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Motivation
+ Evolutionary Computation (EC) techniques have been
frequently used in the context of computational
Introduction and Motivation creativity.

 Various techniques have been used in the context of
music and art (see EvoMusArt conference and DETA
track at GECCO).




Motivation

+ Evolutionary algorithms have been frequently used to
optimize complex objective functions.

* This makes them well suitable for generative art where
fitness functions are often hard to optimize.

» Furthermore, objective functions are often subjective to
the user.

This Tutorial

* Summary of results in the areas of

— 2d and 3D artifacts
— Animations

» Overview on our recent work to create unique generative
art using evolutionary computation to carry out

— Image transition and animation
— Image composition
— Diversity optimization for images

Motivation

 Interms of novel design, evolutionary computation
techniques can be used to explore new solutions in terms
of different characteristics.

» Evolutionary algorithms are able to adapt to changing
environments.

+ This makes them well suited to be used in the context of
artistic work where the desired characteristics may
change over time.

Outline

* Introduction and Motivation

» Evolving 2D and 3D Artifacts

* Aesthetic Features

+ Evolutionary Image Transition

* Quasi-random Image Animation

+ Evolutionary Image Composition

+ Evolutionary Image Diversity Optimization
+ Conclusions




Evolving 2D and 3D Artifacts

Evolving 2D and 3D Artifacts

* In 1991, Sims published his seminal SIGGRAPH paper.

* He introduced the expression-based approach of
evolving images.

» He created images, solid textures, and animations using

mutations of symbolic lisp expressions.

Evolving 2D and 3D Artifacts

Blind Watchmaker (Dawkins, 1986) evolved 2D
biomorph graphical objects from sets of genetic
parameters (combined with Darwinism theory).

Latham (1985) created Black Form Synth. These are
hand-drawn “evolutionary trees of complex forms” using
a set of transformation rules.

Evolving 2D and 3D Artifacts

The mathematical expression is represented as a tree
graph structure and used as the genotype.

The tree graph consists of mathematical functions and
operators at the nodes, and constants/variables at the
leaves (similar to genetic programming).

The resulting image is the phenotype.

To evolve sets of images, it uses crossover and mutation.




Evolving 2D and 3D Artifacts (Sims,
1997)

In Galapagos (Sims, 1997) created an interactive
evolution of virtual "organisms” based on Darwinian
theory.

Several computers simulate the growth and
characteristic behaviours of a population of abstract
organisms.

The results are displayed on computer screens.

Evolving 2D and 3D Artifacts (Latham,
Todd, 1992)

Latham, Todd (1992) introduced Mutator to generate art
and evolve new biomorphic forms.

The Mutator creates complex branching organic forms
through the process of “surreal” evolution.

At each iteration the artist selects phenotypes that are
“breed and grow”, and the solutions co-interact.

EC System (Sims, 1997)

The EC system allows users to express their preferences
by selecting their preferred display by standing on step
sensors in front of those displays.

The selected display is used for reproduction using
mutation/crossover. The other solutions are removed
when the new offspring is created.

Other Selected Contributions

* Unemi (1999) developed SBART. This is a design support

tool to create 2-D images based on user selection.

Takagi (2001) describes in the survey research on
interactive evolutionary computation (IEC) which
categorises different application areas.

Machado and Cardoso (2002) introduced NEvAr. This is
an evolutionary art tool, using genetic programming and
automatic fitness assignment.




Other Selective Contributions Image Morphing (Banzhaf, Graf 1995)

» Banzhaf and Graf (1995) used interactive evolution to

* Gary Greenfield (1998-2005) evolved simulated ant and help determine parameters for image morphing.

robot parameters, and investigated image co-evolution.

* They combine IEC with the concepts of warping and

» Draves (2005) introduced Electric Sheep. The system morphing from computer graphics to evolve images.

allows a user to approve or disapprove phenotypes.

* They used recombination of two bitmap images through

« Hart (2009) evolved different expression-based images image interpolation.

with a focus on colours and forms.

Aesthetic Measures

» Computational aesthetic is a subfield of artificial
) intelligence dealing with the computational assessment
Aesthetic Measures of aesthetic forms of visual art.

