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Comprehensive evaluation of deconvolution
methods for human brain gene expression
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Transcriptome deconvolution aims to estimate the cellular composition of an RNA sample

from its gene expression data, which in turn can be used to correct for composition differ-

ences across samples. The human brain is unique in its transcriptomic diversity, and com-

prises a complex mixture of cell-types, including transcriptionally similar subtypes of neurons.

Here, we carry out a comprehensive evaluation of deconvolution methods for human brain

transcriptome data, and assess the tissue-specificity of our key observations by comparison

with human pancreas and heart. We evaluate eight transcriptome deconvolution approaches

and nine cell-type signatures, testing the accuracy of deconvolution using in silico mixtures of

single-cell RNA-seq data, RNA mixtures, as well as nearly 2000 human brain samples. Our

results identify the main factors that drive deconvolution accuracy for brain data, and

highlight the importance of biological factors influencing cell-type signatures, such as brain

region and in vitro cell culturing.
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Human tissues are mosaics of cell-types and subtypes,
diverse in their functionalities and express distinct sets of
genes. Consequently, gene expression measurements in

any tissue sample result from two main factors: gene expression
levels within constituent cell-types, and the relative abundance of
these cell-types in the sample1,2. The relative abundance of cell-
types (i.e. cellular composition) in turn depends on both
biological3–6 and technical factors7.

To circumvent the confounding effect of cellular composition,
gene expression measurements could in principle be carried out
by experimentally isolating individual cell-types by laser capture
micro-dissection8,9, cell sorting10–12, or single-cell and single-
nucleus RNA-seq (scRNA-seq and snRNA-seq, respectively)13. In
practice, these approaches are limited in feasibility and cost
effectiveness for human brain transcriptome studies that require
large sample sizes (hundreds to thousands of samples), such as
eQTL studies or gene expression studies aiming to identify low-
magnitude changes in disease samples.

Several methods for in silico deconvolution have been developed,
which can estimate the cellular composition of a tissue sample from
its gene expression profile (reviewed in Avila Cobos et al.1). In silico
deconvolution offers the opportunity to leverage scRNA-seq data to
obtain deeper insights into bulk tissue transcriptomes generated
through large-scale studies, such as GTEx14, PsychEncode15, the
Common Mind Consortium16, and BrainSpan17.

Deconvolution methods fall into two main categories: partial
deconvolution (including enrichment approaches), and complete
deconvolution (see the “Methods” section), and are conceptually
similar for any tissue and any type of molecular data (tran-
scriptome, methylome, proteome, etc.). However, the complexity
of cellular composition and the transcriptome similarity across
cell-types varies widely across tissues. Most deconvolution
methods have been developed for, or assessed on, blood/immune
and tumour samples18–20, with limited assessment of their per-
formance across tissues2. Recent benchmarking studies have
assessed the role of technical and biological factors in tran-
scriptome deconvolution21,22, but how these observations hold
across tissues remains unclear. For example, the human brain
expresses the highest diversity of alternative splicing isoforms and
non-coding RNAs23, with single-cell sequencing now discovering
hundreds of cell-types and cell-subtypes24. We thus begin to
address the question of tissue-specific properties of transcriptome
deconvolution by focusing on the human brain. The main bio-
logical factors that influence the cellular composition of brain
samples (e.g. region, developmental stage, age4,5), and the tech-
nical factors involved (e.g. dissection protocol7) are distinct from
those influencing cellular composition in blood. Furthermore,
pure populations of cells from adult human brain are challenging
to obtain, unlike blood or tumour cells. As a result, cell-type
signature data are often obtained from a different brain region25,
species26,27, and/or a different developmental stage7 than the bulk
brain samples. Alternatively, cells cultured in vitro have been
used19. Whether such choices influence the accuracy of brain cell-
type composition estimates is unknown. In addition, gene
expression changes in most psychiatric disorders, similarly to
effect-sizes of common variants, are of low magnitude28. There-
fore, to serve as useful covariates, cell-type composition estimates
need to discriminate small differences in cellular composition3.
While a few studies have proposed methods focussed on brain
tissue5,7,27,29–31, a comprehensive comparative assessment of the
performance of deconvolution methods on brain transcriptome
data is currently lacking.

Here, we perform a comprehensive evaluation of brain tran-
scriptome deconvolution by assessing the performance of eight
algorithms (four partial deconvolution, two enrichment, and two
complete deconvolution methods). For the partial deconvolution

methods, we evaluate the effects of combining them with nine
brain cell-type signature datasets that differ in biological properties
(cultured cells, immuno-purified cells, or cross-species) or tech-
nical factors affecting RNA sequencing (snRNA-seq, scRNA-seq,
bulk RNA-seq, or CAGE-seq). We benchmark deconvolution
accuracy using a diverse set of mixtures, including in silico mix-
tures of single-cell and single-nucleus transcriptomes, pure
immuno-panned cell-types, mixtures of RNA extracted from pure
populations of neurons and glial cells, as well as large-scale brain
transcriptome data from the GTEx14 and PsychENCODE15,32

consortia. Our results show that partial deconvolution methods,
particularly CIBERSORT, outperform complete deconvolution
methods on human brain data. For partial deconvolution, cell-type
signature data is the most important parameter, with the main
factors influencing performance being biological (brain region and
in vitro cell culturing) rather than technical. We also assess
methods for correcting cell-type composition differences in dif-
ferential expression analyses, and determine the magnitude of cell-
type composition differences that can be effectively corrected for.
Finally, we deconvolve large-scale gene expression data from the
GTEx and PsychENCODE consortia, and highlight the importance
of assessing deconvolution accuracy on each brain dataset; for this
purpose, we provide a user-friendly web tool that implements the
best performing methods identified in our benchmark (https://
voineagulab.shinyapps.io/BrainDeconvShiny/).

Results
To benchmark deconvolution methods for brain transcriptome
data, we selected widely employed methods, and where possible
included methods developed for brain data (Table 1). For partial
deconvolution, we selected: CIBERSORT (CIB), a highly cited
deconvolution method initially optimised for immune cell-
types18; DeconRNASeq (DRS)33, which implements the non-
negative least-squares approach employed by the PsychENCODE
consortium15; MuSiC (MUS)34, which is a single-cell-based
deconvolution approach accounting for individual- and cell-
specific expression variability in the signature; and dtangle
(DTA)35. For enrichment-based methods, we selected xCell19,
which has been recently applied by the GTEx consortium36, and
BrainInABlender7, which was specifically developed for brain-
derived data. Among complete deconvolution methods, we
included Linseed37, which extends previous methods38,39, and the
co-expression-based approach developed for brain data by Kelley
et al.5 (which we term “Coex” for short).

Assessment of deconvolution accuracy across methods. To
assess deconvolution accuracy, we simulated data with known
cell-type proportions using three adult human brain datasets: two
snRNA-seq datasets, Velmeshev et al.40 (VL: 24,646 nuclei, 10X
Chromium, Fig. 1) and Hodge et al. from the Human Cell Atlas41

(CA: 11,314 nuclei, Smart-seq2, Supplementary Fig. 1); as well as
scRNA-seq data from Darmanis et al.13 (DM: 297 cells, Smart-
seq, Supplementary Fig. 2). For each dataset, 100 mixtures were
simulated as the average expression of 500 randomly sampled
nuclei (VL, CA; see the “Methods” section) or 100 randomly
sampled cells (DM; see the “Methods” section). Corresponding
cell-type signatures were generated as the average expression
within each cell-type (see the “Methods” section).

We first estimated cell-type proportions in these mixtures
using CIBERSORT, DeconRNASeq, dtangle, and MuSiC, and
enrichment scores using xCell and BrainInABlender, evaluating
six major brain cell-types: neurons, astrocytes, oligodendrocytes,
oligodendrocyte precursor cells (OPCs), microglia, and endothe-
lia. Focusing on mixtures generated from the largest dataset (VL),
we found that deconvolution accuracy was very high for
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CIBERSORT (mean r across cell-types= 0.87), MuSiC (0.82), and
dtangle (0.87), but lower for DeconRNASeq (0.50) (Fig. 1B, left,
and Supplementary Figs. 3, 4). For the two enrichment
algorithms, BrainInABlender’s accuracy was moderately high
but inconsistent across cell-types, while xCell poorly estimated
cell-type abundance (r=−0.06 and 0.02 for neurons and
astrocytes, respectively); Fig. 1C, and Supplementary Fig. 4.
These observations were replicated in both the CA-based
(Supplementary Figs. 1, 5, 6) and DM-based simulations
(Supplementary Fig. 2), suggesting that (a) deconvolution of
major brain cell-types is accurate across a range of partial
deconvolution algorithms, with CIBERSORT generally perform-
ing best based on both r and normalised mean absolute error
(nmae) values (Fig. 1, Supplementary Figs. 1–6) and (b)
enrichment methods are less accurate than partial deconvolution
methods, with xCell showing particularly low accuracy.

We next assessed deconvolution accuracy on five in vitro RNA
mixture samples of known composition (Supplementary Fig. 7)
and 21 RNA samples from pure populations of cells immuno-
panned with cell-type-specific antibodies42 (Supplementary
Fig. 8). In both cases, the deconvolution accuracy was very high
when the signature was derived from the same dataset as the
mixtures. For RNA mixtures, the normalised mean absolute error
was 0.035, 0.043, and 0.11 for CIBERSORT, DeconRNASeq, and
dtangle, respectively (Supplementary Fig. 7). For RNA extracted
from sorted cells, the immuno-panned cell-type was identified on
average as 96.3%, 93.0%, and 92.6% abundant by CIBERSORT,
DeconRNASeq, and dtangle, respectively (Supplementary Fig. 8).

Next, we explored how including cell sub-types affected
deconvolution accuracy. First, we used broad neuronal sub-types,
i.e. excitatory and inhibitory neurons (Fig. 1B middle, Supple-
mentary Figs. 3, 9), and found that deconvolution accuracy was
high (r > 0.8 for all algorithms), with CIBERSORT performing
best (r= 0.94 and 0.95 for excitatory and inhibitory, respectively).
The accuracy for the other cell-types was largely unaffected by
neurons being sub-classified (Fig. 1B, middle, Supplementary
Figs. 3, 9). This result was replicated in the CA-based simulations
(Supplementary Figs. 1, 5, 10).

