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Abstract

Queueing models are mathematical models used to describe queueing systems,

such as healthcare systems or telecommunication systems. Standard queueing

models such as the M/M/• and M/PH/• queueing models assume independence

between the arrival process and the distribution of service times. For some

queueing systems, this is a reasonable assumption. However, it is possible for some

queueing systems to have dependence between how often customers arrive and how

long each customer spends in service.

Intensive care units are generally described as complex queueing systems, in that a

server is not clearly defined and patient admissions vary considerably and often

depend on resource availability. In addition to this, studies have found evidence of

a dependence between the patient admission process and the distribution of

patient length of stay. Given that standard queueing models assume independence

between the arrival process and the distribution of service times, such models are

invalid for modelling the bed occupancy of an intensive care unit.

x



An alternative to modelling the bed occupancy of an intensive care unit is to use

quasi-birth-and-death (QBD) processes, which not only allow for dependence

between the patient admission process and the distribution of patient length of

stay but also provide freedom in the distribution of time spent at each bed

occupancy. However, limited research exists on the statistical modelling of

queueing systems using QBD processes. Therefore, in this thesis we focus on

developing statistical methods to fit various types of QBD processes to queueing

system data, as well as a goodness of fit method to assess the fit of QBD processes

to observed queueing system data.

Firstly, we develop two statistical fitting methods for level-dependent and

level-independent QBD processes, respectively. These methods are based on the

EM algorithm, since all that is observed while watching the evolution of a QBD

process are the changes in level and the times at which those changes occurred.

That is, the phase process remains hidden. We assess the accuracy of our methods

by using simulated data from known QBD processes. In particular, we compare

the stationary and transient behaviour of a known QBD process to what is

expected under the fitted QBD process.

The statistical fitting of level-dependent QBD processes to queueing system data is

advantageous in that we potentially gain valuable insight into the operation of a

queueing system. However, such models can be over-parameterised and therefore

cannot be used for prediction. We therefore develop a new class of QBD process

called structured QBD processes which offer a reduction in the number of

parameters through using observable behaviours of the queueing system. We then

extend our statistical fitting method to structured QBD processes and assess the

accuracy of our method by comparing the stationary and transient behaviour of

several known structured QBD processes to what is expected under the respective

fitted structured QBD process.



Since we often do not know the true QBD process for a queueing system, we

develop a goodness of fit test which statistically determines if data observed from a

queueing system is modelled as a realisation of a particular type of QBD process.

We also develop methods to visually assess the fit of a QBD process to queueing

system data, which is insightful in situations where the fitted QBD process does

not capture the stationary and transient behaviour observed in the queueing

system data. We then consider several numerical examples to demonstrate the

application and performance of the goodness of fit test and usefulness of the

diagnostic plots.

A benefit of modelling an intensive care unit using a level-dependent QBD process

is that we gain valuable insight into the patient flow of the intensive care unit.

However, structured QBD processes are more useful in that they have fewer

parameters than a level-dependent QBD process, and hence can be used for

prediction. Through the use of our goodness of fit test, we identify the best fitting

structured QBD process which is then used to predict future behaviours under

various scenarios.

The statistical methods developed in this thesis enable the fitting and analysis of

QBD processes to provide meaningful insight and reliable predictions for queueing

systems, including those with dependence between the arrival process and the

distribution of service times. Therefore, our statistical methods for QBD processes

provide an alternative to modelling intensive care units, particularly when there

exists a dependence between the patient admission process and the distribution of

patient length of stay.
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Chapter 1

Introduction

Waiting in a queue in a service facility of some kind is a common phenomenon.

Mathematically speaking, service facilities are called queueing systems where

customers or items arrive to receive a service and then leave the system once the

service has been provided. Queueing systems may be simple in nature like a coffee

shop or a supermarket, or complex like a telecommunication network or a surgery

waiting list. Irrespective of complexity, the variation in arrivals and departures

and the limited knowledge about the structure of a queueing system makes it

difficult to predict behaviour when simply monitoring the system.

Analytical modelling of queueing systems involves detailed descriptions of various

aspects of the system, such as the arrival process, the distribution of service times,

the number of servers, and the capacity of the queueing system. The analysis of

queueing systems aims to provide details on behaviour and performance, including

the expected number of customers waiting in the queue and the proportion of time

spent at full capacity.

1



CHAPTER 1. INTRODUCTION 2

Complex queueing systems such as intensive care units are particularly difficult to

model, not only due to the unpredictable nature of patient admissions and the

uncertainty of the definition of a server but also as a result of patient admissions

depending on other patients’ lengths of stay. Inherent with the current modelling

process of intensive care units is the assumption of independence between the

patient admission process and the distribution of patient length of stay, thus

rendering standard queueing models invalid for queueing systems with dependence.

Quasi-birth-and-death (QBD) processes are Markov processes in two dimensions

that provide a natural framework to model queueing systems with a dependence

between the arrival process and the distribution of service times, as well as provide

freedom in the distribution of sojourn time for each level. The modelling of the

arrival process and the distribution of service times is a relatively straight-forward

task when we can assume independence between the arrival process and

distribution of service times. However, the modelling approach becomes less clear

when dependence exists between the arrival process and distribution of service

times. Therefore, we focus on the problem of statistically fitting arbitrary

quasi-birth-and-death processes to queueing system data and developing methods

to assess the fit of a fitted QBD process to queueing system data.

The data and work presented in this thesis is motivated by the limitations of the

current modelling processes of intensive care units. Therefore, we begin with an

introduction to intensive care units. In Chapter 2, we emphasise the importance of

intensive care services within healthcare systems and describe the patient flow

within an intensive care unit. Patient demand for intensive care services has

particularly increased since the beginning of the COVID-19 outbreak, thus

encouraging more mathematical research into the modelling of patient flow and

bed occupancy in intensive care units using queueing theory.
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Before we look further into modelling intensive care units, we need an

understanding of random phenomena and queueing systems. In Chapter 3, we

review the fundamentals of stochastic processes and Markov chains which form a

basis for queueing theory. Stochastic processes are random processes that evolve

over time, such as currency exchange rates or the number of calls to a telephone

call centre. Under certain conditions, a stochastic process is called a Poisson

process which is often used to model the number of arrivals to a queueing system.

Another important type of stochastic process is the Markov process which has the

property that the future of the process is independent of the past, conditioned on

the current state of the process. A special type of Markov process is the

birth-and-death process which is often used to model the size of a population or

the number of customers waiting in a queue. Birth-and-death processes are

fundamental to the modelling of various types of queueing systems, such that they

are used to derive the maximum likelihood estimates of elementary queueing

models.

Queueing models are mathematical models used to describe queueing systems and

provide a means of assessing the performance of a queueing system, such as how

often the servers are busy and the amount of time a customer waits in the queue.

In Chapter 4, we review Markovian queueing models which assume that customers

arrive according to a Poisson arrival process and the amount of time each customer

spends in service is exponentially distributed. These types of queueing models are

examples of the general birth-and-death process, whereby the maximum likelihood

estimates of the parameters are easily derived.
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With a general understanding of the fundamentals of queueing theory, we then

demonstrate how Markovian queueing models are used to model intensive care

units. In Chapter 5, we model the bed occupancy of the intensive care unit at the

Royal Adelaide Hospital using various types of Markovian queueing models. We

draw attention to the invalidity of the assumptions of these queueing models by

analysing the times between patient admissions and the distribution of patient

length of stay, as well as discussing the dependence between patient admission and

patient length of stay. As a result, standard queueing models are invalid in

modelling the bed occupancy of intensive care units as they do not allow for a

possible dependence between the arrival process and service times.

Alternatively, we can model queueing systems with dependence between the arrival

process and the service time distribution using quasi-birth-and-death processes. In

Chapter 6, we first review phase-type distributions which are often used to model

service times in healthcare and telecommunication systems due to the balance

between generality and tractability. Phase-type distributions also form a

foundation for QBD processes, which are defined as a two-dimensional

continuous-time Markov chain where the state of the process at any given time is

represented by a level and phase. Similar to birth-and-death processes, a QBD

process can move up or down a level, but the distribution of time between a

change in level is explained by a phase process. However, we cannot fully observe

the evolution of a QBD process, in that all that is observed are the changes in level

and the times at which those changes occurred. That is, the phase process within

a QBD process remains hidden.
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Statistical methods have been developed to fit general-birth-and-death processes

and phase-type distributions to queueing system data. However, limited research

has been done on the statistical modelling of queueing systems using QBD

processes. Therefore, in Chapter 7 we develop an EM algorithm to fit arbitrary

QBD processes to queueing system data, where the unobserved data is assumed to

be the phase transition process. In particular, we develop statistical modelling

methods for both level-dependent and level-independent QBD processes. Using

simulated queueing system data from a known QBD process, we assess the

accuracy of each method by comparing the stationary and transient behaviour of

the known QBD process to that of the QBD process fitted to the simulated data.

Level-dependent QBD processes have the ability to provide meaningful insight into

the operation of a queueing system. However, such models can be

over-parameterised and are thus not suitable for predicting future behaviour.

