsRev: 48

 Lifted RefNewAlleleIndelNoSwitch: 42

 Failed ChromNotInPrimReference: 1

 LiftoverVcf

 data=clinvar primary=38 luft=t2t tool=gatk

 Lifted OkRefSameSNP: 857612

 Lifted OkRefSameIndel: 86095

 Lifted OkRefAltSwitchSNP: 11055

 Lifted OkRefSameNotLeftAnc: 5972

 Lifted OkRefSameSNPRev: 2058

 Lifted RefNewAlleleInsSameRef: 1071

 Failed RefSplitInChain: 1003

 Failed RefNotMappedInChain: 859

 Lifted OkRefAltSwitchIndelRpts: 734

 Failed RefNewAlleleSNP: 732

 Failed RefNewAlleleDelRefChanged: 520

 Failed RefNewAlleleNotLeftAnc: 457

 Failed OkRefAltSwitchWithGap: 432

 Lifted RefNewAlleleDelSameRef: 340

 Lifted OkRefAltSwitchIndelFlank: 152

 Lifted RefNewAlleleInsRefChanged: 2

 Failed RefNewAlleleInsRefChanged: 109

 Lifted OkRefSameDelRev: 87

 Failed OkRefSameDelRev: 2

 Failed OkRefAltSwitchDelToIns: 53

 Failed OkRefAltSwitchNotLeftAnc: 50

 Lifted OkRefSameInsRev: 48

 Lifted RefNewAlleleIndelNoSwitch: 42

 Failed ChromNotInPrimReference: 1

 Thesis discussion

 Thesis summary and significance

 In this PhD project, my aim was to advance the field of genomic data compression, both at

 the theoretical level by devising new algorithms and methods to achieve better compression,

 as well as at the applied level by assembling the best software engineering models to create

 a practical, reliable tool that researchers and clinicians can benefit from in the years and

 decades to come. My hope is that with better storage management of genomic data, the

 generation of genomic data and its usage will become more economically feasible, and this

 small contribution of mine will have some impact at accelerating the pace of the genomics

 revolution, in particular as it pertains to the clinical space, which translates directly to saving

 or improving human lives.

 Chapters 1 and 2
 In chapters 1 and 2, I described the invention of several new methods for compressing

 various elements of genomic data, as well as the architectural framework of the Genozip

 software. Using a series of benchmarks, I demonstrated how the new compression methods

 implemented in Genozip are superior to previous approaches in many important cases.

 It is my opinion that the file formats that Genozip handles will still be the file formats used

 decades ahead, despite their shortcomings. Indeed, there is current work being conducted to

 address the limitations of genomic file formats - most notably, to support expression of

 genomic coordinates on a pangenome graph rather than a linear reference [1] to better

 address worldwide human genetic diversity and capture their underlying ancestries. A file

 format called GAM [2] is proposed as a replacement for BAM that is suitable for expressing

 read alignment to a pangenome graph, and the VG format [3] is proposed as a pangenome

 graph replacement for both a linear reference genome, which is typically expressed in

 FASTA file, and the description of genetic variants within specific samples, for which the VCF

 format is the current de-facto standard.

 It is my estimation that these new formats will, with all likelihood, find their place in areas of

 research where their advantages are critical, such as research of structural variants across

 populations. However, I do not anticipate that they will be adopted in the broad research and

 clinical community, as the current formats are entrenched with hundreds of tools that are

 dependent upon them, petabytes of legacy data, and the scores of trained users churned out

https://paperpile.com/c/DIS8nB/BOYz
https://paperpile.com/c/DIS8nB/PiVS
https://paperpile.com/c/DIS8nB/i7pG

 by biological, medical, and bioinformatics programs worldwide over the past 15 years. More

 crucially, for most common use cases, there is no obvious compelling reason to switch yet.

 This conviction is based on following analogous development of standards in a related

 rapidly evolving industry - the Internet. During my time as a computer science

 undergraduate student in the early 90s, there was work going on to solve the limitations of

 IPv4, the Internet Protocol first used in the early 1980s that was designed to support up to 4

 billion devices - seemingly more than enough, even in the minds of the wildest imaginators

 of the time. In 1995, the Internet Engineering Task Force (IETF) - the body that governs the

 technical standards of the Internet - published what became eventually known as IPv6 as a

 recommendation [4] and as a standard in 1998 [5] . The industry consensus was that IPv6

 would rapidly replace IPv4, as the latter is ill-suited to serve as the backbone of a network

 that connects billions of devices worldwide. However, the end-users of computers and

 phones and their Internet Service Providers had no compelling reason to switch, and the

 limitations of IPv4 were addressed with a patchwork of hacky enhancements. As a result, to

 this day, 25 years or so after the advent of IPv6 that is without question superior to IPv4, the

 world is predominantly still using IPv4. Similarly, without a compelling reason to switch for a

 broad population of bioinformatics users, I anticipate that we will still be using FASTA,

 FASTQ, BAM/CRAM and VCF formats in the decades to come, and Genozip will still be

 around to make their usage more efficient.

 Chapter 3
 In Chapter 3 I tackled the file format - VCF - that is often used as the workhorse of analysis

 in a wide range of genomics subfields, including clinical genetics, population genetics and

 others. This file format is over a decade old now and comes with many limitations, which

 include not utilising common data standards such as XML or JSON, high levels of data

 redundancy (and hence the need for compression), and is sufficiently complex to make

 error-checking difficult [6] . However, as discussed above, it is my forecast that the VCF

 format will continue to be the primary format for expressing genetic variation for many years

 to come, despite its known shortcomings, and will be improved incrementally with point

 enhancements. In Chapter 3 and the dissertation Appendix, I proposed one such

 enhancement - a new extension of VCF, called DVCF, and implemented it in Genozip. DVCF

 allows users and bioinformatics tools to access genetic variants using coordinates of two

 different reference genomes concurrently. While Genozip is designed to be a compression

 tool, not an analysis tool, a by-product of its architecture is a fine grained internal

 representation of genomic data, which then allows development of innovative

https://paperpile.com/c/DIS8nB/wz84
https://paperpile.com/c/DIS8nB/C1ga
https://paperpile.com/c/DIS8nB/dQFr

 transformations of the data. DVCF is one such example, and others might be added in the

 future.