When including all cell sub-types detected in the VL dataset
(11 neuronal and 2 astrocyte sub-types), deconvolution with
CIBERSORT remained accurate (r > 0.8) for most cell popula-
tions (Fig. 1B, right, Supplementary Figs. 3, 11, 12). However, we
noted that the cell-types with comparatively lower estimation
accuracy had two properties: low abundance in the mixture (<2%)
and high collinearity (gene expression correlation with another
cell-type rho > 0.95); Supplementary Figs. 13, 14. This observation
was replicated in the CA dataset with most cell sub-types being
accurately deconvolved (r > 0.8; Supplementary Figs. 1, 5, 15, 16)
and collinearity being the main factor that led to reduced
accuracy (Supplementary Figs. 17, 18).

We finally explored how deconvolution was affected when the
cell-type signature matrix was incomplete. To do so, we
deconvolved VL-derived mixtures when omitting one cell-type
at a time from the signature. We found that when an abundant
cell-type was missing (Neurons, 87.4% mean abundance), the
deconvolution accuracy was substantially reduced (mean r was
reduced from 0.85 to 0.41, and normalised mean absolute error
increased from 0.33 to 10.3). However, when lowly abundant cell-
types were missing from the signature, the effect on deconvolu-
tion was minimal (Supplementary Fig. 19). We then tested the
effect of removing a sub-type of neurons, excitatory or inhibitory
neurons, which are highly correlated in expression (rho= 0.92).
Deconvolution accuracy was reduced to a lesser extent than when
all neurons were missing: r was reduced from 0.87 to 0.71 when
excitatory neurons were missing, and from 0.86 to 0.76 when
inhibitory neurons were missing (Supplementary Fig. 19).T
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Fig. 1 Deconvolution accuracy across methods. A Simulation design. Single-nucleus RNA sequencing data was acquired from Velmeshev et al. and used to
create 100 in silico mixtures with known proportions (see the “Methods” section). Left: Piechart displaying the composition of the dataset, where n is the
number of cells per cell-type. The number of sub-types is listed in between brackets. Right: analysis outline. OPC oligodendrocyte precursor cells.
Neurons_Exc, Neurons_Inh, and Neurons_NRGN: excitatory, inhibitory, and NRGN+ neurons, respectively. DRS DeconRNASeq, CIB CIBERSORT, Blender
BrainInABlender. B Barplots of Pearson correlation coefficients (r) between true and estimated cell-type proportions in 100 in silico mixtures. Left: cells are
grouped by major cell-types; middle: excitatory and inhibitory neuron subtypes are included in the signature; right: all cell-subtype labels are used in the
signature. C Barplots of Pearson correlation coefficients (r) between true proportion and cell-type enrichment scores. Dotted horizontal lines: r= 0.8.
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The biological properties of cell-type signature data strongly
influence deconvolution. We hypothesised that the brain cell-
type signature data could have a major impact on the deconvo-
lution outcome. This has been previously reported for deconvo-
lution of blood transcriptomes43, and is supported by our
observation that xCell performed significantly worse than the
other deconvolution methods (noting that its signature data is
built-in).

To investigate how the properties of the signature data
influence the deconvolution outcome, we deconvolved the human
brain snRNA-seq mixtures (VL) using cell-type signature data
from several datasets (see the “Methods” section; Fig. 2) with
different sequencing methods and various sources of brain tissue:
human brain snRNA-seq (CA41, NG44, LK45); scRNA-seq from
the human (DM13) or mouse (TS46) brain; bulk RNA-seq of
immuno-panned cells from the human (IP42) or mouse brain
(MM47); or CAGE-seq from cultured human brain cells (F548).

We found that the choice of cell-type signature data strongly
affected the deconvolution accuracy. Using data from cultured
brain cells (F5) dramatically reduced the accuracy (Fig. 2A, B);
this likely explains the poor performance of xCell, which has F5
as the main built-in signature. Using signature data from the
mouse brain (TS, MM) also reduced the deconvolution accuracy
(Fig. 2A, B). These observations were consistent across deconvo-
lution algorithms (Supplementary Fig. 20) and were replicated
when deconvolving in silico mixtures based on the CA and DM
data (Supplementary Figs. 21, 22), as well as with deconvolution
of broad neuronal subtypes (Supplementary Figs. 23, 24).
Conversely, when deconvolving RNA mixtures of known
composition from cultured cells (see the “Methods” section),
using the cultured-cell F5 signature data performed the best
despite the difference in sequencing technology (CAGE-seq vs.
RNA-seq; Supplementary Fig. 7).

Overall, these data demonstrate that the biological properties of
the cell-type signature data strongly impact the deconvolution
accuracy, having a more pronounced effect than the sequencing
methods, and highlight in vitro culturing of brain cells as an
important biological factor.

The effect of compartment-specific genes on deconvolution
accuracy. Since most single-cell data from the adult human
brain are generated using single-nucleus RNA-seq, while bulk
RNA-seq is based on total RNA, we next investigated whether
compartment-specific genes (i.e. those either enriched or depleted
from the nucleus) influence the outcome of deconvolution. For
this purpose, we generated paired bulk RNA-seq and nuclear
RNA-seq from five frozen brain tissue samples (see the “Meth-
ods” section), as well as snRNA-seq from the same brain samples.
We identified 2808 compartment-specific genes as those differ-
entially expressed between the nuclear and total bulk RNA-seq
(FDR < 0.05, |FC | > 1.3; Supplementary Data 1). We then carried
out several deconvolution analyses with and without filtering-out
the compartment-specific genes.

Firstly, we deconvolved the 21 bulk RNA-seq samples from
sorted brain cells42, where true cell-type composition is known
(i.e., each sample is expected to be a nearly pure cell-type, with
some experimental variability of the sorting efficiency). We
deconvolved these data with either the matched cell-type
signature (derived from this sorted dataset; IP), an scRNA-seq
signature (DM), and four snRNA-seq signatures (VL, CA, NG,
and LK); Supplementary Data 2. When using the IP signature, the
immuno-panned cell-type was estimated as >80% abundant in all
samples. Thus, we assessed the proportion of samples in which
the sorted cell-type was correctly identified (i.e., estimated
proportion >80%) using the scRNA-seq and snRNA-seq

signatures, with or without filtering out compartment-specific
genes. We found that the snRNA-seq signatures performed well
even prior to filtering out compartment-specific genes, correctly
identifying the sorted cell-type in an average of 86% of samples
(71–95%). As expected, the single-cell-based signature (Supple-
mentary Fig. 25) performed somewhat better, identifying the
sorted cell-type in an average of 90% of samples. Removing
compartment-specific genes further improved the outcome for
snRNA-seq signatures: the sorted cell-type was correctly
identified in an average of 88% of samples (86–95%); Supple-
mentary Fig. 25, eliminating the difference between the scRNA-
seq and snRNA-seq signatures.

To increase the complexity of the deconvolution task, we asked
how accurately the five whole-tissue samples were deconvolved
when using snRNA-seq data from the same individuals, as
compared to a whole-cell-based signature (Supplementary
Fig. 25). In this case, if compartment-specific genes were not
removed from the cell-type signature, the correlation between
cell-type proportions estimated using the snRNA-seq signature
and the whole-cell signature was modest (r= 0.27). However, the
correlation improved substantially by filtering out compartment-
specific genes (r= 0.98) suggesting that this filtering approach
should be considered when using snRNA-seq-based cell-type
signatures.

Reference-free complete deconvolution methods are less
effective on brain gene expression data than partial deconvo-
lution methods. Since we observed a strong effect of the choice of
reference signature data on the brain deconvolution outcome, and
recent studies have proposed reference-free approaches to cell-
type composition estimation37,38,49, we assessed the performance
of two such methods on brain data. Linseed, a complete decon-
volution algorithm37, proposes to identify cell-type-specific genes
by representing the expression vector of each gene as a point in
N-dimensional space (where N is the number of samples). It also
proposes using singular value decomposition (SVD) to determine
the number of cell-types from the mixture data. An alternative
approach, Coex50, employs co-expression networks to identify
modules of co-expressed genes enriched for specific cell-type
markers, and then uses the module eigengene values as cell-type-
enrichment scores5.

When applying Linseed to in silico mixtures generated by
random sampling from the three benchmarking datasets (VL, CA,
DM), we found that the SVD approach did not correctly identify
the number of cell-types in the mixture (see the “Methods”
section; Supplementary Fig. 26). With the correct number of cell-
types specified, Linseed performed less accurately than the partial
deconvolution methods, with r > 0.8 achieved for only two cell-
types for VL and CA, and none of the cell-types for DM (Fig. 3B,
Supplementary Fig. 27). On the RNA mixtures however, Linseed
performed very accurately (r= 1; Supplementary Fig. 28). Since
Linseed relies on the detection of genes represented by points
with “extreme” positions in the k−1 dimensional simplex, we
hypothesised that the difference in its performance between the
datasets likely results from the wider distribution of cell-type
proportions in the RNA mixtures (neuronal proportions:
0–100%), than in the mixtures generated by random sampling
from real brain datasets. To test this hypothesis, we generated
mixtures with a broad range of cell-type abundances using VL
and CA (see the “Methods” section; Fig. 3D, top and bottom).
The performance of Linseed improved markedly on both datasets
using these controlled in silico mixtures (Fig. 3E top and bottom,
Supplementary Figs. 29, 30), with the SVD approach also better
identifying the number of cell-types in the mixture (Supplemen-
tary Fig. 26).
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We found that Coex also performed significantly less
accurately than the partial deconvolution methods on the
randomly sampled mixtures (Fig. 3C, Supplementary Fig. 27).
Since the co-expression network approach also relies on gene
expression co-variation driven by differences in cell-type
proportions, its performance improved on simulations with a
wider range of cell-type proportions, but did not achieve accurate
deconvolution for all cell-types (Fig. 3F, top and bottom,
Supplementary Figs. 29, 30).

These data suggest that complete deconvolution methods are
less effective than partial deconvolution methods for brain cell-
types, particularly since the performance of these algorithms is
related to the variance in cellular composition of the dataset,
which is not known a priori.

Assessment of the interplay between cell-type composition and
differential gene (DE) expression analyses. We next investigated

Fig. 2 Effect of signature choice on deconvolution accuracy. A Scatterplots of true and CIBERSORT-estimated proportions in VL-derived in silico mixtures,
for nine different signatures. Matched: the signature and mixture were derived from the same dataset. Plot titles represent the signature used in
deconvolution, as follows: VL Velmeshev, NG Nagy, CA Human Cell Atlas, LK Lake, TS Tasic, F5 FANTOM5, IP immuno-paned, MM mouse immuno-
panned, DM darmanis. See the “Methods” section for further details about signatures. Dotted line: y= x. B Barplots of Pearson correlation (r) for all cell-
types and signatures presented in (A). Dotted line: r= 0.8. C Barplots of normalised mean absolute error (nmae) for all cell-types and signatures presented
in (A). OPC oligodendrocyte precursor cells. Dotted line: nmae= 1.
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how cellular composition influences DE analyses, in particular: (i)
how much should cell-type composition differ between two
groups of brain samples to lead to false positive results in DE
analyses, and (ii) what is the best approach for correcting cell-
type composition differences in DE analyses?