Despite a level-independent QBD process having fewer parameters, a queueing

system may have level-dependent behaviour which is therefore not captured by

such a process. Therefore, in Chapter 8 we develop a new type of QBD process

called the structured QBD process, such that we apply constraints to the block

matrices in the infinitesimal generator matrix of the level-dependent QBD process.

We then extend the EM algorithm developed in Chapter 7 to structured QBD

processes. To assess the accuracy of this estimation method, we compare the

stationary and transient behaviour of several known structured QBD processes to

that of each respective structured QBD process fitted to data simulated from the

known structured QBD process.
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With the range of QBD processes now available to model a queueing system, the

choice of the most appropriate QBD process becomes unclear. In Chapter 9, we

develop a goodness of fit test that statistically determines whether observed

queueing system data is modelled as a realisation of a particular type of QBD

process. This goodness of fit test focuses on the stationary distribution of the

observed queueing system data, as well as the transition probabilities between each

level and the time spent in each level before moving up or down a level. Given the

non-identifiability of QBD processes, the comparison of stationary and transient

behaviour is per level, not by phase. Where discrepancies exist, diagnostic plots of

the stationary and transient behaviour are used to determine where the QBD

process fails to model the queueing system of interest. We then demonstrate the

application and performance of our goodness of fit test through the use of several

numerical examples and illustrate the statistical power and significance by means

of a small simulation study.

In Chapter 10, we use the QBD process estimation methods developed in this

thesis to model the bed occupancy of the Royal Adelaide Hospital intensive care

unit. We consider various types of QBD processes and use our goodness of fit

method to find the best fitting structured QBD process. We also demonstrate how

we can use structured QBD processes to predict future bed occupancy behaviour

of the Royal Adelaide Hospital intensive care unit under various scenarios.

In Chapter 11, we summarise our findings and discuss possible extensions to the

work presented in this thesis.



Chapter 2

Intensive care units

2.1 Healthcare in Australia

Healthcare systems are an essential part of society that provide health care to

assist in maintaining good health, prevent and manage disease, and reduce the risk

of unnecessary disability and premature death. Healthcare in Australia has evolved

remarkably over the years, as demonstrated by the various private and public

health services located across the metropolitan and regional areas of Australia.

Prior to the outbreak of COVID-19, pressure on health services in Australia had

increased due to depleted resources and an increase in demand for health care.

Due to the complexity and self-organising nature of healthcare systems, attention

has been drawn to examining the performance of health care services, particularly

the intensive care services. Since the beginning of the COVID-19 outbreak, patient

demand for intensive care surged across the world. This forced hospital staff and

healthcare system modellers to improve workflow for diagnosis and isolation,

management of disease and illness, and to increase the critical care bed capacity in

intensive care units.

7
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2.2 Intensive care units

An intensive care unit (ICU) is a crucial and limited resource in a hospital which

provides high-level care to critically ill patients. This includes burns,

cardiothoracic, general medicine, respiratory, surgical, and trauma cases, as well as

patients who require life support. Generally speaking, patients are admitted to the

ICU as either an elective patient or an emergency patient. Elective procedures are

planned in advance and include heart surgery and neurological surgery. Emergency

procedures are done in emergency situations, such as a road trauma, or a sudden

and critical change in a person’s health status, such as appendicitis or an aortic

dissection.

Admission to the ICU depends on the state of the ICU and the status of the

patient. The state of the ICU refers to the number of beds occupied, nurse and

doctor availability, and any potential discharges from the ICU. The status of the

patient refers to the age of the patient, the severity of the medical condition, the

expected length of stay, and the expected outcome. Ideally, a patient is admitted

to the ICU without delay. However, there are a finite number of resources in an

ICU, so a decision regarding which patients are going to be admitted and when

patients will be admitted needs to be made.

ICU management controls patient admissions and discharges, the treatment and

length of stay of patients, re-admissions to the ICU, bed allocations, and bed

capacity. In particular, ICU management carefully decides the order in which

patients are admitted to the ICU so as to avoid worsening the health status of the

patients waiting for a bed in the ICU.
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ICUs often operate close to capacity but an increase in resource demand and

uncertainty in the ICU can cause many negative effects both within the ICU and

in other connected departments [2]. Hence, there is a strong interest in how to

improve patient care with such a limited capacity.

2.3 Modelling intensive care units

An intensive care unit can be described as a queueing system, as illustrated in

Figure 2.3.1. The main input into the intensive care units is patients and the

service is the medical care provided to patients. Patients not only vary in health

status, but also demographically and geographically which has been shown to

influence the rate of patient admissions [46]. In the ICU, there are a finite number

of resources which includes bed, monitors, staff, ventilators, and other medical

equipment. The output from an ICU mostly includes treated patients who are

being transferred to another unit or ward.

Figure 2.3.1: A general model of the intensive care unit.



CHAPTER 2. INTENSIVE CARE UNITS 10

The performance of health care services such as intensive care units is continuously

monitored and focuses on waiting times, mortality rates, re-admission rates, and

the throughput. Over the past few years, there has been an increasing amount

of research into modelling patient flow in ICUs, with a particular focus on using

statistical methods and queueing theory [2].

2.4 Summary

A considerable amount of planning and work is required for ICU management to

ensure patients are provided with correct medical care, resources are in adequate

supply and that the ICU is staffed with highly trained medical professionals.

Admission rates into the ICU and the types of medical care provided to patients

dynamically changes over time and may be a result of unpredictable disease

outbreaks and the autonomous behaviour of patients. Additionally, the admission

and discharge patterns of elective and emergency patients are considerably

different, as well as the distributions of patient length of stay. Due to the

unpredictable nature of bed occupancy in ICUs, researchers often use queueing

theory to model the patient flow in ICUs to improve the operation of the ICU with

such a limited capacity and limited resources.



Chapter 3

Stochastic processes and Markov

chains

When aiming to understand the behaviour of various natural and artificial processes,

researchers often consider a sequence or family of random variables to represent

such phenomena over time. In mathematics, these processes are called stochastic

processes. In this chapter, we provide a background to stochastic processes and

Markov chains, which form a basis for queueing theory and the modelling of queueing

systems discussed in the following chapters.

3.1 Stochastic processes

A stochastic process is defined as a family of random variables {X(t); t ∈ T},

where T is the index set. In many applications, the index t is used to model time.

In other words, a stochastic process is a random process evolving over time. For

example, if the index set such that T = {0, 1, 2, . . .}, then {X(t); t ∈ T} is a

discrete-time stochastic process. If the index set is continuous, then {X(t); t ∈ T}

is a continuous-time stochastic process.

11
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Furthermore, {X(t); t ∈ T} is called a discrete-space stochastic process if the

random variables X(t) are discrete, and {X(t); t ∈ T} is called a continuous-space

stochastic process if the random variables X(t) are continuous.

Characteristics of stochastic processes include independence, stationarity, and

homogeneity.

• Independence: If there is no structure or dependence between the random

variables, {X(t); t ∈ T}, then the stochastic process is called an independent

stochastic process.

• Stationarity : Generally, if the evolution of a stochastic process depends on

the time it started, then it is non-stationary. If we shift the time of origin

and the stochastic process remains invariant, then it is called stationary.

Mathematically speaking, a stochastic process is stationary if for any value

d ∈ R,

P (X(t1) ≤ x1, . . . , X(tn) ≤ xn) = P (X(t1 + d) ≤ x1, . . . , X(tn + d) ≤ xn)

for all values of n ∈ N and t1, t2, . . . , tn ∈ R.

• Time homogeneity : If the transitions between states are independent of time,

then the stochastic process is called time-homogeneous. Alternatively, if the

transitions between states depends on time, then the stochastic process is

non-time-homogeneous.

3.1.1 Poisson process

A fundamental stochastic process used in queueing theory is the Poisson process.

Poisson processes are often used to model the occurrence of events, such as the

number of telephone calls to a call centre.
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Let {N(t); t ≥ 0} be the total number of events by time t ≥ 0 where

• N(t) ≥ 0,

• N(t) is integer,

• if s < t, then N(s) ≤ N(t) which means that {N(t); t ≥ 0} is a non-decreasing

function of time, and

• N(t) − N(s) represents the number of events that occurred during the time

interval [s, t].

Then the stochastic process {N(t); t ≥ 0} is called a counting process.

Furthermore, we say that a counting process {N(t); t ≥ 0} is a Poisson process if

• N(0) = 0,

• the number of events that occur in any time interval depends only on the

length of the time interval,

• the events are mutually independent in non-overlapping time intervals, such

that for any s > t > u > v > 0, N(s)−N(t) and N(u)−N(v) are independent,

and

• for sufficiently small h and some positive constant λ,

P (one event in (t, t+ h]) = λh+ o(h),

where limh→0
o(h)
h

= 0.

For any Poisson process {N(t); t ≥ 0}, N(t2) − N(t1) and N(t2 + u) − N(t1 + u)

have the same distribution for any u > 0 and t2 > t1. That is, the Poisson process

has stationary increments, although it is not stationary itself.
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Researchers often describe a stochastic process by using the inter-arrival times (time

between arrivals or events) defined as

τi = ti+1 − ti,

where ti is the time of the ith event and ti+1 is the time of the i+ 1th event. Notice

that for a Poisson process {N(t); t ≥ 0},

P (τ > t) = P (N(t) = 0) = exp(−λt).