 The importance of DVCF is elevated due to human genomics research still transitioning

 from GRCh37 to GRCh38 as the standard version of the human reference genome, and as a

 result, it is not uncommon for a dataset to be processed in a bioinformatics pipeline that

 contains steps alternating between these two reference genomes. GRCh38 was first

 introduced in 2013, almost a decade ago, and the reason the transition to it is incomplete is

 a similar lack of compelling reason to switch as described earlier. Compounding this problem

 is the recent availability of a new human reference genome, T2T-CHM13, provided by the

 Telomere-to-Telomere consortium [7] . Gradual adoption of this reference genome by some

 will inevitably result in three human reference genomes being commonly used by the

 research community.

 Conclusion and future directions

 Reflecting on the hypothesis “ methods tailored to the structure of genomic data will improve

 compression rates ”: Genozip has been implemented based on this hypothesis - and as

 demonstrated in chapters 1, 2, this approach indeed succeeded in improving compression

 rates in a wide range of cases.

 There are two equally important axes that are both required to sustain and improve Genozip

 in the years to come. The first, is on the algorithmic axis - continuous improvement of the

 algorithms, and support for new sequencing technologies and file formats created by new

 bioinformatics methods as they emerge. The second, which is often overlooked in the

 academic world, is creating a financial model that will sustain ongoing development and

 support of Genozip.

 On the algorithmic side, the current version of Genozip offers the best compression of

 genomic files available for a wide range of common genetic data cases. However, there is

 still work to be done to improve the compression, as there are many more data

 redundancies to be exploited, as well as better compression for a variety of genomic file

 types that are the products of common tools used in the field.

 In addition, there is a need to make Genozip easier to integrate into existing bioinformatics

 pipelines that requires only minimal modifications to the pipeline. There are a number of

 different approaches for achieving this: one would be including access to Genozip into htslib,

https://paperpile.com/c/DIS8nB/USOy

 the underlying library used by many software packages for reading genomic files, while

 another would be presenting compressed files as a virtual filesystem.

 New sequencing technologies, which increasingly rely on complex machine learning

 algorithms for base calling (e.g., Oxford Nanopore Technology, Ultima Genomics), pose new

 compression challenges as the statistical properties of their data differ significantly from

 traditional high-throughput DNA sequencing data, therefore different methods are needed for

 their compression. A substantial research effort will be required for solving this problem.

 An interesting potential application of DVCF not yet explored, is using it to generate VCF

 files describing variants in homologous genes in related species. This remains an area of

 future research. It might also be useful to extend DVCF from being “dual coordinate” to

 supporting an arbitrary number of reference files.

 Also for DVCF, the current lift-over algorithm covers significantly more cases than previous

 lift-over software packages, but it still doesn’t cover all cases. Most notably, it doesn’t handle

 structural variants (such variants remain in the DVCF file as “single-coordinate variants”,

 encoded in the VCF header). The reason for this is that it is extremely tricky to lift over such

 variants against a chain file that itself might contain structural changes. This is an area for

 future research.

 As good as the DVCF format may be, it will have little impact if it is not widely adopted by the

 research community. To this end, it is my intention to engage with the VCF specification

 community to attempt to get DVCF officially supported.

 The sequence of development of the ideas that lead to DVCF, resulted in it being

 implemented in Genozip, which is primarily used as a compression tool. It might be useful to

 also have a standalone liftover tool based on the DVCF format which is separate from

 Genozip and does not store data in the Genozip compressed format.

 Genozip, at its core, is a system for storing genomic data in an efficient way. Decompressing

 is simply re-writing the data from Genozip format back to its original format. However, there

 could be other useful ways to manipulate the data, or present it in new and useful formats,

 as demonstrated in DVCF. This is also an area for future research.

 As data security is a growing concern in the area of genomics, Genozip comes with a built-in

 encryption capability. The field of encryption, and in particular encryption algorithms resistant

 to quantum-computing attacks, is evolving rapidly. For this reason, adding encryption

 algorithms is supported by the current design of the Genozip file format - it would be fairly

 straightforward to add additional encryption algorithms in the future. While quantum

 computing is still only on the distant horizon of the average bioinformatician, there is some

 hope that AES-256, the encryption algorithm currently used by Genozip, being S-Box-based

 rather than based on a mathematical problem as in the RSA or Elliptic Curves algorithms, is

 inherently more resistant to quantum attack algorithms (Rao et al., 2017) following the

 concept introduced by (Shor, 1994) . Encryption algorithms recently selected by NIST for

 their quantum-resistance might offer even more protection (Boutin, 2022) .

 Apache ORC is a system for storing columnar data which is gaining popularity. To the extent

 that in the future, usage of this system becomes common in the bioinformatics space, it

 would be a good idea to extend Genozip to seamlessly integrate with it.

 On the financial side, it is now clear that the open source model has significant challenges

 when it comes to bioinformatics tools. Hundreds of potentially useful tools, which

 cumulatively consumed a huge amount of effort and resources to build, are left to

 “decompose” in github - i.e., becoming increasingly useless as needs and data formats

 evolve, and as their original developers move on. The idea that “anyone” can maintain these

 projects, while attractive, rarely materialises - most projects have no other contributors

 beyond their original developers, and other developers would rarely be interested in

 maintaining an existing project with neither payment nor potential publication being viable.

 The successful open source tools that are continuously evolving are typically ones that are

 supported by engineers who receive a regular salary to do so, from organisations who are

 either taxpayer funded or who have a commercial interest to keep a particular open source

 project alive.

 It is therefore clear to me that in order for Genozip to continue to evolve into the future, there

 is a need to commercialise it. The model I have chosen is to continue and provide it for free

 for academic research purposes, while charging users who use Genozip as part of their

 business - primarily in the clinical space, in the bioinformatics-services space and in the

 product-development space (biotech, agrotech etc). In addition, I have made the choice to

 keep the source code available on github (albeit with a restrictive licence, rather than open

 source one) to ensure that files compressed with Genozip today would be accessible in the

 decades to come regardless of my own personal circumstances, as well as to encourage

 other compression researchers to critically review Genozip.

https://paperpile.com/c/hU6UgN/xqNE
https://paperpile.com/c/hU6UgN/e9B6
https://paperpile.com/c/hU6UgN/DNNp

 All said, it is with great satisfaction that I inspect the list of research labs that are using

 Genozip (Appendix 3), a list that is growing daily. My hope is that Genozip will prove to be a

 useful tool for researchers and clinicians around the world, and have a small contribution to

 the advancement of using genetics for improving human lives - that shall be my true reward

 for this effort.

 References

 1. Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, Hickey G, et al.