We used the CA dataset41 (Smart-seq2, high coverage per
gene) to generate simulated data for two-group DE analyses. Each

dataset contained two groups of 50 samples (group A and group
B). The proportion of one of the cell-types (excitatory neurons)
was simulated as either higher or lower in group B than in group
A by 0–40% (see the “Methods” section; Fig. 4). We then carried
out DE comparing group B to group A, using either a linear
model (LM) or a generalised LM as implemented in DESeq251

with and without correction for cellular composition. False-
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positives driven by cellular composition were defined as genes
differentially expressed at a false discovery rate (FDR) < 0.05 (see
the “Methods” section).

We found that without correction, differences in cellular
composition of <5% between the sample groups led to fewer than
10 false-positive DE genes. However, above 5% the number of
false-positive genes increased steeply with the difference in
cellular composition, reaching >10,000 at a 20% difference in
cellular composition (Fig. 4A). Inclusion of excitatory neuron
proportions as a covariate in the LM effectively eliminated false-
positive genes (Fig. 4A). We did not observe any additional
benefit when using a spline matrix as covariate, while quadratic
regression was less effective than linear regression at larger
composition confounds (Fig. 4A). We also found that including
cellular composition estimates in DESeq2 was similarly effective
at eliminating false-positives (Fig. 4A). As expected, markers of
excitatory neurons were enriched among downregulated genes
when the proportion of this cell-type was reduced in the test
group, but enriched among upregulated genes when the
proportion was increased (Fig. 4B).

We next investigated the more challenging case where, in
addition to differences in cell-type composition, there are true
differences in gene expression between the two groups. To this
end, we simulated data with differences in cell-type composition
as above, while also introducing gene expression changes in a set
of 200 genes, of which 100 are markers of excitatory neurons and
100 are non-marker genes (see the “Methods” section). Several
sets of simulations were generated with a mean expression
difference between groups of 1.1-, 1.3-, 1.5- or 2-fold.

To quantify how effectively cellular composition was corrected
for, we calculated a discriminatory power metric: the fraction of the
200 perturbed genes that were in the top 200 most significant DE
genes. This measure rewards true-positives while penalising false-
positives. We found that without correction, the discriminatory
power decreased with the magnitude of cell-type composition
difference between the two groups (Fig. 4C; uncorrected). Correction
for cell-type composition was effective at restoring discriminatory
power for gene expression differences of 1.5-fold when composition
differences were up to 12.5% (Fig. 4D; corrected). As expected, for
expression differences of lower magnitude (1.1 and 1.3) the effective
correction range was narrower (6.3% and 6.9%, respectively), while
for stronger expression differences (2-fold) the effective correction
range was wider (25.7%); Fig. 4D, Supplementary Fig. 31. All
correction approaches performed similarly in this analysis, with the
exception of spline regression which we found to be less effective
(Fig. 4C, D, Supplementary Fig. 31).

We also investigated whether the cell-type where differential
expression occurs can be uncovered through deconvolution. To
this end, we used CIBERSORTx52, which takes a bulk mixture
and estimates gene expression values in each cell-type present in
the signature data; these cell-type-specific expression values can

then be used to carry out cell-type-specific DE analyses. We thus
simulated data with 1.5-fold change in expression specific to a
given cell-type, with or without superimposed differences in cell-
type composition between the two groups (Fig. 5A), and tested
whether genes were identified as DE in the correct cell-type. As
above, the 1.5-fold expression difference was simulated for 200
genes, of which 100 are markers of the perturbed cell-type and
100 are non-marker genes.

The expression difference was first simulated in excitatory neurons
(Fig. 5B, C). In the absence of confounding cell-type composition
differences between the two groups, more than 95% of the perturbed
excitatory marker genes were detected as DE in the correct cell-type
(excitatory neurons), while for the non-marker genes ~45% were
detected as DE in excitatory neurons and another ~30% were
incorrectly detected as DE in inhibitory neurons (Fig. 5B). The false-
positive rate (i.e. the fraction of non-perturbed genes detected as DE)
was 0% (Fig. 5C). Similar results were observed when the gene
expression change was modelled in inhibitory neurons (Fig. 5D, E).

When a composition difference was superimposed (~10%
increase in excitatory neurons; see the “Methods” section), the
true-positive rate was unchanged except for upregulated marker
genes, where it was reduced, likely due to the fact that the
composition change and the expression change were confounded
(both variables were higher in group B vs. group A). The false-
positive rate was <12% in all cell-types, thus drastically reduced
relative to no correction for cell-type composition (32%), but
higher than when correcting for composition differences in a
standard linear model (0%) (Fig. 5B, C). Similar results were
observed when the gene expression change was modelled in
inhibitory neurons (Fig. 5D, E).

Finally, we assessed cell-type-specific DE in data from 15
autism spectrum disorder (ASD) and 11 control samples from
Velmeshev et al.40, comparing results from cell-type-specific
pseudo-bulked data versus that estimated by CIBERSORTx (see
the “Methods” section). Although no genes were significantly
differentially expressed after multiple-testing correction, fold-
changes determined in pseudo-bulk data correlated significantly
with those estimated by CIBERSORTx for three of the four cell-
types (see the “Methods” section; Supplementary Fig. 32).

Overall, these results suggest that using cell-type-specific gene
expression for DE analyses is effective at detecting DE genes in
the right cell-type when the gene expression and composition
changes are not confounded, but this comes at the expense of a
moderate increase in false-positives. Furthermore, low sample
sizes and gene expression differences of low magnitude, as in the
case of the pseudo-bulk ASD vs. control analysis, reduce the
power of detecting cell-type-specific DE genes.

Cell-type composition estimates in large-scale human brain
transcriptome data. We next evaluated the performance of brain

Fig. 3 Reference-free deconvolution. A Violin plots of the distribution of true cell-type proportions in in silico simulations derived from data from
Velmeshev et al. (VL), the Human Cell Atlas (CA), and Darmanis et al. (DM) (left, middle, and right, respectively). The width of the violin indicates point
density. Black horizontal bar: median. Ast astrocytes, End endothelia, Exc excitatory neurons, Inh inhibitory neurons, Neu neurons, Oli oligodendrocytes,
OPC oligodendrocyte precursors. B and C Heatmaps of Pearson correlation coefficients between estimated and true cell-type proportions for random
simulations based on VL, CA, and DM. B Linseed; y-axis: Cell-types defined by Linseed; x-axis: true cell-type in simulated data. C Coex; for each cell-type
the true vs. estimated correlation coefficient is displayed for the co-expression module assigned to that cell-type based on marker enrichment (see the
“Methods” section); zero values represent cases where no co-expression module was assigned to the corresponding cell-type. D Violin plots of the
distribution of cell-type abundances in simulations with wide cell-type ranges based on VL (top) and CA (bottom). E and F Heatmaps of Pearson
correlation coefficients between estimated and true cell-type proportions for simulations with wide cell-type ranges based on VL and CA. E Linseed; y-axis:
Cell-types defined by Linseed; x-axis: true cell-type in simulated data. F Coex; for each cell-type the true vs. estimated correlation coefficient is displayed for
the co-expression module assigned to that cell-type based on marker enrichment (see the “Methods” section); zero values represent cases where no co-
expression module was assigned to the corresponding cell-type.
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gene expression deconvolution on large-scale datasets, focussing
on a dataset of control individuals (GTEx14, n= 1671 samples;
see the “Methods” section), and a dataset of autism spectrum
disorder (ASD) cases and controls (PsychENCODE; Parikshak
et al.32, n= 251 samples; see the “Methods” section). The GTEx
data included samples from cerebellum (n= 309), cerebral cortex
(n= 408), subcortical regions (n= 863) and spinal cord (n= 91);

the Parikshak et al. dataset included samples from cerebellum
(n= 84) and cerebral cortex (n= 167).

We assessed all combinations of four partial deconvolution
methods and nine cell-type signatures, the two enrichment
methods, and coex as a complete deconvolution method
(Supplementary Data 3). We also generated an additional
signature (MultiBrain) by merging CA, IP, DM, NG, and VL

Fig. 4 Effect of brain cell-type composition on Differential expression (DE) analyses. A Scatterplot of the number of false positive genes versus the
simulated difference in excitatory neuron proportion between two groups of 50 samples. Each point represents a different simulated dataset. DE was
assessed with either a linear model (LM) or DESeq2. Models labelled as “corrected” adjusted excitatory neuronal proportion as a covariate. Coloured lines:
local regression line. B Cell-type marker enrichment within false positive genes. Each point represents a single simulated dataset. The width of the violin
indicates point density, and the horizontal black bar indicates the median. y-axis: enrichment p-value (one-sided Fisher test, no correction for multiple
testing); Methods. FPs false positive genes, Ast Astrocytes, Exc excitatory neurons, Inh inhibitory neurons, Oli oligodendrocytes, OPC oligodendrocyte
precursor cells. C Scatterplot of the discriminatory power, i.e. fraction of the 200 perturbed genes in the top 200 most significantly differentially expressed
genes (y-axis) versus simulated difference in excitatory neuron proportion between sample groups (x-axis) for simulated 1.5-fold expression differences.
Coloured lines: local regression line. Dotted line: expected discriminatory power, i.e. 0.95 times the discriminatory power in the absence of cell-type
composition differences between groups. D Model robustness to cell-type composition differences across a range of fold-changes, quantified as the
smallest composition change where discriminatory power fell below its expected value. This is defined as 0.95 times the discriminatory power of an
uncorrected linear model in a simulation with no composition confound (calculated separately for each simulated fold-change).
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signatures derived from cortex, reasoning that this approach will
average-out inter-individual and technical differences, as pre-
viously proposed43.

