ACCEPTED VERSION

Aneta Neumann, Frank Neumann **Evolutionary computation for digital art**

Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2019), 2019, pp.1056-1076© 2022 Association for Computing Machinery.

Definitive Version of Record: http://dx.doi.org/10.1145/3319619.3323375

PERMISSIONS

https://authors.acm.org/author-services/author-rights

ACM Author Rights

Post

Otherwise known as "Self-Archiving" or "Posting Rights", all ACM published authors of magazine articles, journal articles, and conference papers retain the right to post the presubmitted (also known as "pre-prints"), submitted, accepted, and peer-reviewed versions of their work in any and all of the following sites:

- Author's Homepage
- Author's Institutional Repository
- Any Repository legally mandated by the agency or funder funding the research on which the work is based
- Any Non-Commercial Repository or Aggregation that does not duplicate ACM tables of contents. Non-Commercial Repositories are defined as Repositories owned by nonprofit organizations that do not charge a fee to access deposited articles and that do not sell advertising or otherwise profit from serving scholarly articles.

1 September 2022

http://hdl.handle.net/2440/136222

Evolutionary Computation for Digital Art

Aneta Neumann, Frank Neumann The University of Adelaide Australia

adelaide.edu.au

seek LIGHT

Introduction and Motivation

Link to the Current Version

The current version is available at:

https://researchers.adelaide.edu.au/profile/aneta.neumann

https://vimeo.com/anetaneumann

Motivation

- Evolutionary Computation (EC) techniques have been frequently used in the context of computational creativity.
- Various techniques have been used in the context of music and art (see EvoMusArt conference and DETA track at GECCO).

Motivation

- Evolutionary algorithms have been frequently used to optimize complex objective functions.
- This makes them well suitable for generative art where fitness functions are often hard to optimize.
- Furthermore, objective functions are often subjective to the user.

This Tutorial

- · Summary of results in the areas of
 - 2d and 3D artifacts
 - Animations
- Overview on our recent work to create unique generative art using evolutionary computation to carry out
 - Image transition and animation
 - Image composition
 - Diversity optimization for images

Motivation

- In terms of novel design, evolutionary computation techniques can be used to explore new solutions in terms of different characteristics.
- Evolutionary algorithms are able to adapt to changing environments.
- This makes them well suited to be used in the context of artistic work where the desired characteristics may change over time.

Outline

- Introduction and Motivation
- Evolving 2D and 3D Artifacts
- Aesthetic Features
- Evolutionary Image Transition
- Quasi-random Image Animation
- Evolutionary Image Composition
- Evolutionary Image Diversity Optimization
- Conclusions

Evolving 2D and 3D Artifacts

Evolving 2D and 3D Artifacts

- In 1991, Sims published his seminal SIGGRAPH paper.
- He introduced the expression-based approach of evolving images.
- He created images, solid textures, and animations using mutations of symbolic lisp expressions.

Evolving 2D and 3D Artifacts

- *Blind Watchmaker* (Dawkins, 1986) evolved 2D biomorph graphical objects from sets of genetic parameters (combined with Darwinism theory).
- Latham (1985) created *Black Form Synth*. These are hand-drawn "evolutionary trees of complex forms" using a set of transformation rules.

Evolving 2D and 3D Artifacts

- The mathematical expression is represented as a tree graph structure and used as the genotype.
- The tree graph consists of mathematical functions and operators at the nodes, and constants/variables at the leaves (similar to genetic programming).
- The resulting image is the phenotype.
- To evolve sets of images, it uses crossover and mutation.

Evolving 2D and 3D Artifacts (Sims, 1997)

- *In Galápagos* (Sims, 1997) created an interactive evolution of virtual "organisms" based on Darwinian theory.
- Several computers simulate the growth and characteristic behaviours of a population of abstract organisms.
- The results are displayed on computer screens.

Evolving 2D and 3D Artifacts (Latham, Todd, 1992)

- Latham, Todd (1992) introduced *Mutator* to generate art and evolve new biomorphic forms.
- The *Mutator* creates complex branching organic forms through the process of "surreal" evolution.
- At each iteration the artist selects phenotypes that are "breed and grow", and the solutions co-interact.

