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Abstract

Efficient Deep Networks for Image Matting

by Yutong Dai

Image matting is a fundamental technology serving downstream image editing tasks

such as composition and harmonization. Given an image, its goal is to predict an accu-

rate alpha matte with minimum manual efforts. Since matting applications are usually

on PC or mobile devices, a high standard for efficient computation and storage is set.

Thus, lightweight and efficient models are in demand. However, it is non-trivial to bal-

ance the computation and the performance. We therefore investigate efficient model

designs for image matting. We first look into the common encoder-decoder architecture

with a lightweight backbone and explore the skipped information and downsampling-

upsampling operations, from which we notice the importance of indices kept in the

encoder and recovered in the decoder. Based on the observations, we design data-

dependant downsampling and upsampling operators conditioned on features from the

encoder, which learn to index and show significant improvement against the baseline

model while promising a lightweight structure. Then, considering affinity is widely

used in both traditional and deep matting methods, we propose upsampling operators

conditioned on the second-order affinity information, termed affinity-aware upsampling.

Instead of modeling affinity in an additional module, we include it in the unavoidable

upsampling stages for a compact architecture. Through implementing the operator by

a low-rank bilinear model, we achieve significantly better results with only neglectable

parameter increases. Further, we explore the robustness of matting algorithms and raise

a more generalizable method. It includes designing a new framework assembling mul-

tilevel context information and studying strong data augmentation strategies targeting

matting. This method shows significantly higher robustness to various benchmarks,

real-world images, and coarse-to-fine trimap precision compared with other methods

while using less computation. Besides studying trimap-based image matting, we extend

our lightweight matting architecture to portrait matting. Targeting portrait images,

we propose a multi-task parameter sharing framework, where trimap generation and

matting are treated as parallel tasks and help optimize each other. Compared with the

conventional cascaded architecture, this design not only reduces the model capacity to

a large margin but also presents more precise predictions.
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Chapter 1

Introduction

Object selection and composition are important operations in image editing [1]. For

instance, objects in an image can be cut out and pasted onto other images in visually

realistic manners after several steps of adjustment. A precise selection promises satisfy-

ing composition results. At the core of object selection, segmentation is applied, which

aims to provide pixel-level category prediction of objects. An accurate pre-segmentation

can speed up the editing process by satisfying the criteria: 1) distinct representation

of the image; 2) soft transition of the boundaries; 3) efficient computation. Semantic

segmentation meets the first criteria. As for the soft boundaries, soft segmentation is

in demand, which cares about the detailed transition of boundaries such as hairs and

nets. It promotes the development of image matting. Demands for efficient computation

further accelerate studies on efficient matting algorithms.

1.1 Problem Formulations

Image matting is a long-standing task in computer vision. As introduced above, it is a

cornerstone for many image/video editing applications, which is to extract the accurate

foreground objects in an image with minimum human efforts, as shown in Fig. 1.1a

and 1.1b. It can be mathematically expressed by solving:

Ii = αiFi + (1− αi)Bi , (1.1)

where Ii, the color of pixel i, is assumed to be a linear combination of the corresponding

foreground color Fi and background color Bi, and αi is its foreground opacity. Equa-

tion (1.1) is the matting equation, where 7 unknown variables need to be solved given

only 3 known equations for a RGB image, posing matting as an ill-posed problem.

1



Introduction 2

In the literature, significant efforts have been made in solving the matting equation

using versatile mathematical tools [57, 96, 19, 11, 56]. These conventional methods are

founded on manually defined constraints. For instance, in the closed-form matting [57],

the color in a small window region is assumed to be unchanged to satisfy its mathematical

model. These assumptions made on low-level color cues, however, are easily violated in

real scenes.

With the expansion of deep learning, deep matting methods emerge as new and strong

baselines [113, 74, 89]. They apply convolutional models to extract high-level semantic

cues and long-range dependencies, advancing the matting results to a new height. For

example, traditional methods are easy to fail with complicated backgrounds or trans-

parent foreground objects because the color cues are unreliable there, but deep matting

methods deal with those cases successfully. It makes deep matting overwhelming in both

academia and industry.

Since image matting is widely applied to image editing applications such as image post-

processing and photography on PC and mobile phones, matting algorithms have to

be computation and storage efficient to be approachable by these devices. Designing

efficient matting models is therefore necessary. It requires to balance the computation

and the accuracy.

Normally, deep matting methods need prior information inputs, such as a trimap, to

specify absolute foreground, absolute background, and unknown regions. Their predic-

tions, therefore, are focused on the unknown regions under the guidance of the informa-

tion from known regions. Different from this setting, there are also some works, termed

prior-free methods, trying to remove prior input [123, 12, 89], which can be achieved

by focusing on specific objects, such as salient objects, humans, and portraits. They

make the strong assumption that the foreground objects are strictly under the defined

limitations and use the assumption as implicit prior information.

Specifically, human/portrait matting is one of the mainstream topics in deep matting.

With a single RGB image input, deep human/portrait matting methods predict alpha

mattes for human objects without prior inputs. It is achievable because of the specific

foreground category - humans, which builds the connection between semantic segmenta-

tion and matting. [89] is the first work applying deep learning to portrait matting, where

a convolutional segmentation model is connected with a differentiable closed-form [57]

matting module, supporting end-to-end training.
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Figure 1.1: Examples of image matting. (a) Trimap-based image matting. (b) Prior-
free image matting.

1.2 Motivation

Though deep image matting (DIM) [113] advances image matting to a large margin,

it is not efficient enough in both training and inference, which leaves difficulties for

real applications and thus makes more efficient methods in demand. However, it is

challenging to design an efficient matting model because of the attention to tiny details.

DIM proposes to formulate matting as a regression problem, and directly applies a

segmentation model - SegNet [3] by changing the channel number of the output layer to

be 1. Due to the gap between segmentation and matting, the model directly borrowed

from segmentation is inefficient for matting. There are many specific properties of

matting remaining to be explored, such as affinity, color cues, gradient, etc. Introducing

these properties to matting models in a proper manner shows the potential to build

more efficient models. It is one of the motivations for Chapter 4.

It is also possible to apply other deep learning skills to further boost effectiveness and

efficiency. For example, modeling long-range dependencies may facilitate better recogni-

tion of foreground objects; combining low-level and high-level cues in a better way could

benefit the prediction of detailed structures; using lightweight architectures should build

the basis for efficient models. We take these into consideration in Chapter 3, Chapter 5

and Chapter 6.

Meanwhile, since only synthetic training data are available in current datasets and the

quantity is limited, it inevitably raises gaps between the training set and real-world

images. The gaps we care about more here are feature-level gaps, such as the mismatch

in resolutions, illuminations, noise levels, etc. A model trained with pure synthetic data

may fail on a simple real-world image with noises. On another side, even though given

trimaps, different trimap precisions result in very different matting results. Thus, we

need to enhance the robustness of the matting models to images from different domains

and also to coarse-to-fine trimaps. It motivates us to study the robustness of matting

algorithms in Chapter 5.
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1.3 Contribution and Thesis Outline

Motivated by the above problems, we investigate efficient matting methods by exploring

new architectures and data processing driven by this task. The main contributions of

this thesis are:

1. The first lightweight matting method – IndexNet. It is motivated by the observa-

tion of the importance of indices learned in the network. This observation makes

the state-of-the-art performance of a lightweight model possible. We also show

effectiveness of the IndexNet on other dense prediction tasks.

2. A fast and accurate matting method – A2U. It models the affinity information

to the matting network with neglectable parameter increases, which promises an

efficient architecture showing better performance against the baseline model and

other top-performing methods.

3. A robust matting framework – RMat. It includes multilevel context assembling and

strong data augmentation targeting matting. RMat not only achieves competitive

results on the deep matting datasets but also promises higher robustness to various

benchmarks, real-world images, and coarse-to-fine trimaps using less computation.

4. A lightweight prior-free deep portrait matting method – PSPM. By using a parameter-

sharing mechanism, PSPM shows better results using much less computation, com-

pared with the conventional cascaded architecture.

The outline of this thesis is organized as follows:

Chapter 2 reviews the background of image matting and analyses the progress and limi-

tations of current methods as well as datasets. It also introduces the dynamic networks,

a basic idea behind the following chapters.

Chapter 3 studies a lightweight matting network (IndexNet) with MobileNetv2 [86]

backbone. At the core, an IndexNet module is investigated for recovering details in

the encoder-decoder architecture. Meanwhile, we show that IndexNet can also benefit

other dense prediction tasks (semantic segmentation, depth estimation, denoising, image

reconstruction) with better boundary predictions. This chapter is based primarily on [72,

71].

Chapter 4 models affinity into the upsampling operation (A2U). The motivation behind

this is that affinity is a vital cue for alpha predictions in both traditional and deep

matting methods, and modeling this property into upsampling stage is an efficient man-

ner to encourage the relationship among different positions in the deep network. We
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build this upsampling operator using a low-rank bilinear model, which promises the

implementation with neglectable parameter increases. This chapter is based primarily

on [22].

Chapter 5 demonstrates to boost the robustness of image matting algorithms with a

new matting framework (RMat). It is motivated by the domain gaps between synthetic

training data and real-world images, as well as the unstable trimap precision. RMat

achieves state-of-the-art results on several benchmarks (including both fitting and not

fitting the training sets). It also presents more robust predictions on the images from

various domains and coarse-to-fine trimaps. This chapter is based primarily on [24].

Chapter 6 describes a prior-free deep portrait matting method (PSPM). Based on our

lightweight IndexNet model, multitask learning strategy is introduced to this method to

predict the trimap and the alpha matte simultaneously. By studying parameter-sharing

mechanisms, lightweight models are promised with even better matting results. This

chapter is based primarily on [23].





Chapter 2

Literature Review

In this chapter, we first generally review the development of image matting, includ-

ing traditional methods and recent deep matting methods. Then, we introduce image

matting datasets proposed in the literature, which facilitate training the deep models.

Finally, since dynamic networks are used in the following chapters to design efficient

models, a brief review of dynamic networks is also included.

2.1 Image Matting

2.1.1 Traditional Image Matting

Before the application of deep learning, image matting is commonly solved as an opti-

mization problem followed by specific assumptions. Those methods can be categorized

into sampling-based matting and propagation-based matting. To ease the difficulty of

alpha prediction, correlations among nearby pixels are utilized. Given a prior input,

since the absolute foregrounds and absolute backgrounds are known, correlations among

unknown pixels and known pixels help infer the alpha values.

Sampling-based matting. Sampling-based methods [88, 19, 35, 30] sample neighbor

known foreground and background pixels, and get the foreground and background val-

ues (Fi, Bi) of pixel Ii by their correlations, then alpha value αi can be calculated from

Equation 1.1. Difficulties lie in how to find the neighbour pixels, how many pixels are

needed, and how to get foreground and background values for an unknown pixel from

the samples. Aiming at these difficulties, many solutions were proposed. For example,

Bayesian matting [19] uses foreground and background samples to build Gaussian dis-

tributions and then models the matting problem into a Bayesian framework solved by

7
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the MAP technique; [88] designs a more comprehensive and representative sampling

strategies to ensure information of true foreground and background is fully used.

Propagation-based matting. Propagation-based methods [57, 11, 2] instead rely on

the affinities among different positions in the color space to propagate alpha values from

known regions to unknown pixels. For instance, closed-form matting [57] assumes the

local smoothness (e.g. in 3 × 3 windows) on the foreground and background and then

models matting into a quadratic cost function solved by a linear system solver. Though

pixels in nearby regions are more likely to be similar, the local color-line model is easily

violated so users need to carefully label the prior input. Thus, nonlocal matting [56,

38, 11] appear. For example, KNN matting [11] applies nonlocal principles by using K

nearest neighbors to contribute a more stable prediction given even sparse prior infor-

mation.

Prior inputs for matting. As aforementioned, prior inputs are required by matting

algorithms. Therein, trimap is a widely adopted one. Besides the trimap inputs, scrib-

bles and click points are also supported by some methods [56, 11, 57, 39]. Compared

with trimaps, scribbles and click points save users’ time and costs, but they provide

much less prior information. [56] discusses what is good user input and proposes to

reduce human efforts by applying nonlocal principles. Since these traditional algorithms

are built on low-level color cues, how efficiently to label user inputs is quite important

for a high-quality alpha matte.

2.1.2 Deep Image Matting

Since traditional matting methods rely heavily on assumptions on low-level color cues,

which are easily violated on complicated images, deep matting methods [17, 89, 113]

emerge with the development of deep learning.

Deep image matting has experienced ‘semi-deep’ and ‘fully-deep’ stages. The ‘semi-deep’

means a combination of deep learning modules and traditional modules, such as [17, 89].

In [17], closed-form matting [57] and KNN matting [11] are applied to generate initial

alpha mattes and a convolutional network is used to combine the alpha mattes and

produce final results. [89] connects a fully-convolutional network (FCN) with a differ-

entiable closed-form module, where the FCN is responsible for trimap segmentation and

the closed-form module takes charge of matting. Though applying deep learning models,

these ‘semi-deep’ methods are still limited by the traditional matting modules. To solve

this problem, ‘fully-deep’ methods are investigated. As the name suggests, ‘fully-deep’

represents fully deep matting models without relying on traditional modules to predict
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alpha mattes. Deep image matting (DIM) [113] is the first fully deep method of for-

mulating matting as a regression problem. This formulation dominates the following

works on matting. The dataset proposed in [113] also promotes researchers working on

this topic. As initial attempts to investigate deep matting, the above-mentioned meth-

ods are restricted by either conventional color model assumptions [17, 89] or inefficient

computation [113].

Promoted by the deep matting dataset proposed in [113], several deep matting methods

have been investigated since then. Our IndexNet [72] first uses a light-weight Mo-

bileNetv2 [44] backbone achieving even better results than DIM via exploring indices-

guided upsampling; AdaMatting [4] uses multi-task training to implement trimap opti-

mization and alpha prediction simultaneously, which enhances the robustness to various

trimap precision; Context-Aware matting [43] adds an extra context encoder branch

modeling context information to recognize the foreground object more precisely; GCA [60]

proposes a guided contextual attention module to refine the features under the guidance

of low-level feature information. More recently, our proposed A2U [22] models the affinity

information into the upsampling stage to learn affinity information compactly; SIM [97]

learns a semantic trimap at the first stage of the network to distinguish different semantic

parts; TIMI [68] learns to mine the input information with a 3-branch encoder; FBA [32]

first proposes to predict foreground, background and alpha values simultaneously in the

deep model and contributes some useful training strategies to promote matte precision;

Our RMat [24] moves a step further to enhance the robustness of matting methods

regarding trimap instability as well as real-world applications.

In summary, current methods commonly focus on more precise prediction and efficient

models. They usually follow the UNet style [82] with an encoder-decoder architecture.

Feature skip [72, 60], downsampling&upsampling stages [72, 22], contextual informa-

tion [43, 24], affinity property [60, 22] and some training strategies [32, 60] are recent

main focuses. Since trimap inputs are given, they pay more attention on unknown

regions by enforcing loss functions specifically on those regions.

2.1.3 Prior-Free Deep Image Matting

The above deep matting methods all require trimap input. There are also some works [104,

15] study scribble/click prior input. No matter which forms of prior information is taken,

it is still a necessary input. On another hand, there have been a few prior-free meth-

ods [89, 12, 123] proposed taking advantage of deep learning. They usually omit the

prior input by learning semantic/salient information in the deep networks.
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Some of them [89, 12, 7], focus on specific objects such as human or transparent objects.

Human-targeted methods [89, 12] focus on human/portrait images, where semantic in-

formation on human bodies is learned in the network to replace the trimap input. This

setting is practical because modalities of humans are limited, but existing methods com-

bine segmentation and matting in naive ways, where cascaded architectures are applied,

resulting in redundancy in the model designs. To reduce the redundancy, we propose

PSPM [23]. On another side, the transparent-targeted method [7] uses the physical

properties of transparent objects to waive the prior inputs. Different from the methods

targeting specific objects, some works [123, 80] even target general objects. These meth-

ods [123, 80] are more like salient object detection, where obvious foreground objects are

detected and cut out. They do not set limitations on the categories of the foreground

objects, but have implicit requirements on the saliency of objects.

2.2 Image Matting Datasets

The first deep matting dataset proposed in [113], named Adobe Image Matting dataset,

facilitates investigations on this topic. It is worth noting that, labeling alpha matting

ground truths is non-trivial. It usually needs blue/green screen [93] technology to label

precise values, which is time-consuming and costing, so it is difficult to build a large-scale

high-quality matting dataset. The training set of the Adobe Image Matting dataset has

431 unique foreground objects and ground-truth alpha mattes. The number of fore-

ground images is far from enough for training effective deep models, so each foreground

is usually composited with hundreds of background images to generate tens of thousands

of training images. In [113], the training set is generated by compositing each foreground

image with fixed 100 background images selected from the MS COCO [65] dataset, con-

tributing 43100 training images in total. We follow this setting in IndexNet and PSPM,

but use different generation strategies in A2U and RMat, as introduced in corresponding

chapters. The test set termed Composition-1k, contains 50 unique foreground objects;

each foreground is composited with 20 background images chosen from the Pascal VOC

dataset [29]. Composition-1k is currently the most recognized benchmark for deep image

matting. Besides the Adobe Image Matting dataset, some similar datasets are proposed

in [80, 97]. Their training sets and test sets are built in the same way as [113]. The

uniqueness of [97] is that data samples are categorized into tens of semantic types. All

the above-mentioned datasets are synthetic ones. Targeting real-world images, a real-

world benchmark [59] is presented recently, which consists of 500 test images. Another

benchmark for evaluation is alphamatting.com [81]. It only has 27 images for training

and 8 images for testing, but it is still a widely accepted benchmark for the fairness of

comparison.
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The first portrait matting dataset [89] (Portrait-2k) is currently the only publicly avail-

able portrait matting dataset with high-quality real-world RGB images. 1700 images

and another 300 images compose its training and test set, respectively. Ground-truth

alpha mattes in this dataset are generated by closed-form matting [57] and KNN mat-

ting [11] combined with manual modifications and selection. Apart from that, there are

also some human matting datasets [12, 63] introduced, but some of them are not pub-

licly available. Similar to deep matting datasets, human matting datasets use foreground

images to generate synthetic data via composition.

2.3 Dynamic Networks

Dynamic networks are often implemented with adaptive modules to extend the modeling

capabilities of CNNs. These networks share the following characteristics. The output is

dynamic, conditioned on the input feature map. Since dynamic networks are learnable

modules, they are generic in the sense that they can be used as building blocks in many

network architectures. They are also flexible to allow modifications according to target

tasks. Some representative dynamic networks are reviewed below.

Spatial Transformer Networks (STNs) [48]. STN allows explicit manipulation of spatial

transformation within the network. It achieves this by regressing transformation param-

eters θ with a side-branch network. A spatially-transformed output is then produced by

a sampler parameterized by θ. This results in a holistic transformation of the feature

map. The dynamic nature of STN is reflected by the fact that, given different inputs,

the inferred θ is different, allowing to learn some forms of invariance to translation, scale,

rotation, etc.

Dynamic Filter Networks (DFNs) [50]. DFN implements a filter generating network

to dynamically generate kernel filter parameters. Compared to conventional filter pa-

rameters that stay fixed during inference, filter parameters in DFN are dynamic and

sample-specific.

Deformable Convolutional Networks (DCNs) [21]. DCNs introduce deformable trans-

formation into convolution. The key idea is to predict offsets for convolutional kernels.

With offsets, convolution can be executed on irregular sampling grids, enabling adaptive

manipulation of the receptive field.

Attention Networks [77]. Attention networks are a broad family of networks that use

attention mechanisms. The mechanisms introduce multiplicative interactions between

the inferred attention map and the feature map. In computer vision, attention mecha-

nisms are usually referred to spatial attention [99], channel attention [46] or both [106].
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These network modules are widely applied in CNNs to force the network focusing on

specific regions and therefore to refine feature maps. Essentially, attention is about

feature selection.

In contrast to above dynamic networks, Chapter 3 and Chapter 4 focus on upsampling,

rather than manipulating filters or refining features. They use dynamic networks to

learn indices/upsampling kernels conditioned on feature maps, which share similarities

with attention networks from the view of generating indices/kernels. However, a core

difference is our focus on upsampling instead of refining feature maps. Detailed analyses

are presented in corresponding chapters.

Vision Transformers [28]. Recently, transformers have been successfully applied to com-

puter vision tasks. The standard transformer consists of embedding layers, transformer

blocks, and task-specific heads. There are either pure transformer networks [28, 18] or

hybrid networks where transformer blocks are combined with convolutional blocks [102,

25, 112, 5] to get benefits from both architectures. Founded on the self-attention mecha-

nism, transformers learn long-range dependencies dynamically, which delivers significant

improvements on various tasks. In Chapter 5, we apply the transformer to matting using

a hybrid architecture. For matting, there are mainly two difficulties to overcome. The

first is maintaining details, and the second is ensuring efficiency.











Chapter 3

Learning to Index for Deep Image

Matting

In this chapter, we show that existing upsampling operators can be unified using the

notion of the index function. This notion is inspired by an observation in the decod-

ing process of deep image matting where indices-guided unpooling can often recover

boundary details considerably better than other upsampling operators such as bilinear

interpolation. By viewing the indices as a function of the feature map, we introduce

the concept of ‘learning to index’, and present a novel index-guided encoder-decoder

framework where indices are learned adaptively from data and are used to guide down-

sampling and upsampling stages, without extra training supervision. At the core of

this framework is a new learnable module, termed Index Network (IndexNet), which

dynamically generates indices conditioned on the feature map. IndexNet can be used as

a plug-in applicable to almost all convolutional networks that have coupled downsam-

pling and upsampling stages, enabling the networks to dynamically capture variations of

local patterns. In particular, we instantiate, investigate five families of IndexNet, high-

light their superiority in delivering spatial information over other upsampling operators

with experiments on synthetic data, then demonstrate their effectiveness on deep image

matting and further extend experiments to three other dense prediction tasks, including

image denoising, semantic segmentation, and monocular depth estimation.

3.1 Introduction

Upsampling is an essential stage for dense prediction tasks using deep convolutional

neural networks (CNNs). The frequently used upsampling operators include transposed

convolution [120, 69], unpooling [3], periodic shuffling [90] (a.k.a. depth-to-space), and

17
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Figure 3.1: Alpha mattes of different models for the task of image matting. From
left to right, Deeplabv3+ [9], RefineNet [62], Deep Matting [113] and IndexNet (Ours).
Bilinear upsampling tends to fail to recover subtle details, while unpooling and our
learned upsampling operator can produce much clear mattes with good local contrast.

naive interpolation [62, 9] followed by convolution. These operators, however, are not

general-purpose designs and often exhibit different behaviors in different tasks.

The widely-adopted upsampling operator in semantic segmentation and depth estima-

tion is bilinear interpolation, while unpooling is less popular. A reason might be that

the feature map generated by max unpooling is sparse, while the bilinearly interpolated

feature map has dense and consistent representations for local regions (compared to the

feature map before interpolation). This is particularly true for semantic segmentation

and depth estimation where pixels in a region often share the same class label or have

similar depth. However, we observe that bilinear interpolation can perform significantly

worse than unpooling in boundary-sensitive tasks such as image matting. A fact is that

the leading deep image matting model [113] largely borrows the design from the SegNet

method [3], where unpooling was first introduced. When adapting other state-of-the-

art segmentation models, such as DeepLabv3+ [9] and RefineNet [62], to this task, we

observe that they tend to fail to recover boundary details (Fig. 3.1). A plausible ex-

planation is that, compared to the bilinearly upsampled feature map, unpooling uses

max-pooling indices to guide upsampling. Since boundaries in the shallow layers usually

have the maximum responses, indices extracted from these responses record the bound-

ary locations. The feature map projected by the indices thus shows improved boundary

delineation.

We thus believe that different upsampling operators may exhibit different characteristics,

and we expect a specific behavior of the upsampling operator when dealing with specific

image content for a particular vision task. A question of interest is: Can we design

a generic operator to upsample feature maps that better predict boundaries and regions

simultaneously? A key observation of this work is that unpooling, bilinear interpolation

or other upsampling operators are some forms of index functions. For example, the

nearest neighbor interpolation of a point is equivalent to allocating indices of one to its
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neighbor and then map the value of the point. In this sense, indices are models [54],

therefore indices can be modeled and learned.