The accuracy of composition estimates was first evaluated on
cortical samples using goodness-of-fit, i.e. the Pearson correlation
between measured gene expression and reconstructed gene
expression values (see the “Methods”). Consistent with the results
on simulated data, we found that cell-type signature data had a

stronger impact on accuracy than the choice of algorithm
(Supplementary Fig. 33). Although there was some variation
between the two datasets, the CA and MultiBrain signatures
performed consistently well, while the cultured-cell-derived F5
and the single-nucleus LK signatures performed worst (Fig. 6A,
B). Cerebellar samples showed lower goodness of fit than cortical
samples in both datasets (Supplementary Figs. 34, 35), consistent
with the fact that all cell-type signatures were derived from
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cerebral cortex. When the biological and technical differences
between the bulk data and cell-type signatures are eliminated, as
is the case of our in silico mixtures of single-cell data, goodness-
of-fit averaged ~0.95 (Supplementary Fig. 36). Further details on
the deconvolution results of the GTEx and Parikshak et al. data
(correlation and absolute values of cell-type abundance estimates)
are included in Supplementary Note.

While the important role of signature data has been previously
reported43, here we discovered the effect of biological factors that
affect its influence on accuracy, in particular in vitro culturing and
brain region. Since in vitro culturing may be relevant to other
tissues as well, we investigated whether using cultured-cell-derived

or tissue-derived signature data influences the accuracy of
deconvolution for two additional tissues in GTEx: pancreas and
heart. We found that deconvolution accuracy for left heart
ventricle and arterial appendage samples was significantly reduced
when using signature data from cultured cells, while the
deconvolution accuracy for pancreas data was mildly reduced
(Supplementary Fig. 37). These data suggest that the influence of
biological factors on cell-type signature data vary across tissues,
indicating that tissue-specific benchmarking of deconvolution
approaches is warranted.

Finally, we applied the results of the cell-type composition
analyses to get further insights into genes differentially expressed

Fig. 5 Cell-type-specific differential expression analysis using CIBERSORTx. A Violin plots showing the composition distribution of two simulated
datasets. Each point represents the proportion of a given cell-type in each dataset. The width of the violin indicates point density, with the top, middle, and
bottom of the white overlay box marking the 75th, 50th, and 25th percentiles, respectively. Left: simulated data without a composition difference between
the two groups. Right: simulated data with a composition difference between the two groups. Each group contained 50 samples. B Gene expression was
perturbed 1.5-fold in Group B in excitatory neurons for 100 non-marker genes plus 100 markers of the given cell-type. CIBERSORTx was used to extract
cell-type-specific expression (see the “Methods” section), with a linear model then run to assess differential expression in each cell-type. The plot displays
the fraction of the true perturbed genes with an FDR < 0.05. Note that the fraction was calculated using only the subset of perturbed genes which were
detected in the given cell-type. C False positive rate across the different cell-types when expression was perturbed in excitatory neurons with or without an
additional composition difference. D As per B with the expression perturbation in inhibitory neurons. E As per C with the expression perturbation in
inhibitory neurons. Ast astrocytes, Exc excitatory neurons, Inh inhibitory neurons, Oli oligodendrocytes, OPC oligodendrocyte precursor cells.

Fig. 6 Cell-type composition estimates in large-scale human brain transcriptome data. A and B Violin plots of goodness of fit across signatures in cortex
samples from (A) the GTEx consortium and (B) Parikshak et al. Deconvolution was performed using CIBERSORT. The width of the violin indicates point
density, with the top, middle, and bottom of the white overlay box marking the 75th, 50th, and 25th percentiles, respectively. Dotted horizontal lines: y= 0.5
and y= 0.7. Signatures in the x-axis are as follows: VL Velmeshev, NG Nagy, CA Human Cell Atlas, LK Lake, TS Tasic, F5 FANTOM5, IP Immuno-paned,
MM mouse immuno-panned, DM Darmanis, MB MultiBrain. See the “Methods” section for further details about signatures. C Violin plots of composition
estimates in ASD (n= 43) and Control (n= 63) cortical samples from Parikshak et al.32. Deconvolution was performed using CIBERSORT and the
MultiBrain signature. ASD autism spectrum disorder, CTL control. *p < 0.01. **p < 0.001. p-values were calculated using a two-sided Wilcoxon test, without
multiple-testing adjustment. The width of the violin indicates point density, with the top, middle, and bottom of the white overlay box marking the 75th,
50th, and 25th percentiles, respectively. D Venn diagrams of the overlap between composition-dependent and composition-independent differentially
expressed genes between ASD and CTL samples. Differential expression was performed using DESeq2. The composition-independent model included
astrocyte, oligodendrocyte, and microglial proportions as covariates.
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in brain tissue samples from Autism Spectrum Disorder (ASD)
cases32. Cell-type proportion estimates (CIBERSORT/Multi-
Brain), showed significantly higher astrocyte proportions in
ASD cortex samples compared to controls (difference in means:
7.2%, p= 0.0002, Wilcoxon rank sum test; Fig. 6C). This result
recapitulates recent single-nucleus data from ASD brain validated
by immunohistochemistry40, which showed higher proportion of
astrocytes in ASD cortex samples. There were also significantly
higher proportions of microglia (0.7%, p= 0.003; Wilcoxon rank
sum test), although the overall abundance of microglia was low.

We next carried out differential expression analyses either
without correction for cellular composition (composition-depen-
dent; CD) or including cell-type proportion estimates from
CIBERSORT/MultiBrain in the model (composition-indepen-
dent; CI); Methods. Astrocyte, oligodendrocyte, and microglial
proportions were included as covariates. CD analyses identified
713 down-regulated and 1885 up-regulated genes (Fig. 6D). In
contrast, when correcting for composition estimates in our CI
analyses, we identified only 46 down-regulated and 21 up-
regulated genes (Fig. 6D). Of these, 20 down-regulated and 18 up-
regulated genes overlapped between CI and CD analyses (Fig. 6D).
Thus, 26 down-regulated and 3 up-regulated genes were
uncovered by the CI analysis, and have not previously been
reported as differentially expressed in ASD32. Conversely, 693
down-regulated and 1867 up-regulated genes were identified in
the CD analysis only, and thus likely reflect differences in cellular
composition between the ASD and control samples, rather than
gene expression dysregulation (Supplementary Data 4). The CD
upregulated genes were enriched for immune and inflammatory
genes (Supplementary Data 4) as well as astrocyte and microglial
markers (p= 2.5 × 10−11 and 4.7 × 10−36, respectively), consis-
tent with their higher proportions in ASD samples. Notably, one
of the top up-regulated CI analysis-specific genes, CXXC4, which
encodes a protein involved in Wnt signalling, has also been
identified as upregulated in ASD CTX layer 4 neurons by single-
nucleus RNA-seq40. In addition, CXXC4 was identified as the top
associated gene in a GWAS meta-analysis of schizophrenia and
ASD53. These data indicate that correction for cellular composi-
tion can identify disease-relevant gene expression changes.

Discussion
Here, we began to address the question of tissue-specificity in
transcriptome deconvolution, by carrying out a comprehensive
benchmarking of deconvolution methods on brain transcriptome
data. We assessed eight deconvolution methods, as well as mul-
tiple parameters of deconvolution: the biological and technical
properties of the cell-type signature data; the effect of deconvol-
ving brain cell sub-types; the effect of missing cell-types in the
signature data; and the effect of nuclear-enriched or depleted
transcripts on deconvolution using snRNA-seq signatures. We
also investigated how effectively cell-type composition differences
can be corrected in DE analyses.

It has previously been shown that cell-type signature data has a
strong effect on deconvolution accuracy43,54. In blood, the
microarray platform was the main factor driving differences
between cell-type signature datasets43. For deconvolution of solid
tumours, accurate estimation of immune cell-type composition
required tumour-derived cell-type signatures, rather than blood-
derived signatures54. For brain transcriptomes, we found that
cell-type signature data had a stronger impact than the choice of
method in all cases studied: simulated single-cell mixture data,
RNA mixtures of known composition, immuno-panned cells,
and large-scale post-mortem transcriptome data. We also found
that for brain transcriptomes, biological factors outweighed
technical factors, and among biological factors in vitro culturing

(Supplementary Figs. 33–35) and brain region (cortex vs. cere-
bellum) (Supplementary Figs. 33–35) had the strongest impact. In
vitro culturing also affected the performance of deconvolution for
other tissues (heart and pancreas), but to different extents (Sup-
plementary Fig. 37), highlighting the importance of tissue-specific
benchmarking.

We found that snRNA-seq derived cell-type signatures per-
formed well, particularly the Human Cell Atlas data (CA), which
has high-coverage, while low sequencing depth (LK) led to
reduced accuracy. Removing compartment-specific genes from
the snRNA-seq signatures improved the deconvolution accuracy
(Supplementary Fig. 25).

Another factor known to influence deconvolution accuracy is
the absence of cell-types present in mixtures from the signature
data21,22. Consistent with previous results21,22, we found that if
an abundant brain cell-type was missing from the signature data,
the deconvolution accuracy was reduced, particularly for cell-
types highly correlated with the missing cell-type (Supplementary
Fig. 19). The absence of a lowly abundant cell-type, such as
microglia and endothelia, had a minimal impact on deconvolu-
tion accuracy, suggesting that signature datasets missing these
cell-types can be used in deconvolution of brain data.

Since neuronal sub-types are highly similar in gene expression
profiles, we investigated how different deconvolution methods
handled collinearity in brain transcriptome data. We found that
CIBERSORT best handled collinearity, and deconvolution of
brain cell sub-types was accurate provided that they were not
lowly abundant (<2%) or highly collinear with other cell-types
(rho > 0.95); (Supplementary Figs. 14, 18).

It was previously shown that semi-supervised and unsu-
pervised complete deconvolution methods underperform relative
to supervised (i.e. partial) deconvolution methods21,22. Our
results support these observations, and we further determine that
the range of cell-type composition across samples in the bulk
dataset is a major factor influencing the performance of complete
deconvolution methods (Fig. 3, Supplementary Figs. 27–30).

When assessing the interplay between cellular composition and
DE analyses, we found that false-positives are induced in DE
analyses by as low as 5–10% difference in cell-type composition
(Fig. 5A). Inclusion of cell-type composition estimates as cov-
ariates effectively eliminated composition-induced false-positive
genes, and restored discriminatory power for gene expression
differences of 2-fold when cell-type composition differences were
up to ~25% (Fig. 5C, D, Supplementary Fig. 31).

The deconvolution of large GTEx data and PsychENCODE
data showed that the best-performing signature may differ across
datasets, and thus it is worth assessing goodness-of-fit for mul-
tiple signatures when deconvolving brain gene expression data.
Notably, in both datasets, and across all deconvolution methods,
there was a wide range of estimated cell-type proportions in any
given brain region (Supplementary Note). This is consistent with
data from the PsychENCODE consortium15, which used an NLS-
based approach (similar to the one implemented in DeconR-
NASeq) and reported a similarly wide range of proportion of
neurons across 1867 dorsolateral prefrontal cortex samples:
2–54% (http://resource.psychencode.org, PEC_DER-24_Cell-
Fractions-Normalised). Such a wide range is also observed in
brain methylome deconvolution55 (0–50%) and likely reflects
technical variability in dissection rather than biological inter-
individual variability.