EC System (Sims, 1997)

- The EC system allows users to express their preferences by selecting their preferred display by standing on step sensors in front of those displays.
- The selected display is used for reproduction using mutation/crossover. The other solutions are removed when the new offspring is created.

Other Selected Contributions

- Unemi (1999) developed *SBART*. This is a design support tool to create 2-D images based on user selection.
- Takagi (2001) describes in the survey research on interactive evolutionary computation (IEC) which categorises different application areas.
- Machado and Cardoso (2002) introduced *NEvAr*. *This* is an evolutionary art tool, using genetic programming and automatic fitness assignment.

Other Selective Contributions

- Gary Greenfield (1998-2005) evolved simulated ant and robot parameters, and investigated image co-evolution.
- Draves (2005) introduced *Electric Sheep*. *The* system allows a user to approve or disapprove phenotypes.
- Hart (2009) evolved different expression-based images with a focus on colours and forms.

Aesthetic Measures

Image Morphing (Banzhaf, Graf 1995)

- Banzhaf and Graf (1995) used interactive evolution to help determine parameters for image morphing.
- They combine IEC with the concepts of warping and morphing from computer graphics to evolve images.
- They used recombination of two bitmap images through image interpolation.

Aesthetic Measures

- Computational aesthetic is a subfield of artificial intelligence dealing with the computational assessment of aesthetic forms of visual art.
- Some general image features that have been used are:
 - Hue
 - Saturation
 - Symmetry
 - Smoothness

Aesthetic Measures

- Examples of aesthetic measurements:
 - Benford's Law
 - Global Contrast Factor
 - Reflectional Symmetry
 - Colorfulness

Evolutionary Image Transition

A. Neumann, Alexander, F. Neumann, EvoMusArt 2017

Aesthetic Measures (den Heijer, Eiben 2014)

- den Heijer and Eiben (2014) investigated aesthetic measures for unsupervised evolutionary art.
- The *Art Habitat* System uses genetic programming and evolutionary multi-objective optimization.
- They compared aesthetic measurements and gave insights into the correlation of aesthetic scores.

Evolutionary Image Transition

- The main idea compromises of using well-known evolutionary processes and adapting these in an artistic way to create an innovative sequence of images (video).
- The evolutionary image transition starts from given image **S** and evolves it towards a target image **T**.
- Our goal is to maximise the fitness function where we count the number of the pixels matching those of the target image.

Example Images

Starting image S (Yellow-Red-Blue, 1925 by Wassily Kandinsky) and target image T (Soft Hard, 1027 by Wassily Kandinsky).

Evolutionary Image Transition

Algorithm 1 Evolutionary algorithm for image transition

- Let S be the starting image and T be the target image.
- Set X:=S.
- Evaluate f(X,T).
- while (not termination condition)
 - Obtain image *Y* from *X* by mutation.
 - Evaluate f(Y,T)
 - If $f(Y,T) \ge f(X,T)$, set X := Y.

Fitness function: $f(X,T) = |\{X_{ij} \in X \mid X_{ij} = T_{ij}\}|$.

Video - Image Transition https://vimeo.com/anetaneumann

Asymmetric Mutation

- We consider a simple evolutionary algorithm that has been well studied in the area of runtime analysis, namely variants of (1+1) EA.
- We adapt an asymmetric mutation operator used in Neumann, Wegener (2007) and Jansen, Sudholt (2010).

Asymmetric Mutation

Algorithm 2 Asymmetric mutation

- Obtain Y from X by flipping each pixel X_{ij} of X independently of the others with probability $c_s/(2|X|_S)$ if $X_{ij} = S_{ij}$, and flip X_{ij} with probability $c_t/(2|X|_T)$ if $X_{ij} = T_{ij}$, where $c_s \geq 1$ and $c_t \geq 1$ are constants, we consider m = n.
- for our experiments we set $c_s = 100$ and $c_t = 50$.