 Pangenome Graphs. Annu Rev Genomics Hum Genet. 2020;21: 139–162.

 doi: 10.1146/annurev-genom-120219-080406

 2. vg Wiki. Github; Available: https://github.com/vgteam/vg

 3. Hickey G, Heller D, Monlong J, Sibbesen JA, Sirén J, Eizenga J, et al. Genotyping

 structural variants in pangenome graphs using the vg toolkit. Genome Biol. 2020;21: 35.

 doi: 10.1186/s13059-020-1941-7

 4. RFC 1752 - the Recommendation for the IP Next Generation Protocol. [cited 13 Apr

 2022]. Available: https://datatracker.ietf.org/doc/html/rfc1752

 5. Deering S, Hinden R. Rfc 2460-internet protocol, version 6 (ipv6) specification, 1998.

 One citation on. 2014; 19. Available: https://datatracker.ietf.org/doc/html/rfc2460

 6. Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P. Vcflib and tools for

 processing the VCF variant call format. bioRxiv. 2021. p. 2021.05.21.445151.

 doi: 10.1101/2021.05.21.445151

 7. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete

 sequence of a human genome. Science. 2022;376: 44–53. doi: 10.1126/science.abj6987

 8. Boutin,C. (2022) NIST announces first four quantum-resistant cryptographic algorithms
 | NIST.

 9. Rao et al. The AES-256 cryptosystem resists quantum attacks. Int. J. Advanced
 Research in Computer Science , 8(3): 404-408

 10. Shor,P.W. (1994) Algorithms for quantum computation: discrete logarithms and
 factoring. In, Proceedings 35th Annual Symposium on Foundations of Computer
 Science ., pp. 124–134.

http://paperpile.com/b/DIS8nB/BOYz
http://paperpile.com/b/DIS8nB/BOYz
http://paperpile.com/b/DIS8nB/BOYz
http://dx.doi.org/10.1146/annurev-genom-120219-080406
http://paperpile.com/b/DIS8nB/PiVS
https://github.com/vgteam/vg
http://paperpile.com/b/DIS8nB/i7pG
http://paperpile.com/b/DIS8nB/i7pG
http://paperpile.com/b/DIS8nB/i7pG
http://dx.doi.org/10.1186/s13059-020-1941-7
http://paperpile.com/b/DIS8nB/wz84
http://paperpile.com/b/DIS8nB/wz84
https://datatracker.ietf.org/doc/html/rfc1752
http://paperpile.com/b/DIS8nB/C1ga
http://paperpile.com/b/DIS8nB/C1ga
https://datatracker.ietf.org/doc/html/rfc2460
http://paperpile.com/b/DIS8nB/dQFr
http://paperpile.com/b/DIS8nB/dQFr
http://paperpile.com/b/DIS8nB/dQFr
http://dx.doi.org/10.1101/2021.05.21.445151
http://paperpile.com/b/DIS8nB/USOy
http://paperpile.com/b/DIS8nB/USOy
http://dx.doi.org/10.1126/science.abj6987
http://paperpile.com/b/hU6UgN/DNNp
http://paperpile.com/b/hU6UgN/DNNp
http://paperpile.com/b/hU6UgN/e9B6
http://paperpile.com/b/hU6UgN/e9B6
http://paperpile.com/b/hU6UgN/e9B6

 Appendix 1: The DVCF Specification

 The Variant Call Format
 Dual Coordinate Extension (DVCF)

 Specification

 Version 1.2
 August 8, 2021

 Written by: Divon Lan, divon@genozip.com

 Citing (pre-print):
 Lan, D (2021) The Variant Call Format - Dual Coordinate Extension (DVCF) Specification (preprint)
 doi:10.6084/m9.figshare.14685816

 1. Background

 This specification is fully compatible with the VCFv4.3 specification , and extends it. It is also fully

 compatible with VCF v4.1 and v4.2.

 The specification defines a derived format of VCF, fully compliant with the VCF specification, which is

 called the Dual Coordinate VCF file (or DVCF). A DVCF file contains information about genetic variants

 in two different coordinate systems. The key feature of DVCF is that it can be rendered in two different

 ways - the Primary rendition and Luft rendition . Both these renditions are VCF specification-compliant

 files, that contain precisely the same information, merely rendered in two different coordinate systems.

 Since these two renditions contain precisely the same information, they can be losslessly cross-rendered

 back and forth. Cross-rendering is a fast operation that does not require a reference or chain file.

 Once a VCF file is lifted to a Dual Coordinate VCF file - it can be processed through an analytical

 pipeline, and since the data can be rendered in either coordinate system, each stage of the pipeline can

 arbitrarily operate on either coordinate system. Importantly, the rendering continues to work as fields and

 annotations are added, removed or modified, as the data works its way down the pipeline.

 This specification was intentionally made to be similar to the VCF specification in format, structure and

 terminology, and is designed to be read alongside it. All the definitions and requirements that appear in the

 VCF specification apply here as well, and they are not repeated in this document.

 A reference implementation is provided in Genozip, available on genozip.com (Lan et al. , 2021, 2020) .

 This specification was written in the context of a PhD project at the University of Adelaide, Australia. I

 wish to thank my PhD supervisors Assoc. Prof. Bastien Llamas, Dr. Yassine Souilmi and Dr. Ray Tobler,

 as well as my wife, Channé Suy Lan, for their support which has been absolutely essential.

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://genozip.com/
https://paperpile.com/c/VrkJXc/IvN2r+Kn3FK

 2. Definitions

 ● A Source VCF is any VCF file that is compliant with the VCF specification.

 ● The Primary coordinate system is the coordinate system of the Source VCF.

 ● The Luft coordinate system is the other coordinate system in which the variant data will be

 expressed ("Luft" being a made-up past participle of "Lift").

 ● A Primary rendition and a Luft rendition are VCF files expressed in the Primary and Luft

 coordinates respectively, which are equivalent to each other and contain all the information of a

 Source VCF along with all the information needed to cross-render them (see below). A DVCF is

 always rendered in one or both of these two renditions, and this specification defines no other

 representation of a DVCF other than the renditions.

 ● A Lifter is a software functionality that converts, or Lifts , a Source VCF to a DVCF. It may use

 auxiliary information such as a reference file in the Luft coordinates and a chain file.

 ● A Renderer is a software functionality that generates the Primary and Luft renditions. It may

 cross-render a Primary rendition to a Luft one or vice versa, or may generate a Primary or Luft

 rendition from some other data. Cross-rendering does not require any external information beyond

 the input DVCF file itself. Specifically, it does not require a reference file or a chain file.

 ● A Dual Coordinates VCF implementation (or just implementation for brevity) means a particular

 software package including the functionalities of a Lifter and/or a Renderer.

 3. Scope of this specification

 This specification defines the formats of the DVCF Primary and Luft renditions.