Overall, for deconvolution of brain transcriptome data we
recommend that (a) CIBERSORT18 and either dtangle35,56 or
MuSiC34 are good choices of methods (b) cell-type signature data
should be well matched to the bulk samples, in terms of in vitro
culture state and brain region, (c) cellular sub-types should only
be included in deconvolution if they are neither lowly-abundant
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nor highly correlated with other cell-types/sub-types, (d) when
using snRNA-seq based signatures, removal of nuclear-specific
genes (Supplementary Data 1) from the signature should be
considered, (e) only attempt to use reference-free deconvolution
methods if the bulk dataset is known to have a wide range of cell-
type compositions.

To facilitate the choice of cell-type signature data, we devel-
oped a web tool which implements the best performing algo-
rithms and all the cell-type signatures (Supplementary Data 5), as
well as calculation of goodness-of-fit, in a user-friendly format,
available at: https://voineagulab.shinyapps.io/BrainDeconvShiny/.

Methods
Statement of ethics. Post-mortem human brain tissue transcriptome analyses
were undertaken under a protocol approved by the University of Western Australia
Human Research Ethics Committee (RA/4/20/6394). De-identified post-mortem
samples were obtained from the NIH NeuroBioBank. Informed consent from
donors, next-of-kin and/or legally authorised representative was requested and
documented by trained individuals, including consent for sample collection, usage
by approved researchers, and access to antenatal medical records. All policies and
procedures were approved by the collecting institutions’ respective Institutional
Review Boards and additional oversight committees.

Datasets accessed and pre-processing
Bulk tissue RNA-seq resources. Bulk brain gene expression data from Parikshak
et al.32 were obtained from Github (https://github.com/dhglab/Genome-wide-
changes-in-lncRNA-alternative-splicing-and-cortical-patterning-in-autism/
releases). Exon-level count data was obtained for 251 post-mortem samples
(rRNA-depleted), including frontal cortex, temporal cortex, and cerebellar vermis
samples from 48 ASD and 49 control individuals, aged 2–67 (Supplementary
Data 6; see Parikshak et al.32 for complete metadata).

Gene-level normalised data was generated by aggregating exon counts followed
by reads per kilobase per million reads (RPKM) normalisation using the total
exonic length of each gene (Ensembl V19 (hg19) assembly). A minimum
expression threshold was then set at >1 RPKM in at least 40 samples (i.e., half of
the number of samples in the least-represented region). Outlier samples removed
in the Parikshak et al. study were also removed from our analyses, leaving 121 ASD
(43 frontal cortex, 39 temporal cortex, 39 cerebellum) and 126 control (45 frontal
cortex, 36 temporal cortex, 45 cerebellum) samples.

Bulk brain gene expression data from GTEx14 were obtained as gene-level read
counts from the 2016-01-05 release (V7) at https://gtexportal.org/home/datasets.
Counts were RPKM normalised as above. A minimum expression threshold was set
at >1 RPKM in at least 88 samples (i.e. the number of samples in the least-
represented brain region).

Bulk gene expression data from GTEx14 for pancreas (n= 268) and heart
(n= 310 and 417 atrial appendage and left ventricle, respectively) were processed
as per the GTEx brain samples, except the pancreas samples were normalised to the
level of transcripts-per-million (TPM).

Brain cell-type-specific gene expression datasets and generation of cell-type sig-
natures. Information about final expression values and samples used are available
in Supplementary Data 5 and 6, respectively. Metrics of signature similarity are
presented in Supplementary Figs. 38 and 39.

F5 (FANTOM5): Cap Analysis of Gene Expression (CAGE) data for robust
CAGE peaks was obtained from the FANTOM5 consortium: http://
fantom.gsc.riken.jp/5/data/48. Tag-per-million normalised CAGE peak expression
levels were aggregated by sum at gene level. Data from cultured neuron (n= 3) and
astrocyte (n= 3) samples were averaged to generate the F5 neuron and astrocyte
signatures. A minimum expression threshold was set at >1 tag-per-million in at
least one cell-type.

IP (immuno-purified): RNA-seq data from cells immunopurified from human
adult brain tissue extracted during surgery were obtained from Zhang et al.42.
FPKM-level data were accessed from Table S4 of Zhang et al. for neurons (n= 1),
astrocytes (n= 12), oligodendrocytes (n= 5), microglia (n= 3), endothelia (n= 2).
Cell-types derived from foetal brain were excluded (i.e., foetal astrocytes). Samples
of the same cell-type were averaged to generate the IP signature. A minimum
expression threshold was set at >1 FPKM in at least one of the five cell-types in the
final signature matrix.

MM (Mus musculus): RNA-seq data from immunopurified mouse brain tissue
was obtained from Zhang et al.47. FPKM-level data were accessed from https://
web.stanford.edu/group/barres_lab/brain_rnaseq.html, in which biological replicates
of cell-type transcriptomes (neurons, astrocytes, oligodendrocytes, microglia, and
endothelia) were already aggregated across samples. Mouse genes were mapped
to human orthologues using Gene ID homology information from http://
www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt.
Expression data from oligodendrocyte precursors and newly formed oligodendrocytes

were excluded. A minimum expression threshold was set at >1 FPKM in at least one
of the five cell-types in the final signature matrix.

DM (Darmanis): Human brain single-cell gene expression data from the
middle temporal gyrus generated by Darmanis et al.13 were downloaded as count-
level data from https://github.com/VCCRI/CIDR-examples/tree/master/Brain57.
To generate the DM signature, RPKM or counts-per-million (CPM) expression
was averaged across samples of each cell-type (i.e. astrocyte (n= 62), neuron
(161), microglia (16), mature oligodendrocytes (38), oligodendrocyte precursor
cells (OPCs) (18), or endothelia (20). Cell-types derived from foetal brain
(quiescent neurons and replicating neurons) were excluded. A minimum
expression threshold was set at >1 RPKM or CPM in at least one cell-type in the
final signature matrix.

LK (Lake): Gene expression data for 10,319 human adult frontal cortex nuclei
were accessed from Lake et al.45. Seurat58 was used to pre-process raw count
expression data, removing nuclei with (1) fewer than 1000 counts, or (2) 200
expressed genes, or (3) >5% of counts attributed to mitochondrial genes, or (4) a
number of reads >99.5th percentile of its dataset. Only 3930 nuclei passed these QC
criteria. To generate the LK signature, RPKM or CPM values were averaged across
nuclei of each cell-type: astrocytes (97), excitatory neurons (2611), inhibitory
neurons (1051), oligodendrocytes (96), OPCs (46), and microglia (22). An
expression profile for neurons was also generated, as the average of all excitatory
and inhibitory nuclei. A minimum expression threshold of >1 RPKM or CPM in at
least one cell-type was required. Note that endothelia were excluded for having
fewer than 10 nuclei (7).

VL (Velmeshev): 10X Chromium for single-nucleus data from the post-mortem
adult human brain were accessed Velmeshev et al.40. Only nuclei from control
prefrontal cortex samples were included. Seurat processing, cell-type aggregation,
and thresholding were performed as described above in LK. After filtering, 24,556
nuclei remained, classified as astrocytes (2229), excitatory neurons (9718),
inhibitory neurons (4238), oligodendrocytes (4721), OPCs (2677), microglia (450),
and endothelia (523).

CA (Cell Atlas): Count-level exon expression data for NeuN+ sorted adult
nuclei from the middle temporal gyrus were acquired from the Human Cell
Atlas41. Seurat processing, cell-type aggregation, and thresholding were performed
as described above in LK. After filtering, 15,524 nuclei remained, classified as
astrocytes (291), excitatory neurons (10492), inhibitory neurons (4118),
oligodendrocytes (313), OPCs (238), microglia (63). Endothelia were excluded for
having fewer than 10 representatives (9).

NG (Nagy): 10X Chromium single-nucleus expression data from the adult
human post-mortem human prefrontal cortex were accessed from Nagy et al.44.
Only nuclei from control samples were included. Seurat processing, cell-type
aggregation, and thresholding were performed as described above in LK. After
filtering, 23,168 nuclei remained, classified as astrocytes (1195), excitatory neurons
(14,624), inhibitory neurons (5940), oligodendrocytes (757), OPCs (505), microglia
(85), and endothelia (62).

TS (Tasic): Exon-level SmartSeq2 single-cell expression data from the adult
mouse cortex were accessed from Tasic et al.46. Only cells from the Anterior Lateral
Motor Cortex were included. Further, cells labelled by the authors as low quality or
with no class were excluded. Seurat processing, cell-type aggregation, and
thresholding were performed as described above in LK. After filtering, 8075 nuclei
remained, classified as astrocytes (195), excitatory neurons (3851), inhibitory
neurons (3767), oligodendrocytes (69), OPCs (24), microglia (80), and
endothelia (89).

MB (MultiBrain): this composite signature was generated by quantile-
normalising and averaging the RPKM-level expression of the CA, IP, DM, NG, and
VL signatures for five cell-types (neurons, astrocytes, oligodendrocytes, microglia,
and endothelia). All signatures are cortical in origin but represent a range of
purification protocols (scRNA-seq by SmartSeq (DM), snRNA-seq by 10X (VL,
NG), snRNA-seq by SmartSeq (CA), and immuno-panning (IP)).

Pancreas cell-type-specific gene expression datasets and generation of cell-type sig-
natures. Cell-type-specific RNA-seq data from pancreas alpha and beta cells were
obtained from three studies as described below. For each dataset, genes were
excluded if they were not protein-coding, or if they were expressed at <1 TPM in
both cell-types.

EN (Enge): count-level expression data for single-cells from freshly isolated,
FACS-sorted human pancreas were acquired from Enge et al.59. Data were
normalised to the level of transcripts-per-million (TPM), using the total exonic
length of each gene per the Ensembl V19 (hg19) assembly. The expression
signature of alpha and beta cells was generated as the average of 998 alpha and 348
beta cells.

BL (Blodgett): TPM-level expression data for bulk RNA-seq from freshly-
isolated, FACS-sorted alpha and beta cells from human pancreas were acquired
from Blodgett et al.11. The expression signature of alpha and beta cells was
generated as the average of 7 adult alpha-cell and 7 adult beta-cell bulk RNA-seq
samples.