Video – Uniform Random Walk

Video: Asymmetric Mutation

Uniform Random Walk

- A *Uniform Random Walk* the classical random walk chooses an element $X_{kl} \in N(X_{ij})$ uniformly at random.
- We define the neighbourhood $N(X_{ij})$ of X_{ij} as

$$N(X_{ij}) = \{X_{(i-1)j}, X_{(i+1)j}, X_{i(j-1)}X_{i(j+1)}\}\$$

Uniform Random Walk

Algorithm 3 Uniform Random Walk

- Choose the starting pixel $X_{ij} \in X$ uniformly at random.
- Set $X_{ij} := T_{ij}$.
- while (not termination condition)
 - Choose $X_{kl} \in N(X_{ij})$ uniformly at random.
 - Set i := k, j := l and $X_{ij} := T_{ij}$.
- Return X.

Video – Biased Random Walk

Biased Random Walk

• A *Biased Random Walk* - the probability of choosing the element X_{kl} is dependent on the difference in RGB-values for T_{ii} and T_{kl} .

Biased Random Walk

Algorithm 4 Biased Random Walk

- Choose the starting pixel $X_{ij} \in X$ uniformly at random.
- Set $X_{ij} := T_{ij}$.
- while (not termination condition)
 - Choose $X_{kl} \in N(X_{ij})$ according to probabilities $p(X_{kl})$.
 - Set i := k, j := l and $X_{ij} := T_{ij}$.
- Return X.

Biased Random Walk

We denote by T_{ij}^r , $1 \le r \le 3$, the rth RGB value of T_{ij} and define

$$\gamma(X_{kl}) = \max\left\{\sum_{r=1}^{3} |T_{kl}^r - T_{ij}^r|, 1\right\}$$

$$p(X_{kl}) = \frac{(1/\gamma(X_{kl}))}{\sum_{X_{st} \in N(X_{ij})} (1/\gamma(X_{st}))}.$$

Videos - Biased Random Walk Evolutionary Algorithm

Mutation Based on Random Walks

- We use the random walk algorithms as part of our mutation operators.
- Each mutation picks a random pixel and runs the (biased) random walk for t_{max} steps.
- For our experiments we use 200x200 images and set t_{max} =100.

Feature Values During Transition:

SALA 2016 – Art Exhibition

SALA 2016 – Adelaide, Australia

© Aneta Neuman

SALA 2016 – Art Exhibition, Australia

© Aneta Neuman

Quasi-random Transition and Animation

A. Neumann, F. Neumann Friedrich, 2017

Quasi-random Walks

- So far: Random walks as main operators for mutation and transition process.
- Quasi-random walks give a (deterministic) alternative which is easy to control by a user.

Example Video: 4 Agents Symmetric Sequences

Quasi-random Transition and Animation

General setting:

- There are k agents each of them painting their own image I^k through a quasi random walk. Quasi-random walk is determined by the sequence that the agent uses.
- Process starts with a common image X.
- All agents paint on this image overriding X and previous painting of other agents.
- This leads to complex animation processes.
- Image transition is a special case where all agents paint the same image I.

Agent Moves

Move of an agent:

- Each pixel has a sequence of directions out of from {left, right, up, down}.
- At each iteration, the agent moves from its current pixel p to the neighbor pixel p' determined by the current position in the sequence at p.
- It paints pixel p' with the current pixel in its sequence and increases the position counter at p by 1 (modulo sequence length).

Algorithm

Algorithm 1 QUASI-RANDOM ANIMATION

```
Require: Start image Y of size m \times n. For each agent k, 1 \le k \le r, an image I^k of size m \times n, sequence S^k and position counters c^k(i,j) \in \{0,\ldots,|S^k|\}, 1 \le i \le m, 1 \le j \le n.
  1: X \leftarrow \hat{Y}
  2: for each agent k, 1 \le k \le r do
  3: choose P^k \in m \times n and set X(P^k) := I^k(P^k).
  4: end for
  5: t \leftarrow 1
  6: while (t \le t_{\text{max}}) do
          for each agent k, 1 \le k \le r do
Choose \hat{P}^k \in N(P^k) according to S_k(c(P^k)).
                 X(\hat{P}^k) \leftarrow I^k(\hat{P}^k)
                 c^{k}(P^{k}) \leftarrow (c^{k}(P^{k}) + 1) \mod |S^{k}|.
 11:
 12:
           end for
          t \leftarrow t + 1
 13:
 14: end while
```

Example Video: 4 Agents Asymmetric Sequences

2 Agents Symmetric and Asymmetric Sequences

Video Quasi-random Walks

Evolutionary Image Composition

A. Neumann, Szpak, Chojnacki, F. Neumann, GECCO 2017

Evolutionary Image Composition Using Feature Covariance Matrices

- Evolutionary algorithms that create new images based on a fitness function that incorporates feature covariance matrices associated with different parts of the images.
- Population-based evolutionary algorithm with mutation and crossover operators based on random walks.