 It does not define the algorithms of a Lifter or Renderer, however it does set constraints on them, to ensure

 that the Primary and Luft renditions contain precisely the same information, and to ensure interoperability

 between implementations. While adhering to these constraints, different implementations of Lifters and

 Renderers might operate differently to address different needs.

 Complying with this specification will ensure that the resulting files are interoperable across different

 systems.

 It is desirable that any software that converts a VCF file from one coordinate system to another, shall be

 capable of outputting VCF files in DVCF format.

 4. An Example

 The following are the two renditions of the same DVCF - they are two files containing precisely the same information - the first file is the Primary rendition in

 GRCh37 coordinates, and the second is the Luft rendition in GRCh38 coordinates. This DVCF contains 3 variants and 2 samples.

 A Primary rendition VCF file :

 ##fileformat=VCFv4.2
 ##dual_coordinates=PRIMARY
 ##chain=file:///data/GRCh37_to_GRCh38.chain.genozip
 ##reference=file:///references/grch37/reference.bin
 ##luft_reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.ref.genozip
 ##FILTER=<ID=PASS,Description="All filters passed">
 ##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles",RendAlg=”R">
 ##FORMAT=<ID=AF,Number=A,Type=Float,Description="Allele fractions for alt alleles in the order listed",RendAlg="A_1">
 ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype",RendAlg="GT">
 ##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes",RendAlg="G">
 ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele",RendAlg="A_AN">
 ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes",RendAlg="NONE">
 ##INFO=<ID=LUFT,Number=4,Type=String,Description="Info for rendering variant in LUFT coords",RendAlg="NONE">
 ##INFO=<ID=PRIM,Number=4,Type=String,Description="Info for rendering variant in PRIMARY coords",RendAlg="NONE">
 ##INFO=<ID=Lrej,Number=1,Type=String,Description="Reason variant was rejected for LUFT coords",RendAlg="NONE">
 ##INFO=<ID=Prej,Number=1,Type=String,Description="Reason variant was rejected for PRIMARY coords",RendAlg="NONE">
 ##contig=<ID=1,length=249250621>
 ##luft_contig=<ID=chr1,length=248956422>
 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Person1 Person2
 1 10285 . T C 4.4 PASS AC=3;AN=4;LUFT=chr1,10285,T,- GT:AD:AF:PL 0/1:31,18:0.367:37,0,46 1/1
 1 329162 . A T 4.6 PASS AC=3;AN=4;LUFT=chr1,248466248,T,- GT:AD:AF:PL 0/1:28,9:0.3:36,0,0 1/1
 1 366043 . CA A 100 PASS Lrej=RefTooLong GT 1|0 0|0

 A Luft rendition VCF file corresponding to the Primary rendition on the previous page:

 ##fileformat=VCFv4.2
 ##dual_coordinates=LUFT
 ##chain=file:///data/GRCh37_to_GRCh38.chain.genozip
 ##reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.ref.genozip
 ##primary_reference=file:///references/grch37/reference.bin
 ##FILTER=<ID=PASS,Description="All filters passed">
 ##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles",RendAlg="R">
 ##FORMAT=<ID=AF,Number=A,Type=Float,Description="Allele fractions for alt alleles in the order listed",RendAlg="A_1">
 ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype",RendAlg="GT">
 ##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes",RendAlg="G">
 ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele",RendAlg="A_AN">
 ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes",RendAlg="NONE">
 ##INFO=<ID=LUFT,Number=4,Type=String,Description="Info for rendering variant in LUFT coords",RendAlg="NONE">
 ##INFO=<ID=PRIM,Number=4,Type=String,Description="Info for rendering variant in PRIMARY coords",RendAlg="NONE">
 ##INFO=<ID=Lrej,Number=1,Type=String,Description="Reason variant was rejected for LUFT coords",RendAlg="NONE">
 ##INFO=<ID=Prej,Number=1,Type=String,Description="Reason variant was rejected for PRIMARY coords",RendAlg="NONE">
 ##primary_contig=<ID=1,length=249250621>
 ##contig=<ID=chr1,length=248956422>
 ##primary_only=1 366043 . CA A 100 PASS Lrej=RefTooLong GT 1|0 0|0
 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Person1 Person2
 chr1 10285 . T C 4.4 PASS AC=3;AN=4;PRIM=1,10285,T,- GT:AD:AF:PL 0/1:31,18:0.367:37,0,46 1/1
 chr1 248466248 . T A 4.6 PASS AC=1;AN=4;PRIM=1,329162,A,- GT:AD:AF:PL 1/0:9,28:0.7:0,0,36 0/0

 5. Meta-information lines

 The following meta-information lines are added or modified. They may appear in any order.

 5.1. Coordinates

 ##dual_coordinates=PRIMARY

 This field is required.

 Permitted values: PRIMARY , LUFT . Defines the coordinates of the current rendition.

 5.2. Chain file URL

 This field is recommended.

 ##chain=file:///data/GRCh37_to_GRCh38.chain.genozip

 The URL of the chain file used by the Lifter to generate this DVCF. The file format and naming

 conventions of the chain file are implementation-specific and out of scope of this specification.

 5.3. Reference files' URLs

 These fields are recommended.

 In a Primary rendition it is recommend to include the ##reference and ##luft_reference lines.

 The former contains the URL of the reference file of the Primary coordinates, and ##luft_reference

 contains the URL of the reference file of the Luft coordinates.

 ##reference=file:///data/hg19.p13.plusMT.full_analysis_set.ref.genozip

 ##luft_reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.r

 ef.genozip

 Similarly, in a Luft rendition, it is recommended to include ##reference (Luft coordinates reference

 file) and ##primary_reference :

 ##reference=file:///data/GRCh38_full_analysis_set_plus_decoy_hla.ref.ge

 nozip

 ##primary_reference=file:///data/hg19.p13.plusMT.full_analysis_set.ref.

 genozip

 The file format and naming conventions of the reference files are implementation-specific and out of scope

 of this specification.

 5.4. RendAlg attribute of ##INFO and ##FORMAT

 ##FORMAT=<ID=GL,Number=G,Type=Float,Description="Genotype

 Likelihoods",RendAlg="G">

 ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in

 genotypes, for each ALT allele, in the same order as

 listed",RendAlg="A_AN">

 The RendAlg attribute must be present in all ## INFO and ## FORMAT meta-information lines.

 The Renderer must add RendAlg to ## INFO or ## FORMAT meta-information lines that are missing them.

 It must not modify a RendAlg value if one is already present. Lines might be missing RendAlg if, for

 example, the file acquired additional INFO or FORMAT fields in an analysis step.