» Some general image features that have been used are:
- Hue
- Saturation
- Symmetry
- Smoothness




Aesthetic Measures (den Heijer, Eiben

Aesthetic Measures
2014)

) » den Heijer and Eiben (2014) investigated aesthetic
* Examples of aesthetic measurements: measures for unsupervised evolutionary art.

- Benford’s Law « The Art Habitat System uses genetic programming and

- Global Contrast Factor evolutionary multi-objective optimization.
- Reflectional Symmetry
- Colorfulness « They compared aesthetic measurements and gave

insights into the correlation of aesthetic scores.

Evolutionary Image Transition

* The main idea compromises of using well-known
evolutionary processes and adapting these in an artistic
Evolutionary Image Transition way to create an innovative sequence of images (video).
A. Neumann, Alexander, F. Neumann, EvoMusArt 2017 * The evolutionary image transition starts from given
image S and evolves it towards a target image T.
* Our goal is to maximise the fitness function where we

count the number of the pixels matching those of the
target image.




Example Images

Starting image S (Yellow-Red-Blue, 1925 by Wassily
Kandinsky) and target image T (Soft Hard, 1027 by
Wassily Kandinsky).

Evolutionary Image Transition

Algorithm 1 Evolutionary algorithm for image transition

e Let S be the starting image and 7" be the target image.

e Set X:=S.
e Evaluate f(X, 7).
e while (not termination condition)

— Obtain image Y from X by mutation.
— Evaluate f(Y,T)
-Iff(Y,T)> f(X,T),setX :=Y.

Fitness function: FX.T)=|{Xi; € X | Xij = T;;}|.

Video - Image Transition
https://vimeo.com/anetaneumann

Asymmetric Mutation

» We consider a simple evolutionary algorithm that has
been well studied in the area of runtime analysis, namely
variants of (1+1) EA.

+ We adapt an asymmetric mutation operator used in
Neumann, Wegener (2007) and Jansen, Sudholt (2010).




Asymmetric Mutation

Algorithm 2 Asymmetric mutation

e Obtain Y from X by flipping each pixel X;; of X in-
dependently of the others with probability ¢s/(2|X|s)
if X;; = Sij, and flip X,; with probability ¢:/(2|X|r)
if X;; = T35, where ¢s > 1 and ¢; > 1 are constants,
we consider m = n.

+ for our experiments we set ¢ =100 and ¢;=50.

Video — Uniform Random Walk

Video: Asymmetric Mutation

w
o

Uniform Random Walk

* A Uniform Random Walk - the classical random walk
chooses an element X}, € N (X;) uniformly at random.

* We define the neighbourhood N (Xj) of Xj; as

N(Xij) = {X-1)j, X(i+1)5: Xi-1) Xigg+1) }




Uniform Random Walk Biased Random Walk

* A Biased Random Walk - the probability of choosing the

element Xj; is dependent on the difference in RGB-values
Algorithm 3 Uniform Random Walk for T and Ty,

— Choose the starting pixel X;; € X uniformly at random.
— Set Xij = ’I‘”
— while (not termination condition)
e Choose Xj; € N(X;;) uniformly at random.
o Seti:=k, j:=1and X;; :=T;.
— Return X.

Video — Biased Random Walk

:

Biased Random Walk

-

\ | 1%

Algorithm 4 Biased Random Walk

— Choose the starting pixel X;; € X uniformly at random.

— Set Xz‘j = Tij.

— while (not termination condition)
e Choose Xy, € N(X;;) according to probabilities p(Xp;).
o Seti:=k, j:=1and X;; :=Tj;.

— Return X.




Biased Random Walk

We denote by Ti’;-, 1 <r < 3, the rth RGB value of Tj; and define

Mutation Based on Random Walks

* We use the random walk algorithms as part of our
3 i i mutation operators.
¥(Xki) = max Z T — T351,1
r=1

» Each mutation picks a random pixel and runs the
(biased) random walk for t,,,, steps.

(X)) = (1/7(Xw)) . + For our experiments we use 200x200 images and set
> xoen(xiy) 1/ 7(Xst)) ta=100.