Key Idea

- Create a composition of two images using a region covariance descriptor.
- Incorporate region covariance descriptors into fitness function.
- Use evolutionary algorithms to optimize the fitness such that a composition of the given two images based on the considered features is obtained.

Algorithm 1 (μ + 1) GA for evolutionary image composition

```
Require: S and T are images
 1: Initialise population \mathcal{P} = \{P_1, \dots, P_n\}
 2: while not termination condition do
         Select an individual P_i \in \mathcal{P} uniformly at random
         if rand() < p_c then
                                                                  ▶ Crossover
             Select P_i \in \mathcal{P} \setminus P_i uniformly at random
             if rand() < 0.5 then
                                                  See Section 4.2 for t<sub>cr</sub>
                 Y \leftarrow \text{RandomWalkMutation}(X,Z,t_{cr})
                 Y \leftarrow \text{RectangularCrossover}(P_i, P_i)
10:
             P_i \leftarrow \text{Selection}(P_i, Y)
11:
                                                                   ▶ Mutation
             if rand() < 0.5 then
12:
                 Y \leftarrow \text{RandomWalkMutation}(P_i, S, t_{\text{max}})
13:
14:
                 Y \leftarrow \text{RANDOMWALKMUTATION}(P_i, T, t_{\text{max}})
             P_i \leftarrow \text{Selection}(P_i, Y)
             Adapt t_{\text{max}}
                                                            ▶ See Section 4.1.
17:
                            ▶ Result is a population of evolved images.
18: return P
```

University of Adelaide

#1

$$\begin{split} f(X,S,T) &= \sum_{(c,d) \in \mathcal{G}} \left(w_{(c,d)}^S \mathrm{dist} \left(\Lambda_{\mathcal{R}_{(c,d)}}^X, \Lambda_{\mathcal{R}_{(c,d)}}^S \right) \\ &+ w_{(c,d)}^T \mathrm{dist} \left(\Lambda_{\mathcal{R}_{(c,d)}}^X, \Lambda_{\mathcal{R}_{(c,d)}}^T \right) \right), \end{split} \quad \begin{array}{l} \text{covariance-based} \\ & \text{fitness function} \end{split}$$

University of Adelaide

#3 square region of interest

#4 saliency mask

[Hou, Harel, Koch, IEEE 2012]

#2 self adaptive random walk mutation

[A. Neumann, Alexander, F. Neumann, EvoMusArt 2017] [B. Doerr, C. Doerr, GECCO 2015]

University of Adelaide

#5 set of features

Set 1: $\left[i, j, r, g, b, \sqrt{\left(\frac{\partial I}{\partial i}\right)^2 + \left(\frac{\partial I}{\partial j}\right)^2}, \tan^{-1}\left(\left|\frac{\partial I}{\partial i}\right|/\left|\frac{\partial I}{\partial j}\right|\right)\right]^{\mathsf{T}};$ Set 2: $\left[i, j, h, s, v\right]^{\mathsf{T}};$ Set 3: $\left[h, s, v, \sqrt{\left(\frac{\partial I}{\partial i}\right)^2 + \left(\frac{\partial I}{\partial j}\right)^2}, \tan^{-1}\left(\left|\frac{\partial I}{\partial i}\right|/\left|\frac{\partial I}{\partial j}\right|\right)\right]^{\mathsf{T}}.$

Experiments

- Investigate the impact of different region covariance features on the resulting images .
- Discover how different weighting schemes for covariance matrices influence the results.
- Understand the influence that the distance measures have on the final results.