In this work, we model indices as a function of the local feature map and learn index

functions to implement upsampling within deep CNNs. In particular, we present a novel

index-guided encoder-decoder framework, which naturally generalizes models like Seg-

Net. Instead of using max-pooling and unpooling, we introduce indexed pooling and

indexed upsampling where downsampling and upsampling are guided by learned in-

dices. The indices are generated dynamically conditioned on the feature map and are

learned using a fully convolutional network, termed IndexNet, without extra supervision

needed. IndexNet is a highly flexible module. It can be applied to almost all convolu-

tional networks that have coupled downsampling and upsampling stages. Compared to

the fixed max function or bilinear interpolation, learned index functions show potentials

for simultaneous boundary and region delineation.

IndexNet is a high-level concept and represents a broad family of networks modeling

the so-called index function. In this work, we instantiate and investigate five families of

IndexNet. Different designs correspond to different assumptions.

We compare the behavior of IndexNet with existing upsampling operators and demon-

strate its superiority in delivering spatial information. We show that IndexNet can be

incorporated into many CNNs to benefit a number of visual tasks: i) image matting :

our MobileNetv2-based [86] model with IndexNet exhibits at least 16.1% improvement

against the VGG-16-based Deep Image Matting baseline [113] on the Composition-1k

matting dataset; by visualizing learned indices, the indices automatically learn to cap-

ture the boundaries and textural patterns; ii) image denoising : a modified DnCNN

model with IndexNet can achieve performance comparable to the baseline DnCNN [122]

that has no downsampling stage on the BSD68 and Set12 datasets [84], thus reducing

the computational cost and memory consumption significantly; iii) semantic segmenta-

tion: consistently improved performance is observed when SegNet [3] is equipped with

IndexNet on the SUN RGB-D dataset [95]; and iv) monocular depth estimation: In-

dexNet also improves the performance of a recent light-weight FastDepth model on the

NYUDv2 dataset [91], with negligible extra computation cost.

We make the following main contributions.

• We present a unified perspective of existing upsampling operators with the notion

of the index function;

• We introduce Index Networks—a novel family of networks that can be included

into standard CNNs to provide dynamic, adaptive downsampling and upsampling
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capabilities; to the best of our knowledge, IndexNet is one of the first attempts

towards the design of generic upsampling operators;

• We instantiate, and investigate five designs of IndexNet and demonstrate their

effectiveness on deep image matting as well as extensions on three other vision

tasks, including image denoising, semantic segmentation, and depth estimation.

3.2 Background

Upsampling in Deep Networks. Compared with other components in the design of

deep networks, downsampling and upsampling of feature maps are relatively less stud-

ied. Since learning a CNN without sacrificing the spatial resolution is computationally

expensive and memory intensive, and suffers from limited receptive fields, downsampling

operators are common choices, such as strided convolution and max/average pooling. To

recover the resolution, upsampling is thus an essential stage for almost all dense predic-

tion tasks. This poses a fundamental question: What is the principal approach to recover

the resolution of a downsampled feature map (decoding). A few upsampling operators

are proposed. The deconvolution operator, a.k.a. transposed convolution, was initially

used in [120] to visualize convolutional activations and introduced to semantic segmen-

tation [69], but this operator sometimes can be harmful due to its behavior in producing

checkerboard artifacts [78]. To avoid this, a suggestion is the “resize+convolution”

paradigm, which has currently become the standard configuration in state-of-the-art

semantic segmentation models [9, 62]. Apart from these, perforate [79] and unpool-

ing [3] generate sparse indices to guide upsampling. The indices are able to capture and

keep boundary information, but one issue is that the two operators can induce much

sparsity after upsampling. Convolutional layers with large filter sizes must follow for

densification. In addition, periodic shuffling (PS) was introduced in [90] as a fast and

memory-efficient upsampling operator for image super-resolution. PS recovers resolution

by rearranging the feature map of size H ×W × Cr2 to rH × rW × C. It is also used

in some segmentation models [116].

Our work is primarily inspired by the unpooling operator [3]. We remark that, it is

important to extract spatial information before its loss during downsampling, and more

importantly, to use stored information during upsampling. Unpooling shows a simple

and effective use case, while we believe that there is much room to improve. Here we

show that unpooling is a special form of index function, and we can learn an index

function beyond unpooling.
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We notice that concurrent work of [100] also pursues the idea of data-dependent upsam-

pling and proposes an universal upsampling operator termed CARAFE. Although the

idea is similar, IndexNet is different from CARAFE in several aspects. First, CARAFE

does not associate upsampling with the notion of the index function. Second, the kernels

used in CARAFE are generated conditioned on decoder features, while IndexNet builds

upon encoder features, so the generated indices can also be used to guide downsampling.

Third, CARAFE can be viewed as one of our investigated index networks—holistic index

networks, but with different upsampling kernels and normalization strategies.

Relationship to Dynamic Networks. Akin to dynamic networks introduced in Chap-

ter 2, the dynamics in IndexNet also has a physical definition—indices. Such a definition

also closely relates to attention networks. Later we show that the downsampling and

upsampling operators used with IndexNet can, to some extent, be viewed as attentional

operators. Indeed, max-pooling indices are a form of hard attention. It is worth noting

that, despite that IndexNet in its current implementation may closely relate to atten-

tion, it focuses on upsampling rather than refining feature maps. IndexNet also shares

the other characteristics mentioned introduced in Chapter 2. It is implemented in a

convolutional side-branch network, is trained without extra supervision and is generic

and flexible. We demonstrate its effectiveness on four dense prediction tasks and five

variants of IndexNet.

3.3 An Indexing Perspective of Upsampling

With the argument that upsampling operators are index functions, here we offer a unified

indexing perspective of upsampling operators. The unpooling operator is straightfor-

ward. We can define its index function in a k × k local region as an indicator function

Imax(x) = 1(x = max(X)) , x ∈X , (3.1)

where X ∈ Rk×k. 1(·) is the indicator function with output being a binary matrix.

Similarly, if one extracts indices from average pooling, its index function takes the form

Iavg(x) = 1(x ∈X) . (3.2)

If further using Iavg(x) during upsampling, it is equivalent to the nearest neighbor

interpolation. As for the bilinear interpolation and deconvolution operators, their index

functions have an identical form

Ibilinear/dconv(x) = W ⊗ 1(x ∈X) , (3.3)
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Figure 3.2: The index-guided encoder-decoder framework. The proposed IndexNet
dynamically predicts indices for individual local regions, conditioned on the input local
feature map itself. The predicted indices are further used to guide the downsampling
in the encoding stage and the upsampling in the corresponding decoding stage.

where W is the weight/filter of the same size as X, and ⊗ denotes the element-wise

multiplication. The difference is that, W is learned in deconvolution but predefined in

bilinear interpolation. Indeed bilinear interpolation has been shown to be a special case

of deconvolution [69]. Note that, in this case, the index function generates soft indices.

The sense of index for the PS operator [90] is also clear, because the rearrangement of

the feature map is an indexing process. Considering PS a tensor Z of size 1× 1× r2 to

a matrix Z of size r × r, the index function can be expressed by the one-hot encoding

I lps(x) = 1(x = Zl) , l = 1, ..., r2 , (3.4)

such that Zm,n = Z[I lps(x)], where m = 1, ..., r, n = 1, ..., r, and l = (r − 1) ·m+ n. Zl

denotes the l-th element of Z. Similar notation applies to Zm,n.

Since upsampling operators can be unified by the notion of the index function, it is

plausible to ask whether one can learn an index function to dynamically capture local

spatial patterns.

3.4 Learning to Index, to Pool, and to Upsample

Before introducing the designs of IndexNet, we first present the general idea about how

learned indices may be used in downsampling and upsampling with a new index-guided

encoder-decoder framework. Our framework is a generalization of SegNet, as illustrated

in Fig. 3.2. For ease of exposition, let us assume the downsampling and upsampling rates

to be 2, and the pooling operator to use a kernel size of 2 × 2. The IndexNet module
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dynamically generates indices given the feature map. The proposed indexed pooling and

indexed upsampling operators further receive generated indices to guide downsampling

and upsampling, respectively. In practice, multiple such modules can be combined and

used analogous to the max pooling layers for every downsampling and upsampling stage.

IndexNet models the index as a function of the feature map X ∈ RH×W×C . Given

X, it generates two index maps for downsampling and upsampling, respectively. An

important concept for the index is that an index can either be represented in a natural

order, e.g., 1, 2, 3, ..., or be represented in a logical form, i.e., 0, 1, 0, ..., meaning that

an index map can be used as a mask. This is exactly how we use the index map in

downsampling/upsampling. The predicted index shares the same definition of the index

in computer science, except that we generate soft indices for smooth optimization, i.e.,

for any index i, i ∈ [0, 1].

IndexNet consists of a predefined index block and two index normalization layers. An

index block can simply be a heuristically defined function, e.g., a max function, or more

generally, a parameterized function such as neural network. In this work, we use a fully

convolutional network to be the index block. More details are presented in Sections 3.4.2

and 3.4.3. Note that the index maps sent to the encoder and decoder are normalized

differently. The decoder index map only goes through a sigmoid function such that

for any predicted index i ∈ (0, 1). As for the encoder index map, indices of each local

region L are further normalized by a softmax function such that
∑

i∈L i = 1. The

second normalization guarantees the magnitude consistency of the feature map after

downsampling.

Indexed Pooling (IP) performs downsampling using generated indices. Given a local

region E ∈ Rk×k, IP calculates a weighted sum of activations and corresponding indices

over E as IP(E) =
∑

x∈E I(x)x, where I(x) is the index of x. It is easy to see that max

pooling and average pooling are special cases of IP. In practice, this operator can be

easily implemented with an element-wise multiplication between the feature map and

the index map, an average pooling layer, and a multiplication of a constant used to com-

pensate the effect of averaging, as instantiated in Fig. 3.2. The current implementation

is equivalent to 2 × 2 stride-2 convolution with dynamic kernels, but is more efficient

than explicit on-the-fly kernel generation.

Indexed Upsampling (IU) is the inverse operator of IP. IU upsamples d ∈ R1×1 that

spatially corresponds to E taking the same indices into account. Let I ∈ Rk×k be the

local index map formed by I(x)s. IU upsamples d as IU(d) = I⊗D, where ⊗ denotes the

element-wise multiplication, and D is of the same size as I and is upsampled from d with

the nearest neighbor interpolation. IU also relates to deconvolution, but an important

difference between IU and deconvolution is that, deconvolution applies a fixed kernel to
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Figure 3.4: A taxonomy of proposed index networks.

all local regions (even if the kernel is learned), while IU upsamples different regions with

different kernels (indices).

3.4.1 Index Networks

Here we present a taxonomy of proposed index networks. According to the shape of the

output index map, index networks can be first categorized into two branches: holistic

index networks (HINs) and depthwise (separable) index networks (DINs). Their concep-

tual differences are shown in Fig. 3.3. HINs learn an index function I(X) : RH×W×C →
RH×W×1. In this case, all channels of the feature map share a holistic index map. By

contrast, DINs learn an index function I(X) : RH×W×C → RH×W×C , where the index

map is of the same size as the feature map.

Since the index map generated by DINs can correspond to individual slices of the feature

map, we can incorporate further assumptions into DINs to simplify the designs. If

assuming that each slice of the index map only relates to its corresponding slice of the

feature map, this is the One-to-One (O2O) assumption and O2O DINs. If each slice

of the index map relates to all channels of the feature map, this leads to Many-to-One

(M2O) assumption and M2O DINs. In O2O DINs, one can further consider sharing
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Figure 3.5: Modelwise IndexNet vs. stagewise IndexNet.

IndexNet. In the most simplified case, the same IndexNet can be applied to every slice

of the feature map and can be shared across different downsampling/upsampling stages,

like the max function. We name this IndexNet Modelwise O2O DINs. If IndexNet is

stage-specific, i.e., only sharing indices in individual stages, we call this IndexNet Shared

Stagewise O2O DINs. Finally, without sharing any parameter (each feature slice has

its specific index function), we obtain the standard design, termed Unshared Stagewise

O2O DINs. Fig. 3.4 shows the tree diagram of these index networks. The difference

between modelwise IndexNet and stagewise IndexNet is also shown in Fig. 3.5. Notice

that, HINs and M2O DINs are both stagewise.

With the taxonomy, we investigate five families of IndexNet. Each family can be designed

to have either linear mappings or nonlinear mappings, as we discuss next.

3.4.2 Holistic Index Networks

Recall that HINs learn an index function I(X) : RH×W×C → RH×W×1. A naive design

choice is to assume a linear mapping between the feature map and the index map.

Linear HINs. An example is shown in Fig. 3.6(a). The network is implemented in a

fully convolutional network. It first applies stride-2 2×2 convolution (assuming that the

downsampling rate is 2) to the feature map of size H×W×C, generating a concatenated

index map of size H/2×W/2×4. Each slice of the index map (H/2×W/2×1) is designed

to correspond to the indices of a certain position of all local regions, e.g., the top-left

corner of all 2 × 2 regions. The network finally applies a PS-like shuffling operator to

rearrange the index map to the size of H ×W × 1.

In many situations, a linear relationship is not sufficient. For example, a linear func-

tion even cannot approximate the max function. Thus, the second design choice is to

introduce nonlinearity into the network.

Nonlinear HINs. Fig. 3.6(b) illustrates a nonlinear HIN where the feature map is first

projected to a map of size H/2×W/2×2C, followed by a batch normalization layer and

a ReLU function for nonlinear mappings. We then use point-wise convolution to reduce
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Figure 3.6: Holistic index networks. (a) a linear index network; (b) a nonlinear index
network.

the channel dimension to an indices-compatible size. The remaining transformations

follow its linear counterpart.

3.4.3 Depthwise Index Networks

In DINs, we seek I(X) : RH×W×C → RH×W×C , i.e., each spatial index corresponds

to each spatial activation. As aforementioned, this type of networks further has two

different high-level design strategies that correspond to two different assumptions.

3.4.3.1 One-to-One Depthwise Index Networks

O2O assumption assumes that each slice of the index map only relates to its cor-

responding slice of the feature map. It can be denoted by a local index function

l(X) : Rk×k×1 → Rk×k×1, where k denotes the size of the local region. Since the lo-

cal index function operates on individual feature slices, we can design whether different

feature slices share the same local index function. Such a weight sharing strategy can be

applied at a modelwise level or at a stagewise level, which leads to the following designs

of O2O DINs:

1. Modelwise O2O DINs: the model only has a unique index function that is shared

by all feature slices, even in different downsampling and upsampling stages. This

is the most light-weight design;

2. Shared Stagewise O2O DINs: the index function is also shared by feature slices,

but every stage has stage-specific IndexNet. This design is also light-weight;
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3. Unshared Stagewise O2O DINs: even in the same stage, different feature slices

have distinct index functions.

Similar to HINs, DINs can also be designed to have linear/nonlinear modeling ability.

Fig. 3.7 shows an example when k = 2. Note that, in contrast to HINs, DINs follow a

multi-column architecture. Each column is responsible for predicting indices specific to a

certain spatial location of all local regions. We implement DINs with group convolutions.

Linear O2O DINs. According to Fig. 3.7, the feature map first goes through four

parallel convolutional layers with the same kernel size. Modelwise O2O DINs and Shared

Stagewise O2O DINs only use a kernel size of 2× 2× 1, a stride of 2, and 1 group, while

Unshared Stagewise O2O DINs has a kernel size of 2×2×C, a stride of 2, and C groups.

One can simply reshape the feature map, i.e., reshaping H×W×C to be C×H×W ×1,

to enable a 2× 2× 1 kernel operating on each H ×W × 1 feature slice, respectively. All

O2O DINs lead to four downsampled feature maps of size H/2 ×W/2 × C. The final

index map of size H ×W ×C is composed from the four feature maps by shuffling and

rearrangement. Note that the parameters of four columns are not shared.

Nonlinear O2O DINs. Nonlinear DINs can be easily modified from linear DINs by insert-

ing four extra convolutional layers. Each of them is followed by a batch normalization

(BN) layer and a ReLU unit, as shown in Fig. 3.7. The rest remains the same as the

linear DINs.

3.4.3.2 Many-to-One Depthwise Index Networks

M2O assumption assumes that all feature slices have contributions to each index slice.

The local index function is defined by l(X) : Rk×k×C → Rk×k×1. Compared to O2O
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DINs, the only difference in implementation is the use of standard convolution instead

of group convolution, i.e., M = C,N = 1 in Fig. 3.7.

3.4.4 Property and Model Complexity

Both HINs and DINs have merits and drawbacks. Here we discuss some important

properties of IndexNet. We also present an analysis of computational complexity.

Remark 3.1. Index maps generated by HINs and used by the IP and IU operators are

related to spatial attention.

The holistic index map is shared by all feature slices, which means that the index map

is required to be expanded to the size of H × W × C when feeding into IP and IU.

This index map can be thought as a collection of local attention maps [77] applied to

individual local spatial regions. In this case, the IP and IU operators can also be referred

to as “attentional pooling” and “attentional upsampling”. However, it should be noted

that spatial attention has no pooling or upsampling operators like IP and IU.

Remark 3.2. HINs are more flexible than DINs and more friendly for decoder design.

Since the holistic index map is expandable, the decoder feature map does not need to

forcibly increase/reduce its dimensionality to fit the shape of the index map during

upsampling. This gives much flexibility for decoder design, while it is not the case for

DINs.

Remark 3.3. The number of parameters in Modelwise O2O DINs and Shared Stagewise

O2O DINs is independent of the dimensionality of feature maps.

No matter how large the model capacity is or how wide the feature channels are, the

number of parameters in Modelwise O2O DINs remains at a constant level, and that in

Shared Stagewise O2O DINs is only proportional to the number of downsampling/up-

sampling stages. This is desirable as the number of parameters introduced by IndexNet

is not significant. However, these two types of IndexNet may be limited to capture

sophisticated local patterns.

Remark 3.4. M2O DINs have the most powerful modeling capability among IndexNet

variants, but also introduce many extra parameters.

M2O DINs have higher capacity than HINs and O2O DINs due to the use of standard

convolution.

Another desirable property of IndexNet is that they may be able to predict the indices

from a large local feature map, e.g., l(X) : R2k×2k×C → Rk×k×1. An intuition behind this
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IndexNet Type # Param.

HINs
L K ×K × C × 4

NL K ×K × C × 2C + 2C × 4
NL+C 2K × 2K × C × 2C + 2C × 4

Modelwise O2O DINs
L (K ×K)× 4

NL (K ×K × 2 + 2)× 4
NL+C (2K × 2K × 2 + 2)× 4

Shared Stagewise O2O DINs
L (K ×K)× 4

NL (K ×K × 2 + 2)× 4
NL+C (2K × 2K × 2 + 2)× 4

Unshared Stagewise O2O DINs
L (K ×K × C)× 4

NL (K ×K × 2C + 2C × C)× 4
NL+C (2K × 2K × 2C + 2C × C)× 4

M2O DINs
L (K ×K × C × C)× 4

NL (K ×K × C × 2C + 2C × C)× 4
NL+C (2K × 2K × C × 2C + 2C × C)× 4

L: Linear; NL: Nonlinear; C: Context.

Table 3.1: A Comparison of Model Complexity of Different Index Networks

idea is that, if one identifies a local maximum point from a k×k region, its surrounding

2k×2k region can further support whether this point is a part of a boundary or only an

isolated noise point. This idea can be easily implemented by enlarging the convolutional

kernel size and with appropriate padding.

In Table 3.1, we summarize the model complexity of different index networks used at a

single downsampling and upsampling stage. We assume the convolution kernel has a size

of K ×K applied on a C-channel feature map. The number of parameters in BN layers

is excluded. When considering weak context, we assume the kernel size is 2K × 2K.

Since C � K, generally we have the model complexity M2O DINs>HINs>Unshared

Stagewise O2O DINs>Shared Stagewise O2O DINs>Modelwise O2O DINs.

3.5 Guided Upsampling or Blind Upsampling: A Reconstruction-

Based Justification

Here we introduce the concept of guided upsampling and blind upsampling to summarize

existing upsampling operators. Particularly, here we present a comparison between two

data-dependent upsampling operators—IndexNet and CARAFE [100]. In addition, we

show results of an image reconstruction task on synthetic data, highlighting the difference

between guided upsampling and blind upsampling.

3.5.1 Guided Upsampling vs. Blind Upsampling

By blind upsampling, we mean that an upsampling operator that is pre-defined with fixed

parameters. Guided upsampling, instead, is guided with the involvement of auxiliary

information.
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Thus, most widely-used upsampling operators perform blind upsampling. These opera-

tors include nearest-neighbor (NN) interpolation, bilinear interpolation, space-to-depth

and deconvolution. It is worth noting that the recent data-dependent upsampling op-

erator CARAFE is also a blind upsampling operator. By contrast, guided upsampling

operators are rare in literature. Max unpooling, albeit simple, is a guided upsampling

operator. The auxiliary information used in upsampling comes from the max-pooling

indices. Therefore, our proposed IndexNet clearly implements guided upsampling, with

inferred dynamic indices as the auxiliary information.

The main difference here is that guided upsampling is made possible to exploit extra

information to better recover the spatial information during upsampling. Thus, it is

important that the spatial information is properly encoded during downsampling and is

transferred to upsampling.

3.5.2 IndexNet vs. CARAFE

Both IndexNet and CARAFE are one of the few attempts pursuing the idea of data-

dependent upsampling. The similarities include:

i) They both are related to dynamic networks.

ii) Both are parametric upsampling operators;

iii) CARAFE and HINs both perform holistic upsampling.

iv) CARAFE also learns an index function. The index function has an identical form

to Equation (3.3), but with dynamic and normalized W . In this sense, CARAFE

may be considered as a single-input version of IU, where the index map is generated

internally.

The differences are:

i) CARAFE is a blind upsampling operator, while IndexNet implements guided up-

sampling;

ii) The reassembly kernels in CARAFE are generated conditioned on the low-resolution

decoder feature map. The index maps predicted by IndexNet, however, build upon

the high-resolution encoder feature map, before spatial information is lost;

iii) In IndexNet, each upsampled feature point only associates with a single point in

the low-resolution feature map. From low resolution to high resolution, it is a
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one-to-many mapping. In CARAFE, each upsampled point is a weighted sum of a

local region from the low-resolution feature map. This is a many-to-one mapping;

iv) Compared with CARAFE which is presented as a single upsampling operator,

IndexNet is a more general framework.

In particular, the key difference lies in the intermediate path that allows spatial informa-

tion to be visible to upsampling. To further demonstrate the benefit of this intermediate

path, we present an image reconstruction experiment on synthetic data, namely, the

Fashion-MNIST dataset [110].

The idea is that, if an upsampling operator can recover spatial information well from

downsampled feature maps, the reconstructed output should be visually closer to the

input image. The quality of reconstruction results can be a good indicator how well

spatial information is recovered by an upsampling operator. We build the following

baselines:

i) Average Pooling–NN interpolation (AvgPool–NN);

ii) stride-2 Convolution–Bilinear interpolation(Conv/2–Bilinear);

iii) Space-to-Depth–Depth-to-Space (S2D–D2S);

iv) stride-2 Convolution–2-stride Deconvolution (Conv/2–Deconv/2);

v) stride-2 Convolution–CARAFE (Conv/2–CARAFE);

vi) Max Pooling–Max Unpooling (MaxPool–MaxUnpool);

vii) Indexed Pooling–Indexed Upsampling (IP–IU).

Table 3.2 reports the reconstruction results, showing the advantage of IndexNet over

CARAFE. Details can be found in the Appendix.

3.6 Applications

In this section, we first display results on image matting, then we show several exten-

sional applications of IndexNet on the tasks of image denoising, semantic segmentation,

and monocular depth estimation.



Learning to Index for Deep Image Matting 32

PSNR SSIM MAE MSE

AvgPool–NN 25.88 0.9811 0.0259 0.0509
Conv/2–Bilinear 24.45 0.9726 0.0320 0.0600

S2D–D2S 28.93 0.9901 0.0204 0.0358
Conv/2–Deconv/2 28.75 0.9903 0.0187 0.0366

Conv/2–CARAFE 25.55 0.9798 0.0277 0.0529

MaxPool–MaxUnpool 29.33 0.9920 0.0202 0.0342

IP–IU* 37.83 0.9989 0.0089 0.0128
IP–IU† 45.93 0.9998 0.0032 0.0051
IP–IU‡ 48.37 0.9999 0.0026 0.0038

1 ∗ denotes Modelwise O2O DIN; † indicates HIN; ‡ refers to M2O DIN. All
IndexNets are with nonlinearity and weak context. The best performance is
boldfaced.