By the properties of independent and stationary increments of a Poisson process,

the inter-arrival times are therefore exponentially distributed with rate λ.

3.2 Markov processes

Another type of stochastic process is a Markov process. Markov processes are

widely used in queueing theory and also in many other areas across theoretical and

applied science.

A Markov process, {X(t); t ≥ 0}, with state space S, is a stochastic process with

the property that given the state of the process at time t, X(t), the value of X(s)

for s > t is not affected by the value of X(u) for u < t. That is,

P (X(tn) = xn|X(tn−1) = xn−1, X(tn−2) = xn−2, . . . , X(t1) = x1) = P (X(tn) = xn|X(tn−1) = xn−1),

for any 0 ≤ t1 < t2 < . . . < tn and any xn ∈ S. In other words, the future of

the process is conditionally independent of the past, given the current state of the

process.
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3.2.1 Continuous-time Markov chains

A continuous-time Markov chain (CTMC) is a Markov process with a discrete state

space, S, which describes the state of the process at some time t > 0. More

specifically, let {X(t); t ∈ T} be a sequence of random variables with a state space

S. Then the continuous-time stochastic process {X(t); t ∈ T} is a continuous-time

Markov chain if for u ≤ s,

P (X(t+ s) = j|X(u) = iu, X(s) = is) = P (X(t+ s) = j|X(s) = is),

for all s, t ∈ [0,∞) and all is, iu, j ∈ S. So the probability of moving from state is

to state j depends only on the present state X(s). As before, this is known as the

memoryless property.

Typically, the interactions between states in a continuous-time Markov chain are

described by the rates at which the transitions occur. For example, the rate of

moving from state i ∈ S to state j ∈ S at time t > 0 is denoted as qi,j(t). The

transition rates are contained within the transition rate matrix, Q, otherwise known

as the infinitesimal generator matrix, such that

Q =



q0,0 q0,1 q0,2 · · · q0,j · · ·

q1,0 q1,1 q1,2 · · · q1,j · · ·

q2,0 q2,1 q2,2 · · · q2,j · · ·
...

...
...

...
...

...

qi,0 qi,1 qi,2 · · · qi,j · · ·
...

...
...

...
...

. . .


.
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Assuming that the continuous-time Markov chain, X(t), is time-homogeneous such

that

P (X(t+ s) = j|X(s) = i) = P (X(t) = j|X(0) = i),

for all i, j ∈ S and s, t ∈ [0,∞), the entries of Q are defined as

qi,j = lim
h→0+

pi,j(h)

h
, i, j ∈ S, j 6= i, and

qi,i = lim
h→0+

pi,i(h)− 1

h
, i ∈ S,

where pi,j(h) = P (X(t + h) = j|X(t) = i), and qi,j must satisfy the following three

conditions:

• qi,j ≥ 0 for i, j ∈ S, j 6= i,

• qi,i ≤ 0 for i ∈ S, and

•
∑
j∈S

qi,j = 0, for all i ∈ S.

A physical interpretation of qi,j is that for small h and for i 6= j,

pi,j(h) = qi,jh+ o(h),

where o(h) denotes a function f(h) that satisfies limh→0
f(h)
h

= 0. That is,

P (moving from state i to state j in some small time h) ≈ qi,jh.

So we interpret qi,j as the instantaneous rate of moving from state i ∈ S to state

j ∈ S.
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Similarly, a physical interpretation of qi,i is that for small h and for i ∈ S,

1− pi,i(h) = −qi,ih+ o(h) =
∑
j 6=i
j∈S

qi,jh+ o(h).

Hence, we interpret −qi,i as the instantaneous rate of moving out of state i ∈ S.

We can also think of −qi,i as the hazard rate for the time spent in state i ∈ S, where

the hazard rate is defined as

h(t) =
f(t)

1− F (t)
,

where f(t) and F (t) are the probability density and cumulative distribution

functions representing the time spent in state i ∈ S, respectively. The only

distribution which has a constant hazard rate is the exponential distribution.

Hence,

F (t) = 1− eqi,it,

for t ≥ 0, which indicates that the time spent in state i ∈ S is exponentially

distributed with rate

−qi,i =
∑
j 6=i
j∈S

qi,j.

Let’s now consider the probability that the process moves from state i ∈ S to state

j ∈ S in time t > 0,

pi,j(t) = P (X(s+ t) = j|X(s) = i), for all i, j ∈ S,

which has the property that

pi,j(t+ τ) =
∑
k∈S

pi,k(t)pk,j(τ), for all i, j ∈ S. (3.2.1)
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The equations presented in Equation (3.2.1) are known as the

Chapman-Kolmogorov equations and are interpreted as the probability of moving

from state i ∈ S to state j ∈ S in time t + τ > 0 is equal to the probability of

moving from state i ∈ S to state k ∈ S in time t > 0 and then from state k ∈ S to

state j ∈ S in time τ > 0, for all k ∈ S.

From the Chapman-Kolmogorov equations, we obtain the Kolmogorov backward

and forward differential equations of a continuous-time Markov chain which are

defined as
dpi,j(t)

dt
=
∑
k∈S

qi,kpk,j(t), i, j ∈ S, and

dpi,j(t)

dt
=
∑
k∈S

pi,k(t)qk,j, i, j ∈ S,

respectively.

Suppose P(t) is the transition function of a time-homogeneous continuous-time

Markov chain where

pi,j(t) = P (X(t) = j|X(0) = i), for all i, j ∈ S,

and let π(0) be the initial probability distribution. If the limit

lim
t→∞

P (t)

exists, then the limiting probabilities are defined as

πj = lim
t→∞

pi,j(t).

for all i, j ∈ S. Assuming the limiting distribution π exists,

lim
t→∞

dpi,j(t)

dt
= 0.
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Hence, the Kolmogorov forward differential equations imply that

0 = lim
t→∞

∑
k∈S

pi,k(t)qk,j

=
∑
k∈S

lim
t→∞

pi,k(t)qk,j, by Fatou’s Lemma,

=
∑
k∈S

πkqk,j

=
∑
k∈S
k 6=j

πkqk,j + πjqj,j,

which leads to the global balance equations defined as∑
k∈S
k 6=j

πkqk,j = πj
∑
k∈S
k 6=j

qj,k.

Hence, the equilibrium equations of a continuous-time Markov chain are defined as∑
k∈S
k 6=j

πkqk,j =
∑
k∈S
k 6=j

πjqj,k,

where the left-hand side represents the probability flux into state j ∈ S and the

right-hand side represents the probability flux out of state j ∈ S.

3.3 Birth-and-death processes

A particular type of continuous-time Markov chain used in queueing theory is a

birth-and-death process. Birth-and-death processes are often used to model the

size of a population, such that a birth is defined as an increase by one individual

and a death is defined as a decrease by one individual. Other applications include

modelling the number of customers in a supermarket or doctor’s surgery, where a

birth is considered as customer or patient arriving and a death is considered as a

customer or patient leaving.
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In birth-and-death processes, the birth rate when the population is of size k ∈ S is

defined as λk and the death rate when the population is of size k ∈ S is defined as

µk. A key property of birth-and-death processes is that transitions only occur

between neighbouring states, as shown in the state transition diagram presented in

Figure 3.3.1. That is, if X(t) represents the size of the population at time t ≥ 0

and is such that X(t) = n, then X(s) = n + 1 or X(s) = n − 1 where s > t is the

time of the next event.

0 1 2 · · · · · · n-1 n n+1 · · · · · ·

µ1

λ0

µ2

λ1 λ2

µ3 µn−1

λn−2

µn

λn−1 λn

µn+1

λn+1

µn+2

Figure 3.3.1: State transition diagram for the general birth-and-death process.

In terms of a CTMC, the birth rate is defined as

λk = qk,k+1, for k ∈ S,

and the death rate is defined as

µk = qk,k−1, for k ∈ S/{0}.

Given that transitions only occur between neighbouring states, we have that

qj,k = 0, for k ∈ S/{j − 1, j, j + 1}, and j ∈ S.

Hence, the transition rates −qk,k are defined as

−qk,k =
∑
j 6=k
j∈S

qk,j =

λk + µk, k ∈ S/{0},

λ0, k = 0.
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So the infinitesimal generator matrix for a general birth-and-death process is written

as

Q =



−λ0 λ0 0 0 0 · · ·

µ1 −(λ1 + µ1) λ1 0 0 · · ·

0 µ2 −(λ2 + µ2) λ2 0 · · ·

0 0 µ3 −(λ3 + µ3) λ3 · · ·
...

...
...

...
...

. . .


.

Using the state transition diagram and the global balance equations, we see that

the equilibrium equations are

πj(λj + µj) = πj+1µj+1 + πj−1λj−1, j ≥ 1,

π0λ0 = π1µ1.