University of Adelaide

Impact of Different Weightings

Rows 1, 2 and 3 correspond to $w_{(c,d)}^S$ set to \$0.25\$, \$0.5\$ and \$0.75\$ and $w_{(c,d)}^T$ set to \$0.75\$, \$0.5\$ and \$0.25\$, respectively. In the last row the weights were set using an image saliency algorithm. The saliency algorithm strikes a consistent balance between notable regions in both images.

Impact of Different Features

Image composition with different features. Rows 1, 2 and 3 correspond to Feature Sets 1, 2 and 3, respectively.

University of Adelaide

Impact of Distance Metrics

Rows 1, 2 and 3 correspond to distance metrics $dist_E$, $dist_A$ and $dist_L$, respectively.

Variants of Image Composition

Image composition with Feature Set 1, saliency-based weighting and a Log-Euclidean distance measure.

Evolutionary Diversity Optimisation for Images

Alexander, Kortman, A. Neumann, GECCO 2017

SALA 2017 Art Exhibition Adelaide, Australia

University of Adelaide

Diversity

- Majority of approaches consider diversity in the objective space.
- Ulrich/Thiele considered diversity in the search space (Tamara Ulrich's PhD thesis).
- Diversity with respect to other properties (features) could be useful in various domains.
- Goal: Compute a set of good solutions that differ in terms of interesting properties/features.

University of Adelaide

Key Idea

- Produce diverse image sets using evolutionary computation methods.
- Use the $(\mu + \lambda)$ -EA_D for evolving image instances
- Select the individuals based on their contribution to diversity of the image.


```
Algorithm 1 The (\mu + \lambda) - EA_D algorithm
                                                   \mu = 20 and \lambda = 10
 1: input: an image S.
 2: output: a population P = \{I_1, \dots, I_{\mu}\} of image variants.
    {Initialise with \mu mutated copies of source image}
 3: P = \{ mutate(S), \dots, mutate(S) \}
       randomly select C \subseteq P where |C| = \lambda
       for I \in C do
         produce I' = mutate(I)
         if valid(I') then
            add I' to P
         end if
       end for
       while |P| > \mu do
         remove an individual I = \arg \min_{I \in P} d(J, P)
       end while
15: until Termination condition reached
```

Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation

- We use $(\mu + \lambda)$ -EA_D to evolve diverse image instances.
- Knowledge on how we can combine different image features to produce interesting image effects.
- Study how different combinations of image features correlate when images are evolved to maximise diversity.

#1 starting image

#2 pixel-based mutation

#3 image validity check

Image has mean squared error to starting image less than 10

feature diversity measure

[Gao, Nallaperuma, F. Neumann, PPSN 2016, arxiv2016]

Two-Dimensional Feature Experiments

a) Symmetry and Hue 20 Individuals

Single Dimensional Feature Results

Discrepancy-Based Evolutionary Diversity Optimization for Images

A. Neumann, Gao, Doerr, F. Neumann, Wagner, GECCO 2018

Discrepancy-Based Evolutionary Diversity Optimization

- New approach for discrepancy-based evolutionary diversity optimization
- Investigate the use of the star discrepancy measure for diversity optimization for images
- Introduce an adaptive random walk mutation operator based on random walks
- · Compared the previously approach for images

[Alexander, Kortman, A. Neumann, GECCO 2017]

University of Adelaide

Discrepancy-Based Evolutionary Diversity Optimization for Images

#1

Self-Adjusting Offset Random Walk Mutation

$$N(X_{ij}) = \left\{ X_{(i-1)j}, X_{(i+1)j}, X_{i(j-1)}, X_{i(j+1)} \right\}$$

Motivation and Background

Given a set of points $X := \{s^1, ..., s^n\}$ with $S = [0, 1]^d, s^1, ..., s^n \in S$

$$[a,b] := [a_1,b_1] \times \ldots \times [a_d,b_d]$$

$$Vol([a, b]) - |X \cap [a, b]|/n$$

$$D(X, \mathcal{B}) := \sup \{ \text{Vol}([a, b]) - |X \cap [a, b]| / n \mid a \le b \in [0, 1]^d \}$$