Table 3.2: Performance of Image Reconstruction on the Fashion-MNIST Dataset

3.6.1 Image Matting

In this application, we use Deep Image Matting (DIM) [113] as our baseline. Image

matting is particularly suitable for evaluating the effectiveness of IndexNet, because

the quality of learned indices can be visually observed from inferred alpha mattes. We

conduct experiments on the Adobe Image Matting dataset [113].

We evaluate the results using widely-used Sum of Absolute Differences (SAD), root

Mean Square Error (MSE), and perceptually-motivated Gradient (Grad) and Connec-

tivity (Conn) errors [81]. The evaluation code implemented by [113] is used. In what

follows, we first describe our modified MobileNetv2-based architecture and training de-

tails. We then perform extensive ablation studies to justify choices of model design,

make comparisons of different index networks, and visualize learned indices.

3.6.1.1 Network Architecture and Implementation Details

Here we describe the network architecture and training details.

Network Architecture. We build our model based on MobileNetv2 [86] with only slight

modifications to the backbone. We choose MobileNetv2 for its lightweight model and

fast inference. It also follows the encoder-decoder paradigm same as SegNet. We simply

change all 2-stride convolution to be 1-stride and attach 2-stride 2×2 max pooling after

each encoding stage for downsampling, which allows us to extract indices. If applying

the IndexNet idea, max pooling and unpooling layers can be replaced with IP and IU,

respectively. We also investigate alternative ways for low-level feature fusion and whether

encoding context (Section 3.6.1.2). Note that, the matting refinement stage [113] is not

applied here.
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No. Architecture Backbone Fusion Indices Context OS SAD MSE Grad Conn
B1 DeepLabv3+ [9] MobileNetv2 Concat No ASPP 16 60.0 0.020 39.9 61.3
B2 RefineNet [62] MobileNetv2 Skip No CRP 32 60.2 0.020 41.6 61.4
B3 SegNet [113] VGG16 No Yes No 32 54.6 0.017 36.7 55.3
B4 SegNet VGG16 No No No 32 122.4 0.100 161.2 130.1
B5 SegNet MobileNetv2 No Yes No 32 60.7 0.021 40.0 61.9
B6 SegNet MobileNetv2 No No No 32 78.6 0.031 101.6 82.5
B7 SegNet MobileNetv2 No Yes ASPP 32 58.0 0.021 39.0 59.5
B8 SegNet MobileNetv2 Skip Yes No 32 57.1 0.019 36.7 57.0
B9 SegNet MobileNetv2 Skip Yes ASPP 32 56.0 0.017 38.9 55.9
B10 UNet MobileNetv2 Concat Yes No 32 54.7 0.017 34.3 54.7
B11 UNet MobileNetv2 Concat Yes ASPP 32 54.9 0.017 33.8 55.2

Fusion: fuse encoder features; Indices: max-pooling indices (where Indices is ‘No’, bilinear interpolation
is used for upsampling); CRP: chained residual pooling [62]; ASPP: atrous spatial pyramid pooling [9];
OS: output stride. The lowest errors are boldfaced.

Table 3.3: Ablation Study of Design Choices

Training Details. To enable a direct comparison with deep matting [113], we follow

the same training configurations used in [113]. The 4-channel input concatenates the

RGB image and its trimap. We follow exactly the same data augmentation strategies,

including 320 × 320 random cropping, random flipping, random scaling, and random

trimap dilation. We use a combination of the alpha prediction loss and the composition

loss during training as in [113]. Only losses from the unknown region of the trimap

are calculated. Encoder parameters are pretrained on ImageNet [26]. The parameters

of the 4-th input channel are initialized with zeros. The Adam optimizer [52] is used.

We update parameters with 30 epochs (around 90, 000 iterations). The learning rate is

initially set to 0.01 and reduced by 10× at the 20-th and 26-th epoch respectively. We

use a batch size of 16 and fix the BN layers of the backbone.

3.6.1.2 Results on the Adobe Image Matting Dataset

Ablation Study on Model Design. To establish a better baseline comparable to DIM,

here we first investigate strategies for fusing low-level features (no fusion, skip fusion

as in ResNet [41] or concatenation as in UNet [82]) and whether encoding context for

image matting. 11 baselines are consequently built to justify model design. Results on

the Composition-1k testing set are reported in Table 3.3. B3 is cited from [113]. We

can make the following observations:

i) Indices are of great importance. Matting can significantly benefit from only indices

(B3 vs. B4, B5 vs. B6);

ii) State-of-the-art semantic segmentation models cannot be directly applied to image

matting (B1/B2 vs. B3);

iii) Fusing low-level features help, and concatenation is better than skip connection

but at a cost of increased computation (B6 vs. B8 vs. B10 or B7 vs. B9 vs. B11);

iv) Modules such as ASPP may improve the results (e.g., B6 vs. B7 or B8).
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Method #Param. GFLOPs SAD MSE Grad Conn
B3 [113] 130.55M 32.34 54.6 0.017 36.7 55.3

B11 3.75M 4.08 54.9 0.017 33.8 55.2
B11-1.4 8.86M 7.61 55.6 0.016 36.4 55.7

B11-carafe 4.06M 5.01 50.2 0.015 27.9 50.0
HMI 3.75M 4.08 56.5 0.021 33.0 56.4

NL C ∆
HINs

+4.99K 4.09 55.1 0.018 32.1 55.2
X +0.26M 4.22 50.6 0.015 27.9 49.4
X X +1.04M 4.61 49.5 0.015 25.6 49.2

Modelwise O2O DINs
+16 4.08 57.3 0.017 37.3 57.4

X +56 4.08 52.4 0.016 30.1 52.2
X X +152 4.08 59.1 0.018 39.0 59.7

Shared Stagewise O2O DINs
+80 4.08 48.9 0.014 26.2 48.0

X +280 4.08 51.1 0.016 30.2 50.7
X X +760 4.08 56.0 0.016 37.5 55.9

Unshared Stagewise O2O DINs
+4.99K 4.09 50.3 0.015 33.7 50.0

X +17.47K 4.10 50.6 0.016 26.5 50.3
X X +47.42K 4.15 50.2 0.016 26.8 49.3

M2O DINs
+0.52M 4.34 51.0 0.015 33.7 50.5

X +1.30M 4.73 48.9 0.015 32.1 47.9
X X +4.40M 6.30 45.8 0.013 25.9 43.7

DIM w. Refinement [113] 50.4 0.014 31.0 50.8

NL: Non-Linearity; C: Context. ∆ indicates increased parame-
ters compared to B11. GFLOPs are measured on a 224× 224× 4
input. The lowest errors are boldfaced.

Table 3.4: Results on the Composition-1k Testing Set

v) A MobileNetv2-based matting model can work as well as a VGG-16-based one (B3

vs. B11).

For the following experiments, we now mainly use B11.

Ablation Study on Index Networks. Here we compare different index networks and jus-

tify their effectiveness. The configurations of index networks used in the experiments

follow Figs. 3.6 and 3.7. We primarily investigate the 2 × 2 kernel with a stride of 2.

Whenever the weak context is considered, we use a 4 × 4 kernel in the first convolu-

tional layer of index networks. To highlight the effectiveness of HINs, we further build a

baseline called holistic max index (HMI) where max-pooling indices are extracted from

a squeezed feature map X′ ∈ RH×W×1. X′ is generated by applying the max function

along the channel dimension of X ∈ RH×W×C . Furthermore, since IndexNet increases

extra parameters, we introduce another baseline B11-1.4 where the width multiplier

of MobilieNetV2 is adjusted to be 1.4 to increase the model capacity. In addition, to

compare IndexNet against CARAFE in this task, we build an additional baseline B11-

carafe where the unpooling operator in B11 is replaced with CARAFE. Results on the

Composition-1k testing dataset are listed in Table 3.4. We observe that, most index net-

works reduce the errors notably, except for some low-capacity IndexNet modules (due to

limited modeling capabilities). In particular, nonlinearity and the context generally have

a positive effect on deep image matting, but they do not work effectively in O2O DINs.
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Figure 3.8: Qualitative results on the Composition-1k testing set. From left to right,
the original image, trimap, ground-truth alpha matte, Closed-Form matting (CF) [57],
DIM [57], and ours (M2O DIN with ‘Nonlinearity+Context’).

Encoder Decoder SAD MSE Grad Conn
sigmoid sigmoid 52.7 0.016 29.3 52.4
softmax softmax 51.6 0.015 29.2 51.6

softmax+sigmoid softmax 57.3 0.016 43.5 57.3
sigmoid+softmax sigmoid 45.8 0.013 25.9 43.7

The lowest errors are boldfaced.

Table 3.5: Ablation Study of Different Normalization Choices on Index Maps

A possible reason may be that the limited dimensionality of the intermediate feature

map is not sufficient to model complex patterns in matting. Compared to holistic max

index, the direct baseline of HINs, the best HIN (“Nonlinearity+Context”) has at least

12.3% relative improvement. Compared to B11, the baseline of DINs, M2O DIN with

“Nonlinearity+Context” exhibits at least 16.5% relative improvement. Notice that, our

best model outperforms the DIM approach [113] that even has the refinement stage. In

addition, according to the results of B11-1.4, the performance improvement does not

come from increased parameters. Moreover, CARAFE also enhances matting perfor-

mance, but it falls behind M2O DIN. Some qualitative results are shown in Fig. 3.8.

Our predicted mattes show improved delineation for edges and textures like hair and

water drops.

Ablation Study on Index Normalization. Index normalization is important for the final

performance. Here we justify this by evaluating different normalization choices. Apart

from the sigmoid function used for the decoder and the sigmoid+softmax function for

the encoder, we compare other three different combinations of normalization strategies

listed in Table 3.5. The experiment is conducted based on M2O DIN with “Nonlinear-

ity+Context”. It is clear that keeping the magnitude consistency during downsampling

matters. In fact, both max pooling and average pooling satisfy this property naturally,

and our normalization design is inspired from this fact.

3.6.2 Image Denoising

The goal of image denoising is to recover a clean image x from a corrupted observation

y following an image degradation model y = x+v, where v is commonly assumed to be
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Indices

Indices

Indices

1 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 1

1 64 128 128 256 256 256 512 512 256 128 128 64 64 64 64 1

DnCNN

SegNet‐like DnCNN
Figure 3.9: The DnCNN architecture and our modified SegNet-like DnCNN.

additive white Gaussian noise (AWGN) parameterized by σ. While such an assumption

has been challenged in recent real-image denoising [6, 49], we still follow the AWGN

paradigm in evaluation because our focus is not to improve image denoising. Most

deep denoising models [76, 122] are designed with the same high-level idea—processing

the feature map without decreasing its spatial resolution. It has been observed that,

when the feature map is downsampled, the performance drops remarkably [76]. For such

networks, although the model parameters are largely reduced, computational complexity

of training and inference becomes much heavier.

We show that, by inserting IndexNet into a denoising model, it can effectively com-

pensate the loss of spatial information, achieving performance comparable to or even

better than the network without downsampling. Thus, despite the number of parame-

ters increases, computation us much reduced. We choose DnCNN [122] as our baseline

to demonstrate this on standard benchmarks. We follow the experimental setting of [14]

that uses a 400-image training set. The performance is reported on a 68-image Berkeley

segmentation dataset (BSD68) and the other 12-image test set (Set12). The networks

are trained for Gaussian denoising, with three noise levels, i.e., σ = 15, 25 and 50. PSNR

and SSIM are used as evaluation metrics.

3.6.2.1 Network Architecture and Implementation Details

Network Architecture. We use the 17-layer DnCNN model [122], implemented by Py-

Torch. To enable the use of IndexNet, we modify DnCNN to a SegNet-like architecture

with 3 downsampling and upsampling stages (the input image size is 40×40). The num-

ber of layers remains the same to ensure a relatively fair comparison. Fig. 3.9 illustrates

the original DnCNN and our modified architecture. The first 9 layers follow VGG-16

except that the first layer is a single-channel input, and the rest are 7 decoding layers

formed by unpooling and convolution and the final prediction layer. All convolutional
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operations use 3 × 3 kernels. To incorporate IndexNet, it is straightforward to replace

max pooling and unpooling with IP and IU.

Training Details. We follow the same experimental configurations used in [122]. At each

epoch, 40 × 40 image patches are cropped from multiple scales (0.7, 0.8, 0.9, 1) with a

stride of 10 and are added with Gaussian noise of a certain noise level (σ = 15, 25, or 50);

image patches are further augmented with random flipping and random rotation. This

results in around 240, 000 training samples. `2 loss is used. All networks are trained from

scratch with a batch size of 128. Model parameters are initialized with the improved

Xavier [42]. The Adam optimizer is also used. Parameters are updated with 60 epochs.

The learning rate is initially set to 0.001 and reduced by 10× at the 45-th and 55-th

epoch, respectively.

3.6.2.2 Results on the BSD68 and Set12 Datasets

Apart from the DnCNN baseline, we also report the performance of our modified

DnCNN-SegNet with max pooling and unpooling. Furthermore, to compare IndexNet

against CARAFE, we build three additional baselines where CARAFE is combined with

different downsampling strategies, including max pooling, average pooling, and stride-2

convolutions, denoted by DnCNN-max-carafe, DnCNN-avg-carafe, and DnCNN-conv-

carafe, respectively. Results are shown in Table 3.6. It can be observed that, simply

downsampling with max pooling and upsampling by unpooling as in DnCNN-SegNet

lead to significant drops in both PSNR (generally > 1dB) and SSIM (> 0.1). This

suggests that spatial information plays an important role in image denoising. Denoising

is content-irrelevant (the model is unaware of regions coming from the foreground or

the background). Downsampling without recording sufficient spatial information (only

the boundary information is not sufficient) impedes the model from recovering the ap-

pearance and the structure in the original image. This is particularly true for baselines

adopting CARAFE. Since CARAFE applies blind upsampling, no spatial information

is transferred during upsampling, which may lead to inferior results. Interestingly, after

IndexNet is inserted into downsampled DnCNN, the loss of PSNR and SSIM is effec-

tively compensated. The compensation behaviors can be observed from almost all types

of IndexNet, except the two cases in Modelwise O2O DINs with nonlinearity. The poor

performance of Modelwise O2O DINs may attribute to the insufficient modeling ability,

particularly when σ = 50. Nonlinearity and weak context generally have a positive ef-

fect on image denoising, and the effectiveness of different IndexNets is similar. Hence,

Shared Stagewise O2O DINs appear to be a preferred choice due to slightly increased

parameters and negligible extra computation costs.
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Figure 3.10: IndexNet-guided feature pyramid network and multi-level feature fusion.

3.6.3 Semantic Segmentation

Here we further evaluate IndexNet on semantic segmentation. Semantic segmentation

aims to predict a dense labeling map for each image where each pixel is labeled into

one category. Since the FCNs were introduced [69], FCN-based encoder-decoder archi-

tectures have been studied extensively [8, 62, 3, 9]. Efforts have been spent on how to

encode contextual information. We use SegNet [3] as our baseline because IndexNet is

primarily inspired by the unpooling operator in SegNet. We follow the experimental

setting in [3] and report performance on the SUN RGB-D [95] dataset. We use RGB

as the input (depth is not used). The standard mean Intersection-over-Union (mIoU) is

used as the evaluation metric. we also compare against the recent UperNet [111]. We

evaluate UperNet on the ADE20K dataset [127].

3.6.3.1 Network Architecture and Implementation Details

Network Architecture. The architecture of SegNet employs the first 13 layers of the

VGG-16 model pretrained on ImageNet as the encoder. The decoder uses unpooling

for upsampling. Each unpooling layer is followed by the same number of convolutional

layers as in the corresponding encoder stage. Overall, SegNet has 5 downsampling

and 5 upsampling stages. Convolutional layers in the decoding stage mainly play a

role to smooth the feature maps generated by unpooling. To insert IndexNet, the only

modification is to replace max pooling and unpooling layers with IP and IU, respectively,

which is straightforward.

UperNet builds upon the idea of Pyramid Pooling Module (PPM) [124] and Feature

Pyramid Network (FPN) [64]. UperNet also implements a Multi-level Feature Fusion

(MFF) module that fuses multi-resolution feature maps by concatenation. In FPN,

downsampling is implemented by 2-stride convolution, and upsampling uses bilinear

interpolation. It produces four feature levels {D2, D3, D4, D5} with output strides of

{4, 8, 16, 32}, conditioned on the encoder features {E2, E3, E4, E5}. MFF further fuses
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Figure 3.11: Scene understanding results on the SUNRGB-D dataset. From left to
right, the original image, ground-truth, SegNet, and ours (Shared Stagewise O2O DIN
with ‘Nonlinearity’).

four levels of features and generates the output M2 with an output stride of 4. To in-

sert IndexNet, three IndexNet blocks can be inserted into the encoder to generate index

maps to guide upsampling. The same index maps can also be used in MFF in a sequen-

tial upsampling manner to fuse features, as shown in Fig. 3.10. Note that, in theory

IndexNet can also be applied to PPM, because PPM itself has internal downsampling

and upsampling stages. However, we discourage the use of IndexNet in PPM, because it

will significantly increase parameters (due to mixed downsampling/upsampling rates).

In this case blind upsampling such as NN/bilinear interpolation may be a better choice.

Training Details. On the SUN RGB-D dataset, the VGG-16 model pretrained on Ima-

geNet with BN layers is used. We employ the standard data augmentation strategies:

random scaling, random cropping 320×320 sub-images, and random horizontal flipping.

We learn the model with the standard softmax loss. Encoder parameters are pretrained

on ImageNet. All other parameters are initialized with the improved Xavier [42]. The

SGD optimizer [52] is used with a momentum of 0.9 and a weight decay of 0.0001. We

train the model with a batch size of 16 for 300 epochs (around 90, 000 iterations). The

learning rate is initially set to 0.01 and reduced by 10× at the 250-th and 280-th epoch,

respectively. The BN layers of the encoder are fixed.

On the ADE20K benchmark, we use the MobileNetV2 pretrained on ImageNet as the

encoder and UperNet the decoder. Due to limited computational resources, only this

setting enables us to train a model on 4 GPUs with a batch size of 16 following the

official implementation of UperNet and provided experimental settings.1

1https://github.com/CSAILVision/semantic-segmentation-pytorch

https://github.com/CSAILVision/semantic-segmentation-pytorch
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Method #Param. GFLOPs mIoU
SegNet [3] 24.96M 24.76 32.47

SegNet-carafe 25.35M 25.75 36.30
NL C ∆

HINs
+23.55K 24.79 33.25

X +4.90M 26.40 33.11
X X +19.55M 31.28 33.31

Modelwise O2O DINs
+16 24.76 33.18

X +56 24.76 33.70
X X +152 24.77 33.26

Shared Stagewise O2O DINs
+80 24.76 33.26

X +280 24.76 33.97
X X +760 24.77 33.41

Unshared Stagewise O2O DINs
+0.02M 24.79 33.27

X +0.08M 24.82 33.59
X X +0.22M 24.96 33.50

M2O DINs
+9.76M 28.02 33.28

X +24.44M 32.90 33.51
X X +83.02M 52.42 33.48

NL: Non-Linearity; C: Context. ∆ indicates increased param-
eters compared to the SegNet baseline. GFLOPs are measured
on a 224× 224× 3 input.

Table 3.7: Performance on the SUN RGB-D Dataset.

3.6.3.2 Results on the SUN RGB-D Dataset

We report the results in Table 3.7. All index networks show improvements over the

baseline, among which Modelwise and Shared Stagewise O2O DINs improve the baseline

with few extra parameters and GFLOPs. Compared with other types of IndexNet, M2O

DINs and HINs (particularly under the setting of “Nonlinearity+Context”) increase

many parameters and GFLOPs but do not exhibit clear advantages.

We hypothesize that the improvement comes from the ability of IndexNet suppressing

fractured predictions that frequently appears in the baseline SegNet. IndexNet seemingly

does better in producing predictions at boundaries.

Notice that, in contrast to the behaviour in matting and denoising, CARAFE signifi-

cantly enhances the performance in segmentation (32.47 → 36.30), outperforming In-

dexNet. We observe that CARAFE tends to produce consistent region-wise predictions.

A plausible explanation is that, CARAFE is designed in a way to tackle region-sensitive

tasks such as semantic segmentation where region-wise matching between predictions

and ground truths matters, while IndexNet prefers detail-sensitive tasks like image mat-

ting where errors come from detail-rich regions.
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FPN MFF mIoU Pixel Accuracy (%)
Bilinear Bilinear 37.08 78.29

IndexNet Bilinear 36.25 78.23
Bilinear IndexNet 36.90 78.27

IndexNet IndexNet 37.62 78.29
CARAFE Bilinear 37.76 78.81
Bilinear CARAFE 38.03 78.51

CARAFE CARAFE 38.31 78.90

MFF: Multi-level Feature Fusion. Only HINs (‘Linear’)
are evaluated due to varied decoder feature dimensionality.
The best performance is boldfaced.

Table 3.8: Performance on the ADE-20K Dataset

3.6.3.3 Results on the ADE20K Dataset

Here we conduct ablative studies to highlight the role of upsampling in UperNet. Both

IndexNet and CARAFE are considered. In addition to the full replacement of upsam-

pling operators following Fig. 3.10, we also replace bilinear upsampling either in FPN or

in MFF with IndexNet/CARAFE. Results are shown in Table 3.8. It can be observed

that, IndexNet improves UperNet (37.08 → 37.62) only when bilinear upsampling in

FPN and MFF is simultaneously replaced. However, when only one component is modi-

fied, IndexNet even leads to negative results. This suggests that the guided information

should be used consistently in the decoder. In addition, CARAFE also works better

than IndexNet, showing that spatial information may not play a critical role in semantic

segmentation.

3.6.4 Monocular Depth Estimation

Estimating per-pixel depth from a single image is challenging because one needs to

recover 3D information from a 2D plane. With deep learning, significant progress has

been witnessed [66, 109, 105]. We use the recent FastDepth [105] as our baseline. We

compare the performance with/without IndexNet on the NYUv2 dataset [91] with the

official train/test split. To be in consistent with [105], the following metrics are used to

quantify the performance:

• root mean square error (rms):
√

1
T

∑T
i=1 (di − gi)2;

• accuracy with threshold th: percentage (%) of d1, s.t. max
(
d1
g1
, g1

d

)
= δ1 < th.

Details about the network and training can be found in the Appendix.
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Figure 3.12: Our modified FastDepth [105] architecture.

3.6.4.1 Network Architecture and Implementation Details

Network Architecture. FastDepth is an encoder-decoder architecture, with MobileNet as

its backbone. Here we choose the best upsampling option suggested by the authors [105]

where upsampling is implemented by ×2 NN interpolation and 5×5 convolution. Hence,

our baseline is FastDepth-NNConv5: downsampling with 2-stride convolution and up-

sampling via NN interpolation. We also modify this baseline by changing the stride-2

convolution to be stride-1 followed by max-pooling, named as FastDepth-P-NNConv5.

Fig. 3.12 shows how we insert IndexNet into FastDepth. Similar to the modifications

applied to the matting network, stride-2 convolution layers in the encoder are changed

to be stride-1, followed by IP, and the NN interpolation in the decoder is replaced

with IU. To compare IndexNet with CARAFE, we build two additional baselines:

FastDepth-carafe and FastDepth-P-carafe, where NNConv5 is modified to CARAFE

in FastDepth-NNConv5 and FastDepth-P-NNConv5.

Training Details. We follow similar training settings used by FastDepth [105]. `1 loss

is used. Random rotation, random scaling and random horizontal flipping are used for

data augmentation. The initial learning rate is set to 0.01 and reduced by ×10 every

5 epochs. The SGD optimizer is used with a momentum of 0.9 and a weight decay of

0.0001. Encoder weights are pretrained on ImageNet [26]. A batch size of 16 is used to

train the network for 30 epochs in total.