Re-writing, we obtain

πj+1µj+1 − πjλj = πjµj − πj−1λj−1,

which is of the form Aj+1 = Aj, where Aj = πjµj − πj−1λj−1, for j ≥ 1.

We know that A1 = 0 using π0λ0 = π1µ1, so Aj = 0 for all j ≥ 1. Hence,

πjµj = πj−1λj−1, for all j ≥ 1.

Therefore, for j ≥ 1,

πj = πj−1
λj−1

µj

= π0
λ0

µ1

λ1

µ2

. . .
λj−1

µj

= π0

j−1∏
l=0

λl
µl+1

.
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Using the fact that
∞∑
i=0

πi = 1, we have that

π0 =
1

1 +
∞∑
k=1

k−1∏
i=0

λi
µi+1

.

3.3.1 Transition probabilities

Consider the time interval (t, t + dt), for some small value dt. The probability of a

birth in the time interval (t, t+ dt) is

P (X(t+ dt) = k + 1|X(t) = k) = λkdt+ o(dt),

the probability of a death in the time interval (t, t+ dt) is

P (X(t+ dt) = k − 1|X(t) = k) = µkdt+ o(dt),

and the probability of no births or deaths in the time interval (t, t+ dt) is

P (X(t+ dt) = k|X(t) = k) = 1− (λk + µk)dt+ o(dt),

where o(dt) denotes a function f(dt) that satisfies limdt→0
f(dt)
dt

= 0.

3.3.2 Waiting times

For a continuous-time Markov chain, the time spent waiting in state k ∈ S is

exponentially distributed and is also independent of the next jump. So the waiting

time, W , until the next event is exponentially distributed with rate λk + µk.
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3.3.3 Likelihood and parameter estimation

Suppose we continuously observe a general birth-and-death process over some

finite time period, [0, t]. That is, suppose we observed N jumps at times

t1, t2, . . . , tN , where t0 = 0 and tN < t. Various methods have been developed to

estimate the parameters of the general birth-and-death process using maximum

likelihood estimation [14, 31]. In this section, we present an overview of the

likelihood and calculation of the maximum likelihood estimators.

We define Bn = 1 if there is a birth at the nth jump, and Bn = 0 if there is a death at

the nth jump. Then the likelihood of the sequence of observations, {X(τ); 0 < τ < t}

is as follows.

L =
N∏
i=1

(
P (Wi = ti − ti−1|X(ti−1))× P (birth|X(ti−1))BiP (death|X(ti−1))1−Bi

)
× P (WN+1 ≥ t− tN |no births or deaths, X(tN))

=
N∏
i=1

(
(λX(ti−1) + µX(ti−1))e

−(λX(ti−1)
+µX(ti−1)

)(ti−ti−1) ×
λBiX(ti−1)µ

1−Bi
X(ti−1)

λX(ti−1) + µX(ti−1)

)
× e−(λX(tN )+µX(tN ))(t−tN )

=
N∏
i=1

(
λBiX(ti−1)µ

1−Bi
X(ti−1)e

−(λX(ti−1)
+µX(ti−1)

)(ti−ti−1)
)
× e−(λX(tN )+µX(tN ))(t−tN ).
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Let Tk be the total amount of time spent in state k ∈ S, Uk be the total number of

births from state k ∈ S, and Dk be the total number of deaths from state k ∈ S.

That is, for k ∈ S,

Tk =
N∑
i=1

(ti − ti−1)I(X(ti−1) = k),

TX(tN ) = t− tN ,

Uk =
N∑
i=1

I(X(ti−1) = k,Bi = 1), and

Dk =
N∑
i=1

I(X(ti−1) = k,Bi = 0),

respectively. Then the likelihood is simplified to the following:

L =
∞∏
k=0

λUkk µ
Dk
k e−(λk+µk)Tk .

Hence, the log-likelihood is written as

` =
∞∑
k=0

Uk log(λk) +
∞∑
k=0

Dk log(µk)−
∞∑
k=0

(λk + µk)Tk.

Using the log-likelihood, we find that the maximum likelihood estimates

θ̂ = ({λ̂k; k = 0, 1, . . .}, {µ̂k; k = 1, 2, . . .}) are defined as

λ̂k =
Uk
Tk
, k = 0, 1, . . . , and

µ̂k =
Dk

Tk
, k = 1, 2, . . . .

Crawford et al. [14] developed an EM algorithm for estimating the parameters of

a general birth-and-death process. The reader is referred to the paper for further

discussion of the parameter estimation method.
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3.4 Summary

Stochastic processes and Markov chains are used to model many random

phenomena and are fundamental to the development and understanding of

queueing theory. In particular, the general birth-and-death process is related to

various elementary queueing models and is used to derive the maximum likelihood

estimates of the parameters of such queueing models. In the next chapter, we

review queueing systems and discuss the theory behind the elementary modelling

of queueing systems.



Chapter 4

Queueing theory

Queueing systems, such as call centres, production plants, and hospitals, are systems

of servers or resources where customers or units queue up to receive a service

and leave upon service completion. Queueing models are mathematical models

that are used to describe queueing systems and are traditionally determined by

understanding the structure of the queueing system and analysing data. Queueing

theory is an area of research within applied probability and operations research

that focuses on modelling the performance of queueing systems. In this chapter,

we briefly review queueing theory and present an overview of elementary queueing

models.

4.1 Queueing systems

A queueing system is a service facility where customers arrive to receive a service

and leave upon service completion. Queueing systems are generally described by

the arrival process, the distribution of service times, the number of servers in the

queueing system, the capacity of the queueing system, and the queueing discipline.

26
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An illustration of customer flow through a service facility is shown in Figure 4.1.1.

The customers arrive to the service facility in a random manner. Most service

facilities have a limited number of servers, so customers will join a queue and await

service if there is no available server. When a server becomes available, the customer

moves into service and upon completion, the customer will leave the service facility.

Figure 4.1.1: An illustration of a simple queueing system.

4.1.1 The arrival process

The arrival process for a queueing system is a stochastic process and is often

described by the probability distribution of the times between customer arrivals,

otherwise known as the inter-arrival times. However, there is no restriction to how

many customers that can arrive at any point in time. That is, customers can arrive

one by one or in batches. It is also possible for the arrival process to be time-

dependent, such as the arrival rate depending on the hour of the day or the day of

the week, which is known as a non-stationary arrival process. If the arrival process

does not depend on time, then it is known as a stationary arrival process.
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4.1.2 The service process

The service process of a queueing system describes the manner in which customers

are served. The service process is typically characterised by the distribution of

service times. The service time of customers can be affected by the type of service

required and the service rate of the server. Depending on the queueing system, the

service time may also depend on the number of customers waiting in the queue, which

is known as a state-dependent queueing system. Similar to the arrival process, if the

service times are time-dependent, then the service process is called a non-stationary

service process. Otherwise, it is called a stationary service process.

4.1.3 Number of servers

Queueing systems may have any number of servers that provide a service of some

kind. When the queueing system only has one server, it is called a single-server

queueing system. When the queueing system has more than one server, it is known

as a multi-server queueing system.

In a multi-server queueing system with parallel servers, several customers are

served simultaneously. Intuitively, we see that the more servers in a queueing

system, the lower the amount of time customers have to wait in the queue. In a

queueing system where the servers are in a series, customers must complete the

service at each server in a specified order before leaving the queueing system.

Another type of multi-server queueing system is the infinite server queueing system.

The infinite server queueing system assumes an unlimited number of servers which

means that all customers are immediately served upon arrival without waiting. The

importance of an infinite server queueing system is demonstrated by its ability to

provide insight into the service demand and performance of the queueing system.
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4.1.4 Queue and system capacity

Many service facilities have a limited number of servers, and so customers will join

a queue and await service if there is no available server. In addition to this, service

facilities may have a finite queue capacity which are known as finite queueing

systems. So when the number of customers in the queue reaches capacity, no

further customers will be able to enter and instead those customers are lost to the

system.

For service facilities with infinite capacity, such as a finite number of servers and

unlimited queueing space, customers move directly into the queue and proceed to

service when a server becomes available.

4.1.5 The queueing discipline

The queueing discipline of a queueing system refers to the order in which

customers are chosen from the queue and taken into service. Generally, there are

two types of queueing disciplines: static and dynamic.

Static queueing disciplines are based on the individual customer’s status in the

queue. Examples of static queueing disciplines include First In First Out (FIFO)

and Last Come First Serve (LCFS).

• FIFO : The first customer at the head of the queue is the next customer to be

taken into service.

• LCFS : The last customer at the tail of the queue is the next customer to be

taken into service.

Dynamic queueing disciplines are based on the individual customer’s attributes in

the queue. Examples of dynamic queueing disciplines include Serve In Random

Order (SIRO) and priority queueing.
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• SIRO : A randomly selected customer in the queue is the next customer to be

taken into service.

• Priority : The customer with the highest priority is the next customer to be

taken into service. Priority queues can be divided into two types;

non-preemptive priority queue, where a customer in service cannot be

interrupted and a preemptive priority queue, where a customer in service can

be interrupted by a higher priority customer.

In other queueing systems, the service may be shared equally between customers.

This is known as the processor sharing queueing discipline.