FS and FG (Furuyama): count-level expression data for human pancreas alpha
and beta cells were acquired from Furuyama et al.12. After TPM normalisation, the
FS (Furuyama Sorted) signature was constructed from freshly-isolated, FACS
sorted alpha and beta cells (average of 5 replicates each), while the FG (Furuyama
GFP) signature consists of isolated alpha and beta cells subjected to 1-week of
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culturing. These cells had been transduced with a GFP expression vector for
imaging purposes12 (average of 4 and 6 replicates, respectively).

Heart cell-type-specific gene expression datasets and generation of cell-type sig-
natures. Cell-type-specific RNA-seq data from heart were accessed from three
publicly available datasets, containing cardiomyocytes (CM), cardiac endothelia
(EC), cardiac fibroblasts (FC), and smooth muscle cells (SMC). For each dataset
genes were excluded if they were not protein-coding, or if they were expressed at
<1 RPKM across all four cell-types.

F5 (FANTOM5): Cap Analysis of Gene Expression (CAGE) data for robust
CAGE peaks was obtained from the FANTOM5 consortium: http://
fantom.gsc.riken.jp/5/data/48. Tag-per-million normalised CAGE peak expression
levels were aggregated by sum at gene level. n= 3, 4, 6, and 3 for CM, EC, FC, and
SMC, respectively.

EN (ENCODE): FPKM-level RNA-seq data for cultured primary cells were
accessed from the ENCODE consortium60; n= 2 for all cell-types.

SC (Single-cell): single-cell RNA-seq data from freshly isolated tissue samples
were accessed from Wang et al.61 (GSE109816). Only left atrial samples were used.
Cell-type-specific expression was generated as the average RPKM of all cells in each
classification. n= 1934, 1111, 257, and 427 for CM, EC, FC, and SMC, respectively.

RNA-seq data generated in the present study and data pre-processing
RNA mixture experiment. Total RNA was extracted from human primary astro-
cytes and from neurons derived from human foetal neural progenitors.

Human primary astrocytes (Lonza, #CC-2565) stably expressing GFP from
pCMV6-AC-GFP had been generated by selection with G418 (Thermo Fisher
Scientific, #10231027) at 800 μg/ml. Cells were cultured in RPMI GlutaMAX™
(Thermo Fisher Scientific, #35050061) supplemented with 10% foetal bovine
serum, 1% streptomycin (10,000 μg/ml), 1% penicillin (10,000 units/ml) and 1%
Fungizone (2.5 μg/ml) and seeded into six-well tissue culture plates at a density of
0.5 × 106 cells 24 h prior to RNA extraction. Total RNA was extracted using
TRIzol® reagent and a Qiagen miRNeasy kit and treated with 1 µl DNase I (Thermo
Fisher Scientific, #AM2238) per 10 μg of RNA.

RNA from differentiated neurons62 was kindly provided by Dr. Brent Fogel
(UCLA). Neurons were differentiated from primary human foetal neural
progenitors stably transfected with pLRC-GFP by culturing for 2 weeks in the
presence of 1% foetal calf serum 500 ng/mL all trans-retinoic acid62. RNA
extraction was carried out using a Qiagen miRNeasy kit, with on-column DNase
digestion.

RNA mixtures were generated by mixing neuronal and astrocyte RNA in mass
ratios of 40:60, 45:55, 50:50 neuron:astrocyte (n= 1 for each ratio). In addition, a
pure neuronal RNA sample and pure astrocyte RNA samples (n= 3) were also
included (Supplementary Data 7).

Library preparation using the Illumina TruSeq Stranded kit (http://
www.illumina.com/products/truseq_stranded_total_rna_library_prep_kit.html)
and sequencing on a NextSeq 500 Illumina sequencer were carried out at the
UNSW Ramaciotti Centre for Genomics, generating 75 bp paired-end reads
(Supplementary Data 7). Sequencing reads were mapped to the human genome
(hg19) using STAR v2.5.2b63 with the following parameters:
--outSJfilterOverhangMin 5 5 5 5 --alignSJoverhangMin 5
--alignSJDBoverhangMin 5 --outFilterMultimapNmax 1 --outFilterScoreMin 1
--outFilterMatchNmin 1 --outFilterMismatchNmax 2 --chimSegmentMin 5
--chimScoreMin 15 --chimScoreSeparation 10 --chimJunctionOverhangMin 5.

Gene counts for GENCODE V19 annotated genes were obtained from the
STAR output and RPKM-normalised. Data from the three pure astrocyte replicates
were averaged. The signature data consisted of the pure neuronal and pure
astrocyte samples, thresholded for a minimum of 1 RPKM in at least one of the two
cell-types. All five samples were used as input mixtures for deconvolution, with
genes expressed at <2 RPKM in all five samples filtered out. Analyses from these
data can be found in Supplementary Figs. 7, 26F, and 28.

Bulk RNA-seq data generated from brain tissue. De-identified post-mortem samples
were obtained from the NIH NeuroBioBank, and included frontal cortex samples
(BA9/10) from 2 control, 2 ASD, and 1 Fragile-X premutation carrier individuals.
For each brain sample, frozen tissue was pulverised using a CellCrusher (https://
cellcrusher.com/) and the tissue was then divided for nuclear RNA extraction and
RNA extraction from bulk tissue.

To isolate nuclei, around 30 mg of tissue was lysed in 2.5 ml lysis buffer (10 mM
Tris–HCl, 3 mM MgCl2, 10 mM NaCl, 0.005% NP40) for 17 min on ice. After lysis,
2.5 ml of ice-cold PBS was added to the sample and tissue was homogenised using a
Pasteur pipette until no large chunks were visible. Tissue was then filtered through
a 30 µm strainer and centrifuged at 500 × g for 5 min at 4 °C. Supernatant was
removed and the pellet was resuspended in 400 µl PBS with 1% BSA and DAPI.
DAPI-positive singlet nuclei were sorted using a BD Influx with a 70 µm nozzle at
20 PSI to collect ~100,000 nuclei per sample.

To extract RNA, the Qiagen mini RNA prep kit was used following the
manufacturer’s instructions, including a DNase treatment step. From sorted nuclei,
RNA was extracted by a hot Trizol extraction method. Nuclei were washed in PBS
and resuspended in Trizol at 65 °C and incubated on a shaker at 1300 rpm for
15 min. RNA was enriched using a guanidinium HCl buffer and silica-coated

magnetic beads with a DNAse I treatment step. RNA amounts and quality were
assessed on a TapeStation using RNA Screen Tape (Agilent), and 20–100 ng of total
RNA was used per replicate to generate RNA-seq libraries. ERCC ExFold RNA
Spike-In mixes (Thermo Scientific) were added as internal control. Libraries were
prepared using the TruSeq Stranded mRNA library prep kit (Illumina), using
TruSeq RNA unique dual index adapters. Libraries were quantified by qPCR on a
CFX96/C1000 cycler (Bio-Rad) and sequenced on a NovaSeq 6000 (Illumina) for
2 × 53 bp as paired-end, generating around 25M reads per sample.

Sequencing reads were mapped to the human genome (hg38) using STAR
v2.5.2b63 with the following parameters: --outSJfilterOverhangMin 15 15 15 15
--alignSJoverhangMin 15 --alignSJDBoverhangMin 15 --outFilterMultimapNmax 1
--outFilterScoreMin 1 --outFilterMatchNmin 1 --outFilterMismatchNmax 2
--chimSegmentMin 15 --chimScoreMin 15 --chimScoreSeparation 10
--chimJunctionOverhangMin 15 --bamRemoveDuplicatesType
UniqueIdenticalNotMulti. Note that nuclear samples were mapped to a pre-mRNA
hg38 transcriptome.

Gene counts for GENCODE V19 annotated genes were obtained from the
STAR output and RPKM-normalised.

Nuclear enrichment was confirmed using the expression of the nuclear-specific
transcript MALAT1 (22.1-fold enrichment in nuclear samples, p= 6.7 × 10−5, t-
test; Supplementary Data 7).

Single-nucleus RNA-seq data generated from bulk brain tissue. snRNA-seq data
were generated from the same five brain samples described in the previous section,
but from a different portion of the dissection.

To isolate nuclei, around 30mg of tissue was lysed in 400 µl of lysis buffer (10mM
Tris–HCl, 3mM MgCl2, 10mM NaCl, 0.005% NP40) in 1.5ml tubes and broken
down with a pellet pestle. Tissue was dissociated by passing through a polished
silanized Pasteur pipette 3–4 times, then incubated on ice for 10min. Dissociation was
repeated at 5 and 10min. After incubation, the dissociated tissue was added to 2.5ml
of wash buffer in a 15ml falcon tube. The sample was then passed through a 30 µm
strainer into a 50ml falcon tube and centrifuged for 5min at 500 × g at 4 °C in a
swinging bucket centrifuge. Following centrifugation, the supernatant was removed
and sample resuspended in 100 µl of wash buffer (PBS with 1% BSA) for every 30mg
of tissue used. Using only 100 µl of the resuspended sample, 180 µl of a 1.8M sucrose
solution (made with Sigma Nuclei Pure Prep kit) was added and homogenised using a
P1000 pipette. In a 2ml Eppendorf tube, 1ml of a 1.3M sucrose solution with 1% BSA
was placed. 280 µl of the nuclei suspension mixed with sucrose was slowly layered on
top of the 1.3M sucrose solution. The sucrose gradient was centrifuged for 10min at
3000 × g at 4 °C in a swinging bucket centrifuge. After centrifugation, the debris from
the top of the sucrose gradient were removed by soaking a Kimwipe from the top of
the tube, slowly lowering it together with the sinking meniscus until a volume of
<100 µl remained, which was removed with a pipette. Nuclei were resuspended in
20–50 µl of wash buffer and 10 µl of the suspension was stained with Trypan Blue to
count for concentration.

The 10X Genomics 3’ v2 and v3 single cell expression kit was used to generate
single nuclei RNA-seq libraries. Using 16,000 nuclei in total to aim for 10,000
nuclei recovery, the standard protocol was used according to manufacturer
instruction with the following alterations: 17 PCR cycles in total for cDNA
amplification and 13 PCR cycles in total for library amplification. Libraries were
then sequenced on a NovaSeq 6000 (Illumina) generating around 100M reads per
sample.

Cell Ranger version 2.1.0 was used to process raw sequencing data. Here, a pre-
mRNA transcriptome was built using the Cell Ranger mkref command and default
parameters starting with the refdata-cellranger-GRCh38-1.2.0 transcriptome as per
the instructions provided by 10X Genomics. Reads were demultiplexed by sample
index using the Cell Ranger mkfastq command. Fastq files were aligned to the
custom transcriptome, cell barcodes were demultiplexed, and UMIs corresponding
to genes were counted using the Cell Ranger count command using default
parameters.