3.6.4.2 Results on the NYUDv2 Dataset

We report the results in Table 3.9. We observe that almost all types of IndexNet improve

the performance compared to the baselines except for the most light-weight design—

linear Modelwise O2O DIN. It may be because only 16 parameters are not sufficient to

model local variations of high-dimensional feature maps. Note that, Unshared Stagewise

O2O DINs (with only linear mappings) shows clear improvements with only slightly

increased parameters. HINs and M2O DINs increase a large amount of parameters and
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Figure 3.13: Qualitative results on the NYUDv2 dataset. From left to right, the
original image, ground-truth, FastDepth-NNConv5, and ours (Unshared Stagewise O2O
DIN with ‘Linear’).

floating-point calculations because of the high dimensionality of feature maps, while the

improved performance is not proportional to such a high cost.

We observe that IndexNet exhibits better boundary delineation than the baseline, e.g.,

the edge of the desk, and the contour of the woman. Moreover, CARAFE achieves

comparable performance against IndexNet in this task.

In addition, we report the results of applying IndexNet to a state-of-the-art model [47]

in Table 3.10. We modify the use of IndexNet here by taking the same feature fusion

strategies of Feature Pyramid Network and Multi-level Feature Fusion, as used in our

semantic segmentation experiment.

Other implementation details and evaluations are kept consistent with [72]. Compared

with the baseline, IndexNet shows improvement in the first four metrics.

3.6.5 Insights Towards Good Practices

As a summary of our evaluations, here we provide some guidelines for using guided/blind

upsampling:

1. In detail-sensitive tasks, such as image matting, image restoration, and edge de-

tection, the spatial information is important. Thus guided upsampling may be

preferred.

2. Blind upsampling may be used in the situation when computational budget is

limited because most blind upsampling operators are non-parametric and compu-

tationally efficient.

3. In image matting, the best IndexNet configuration is “M2O DINs+Nonlinearity+Context”.

This configuration is also true for the image reconstruction experiment and image
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Method #Param. GFLOPs rms δ1 < 1.25

FastDepth-NNConv5 3.96M 0.69 0.567 0.781
FastDepth-P-NNConv5 3.96M 1.01 0.577 0.778

FastDepth-carafe 4.31M 1.63 0.558 0.790
FastDepth-P-carafe 4.31M 1.96 0.571 0.782
NL C ∆

HINs
+31.23K 1.03 0.566 0.784

X +11.17M 2.65 0.565 0.786
X X +44.62M 7.53 0.559 0.787

Modelwise O2O DINs
+16 1.02 0.569 0.778

X +56 1.02 0.568 0.785
X X +152 1.02 0.564 0.786

Shared Stagewise O2O DINs
+80 1.02 0.562 0.783

X +280 1.02 0.565 0.786
X X +760 1.02 0.567 0.783

Unshared Stagewise O2O DINs
+31.23K 1.03 0.556 0.789

X +0.11M 1.06 0.564 0.786
X X +0.30M 1.16 0.562 0.788

M2O DINs
+22.30M 4.27 0.563 0.783

X +55.78M 9.15 0.562 0.786
X X +189.57M 28.67 0.565 0.787

NL: Non-Linearity; C: Context. ∆ indicates increased parameters com-
pared to the standard FastDepth baseline. GFLOPs are measured on a
224× 224× 3 input. The best performance is boldfaced.

Table 3.9: Performance of FastDepth [105] on the NYUDv2 Dataset.

rms rel log10 δ < 1.25 δ < 1.252 δ < 1.253

Hu et al. [47] 0.558 0.129 0.055 0.837 0.968 0.992
Hu et al. + IndexNet 0.554 0.128 0.054 0.843 0.968 0.992

Only HIN (‘Nonlinear+Context’) is evaluated due to varied feature dimensionality of decoder and multi-level
feature fusion. rel and log10 denote the average relative error and average log10 error [109], respectively. The
best performance is boldfaced.

Table 3.10: Performance of Hu et al. [47] on the NYUDv2 dataset

denoising, where M2O DINs exhibit the best performance and the most stable

behavior, respectively. Hence, the capacity of IndexNet is closely related to the

complexity of local patterns. M2O DINs is preferred in a detail- or boundary-

sensitive task, but one should also be aware of the increased model parameters

and computation costs, especially when the feature maps are high-dimensional.

4. If one prefers a flexible decoder design, e.g., squeezing/enlarging the dimensionality

of the decoder feature map, HINs are good choices, because DINs only generate

index maps whose dimensionality is identical to the input feature map.

5. For real-time applications, Shared Stagewise O2O DINs are the first choices. Model

parameters increased by Shared Stagewise O2O DINs are comparable to Modelwise

O2O DINs, and the extra GFLOPs are also negelectable. Shared Stagewise O2O

DINs, however, always work better than Modelwise O2O DINs for applications

considered in this work. It implies that each upsampling stage should learn a

stage-specific index function;
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6. It is worth noting that, the current implementation of IndexNet has some limi-

tations. Currently IndexNet only implements single-point upsampling—each up-

sampled feature point is only associated with a single point. In this sense, we may

not simulate the behavior of bilinear interpolation where each upsampled point is

affected by multiple points of a local region.

3.7 Conclusion

Inspired by an observation in image matting, we examine the role of indices and present

a unified view of upsampling operators using the notion of index functions. We show

that an index function can be learned within a proposed index-guided encoder-decoder

framework. In this framework, indices are learned with a flexible network module termed

IndexNet, and are used to guide downsampling and upsampling using IP and IU. In-

dexNet itself is also a sub-framework that can be designed depending on the task at

hand. We investigate five index networks, and demonstrate their effectiveness on four

dense prediction tasks. We believe that IndexNet is an important step towards generic

upsampling operators for deep networks.







Chapter 4

Learning Affinity-Aware

Upsampling for Deep Image

Matting

Based on Chapter 3, in this chapter, we delve deeper into the upsampling stage to

investigate upsampling operators conditioned on second-order features. Second-order

features are commonly used in dense prediction to build adjacent relations with a learn-

able module after upsampling such as non-local blocks. Since upsampling is essential,

learning affinity in upsampling can avoid additional propagation layers, offering the po-

tential for building compact models. By looking at existing upsampling operators from

a unified mathematical perspective, we generalize them into a second-order form and

introduce Affinity-Aware Upsampling (A2U) where upsampling kernels are generated

using a light-weight low-rank bilinear model and are conditioned on second-order fea-

tures. Our upsampling operator can also be extended to downsampling. We discuss

alternative implementations of A2U and verify their effectiveness on two detail-sensitive

tasks: image reconstruction on a toy dataset; and a large-scale image matting task where

affinity-based ideas constitute mainstream matting approaches. In particular, results on

the Composition-1k matting dataset show that A2U achieves a 14% relative improve-

ment in the SAD metric against a strong baseline with negligible increase of parameters

(< 0.5%). Compared with the state-of-the-art matting network, we achieve 8% higher

performance with only 40% model complexity.

49
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Figure 4.1: Visualization of upsampled feature maps with various upsampling op-
erators. From left to right, the input RGB image, feature maps after the last up-
sampling using nearest neighbor interpolation, bilinear upsampling, and our proposed
affinity-aware upsampling, respectively. Our method produces better details with clear
connectivity.

4.1 Introduction

The similarity among positions, a.k.a. affinity, is commonly investigated in dense pre-

diction tasks [67, 16, 34, 103, 60]. Compared with directly fitting ground truths using

first-order features, modeling similarity among different positions can provide second-

order information. There currently exist two solutions to learn affinity in deep net-

works: i) learning an affinity map before a non-deep backend and ii) defining a learnable

affinity-based module to propagate information. We are interested in end-to-end affinity

learning, because classic methods often build upon some assumptions, rendering weak

generalization in general cases. Existing approaches typically propagate or model affin-

ity after upsampling layers or before the last prediction layer. While affinity properties

are modeled, they sometimes may not be effective for the downstream tasks. For in-

stance,the work in [60] requires a feature encoding block besides the encoder-decoder

architecture to learn affinity. The work in [16] needs more iterations to refine the feature

maps according to their affinity at the last stage. As shown in Fig. 4.1, one plausible

reason is that pairwise similarity is damaged during upsampling. In addition, it is in-

efficient to construct interactions between high-dimensional feature maps. We therefore

pose the question: Can we model affinity earlier in upsampling in an effective and effi-

cient manner?

Many widely used upsampling operators interpolate values following a fixed rule at

different positions. For instance, despite reference positions may change in bilinear

upsampling, it always interpolates values based on relative spatial distances. Recently,

the idea of learning to upsample emerges [72, 71, 100]. A learnable module is often

built to generate upsampling kernels conditioned on feature maps to enable dynamic,

feature-dependent upsampling behaviors. Two such representative operators include

CARAFE [100] and IndexNet [71]. In our experiments, we find that CARAFE may

not work well in low-level vision tasks where details need to be restored. IndexNet

instead can recover details much better. We believe that one important reason is that

IndexNet encodes, stores, and delivers spatial information prior to downsampling. But



Learning Affinity-Aware Upsampling for Deep Image Matting 51

computation can be costly when the network goes deep. This motivates us to pursue

not only flexible but also light-weight designs of the upsampling operator.

In this paper, we propose to model affinity into upsampling and introduce a novel learn-

able upsampling operator, i.e., affinity-aware upsampling (A2U). As we show later in

Section 4.4, A2U is a generalization of first-order upsampling operators: in some condi-

tions, the first-order formulation in [100] and [72] can be viewed as special cases of our

second-order one. In addition, by implementing A2U in a low-rank bilinear formulation,

we can achieve efficient upsampling with few extra parameters.

We demonstrate the effectiveness of A2U on two detail-sensitive tasks: an image recon-

struction task on a toy dataset with controllable background and a large-scale image

matting task with subtle foregrounds. Image matting is a desirable task to justify

the usefulness of affinity, because affinity-based matting approaches constitute one of

prominent matting paradigms in literatures. Top matting performance thus can sug-

gest appropriate affinity modeling. In particular, we further discuss alternative design

choices of A2U and compare their similarities and differences. Compared with a strong

image matting baseline on the Composition-1k matting dataset, A2U exhibits a signifi-

cant improvement (∼ 14%) with negligible increase of parameters (< 0.5%), proffering

a light-weight image matting architecture with state-of-the-art performance.

4.2 Background

Learning-Based Upsampling Operators. Detailed review on upsampling has been

demonstrated in Chapter 3. Here we focus on learning-based upsampling operators [90,

69, 100, 71]. The Pixel Shuffle (P.S.) [90] upsamples feature maps by reshaping. The

deconvolution (Deconv) [69], an inverse version of convolution, learns the upsampling

kernel via back-propagation. Both P.S. and Deconv are data-independent during in-

ference, because the kernel is fixed once learned. By contrast, CARAFE [100] and

IndexNet [72] learn the upsampling kernel dynamically conditioned on the data. They

both introduce additional modules to learn upsampling kernels. Since the upsampling

kernel is directly related to the feature maps, these upsampling operators are considered

first-order.

Following the learning-based upsampling paradigm, we also intend to learn dynamic up-

sampling operators but to condition on second-order features to enable affinity-informed

upsampling. We show that, compared with first-order upsampling, affinity-informed up-

sampling not only achieves better performance but also introduces a light-weight learning

paradigm.
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Affinity-Based Image Matting. Affinity dominates the majority of classic image

matting approaches [57, 11, 19, 38], as presented in Chapter 2. Such methods can

perform well on cases with clear color contrast but more often fail in cases where the

color distribution assumption is violated.

Within deep matting methods, GCA matting [60] first designed an affinity-based module

and demonstrated the effectiveness of affinity in fully-deep matting. It treats alpha

propagation as an independent module and adds it to different layers to refine the

feature map, layer by layer.

Different from the idea of ‘generating then refining’, we propose to directly incorporate

the propagation-based idea into upsampling for deep image matting. It not only benefits

alpha propagation but also shows the potential for light-weight module design.

4.3 A Mathematical View of Upsampling

The work in Chapter 3 [71] unifies upsampling from an indexing perspective. Here

we provide an alternative mathematical view. To simplify exposition, we discuss the

upsampling of the one-channel feature map. Without loss of generality, the one-channel

case can be easily extended to multi-channel upsampling, because most upsampling

operators execute per-channel upsampling. Given a one-channel local feature map Z ∈
Rk×k used to generate an upsampled feature point, it can be vectorized to z ∈ Rk2×1.

Similarly, the vectorization of an upsampling kernel W ∈ Rk×k can be denoted by

w ∈ Rk2×1. If g(w, z) defines the output of upsampling, most existing upsampling

operations follow

g(w, z) = wT z . (4.1)

Note that g(w, z) indicates an upsampled point. In practice, multiple such points can

be generated to form an upsampled feature map. w may be either shared or unshared

among channels depending on the upsampling operator. Further, even the same w can

be applied to different z’s. According to how the upsampling kernel w is generated, we

categorize the kernel into two types: the universal kernel and the customized kernel.

The universal kernel is input-independent. One example is deconvolution [69]. The

customized kernel, however, is input-dependent. Based on what input is used to generate

the kernel, the customized kernel can be further divided into distance-based and feature-

based. We elaborate as follows.

Distance-based Upsampling. Distance-based upsampling is implemented according

to spatial distances, such as nearest neighbor and bilinear interpolation. The difference

between them is the number of positions taken into account. Under the definition of
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Figure 4.2: Kernel generation of A2U. Given a feature map of size C ×H ×W , an
s× s upsampling kernel is generated at each spatial position conditioned on the feature
map. The rank d is 1 here.

Equation (4.1), the upsampling kernel is a function of the relative distance between

points.

Feature-based Upsampling. Feature-based upsampling is feature-dependent. They

are developed in deep networks, including max-unpooling [3], CARAFE [100], and In-

dexNet [71]:

• Max-unpooling interpolates values following the indices returned from max-pooling.

In a 2× 2 region of the feature layer after upsampling, only one position recorded

in the indices has value, and other three are filled with 0. We can define w by

a 1 × 1 vector w = [w], where w ∈ R1×1, and z is also the 1 × 1 point at the

low-resolution layer.

• CARAFE learns an upsampling kernel w ∈ Rk2×1 (k = 5 in [100]) via a kernel gen-

eration module given a decoder feature map ready to upsample. It also conforms

to Equation (4.1), where z ∈ Rk2×1 is obtained from the low-resolution decoder

feature map. The kernel size of w depends on the size of z. In multi-channel cases,

the same w is shared among channels.

• IndexNet also learns an upsampling kernel dynamically from features. The differ-

ence is that IndexNet learns from high-resolution encoder feature maps. Under

the formulation of Equation (4.1), the upsampling kernel follows a similar spirit

like max-unpooling. But here w ∈ [0, 1] instead of {0, 1}.

Hence, different operators correspond to different w’s and z’s, where w can be heuristi-

cally defined or dynamically generated. In particular, existing operators define/generate

w according to distances or first-order features, while second-order information remains

unexplored in upsampling.

4.4 Learning Affinity-Aware Upsampling

Here we explain how we exploit second-order information to formulate the affinity idea

in upsampling using a bilinear model and how we apply a low-rank approximation to
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reduce computational complexity.

General Formulation of Upsampling. Given a feature map M ∈ RC×H×W to be

upsampled, the goal is to generate an upsampled feature map M′ ∈ RC×rH×rW , where r

is the upsampling ratio. For a position (i′, j′) in M′, the corresponding source position

(i, j) in M is derived by solving i = bi′/rc, j = bj′/rc. We aim to learn an upsampling

kernel w ∈ Rk2×1 for each position in M′. By applying the kernel to a channel of the

local feature map X ∈ RC×k×k centered at position l on M, denoted by X ∈ R1×k×k, the

corresponding upsampled feature point m′l′ ∈M′ of the same channel at target position

l′ can be obtained by m′l′ = wTx according to Equation (4.1), where x ∈ Rk2×1 is the

vectorization of X.

General Meaning of Affinity. Affinity is often used to indicate pairwise similarity

and is considered second-order features. An affinity map can be constructed in different

ways such as using a Gaussian kernel. In self-attention, the affinity between the position

l and the enumeration of all possible positions p at a feature map M is denoted by

softmax
∀p

(sim (ml,mp)), where ml and mp represent two vectors at position l and p,

respectively, and sim (ml,mp) measures the similarity between ml and mp with the

inner product ml
Tmp.

Affinity-Aware Upsampling via Bilinear Modeling. Given a local feature map

X ∈ RC×h1×w1 , X has an equivalent matrix form X ∈ RC×N , whereN = h1×w1. We aim

to learn an upsampling kernel conditioned on X. Previous learning-based upsampling

operators [100, 72, 71] generate the value of the upsampling kernel following a linear

model by w =
∑C

i=1

∑N
j=1 aijxij , where aij and xij are the weight and the feature

at the channel i and position j of X, respectively. Note that w ∈ R1×1. To encode

second-order information, a natural generalization of the linear model above is bilinear

modeling where another feature matrix Y ∈ RC×M transformed from the feature map

Y ∈ RC×h2×w2 (M = h2 × w2), is introduced to pair with X to model affinity. Given

each xi ∈ RC×1 in X, yj ∈ RC×1 in Y, the bilinear weight aij of the vector pair, and

the embedding weights qk and tk for each channel of xi and yj , we propose to generate

each value of the upsampling kernel from embedded pairwise similarity, i.e.,

w =

N∑
i=1

M∑
j=1

aijϕ(xi)
Tφ(yj) =

C∑
k=1

N∑
i=1

M∑
j=1

aijqkxiktkyjk

=

C∑
k=1

N∑
i=1

M∑
j=1

a′ijkxikyjk =
C∑
k=1

xk
TAkyk ,

(4.2)

where xk ∈ RN×1 and yk ∈ RM×1 are the k-th channel of X and Y, respectively,

Ak ∈ RN×M is the affinity matrix for k-th channel, a′ijk = aijqktk, and ϕ and φ represent
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the embedding function.

Factorized Affinity-Aware Upsampling. Learning Ak can be expensive when M

and N are large. Inspired by [51, 118], a low-rank bilinear method can be derived to

reduce computational complexity of Equation (4.2). Specifically, Ak can be rewritten

by Ak = UkV
T
k , where Uk ∈ RN×d and Vk ∈ RM×d. d represents the rank of Ak under

the constraint of d ≤ min(N,M). Equation (4.2) therefore can be rewritten by

w =
C∑
k=1

xk
TUkVk

Tyk =
C∑
k=1

1
T (Uk

Txk ◦Vk
Tyk)

= 1
T

C∑
k=1

(Uk
Txk ◦Vk

Tyk)

, (4.3)

where 1 ∈ Rd is a column vector of ones, and ◦ denotes the Hadamard product. Since

we need to generate a s× s upsampling kernel, 1 in Equation (4.3) can be replaced with

P ∈ Rd×s2 . Note that, Equation (4.3) is applied to each position of a feature map, so

the inner product here can be implemented by convolution. The full upsampling kernel

therefore can be generated by

w = PT
C∑
k=1

(Uk
Txk ◦Vk

Tyk)

= PT d
cat
r=1

( C∑
k=1

(ukr
Txk ◦ vkr

Tyk)
)

= conv
(
P,

d
cat
r=1

(
gpconv(Ur,X)� gpconv(Vr,Y)

))
, (4.4)

where ukr ∈ RN×1, vkr ∈ RM×1. The convolution kernels P ∈ Rd×s2×1×1, U ∈
Rd×C×h1×w1 , and V ∈ Rd×C×h2×w2 are reshaped tensor versions of P, U and V, re-

spectively. conv(K,M) represents a convolution operation on the feature map M with

the kernel K; gpconv(K,M) defines a group convolution operation (C groups) with the

same input. cat is the concatenate operator. This process is visualized in Fig. 4.2.

Alternative Implementations. Equation. (4.4) is a generic formulation. In practice,

many design choices can be discussed in implementation:

• The selection of X and Y can be either same or different. In this paper, we only

discuss self-similarity, i.e., X = Y;

• The rank d can be chosen in the range [1,min(N,M)]. For example, if X and Y

are extracted in 5× 5 regions, the range will be [1, 25]. In our experiments, we set

d = 1 to explore the most simplified and light-weight case.
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• U and V can be considered two encoding functions. They can be shared, partly-

shared, or unshared among channels. We discuss two extreme cases in the experi-

ments: ‘channel-shared’ (‘cs’) and ‘channel-wise’ (‘cw ’).

• Equation. (4.4) adjusts the kernel size of w only using P. Since the low-rank

approximation has less parameters, fixed P, U, and V may not be sufficient to model

all local variations. Inspired by CondConv [115], we attempt to generate P and U,

V dynamically conditioned on the input. We investigate three implementations:

1) static: none of them is input-dependent; 2) hybrid : only P is conditioned on

input; and 3) dynamic: P, U, and V are all conditioned on input. The dynamic

generation of P, U, or V is implemented using a global average pooling and a 1×1

convolution layer.

• We implement stride-2 U and V in our experiments. They output features of size

C×H
2 ×

W
2 . To generate an upsampling kernel of size s2×H×W , one can either use

4 sets of different weights for U and V or 4 sets of weights for P (4× s2× H
2 ×

W
2 ),

followed by a shuffling operation (s2 × H ×W ). We denote the former case as

‘pointwise’ (‘pw ’). Further, as pointed out in [51], nonlinearity, e.g., tanh or relu,

can be added after the encoding of U and V. We verify a similar idea by adding

normalization and nonlinearity in the experiments.

Extension to Downsampling. Following [71], our method can also be extended to

downsampling. Downsampling is in pair with upsampling, so their kernels are generated

from the same encoder feature. We use ‘d ’ to indicate the use of paired downsampling in

experiments. We share the same U and V in Equation. (4.4) in both downsampling and

upsampling, but use different P’s considering that they may have different kernel sizes.

We denote the overall upsampling kernel by Wu ∈ Rsu2×H×W and the downsampling

kernel by Wd ∈ Rsd2×H/r×W/r, where r is the ratio of upsampling/downsampling. We

set sd = rsu in our experiments.

Relation to Other Works. A2U learns to upsample guided by feature layers. This

property shares similarity with some recent works.

1. Joint Bilateral Upsampling (JBU) [53]. JBU was proposed to facilitate efficient

high-resolution image processing, which in detail is processing a low-resolution

image first and then obtain the high-resolution result under the guidance of the

corresponding high-resolution image. The upsampling weight is generated from a

spatial distance and color distance on the guidance image. Our method applies

the idea of guided upsampling in a more general way: inputs of the upsampling

operation are feature layers, and the upsampling weights are learned from the

inputs dynamically.
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Method MNIST Fashion-MNIST
PSNR (↑) SSIM (↑) MSE (↓) MAE (↓) PSNR SSIM MSE MAE

Conv/2-Nearest 28.54 0.9874 0.0374 0.0148 25.58 0.9797 0.0527 0.0269

Conv/2-Bilinear 26.12 0.9783 0.0495 0.0205 23.68 0.9675 0.0656 0.0343

Conv/2-Deconv [69] 31.85 0.9942 0.0256 0.0089 27.42 0.9870 0.0426 0.0207

P.S. [90] 31.63 0.9939 0.0262 0.0099 27.33 0.9868 0.0431 0.0212
MaxPool-MaxUnpool 29.91 0.9916 0.0320 0.0133 28.31 0.9901 0.0385 0.0218
MaxPool-CARAFE [100] 28.72 0.9885 0.0367 0.0131 25.17 0.9773 0.0552 0.0266

MaxPool-IndexNet † [72] 45.51 0.9997 0.0053 0.0024 45.83 0.9998 0.0051 0.0033

MaxPool-A2U (Ours) 47.63 0.9998 0.0042 0.0020 46.41 0.9999 0.0048 0.0031

MaxPool-IndexNet ‡ [72] 47.13 0.9997 0.0044 0.0020 44.35 0.9998 0.0061 0.0036

Table 4.1: Reconstruction results on the MNIST dataset and the Fashion-MNIST
dataset. † denotes holistic index network, ‡ represents depthwise index network. Both
index networks here apply the setting of ‘context+linear’ for a fair comparison.

2. Guided Filter (GF) [40]. GF upsampling was also investigated to generate high-

resolution output Oh given the corresponding low-resolution one Ol and the high-

resolution guidance image IH . It models the generation of Ol as a linear model

and calculates the model weights. The weights are then upsampled to be high-

resolution before producing Oh by a linear transformation. Another learning-based

GF (LGF) [108] further learns weights of the linear model from inputs, making

the method adept to various tasks. Their nature of transforming low-resolution

image processing operations to be high-resolution is different from ours, where

the upsampling operations applied on feature layers are directly guided by the

high-resolution maps.