4.2 Kendall’s notation

Kendall’s notation is the standard notation used to describe a queueing system.

Kendall first introduced the form A/B/C but it has since been extended to

A/B/C/D/E/F, where

• A describes the inter-arrival time distribution,

• B describes the service time distribution,

• C denotes the number of servers in the system,

• D denotes the system capacity,

• E denotes the size of the calling population, and

• F describes the queueing discipline.

The standard symbols used in Kendall’s notation are given in Table 4.2.1. For

example, a single-server queueing system with Poisson arrivals, exponential service

times, infinite system capacity, infinite calling population, and a FIFO queueing

discipline is written as M/M/1/∞/∞/FIFO, or M/M/1 using the shorthand

notation.
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Characteristic Symbol Description

Inter-arrival time distribution (A) M Markovian

Service time distribution (B) D Deterministic

G General

GI General Independent

PH Phase-type distribution

Ek Erlang with k phases

Hk Mixture of k exponentials

Ck Coxian distribution with k phases

Number of servers (C) 1, 2, . . ., ∞

System capacity (D) 1, 2, . . ., ∞

Size of the calling population (E) 1, 2, . . ., ∞

Queueing discipline (F) FIFO First In First Out

LCFS Last Come First Serve

SIRO Serve In Random Order

Priority Customer with the highest priority

Processor sharing Shared service

Table 4.2.1: Kendall’s queueing notation.

4.3 Performance measures

Once a suitable queueing model has been identified for a queueing system, focus is

then drawn to the performance of the queueing system under the selected queueing

model. The analysis of the performance of a queueing system typically involves

estimating performance measures, such as the server utilisation, the distribution of

the number of customers in the queue/system, and the distribution of the amount

of time a customer waits in the queue/system. These performance measures assist

in quantifying potential improvements to the system, such as changing the capacity

of the queueing system or changing the number of servers.
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4.4 Little’s law

An intuitive assessment of the efficiency of a queueing system is that the average

number of customers in a queueing system depends on the average waiting time in

the queue and the average arrival rate of customers to the queueing system.

LetA(t) be the number of arrivals in the time interval [0, t] andD(t) be the number of

departures from the system in the time interval [0, t]. Then the number of customers

in the system at time t ≥ 0 is defined as

N(t) = A(t)−D(t).

For the time interval [0, t], the average arrival rate is defined as

λ(t) =
A(t)

t
, t > 0.

Let S(t) denote the total amount of time customers spent in the system during the

time interval [0, t], as illustrated in Figure 4.4.1. Then the average time spent in the

system per customer in the interval [0, t] is defined as

T̄ (t) =
S(t)

A(t)
.
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Figure 4.4.1: Graphical representation of the number of arrivals and departures over

time.

Lastly, we define the average number of customers in the system in the interval [0, t]

as

N̄(t) =
S(t)

t
.

It then follows that,

N̄(t) =
S(t)

t
,

=
S(t)

A(t)
× A(t)

t
,

= λ(t)T̄ (t).
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Taking the limit as t→∞, let

N̄ = lim
t→∞

N̄(t),

T̄ = lim
t→∞

T̄ (t), and

λ = lim
t→∞

λ(t).

Hence, we have that

N̄ = λT̄ ,

where λ is the average arrival rate of the queueing system. This result is known

as Little’s Law. More explicitly, Little’s Law states that the average number of

customers in the system is equal to the average arrival rate of customers multiplied

by the average time spent in the system. Given that Little’s Law does not depend

on the arrival process, the distribution of service times, the capacity of the system,

or the queueing discipline, it can be used as a performance measure for any type of

queueing system.

4.5 Elementary queueing models

The most studied queueing models are those with Poisson arrivals and exponential

service times, which are examples of a general birth-and-death process. In this

section, we review various Markovian queueing models of the form M/M/·/·.

4.5.1 M/M/1 queue

The first Markovian queueing system that we consider is a single-server queuing

system with an infinite queue capacity and a FIFO queueing discipline, as illustrated

in Figure 4.5.1.
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Figure 4.5.1: Example of a single-server queue. The blue dots represent customers.

The M/M/1 queueing system has a Poisson arrival process with parameter λ and

exponentially distributed service times with parameter µ. The state transition

diagram for the M/M/1 queue is shown in Figure 4.5.2.

0 1 2 · · · · · · n-1 n n+1 · · · · · ·

µ

λ

µ

λ λ

µ µ

λ

µ

λ λ

µ

λ

µ

Figure 4.5.2: State transition diagram for the M/M/1 queue.

The transition rates for a M/M/1 queueing model with state space S = {0, 1, 2, . . .}

are

qi,i+1 = λ, i ∈ S,

qi,i−1 = µ, i ∈ S\{0}, and

qi,j = 0, i ∈ S, j ∈ S\{i, i+ 1, i− 1}.

So the infinitesimal generator matrix is

Q =


−λ λ 0 0 0 · · ·

µ −(λ+ µ) λ 0 0 · · ·

0 µ −(λ+ µ) λ 0 · · ·
...

. . . . . . . . . . . . . . .

 .
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Using the stationary distribution of a birth-and-death process from Section 3.3, we

find that the stationary distribution for an M/M/1 queue is

πk = π0

(
λ

µ

)k
, k = 0, 1, . . . ,

where

π0 =

(
∞∑
n=0

(
λ

µ

)n)−1

= 1− λ

µ
.

4.5.2 M/M/c queue

The second Markovian queueing system we consider is a system with c identical

servers, infinite queue capacity, and a FIFO queueing discipline, as illustrated in

Figure 4.5.3.

Figure 4.5.3: Example of a queue with c identical servers. The blue dots represent

customers.
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The M/M/c queueing system has a Poisson arrival process with parameter λ and

each server provides independent and identically distributed exponential service at

rate µ. If there are n < c customers in service, then the effective service rate is

equal to nµ. If there are n ≥ c customers in the system, then the effective service

rate is equal to cµ.

0 1 2 · · · · · · c-1 c c+1 · · · · · ·

µ

λ

2µ

λ λ

3µ (c− 1)µ

λ

cµ

λ λ

cµ

λ

cµ

Figure 4.5.4: State transition diagram for the M/M/c queue.

The state transition diagram shown in Figure 4.5.4 illustrates that the transition

rates are

qi,i+1 = λ, i ∈ S,

qi,i−1 = min(iµ, cµ), i ∈ S\{0}, and

qi,j = 0, i ∈ S, j ∈ S\{i, i+ 1, i− 1}.

So the infinitesimal generator matrix is

Q =



−λ λ 0 0 0 0 · · ·

µ −(λ+ µ) λ 0 0 0 · · ·

0 2µ −(λ+ 2µ) λ 0 0 · · ·
...

. . . . . . . . . . . . . . . . . .
...

. . . . . . cµ −(λ+ cµ) λ
. . .

...
. . . . . . . . . . . . . . . . . .


.
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Using the stationary distribution of a birth-and-death process from Section 3.3, we

find that the stationary distribution for an M/M/c queue is

πk =

π0
1
k!

(
λ
µ

)k
, k ≤ c,

π0
1

ck−cc!

(
λ
µ

)k
, k > c,

where

π0 =

(
c−1∑
n=0

λn

n!µn
+

λc

c!µc
1

c− λ
cµ

)−1

.

4.5.3 M/M/∞ queue

Next, we consider a Markovian queueing system with an infinite number of identical

servers, infinite queue capacity, and a FIFO queueing discipline, as illustrated in

Figure 4.5.5. Since there are an infinite number of servers in this queueing system,

no customer will ever wait in a queue. Hence, the time spent in the queue and the

number of customers in the queue will be zero by definition.

Figure 4.5.5: Example of a queue with an infinite number of identical servers. The

blue dots represent customers in the system.
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For the M/M/∞ queueing system, the arrival process is Poisson with parameter λ

and each server provides independent and identically distributed exponential

service at rate µ.

The state transition diagram for the M/M/∞ queue is shown in Figure 4.5.6.

0 1 2 · · · · · · n-1 n n+1 · · · · · ·

µ

λ

2µ

λ λ

3µ (n− 1)µ

λ

nµ

λ λ

(n+ 1)µ

λ

(n+ 2)µ

Figure 4.5.6: State transition diagram for the M/M/∞ queue.

From this, we see that the transition rates are

qi,i+1 = λ, i ∈ S,

qi,i−1 = iµ, i ∈ S\{0}, and

qi,j = 0, i ∈ S, j ∈ S\{i, i+ 1, i− 1}.

So the infinitesimal generator matrix is

Q =


−λ λ 0 0 0 · · ·

µ −(λ+ µ) λ 0 0 · · ·

0 2µ −(λ+ 2µ) λ 0 · · ·
...

. . . . . . . . . . . . . . .

 .
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Using the stationary distribution of a birth-and-death process from Section 3.3, we

find that the stationary distribution for an M/M/∞ queue is

πk = π0
1

n!

(
λ

µ

)n
, k = 0, 1, . . . ,

where

π0 =

(
∞∑
n=0

1

n!

(
λ

µ

)n)−1

= e−
λ
µ .