Cell Ranger output was pre-processed using Seurat v358. Filtering-out criteria
for nuclei: <500 counts, or <200 expressed genes, or >20% of counts attributed to
mitochondrial genes, or total number of reads in the top 99.5th percentile of its
dataset. UMI counts were log2-transformed and normalised for library size and
mitochondrial percentage, and finally scaled. Nuclei from all individuals were then
integrated using canonical correlation analysis in Seurat, setting the numbers of
dimensions to be 30.

After retransforming and renormalising data, clustering was performed using
tSNE64 in Seurat on the top 35 principal components of the 2000 most variable
genes, with the resolution parameter set to 1.5 (Supplementary Fig. 40). Clusters
were annotated using SingleR65 to transfer cell-type annotation labels from the NG
signature.

A separate cell-type-specific signature was generated for each of the five
individuals. This was calculated as the average RPKM of each individual’s cells
within each cluster. Only cell-types represented in all individuals were used
(Neurons, Astrocytes, and Oligodendrocytes).

Simulated datasets
Randomly sampled single-nucleus mixtures. Used in Figs. 1, 2 and 3A, B, and
Supplementary Figs. 1, 2–6, 9–24, 26A, C, 27A, B, 27D, E, and 36A, B.
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Simulated data was generated separately from the VL40 and the CA41 datasets.
Seurat v3 was used to pre-process raw count expression data, removing nuclei with
(1) fewer than 1000 counts or 200 expressed genes, (2) >5% of counts attributed to
mitochondrial genes, or (3) a number of reads >99.5th percentile of its dataset. In
addition, cells assigned to a cell-type or cell-subtype with fewer than 200 cells were
excluded. Next, the dataset was randomly split into two: half was used to generate
cell-type signatures and half for simulated mixture. One hundred mixtures were
simulated by summing the counts of 500 randomly sampled single nuclei. Random
sampling was performed without replacement.

Randomly sampled single-cell mixtures. Used in Fig. 3A, B, and Supplementary
Figs. 2, 22, 26E, and 36C.

Randomly sampled single-cell mixtures were generated using single-cells from
the Darmanis et al. dataset13, using a method largely as per the previous section but
with three key differences: first, only cells classified as one of neurons, astrocytes,
oligodendrocytes, OPCs, microglia, or endothelia were included, without regard for
the number of representatives (i.e., non-hybrid cells from adult samples); second,
the number of cells aggregated per mixture was only 100, owing to the lower
number of total cells (285); and finally, the dataset was not randomly split into two
for mixture and signature generation.

We confirmed that the CA-derived and VL-derived simulated single-nucleus
mixtures had similar expression distributions to data from bulk brain tissue, whilst
DM-derived simulated single-cell mixtures were not zero-inflated unlike single cells
(Supplementary Fig. 41).

Single-nucleus mixtures sampled with a wide range of cell-type compositions. Used in
Fig. 3D–F, and Supplementary Figs. 29 and 30.

One hundred mixtures were simulated using single nuclei from each of the VL
and CA datasets. To obtain a defined range of cell-type proportions in the mixture,
for each cell-type j we randomly sampled without replacement between 1 and nj
nuclei where nj= (n/k)/(sj/min(s)) where n= 500, the chosen number of cells per
mixture; k is the number of cell-types in each dataset; s is the vector of total library
sizes for all k cell-types; sj is the total library size for cell-type j.

If more than 500 total nuclei were randomly sampled by this approach, then a
random subset of 500 was kept; conversely, if fewer than 500 nuclei were initially
sampled, then additional nuclei were randomly-sampled from any cell-type until
500 was reached. Mixtures were simulated by summing the counts of these single
nuclei followed by counts-per-million normalisation.

Simulated datasets with cell-type composition differences between sample groups.
Used in Fig. 4A and B.

Single-nucleus mixtures for DE analyses were generated using snRNA-seq
data from the CA dataset. Nuclei were classified as one of Excitatory, Inhibitory,
Oligodendrocyte, OPC, or Astrocyte. Each simulation was created as a dataset of
100 samples, split into groups A and B of 50 samples each. Each sample in group
A (the reference group) was generated as the summed expression of randomly
selected n excitatory neurons and 500-n non-excitatory cells, where n was a
randomly selected integer from [200–300] so that the simulated proportion of
excitatory neurons varies between 40% and 60%). Samples in group B (test group)
were generated as per group A, except n was sampled from [200+ k, 300+ k] for
increased proportions or [200−k, 300−k] for decreased proportions where k
varied from 0 to 195 with a step of 5. All sampling was performed without
replacement. Differential expression analyses for group B vs. group A were
performed on each dataset as described in the “Differential expression”
section below.

Simulated datasets with cell-type composition and gene expression differences
between sample groups. Used in Fig. 4C, D and Supplementary Fig. 31.

The expression of 200 genes was altered by 1.1-, 1.3-, 1.5-, or 2-fold in the above
simulated mixtures, in group A samples only, by multiplication of counts prior to
CPM normalisation. The 200 genes selected for perturbation included the top 100
excitatory neuron marker genes and 100 randomly selected non-marker genes. Half
of each set was randomly assigned to be upregulated or downregulated.

To simulate cell-type-specific expression differences, the expression alteration
was introduced only to nuclei from the cell-type-of-interest (i.e. excitatory or
inhibitory neurons) prior to aggregation.

Pseudo-bulk ASD vs. Control simulated data. Used in Supplementary Fig. 32.
Single-nucleus data from Velmeshev et al.40 were processed using Seurat58,

removing nuclei that fulfilled any of the following filtering criteria: <1000 total read
counts, <200 expressed genes, >5% of counts attributed to mitochondrial genes,
total number of reads >99.5th percentile. Only individuals with >100 nuclei in each
of astrocytes, OPCs, excitatory neurons, and inhibitory neurons were included (15
ASD and 11 controls). Nuclei from the prefrontal cortex and anterior cingulate
cortex were pooled.

Pseudo-bulk mixtures were made by summing the expression counts of all
relevant nuclei, and normalising to counts-per-million. Cell-type-specific
expression mixtures for astrocytes, OPCs, excitatory neurons, and inhibitory
neurons were generated separately from each individual, with an additional cell-
type signature made by pooling nuclei across all individuals. A heterogenous

pseudo-bulk sample was generated from each individual by pooling all their nuclei
regardless of cell-type label, and used as input for CIBERSORTx.

Estimation of cellular composition
Overview of deconvolution methods. In general, deconvolution methods model gene
expression data from a tissue sample (vector X) as the sum of gene expression
levels in the cell-types of which it’s comprised (“signature” expression matrix, S),
weighted by the proportion of each cell-type in the sample (vector P), formalised as
X ~ SP. Deconvolution methods fall into two broad categories—partial and com-
plete—as described below.

Partial or supervised deconvolution6,18,33,35,66–71 estimates the proportion of
cell-types in a sample based on experimentally measured gene expression values
from pure cell-types, i.e. determines P knowing X and S.

It is worth noting that the signature expression data S often comes from a
different source than the bulk tissue data X, and thus an intrinsic assumption of
most partial deconvolution methods is that gene expression in a given cell-type is
the same regardless of the source of cells (thus genetic background and
environmental conditions including culture conditions are ignored)1,71. The most
frequently employed methods for partial deconvolution are Non-negative Least
Squares (i.e. optimising X ~ SP using a least-squares approach where P should be
non-negative) (e.g. DeconRNASeq33), and Support Vector Regression (e.g.
CIBERSORT18).

A simplified version of partial deconvolution consists of calculating an
enrichment score, rather than a proportion, for each cell-type (e.g. xCell19, or
BrainInABlender7). While this approach is intuitive, it has several limitations: its
accuracy is harder to assess (as one cannot calculate error measures or goodness-
of-fit), and its biological interpretation is often unclear since the scale of
enrichment scores is variable.

In contrast, complete or reference-free/unsupervised deconvolution consists of
estimating both the proportion of cell-types and cell-type-specific expression, i.e.
determining both P and S knowing X37–39,49,72. This is an under-determined
problem, which requires biologically-motivated constraints.

Application of deconvolution methods. Cell-type composition was estimated using
four partial deconvolution methods (DeconRNASeq33, dtangle35, MuSiC34, and
CIBERSORT18), two enrichment methods with in-built signatures
(BrainInABlender7 and xCell19), and two complete deconvolution methods:
Linseed37, and a co-expression-based approach proposed by Kelley et al.5 (referred
to as Coex).

All algorithms were run in R v3.6. All data used for deconvolution were RPKM-
normalised expression values without log2 transformation73 unless noted below.

CIBERSORT v1.04 was run using the CIBERSORT R package obtained from
https://cibersort.stanford.edu with default parameters.

DeconRNASeq v1.26 was run using the DeconRNASeq Bioconductor R package
with default parameters.

MuSiC v0.1.1 was run using the music_prop() function from R package
available at https://github.com/xuranw/MuSiC. Raw count data was used as input
for both signatures and mixtures. Only single-cell- or single-nucleus-derived
signatures were used; their individual cells/nuclei were not aggregated, metadata
about the individual-of-origin was included as well as predefined cell-type labels.

dtangle v0.3.1 was run using the dtangle CRAN R package. Cell-type markers
were selected as the top 1% of markers using its find_markers() function with
method= ”diff”. Data was log2 transformed with an offset 0.5, as recommended35.

BrainInABlender v0.9 was run using the R package obtained from https://
github.com/hagenaue/BrainInABlender using default parameters. Cell-type
signature data built into BrainInABlender is derived from numerous resources of
brain cell-type-specific expression, including human data from Darmanis et al.13,
and various mouse datasets (full list in Hagenauer et al., 2018). Both publication-
specific indices and an averaged index are generated; we used the averaged index as
the enrichment score in all analyses.

xCell v1.1.0 was run using the R package from https://github.com/dviraran/
xCell using default parameters with the built-in signature data. Cell-type signature
data for neurons and astrocytes are in-built in xCell, and are derived from in vitro
cultured data from FANTOM548, and ENCODE60. xCell generates a “Raw” and a
“Transformed” enrichment score; we used the latter as a measure of enrichment.