Videos - Biased Random Walk

. , Feature Values During Transition:
Evolutionary Algorithm

o 05 1 5 2 25 8 35 4

3 . . .
o o5 1 15 2 25 3 85 4
x10*

Global Contrast Factor Mean Hue




SALA 2016 — Art Exhibition, Australia

SALA 2016 — Art Exhibition

© Aneta Neumann

SALA 2016 — Adelaide, Australia

Quasi-random Transition and Animation

A. Neumann, F. Neumann Friedrich, 2017

© Aneta Neumann




Quasi-random Walks

+ So far: Random walks as main operators for mutation
and transition process.

* Quasi-random walks give a (deterministic) alternative
which is easy to control by a user.

Example Video: 4 Agents Symmetric
Sequences

Quasi-random Transition and Animation

General setting:

There are k agents each of them painting their own
image I* through a quasi random walk. Quasi-random
walk is determined by the sequence that the agent uses.

Process starts with a common image X.

All agents paint on this image overriding X and previous
painting of other agents.

This leads to complex animation processes.

Image transition is a special case where all agents paint
the same image I.

Agent Moves

Move of an agent:

Each pixel has a sequence of directions out of from
{left, right, up, down}.

At each iteration, the agent moves from its current pixel

p to the neighbor pixel p’ determined by the current

position in the sequence at p.

It paints pixel p’ with the current pixel in its sequence

and increases the position counter at p by 1 (modulo

sequence length).




2 Agents Symmetric and Asymmetric
Sequences

Algorithm

Algorithm 1 QUASI-RANDOM ANIMATION

Require: Start image Y of size m X n. For each agentk, 1 < k < 7, an image I* of size 7 x n, sequence

S* and position counters c* (i, j) € {0,..., ¥} 1<i<m,1<j<n
I XY
2: foreachagentk,1 <k <rdo
3: choose P* € m x n and set X (P*) := I"(P*).
4: end for
501+ 1
6: while (¢t < tmax) do
7: for each agent k, 1 < k < r do
8: Choose P* € N(P*) according to Sy, (c(P¥)).
9: X (P*) « I*(P*)
10: cF(P*) « (F(P*)+1) mod |S*|.
11: P* « P,
12: end for
13: t—t+1
14: end while

Example Video: 4 Agents Asymmetric
Sequences




Evolutionary Image Composition
A. Neumann, Szpak, Chojnacki, F. Neumann, GECCO 2017

Key Idea

Create a composition of two images using a region
covariance descriptor.

Incorporate region covariance descriptors into fitness
function.

Use evolutionary algorithms to optimize the fitness such
that a composition of the given two images based on the
considered features is obtained.

Evolutionary Image Composition Using
Feature Covariance Matrices

Evolutionary algorithms that create new images based
on a fitness function that incorporates feature
covariance matrices associated with different parts of
the images.

Population-based evolutionary algorithm with mutation
and crossover operators based on random walks.

Algorithm 1 (i + 1) GA for evolutionary image composition
Require: S and T are images

1: Initialise population P = {Py,..., P}

2: while not termination condition do

3 Select an individual P; € P uniformly at random

4 if rand() < p. then > Crossover
5 Select P; € P \ P; uniformly at random

6: if rand() < 0.5 then > See Section 4.2 for ter
7 Y « RANDOMWALKMUTATION(X,Z, t.;)

8 else

9 Y « RECTANGULARCROSSOVER(P;,P;)

10: Pj « SeLECTION(P;,Y)

11 else > Mutation
12: if rand() < 0.5 then

13 Y « RANDOMWALKMUTATION(P;,S,tmax)

14 else

15 Y « RANDOMWALKMUTATION(P;,T ,tmax)

16 Pj « SELECTION(P;,Y)

17 Adapt ey »> See Section 4.1.

18: return P » Result is a population of evolved images.

University of Adelaide
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\ #4
saliency mask

Hou, Harel, Koch, IEEE 2012]

© Angelica Dass

#1
pixel-based mutation

#2
self adaptive random

walk mutation

[A. Neumann, Alexander, F. Neumann, EvoMusArt 2017]

[B. Doerr, C. Doerr, GECCO 2015]

University of Adelaide

#5
set of features
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Set2: [i,j,h,s,v]";

IV YIv p g T
set3: [hs,0,/(50)7 + (1) an (|341/1301)] -




Impact of Different Features

Experiments

+ Investigate the impact of different region
covariance features on the resulting images .

+ Discover how different weighting schemes
for covariance matrices influence the results.