4.5.4 M/M/c/K queue

Lastly, we consider a Markovian queueing system with c identical servers, c, a

finite system capacity of K customers, and a FIFO queueing discipline, as

illustrated in Figure 4.5.7. This queueing system is known as a loss system, as

customers are lost if the system is at capacity.

Figure 4.5.7: Example of a queue with c identical servers and a finite system capacity

of K customers. The blue dots represent customers.
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For the M/M/c/K queueing system, the arrival process is Poisson with parameter

λ and each server provides independent and identically distributed exponential

service at rate µ.

0 1 · · · · · · c-1 c c+1 · · · · · · K

µ

λ λ

2µ (c− 1)µ

λ

cµ

λ λ

cµ

λ

cµ

λ

cµ

Figure 4.5.8: State transition diagram for the M/M/c/K queue.

From the state transition diagram shown in Figure 4.5.8, we see that the transition

rates are

qi,i+1 =

λ, i ∈ S, i < K

0, i ≥ K,

qi,i−1 =

iµ, i ∈ S, 0 < i < c,

cµ, c ≤ i ≤ K,

and,

qi,j = 0, i ∈ S, j ∈ S\{i, i+ 1, i− 1}.
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So the infinitesimal generator matrix is

Q =



−λ λ 0 0 0 0 · · · 0

µ −(λ+ µ) λ 0 0 0 · · · 0

0 2µ −(λ+ 2µ) λ 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

...
. . . . . . cµ −(λ+ cµ) λ

. . .
...

...
. . . . . . . . . . . . . . . . . .

...

0 0 0 0 0 cµ −(λ+ cµ) 0

0 0 0 0 0 cµ −cµ



.

Using the stationary distribution of a birth-and-death process from Section 3.3, we

find that the stationary distribution for an M/M/c/K queue is

πk =

π0
1
k!

(
λ
µ

)k
, k ≤ c,

π0
1

ck−cc!

(
λ
µ

)k
, c < k ≤ K,

where

π0 =

(
c−1∑
n=0

1

n!

(
λ

µ

)n
+

K∑
n=c

1

cn−cc!

(
λ

µ

)n)−1

.

4.6 Summary

Queueing theory benefits the design, analysis, and modification of queueing systems

in ways, such as adjusting the number of servers, adjusting the capacity, or making

small changes to the flow of customers to improve the performance of the system.

One of the many applications of queueing theory is healthcare system modelling. In

the next chapter, we show how elementary queueing models are used to model the

bed occupancy of intensive care units.
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Modelling intensive care units

using elementary queueing models

The modelling of healthcare systems has become increasingly popular over the

past few years as the demand for resources in health care services increases. In

particular, there is a growing interest in improving the operation of intensive care

units in terms of patient care and bed management.

Intensive care units have been extensively modelled using stochastic modelling

techniques over the last few decades, with a particular focus on using queueing

theory [2]. Queueing models, such as M/M/• queueing models, have been used to

address bed occupancy management and capacity planning problems in ICUs [47].

These queueing models assume a Poisson arrival process and an exponential

distribution for the service times, as well as independence between the arrival and

service processes.

43
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In the context of a queueing process, the customers are the patients being admitted

to the ICU and the servers are the resources being modelled. For example, the

servers could be the beds in the ICU, medical equipment, medical staff, or a

combination of all three resources. The queueing discipline of the ICU is very

complex as patient admission and treatment depends on the severity of a patient’s

condition and the resources required, as well as the availability of beds in the ICU.

In this section, we use data from the Royal Adelaide Hospital [47] to model the

bed occupancy in the ICU using the M/M/∞, M/M/c, and M/M/c/K queueing

models. For each of these models, we assume that the customers are the patients

being admitted to the ICU, the servers are the beds in the ICU, and the queueing

discipline is a combination of priority and processor sharing. We also assess the fit

of each model by comparing the model distributions of the bed occupancy to the

observed distribution of bed occupancy from the RAH ICU data set, as well as check

the assumptions of the queueing models.

5.1 Royal Adelaide Hospital

The Royal Adelaide Hospital (RAH) is the largest hospital in Adelaide, South

Australia. Prior to November 2017, the Royal Adelaide Hospital was located on

North Terrace, Adelaide, containing 680 beds. The Royal Adelaide Hospital has

since relocated to Port Road, Adelaide, where it now contains 800 beds. Among

several improvements to the hospital, the treatment capacities in the intensive care

unit increased to accomodate more patients with various conditions. The intensive

care unit at the New Royal Adelaide Hospital (nRAH) contains 60 beds including

quarantine rooms for infectious diseases, whereas the previous hospital contained

only 42 beds.
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5.1.1 Data set

The data set used in this thesis was obtained from the intensive care unit in the

original Royal Adelaide Hospital. The data set contains de-identified information

on 7124 patients who arrived to the ICU from 1 November 2014 to 31 October 2016,

such as

• patient demographics (age, gender, etc.),

• the date and time of admission to the ICU,

• the source of patient admission (ambulance, private vehicle, etc.),

• the health status and reason for admission,

• the date and time of discharge from the ICU,

• the patient survival status (died or survived), and

• the discharge destination (home or another unit/ward).

5.1.2 Analysis

In this section, we analyse the patient admissions to the ICU, how long patients

stay in the ICU, patient discharges from the ICU, as well as the number of patients

in the ICU across the time period of interest. Note that the shifts defined in this

thesis are as follows:

• day shift - 7:00 a.m. to 3:00 p.m,

• afternoon shift - 3:00 p.m. to 11:00 p.m, and

• night shift - 11:00 p.m. to 7:00 a.m.
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Patient admissions

Patients generally arrive to the ICU following surgery or from another unit or

ward within the hospital, as shown in Figure 5.1.1. The largest source of admission

to the ICU is the operating theatre, which accounts for 48.7% of ICU admissions,

followed by the emergency department, which accounts for 31.5%.

Figure 5.1.1: Sources of admission to the intensive care unit at the Royal Adelaide

Hospital.

Between November 2014 and October 2016, the average admission rate of patients

to the ICU was 9.785 patients per day, as shown in Table 5.1.1. The variability of

patient admissions to the ICU is illustrated by the variance of 10.336 patients per

day, as well as the minimum and maximum number of patient admissions being 1

and 18 respectively.
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Mean Median Variance IQR Minimum Maximum

9.785 10 10.336 5 1 18

Table 5.1.1: Summary statistics of the number of patient admissions to the RAH

ICU per day.

The RAH ICU has a high influx of patient admissions between Monday and Friday

due to more medical staff available during the week, as shown in Figure 5.1.2c.

The increase in patient admissions to the ICU in the afternoon, shown in

Figures 5.1.2a and 5.1.2b, is generally due to patients coming out of scheduled

surgeries in the morning.
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(a) (b)

(c)

Figure 5.1.2: Average number of patient admissions to the RAH ICU (dot) for each

hour of the day (a), for each shift (b), and for each day of the week (c). Note that

the error bars represent mean ± standard deviation.

Emergency procedures are unplanned, and so admission to the ICU can occur on

any day during the week and at any time of the day. Hence, the average admission

rate of emergency patients to the ICU is higher than the average admission rate of

elective patients to the ICU, as shown in Table 5.1.2. Also note the higher amount

of variability in the number of emergency patient admissions per day compared to

that of elective patients, which is reflective of the unplanned nature of emergency

procedures.
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Summary statistic Elective Emergency

Mean 2.209 7.576

Median 2 7

Variance 3.831 6.379

IQR 4 3

Minimum 0 1

Maximum 9 15

Table 5.1.2: Summary statistics of the number of elective and emergency patient

admissions to the RAH ICU per day.

Elective procedures are planned in advanced and are generally scheduled on

weekdays and during the day as there are more medical staff working during these

hours. Hence, there are fewer elective patient admissions to the ICU on weekends

and during night shifts, as illustrated in Figures 5.1.3c, 5.1.3a, and 5.1.3b.
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(a) (b)

(c)

Figure 5.1.3: Average number of elective and emergency patient admissions to the

RAH ICU for each hour of the day (a), for each shift (b), and for each day of the

week (c).

Length of stay

The length of stay of a patient is defined as the number of days spent in a bed.

There is a considerable amount of variability in the length of stay which is due to

the varying severity of medical conditions of patients presented to the ICU, as shown

in Figure 5.1.4 and Table 5.1.3.
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(a)

(b)

Figure 5.1.4: Histograms of patient length of stay (days) in the RAH ICU. Note

that (b) plots the length of stay on a log base 10 scale.
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Summary statistic Value

Mean 3.628

Median 2.001

Variance 26.100

IQR 3.106

Minimum 0.010

Maximum 114.712

Table 5.1.3: Summary statistics of patient length of stay (days) in the RAH ICU.

Elective procedures are extensively planned, so medical staff are quite efficient in

treating elective patients. Whereas, emergency patients often require a lot of medical

attention and complications can occur if the medical condition is severe. Hence, the

length of stay of emergency patients is longer on average and more variable than

the length of stay of elective patients, as shown in Table 5.1.4 and Figure 5.1.5.