Coex was carried out by constructing co-expression networks using the
blockwiseModules function from the WGCNA R package50,74, with the following
parameters: deepSplit= 4, minModuleSize= 150, mergeCutHeight= 0.2,
detectCutHeight= 0.9999, corType= “bicor”, networkType= “signed”, pamStage
= FALSE, pamRespectsDendro= TRUE, maxBlockSize= 30,000. The beta power
was selected for each network so that the scale-free topology fit r2 was >0.8 and
median connectivity < 100. Genes were assigned to the module with the highest
kME (correlation with the module eigengene), provided kME > 0.5, and p < 0.05
(BH-corrected Student’s t-test). Co-expression networks were built on log2-
transformed RPKM values, offset by 0.5.

A cell-type module (CTM) was defined as the module most significantly
enriched for the top 100 markers of a given cell-type, requiring an enrichment p-
value < 10−5 and odds ratio >5.

Enrichment was assessed using a one-sided Fisher’s Exact Test. Cell-type
markers were defined using the find_markers() function in the dtangle R package
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applied to the matching cell-type signature data for simulations, and MB for GTEx
and Parikshak. Cell-type enrichment scores were defined as the CTM’s eigengene
values (i.e., first principal component values of genes included in the CTM), as per
Kelley et al.5.

Linseed v0.99.2 was run using the R package from https://github.com/ctlab/
LinSeed. We used a collinearity threshold of p= 0.01 to filter genes. Output was
transformed to sum-to-one.

We also tested the SVD approach to determine the number of cell-types in the
mixture data, which involves looking for the plateau (Supplementary Fig. 26). For
the VL-based simulations, with 7 cell-types, the estimated k was >10 for random
and 7 for wide-range mixtures. For the CA-based simulations, with 5 cell-types, the
estimated k was ~5–7 for random and 5 for wide-range mixtures. For the RNA
mixtures which consisted of 2 cell-types, the estimated k was 3. For the DM
mixtures, which consisted of 5 cell-types, the estimated k was more than 10.
Therefore, we used the known k value for all mixtures.

Deconvolution parameters for specific datasets. Parikshak, GTEx, and RNA mixture
data were deconvolved using RPKM-normalised signatures and mixtures, while for
single-cell and single-nucleus simulated datasets, signatures and mixtures were
CPM-normalised, if raw count data was available (otherwise the normalised data
available from the original publication was used).

Assessment of deconvolution accuracy. For simulated datasets, deconvolution
accuracy was assessed by two measures: (i) Pearson correlation between true and
estimated proportions and (ii) normalised mean absolute error (nmae) calculated
as mean error divided by the mean of true proportions, where error is the per-
sample absolute difference between estimate and true proportion. Note that nmae
can only be calculated when estimates are bounded between 0 and 1, i.e. are
proportions rather than relative enrichment scores like BrainInABlender’s or
xCell’s output.

For datasets without a ground truth, such as bulk brain samples, goodness-of-fit
was evaluated as the Pearson correlation for each sample’s reconstructed and
observed expression, log2-transformed with an offset of +0.5. Here, expression was
reconstructed for each gene using the following formula:

∑
n

j¼1
sj:pj

where j denotes a cell-type, sj is the gene’s expression in cell-type j (from the
signature matrix), pj is the estimated proportion of cell-type j in the sample, and n
is the number of cell-types. Note observed expression and cell-type signature data
were quantile normalised prior to reconstruction.

Differential expression (DE) analyses
DE analyses in simulated bulk data. DE between group A and group B in simulated
single-nucleus mixtures was assessed using either a linear model on log2-
transformed CPM values offset by +0.5 as implemented in the lm function in R, or
a generalised linear model implemented in DESeq251 on count data.

Excitatory neuron proportions were included as covariates in the model either
as linear term, a quadratic term, or after conversion to a spline matrix using the
bs() function from the R splines package, setting degree= 3 and knots at its 25th,
50th, and 75th percentiles.

Multiple testing correction was conducted using the Benjamini–Hochberg
approach75.

Cell-type marker enrichment analyses were performed by one-sided Fisher’s
exact test for 100 markers per cell-type using the CA cell-type signature. Markers
were defined using the find_markers() function from dtangle35, setting
marker_method= “diff”. Only simulations where the number of false positive
genes was >100 were tested for cell-type enrichment, to ensure adequate power for
the test.

Discriminatory power was calculated as the fraction of the 200 true perturbed
genes that were in the top 200 most significant genes by p-value. No significance
threshold was applied to DE p-values.

DE analyses using CIBERSORTx-estimated cell-type-specific gene expression data.
Cell-type-specific expression was first extracted using the high-resolution algorithm
of CIBERSORTx52 webtool at https://cibersortx.stanford.edu/ with default settings
and using a subset of 1000 genes, per its computational constraints.

For analyses of simulated data, the CA signature was used, filtered to the 100
perturbed cell-type marker genes, the 100 perturbed non-marker genes, the top 100
markers for each of the four other cell-types, and 400 randomly selected non-
marker genes. The resultant cell-type-specific expression data was used for DE
analyses, using a linear model on log2 transformed data offset by +0.5. Multiple
testing correction was conducted using the Benjamini–Hochberg approach,
adjusting for the size of the full transcriptome rather than that of the smaller
subset75.

For the pseudo-bulk dataset of 15 ASD and 11 control samples, the subset of
1000 genes was chosen by performing DE analysis for the effect of diagnosis within
each of the corresponding four pure cell-types, and choosing the 250 genes with the

lowest p-value. DE was performed using a linear model on log2 transformed data
offset by +0.5, adjusting for age, sex, RIN, PMI, and log10 of total UMI count. The
same model was applied to the estimated cell-type-specific expression output of
CIBERSORTx. DE was only performed on genes which passed CIBERSORTx’s
quality control, and also had non-zero variance in expression across samples.

DE analyses of ASD and control samples. DE was carried out using DESeq2
v1.22.251 on count-level expression data. The same samples used by Parikshak
et al.32 for DE were included in our analyses: 106 samples (43 ASD, 63 controls;
Supplementary Data 6). Differential expression was carried out using a Wald test
with Benjamini–Hochberg correction for multiple testing as implemented in
DESeq251. Composition-dependent DE adjusted for the following covariates: Age,
Sex, Sequencing Batch, Brain Bank, Region, RIN, and the first two principal
components of sequencing metadata, per Parikshak et al.32. Composition-
independent DE used the same covariates as above, but adding the estimated
proportions of astrocytes and any other cell-types not significantly correlated with
astrocyte proportions (p < 0.05, Pearson correlation test) i.e., oligodendrocytes and
microglia (Supplementary Fig. 42), to minimise co-linearity.

Determination of compartment-specific genes. Compartment-specific genes were
identified using the RNA-seq data generated from bulk brain tissue (5 total RNA
and 5 nuclear RNA samples) pre-processed as described above, and log2-
transformed with an offset of 0.5. Compartment specific genes were identified as
genes DE between groups using a linear model as implemented in the lm function
in R (absolute fold-change > 1.3 and a Benjamini–Hochberg-adjusted75 p-
value < 0.05).

Other analyses. Gene ontology (GO) and pathway enrichment analyses were
conducted using gProfiler2 v0.276 in R, setting exclude_iea= TRUE and all other
parameters as default. p-values were BH-corrected75. Only results from GO, KEGG,
Reactome, Human Phenotype, and Wikipathways were reported, with filtering
performed after multiple-testing correction.

For all set enrichment analyses, the background was set to the relevant list of all
expressed genes.

Note on cell-type proportions vs. RNA proportions. Since cell-types differ in
their total RNA content, transcriptome deconvolution estimates proportions of
RNA from each cell-type, rather than proportions of cells per se37. It is important
to note that bulk RNA-seq sequences a mixture of RNA molecules (primarily
protein coding, after poly-A selection or ribo-depletion), and thus the goal of
transcriptome deconvolution is in fact to estimate the proportion of the sequenced
RNA molecules coming from a given cell-type (pRNA), rather than the proportion
of cells. A priori, pRNA (not pCt) should be relevant for reconstruction of gene
expression data, and thus useful as a covariate in differential expression analyses.
To test this hypothesis, we deconvolved pseudo-bulk data from the Velmeshev
et al. snRNA-seq dataset (10 individuals), where we know both pCt and pRNA
(calculated as the proportion of RNA-seq reads from each cell-type), and found
that deconvolution estimates perfectly correlate with pRNA but less so with pCt
(Supplementary Fig. 43), consistent with previous data37. Note that pRNA and pCt
are themselves correlated in this dataset (r= 0.86). We then assessed goodness-of-
fit for these pseudo-bulk data using either pRNA or pCt to reconstruct gene
expression. We found that goodness-of-fit was always higher when using pRNA
(Supplementary Fig. 43). These data demonstrate that pRNA, the output of tran-
scriptome deconvolution, is the appropriate measure to use for re-constructing
gene expression data and thus as a co-variate in DE analyses. For simplicity, we
refer to pRNA as “cell-type proportions” throughout the manuscript.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in the GEO database
under accession code GSE175772 (Processed signature data can be accessed in
Supplementary Data 5.) A website for users to deconvolution their own brain data with
the top performing algorithms is implemented at https://voineagulab.shinyapps.io/
BrainDeconvShiny/.

The RNA-seq data for bulk brain tissue was accessed from the following two resources:
Parikshak et al. (2016) (https://github.com/dhglab/Genome-wide-changes-in-lncRNA-
alternative-splicing-and-cortical-patterning-in-autism/releases); and GTEx v7 release
(https://gtexportal.org/home/datasets). Bulk pancreas and heart data were accessed from
same GTEx resource.

Brain cell-type-specific expression was accessed from the following nine resources:
FANTOM5 (http://fantom.gsc.riken.jp/5/data/); Zhang et al. (2016) (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73721); Zhang et al. (2014) (https://
web.stanford.edu/group/barres_lab/brain_rnaseq.html); Darmanis et al. (2015) (https://
github.com/VCCRI/CIDR-examples/tree/master/Brain); Lake et al. (2018) (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97942); Velmeshev et al. (2019)
(https://autism.cells.ucsc.edu/); The Human Cell Atlas (http://portal.brain-map.org/);
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Nagy et al. (2020) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144136);
and Tasic et al. (2018) (GSE115746).
Cell-type-specific expression for non-brain tissues were accessed from the following

four sources: Enge et al. (2017) (GSE81547); Blodgett et al. (2015) (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67543); Furuyama et al. (2019)
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117454); ENCODE (https://
www.encodeproject.org/publication-data/ENCSR590RJC/); and Wang et al. (2020)
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109816).

Code availability
Data analysis code is available at https://github.com/Voineagulab/
BrainCellularComposition.

Received: 5 September 2019; Accepted: 28 January 2022;
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