3. Attention Networks [99, 46]. Attention networks include a wide family of networks

applying the attention mechanism. As discussed in [72, 100], attention networks

exploit the relationships among different positions by feature scaling or selection.

Our method instead is specially designed for the upsampling/downsampling stage

rather than refining feature maps.

4.5 Image Reconstruction and Analysis

Here we conduct a pilot image reconstruction experiment on a toy dataset to show the

effectiveness of A2U. Inspired by [71], we build sets of reconstruction experiments on

the MNIST dataset [55] and Fashion-MNIST dataset [110]. The motivation behind is to

verify whether exploiting second-order information into upsampling benefits recovering

spatial information.

The same network architecture, training strategies and evaluation metrics are used fol-

lowing [71]. Details are shown in the appendix. Since training patches are relatively

small (32 × 32), upsampling kernel sizes for CARAFE and A2U are both set to 1, and

the encoding convolution kernels in IndexNet and A2U are both set to 4. Other settings
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Figure 4.3: Overview of our matting framework. The focus of this work is on the
upsampling stages.

keep the default ones. We apply ‘static-pw-cw’ A2U here because it is the same as Holis-

tic IndexNet if letting convolution results of U to be all ones. We hence add a sigmoid

function after U to generalize IndexNet. To avoid extra layers, we apply max-pooling

to downsampling stages to obtain high-resolution layers when validating IndexNet and

A2U. Reconstruction results are presented in Table 4.1.

As shown in Table 4.1, upsampling operators informed by features (max-unpooling,

CARAFE, IndexNet, and A2U) outperform the operators guided by spatial distances

(nearest, bilinear, and bicubic). Moreover, learning from high-resolution features matter

for upsampling, among which, learning-based operators (IndexNet, A2U) achieve the

best results. Further, it is worth noting that, A2U performs better than IndexNet with

even fewer parameters. From these observations, we believe in upsampling: 1) high-

resolution features are beneficial to extract spatial information, and 2) second-order

features can help to recover more spatial details than first-order ones.

4.6 Experiments and Discussions

Here we evaluate A2U on deep image matting. This task is suitable for assessing the

quality of modeling pairwise relations.

Network Architecture. Similar to [60], our baseline network adopts the first 11 layers

of the ResNet34 [41] as the encoder. The decoder consists of residual blocks and up-

sampling stages. The In-Place Activated BatchNorm [83] is applied to each layer except

the last one to reduce GPU memory consumption during the training stage. As shown

in Fig. 4.3, the overall network follows the UNet architecture [82] with ‘skip’ connec-

tion. To apply A2U to upsampling, we replace the upsampling operations in the decoder

with A2U modules. Specifically, we learn upsampling kernels from the skipped features.

If A2U is used in both upsampling and downsampling stages, we change all 2-stride

convolution layers in the encoder to be 1-stride and implement paired downsampling

and upsampling operations, respectively, by learning upsampling/downsampling kernels

from the modified 1-stride feature layer.
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Upsample SAD MSE Grad Conn # Params

Nearest 37.51 0.0096 19.07 35.72 8.05M
Bilinear 37.31 0.0103 21.38 35.39 8.05M
CARAFE 41.01 0.0118 21.39 39.01 +0.26M
IndexNet 34.28 0.0081 15.94 31.91 +12.26M

A2U (static-pw-cw) 36.36 0.0099 21.03 34.40 +0.10M
A2U (static-cw) 35.92 0.0098 20.06 33.68 +26K
A2U (hybrid-cw) 34.76 0.0088 16.39 32.29 +44K
A2U (hybrid-cs) 36.43 0.0098 21.24 34.11 +19K
A2U (dynamic-cw) 36.66 0.0094 18.60 34.62 +0.20M
A2U (dynamic-cs) 35.86 0.0095 17.13 33.71 +20K
A2U (dynamic-cs-d) 33.13 0.0078 17.90 30.22 +38K

A2U (dynamic-cs-d)† 32.15 0.0082 16.39 29.25 +38K

Table 4.2: Results of different upsampling operators on the Composition-1k test set
with the same baseline model. † denotes additional normalization and nonlinearity after
the encoding layers of U and V. The best performance is in boldface.

Datasets. We mainly conduct our experiments on the Adobe Image Matting dataset [113].

Instead of compositing each foreground with fixed 100 background images chosen from

MS COCO [65], we randomly choose the background images in each iteration and gen-

erate the composition images on-the-fly.

We also evaluate our method on the alphamatting.com benchmark [81]. This online

benchmark has 8 unique testing images and 3 different trimaps for each image, providing

24 test cases.

Further, we report results on the recently proposed Distinctions-646 dataset [80]. It has

596 foreground objects in the training set and 50 foreground objects in the test set. We

generate the training data and the test set following the same protocol as on the Adode

Image Matting dataset.

Implementation Details. Here we describe training details on the Adobe Image

Matting dataset. The 4-channel input concatenates the RGB image and its trimap. We

mainly follow the data augmentation of [60]. Two foreground objects are first chosen

with a probability of 0.5 and are composited to generate a new foreground image and

a new alpha matte. Next, they are resized to 640 × 640 with a probability of 0.25.

Random affine transformations are then applied. Trimaps are randomly dilated from

the ground truth alpha mattes with distances in the range between 1 and 29, followed

by 512×512 random cropping. The background image is randomly chosen from the MS

COCO dataset [65]. After imposing random jitters to the foreground object, the RGB

image is finally generated by composition.

The backbone is pretrained on ImageNet [26]. Adam optimizer [52] is used. We use

the same loss function as [113, 72], including alpha prediction loss and composition loss

computed from the unknown regions indicated by trimaps. We update parameters for 30
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Method kup SAD MSE Grad Conn

A2U (hybrid-cw) 1 37.74 0.0104 22.07 35.91
A2U (hybrid-cw) 3 34.76 0.0088 16.39 32.29
A2U (hybrid-cw) 5 35.99 0.0093 17.96 33.90
A2U (dynamic-cs) 1 36.06 0.0098 17.25 33.95
A2U (dynamic-cs) 3 35.86 0.0095 17.13 33.71
A2U (dynamic-cs) 5 37.40 0.0096 18.28 35.50

Table 4.3: Ablation study of upsampling kernel size on the Composition-1k test set.

epochs. Each epoch has a fixed number of 6000 iterations. A batch size of 16 is used and

BN layers in the backbone are fixed. The learning rate is initialized to 0.01 and reduced

by ×10 at the 20-th epoch and the 26-th epoch, respectively. The training strategies on

the Distinction646 dataset are the same except that we update the parameters for only

25 epochs. We evaluate our results using Sum of Absolute Differences (SAD), Mean

Squared Error (MSE), Gradient (Grad), and Connectivity (Conn) [81].

4.6.1 The Adobe Image Matting Dataset

Ablation Study on Alternative Implementations. Here we verify different im-

plementations of A2U on the Composition-1k test set and compare them with existing

upsampling operators. Quantitative results are shown in Table 4.2. All the models

are implemented by the same architecture but with different upsampling operators. The

‘nearest’ and ‘bilinear’ are our direct baselines. They achieve close performance with the

same model capacity. For CARAFE, we use the default setting as in [100], i.e., kup = 5

and kencoder = 3. We observe CARAFE has a negative effect on the performance. The

idea behind CARAFE is to reassemble contextual information, which is not the focus of

matting where subtle details matter. However, it is interesting that CARAFE can still

be useful for matting when it follows a light-weight MobileNetv2 backbone [71]. One

possible explanation is that a better backbone (ResNet34) suppresses the advantages of

context reassembling. We report results of IndexNet with the best-performance setting

(‘depthwise+context+nonlinear’) in [72, 71]. The upsampling indices are learned from

the skipped feature layers. IndexNet achieves a notable improvement, especially on the

Grad metric. However, IndexNet significantly increases the number of parameters.

We further investigate 6 different implementations of A2U and another version with

paired downsampling and upsampling. According to the results, the ‘static’ setting can

only improve the SAD and Conn metrics. The position-wise and position-shared set-

tings report comparable results, so we fix the position-shared setting in the following

‘hybrid’ and ‘dynamic’ experiments. We verify both channel-wise and channel-shared

settings for ‘hybrid’ and ‘dynamic’ models. The ‘hybrid’ achieves higher performance
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Method Norm SAD MSE Grad Conn

A2U (hybrid-cw) softmax 35.93 0.0092 17.13 33.87
A2U (hybrid-cw) sigmoid+softmax 34.76 0.0088 16.39 32.29
A2U (dynamic-cs) softmax 36.40 0.0100 17.67 34.33
A2U (dynamic-cs) sigmoid+softmax 35.86 0.0095 17.13 33.71

Table 4.4: Ablation study of normalization on the Composition-1k test set.

with channel-wise design, while the ‘dynamic’ performs better with channel-shared de-

sign. All ‘hybrid’ and ‘dynamic’ models show improvements against baselines on all

metrics, except the MSE and Grad metrics for the channel-shared ‘hybrid’ model. The

last implementation, where channel-shared ‘dynamic’ downsampling is paired with up-

sampling, achieves the best performance (at least 14% relative improvements against

the baseline) with negligible increase of parameters (< 0.5%).

Hence, while the dedicated design of upsampling operators matters, paired downsam-

pling and upsampling seems more important, at least for image matting.

Ablation Study on Upsampling Kernel Size. Here we investigate the performance

of our models with different upsampling kernel sizes. The encoding kernel size (the

kernel size of U or V) is set to ken = 5 in all matting experiments unless stated. Under

this setting, results in Table 4.3 show that kup = 3 performs the best. It is interesting to

observe that larger upsampling kernel does not imply better performance. We believe

that this is related to the encoding kernel size and the way how we generate U, V and

P. We use kup = 3 as our default setting.

Ablation Study on Normalization. In both [100] and [71], different normalization

strategies are verified, and experiments show that normalization significantly affects the

results. We thus justify the normalization choices in our A2U module here. We conduct

the experiments on the channel-wise ‘hybrid’ model and the channel-shared ‘dynamic’

model. Two normalization choices are considered: ‘softmax’ and ‘sigmoid+softmax’. It

is clear that the latter normalization works better (Table 4.4). It may boil down to the

nonlinearity introduced by the sigmoid function.

Comparison with State of the Art. Here we compare our models against other state-

of-the-art methods on the Composition-1k test set. Results are shown in Table 4.5. We

observe that our models outperform other methods on all the evaluation metrics with

the minimum model capacity. Compared with the state-of-the-art method [60], our best

model achieves 8% higher performance with only 40% model complexity. Our model

is also memory-efficient, being able to infer high-resolution images on a single 1080Ti

GPU without downsampling on the Composition-1k test set. Some qualitative results

are shown in Fig. 4.4. Our results show improved detail delineation such as the net

structure and the filament.
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Method SAD MSE Grad Conn # Params

CF [57] 168.1 0.091 126.9 167.9 -
KNN [11] 175.4 0.103 124.1 176.4 -
DIM [113] 50.4 0.014 31.0 50.8 > 130.55M
IndexNet [72] 45.8 0.013 25.9 43.7 8.15M
Ada [4] 41.7 0.010 16.8 - -
CA [43] 35.8 0.0082 17.3 33.2 107.5M
GCA [60] 35.28 0.0091 16.9 32.5 25.27M

A2U (hybrid-cw) 34.76 0.0088 16.39 32.29 8.09M
A2U (dynamic-cs) 35.86 0.0095 17.13 33.71 8.07M
A2U (dynamic-cs-d) 32.15 0.0082 16.39 29.25 8.09M

Table 4.5: Benchmark results on the Composition-1k test set. The best performance
is in boldface.

RGB Trimap Ground Truth Closed Form KNN

DIM IndexNet GCA Baseline Ours

RGB Trimap Ground Truth DIM IndexNet GCA Baseline Ours

Figure 4.4: Qualitative results on the Composition-1k test set. The methods in
comparison include Closed-Form Matting (CF) [57], KNN Matting [11], Deep Image
Matting (DIM) [113], IndexNet Matting [72], GCA Matting [60], our baseline, and our
method.

Gradient Error
Average Rank Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net

Overall S L U L U L U L U L U L U L U L U L U
Ours 6.3 5.6 3.3 10.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.4 1.3 1.9 0.7 1.7 0.6 0.6 0.3 0.4
Ada [4] 7.8 4.5 5.6 13.3 0.2 0.2 0.1 0.4 0.2 0.2 0.1 0.3 1.4 2.3 0.6 0.9 1 0.9 0.4 0.4
GCA [60] 8 8.4 6.6 9.1 0.1 0.2 0.1 0.3 0.2 0.2 0.2 0.3 1.6 1.9 0.8 1.4 0.7 0.6 0.4 0.4
CA [43] 9.1 10.8 9.8 6.8 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 1.5 1.8 1.3 1 1.1 0.9 0.4 0.4

Table 4.6: Gradient errors on the alphamatting.com test set. The top-4 methods are
shown. The lowest errors are in boldface.

4.6.2 The alphamatting.com Benchmark

Here we report results on the alphamatting.com benchmark [81]. We train our model

with all the data in the Adobe Matting dataset and test it on the benchmark. As shown

in Table 4.6, our method ranks the first w.r.t. the gradient error among all published

methods. We also achieve comparable overall ranking compared with AdaMatting [4]
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Method SAD MSE Grad Conn

CF* [57] 105.73 0.023 91.76 114.55

KNN* [11] 116.68 0.025 103.15 121.45

DIM* [113] 47.56 0.009 43.29 55.90

Baseline-Nearest 25.03 0.0106 13.85 24.41
A2U (hybrid-cw) 24.08 0.0104 13.53 23.59
A2U (dynamic-cs) 24.55 0.0107 14.51 23.89
A2U (dynamic-cs-d) 23.20 0.0102 12.39 22.20

Table 4.7: Benchmark results on the Distinctions-646 test set. The best performance
is in boldface. ∗ denotes results cited from [80].

under the SAD and MSE metrics, suggesting our method is one of the top performing

methods on this benchmark.

4.6.3 The Distinction-646 Dataset

We also evaluate our method on the recent Distinction-646 test set. In Table 4.7, we

report results of the three models performing the best on the Composition-1k dataset

and also compare with other benchmarking results provided by [80]. We have two

observations: 1) our models show improved performance against the baseline, which

further confirms the effectiveness of our A2U; 2) Our models outperform other reported

benchmarking results by large margins, setting a new state of the art on this dataset.

4.7 Conclusion

Considering that affinity is widely exploited in dense prediction, we explore the feasibility

to model such second-order information into upsampling for building compact models.

We implement this idea with a low-rank bilinear formulation, based on a generalized

mathematical view of upsampling. We show that, with negligible parameters increase,

our method A2U can achieve better performance on both image reconstruction and image

matting tasks. We also investigate different design choices of A2U. Results on three

image matting benchmarks all show that A2U invites a significant relative improvement

and also state-of-the-art results. In particular, compared with the best performing image

matting network, our model achieves 8% higher performance on the Composition-1k test

set, with only 40% model capacity. For future work, we plan to extend A2U to other

dense prediction tasks.
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4.8 Appendix

4.8.1 Network and Training Details of Image Reconstruction

We denote C(k) to be a convolution layer with k-channel output and 3×3 filters (stride

is 1 unless stated), followed by BatchNorm and ReLU, and denote Dr a downsampling

operator with a ratio of r, and denote Ur an upsampling operator with a ratio of r.

We build the network architecture as: C(32)-D2-C(64)-D2-C(128)-D2-C(256)-C(128)-

U2-C(64)-U2-C(32)-U2-C(1).

The image reconstruction experiments are implemented on the MNIST dataset [55] and

Fashion-MNIST dataset [110]. They both include 60, 000 training images and 10, 000

test images. During training, the input images are resized to 32 × 32, and `1 loss is

used. We use the SGD optimizer with an initial learning rate of 0.01. The learning

rate is decreased by ×10 at the 50-th, 70-th, and 85-th epoch, respectively. We update

the parameters for 100 epochs in total with a batch size of 100. The evaluation metrics

are Peak Signal-to-Noise Ratio (PSNR), Structural SIMilarity (SSIM), Mean Absolute

Error (MAE) and root Mean Square Error (MSE).

4.8.2 Analysis of Complexity

Here we summarize the model complexity of different implementations of A2U in Ta-

ble 4.8. We assume that the encoding kernel size is k × k, the upsampling kernel size

is s × s, and the channel number of feature map X is C. Since C is much larger than

k and s, A2U generally has the complexity: dynamic cw > hybrid cw > static cw >

dynamic cs > hybrid cs > static cs.

Model Type # Params
static cw 4× s× s+ 2× k × k × C
static cs 4× s× s+ 2× k × k
hybrid cw 4× s× s× C + 2× k × k × C
hybrid cs 4× s× s× C + 2× k × k
dynamic cw 4× s× s× C + 2× C × C
dynamic cs 4× s× s× C + 2× C

Table 4.8: Analysis on the complexity of A2U. ‘cw’: channel-wise, ‘cs’: channel-shared

4.8.3 Qualitative Results

We show additional qualitative results on the alphamatting.com benchmark [81] in

Fig. 4.5. 4 top-performing methods are visualized here. Since all these methods achieve
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GCAAda Context-Aware OursRGB Trimap

GCAAda Context-Aware OursRGB Trimap

GCAAda Context-Aware OursRGB Trimap

Figure 4.5: Qualitative results on the alphamatting.com test set. The methods in
comparison include AdaMatting [4], GCA [60], Context-Aware [43], and our method.

good performance, and their quantitative results on the benchmark are very close, it

is difficult to tell the obvious difference in Fig. 4.5. It worth noting that, however, our

method produces better visual results on detailed structures, such as gridding of the net,

and leaves of the pineapple.

We also show qualitative results on the Distinction-646 test set [80] in Fig. 4.6. Since no

implementation of other deep methods on this benchmark is publicly available, we only

present the results of our baseline and our method here to show the relative improve-

ments. According to Fig. 4.6, our method produces clearly better predictions on highly

transparent objects such as the bubbles.

RGB Trimap Ground Truth Baseline Ours

RGB Trimap Ground Truth Baseline Ours

RGB Trimap Ground Truth Baseline Ours

Figure 4.6: Qualitative results on the Distinction-646 test set. The methods in com-
parison include the baseline and our method.
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Chapter 5

Boosting Robustness of Image

Matting with Context Assembling

and Strong Data Augmentation

Chapter 3 and chapter 4 consider indices and affinity properties of matting, respectively,

and incorporate them into the upsampling stages. They promise efficient models with

competitive results on benchmarks. Similarly, their concurrent deep image matting

methods have achieved increasingly better results on benchmarks (e.g., Composition-

1k/alphamatting.com). However, the robustness, including robustness to trimaps and

generalization to images from different domains, is still under-explored. To fill this

gap, in this chapter, we propose an image matting method that achieves higher robust-

ness (RMat) via multilevel context assembling and strong data augmentation targeting

matting. Specifically, we first build a strong matting framework by modeling ample

global information with transformer blocks in the encoder and focusing on details in

combination with convolution layers as well as a low-level feature assembling attention

block in the decoder. Then, based on this strong baseline, we analyze current data

augmentation and explore simple but effective strong data augmentation to boost the

baseline model and contribute a more generalizable matting method. Compared with

previous methods, the proposed method not only achieves state-of-the-art results on the

Composition-1k benchmark (11% improvement on SAD and 27% improvement on Grad)

with a smaller model size, but also shows more robust generalization results on other

benchmarks, on real-world images, and also on varying coarse-to-fine trimaps with our

extensive experiments.
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SIMGCAIndexNet FBA CA+DA Ours

Figure 5.1: Matting results on real-world images. From the second column to right
are results of IndexNet [72], GCA [60], SIM [97], FBA [32], CA+data augmentation
(DA) [43] and our method, respectively. Note that, all the methods are trained with
the DIM [113] dataset (except SIM is trained with the SIMD [97] dataset). They are
comparable on benchmark images, while presents varying results on real-world images.
Our method shows better generalization ability.

5.1 Introduction

With recent success of deep learning, deep matting methods [113, 72, 43, 60, 22,

97, 32] achieve promising results on benchmarks such as Composition-1k [113] and

alphamatting.com [81]. While increasingly higher accuracy have been promised on

benchmarks, due to the limited training/test data, robustness of these methods is still

under explored.

First, robustness to the trimap is important for a matting algorithm. In real applications,

trimaps are labeled by users, with unpredictable precision of unknown regions. However,

as shown in Fig. 5.2, existing matting methods [97, 32] are sensitive to the shape/size of

the given trimap so that it requires users’ more time to accurately brush the trimap. A

main reason why existing methods are sensitive to the precision of trimap is they focus

more on detailed cues, where robustness to trimap with varing precision, which relies

more on context information, is less cared about. One possible solution is to optimize

the trimap to be a more detailed one. This was proposed in [4], where an extra branch

was used to generate a more precise trimap. Though multi-task learning is leveraged in

this method to adapt the trimap, its context modeling is still limited, which restricts its

robustness in applications. Therefore, we wonder whether it is possible to enhance the

context modeling ability (robustness) of a matting algorithm with a simpler and more

effective approach.

Meanwhile, it has been known that deep matting models trained on synthetic data under-

take the risk of poor generation to real-world domains [43, 97, 119] (Fig. 5.1). However,

due to the difficulty of obtaining ground-truth alpha matte annotations for real-world

images, only synthetic datasets are available to train the matting algorithms, so some

works attempted to narrow the domain gap. For example, [43, 119] leverage extra data

augmentation to adapt the models to real-world images, while significant performance
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degradation on the synthetic benchmark happens at the same time. Although better

prediction on real-world images is appreciated, it is desirable that the model can be

generalized to broader scenes without sacrificing too much performance on images from

one domain such as the benchmark data, because it is hard to confirm which domain

a test image comes from, and not to mention that the real-world test images in [43,

119] can only cover a tiny part of real scenes. Therefore, a model showing better domain

generalization ability is in demand.

Motivated by these demands, we present a more robust matting method (RMat), which

achieves higher robustness to diverse trimap precision and better generalization to vari-

ous domains. In detail, two steps are designed. The first step is to build a strong baseline

model with multilevel context assembling. It is implemented by combining transformer

blocks with convolution layers, where global context is learned via self-attention mod-

ules and local context is emphasized by convolution layers. Considering the uniqueness

of matting that needs local context information and original test resolutions to cap-

ture details, we explore designs and implementations aiming at this task to build an

efficient model. Further, founded on this strong baseline model, we investigate strong

data augmentation for matting. We analyze the problems behind current augmentation

and propose strong augmentation strategies specifically for matting. Finally, to verify

robustness of the model, a series of experiments and visualizations are carried out in

comparison with state-of-the-art methods.

In summary, our main contributions are: 1) A strong matting framework with multilevel

context assembling; 2) Strong augmentation strategies targeting matting; 3) Designs of

experiments and visualizations to verify generalization capability of matting models; 4)

State-of-the-art results on benchmarks (w/ and w/o fitting the training sets), higher

robustness to varying trimap precision, and better generalization to real-world images.

5.2 Background

Context in Deep Image Matting. Among recent state-of-the-art deep matting meth-

ods [43, 60, 72, 22], context and dynamic networks are two vital and correlated com-

ponents. The context includes both global context and local context. Global context

intuitively benefits better recognition of the foreground object. It motivates studies on

extra context learning modules [43, 60, 68]. It is also one of the reasons behind using

ASPP or PPM module in recent methods [72, 32, 22, 97]. Local context instead pro-

motes detail capture by caring about correlations within a local region. The convolution

operations or dynamic kernels learned from local regions [72, 22] model local context
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RGB Trimap SIM FBA Ours w/o SA Ours w/ SA

Figure 5.2: Visual results on real-world images showing robustness of methods. The
methods in comparison are SIM [97], FBA [32], and our method w/o and w/ Strong
Augmentation (SA), respectively. The first two rows are results of the same RGB image
with different trimaps. Our methods are more robust to various trimap precision. In
the third row, our model using SA captures better details. The last row presents the
benefit of modeling global context: the bridge component on the left top side is apart
from the main body of the bridge, which is recognized as foreground in SIM and FBA.
Our method, however, distinguishes it from the foreground human clearly thanks to
the context assembling. Best viewed by zooming in.

into the network. On another side, dynamic networks were introduced to matting [72,

22, 60] to enlarge the model capacity. They also benefit the network in combination

with the context assembling [72].