Summary statistic Elective Emergency

Mean 2.257 4.027

Median 1.104 2.375

Variance 6.716 31.047

IQR 1.992 3.502

Minimum 0.160 0.010

Maximum 28.156 114.712

Table 5.1.4: Summary statistics of patient length of stay (days) of elective and

emergency patients in the RAH ICU.
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(a)

(b)

Figure 5.1.5: Histograms of patient length of stay (days) for elective and emergency

patients in the RAH ICU. Note that (b) plots the length of stay on a log base 10

scale.
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Patient discharges

Once a patient no longer requires intensive care, the patient is transferred to

another unit or ward either within or externally to the hospital, as shown in

Figure 5.1.6.

Figure 5.1.6: Destinations of discharges from the intensive care unit at the Royal

Adelaide Hospital.

Between November 2014 and October 2016, the average discharge rate of patients

from the ICU was 9.525 patients per day, as shown in Table 5.1.5.

Mean Median Variance IQR Minimum Maximum

9.525 10 11.767 5 0 19

Table 5.1.5: Summary statistics of the number of patient discharges from the RAH

ICU per day.
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Given that there are limited staff in the hospital on weekends, there are more

patient discharges from the ICU during the week, as shown in Figure 5.1.7c. In

addition to this, ICU management tend to discharge patients from the ICU in the

late morning or early afternoon as there is an influx of patient admissions to the

ICU following morning surgery, as illustrated in Figures 5.1.7a and 5.1.7b.

(a) (b)

(c)

Figure 5.1.7: Average number of patient discharges from the RAH ICU (dot) for

each hour of the day (a), for each shift (b), and for each day of the week (c). Note

that the error bars represent mean ± standard deviation.
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Given that the admission patterns of elective and emergency patients are different,

the discharge patterns between elective and emergency patients are consequently

different as well, as shown in Table 5.1.6.

Summary statistic Elective Emergency

Mean 2.150 7.374

Median 2 7

Variance 2.755 8.765

IQR 2 4

Minimum 0 0

Maximum 9 17

Table 5.1.6: Summary statistics of the number of elective and emergency patient

discharges from the RAH ICU per day.

Furthermore, Figures 5.1.8a, 5.1.8b, and 5.1.8c illustrate that the average

discharge rate of emergency patients is higher across the week than the average

discharge rate of elective patients, particularly during the day shift.
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(a) (b)

(c)

Figure 5.1.8: Average number of elective and emergency patient discharges from the

RAH ICU for each hour of the day (a), for each shift (b), and for each day of the

week (c).

Bed occupancy

In an ICU, bed occupancy is defined as the number of patients occupying beds

within the ICU. Between November 2014 and October 2016, the average bed

occupancy was 34.85 patients and it varies considerably, as shown in Table 5.1.7.

Figure 5.1.9 shows that the bed occupancy increases during the colder months and

flu season and it decreases over the warmer months and Christmas holidays. The

minimum observed bed occupancy during this time period was 20 patients and the

ICU exceeded capacity several times, as shown in Figure 5.1.10.
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Mean Median Variance IQR Minimum Maximum

34.850 35 13.255 5 20 45

Table 5.1.7: Summary statistics of the ICU bed occupancy at the Royal Adelaide

Hospital.

Figure 5.1.9: Plot of ICU bed occupancy at the Royal Adelaide Hospital.
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Figure 5.1.10: Bar chart of ICU bed occupancy at the Royal Adelaide Hospital.

Service priority

Given the nature of the ICU, patients are admitted based not only on the severity

of their condition but also on the availability of a bed. In terms of treatment, the

severity of their condition and availability of resources greatly determines how long

a patient remains in the ICU. Hence, the service discipline of the ICU is very

complex and tends to relate to priority and processor sharing queueing models.

However, in this chapter we only consider the queueing models that are commonly

used to address bed occupancy management and capacity planning problems in

ICUs. The reason behind this is to draw attention to the limitations of using these

queueing models in terms of the arrival and service processes and not the queueing

discipline.
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Summary

From the analysis above, the admission and discharge patterns of patients are time

dependent, meaning that admissions and discharges depend on the time of the day

and the day of the week. There is also evidence of different admission, discharge,

and length of stay patterns between elective and emergency patients.

Despite this, the bed occupancy of ICUs is often modelled using M/M/• queueing

models due to their simplicity [47, 2]. In the following sections, we initially model

the RAH ICU using an M/M/∞ queueing model and then restrict the capacity by

considering an M/M/42 queueing model and an M/M/42/45 queueing model.

5.2 M/M/∞ queueing model

In the context of an ICU, we first consider an M/M/∞ queueing model which

suggests that

• patients arrive to the ICU according to a Poisson process,

• patient lengths of stay are exponentially distributed,

• there are an unlimited number of beds in the ICU, and

• there are an unlimited number of waiting spaces available.
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Using the definition of the likelihood for a general birth-and-death process presented

in Section 3.3.3, the likelihood for an M/M/∞ queueing model is defined as

L(uk, dk, tk;λ, µ) =
∞∏
k=0

λuk(kµ)dk exp (− (λ+ kµ) tk) ,

where uk is the observed number of times the bed occupancy increased from k ≥ 0

to k + 1, dk is the observed number of times the bed occupancy decreased from

k ≥ 1 to k − 1, and tk is the observed amount of time the ICU had a bed

occupancy of k ≥ 0.

Recall that the minimum observed occupancy was 20 and the maximum observed

occupancy was 45. Hence, the likelihood becomes

L(uk, dk, tk;λ, µ) =
45∏

k=20

λuk(kµ)dk exp (− (λ+ kµ) tk) .

Using the observed data, we estimate λ and µ using the maximum likelihood

estimates,

λ̂ =

45∑
k=20

uk

45∑
k=20

tk

= 9.786,

and,

µ̂ =

45∑
k=20

dk

45∑
k=20

ktk

= 0.276.
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Hence, the transition rates of the M/M/∞ queueing model are

λk = 9.786, k ≥ 20,

and

µk = 0.276k, k ≥ 21.

Using the definition of the stationary distribution for an M/M/∞ queueing model,

the expected proportion of time spent at each bed occupancy is

πk = π20
1
k!
20!

(
9.786

0.276

)k−20

, k ≥ 21,

where

π20 =

(
1 +

∞∑
n=21

1
n!
20!

(
9.786

0.276

)n−20
)−1

.

Figure 5.2.1 compares the expected proportion of time spent at each bed

occupancy assuming an M/M/∞ queueing model to the observed proportion of

time spent at each bed occupancy. Based on the significant difference between the

distributions, the M/M/∞ queueing model is clearly not a suitable model for the

RAH ICU.

In addition to this, the M/M/∞ queueing model allows transitions to bed

occupancies greater than 45 which is an unreasonable assumption for the RAH

ICU.
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Figure 5.2.1: Observed proportion of time spent at each bed occupancy (blue) versus

the expected proportion of time spent at each bed occupancy assuming an M/M/∞

queueing model (green).

5.3 M/M/42 queueing model

Next, we consider an M/M/42 queueing model which now assumes a finite number

of beds in the ICU. In particular, the M/M/42 queueing model suggests that

• patients arrive to the ICU according to a Poisson process,

• patient lengths of stay are exponentially distributed,

• there are 42 beds in the ICU, and

• there are an unlimited number of waiting spaces available.
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Using the definition of the likelihood for a general birth-and-death process presented

in Section 3.3.3, the likelihood for an M/M/42 queueing model is defined as

L(uk, dk, tk;λ, µ) =
41∏
k=0

λuk(kµ)dk exp (− (λ+ kµ) tk)
∞∏

k=42

λuk(42µ)dk exp (− (λ+ 42µ) tk),

where uk is the observed number of times the bed occupancy increased from k ≥ 0

to k + 1, dk is the observed number of times the bed occupancy decreased from

k ≥ 1 to k − 1, and tk is the observed amount of time the ICU had a bed

occupancy of k ≥ 0.

Given that the minimum observed occupancy was 20 and the maximum observed

occupancy was 45, the likelihood becomes

L(uk, dk, tk;λ, µ) =
41∏

k=20

λuk(kµ)dk exp (− (λ+ kµ) tk)
45∏

k=42

λuk(42µ)dk exp (− (λ+ 42µ) tk).

Using the observed data, we estimate λ and µ using the maximum likelihood

estimates,

λ̂ =

45∑
k=20

uk

45∑
k=20

tk

= 9.786,

and,

µ̂ =

45∑
k=20

dk

41∑
k=20

ktk +
45∑

k=42

42tk

= 0.276,

which are the same as those obtained in the M/M/∞ queueing model.
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Hence, the transition rates of the M/M/42 queueing model are

λk = 9.786, k ≥ 20,

and

µk =

0.276k, 21 ≤ k ≤ 41,

42× 0.276, k ≥ 42.

Using the definition of the stationary distribution for an M/M/42 queueing model,

the expected proportion of time spent at each bed occupancy is

πk =


π20

1
k!
20!

(
9.786
0.0127

)k−20
, 20 ≤ k ≤ 41,

π20
1

42k−4242!
20!