 5.5. LUFT, PRIM, Lrej and Prej

 DVCF files must contain the following four meta-information lines defining INFO/LUFT ,

 INFO/PRIM,INFO/Lrej and INFO/Prej . The ID , Number, Type and RendAlg attributes must

 appear as below, other attributes (such as Description) are optional.

 ##INFO=<ID=LUFT,Number=4,Type=String,RendAlg="NONE">

 ##INFO=<ID=PRIM,Number=4,Type=String,RendAlg="NONE">

 ##INFO=<ID=Lrej,Number=1,Type=String,RendAlg="NONE">

 ##INFO=<ID=Prej,Number=1,Type=String,RendAlg="NONE">

 5.6. Contigs

 The ##contig key is as defined in the VCF specification. It refers to contigs of the current coordinates.

 In a Primary rendition file, meta-information lines with a ##luft_contig key may exist, and have the

 same format as ##contig . They describe the contigs that appear in the Luft rendition. Similarly, a Luft

 rendition files may contain ##primary_contig keys, describing the contigs in the Primary rendition. It

 is recommended that a DVCF file includes a ##luft_contig or ##primary_contig line for each

 contig that appears in the file.

 Note that there is no requirement for a 1:1 mapping between contigs - indeed, it is possible that two

 variants with a particular contig in one coordinate system, are mapped to two different contigs on the other

 coordinate system.

 5.7. ##primary_only and ##lift_only

 In the Primary rendition ##luft_only meta-information lines contain variants that are not renderable in

 Primary coordinates, and similarly, in the Luft rendition , ##primary_only meta-information lines

 contain variants that are not renderable in Luft coordinates. Following the key at the ‘=’ character, the

 remainder of the line is a normal VCF data line as defined in the VCF specification.

 6. Variants

 6.1. Overview
 Each variant in the DVCF can be a dual-coordinate variant, or it could be a primary-coordinates-only

 variant or a luft-coordinates-only variant. The latter two cases happen when a variant can only be

 expressed in one of the coordinates but not in the other, in which case we also refer to it as rejected from

 the other coordinates. There are many reasons a variant can be rejected, discussed below.

 Each variant, in both renditions, contains exactly one DVCF tag , which is an INFO field carrying

 DVCF-related information - one of: PRIM, LUFT, Prej or Lrej.

 A dual-coordinate variant appears as a normal VCF variant in both renditions, and contains an

 INFO/LUFT field in the Primary rendition with the information needed to cross-render this variant to Luft

 coordinates, and similarly, in the Luft rendition, it contains an INFO/PRIM field with the information

 needed to cross-render the variant to Primary coordinates.

 A primary-coordinates-only variant contains an INFO/Lrej field with the reason it was rejected for

 rendering in Luft coordinates. In the Primary rendition, the variant appears as a normal VCF data line,

 while the Luft rendition, this variant will appear as-is (i.e. in Primary coordinates) in a meta-information

 line with the key ##primary_only .

 Likewise, luft-coordinates-only variants have a INFO/Prej field, and appear as a data line in the Luft

 rendition, and as a meta-information line they key ##luft_only in the Primary rendition.

 6.2. CHROM, POS, REF, ALT
 The Lifter , given a Source VCF and in consultation with external information, typically a reference

 file in the Luft coordinates and a chain file, should calculate the CHROM, POS, REF fields in the Luft

 coordinates. These must be biologically correct (the exact definition of biologically correct is left to

 the implementation) and either generate a dual-coordinate variant or a primary-only variant , i.e. one

 that was rejected from the Luft coordinates.

 A dual-coordinate variant appears as a VCF data line in both Primary and Luft renditions:

 ● A dual-coordinate variant in the Primary rendition has the CHROM, POS, REF and ALT fields

 appear as in the Source VCF.

 It also has a INFO/LUFT field that contains four values, for example:

 ” LUFT=chr2,1000000,G,X ”. The first two values are the CHROM and POS of this variant in

 Luft coordinates. The third is the Luft reference value of this variant. The fourth value, which we

 call XSTRAND, must be one of two options: it is X (capital letter X) if the alignment in the chain

 file which includes this locus has opposite strands for the Primary and Luft references and -

 (hyphen) if the strands are the same.

 ● A dual-coordinate variant in the Luft rendition has the values of CHROM, POS and REF as they

 appear in INFO/LUFT in the Primary rendition, and has the ALT calculated as described below.

 It also has an INFO/PRIM field that contains four values, of the same structure as INFO/LUFT:

 the first three values are the CHROM, POS and REF in Primary coordinates, and the fourth is the

 XSTRAND of this variant. XSTRAND must be the same value as in INFO/LUFT.

 A primary-only variant appears in both renditions in primary coordinates. In the Primary rendition, it

 appears as a normal VCF data line, while in the Luft rendition, it appears as a ##primary_only

 meta-information line. Apart from the “ ##primary_only= ” prefix, the meta-information line is

 identical to the VCF data line as it appears in the Primary rendition.

 In both renditions a primary-only variant has an INFO/Lrej field which contains the reason for its rejection.

 This specification defines a number of standard reasons, and an implementation may add additional

 reasons. The standard reasons are listed in section 7 of this document.

 The lifter uses the information in CHROM, POS, REF and ALT as well as external information such as a

 chain file and a Luft reference file, to generate either a INFO/LUFT of INFO/Lrej field, while the renderer

 uses the information in the CHROM, POS, REF, ALT and INFO/LUFT or INFO/PRIM fields to calculate

 the CHROM, POS, REF, ALT and INFO/PRIM or INFO/LUFT respectively, of the other rendition, or it

 may reject the cross-rendering resulting in a Primary-only variant with an INFO/Lrej field, or a Luft-only

 variant with INFO/Prej field.

 If the REF changes between Primary and Luft references, a lifter is free to either lift the variant or reject it,

 with the rejection reason placed in INFO/Lrej being one of the standard reasons listed in section 7, or an

 implementation-defined reason. If as a result of the REF change, the number of alleles grows because Luft

 REF is not any of the Primary alleles, then the Primary REF must be last on the Luft ALT list.

 When calculating the ALT field, the algorithm used by the lifter and renderer must:

 1. Be biologically-correct (the definition of biologically correct is left to the implementation).

 2. Be precisely invertible, so that cross-rendering from the Luft rendition to the Primary rendition

 and back to the Luft rendition, as well as Primary 🠖 Luft 🠖 Primary results in the precisely

 preserving the REF and ALT fields, including the case (upper or lower) of each character.