Since we aim for a more robust matting method, which needs multilevel context in-

formation as well as ample model capacity, the first step is taking both context and

dynamic networks into consideration efficiently. We show that it is achievable by com-

bining transformer blocks and convolution layers. We investigate various designs and

also provide our insights into them. Considering the lack of training data and a relative

large capacity of our model, we study strong data augmentation strategies to prevent

overfitting the training data and also generalize the model better.

Domain Generalization. Domain generalization aims at learning better representa-

tions that can be transferred to unseen domains. There are many potential solutions,

such as data augmentation [126, 114, 121], meta learning [31, 58], and adversarial train-

ing [33, 73]. In deep matting, since only synthetic training data is available, the trained
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models usually suffer from poor generalization. They may work well on specific domains,

such as the synthetic ones similar to the training set, but show obvious decreasing per-

formance when applied to another domain, as the examples in Fig. 5.1. Extra data

augmentation [43, 119] has been applied to adapt models to real-world images, but they

consider limited cases only, such as the resolution gap between the foreground object

and background, which may bias the models to those images. We may observe it from

Table 5.5.

Therefore, we move a step further by rethinking strong data augmentation for matting.

We first analyze why current extra augmentation deteriorates the benchmark perfor-

mance, then propose strong augmentation strategies targeting matting. Our goal is to

prevent the model overfitting the synthetic training data and help them generalize better

to real-world images.

5.3 A Strong Matting Framework with Context Assem-

bling

As noted in conventional sampling-based matting [101, 88] and propagation-based mat-

ting [57, 11], both nearby and long-distance pixels contribute to alpha prediction de-

pending on their correlations. In deep models, the correlations are related to context.

Existing deep matting methods attempt to model contextual attention [60] or extra con-

text information [43] in the network, while the global context is still under explored. This

may limit their performance on complex images such as Fig. 5.2. In order to assemble

multilevel context information, including global context, we build a baseline combining

transformer blocks and convolution layers. Designs of the framework are detailed below:

Encoder Design. As shown in Fig. 5.3, the encoder has two branches: a transformer-

based branch modeling global context and a convolution-based branch supplementing

low-level information for details. Driven by recent vision transformers [28, 125, 102, 112],

we use a 32-stride pyramid vision transformer backbone to obtain hierarchical features.

Since matting models do inference with various original input resolutions, fixed position

embedding is unsuitable for the application. We therefore take advantages of [112],

where fixed position embedding is replaced with overlapped convolutions. Due to the

large capacity of the transformer blocks, only 2-stride convolution layers are used in

the convolution-based branch to form 8-stride. We use two small backbones in [112]

(mit-b1 and mit-b2) because of the limited training data for matting. Finally, two

encoder architectures with different capacities (E1, E2) are built. BiseNetV2 [117] also

uses multiple branches in the encoder for segmentation. Different from our purpose on
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Figure 5.3: Model architecture of our framework.

recovering missing details, [117] aims to combine high-level and low-level information

in the encoding stage, to balance accuracy and efficiency.

Decoder Design. Various decoder designs [4, 23, 119, 60, 72, 22] have been studied in

matting models. As the bridge to recover resolutions and capture details, the decoder

matters for matting. For instance, previous methods applied feature skip [72], attention-

guided refinement [60] or dynamic upsampling [22] to build functional matting decoders

aiming at richer details. As the first matting method applying transformers, and con-

sidering the importance of the decoder, we investigate an efficient decoder design for our

framework.

In general, options for a decoder, in order of decreasing receptive field size, include trans-

former layers, convolution layers, and MLP layers. Since the transformer branch in the

encoder promises a large capacity and global reception field, and to reduce computation

as well, we only consider using MLP layers and convolution layers in the basic decoder.

These also work well to combining multilevel context information. As a result, several

baseline models with different decoders are investigated as listed in Table 5.2.

Feature Skip Design. Skip information from encoder to decoder has been widely

adopted in deep matting methods [72, 60, 32, 97]. We categorize the skip informa-

tion into two sources: 1) the transformer branch of the encoder (TSkip), where feature

maps with different resolutions are skipped to the decoder after MLP/convolution lay-

ers. These feature maps transport abundant global information while recovering the

resolution. Since the transformer branch starts from 1
4 resolution, some details may be

missing at the initial downsampling stage, so we use 2) another source of skip informa-

tion learned in the convolution branch (LSkip).

Low-Level Feature Assembling Attention Block (LFA) Design. Inspired by [60,

22], where low-level feature maps assist on refining decoder features, we explore efficient
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Figure 5.4: (a) A comparison between images before and after DA (Re-JPEG, Gaus-
sian Blur). The augmented image loses its structure and does not match the ground
truth. (b) A comparison between B3 and B2 (Table 5.2). The hairs in B2 are blurred.

low-level feature assembling using a transformer block. It can be easily extended from

the transformer block in the encoder . Let Attn(Q,K, V ) denotes the self-attention

operation in the transformer block, the feature fusion attention then can be represent

by Attn(flow, flow, fd), where flow is the skipped feature from the encoder and fd is the

feature in the decoder to be refined. Only one LFA block is added after the 1
4 resolution

decoder layer as noted in Fig. 5.3 in our experiments to restrict the computation. We

observe introducing this block further improves the accuracy.

5.4 Domain Generalization and Data Augmentation for

Image Matting

As training images for matting are created using composition, it inevitably results in

generalization problems on real-world images. Also, it is noticed that large-capacity

transformer-based models may encounter the overfitting problem [107, 25], especially

when the dataset is small. Matting datasets [113, 80, 97], unfortunately, have limited

sizes. They usually use only hundreds of foreground images to generate tens of thousands

of synthetic training data, so overfitting is a potential problem. To handle this issue, we

study strong augmentation (SA) for better generalization.

Targeting the domain gap between synthetic data and real-world images, extra data

augmentation (DA) was proposed [43, 119]. It mainly includes Re-JEPG and Gaussian

blur. Experiments in [43, 119] show DA improves results on real-world images, but

deteriorates the performance on the benchmark significantly, as shown in Table 5.4 (CA

vs. CA+DA). Therefore, SA firstly needs to overcome the performance degradation on

the benchmark.
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DA Modified α SAD Grad
32.65 18.13

X 35.79 20.16
X X 34.00 20.12

Table 5.1: DA using different ground truths. This toy experiment is trained with a
batch size of 32, 45k iterations.

5.4.1 Rethinking Domain Generalization and Gaps

Why Current Extra Data Augmentation (DA) Deteriorates Performance on

Benchmarks. An example of using Re-JPEG and Gaussian blur is shown in Fig. 5.4a.

As observed, some background pixels mix values with foreground pixels after augmen-

tation. Their alpha values therefore change from 0 to a value in range (0, 1). This kind

of alpha value blending also exists in transparent regions and in some foreground pixels

close to the background. In previous works [43, 119], however, the same alpha ground

truths are used after DA, which violates the matting equation. The image after augmen-

tation loses the structure and does not match the alpha ground truth any more. Using

these image-alpha pairs for training could mislead the network to wrong predictions.

Hence, we argue it is at least one of the main reasons behind the performance deteriora-

tion. To verify this assumption, we carry out a toy-level experiment on DIM. By using

Gaussian blur and Re-JPEG with the possibility 0.25 for each as DA, two models are

trained: 1) a model trained with DA using original alpha ground truths; 2) a model

trained with DA using modified alpha ground truths generated by applying the same

augmentation as was applied to the RGB image. To ease the difficulty, only L1 alpha

prediction loss is applied and fewer training iterations are used. Other training details

match the main experiments, as detailed in Section. 5.5. As present in Table 5.1, DA

makes the errors higher, and adjusting the ground truth slightly relieves the problem.

Hence, it is at least reasonable to claim that modification of ground truth matters for

using DA. The correct ground truth, however, is hard to obtain.

What are the Domain Gaps for Matting. During the data loading stage, we assume

the composition process satisfies the linear Equation:

Ii = αiFi + (1− αi)Bi . (5.1)

As a result, no matter how the foreground and the background have been processed

individually, the image still satisfies the linear equation after the composition. Under

this assumption, what are the main domain gaps for matting?

1) Complexity of Surrounding Context. For example, the third example in Fig. 5.2 is

a challenging because it is rarely found in the synthetic datasets. 2) Source of Im-

ages. In real-world images, foreground and background are from the same source, while
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this condition is not met in synthetic data. There could be many differences between

them: brightness, saturation, sharpness, noise level, etc. 3) Manual Operations During

Photography and Modifications Made to the Images. For instance, unfocused bound-

aries, blurred regions, mosaic generated by image compression, etc. They rarely exist in

synthetic datasets.

In this work, we rely on the network to deal with the context domain gap by assembling

multilevel context information. As for remaining feature-level gaps, we investigate simple

but efficient strong augmentation strategies to generalize the algorithm to real-world

images better.

5.4.2 Strong Data Augmentation for Matting

Driven by above analysis, we study SA for matting. The augmentations are divided into

three categories:

1) Linear Pixel-Wise Augmentation. By pixel-wise, we mean no interpolation

happens on the image. Linear denotes the operations that can be linearly represented.

It includes linear contrast, brightness adjustment, noise, etc. Only pixel-level changes

happen without any information exchange among different pixels and even different

channels. If we look at one channel of location i on image I, it can be formulated by:

I ′i = aIi + b

= a [αFi + (1− α)Bi] + [αb+ (1− α) b]

= α (aFi + b) + (1− α) (aBi + b)

, (5.2)

where a and b are constant parameters for the linear transformation. According to this

equation, linear pixel-wise augmentation obeys Equation (5.1) no matter it happens on

Ii, Fi or Bi. Augmentation on an image can also be viewed as processing the foreground

and background individually. It is natural to extend this equation by:

I ′i = α (aFi + b) + (1− α) (mBi + n) , (5.3)

where different linear transformations happen on the foreground and the background.

2) Nonlinear Pixel-Wise Augmentation. In the opposite to linear operations, there

are also non-linear augmentations, such as gamma correction, hue/saturation adjust-

ment, etc. Due to their nonlinear nature, Equation (5.1) is violated if the augmentations

happen on I.
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3) Region-Wise Augmentation. Region-Wise augmentation means operations ap-

plied using multiple pixels. For instance, blur, jpeg compression, etc. After interpola-

tions on I, Equation (5.1) is violated, which needs alpha ground truth to be modified

accordingly.

Based on this categorization, we propose strong data augmentation strategies:

i) Augment the Foreground Alone (AF). Motivated by the random jitter in [60],

augmenting foreground alone is effective and obeys the composition equation. The

ground truth does not need to be modified no matter which augmentation is taken

because it happens before composition.

ii) Augment the Foreground and the Background Individually (AFB). It is an

extended version of option i) and inspired by Equation (5.3). Through augmenting fore-

ground and background individually before composition, the linear composition equation

is still satisfied, the ground truth alpha matte hence does not need to be modified no

matter which augmentation is taken.

iii) Augment the Composited Image (AC). This strategy can be further divided

into two sub types. If linear pixel-wise augmentation is applied, the composition equation

is satisfied as Equation (5.3). Using other strategies instead violates the equation, where

a new ground truth is needed. Due to the expense of obtaining the real ground truth, we

propose to generate pseudo label to facilitate the training. The strategy is to predict the

pseudo label using the parameters from the last training iteration by rotating or channel-

shuffling the input to generate a new training sample. We anticipate this operation

promotes the network to learn features of the augmented images without sacrificing

accuracy.

5.5 Experiments and Discussions

5.5.1 Implementation Details

Our models are trained on the Adobe Image Matting dataset [113] only. We generate

the training samples using background images randomly selected from MS COCO [65],

and use the same rules as [113] to produce test images using background images selected

from Pascal VOC [29]. The evaluation metrics are commonly-used Sum of Absolute

Differences (SAD), Mean Squared Error (MSE), Gradient (Grad) error, and Connectivity

(Conn) error. Implementation of [113] is used.

Training Details. Our baseline models follow the dataloader pipeline in [60]. To be

specific, the 4-channel input concatenates the RGB image and the trimap. The RGB
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No. Encoder Decoder TSkip LSkip #Params SAD(↓) MSE(↓) Grad(↓) Conn(↓)
B1 E1 MLP MLP 13.6M 39.55 0.0102 24.22 37.35
B2 E1 Conv MLP 15.4M 29.85 0.0063 13.04 25.61
B3 E1 Conv MLP X 15.8M 28.94 0.0055 12.75 24.66
B4 E1 Conv MLPConv X 18.2M 29.99 0.0064 15.98 25.86
B5 E1 MLPDW MLP X 14.0M 29.79 0.0062 14.18 25.78
B6 E1 MLPDW MLPConv X 16.1M 31.45 0.0065 15.59 27.65
B7 E2 Conv MLP X 26.8M 26.11 0.0048 10.59 21.38
B8 E2 Conv MLPConv X 29.2M 25.66 0.0045 10.40 20.90
B9 E2 MLPDW MLP X 25.1M 28.42 0.0055 12.98 24.15
B10 E2 MLPDW MLPConv X 27.2M 30.66 0.0064 14.26 26.88

Table 5.2: Ablation study on decoder, feature skip designs on the Composition-1k
test set. ‘MLPDW’ denotes ‘MLP+DepthWise Conv’.

No. LFA llap lg lgp #Params SAD Grad
- 15.8M 28.94 12.75
- X 15.8M 27.64 10.68
- X 15.8M 27.71 10.23
- X 15.8M 27.00 9.50

N3 X X 15.8M 25.86 9.69
- X 16.8M 27.67 12.44

M3 X X X 16.8M 25.70 9.50
- 26.8M 26.11 10.59

M7 X X X 27.9M 25.00 9.02

Table 5.3: Ablation study on the LFA module and loss functions on the Composition-
1k test set. The upper part(containing N3/M3) and the lower part(containing M7)
are based on B3 and B7, respectively.

image is generated on-the-fly through the following basic augmentation: foreground

random affine, foreground random combination, random resize, random crop, foreground

random jitter, and composition. More details are explained in [60]. 512 × 512 patches

are finally generated for training. We initialize the weights of the mit backbones using

the pretrained weights on ImageNet-1K[26] from [112] for the transformer branch. Other

parameters are initialized with Xavier. The training stage is optimized by AdamW [70]

optimizer using initial learning rate 6×10−4 with cosine decay. The warm up stage takes

1000 iterations. Without specially clarifying, we update parameters for 90k iterations

with a batch size of 32. Batch size 64 and 120k iterations are used for final benchmark

results, as detailed in Table 5.4 and 5.5.

Loss Functions. Our baseline models only use L1 alpha prediction loss and composition

loss as [72]. Since other loss functions, such as laplacian loss (llap) and gradient loss (lg),

are applied in previous pure convolution-based methods [32, 43], here we validate their

effects in our framework. Besides using the usual llap and lg, we define a new gradient

loss with gradient penalty(lgp) for local smoothness:

lgp = ‖∇αx −∇α̂x‖1 + ‖∇αy −∇α̂y‖1
+ λ

(
‖∇αx‖1 + ‖∇αy‖1

) , (5.4)

where λ is set as 0.01 in our experiments.
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Method SAD MSE Grad Conn # Params
CF [57] 168.1 0.091 126.9 167.9 -
KNN [11] 175.4 0.103 124.1 176.4 -
DIM [113] 50.4 0.014 31.0 50.8 > 130.55M
IndexNet [72] 45.8 0.013 25.9 43.7 8.15M
CA [43] 35.8 0.0082 17.3 33.2 107.5M
CA+DA [43] 71.3 0.0236 38.8 72.0 107.5M
GCA [60] 35.28 0.0091 16.9 32.5 25.27M
A2U [22] 32.15 0.0082 16.39 29.25 8.09M
SIM [97] 28.0 0.0058 10.8 24.8 70.16M
FBA [32] 26.4 0.0054 10.6 21.5 34.69M
FBA+TTA [32] 25.8 0.0052 10.6 20.8 34.69M

M3‡ 23.98 0.0042 8.54 18.88 16.8M
M7‡ 22.87 0.0039 7.74 17.84 27.9M

Table 5.4: Benchmark results on the Composition-1k test set. The best performance
is in boldface. ‡ denotes training with a batch size of 64, 120k iterations using our SA.

5.5.2 Results on the Adobe Image Matting Dataset

Ablation Study on Model Architecture. Based on the two-branch encoder, here we

investigate designs of the decoder, the skip layer and the additional attention module.

According to the results in Table 5.2 and Table 5.3, we draw the following observations:

1) Compared with the MLP layer and the MLPDW layer, the Conv layer suits the

decoder of matting better (B1 vs. B2, B5 vs.B3, B6 vs. B4, B9 vs.B7, B10 vs. B8);

2) Skipped information from the transformer branch to the decoder can be efficiently

achieved by a simple MLP layer (B3 vs. B4, B5 vs. B6, B9 vs. B10); 3) Low-level skip

fusion is important for recovering details (B2 vs. B3, also see Fig. 5.4b); 4) Additional

low-level feature assembling attention module further improves the results (Table 5.3);

5) The advantage of larger backbone is gradually weakened with improvement on the

architecture and loss functions (B3−→M3 vs. B7−→M7 in Table 5.3).

Ablation Study on Loss Functions. Here we justify effectiveness of laplacian loss

(llap), gradient loss (lg) and the proposed gradient loss with gradient penalty (lgp) in

our framework. Results are reported in Table 5.3. Compared with using only basic loss

functions, llap, lg, and lgp all reduce the errors, and our lgp works better than normal lg.

Combining llap and lgp together builds the best prediction. We use these two losses in

the following experiments.

Comparison with State of the Art. Benchmark results on the Composition-1k are

list in Table 5.4. Our models achieve significantly better results on all the metrics. Com-

pared with a currently top-performing FBA+TTA [32] model, our method (M7‡) gains

11% improvement on SAD and 27% improvement on Grad without any augmentation

on the test images. Moreover, our method is more robust to trimap precision, as shown

in Fig. 5.2 and 5.5, and the detailed evaluations in the appendix.
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Figure 5.5: Robustness to trimap precision on AIM-500

5.5.3 Generalization on Various Benchmarks

To verify the generalization ability of matting methods to unseen domains, comparison

experiments are carried out in Table 5.5. Specifically, we test models trained merely with

the DIM dataset [113] on several different benchmarks without fitting on their training

set (except that SIM [97] is trained on SIMD [97], which has 763 foregrounds, 332 more

foregrounds than DIM). The test benchmarks include Distinction-646 [80], SIMD [97],

and AIM-500 [59]. Distinction-646 and SIMD are synthetic benchmarks, and AIM-500 is

a real-world one but with simple scenes, so none of them alone is perfect for measuring

generalization ability of a model. However, since they contain images from different

sources and various domains, it is at least reasonable to combine them together to see

how algorithms perform quantitatively on all of them, and the overall results should

reflect how well a model can adapt to diverse images to some extent. Note that, since

SIMD has only provided alpha ground truths and foregrounds until the submission, we

generate the test set following the rule of [113] and name it as SIMDour. To ensure all

the methods can be test on a normal modern graphic card, we restrict the maximum

length of the test images in SIMDour by 2000.

Ablation Study on Strong Data Augmentation. Here we investigate the SA

strategies. We either use AF, AFB alone, or combine them with AC. Specifically, the

linear pixel-wise augmentations include: linear contrast, brightness adjustment, channel

inversion/shuffling, gaussian/poisson noise, random dropout, cloud, snow, multiply, salt

and pepper ; the nonlinear pixel-wise augmentations include: gamma contrast, hue and

saturation add on, histogram equalization; and region-wise augmentations consist of

gaussian blur and jpeg compression. If AF or AFB is applied alone, we set the possibility

as 0.5 and keep the ground truths unmodified; if they are combined, possibility of each

is changed to 0.25; further, if AC is added on, we set its possibility as 0.1 when AF and

AFB do not happen, and generate pseudo labels for the augmented samples as explained

in Section 5.4 when needed. More details are in appendix. As shown in Table 5.5, both
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RGB GT SIM FBA

CA w/o DA CA w/ DA Ours w/o SA Ours w/ SA

Figure 5.6: Visual results on the AIM-500 benchmark. The methods in comparison
are SIM [97], FBA [32], CA w/o DA [43], CA w/ DA [43], Ours w/o SA, Ours w/ SA.

AF or AFB improve the AIM-500 results, especially AFB, but they also make errors on

Distinction-646, SIMDour, and Composition-1k (appendix) slightly higher. AF is more

stable on synthetic benchmarks compared with AFB. Hence, we carry out ‘AF+AFB’. It

averages the effects of AF and AFB. Based on ‘AF+AFB’, AC further improves results

on AIM-500 and keeps results on other synthetic benchmarks comparable, so we use

‘AF+AFB+AC’ as the final SA.

Comparison with State of the Art. Compared with other methods, our M3‡ ans M7‡

models achieve best performance on all three benchmarks in Table 5.5, especially with

MSE and Grad metrics. Note that, DA in [43] degrades its performance on Composition-

1k (Table 5.4), SIMDour and AIM-500 significantly, even though AIM-500 is a real-world

benchmark. Our SA instead promises comparable results on the synthetic benchmarks

and much better results on the real-world benchmark. The advantages of SA against

DA can also be noticed from visual examples in Fig. 5.1 and 5.6. Moreover, when longer

training time is taken, stable improvements are observed. The examples in Fig. 5.2

and 5.6 further verify the effectiveness of our model and SA. More visual results on

real-world images and benchmarks are shown in the appendix.

5.5.4 Results on the alphamatting.com

We show the results of M7‡ on the alphamatting.com [81] online benchmark in Ta-

ble. 5.6. Note that, SIM is trained with the SIMD training set, which has 736 fore-

grounds in the training set, while DIM only has 431 foregrounds in the training set;

GCA and A2U retrain their models with the whole DIM dataset (including both train-

ing set and test set). Our result is directly reported from M7‡ without using extra data

or fine-tuning the model, but it still achieves top-performing ranks, especially on MSE

and Grad. See the full table in the appendix.
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Method MSE Grad
overall S L U overall S L U

Ours-M7‡ 6.8 5.9 5.5 9.1 4.7 4.8 3.8 5.5
SIM [97] 7 8.1 5.5 7.4 6.9 8.5 5.9 6.5
A2U [22] 15.5 13 12.6 20.8 12.3 11.3 9.4 16.1
GCA [60] 15.3 15.1 14.5 16.4 13.7 13.6 12.5 15
CA [43] 17.6 20.9 18.6 13.3 14.6 15.8 15.5 12.6
IndexNet [72] 22.9 25.3 21.5 22 18.6 17.3 17.3 21.4

Table 5.6: Results on the alphamatting.com online benchmark.

5.6 Conclusion

We propose RMat, a matting method showing higher robustness to various trimap pre-

cision and images from different domains. The efforts behind this include a new matting

framework and strong augmentation strategies specifically designed for matting. We first

build the strong baseline by assembling multilevel context information, then analyse the

problems behind current data augmentation and design strong augmentation strategies.

To verify generalization capability of the model, we not only show visual results on real-

world images, but also design a series of evaluation experiments on several benchmarks

without fitting their training sets. Our method achieves state-of-the-art results on all

the benchmarks. We hope our work opens up more possibilities for future works on deep

matting.

Limitations There are still many hard cases, such as strong light in the background,

cannot be handled by our method. We show failure cases in the appendix. To handle

those cases, we may need to better learn the structure of the foreground objects. We

leave it as a future work.

5.7 Appendix

5.7.1 Measure of GFLOPs

We measure GFLOPs of SIM [97], FBA [32] and our method. Results are reported in

Table.5.7.

Method GFLOPs
SIM [97] 48.30
FBA [32] 30.47

M3‡ 16.62
M7‡ 22.22

Table 5.7: GFLOPs measured on a 224× 224 input.