* Understand the influence that the distance
measures have on the final results.

Image composition with different features. Rows 1, 2 and 3
correspond to Feature Sets 1, 2 and 3, respectively.

University of Adelaide University of Adelaide

Impact of Distance Metrics

Rows 1, 2 and 3 correspond to wg, , set to $0.25$, $0.5$ and $0.75$ and w{, ; set to $0.75$, $0.5$ and $0.25$, R‘OWS 1,2 anq 3 correspond to distance metrics distg, dist, and
respectively. In the last row the weights were set using an image saliency algorithm. The saliency algorithm strikes disty, respectlvely.
a consistent balance between notable regions in both images.




Variants of Image Composition

Image composition with Feature Set 1, saliency-based weighting and
a Log-Euclidean distance measure.

Evolutionary Diversity Optimisation for Images
Alexander, Kortman, A. Neumann, GECCO 2017

SALA 2017 Art Exhibition
Adelaide, Australia

© Aneta Neumann

University of Adelaide

Diversity

* Majority of approaches consider diversity in the objective
space.

+ Ulrich/Thiele considered diversity in the search space
(Tamara Ulrich’s PhD thesis).

 Diversity with respect to other properties (features)
could be useful in various domains.

* Goal: Compute a set of good solutions that differ in
terms of interesting properties/features.

University of Adelaide



Evolution of Artistic Image Variants
Through Feature Based Diversity
Optimisation

Key Idea

* Produce diverse image sets using evolutionary
computation methods. :

+ Use the (u + A)-EA,, for evolving image instances

* Select the individuals based on their contribution to « Weuse (u + A)-EAj, to evolve diverse image instances.
diversity of the image.

1 5 10 15 20 Individuals » Knowledge on how we can combine different image
(0.613, 0.180) (0.559, 0.265) (0.541, 0.284) (0.577, 0.368) (0.595, 0.478) features to produce interesting image effects.
> o ™ -y —

+ Study how different combinations of image features
correlate when images are evolved to maximise

diversity.

Sym.metry and Hue
0.343471  0.515221
::_'-v.' : —

Saturatlon

Algorithm 1The (4 + A) — EAp algorithm  p=20and A =10
1: input: an image S.
2. output: a population P = {I},..., I} of image variants.
{Initialise with ; mutated copies of source image}
3: P = {mutate(S),..., mutate(S)}
4 repeat
s:  randomly select C C P where |C| =
6 for ] € Cdo
% produce I’ = mutate(I)
8
9

#1
starting image

#2
pixel-based mutation

if valid(I’) then
add I’ to P
10: end if
11:  end for
122 while |P| >y do
13: remove an individual | = min;pd(J, P o 7o
14 end while 18 minyepd(.F) 1mage Vahdlty CheCi

15: until Termination condition reached

Image has mean squared error to starting image less than 10




Single Dimensional Feature Results

#4 #5 1 varnss sy osromm 8:;)" Individuals
feature diversity measure features ‘ i % % ﬂ
(@) Hue
fis L fin 00381802 0205274 0481576 0727868 0974166
fih) = fllh) = ... < flly). () # f(1) # fle) (b) SDHue

0171715 0.343471 0.515221 0.686967

d(I,P)= Zk (w; x dg, (I, P)) E ﬁ;ﬁ%
’ =1t D (c) saturation
0.0987278 ozma 0.510935 0.739986 0.969124

(d) Global Contrast Factor

dy, (I, P) = (f(L;) = f(i-1)) x (f(Lis1) = f(13))

i

[Gao, Nallaperuma, F. Neumann, PPSN 2016, arxiv2016]

Two-Dimensional Feature Experiments

(0.541, 0.284) (0.577, 0.968) (0.505, 0.478)

A A

sl it

(0613,0.10) (0559, 0.265)

aﬂ& 0.116) ﬂ-ﬂ- 0.137) (0.649, 0.578) (0.067, 0.054)

Discrepancy-Based Evolutionary Diversity Optimization

for Images
A. Neumann, Gao, Doerr, F. Neumann, Wagner, GECCO 2018

%
0.742,0.59) (07840609 (0763,0020)  (0721,0.719)

a) Symmetry and Hue 20 Individuals




Discrepancy-Based Evolutionary Motivation and Background
Diversity Optimization

» New approach for discrepancy-based evolutionary Si;’ﬁ‘é‘i Sﬁ; Of]dpogflts fnzz{ssl’-"’ s"} 1
diversity optimization ’ Y