 A renderer, when cross-rendering a file, may encounter variants that are lacking a DVCF tag. This may

 happen, for example, when a non-DVCF VCF file is merged into a DVCF file, resulting in variants added

 that are lacking a DVCF tag. In this case, these variants become single-coordinate variants (in the

 coordinates of the current rendition), and the renderer must set the DVCF tag to Lrej=AddedVariant

 (Primary-only variant) or Prej=AddedVariant (Luft-only variant).

 A renderer , when cross-rendering a file, may encounter variants that have both a PRIM/LUFT field as

 well as a Prej/Lrej one. This can happen when rendering a DVCF that is a result of merging two

 DVCF files. The renderer must discard one of these fields.

 If the renderer , when cross-rendering a Luft variant, rejects it - that variant becomes a Luft-only variant,

 the DVCF tag is set to Prej, and it appears in the Primary rendition as a ##luft_only meta-information

 line, similar to the ##primary_only meta-information line described above.

 6.3. INFO and FORMAT fields - RendAlg

 Each FORMAT and INFO tag has a RendAlg algorithm associated with it. If the tag has no ##INFO or

 ##FORMAT meta-information line, or the line is lacking a RendAlg attribute, the implementation may

 decide to apply any of the RendAlgs. For example, it may decide that the field INFO/AF, in case it has no

 ##INFO meta-information line, will use the A_1 RendAlg.

 Each RendAlg has an ID , which appears in the RendAlg attribute of the ##INFO and ##FORMAT

 meta-information lines, a Trigger , which is a description of the circumstances in which the RendAlg

 should be applied, and an Action , which is a description of the transformation of the data that occurs when

 the Trigger is activated.

 The table below lists the standard RendAlgs. An implementation may or may not support any of the

 standard RendAlgs, and may also add additional RendAlgs. For the REF change trigger, it may support all

 or only certain types of REF changes. However, if a trigger which is supported by the implementation

 occurs for any particular variant, then each field of the variant that is assigned a standard RendAlg must be

 transformed according to the standard action listed.

 When cross-rendering, a Renderer must cross-render every INFO and FORMAT field according to its

 RendAlg , if the Trigger has occurred.

 If cross-rendering fails for a particular field, then the variant will have an INFO/Lrej or INFO/Prej field,

 with Reason set to the rejected INFO or FORMAT field name, for example Lrej=INFO/END .

 Any RendAlg algorithm must be losslessly invertible. In other words, applying it to a variant in one

 rendition, and then applying the inverse algorithm to the resulting other rendition, must result in getting

 back the original rendition, precisely. For example, the GT RendAlg listed below, upon REF ⇆ALT switch

 of a bi-allelic, triploid variant, will flip allele numbers in an unphased FORMAT/GT field 0/1/1 to

 1/0/0 . It may have been desirable to also sort the result as common in representation of unphased

 genotypes, so 1/0/0 becomes 0/0/1 . However, that would cause the loss of the information regarding

 the original order of allele values, and hence the non-existence of a losslessly invertible algorithm, and is

 therefore prohibited.

 While in most cases the RendAlg will only modify the INFO or FORMAT field on which it triggered, it is

 not restricted in this way: A RendAlg algorithm may change, add or remove other fields of the variant, so

 long as it is losslessly invertible.

 While a Lifter transforming a Source VCF to a DVCF in the Primary rendition need not cross-render INFO

 and FORMAT fields, it is recommended that it nevertheless validates that cross-rendering may be carried

 out successfully, and sets an INFO/Lrej field if not.

 Note that REF change and Strand reversal are orthogonal events - just a strand reversal isn’t a REF

 change , despite the REF being reverse complemented.

 ID Triggered
 upon

 Action Recommended for

 NONE Never Do nothing Fields that don’t require
 change

 G REF change Re-order / expand the values of a
 field that has one value per genotype

 Fields with Number=G, such
 as: FORMAT/GL

 R REF change Re-order / expand the values of a
 field that has one value per allele

 Fields with Number=R, such
 as: FORMAT/AD

 R2 REF change Re-order / expand the values of a
 field that has 2 values per allele

 Fields with 2 values per
 allele, such as:
 FORMAT/SAC

 A_1 REF change Re-calculate / expand the values of a
 field, so that their sum plus the
 implied value for the REF allele is 1.

 Fields with Number=A,
 whose values, including the
 implied value for REF, add
 up to 1. Examples:
 FORMAT/AF, INFO/AF

 A_ tag REF change Re-calculate / expand the values of a
 field, so that their sum plus the
 implied value for the REF allele
 equals the value in INFO/ tag .

 Fields with Number=A,
 whose values, including the
 implied value for REF, add
 up to the value in INFO/ tag .
 Example: INFO/AC would
 have a RendAlg of A_AN.

 MAX_ tag|tag... REF change Value is the maximum of the
 INFO/ tag values of the 1 or more
 tags listed.

 INFO/MAX_AF

 PLOIDY REF change Recalculate: value = (ploidy - value) FORMAT/DS (bi-allelic)

 GT REF change Re-assign / add allele numbers based
 on the new REF/ALT order. Alleles
 in the genotype are not reordered.

 FORMAT/GT

 XREV Strand
 reversal

 Reverse the order of the elements in
 the array

 Fields with a value per base
 ACGT. E.g
 INFO/BaseCounts

 ALLELE Always Value is identical to one of the
 alleles. It shall remain identical to
 that allele even if it changes order or
 is reverse-complemented and shifted

 INFO/AA

 END Always Recalculate the value so that (value -
 POS) remains unchanged

 INFO/END

 6.4. INFO and FORMAT fields - Tag Renaming
 INFO and FORMAT meta-information lines may optionally have these attributes, possibly more

 than one of them, describing changes to their tag name when cross-rendering, conditional on a

 certain trigger occurring:

 Tag Renaming Attribute Triggers on variants that...

 RenameStrand= tag2 Have a strand reversal

 RenameRefalt= tag2 Have a REF⇆ALT switch

 RenameTlafer=tag2 Have both a strand reversal and REF⇆ALT switch

 RenameAlways=tag2 All variants

 If a variant contains a ##INFO or ##FORMAT meta-information line with ID= tag and one or more

 Rename* attributes, and the trigger of that tag-renaming attribute occurs, then the tag itself

 rather than the value (as in tag=value in an INFO field, or the tag name appearing in the

 FORMAT field) is changed to tag2 .

 If the RendAlg attribute appears in addition to a Tag Renaming attribute, then both are applied.