Boosting Robustness of Image Matting with Context Assembling and Strong Data
Augmentation 85

20 25 30 35 40 45 50
Trimap Dilation Distance

20

30

40

50

60
Er

ro
r

SAD
Index
GCA
A2U
SIM
FBA
Ours

(a)

20 25 30 35 40 45 50
Trimap Dilation Distance

0.02

0.04

0.06

0.08

0.10

0.12

Er
ro

r

MSE
Index
GCA
A2U
SIM
FBA
Ours

(b)

20 25 30 35 40 45 50
Trimap Dilation Distance

10

15

20

25

30

35

40

Er
ro

r

Grad
Index
GCA
A2U
SIM
FBA
Ours

(c)

20 25 30 35 40 45 50
Trimap Dilation Distance

10

20

30

40

50

60

Er
ro

r

Conn
Index
GCA
A2U
SIM
FBA
Ours

(d)

Figure 5.7: Robustness to trimap precision on the AIM-500.

5.7.2 Robustness to Trimap Precision

We conduct evaluations on the AIM-500 with different trimap dilation distances. Meth-

ods in comparison are IndexNet [72], GCA [60], A2U [22], SIM [97], FBA [32] and our

M7‡. In detail, we generate 4 sets of trimaps using random dilation distances within

[11, 20], [21, 30], [31, 40], [41, 50], respectively. We denote them as 20, 30, 40, 50 accord-

ingly in Fig. 5.7. As shown in Fig. 5.7, our method is obviously more robust to varying

trimap precision on all the metrics.

5.7.3 Details on the Strong Data Augmentation Strategies

To supplement the content in the main text, we further detail the SA strategies in our

experiments here.
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Method SAD MSE Grad Conn
N3+AF 25.86 0.0045 9.82 21.27

N3+AFB 26.21 0.0048 9.91 21.43
N3+AF+AF 26.55 0.0050 10.45 21.93

N3+AF+AFB+AC 26.46 0.0049 9.98 21.72

Table 5.8: Generalization results on the Composition-1k.

If AF or AFB is applied alone, we set the possibility as 0.5 and keep the ground truths

unmodified; if they are combined, possibility of each is changed to 0.25; further, if AC

is added on, we set its possibility as 0.1 when AF and AFB do not happen.

Specifically, in AF and AFB, linear pixel-wise augmentation, nonlinear pixel-wise aug-

mentation and region-wise augmentation happen with a probability of 0.8, 0.1 and 0.1,

respectively. In AC, linear pixel-wise augmentation, nonlinear pixel-wise augmentation

and region-wise augmentation happen with a probability of 0.2, 0.4 and 0.4, respec-

tively. All the augmentations are randomly selected from the options list in the main

text during each operation.

5.7.4 Ablation study and extensive verification on Strong Data Aug-

mentation

We report ablation study results on SA on the Composition-1k in Table. 5.8. In consis-

tent with results in the main text, our SA produces comparable results on the synthetic

benchmarks.

We also show additional verification of SA on the A2U [22] on AIM-500 in Table. 5.9.

Method SAD MSE Grad Conn
A2U [22] 30.38 0.0307 22.60 30.69
A2U+AF+AFB+AC 19.55 0.0165 15.02 19.10

Table 5.9: Results of SA on the A2U [22] on AIM-500.

5.7.5 More Visual Results

Here we show more visual results. The visualized methods include IndexNet [72],

CA [43], GCA [60], A2U [22], SIM [97], FBA [32] and our M7‡.

Visual results on real-world images are present in Fig. 5.8 and 5.9, where Fig. 5.9 further

shows results on coarse trimaps. Our method is more robust in these real-world test

cases with coarse-to-fine trimaps.

Visual results on the AIM-500 [59] are exhibited in Fig. 5.10. Our method achieves

better results on structures such as leaves and net.
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Figure 5.8: Visual results on real-world images. Best viewed by zooming in.

5.7.6 Results on the alphamatting.com

We report results of M7‡ on the alphamatting.com online benchmark in Table. 5.10. The

methods in comparison are SIM [97], A2U [22], GCA [60], CA [43], IndexNet [72]. There

are only 8 test images in this online benchmark. It worth noting that, SIM is trained

with the SIMD training set, which has 736 foregrounds (including 360 foregrounds from

DIM) in the training set, while DIM only has 431 foregrounds in the training set; GCA

and A2U retrain their models with the whole DIM dataset (including both training set

and test set, 481 foregrounds in total) for this benchmark. Our result is directly reported



Boosting Robustness of Image Matting with Context Assembling and Strong Data
Augmentation 88

Trimap IndexNet CA+DA GCA

A2U SIM FBA Ours
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Figure 5.9: Visual results on real-world images with coarse trimaps.

from M7‡ trained with the DIM training set without using extra data or fine-tuning the

model, but it still achieves top-performing ranks.

Method SAD MSE Grad Conn
overall L U overall L U overall L U overall L U

Ours-M7‡ 6.7 5.8 8.5 6.8 5.5 9.1 4.7 3.8 5.5 12.4 13.7 7.6
SIM [97] 6.5 5.8 6.6 7 5.5 7.4 6.9 5.9 6.5 10 8.9 11.3

A2U [22] 13.3 10.6 17 15.5 12.6 20.8 12.3 9.4 16.1 27.3 28 24.3
GCA [60] 14.5 12.4 16 15.3 14.5 16.4 13.7 12.5 15 22.5 20.1 21.4
CA [43] 22.9 20.9 21 17.6 18.6 13.3 14.6 15.5 12.6 25.9 24.6 25
IndexNet [72] 19.4 18.1 18.6 22.9 21.5 22 18.6 17.3 21.4 25.5 26.4 26

Table 5.10: Results on the alphamatting.com online benchmark.
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Figure 5.10: Visual results on the AIM-500.

5.7.7 Failure Cases

Failure examples are visualized in Fig. 5.11. Our method may fail if there is strong light

in the background or there are tiny objects overlapping with the foreground object. A

possible solution is to learn the structure of the foreground objects. We leave it as a

future work.

Figure 5.11: Failure cases.
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Chapter 6

Towards Light-Weight Portrait

Matting via Parameter Sharing

Afore three chapters are about natural image matting. In this chapter, we focus on a

more specific target – portrait image matting. Traditional portrait matting methods

typically consist of a trimap estimation network and a matting network. Here, we pro-

pose a new light-weight portrait matting approach, termed parameter-sharing portrait

matting (PSPM). Different from conventional portrait matting models where the en-

coder and decoder networks in two tasks are often separately designed, here a single

encoder is employed for the two tasks in PSPM, while each task still has its task-specific

decoder. Thus, the role of the encoder is to extract semantic features and two decoders

function as a bridge between low-resolution feature maps generated by the encoder and

high-resolution feature maps for pixel-wise classification/regression. In particular, three

variants capable of implementing the parameter-sharing portrait matting network are

proposed and investigated, respectively. As demonstrated in our experiments, model

capacity and computation costs can be reduced significantly, by up to 57.8% and 40.5%

respectively with PSPM, whereas the matting accuracy only slightly deteriorates. In

addition, qualitative and quantitative evaluations show that sharing the encoder is an

effective way to achieve portrait matting with limited computational budgets, indicating

a promising direction for applications of real-time portrait matting on mobile devices.

6.1 Introduction

Selfie is taking place anywhere with the prevalence of mobile devices supporting image

acquisition and post-processing software benefiting image manipulation. Therein, image

matting plays an important role in the pre-processing of image manipulation, such as

93
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GFLOPs

Param

SADGrad

Conn

Attention-Guided

Feature-Fusion

Late-Interaction

DeepLabV3+ W. IndexNet

Figure 6.1: The model capacity (Param.), computational complexity (GFLOPs), Sum
of Absolute Differences (SAD), Gradient (Grad) and Connectivity (Conn) errors of dif-
ferent models on the Portrait-2k test set. DeepLabV3+ [10] and IndexNet [72] are cur-
rently state-of-the-art segmentation and matting networks, respectively. ‘DeepLabV3+
w. IndexNet’ is the cascaded structure implementing portrait matting without trimap
input (prior-free). ‘Late-Interaction’, ‘Feature-Fusion’ and ‘Attention-Guided’ are our
proposed light-weight prior-free portrait matting networks. Compared with the cas-
caded structure, our propositions reduce model sizes and computational complexity by
large margins with almost identical matting performance.

stylization and background editing. To improve the practicability of portrait matting, a

primary obstacle is how to eliminate costly human input while still retaining high-quality

matting at the same time. Recent work tackles this problem by introducing a trimap

estimation network specializing in prior generation and proposing new network modules

for better detail delineation of foreground. Since a high-capacity network is usually

unavoidable if directly generating prior information using a network, several methods

investigate end-to-end training or design light-weight models [45, 87, 128]. On the other

hand, to preserve details of foreground, some methods incorporate off-the-shelf matting

algorithms such as closed-form matting [57], and deep image matting [113] into their

architectures or specifically collect large-scale human matting datasets [89, 12]. Despite

many solutions exist, it remains a challenging topic about how to achieve light-weight

and high-quality deep portrait matting in a unified framework.

Our work attempts to alleviate the above dilemma. A light-weight but high-quality

portrait matting method is in demand. Since almost all existing methods generate

prior information and alpha prediction in a cascaded manner, we observe that, the

cascaded architecture (a trimap estimation network followed by a matting network) is

effective but not efficient.We hence propose to establish a new prior-free paradigm—

parameter-sharing portrait matting (PSPM), as shown in Figure 6.2. Our explorations

suggest that explicitly applying semantic segmentation to generate prior input is only

one alternative. Despite matting and segmentation networks have different outputs, they

share similar high-level features from the encoder network. This observation inspires us

to explore architectures that use the idea of parameter sharing. It is also the foundation
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of promoting the end-to-end network to be more efficient and light-weight. In particular,

built upon a recent state-of-the-art light-weight matting network [71, 72], we investigate

three alternative architectures to generate prior information from a segmentation decoder

following the shared encoder.

According to the extent of sharing parameters, three architectures are respectively

named as i) late-interaction architecture, where two decoders only communicate when

calculating the loss, ii) feature-fusion architecture, where the output of segmentation

decoder functions as the input of matting decoder and iii) attention-guided architecture,

where features of different layers are combined more compactly before passing to the

matting decoder. Since these architectures share parts of parameters of two tasks, their

complexity and parameters are reduced significantly, but with almost the same matting

performance (Figure 6.1). Overall, our main contributions are:

• We introduce the idea of parameter-sharing multi-task learning to deep portrait

matting, significantly reducing the number of parameters and computational com-

plexity;

• We investigate three alternative architectures for end-to-end prior-free portrait

matting, which achieves parameter reduction and prior information integration.

6.2 Background

Deep Portrait Matting Deep portrait matting primarily concentrates on the prior-

free paradigm and light-weight models. Shen et al. [89] propose a cascaded architecture,

consisting of a Fully Convolutional Network (FCN) [69] for generating trimaps and a

closed-form [57] matting module. Chen et al. [12] combine the models in [89] and [113],

using high-capacity PSPNet-50 [124] and DIM-VGG16 [113, 92] as the segmentation

network and the matting network, respectively. With a high-quality dataset used for

training, the proposed network can delineate great details on edges such as hair. These

methods divide portrait matting into segmentation and matting tasks.

Apart from this idea, some solutions are proposed to eliminate the necessity of prior input

in image matting. Li et al. [61] generate weakly annotated masks as the guidance of deep

image matting. Chen et al. [13] employ a boundary-aware module to refine the output

of a FCN structure for high quality portrait segmentation. Prior-free architectures in

these works suggest the possibility of expanding solutions for portrait matting. Generally

speaking, the role of prior input is to provide some annotations to ease the task.
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Parameter-Sharing Multi-Task Learning Multi-task learning is a mechanism to

share parameters in a network where multiple tasks are undertaken. It has been suc-

cessfully applied to various fields, from natural language processing [20, 27] to computer

vision [36, 37, 123]. This mechanism is expected to enhance the universality of the

network as more diverse training data may be used during training and multiple tasks

can help each other. Since each task has a certain focus, the mechanism also integrates

information from multiple views and then better guides each task-specific branch to

extract on task-specific features. For example, if one task fails to learn some features

appropriately, its counterparts are anticipated to fill the vacancy. If properly structured,

multi-task learning not only shares parameters but also benefits mutually among tasks.

The mode of parameter sharing in multi-task learning can be classified into two cate-

gories [85]: hard parameter sharing and soft parameter sharing. To be specific, hard

parameter sharing means sharing some hidden layers among tasks and keeping task-

specific output layers, while soft parameter sharing refers to the idea that each task has

its own parameters but the distances among parameters of different tasks are regular-

ized. In this work, hard parameter sharing is used to reduce redundant parameters.

We treat portrait matting as a hybrid task of segmentation and image matting for its

intuitive architecture and clear task settings, then design parameter sharing and feature

connection between two tasks.

6.3 Architecture Design

6.3.1 An End-to-End Matting Network Baseline

Following [89, 12], we build a baseline architecture that sequentially connects a seg-

mentation network and a matting network. This is an intuitive combination of two

tasks. Considering that, neither implementations of [89, 12] nor standard benchmark

results of portrait matting have been released, and this work focuses on investigating

parameter sharing mechanisms for the cascaded structure, we study different degrees of

parameter-sharing manners to reduce parameters and computation complexity based on

the baseline.Thus it is our focus to show the relative improvement against the baseline.

The segmentation network incorporated into our baseline can be chosen from a wide

variety of architectures. Here we choose DeepLabV3+ [10] with MobileNetv2 [86] as the

backbone. The matting network adopts the recently proposed IndexNet matting [72]

(IndexNet is used for short in the following sections) in view of its strong ability in

preserving edges and details. These two networks share the same light-weight backbone.

The overall framework of our baseline is shown in Figure 6.2.
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Figure 6.2: Upper: Our baseline framework for prior-free portrait matting. The
segmentation network is DeepLabV3+ [10], and the matting network is IndexNet [72].
Bottom: the framework of our PSPM.

Since DeepLabV3+ and IndexNet are two independent pre-trained models, the cascaded

network can either be directly used without updating weights of the model or be end-

to-end fine-tuned. Here we initially use fixed weights to verify the effectiveness of the

cascaded design. This architecture has been demonstrated in previous works [89, 12].

Based on the weight-fixed architecture, we investigate end-to-end training of this net-

work. We make two observations. First, since 4 channels, RGB channels plus a trimap

channel, are set as standard inputs of IndexNet, the 3-channel outputs of DeepLabV3+

are summed to 1-channel trimap to keep the structure of IndexNet:

M = Fp +
Up
2
, (6.1)

where Fp and Up are the probabilities of the foreground and unknown categories after

the softmax layer, respectively. Fp takes the form:

Fp =
eF

eF + eB + eU
, (6.2)

and Bp and Up can be derived similarly. Equation (6.1) follows the process how a

trimap is generated in natual image matting [113]. Considering that, Fp +Bp +Up = 1,

Equation (6.1) contains all the information of segmentation results without modifying

the structure of IndexNet. Second, we use the alpha prediction loss La following [113],

which is calculated in the whole image rather than only in unknown regions to optimize

both the segmentation network and the matting network. We also apply a Cross-Entropy

loss Lc to optimize the segmentation network directly. The final loss is:

loss = La + λLc , (6.3)

where λ is set to 0.1 in our experiments.
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Figure 6.3: Late-interaction parameter-sharing network.

6.3.2 Parameter-Sharing Matting Network

Both segmentation and matting networks obtain high-level semantic information in the

encoding stage. It is natural to pose the question: Can we share one encoder between

two tasks? The encoders of two tasks are of similar architectures and perform simi-

lar duties, but the decoders focus on different tasks. We therefore investigate sharing

one encoder by keeping task-specific decoder branches. Specifically, through increasing

feature connections between decoder branches, three architectures are explored.

Late-Interaction Parameter Sharing To validate the above motivation, as shown in

Figure 6.3, a straightforward solution is to share the encoder and parallelize the task-

specific decoders, among which the loss calculation of the matting decoder is assisted

by the output of the segmentation decoder. Since both encoders here use MobileNetv2

as the backbone, they can be shared with minimal modifications. The main differences

between encoders of DeepLabV3+ and IndexNet are: 1) IndexNet generates the out-

put with a downsampling factor of 32, while the downsampling factor in DeepLabV3+

is 16, and 2) DeepLabV3+ implements downsampling with stride-2 convolution, while

downsampling in IndexNet is operated by max-pooling or indices-guided pooling. To

unify these two encoders, 1) we set the output downsampling factor of the encoder to be

16 considering it is relatively simple to segment a portrait image into a three-category

trimap, and 2) we replace stride-2 convolution with stride-1 convolutions followed by

max-pooling to preserve details for matting. In terms of max-pooling, SegNet [3] uses it

in the segmentation task, and deep image matting [113] applies it to the matting task.

Unifying the encoder with max-pooling hence is appropriate for both tasks. The de-

coder of segmentation, termed SegDecoder, is identical to the one used in DeepLabV3+.

The decoder of matting, termed MatDecoder, follows IndexNet with the use of max-

unpooling. Learning indices can often improve the performance on the matting task.
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Figure 6.4: Feature-fusion parameter-sharing network.

However, using simple max-pooling and max-unpooling also allows us to explore whether

the architecture works. Since we apply max-pooling to the encoder, 5 × 5 convolution

is kept in MatDecoder because single-layer 3× 3 convolution cannot cover all the pixels

in a 2× 2 region of feature maps before unpooling.

Feature-Fusion Parameter Sharing Trimaps are usually used to be part of inputs

and guide loss calculations [113, 89, 74]. Two use cases can be categorized as prior

information and posterior information, respectively. The late-interaction network uses

posterior information only. To further introduce prior information to MatDecoder, we

investigate feature connections between two decoders. Specifically, as shown in Fig-

ure 6.4, we send the output of SegDecoder to MatDecoder as the prior information

following many matting methods in the literature.

In the late-interaction architecture, the output of SegDecoder is of the same resolution

as input. To reduce downsampling here, the feature map before the last upsampling in

SegDecoder is chosen to produce prior information for the MatDecoder. We achieve this

using Equation (6.1) and name the feature map as M 1
4

according to its resolution. M 1
4

is first passed through several convolutional layers and downsampled to 1
16 resolution,

then is concatenated with the output of the encoder (X 1
16

) to form the input of MatDe-

coder. The output of SegDecoder also assists computing the alpha prediction loss. This

architecture may be viewed as mimicking common image matting solutions by sending

information of both input and generated prior knowledge to MatDecoder. Since both

tasks affect the alpha prediction loss, they are expected to benefit each other.

Attention-Guided Parameter Sharing The feature-fusion network uses the output

of SegDecoder as prior knowledge of the matting task. However, this architecture has
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Figure 6.5: Attention-guided parameter-sharing network. The left one and the right
one are the same network shown in different manners.

SAD MSE Grad Conn

GT Trimap + IndexNet(A1) 4.62 0.0278 10.97 4.49
No Trimap + IndexNet(A2) 22.21 0.2147 21.96 22.72
A2 + posterior(A2+) 6.55 0.0590 12.03 6.42

Table 6.1: Results on the Portrait-2k dataset, to verify the effectiveness of Prior.

more parameters than the late-interaction design. It motivates us to investigate a light-

weight design. As shown in Figure 6.5, this can be achieved by incorporating prior

information generated by SegDecoder to the matting branch more efficiently.

The use of prior knowledge in deep matting methods is closely related to the attention

mechanism—pixels that belong to the same category should be treated similarly. It

may introduce differences to foreground, background and unknown categories in con-

volutional layers. To verify this mechanism, we remove trimap from the input of the

IndexNet baseline and then train the network with only trimap-guided loss (A2+). Two

counterparts of A2+ are implemented. They are weight-fixed IndexNet with/without

the trimap input (A1/A2), respectively. A comprehensive comparison is shown in Ta-

ble 6.1. According to Table 6.1, the network with prior input achieves superior results

over the one without prior input (A1 vs. A2). It suggests that prior input plays an

important role in deep matting networks. However, after training A2 with posterior

information guidance, A2+ overwhelms A2 although it is still slightly weaker than A1.

We conclude that the posterior information may replace the prior input. Although prior

and posterior information are both used in certain deep matting methods, parts of their

functions are overlapped, at least in portrait matting. Considering an alternative per-

spective, can posterior be removed? The work of [89] points out posterior knowledge is

an essential guidance for loss calculation. From this point of view, posterior is necessary.

In feature-fusion network, M 1
4

is downsampled to 1
16 resolution before concatenating

with feature maps from the encoder. This raises a possibility for simplification because

features in SegDecoder experience first upsampling and then downsampling. As shown

in Figure 6.5, we name outputs of three different layers in encoder as X 1
4
, X 1

8
and X 1

16
,



Towards Light-Weight Portrait Matting via Parameter Sharing 101

representing feature maps of 1
4 , 1

8 and 1
16 the input resolution, respectively. X 1

16
is the

output of the last layer of encoder, containing the most high-level and compact infor-

mation, while X 1
4

and X 1
8

hold more details. These feature maps are fused layer by

layer followed by convolution and upsampling. Feature maps of 1
4 resolution are finally

obtained and sent to MatDecoder. Two convolutional and upsampling layers in MatDe-

coder are removed in this design. It is equivalent to incorporating two convolutional and

upsampling layers into the feature fusion module. The left architecture in Figure 6.5

exhibits the network in the same manner with Figures 6.3 and 6.4, where two decoders

are shown in parallel. The right one is its variant, in which we can interpret SegDecoder

and MatDecoder as an integrated union: M 1
4

output from SegDecoder is sent to Mat-

Decoder directly without downsampling, and MatDecoder receives feature maps from

the 1
4 resolution directly rather than from 1

16 .

6.3.3 Affinity Module

In traditional matting algorithms [56, 57], graph Laplacian is universally adopted. What

lays in the core of Laplacian matrices is the affinity Aij , which stands for the similarity

between pixel i and pixel j. Aij is mathematically derived by:

Aij = e
−‖Ii−Ij‖2

σ2 . (6.4)

Aij values of all pixels compose an affinity matrice A. Specifically, affinity matrices of

the input image and the predicted alpha matte are respectively measured, which are

expected to share a similar color distribution. σ here is set to be the distance between

the maximum and the minimum values of the matrice.

6.4 Posterior Constraints

As discussed in Section 6.3.2, posterior knowledge is essential in current deep image

matting methods. No matter prior input exists or not, posterior-guided loss functions

are necessary [113, 123]. Designs of these loss functions are derived from posterior

constraints. In our work, we consider two constraints. They are the alpha prediction

constraint in both unknown regions and the whole image as well as the gradient con-

straint.
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6.4.1 Region-Fusion Alpha Prediction Constraint

In this work, we measure the alpha prediction loss not only in unknown regions but also

in foreground/background regions. Normally, for precise regression, the loss computed

between a predicted alpha matte and the corresponding ground truth only focuses on

unknown regions based on the prior input. However, no direct prior information is

provided in our work. We thus learn prior-like information in the segmentation module

according to the alpha prediction constraint set in different regions.

We train our network in two separate phases. In the pre-training stage of MatDecoder,

the alpha prediction loss constrained in unknown regions is employed (training details are

provided in the sequel). In this phase, unknown regions are generated by the weight-fixed

segmentation module. We focus the loss calculation on unknown regions to precisely

predict alpha values of internal pixels.

In the end-to-end training stage, the alpha prediction loss in the whole image is used.

We extend loss calculation to foreground and background regions because the shared

encoder, SegDecoder and MatDecoder are optimized simultaneously in this stage, which

is related to the whole image. Considering the unbalanced distribution of pixels in

different regions, the alpha prediction loss in unknown regions should be given a large

weight, however. In Section 6.5.2 we provide implementation details.

6.4.2 Gradient Constraint

To describe how values of pixels change in an image, gradient indicator is defined. Value

of this indicator changes drastically when close to boundaries. Thus it is often used as

a constraint in tasks caring about edges and details [13, 98]. In image matting, for each

pixel, one expects a precise alpha value prediction in a range between 0 and 1. We hence

take this constraint into consideration to penalize abnormal changes in predicted alpha

values.

Since we apply this constraint to the whole image, different weights are assigned in

different regions as: ga = gu+0.5go, where ga, gu and go represent the gradient constraint

in the whole image, unknown regions and other regions, respectively. To emphasize

unknown regions, a larger weight is given to gu than go.
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6.5 Results and Discussions

To demonstrate the effectiveness of the proposed structures, we present details and

performance of our experiments, including the datasets, training details, and results of

ablation studies. Our insights on the mechanism and potential improvement of deep

portrait matting are discussed in the end.