University of Adelaide

#2

Features

Discrepancy-Based Evolutionary Diversity Optimization for Images #4

Results

Evolutionary diversity optimization using multi-objective indicators

A. Neumann, Gao, Wagner, F. Neumann, GECCO 2019

Discrepancy-Based Evolutionary Diversity Optimization for Images

#4

Results

		$(\mu + \lambda)$	$-EA_C(1)$			$(\mu + \lambda)$	-EA _D (2)		$(\mu + \lambda)$ - $EA_T(3)$					
	min	mean	std	stat	min	mean	std	stat	min	mean	std	stat		
(f1,f2)	0.2014	0.3234	0.0595	2(-),3(-)	0.1272	0.2038	0.1157	1(+)	0.1119	0.1530	0.0269	1(+)		
(f3,f4)	0.1964	0.2945	0.0497	$2^{(-)},3^{(-)}$	0.1574	0.2280	0.0592	1(+),3(-)	0.1051	0.1417	0.0179	1(+),2(+)		
(f5, f6)	0.1997	0.2769	0.0344	$2^{(-)},3^{(-)}$	0.1363	0.2025	0.0538	1(+)	0.1457	0.1800	0.0234	1(+)		
(f1, f2, f3)	0.3389	0.4327	0.0613	2(-),3(-)	0.1513	0.3335	0.1062	1(+)	0.2253	0.2814	0.0422	1(+)		
(f1,f4,f3)	0.2754	0.3395	0.0483	2(-),3(-)	0.2100	0.3118	0.1309	1(+)	0.2224	0.2600	0.0123	1(+)		
(f5, f4, f2)	0.4775	0.6488	0.0841	2(-),3(-)	0.2021	0.3007	0.1467	1(+)	0.1983	0.2229	0.0125	1(+)		

University of Adelaide

Indicator-Based Diversity Optimisation

- Let I be a search point
 - $\ \ f\colon X \to R^d$ a function that assigns to each search point a feature vector
 - $-q: X \rightarrow R$ be a function assigning a quality score to each $I \in X$
 - Require $q(I) \ge \alpha$ for all "good" solutions (constraint)
- Define $D: 2^X \to R$ which measures the diversity of a given set of search points.

Goal:

Compute set $P=\{I_1, ..., I_{\mu}\}$ of μ solutions maximizing (minimizing) D among all sets of μ solutions under the condition that $q(I) \ge \alpha$ holds for all $I \in P$, where α is a given quality threshold.

Indicator-based Multi-Objective Optimization

- Let I be a search point
 - $f: X \to R^d$ a function that assigns to each search point I an objective vector
 - $-q: X \rightarrow R$ be a function measures constraint violations
- An indicator I: $2^X \rightarrow R$ measures the quality of a given set of search points.