 If both RenameStrand and RenameRefalt are specified, then RenameTlafer must be

 specified too, and conversely, if RenameTlafer is specified, then both RenameStrand and

 RenameRefalt must be specified too. If RenameAlways is specified, other tag renaming

 attributes must not be specified.

 For each ##INFO or ##FORMAT line tag1 with a Rename* attribute with a value of tag2 , a

 corresponding ##INFO or ##FORMAT line must exist with tag1 and tag2 interchanged, which has

 the same Rename* , Number and Type attributes as the tag1 line.

 Examples:

 ● Switching FORMAT/ ADF ⇆ FORMAT/ ADR upon strand reversal:

 ##FORMAT=<ID=ADF,Number=R,Type=Integer,Description="Allelic depths on

 the forward strand",RendAlg="R”, RenameStrand=”ADR” >

 Note: Having the corresponding ADR meta-information line as well is required:

 ##FORMAT=<ID=ADR,Number=R,Type=Integer,Description="Allelic depths on

 the reverse strand",RendAlg="R”, RenameStrand=”ADF” >

 ● Dropping an annotation INFO/CLNHGVS in the opposite rendition by renaming it to

 DROP_CLNHGVS:

 ##INFO=<ID=CLNHGVS,Number=1,Type=String,RenameAlways=”DROP_CLNHGVS”>

 ● Dropping the annotation INFO/MAX_AF in case of a REF⇄ALT switch :

 ##INFO=<ID=MAX_AF,Number=1,Type=Float,RenameRefalt=”DROP_MAX_AF”>

 ● Handling annotations that are sensitive to both REF⇄ALT switch and a strand reversal:

 ##FORMAT=<ID=REF_F2R1,Number=1,Type=Integer,RenameRefalt=”ALT_F2R1”,Ren

 ameStrand=”REF_F1R2”, RenameTlafer=”ALT_F1R2” >

 ##FORMAT=<ID=REF_F1R2,Number=1,Type=Integer,RenameRefalt=”ALT_F1R2”,Ren

 ameStrand=”REF_F2R1”, RenameTlafer=”ALT_F2R1” >

 ##FORMAT=<ID=ALT_F2R1,Number=1,Type=Integer,RenameRefalt=”REF_F2R1”,Ren

 ameStrand=”ALT_F1R2”, RenameTlafer=”REF_F1R2” >

 ##FORMAT=<ID=ALT_F1R2,Number=1,Type=Integer,RenameRefalt=”REF_F1R2”,Ren

 ameStrand=”ALT_F2R1”, RenameTlafer=”REF_F2R1” >

 6.5. Sorting

 The Primary and Luft renditions are both sorted by their respective coordinates, as required by the VCF

 specification.

 Variants appearing in ##primary_only and ##lift_only meta-information lines are not required to

 be sorted.

https://docs.google.com/document/d/1feCwFxy18NcoMDBeereAJH7cOj6DT0jX3Zl0iseOChk/edit#heading=h.m63abogtlt5o
https://docs.google.com/document/d/1feCwFxy18NcoMDBeereAJH7cOj6DT0jX3Zl0iseOChk/edit#heading=h.m63abogtlt5o

 7. Rejection and reasons

 The Lifter or Renderer may reject a variant, which in effect declares it to be a single-coordinate

 variant in the current coordinates.

 The Renderer may also reject a variant that is already a dual-coordinate variant, turning it into a

 single-coordinate variant. This may happen, for example, if a new INFO or FORMAT field were

 added that the Renderer cannot cross-render.

 When cross-rendering, a Renderer must either render the entire variant with all fields cross-rendered as

 specified, or reject the variant. In other words, if there is a field of a variant which the Renderer cannot

 cross-render for any reason - then the entire variant must be rejected, and set the DVCF tag to Lrej or

 Prej with the Reason . If there are multiple Reasons for rejection, the implementation must still list just

 one Reason .

 An implementation may use the Reasons listed in the table, in which case it must use them only when

 the Occurrence in the table occurs. It may also use implementation-specific reasons.

 Reason Occurrence

 Mapping
 reasons

 ChromNotInPrimReference CHROM does not appear in Primary reference
 file

 ChromNotInChainFile CHROM has no alignment in chain file

 NoMappingInChainFile POS has no alignment in chain file

 RendAlg
 reasons

 INFO/ tag INFO/ tag cannot be cross-rendered

 FORMAT/ tag FORMAT/ tag cannot be cross-rendered

 Other
 reasons

 AddedVariant When cross-rendering, the variant had no
 DVCF tag

 Rejected Other rejection reason

 Appendix 2: Compression of cancer VCF files

 A special case of VCF files are VCF files used in cancer research, usually containing 2

 samples from the same individual - one sample coming for a normal cell and the other from

 the tumour.

 An assessment of Genozip’s capability to compress such files was performed on the file

 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf obtained from

 https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/ . The result

 hereinafter shows the Genozip compressed this file by a factor of 13.7, with 52.9% of the

 information content of the compressed file being the CSQ (“consequences”) field. In

 comparison, bgzip (which implements the gzip algorithm), compresses by a factor 6.9 and

 bcftools (used to generate a .bcf file) by a factor of 6.1.

 > ls -lGU HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.*
 -rw-rw-r--+ 1 a1786210 1173619 Oct 7 17:09 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.bcf
 -rw-rw-r--+ 1 a1786210 7116918 Oct 7 17:01 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf
 -rw-rw-r--+ 1 a1786210 521328 Oct 6 22:47 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf.genozip
 -rw-rw-r--+ 1 a1786210 1030024 Oct 7 17:01 HCC-1143--HCC-1143BL.snv.indel.final.v6.annotated.vcf.gz