Investigate the use of the star discrepancy measure for
diversity optimization for images
[a.b] := [a1,b1] X ... X [ag. b4]

Introduce an adaptive random walk mutation operator
based on random walks Vol([a, b]) — |X N [a,b]|/n 0 1

Compared the previously approach for images D(X, B) = sup{Vol([a, b]) = [X N [a,b]|/n | a < b € [0, 1]d }

[Alexander, Kortman, A. Neumann, GECCO 2017]

University of Adelaide University of Adelaide

#2
Discrepancy-Based Evolutionary Diversity
Optimization for Images Features
#1 - ‘.. ., . ‘ >
5 b @ °3 v 1
C L i 8 . i °.

Self-Adjusting Offset ) | :a“v;% e
Random Walk Mutation R ..

N(Xij) = {X(i-1)j» X(i+1)j» Xi(j—-1) Xi(j+1) }

University of Adelaide University of Adelaide



Discrepancy-Based Evolutionary Diversity

Optimization for Images 44

Results
. 1 ’

Evolutionary diversity optimization using
multi-objective indicators

A. Neumann, Gao, Wagner, F. Neumann, GECCO 2019

Discrepancy-Based Evolutionary Diversity
Optimization for Images

#4

Results
(p+ A)-EAc(1) (u+ A)rEAp (2) (u+A)»EA7(3)
min mean std stat min mean std stat min mean std stat
(11,12) 02014 03234 00595 2 3 0.1272 02038 o0.1157 1'Y 0.1119 0.1530 00269 1
(13,14) 0.1964 02945 00497 2 ) 0.1574 02280 00592 1'Y37 101051 01417 00179 1
(15,16) 0.1997 02769 00344 2 3 0.1363 02025 00538 1'Y 0.1457 0.1800 00234 1
(f1,f2,13) | 03389 04327 00613 27'3F 0.1513 03335 0.1062 1'Y 0.2253 0.2814 00422 1'*
(f1,f4.13) 02754 03395 00483 2 ¥ 0.2100 03118 0.1309 1'% 02224 02600 00123 1
(15, 14,12) | 04775 06488 00841 2 3 0.2021 03007 0.1467 1'% 0.1983 02229 00125 1

University of Adelaide

Indicator-Based Diversity Optimisation

* LetIbe a search point

— f: X — Rd a function that assigns to each search point a feature
vector
— q:X — Rbea function assigning a quality score to each I € X

— Require q(I) > a for all good” solutions (constraint)

» Define D : 2X — R which measures the diversity of a
given set of search points.

Goal:

Compute set P={L,, ..., I;} of u solutions maximizing
(minimizing) D among all sets of p solutions under

the condition that q(I) > a holds for all T € P,
where a is a given quality threshold.

University of Adelaide

University of Adelaide



Indicator-based Multi-Objective

Ootimizati Multi-Objective Indicators
ptimization

Popular indicators in multi-objective optimization:

* Hypervolume (HYP)
+ LetTbeasearch point HYP(S,r) = VOL (U, spes 11, 81] X -+ [Ta, sa])

— f: X — Rd a function that assigns to each search point I an

jecti t . . .
objective vector  Inverted generational distance (IGD) (with respect to

— (: X — Rbea function measures constraint violations
reference set R)

* Anindicator I: 2X — R measures the quality of a given set 1
of search points. IGD(R,S) = I mgg d(r, s),
reR
+ Additive epsilon approximation (EPS) (with respect to
reference set R)

O(R, §) := magemiy was (s — ).

University of Adelaide University of Adelaide

Results Images Using Multi-Objective

. Conclusions
Indicators

+ Evolutionary algorithms provide a flexible approach to

. o L.
Bawe @ the creation of artistic work.
s sta mean st stat mean st stat mean st stat mean st stat
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Inspiration.

+ Evolutionary diversity optimization can be used to create

a diverse set of designs that vary with respect to given

For details: GA1 (best paper session) on Monday f
Evolutionary Diversity Optimization Using Multi-Objective eatures.
Indicators, 17:00-17:25

Thank you!

University of Adelaide
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