University of Adelaide

Results Images Using Multi-Objective Indicators

	EA _{HYP-2D} (1)			EA _{HYP} (2)			EA _{IGD} (3)			EA _{EPS} (4)			EA _{DIS} (5)		
	mean	st	stat	mean		stat	mean		stat	mean		stat	mean	st	stat
$\bigcap_{i=1}^{n} f_{1i}f_{2i}$	0.347	0.004	4(+),5(+)				0.335	0.003					0.112	0.030	1(-),2(-),3(-)
£ f3.f4	0.344	0.004		0.268	0.014	1(-),3(-),4(+),5(+)	0.339	0.004	$2^{(+)},4^{(+)},5^{(+)}$	0.221	0.015				1(-),2(-),3(-)
$\Xi f_5, f_6$	0.350	0.007													$1^{(-)}, 2^{(-)}, 3^{(-)}$
f_1,f_2	0.525	0.012													1(-),2(-)
≥ f ₃ ,f	0.500	0.007	$3^{(+)},4^{(+)},5^{(+)}$	0.681	0.010	$3^{(+)},4^{(+)},5^{(+)}$	0.268	0.072	1(-),2(-),4(+),5(+)	0.280	0.010	1(-),2(-),3(-)	0.267	0.014	1(-),2(-),3(-)
f5.fe	0.518	0.012	$2^{(-)},4^{(+)},5^{(+)}$						$2^{(-)},4^{(+)}$						1(-),2(-)
f_1, f_2	0.001	0.335	2(+),4(+),5(+)						2(+),4(+),5(+)						1(-),3(-),4(-)
5 f3.f.	0.001	0.339		0.004	0.000	$1^{(-)},3^{(-)},5^{(+)}$	0.001	0.000	$2^{(+)},4^{(+)},5^{(+)}$	0.003	0.000				1(-),2(-),3(-),4(-)
f_5, f_6	0.002	0.332	2(+),5(+)												1(-),2(+),3(-)
f_1,f_2	0.190	0.198	2(+),4(+),5(+)	0.498	0.011	1(-), 3(-)	0.194	0.032							1(-),3(-),4(-)
f_3, f_4	0.198	0.221	$2^{(+)},4^{(+)},5^{(+)}$	0.569	0.016	1(-),3(-)	0.208	0.035	$2^{(+)},4^{(+)},5^{(+)}$	0.418	0.036				1(-),3(-),4(-)
fr. fe	0.125	0.220	2(+),4(+),5(+)												1(-),3(-)
f_1, f_2	0.171	0.018	2(+),4(+),5(+)						4(+),5(+)						1(-),3(-),4(+)
☐ f3.f.	0.234	0.031	4(+)	0.273	0.041				2(+),4(+)	0.606	0.054	1(-),2(-),3(-),5(-)	0.228	0.059	2(+),4(+)
f_5, f_6	0.221	0.026	4(+)	0.263	0.070	$3^{(-)},4^{(+)},5^{(-)}$	0.205	0.055	2(+),4(+)	0.633	0.158	$1^{(-)}, 2^{(-)}, 3^{(-)}, 5^{(-)}$	0.203	0.054	$2^{(+)},4^{(+)}$

For details: GA1 (best paper session) on Monday Evolutionary Diversity Optimization Using Multi-Objective Indicators, 17:00-17:25

Multi-Objective Indicators

Popular indicators in multi-objective optimization:

• Hypervolume (HYP)

$$HYP(S,r) = VOL\left(\bigcup_{(s_1,\ldots,s_d)\in S} [r_1,s_1]\times\cdots[r_d,s_d]\right)$$

• Inverted generational distance (IGD) (with respect to reference set R)

$$IGD(R,S) = \frac{1}{|R|} \sum_{r \in R} \min_{s \in S} d(r,s),$$

• Additive epsilon approximation (EPS) (with respect to reference set R)

$$\alpha(R,S) := \max_{r \in R} \min_{s \in S} \max_{1 \le i \le d} (s_i - r_i).$$

University of Adelaide

Conclusions

- Evolutionary algorithms provide a flexible approach to the creation of artistic work.
- A lot of algorithmic approaches have been shown to be able to create artistic work.
- Evolutionary process itself can be used to create artistic digital work.
- Random processes exhibit in interesting sources of inspiration.
- Evolutionary diversity optimization can be used to create a diverse set of designs that vary with respect to given features.

Thank you!

Literature

- R. Dawkins (1986): The Blind Watchmaker Why the Evidence of Evolution Reveals a Universe
 without Design, W. W. Norton & Company.
- W. Latham (1985): Black Form Synth. Offset lithograph, E.293-2014, Victoria and Albert Museum, London, UK. http://collections.vam.ac.uk/item/O1276894/black-form-synth-offset-lithograph-latham-william/
- K. Sims (1991): Artificial evolution for computer graphics. In Proc. Conf. Computer Graphics and Interactive Techniques (SIGGRAPH '91). ACM Computer Graphics, 25(4): pp. 319–328. https://dl.acm.org/citation.cfm?doid=122718.122752
- K. Sims (1997): Galápagos. Installation at the NTT InterCommunication Center in Tokyo, Japan. http://www.ntticc.or.jp/en/archive/works/galapagos/
- . S. Todd and W. Latham (1992): Evolutionary Art and Computers, Academic Press, London.
- T. Unemi (1999): SBART2.4: Breeding 2D CG Images and Movies, and Creating a type of Collage.
 In: The International Conference on Knowledge- based Intelligent Information Engineering Systems, pp. 288–291. https://ieeexplore.ieee.org/document/820180/