 Sections (sorted by % of genozip file):
 NAME GENOZIP % TXT % RATIO
 INFO/CSQ 267.2 KB 52.9% 2.5 MB 36.4% 9.5X
 POS 69.5 KB 13.8% 239.9 KB 3.5% 3.5X
 FORMAT/AD 59.5 KB 11.8% 231.1 KB 3.3% 3.9X
 FORMAT/AF 45.1 KB 8.9% 174.9 KB 2.5% 3.9X
 REF+ALT 19.5 KB 3.9% 125.5 KB 1.8% 6.5X
 TXT_HEADER 18.1 KB 3.6% 175.6 KB 2.5% 9.7X
 INFO/CancerGeneCensu 6.3 KB 1.3% 359.4 KB 5.2% 56.8X
 INFO/called_by 4.3 KB 0.9% 398.4 KB 5.7% 91.9X
 INFO/num_callers 3.2 KB 0.6% 26.0 KB 0.4% 8.0X
 ID 3.0 KB 0.6% 58.6 KB 0.8% 19.5X
 INFO 2.4 KB 0.5% 1.7 MB 24.9% 715.2X
 FORMAT/DP 2.3 KB 0.5% 110.8 KB 1.6% 48.1X
 INFO/TYPE 1.7 KB 0.3% 77.9 KB 1.1% 46.2X
 Other 1.3 KB 0.3% 155.0 KB 2.2% 117.9X
 CHROM 418 B 0.1% 140.3 KB 2.0% 343.8X
 FORMAT 390 B 0.1% 232.3 KB 3.3% 609.9X
 RandomAccessIndex 322 B 0.1% - 0.0% 0.0X
 INFO/supported_by 216 B 0.0% 4.4 KB 0.1% 21.1X
 FORMAT/PS 45 B 0.0% 129.8 KB 1.9% 2953X
 QUAL 42 B 0.0% 51.9 KB 0.7% 1266X
 FORMAT/. 42 B 0.0% 338 B 0.0% 8.0X
 INFO/HighConfidence 41 B 0.0% - 0.0% 0.0X
 TOTAL 505.0 KB 100.0% 6.8 MB 100.0% 13.8X

https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/

 Appendix 3: List of institutions in which Genozip is
 being used

 This list, current as of April 2022, is based on the registration form users are required to

 complete when they use Genozip for the first time. This is a partial list, including only

 academic and public institutions. Companies and private hospitals using Genozip were

 omitted for privacy reasons. The list is kept current on https://genozip.com/institutions.html.

 Argentina
 Universidad Nacional de Entre Ríos

 Australia
 University of Adelaide
 The University of New South Wales -
 Sydney
 Griffith University
 University of Tasmania
 Flinders University
 Peter MacCallum Cancer Centre
 South Australian Health and Medical
 Research Institute
 Torrens University
 Victorian Clinical Genetics Services
 Telethon Kids Institute
 PathWest

 Belgium
 Royal Museum of Central Africa
 Université libre de Bruxelles
 Biobix

 Brazil
 Brazilian Agricultural Research
 Corporation

 Canada
 McGill University
 Langara College

 Chile
 Universidad de Magallanes

 China
 Shanghai Cancer Institute
 Institute of Hematology & Blood Diseases
 Hospital
 Oil Crops Research Institute
 Yangzhou University
 Nanjing University of Posts and
 Telecommunications
 South China Agricultural University
 Northwest A&F University
 Hunan University
 Shanghai Center for Plant Stress Biology
 Chongqing Medical University
 Nanjing Medical University
 Institute of Hematology & Blood Diseases
 Hospital, Chinese Academy of Med
 Shenzhen University
 Tsinghua University
 South China Normal University
 Huazhong Agricultural University
 Capital Normal University
 Sichuan University
 Shanghai Jiao Tong University

 Czechia
 Czech Technical University in Prague
 Anne's University Hospital in Brno

 Denmark
 University of Copenhagen

 Estonia
 University of Tartu

 France
 National Research Institute for Agriculture,
 Food and Environment (INRAE)
 University of Lille
 Centre national de la recherche
 scientifique (CNRS)
 Inserm
 GenHotel
 Assistance Publique - Hopitaux de Paris

 Germany
 Pediatric Oncology University Hospital
 Düsseldorf
 University Hospital Heidelberg
 Max Planck Institute for Chemical Ecology
 Max Planck Institute for Plant Breeding
 Research
 Universtatsklinikim Schleswig-Holstein
 GEOMAR Helmholtz-Zentrum für
 Ozeanforschung Kiel
 Heinrich Heine University Düsseldorf
 Leibniz Institute for the analysis of
 Biodiversity Change

 Greece
 Institute of Molecular Biology and
 Biotechnology-FORTH

 Hungary
 ELKH Centre for Agricultural Research

 India
 Regional Centre for Biotechnology
 Institute of Life Science
 Yenepoya University

 Indonesia
 Eijkman Institute

 Israel
 Tel Aviv University

 Italy
 University of Naples

 Japan
 Kyoto University
 National Cancer Center Research Institute
 Shizuoka Cancer Center
 Nagoya University
 Tokyo University of Agriculture and
 Technology
 University of Tokyo
 Nippon Veterinary and Life Science
 University
 Tokyo Medical and Dental University
 Kumamoto University
 Human Genome Center
 Ehime University
 National Institute of Henetics
 Tokyo Seiei College
 Riken

 Korea
 Yonsei university
 Seoul National University
 Seoul National University Hospital
 Korea Research Institute of Bioscience
 and Biotechnology
 Ulsan National Institute of Science and
 Technology
 Animal and Plant Quarantine Agency
 Ewha Womans University
 Sungkyunkwan University

 Lithuania
 Vilnius University

 Luxembourg
 Luxembourg Centre for Systems
 Biomedicine

 Malta
 University of Malta

 Mexico
 Universidad Autonoma de Sinaloa
 Universidad Nacional Autónoma de
 México

 Netherlands
 University Medical Center Utrecht
 Delft University of Technology
 University Goettingen

 Norway
 University of Oslo

 Poland
 Silesian University of Technology
 University of Warsaw

 Russia
 Institute of Chemical Biology and
 Fundamental Medicine
 Federal Research Center for Animal
 Husbandry
 Limnological institute

 Singapore
 National University of Singapore
 National Cancer Centre Singapore

 South Africa
 University of Bayreuth
 University of Witwatersrand

 Spain
 Spanish National Cancer Research
 Center
 Centre for research in agricultural
 Genomics
 Institut Hospital del Mar d'Investigacions
 Mèdiques

 Sweden
 Uppsala University
 Swedish National Genomics Infrastructure
 University of Jyväskylä
 Gothenburg University

 Thailand
 Mahidol University
 Siriraj hospital

 Taiwan
 National Taiwan University

 Turkey
 Middle East Technical University
 Hacettepe University

 United Kingdom
 University of Edinburgh
 Wellcome Sanger Institute
 University College London
 University of East Anglia
 University of Liverpool

 United States of America
 University of California San Diego
 University of Michigan
 National Institute of Child Health and
 Human Development
 University of Miami
 Duke University
 Iowa State University
 Beth Israel Deaconess Medical Center
 Auburn University
 Vanderbilt University
 Stanford University
 Brown University
 University of Wisconsin-Madison
 University of Nevada, Las Vegas
 Brigham Young University
 University of North Texas
 University of South Carolina
 University of California San Francisco
 Columbia University
 Montana State University
 Emory University
 Cornell University
 Harvard University
 University of California Santa Barbara
 Wistar Institute
 Scripps Research