6.5.1 Datasets

The training of IndexNet is based on the Adobe Image Matting dataset [113]. The

Portrait-2k [89] is the main dataset we use to implement portrait matting.

6.5.2 Training Details

An End-to-End Matting Baseline: To pursue the parameter-sharing mechanism in

portrait matting, based on an off-the-shelf state-of-the-art semantic segmentation model

and a light-weight matting network, we build an initial end-to-end matting network as

our baseline. Specifically, using MobileNetv2 [86] pre-trained on ImageNet dataset [29]

as the backbone, we train the DeepLabV3+ [10] on the Portrait-2k dataset [89]. The

ground truths are generated from alpha mattes through assigning pixels with alpha

values between 0 and 1 as unknown regions and then manipulating them by dilation

operations. We randomly crop 512×512 sub-images as input and use conventional data

argumentation, including random scaling, flipping and rotation. We use SGD optimizer

with a momentum of 0.9 and a weight decay of 5 × 10−4. The training is executed for

about 40k iterations, and a batch size of 16 is used. The learning rate is initialized as

0.01 and decayed by timing
(
1− iter

max iter

)0.9
for every 20 epochs.

IndexNet matting [72] with depthwise IndexNet (“nonlinear+context”) is trained on

the Adobe Matting dataset [113] following the training disciplines in [72]. MobileNetv2

pre-trained on the ImageNet dataset is used as the backbone as well.

Parameter-Sharing Network: The training of parameter-sharing network is sepa-

rated into two phases:

Phase 1 : We first load parameters of pre-trained DeepLabV3+ to the weight-fixed

encoder and the weight-fixed SegDecoder, then load parameters of corresponding layers

from pre-trained IndexNet to the MatDecoder. We train the MatDecoder with SGD

optimizer, following the settings in Section 6.5.2 with a learning rate of 0.01 for about

40k iterations. We randomly crop images into 320 × 320 blocks as input images and

argument them with random scaling, rotation and flipping.
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Phase 2 : To enable end-to-end training of the whole network, we release parameters of

the encoder and the SegDecoder. The same strategies are taken here except initializing

the learning rate as 0.0001 and training for around 100k iterations. Learning rates in

these two phases are all decreased by timing
(
1− iter

max iter

)0.9
for every 20 epochs. A

batch size of 16 is utilized.

6.5.3 Definition of Loss Functions

Following [89, 12], when training the baseline network, we use segmentation loss and

alpha prediction loss. As for the parameter-sharing network, the loss function covers

alpha prediction loss along with the gradient and affinity losses. It is worth noting that

we do not use the compositional loss in [72] because there is no ground-truth foreground

and background available in the Portrait-2k dataset.

Alpha prediction loss la is the average difference between a predicted alpha matte and

the ground-truth alpha matte:

la =
1

|S|
∑
i∈S
‖αi − α∗i‖2 , (6.5)

where α and α∗ represent predicted alpha matte and its ground-truth, respectively, and

S refers to the regions where loss calculation happens. In our experiments, S indicates

the unknown regions U when focusing on unknown regions (laU ) and the whole image I

when targeting laI . To calculate the gradient loss lg, we first apply the Sobel operator [94]

to generate gradient map of the alpha matte, and then measure the difference by

lgx = |Gαx −Gα∗x| , (6.6)

lgy = |Gαy −Gα∗y| , (6.7)

lg =
1

S

∑
i∈S

lgxi +
1

S

∑
i∈S

lgyi . (6.8)

Affinity loss lA is defined in a downsampled image according to Equation (6.4) by

lA = ‖Aα −AI‖2 . (6.9)

The loss function of the baseline follows Equation (6.3), and the loss function of the

parameter-sharing network is l = laU in Phase 1 and l = laU + λ1laI + λ2lg + λ3lA in

Phase 2. We use λ1 = 10, λ2 = 10 and λ3 = 10 in our experiments, keeping the value

ranges of these losses identical.
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6.5.4 Evaluation Metrics

We follow the standard and perceptual evaluation metrics [81] implemented by [113] to

evaluate the matting results. The evaluation metrics are Sum of Absolute Differences

(SAD), Mean Squared Error (MSE), Gradient Error (Grad) and Connectivity Error

(Conn). The first three errors are per-pixel metrics while the last one is a region-level

evaluation motivated by human perception. Different from existing works, we evaluate

2 sets of metrics here. Set 1, listed as SAD, MSE, Grad and Conn, are losses calculated

in unknown regions, which are commonly used in standard matting benchmarks. How-

ever, since all the foreground, background and unknown regions are generated in our

network, only evaluating the alpha matte in unknown regions is not sufficient to assess

the performance objectively. Hence, we use Set 2, which contains SADf, MSEf, Gradf

and Connf, to measure the errors in the full image. We also calculate the number of

network parameters (Param) and the sum of Giga Floating-Point Operations Per Second

(GFLOPs) on a 224× 224× 3 input to score the capacity and complexity of models.

6.5.5 Trained Models in Experiments

Several models, including baselines and our proposed structures, are employed in the

experiments. They are:

IndexNet [72] with Ground-Truth Trimap Input (A1): a model with the conventional

settings. The inputs are composed by RGB channels and another trimap channel. This

baseline can be viewed as the upper bound of our matting baseline.

IndexNet w/o Trimap Input (A2): based on A1, but without trimap input. We im-

plement it by setting the 4th input channel of IndexNet as a map covered by unknown

regions.

Trimap-Guided Training of A2 (A2+): an A2 model that uses ground-truth trimap to

calculate training loss. This model justifies the effectiveness of end-to-end training with

trimap-guided loss in the matting task.

Closed-Form matting (CF) [57] with (A3) / w/o (A4) Ground-Truth Trimap Input : an-

other pair of comparison that uses the non-deep CF method to highlight the importance

of trimap input.

DeepLabV3+ + IndexNet (B): a baseline that cascades the pre-trained DeepLabV3+

network and IndexNet network, without updating weights.
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SAD MSE Grad Conn SADf MSEf Gradf Connf

GT Trimap + IndexNet [72] (A1) 4.62 0.0278 10.97 4.49 0.0096 0.0038 0.0229 0.0094
No Trimap + IndexNet (A2) 22.21 0.2147 21.96 22.72 0.3465 0.0291 0.0572 0.0481
A2 + Loss-guided training (A2+) 6.55 0.0590 12.03 6.42 0.0136 0.0080 0.0268 0.0134
GT Trimap + CF [57] (A3) 5.37 0.0243 11.18 5.01 0.0112 0.0033 0.0234 0.0104

Table 6.2: Further experiments on verifying prior efficiency. CF means the Closed-
Form matting algorithm [57].

End-to-End Training of B (B1): a baseline that implements end-to-end training on B.

The outputs of DeepLabV3+ are summed up to one extra channel to function as the

trimap input of the IndexNet.

Second End-to-End Training of B (B2): a different baseline implements end-to-end

training on B. The difference from B1 is that the outputs of DeepLabV3+ are sent to

the IndexNet directly without summation. Therefore, the input of IndexNet here has 6

channels.

Late-Interaction Parameter-Sharing Network (B3): our parameter-sharing design, which

shares the encoder of the segmentation network and the matting network.

Feature-Fusion Parameter-Sharing Network (B4): another design sharing encoder of two

tasks. This model also introduces feature connections between two decoders.

Attention-Guided Parameter-Sharing Network (B5): an improved design over B4, which

investigates a more compact way on how to connect between two decoders.

6.5.6 Ablation Studies

Effectiveness of Prior Input: We first evaluate the effectiveness of the prior input.

Apart from the results shown in Table 6.1, we extend the experiment by adding two

counterparts and more quantitative results, as shown in Table 6.2. When using the

Closed-Form (CF) matting [57] without a prior input (A4), the predicted alpha mattes

are almost dark. We may conclude that the prior input is necessary in both deep

matting and non-deep matting methods (A1 vs. A2 and A3 vs. A4). A slight difference

is that posterior information can compensate for the absence of prior information in

deep matting to a large extent, which is backed by A2 vs. A2+.

End-to-End Training of the Baseline: To justify end-to-end training of the cascaded

segmentation network and matting network, we perform experiments on the baseline

with (B1)/without (B) end-to-end training (Table 6.3). After end-to-end training, errors

of both sets decrease dramatically. End-to-end training hence can improve performance

of the baseline obviously (B vs. B1). One reason may be the fine-tuning of the IndexNet

on the Portrait-2k dataset, and another reason is the optimization of the segmentation
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SAD MSE Grad Conn SADf MSEf Gradf Connf Param GFLOPs
B 8.13 0.0703 13.06 8.03 0.0230 0.0151 0.0310 0.0227 13.97M 10.98
B1 5.76 0.0511 11.09 5.68 0.0176 0.0124 0.0255 0.0174 13.97M 10.98
B2 5.94 0.0543 11.23 5.94 0.0202 0.0151 0.0258 0.0202 13.97M 10.98

Table 6.3: Results of baselines. B, B1 and B2 represent the baseline without end-
to-end training, baseline adding end-to-end training with 1-channel trimap input and
baseline adding end-to-end training with 3-channel trimap input, respectively.

network. We also observe from Table 6.3 that the 1-channel trimap M in Figure 6.2

outperforms the 3-channel one (B1 vs. B2), which indicates that summing the outputs

of segmentation to be 1-channel may benefit the training stage.

In Figure 6.7, we show some qualitative results, among which B generates full details. A

possible reason is that the IndexNet pre-trained on the Adobe Matting dataset has strong

ability to capture details. After end-to-end training, B1 fills the gaps of segmentation

in B (e.g., the second row in Figure 6.7), but details are weakened to some extent. It

is probably because ground-truth alpha mattes in the Portrait-2k dataset are not of

sufficient details as the Adobe Matting dataset.

Parameter-Sharing Design: To evaluate our parameter-sharing designs, in Table 6.4,

we report results of the late-interaction network (B3), the feature-fusion network (B4)

and the attention-guided network (B5) in terms of their errors and complexity.

Late fusion matting (LFM) [123] in Table 6.4 is a latest trimap-free matting method.

Here we use its released model directly because it is trained on large amount of human

and portrait data. B1 is one of the baselines introduced in last subsection. Compared

with B1, B3 reduces around 50% parameters and 40% GFLOPs, and the FPS measured

on the GTX 1080 Ti is twice faster as well. This complexity reduction mainly arises

from the shared encoder of two tasks. Accompanying with the significant model capacity

reduction, compared with B1, quantitative results of B3 decrease only 3% ∼ 6% for the

first set of evaluation metrics, and 7% ∼ 10% for the second set of metrics. Among

these metrics, SAD, MSE, SADf and MSEf show a certain degree of decrease. It can be

because the capacity reduction decreases the learning ability of network on pixel-wise

mapping, while gradient and affinity constraints make up for the Grad and Conn errors,

especially on the Grad error. It is worth noting that the performance of B3 is similar to

that of B4 and B5, even without an explicit prior input. We attribute this to the shared

encoder, which learns necessary information for both tasks and then assists the matting

task with connotative prior information.

Based on B3, B4 introduces a simple feature connection between SegDecoder and Mat-

Decoder, with 3% parameter growth and neglectable GFLOPs increment. Such a feature

connection brings a 0.3% ∼ 2.2% decrease in the first set of metrics but a 0.4% ∼ 2.9%

improvement in the second set of metrics. We may conclude that directly sending the
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SAD MSE Grad Conn SADf MSEf Gradf Connf Param GFLOPs FPS
LFM [123] 8.41 0.0711 9.73 8.15 0.0440 0.0300 0.0229 0.0413 - - -
B1 5.76 0.0511 11.09 5.68 0.0176 0.0124 0.0255 0.0174 13.97M 10.98 21.47
B3 6.08 0.0532 11.02 5.87 0.0191 0.0136 0.0250 0.0186 6.74M 6.77 42.80
B4 6.10 0.0540 11.07 6.00 0.0186 0.0132 0.0249 0.0183 6.96M 6.81 41.98
B5 5.91 0.0518 10.96 5.82 0.0177 0.0124 0.0246 0.0175 5.90M 6.53 44.57
IndexNet [72] - - - - - - - - 8.15M 6.30 -

B5+FM 5.89 0.0502 8.86 5.80 0.0172 0.0115 0.0210 0.0169 5.96M 6.54 33.94

Table 6.4: Ablation study of parameter-sharing network design. B1 represents Base-
line; B3 represents Late-Interaction; B4 represents Feature-Fusion; and B5 represents
Attention-Guided. Param and GFLOPs are measured on a 224 × 224 × 3 input to
compare with IndexNet. FPS is computed on a 512× 512× 3 input on the GTX 1080
Ti.

output of SegDecoder to MatDecoder brings more global information, which is useful

for overall performance, while it lacks appropriate integration with low-level features.

Downsampling the output of SegDecoder before sending it to MatDecoder may also lead

to loss of detailed information.

B5 integrates the low-level feature skipping and the feature connections between SegDe-

coder and MatDecoder. Its parameter and GFLOPs are the least compared with all

networks above and even comparable to our matting baseline (IndexNet), which has

only one encoder and one decoder. Although it reduces about 15% parameters com-

pared to B4, it performs even better than B4 across all metrics, especially on SAD and

MSE. Sending the output of SegDecoder to MatDecoder without downsampling hence

is likely to improve the performance because of preserving the generated prior informa-

tion. Another advantage of B5 is that low-level features are combined layer by layer in

a compact manner. We therefore choose B5 as the final parameter-sharing network for

the following evaluations. Comparing the qualitative examples exhibited in Figure 6.7,

B5 achieves competitive results in both profile and details.

To justify the parameter-sharing design from the point of segmentation, we further eval-

uate the trimaps generated in our networks. We obtain ground-truth trimaps from

binarized ground-truth alpha mattes following the way described in Section 6.5.2. The

mean Intersection over Union (mIoU) is used as the evaluation metric. As presented in

Table 6.5, we measure mIoU of test results generated by the pre-trained DeepLabV3+

network and our parameter-sharing networks (B3 vs. B4 vs. B5), respectively. Consid-

ering the results in Table 6.5, our parameter-sharing designs are able to generate effective

prior information, and accuracy of trimap generation is enhanced with the increase of

feature connections between two decoders. We may conclude that end-to-end training of

two tasks is able to produce more applicable trimaps compared with training segmenta-

tion network only, and our parameter-sharing designs are capable of implementing this

function efficiently. Some visual results are shown in Figure 6.6. We observe trimaps

generated by B5 fit profile of edges better than those directly produced by DeepLabV3+.
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mIoU (%)
DeepLabV3+ [10] 88.32

B3 88.36
B4 88.56
B5 88.65

Table 6.5: The trimap generation effect of our parameter-sharing networks.

DeepLabV3+ B5

Figure 6.6: Visualization of trimap generation. From left to right, the original image,
trimap generated by DeepLabV3+ [10] and trimap produced by our B5. For a better
view, red, blue and original colors are used to indicate the foreground, background and
unknown regions, respectively.

SAD MSE Grad Conn SADf MSEf Gradf Connf

B5 5.91 0.0518 10.96 5.82 0.0177 0.0124 0.0246 0.0175
B5 w/o affinity(B5-) 6.01 0.0533 11.12 5.94 0.0186 0.0132 0.0249 0.0184

B5- w/o gradient(B5–) 6.03 0.0551 11.55 6.01 0.0186 0.0135 0.0261 0.0185

Table 6.6: Ablation study of loss function design.

Loss Function: We perform an ablation study on B5 to evaluate the loss functions.

As displayed in Table 6.6, we train two models, one without using the gradient loss,

and another one without using both gradient and affinity losses. We can observe that

the absence of any loss function harms the performance. Visual examples are presented

in Figure 6.8, from which we can see an obvious effect of the gradient constraint (by

comparing the last two columns). Without the gradient loss, details and edges, like

hairs, are visually blurred.

Flexibility of PSPM: To show the flexibility of our parameter sharing design, we re-

place the segmentation baseline here (DeepLabV3+) with PSPNet [124]. MobileNetv2

is kept as the backbone. We build the end-to-end baseline (B&B1) and implement

the attention-guided parameter sharing design (B5) with the same training strategies

as in Section 6.5.2. Results are presented in Table 6.7. Both B1 and B5 improve the
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Ground-Truth B B1 B5

Figure 6.7: Qualitative results on the Portrait-2k test set. From left to right, the
original image, ground-truth alpha matte, baseline B, baseline B1 and our method B5.
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Ground-Truth B5 B5- B5--

Figure 6.8: Qualitative results of the ablation study on loss functions. From left to
right, the original image, ground-truth, B5, B5 w/o affinity loss (B5-) and B5- w/o
gradient loss (B5–). Details may be viewed by zooming in.

SAD MSE Grad Conn SADf MSEf Gradf Connf Param GFLOPs FPS
B 7.41 0.0707 15.55 7.36 0.0221 0.0155 0.0373 0.0220 13.39M 7.29 24.33
B1 6.29 0.0619 13.88 6.26 0.0183 0.0137 0.0325 0.0183 13.39M 7.29 24.33
B5 6.09 0.0513 9.06 5.83 0.0205 0.0143 0.0215 0.0198 5.33M 2.86 49.75

Table 6.7: Parameter sharing implemented on PSPNet [124]. Param and GFLOPs
are measured on a 224× 224× 3 input. FPS is computed on a 512× 512× 3 input on
the GTX 1080 Ti.

performance and reduce the calculation compared with B. It is worth noting that, com-

pared with Table 6.4, this PSPNet-based architecture has significantly less parameters

and GFLOPs. This difference arises from the “last convolution” layer (last-conv) in

DeepLabV3+ and PSPNet. In our experiments, the last-conv of DeepLabV3+ consists

of three stride-3 convolution layers, while only one stride-1 convolution layer is used in

PSPNet. Qualitative results are shown in Figure 6.9.

6.5.7 Multi-task Feature Modulation

Inspired by the task-specific feature modulation [75], in this subsection, we further in-

vestigate how the encoder is shared. Different from the comprehensive experiments in

previous sections, we only implement the simple idea here to verify the probability of

optimizations on our networks. To force the network focusing on more relevant fea-

tures when operating multiple tasks, a task-dependent gating function modeled on the
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Ground-Truth B B1 B5

Figure 6.9: Qualitative results on the Portrait-2k test set of PSPNet based experi-
ments. From left to right, the original image, ground-truth alpha matte, baseline B,
baseline B1 and our method B5.

squeeze-and-excitation (SE) block [46] is used in [75]. In our case, since the two tasks

use the same training data and they are operated simultaneously in both training and

interference stages, soft combination of all the features rather than hard filtering is

preferred.

A simple linear combination is defined by Fc (x, y, c) = m [c]F (x, y, c), where F (x, y, c)

is a shared feature tensor, x, y are spatial coordinates and c is the channel. m [c] ⊂ (0, 1)

represents the weight of current channel, which is generated from the feature modulation

module. We modify the feature modulation module from [75] by changing the output of

SE module from Rb×c×1×1 to Rb×2c×1×1, and then shuffling it to Rb×2×c×1×1, followed

by a softmax operated on the second dimension. We take the first dimension, which

in detail is Rb×c×1×1, to be the m [c] here. We term the feature modulation operation

as “FM”. Results of “B5+FM” are reported at the bottom of Table 6.4. With tiny

calculation increase, “B5+FM” outperforms B5 on all the evaluation metrics, and even

better than our baseline (B1), especially on the gradient error. Since we apply the FM

module to all the layers, inference is much slower, however.

6.5.8 Discussion

Deep portrait matting, as an important branch of deep matting, has shown its prac-

ticability by previous cases. Application examples of portrait matting are shown in

Figure 6.10. Currently, popular solutions of portrait matting are to generate a prior in

the network automatically and then guide the following layers to implement matting [89,

12, 87, 128, 45]. These efforts divide portrait matting into two parts in the system level:

prior generation and image matting. The specific application scenario and the particular
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Figure 6.10: Applications of portrait matting using our proposed method. From left
to right, the original image, depth-of-field, and background substitution.

pattern of human body motivate researchers to resort to segmentation and then generate

unknown regions according to segmentation results or common senses.

However, those methods provide precise details at a cost of redundant structures, while

those targeting mobile devices with reduced parameters output relative coarse matting

results. Therefore, combining the state-of-the-art segmentation network and matting

network, then further reducing parameters of the network is our motivation. We first

cascade DeepLabV3+ and IndexNet to perform end-to-end training, then apply the idea

of hard parameter sharing multi-task learning to share the encoder of two networks.

Specifically, we explore three possible structures constructing connections between two

decoders. These parameter sharing structures significantly reduce parameters and cal-

culation costs compared with conventional cascaded structures with only slightly down-

graded quantitative and acceptable qualitative performance. More important, our work

poses a fundamental question about what is the best way to combine the automatically

generated prior with image matting. Further simple feature modulation in the shared

encoder enable our multi-task model to generate competitive results with the baseline,

which promises a direction for future optimization.

6.6 Conclusion

We highlight the limitation of current automatic portrait matting that builds upon

cascaded segmentation models and matting models. To address this, we propose and

investigate three architectures to implement parameter-sharing networks. By sharing

parameters and exploring feature connections between two tasks, we achieve a notable

decrease of computation complexity, with almost the same matting performance. We

also remark that trimaps indicating the foreground, background and unknown regions

are not the only form of prior input. There may exist other efficient ways that can merge

generated prior information to matting layers. The presented structure can provide a

strong baseline for portrait matting.





Chapter 7

Conclusion

In this chapter, we summarize our key contributions and also suggest possible research

directions for future works.

With the rapid development of deep learning, image matting has experienced remarkable

changes in recent years. Different from traditional methods that rely heavily on low-level

color cues, deep matting methods use more high-level and long-range information. It

promises significant improvements against traditional methods. However, though better

performance has been observed, there are still many hard cases, such as transparent

objects and nets in rich details. Better performed methods are therefore needed. Besides

the performance, efficiency and compactness of deep models are also vital because of the

hardware restrictions in real applications. To achieve these goals, we explore efficient

model designs for image matting.

Efficient deep image matting. Aiming at more precise prediction as well as efficient

model designs, we propose IndexNet matting [72, 71], an indices-guided encoder-decoder

architecture, which is more accurate than the baseline model with much less model ca-

pacity. We also present the extension of IndexNet on three other dense prediction tasks,

including image denoising, semantic segmentation, and depth estimation. Based on a

similar encoder-decoder architecture, we further propose A2U matting [22], where up-

sampling operators are learned from second-order affinity information. It is implemented

by low-rank bilinear pooling, showing more precise prediction with neglectable param-

eter increase. Moreover, We raise RMat [24] to enhance the robustness of deep image

matting. It is achieved by a framework modeling multilevel context information and

strong augmentation strategies. RMat not only presents top-performing results on the

Composition-1k but also shows more robust predictions on various benchmarks, real-

world images, and coarse-to-fine trimap precision.
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Efficient deep portrait matting. Besides image matting, we propose a lightweight

portrait matting method named PSPM [23], where the architecture with a shared en-

coder and task-specific decoders is firstly proposed for portrait matting. It not only

facilitates a lightweight model but also encourages better performance than conventional

cascaded architectures.

Future work. i) IndexNet and A2U demonstrate designs for efficient matting models

by exploring indices and affinity information, respectively. Their main focus is improving

the accuracy in an efficient manner by investigating the task-specific properties. Apart

from them, there are many unexplored properties, such as gradient differences between

the foreground and the background, color varies at the edge, etc. ii) RMat moves

a step further to explore the robustness of the matting model by assembling context

information and applying strong data augmentation. It is an initial exploration and

there could be more solutions. For example, a better data generation pipeline, generative

models, and more effective training strategies are all likely to benefit the robustness of

matting models. iii) Due to the attention to detail, existing matting models infer with

original image resolutions, which consumes a lot of computation and limits the size of test

images. Though patch-based high-resolution image matting has been studied, efficient

methods operated on original inputs are still in demand. iv) RMat is one of the earliest

works applying the transformer to matting. There is much space to improve current

transformer-based matting networks. For instance, existing architectures treat the whole

image the same, except including the trimap in the inputs. However, for trimap-based

matting, precise prediction of unknown regions is the target. Using this nature may

help design more efficient transformer architectures for matting. v) Further, prior-free

matting, especially on general images, is a meaningful but challenging topic. How to

formulate the problem effectively is an unanswered question. We may either restrict

the application scenarios or decompose the problem. A formal and unified formulation

would light up future research.
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