Literature

- A. Neumann, B. Alexander, and F. Neumann (2017): Evolutionary Image Transition Using Random Walks. In: Computational Intelligence in Music, Sound, Art and Design, EvoMUSART 2017, Lecture Notes in Computer Science, 230-245. https://doi.org/10.1007/978-3-319-55750-2
 16
- A. Neumann, B. Alexander, and F. Neumann (2016): The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. In: Neural Information Processing, ICONIP 2016. https://doi.org/10.1007/978-3-319-46675-0_29
- A. Neumann, F. Neumann, and T. Friedrich: Quasi-random Agents for Image Transition and Animation. In: submitted for publication, CoRR abs/1710.07421. Submitted for publication. http://arxiv.org/abs/1710.07421
- A. Neumann, Z. L. Szpak, W. Chojnacki, and F. Neumann (2017): Evolutionary Image Composition Using Feature Covariance Matrices. In: Genetic and Evolutionary Computation Conference, GECCO 2017, ACM Press, 817-824. http://doi.acm.org/10.1145/3071178.3071260
- B. Alexander, J. Kortman, and A. Neumann (2017): Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation. In: Genetic and Evolutionary Computation Conference, GECCO 2017, ACM Press, 171-178. http://doi.acm.org/10.1145/3071178.3071342

Literature

- H. Takagi (2001): Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), pp. 1275–1296. https://ieeexplore.ieee.org/document/040485/
- P. Machado and A. Cardoso (2002): All the truth about NEvAr. Appl. Intell. 16, 2, pp. 101–118. https://doi.org/10.1023/A:1013662402341
- S. Draves (2005): The electric sheep screen-saver: A case study in aesthetic evolution. EvoMUSART. Vol. 3449 of Lecture Notes in Computer Science. Springer, pp. 458–467. https://doi.org/10.1007/978-3-540-32003-6_46
- D. Hart (2007): Toward greater artistic control for interactive evolution of images and animation.
 In Applications of Evolutionary Computing, EvoWorkshops 2007, volume 4448 of Lecture Notes in Computer Science, Springer, pp. 527–536. https://doi.org/10.1007/978-3-540-71805-5-58
- T. Kowaliw, A. Dorin, and J. McCormack (2012): Promoting Creative Design in Interactive Evolutionary Computation. IEEE Trans. Evolutionary Computation 16(4), pp. 523-536. https://ieeexplore.ieee.org/document/6151108/
- J. Graf and W. Banzhaf (1995): Interactive evolution of images. In Proc. Conference on Evolutionary Programming, pp. 53–65.
- E. den Heijer and A. E. Eiben (2014): Investigating aesthetic measures for unsupervised evolutionary art. Swarm and Evolutionary Computation 16, pp. 52–68. https://doi.org/10.1016/j.swev0.2014.01.002

Literature

- A. Neumann, W. Gao, C. Doerr, F. Neumann, M. Wagner (2018): Discrepancy-Based Evolutionary Diversity Optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2018, ACM Press. https://doi.org/10.1145/3205455.3205532
- A. Neumann, W. Gao, M. Wagner, F. Neumann (2019): Evolutionary diversity optimization using multi-objective indicators. In: Genetic and Evolutionary Computation Conference, GECCO 2019, ACM Press. http://doi.acm.org/10.1145/3321707.3321796
- G. Greenfield (2006): Robot paintings evolved using simulated robots. In Workshops on Applications of Evolutionary Computation, pages 611–621. Springer. https://doi.org/10.1007/11732242_58
- K. Matkovic, L. Neumann, A. Neumann, T. Psik, W. Purgathofer (2005): Global Contrast Factora new approach to image contrast. Computational Aesthetics, 2005:159–168. http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/159-167
- D. Hasler, S.E. Suesstrunk (2003): Measuring colorfulness in natural images. In Electronic Imaging 2003, pages 87–95. International Society for Optics and Photonics. https://doi.org/10.1117/12.477378
- J.-M. Jolion (2001): Images and Benford's law. Journal of Mathematical Imaging and Vision, 14(1):73-81. https://doi.org/10.1023/A:1008363415314