(
9.786
0.0127

)k−20
, k ≥ 42,

where

π20 =

(
1 +

41∑
n=21

1
n!
20!

(
9.786

0.0127

)n−20

+
1

42!
20!

(
9.786

0.0127

)42−20
1

1− 9.786
42×0.0127

)−1

.

Based on the significant difference between the expected proportion of time spent

at each bed occupancy assuming an M/M/42 queueing model and the observed

proportion of time spent at each bed occupancy illustrated in Figure 5.3.1, the

M/M/42 queueing model is again clearly not a suitable model for the RAH ICU.
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Figure 5.3.1: Observed proportion of time spent at each bed occupancy (blue)

versus the expected proportion of time spent at each bed occupancy assuming an

M/M/42 queueing model (red) and the expected proportion of time spent at each

bed occupancy assuming an M/M/∞ queueing model (green).

5.4 M/M/42/45 queueing model

Lastly, we consider an M/M/42/45 queueing model which further reduces the

capacity of the ICU, such that there are now a finite number of beds in the ICU

and a finite number of waiting spaces. That is, we consider an M/M/42/45

queueing model which suggests that

• patients arrive to the ICU according to a Poisson process,

• patient lengths of stay are exponentially distributed,

• there are 42 beds in the ICU, and

• there are 3 waiting spaces available.
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Using the definition of the likelihood for a general birth-and-death process presented

in Section 3.3.3, the likelihood for an M/M/42/45 queueing model is defined as

L(uk, dk, tk;λ, µ) =
411∏
k=0

λuk(kµ)dk exp (− (λ+ kµ) tk)
45∏

k=42

λuk(42µ)dk exp (− (λ+ 42µ) tk),

where uk is the observed number of times the bed occupancy increased from k ≥ 0

to k + 1, dk is the observed number of times the bed occupancy decreased from

k ≥ 1 to k − 1, and tk is the observed amount of time the ICU had a bed

occupancy of k ≥ 0.

Since the minimum observed occupancy was 20 and the maximum observed

occupancy was 45, the likelihood becomes

L(uk, dk, tk;λ, µ) =
41∏

k=20

λuk(kµ)dk exp (− (λ+ kµ) tk)
45∏

k=42

λuk(42µ)dk exp (− (λ+ 42µ) tk).

Using the observed data, we estimate λ and µ using the maximum likelihood

estimates,

λ̂ =

45∑
k=20

uk

45∑
k=20

tk

= 9.786,

and,

µ̂ =

45∑
k=20

dk

41∑
k=20

ktk +
45∑

k=42

42tk

= 0.276,

which are also the same as those obtained in the M/M/∞ queueing model.
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Hence, the transition rates of the M/M/42/45 queueing model are

λk =

9.786, 20 ≤ k ≤ 44,

0, k ≥ 45

and

µk =

0.276k, 21 ≤ k ≤ 42,

42× 0.276, 43 ≤ k ≤ 45.

Using the definition of the stationary distribution for an M/M/42/45 queueing

model, the expected proportion of time spent at each bed occupancy is

πk =


π20

1
k!
20!

(
9.786
0.0127

)k−20
, 20 ≤ k ≤ 42,

π20
1

42k−4242!
20!

(
9.786
0.0127

)k−20
, 43 ≤ k ≤ 45,

0, k > 45,

where

π20 =

(
1 +

41∑
n=21

1
n!
20!

(
9.786

0.0127

)n−20

+
45∑

n=42

1
42n−4242!

20!

(
9.786

0.0127

)n−20
)−1

.

Figure 5.4.1 compares the expected proportion of time spent at each bed occupancy

M/M/42/45 queueing model to the observed proportion of time spent at each

bed occupancy. Again, there is a clear difference in the distributions and so the

M/M/42/45 queueing model is not a suitable model for the RAH ICU.
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Figure 5.4.1: Observed proportion of time spent at each bed occupancy (blue)

versus the expected proportion of time spent at each bed occupancy assuming an

M/M/42/45 queueing model (purple), the expected proportion of time spent at

each bed occupancy assuming an M/M/42 queueing model (red) and the expected

proportion of time spent at each bed occupancy assuming an M/M/∞ queueing

model (green).

5.5 Discussion

The M/M/• queueing models have the following assumptions in common:

• the inter-arrival times are exponentially distributed,

• the service times are exponentially distributed, and

• the arrival process and the distribution of service times are independent.

In this section, we assess the validity of each assumption using statistical modelling

techniques.
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5.5.1 Patient inter-arrival times

In the literature, the patient admission process is often assumed to be a Poisson

arrival process, leading to exponential inter-arrival times. Between November 2014

and October 2016, the average inter-arrival time was 2.46 hours with a variance of

8.26 hours. Figure 5.5.1 plots the distribution of the patient inter-arrival times,

drawing attention to the drop in density for inter-arrivals between 0 and 1 hour.

Figure 5.5.1: Histogram of patient inter-arrival times from the RAH ICU data set.

Using maximum likelihood techniques, the probability density function of the fitted

exponential distribution is

f(x) = 0.407 exp(−0.407x), x ≥ 0,

and is plotted in Figure 5.5.2. If the inter-arrival times were in fact exponentially

distributed, then the points in the quantile-quantile plot in Figure 5.5.3 would fall

on the solid line. However, there is a strong deviation away from the exponential

distribution. Hence, a Poisson arrival process does not seem reasonable in this case.
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Figure 5.5.2: Observed density (blue) and fitted exponential density (red) of the

patient inter-arrival times from the RAH ICU data set.

Figure 5.5.3: Quantile-quantile plot of the observed patient inter-arrival times

from the RAH ICU data set compared to those expected assuming an exponential

distribution.
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The Poisson process also assumes stationary inter-arrival times. That is, the inter-

arrival distribution should be the same, regardless of the time of the day or day

of the week. Looking at Tables 5.5.1 and 5.5.2 and Figures 5.5.4 and 5.5.5, we see

that the inter-arrival distribution varies between shift and day of the week, thus

suggesting that the arrival process to the RAH ICU is not stationary. As a result of

this analysis, it is clear that the assumption of a Poisson arrival process is not valid

for the RAH ICU.

Shift Mean Variance

Day 3.677 14.832

Afternoon 1.523 3.749

Night 2.600 5.415

Table 5.5.1: Mean and variance of the patient inter-arrival times for each shift from

the RAH ICU data set.

Figure 5.5.4: Histogram of patient inter-arrival times for each shift from the RAH

ICU data set.
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Day Mean Variance

Monday 2.379 8.890

Tuesday 2.164 6.715

Wednesday 2.136 6.784

Thursday 2.068 6.204

Friday 2.251 6.595

Saturday 3.414 11.042

Sunday 3.539 11.222

Table 5.5.2: Mean and variance of the patient inter-arrival times for each day of the

week from the RAH ICU data set.
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Figure 5.5.5: Histogram of patient inter-arrival times for each day of the week from

the RAH ICU data set.
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5.5.2 Patient length of stay

The patient length of stay in ICUs is often modelled using an exponential

distribution. Recall that between November 2014 and October 2016, the average

patient length of stay was 3.628 days with a variance of 26.1 days. Figure 5.5.6

plots the distribution of the patient lengths of stay, drawing attention to the drop

in density for lengths of stay between 0 and 1 days.

Figure 5.5.6: Histogram of patient length of stay from the RAH ICU data set.

Using maximum likelihood techniques, the probability density function of the fitted

exponential distribution is

f(x) = 0.275 exp(−0.275x), x ≥ 0,

and is plotted in Figure 5.5.7. If the patient lengths of stay were in fact exponentially

distributed, then the points in the quantile-quantile plot in Figure 5.5.8 would fall

on the solid line. However, the points deviate from the line which indicates that the

patient lengths of stay are not exponentially distributed. Hence, the assumption of

exponential service times is invalid for the RAH ICU.
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Figure 5.5.7: Observed density (blue) and the fitted exponential density (red) of the

patient lengths of stay from the RAH ICU data set.

Figure 5.5.8: Quantile-quantile plot of the observed patient lengths of stay from

the RAH ICU data set compared to those expected assuming an exponential

distribution.
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An alternative to the exponential distribution is the log-normal distribution. Using

maximum likelihood estimation, the probability density function of the fitted log-

normal distribution is

f(x) =
1

0.974x
√

2π
exp

(
−(ln(x)− 0.780)2

1.897

)
, x ≥ 0,

and is plotted in Figure 5.5.9.

Figure 5.5.9: Observed density (blue) and the fitted log-normal density (red) of the

patient lengths of stay from the RAH ICU data set.

Comparing the fit of the log-normal distribution to the fit of the exponential

distribution, Figure 5.5.10 suggests that the log-normal distribution is a better fit

for modelling patient lengths of stay.
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Figure 5.5.10: Quantile-quantile plot of the observed patient lengths of stay from the

RAH ICU data set compared to those expected assuming a log-normal distribution.

5.5.3 Independence

A crucial assumption in all standard queueing models is that there is independence

between the inter-arrival times and the distribution of service times. The

assumption of independence increases the tractability of many problems and is

inherent in available simulation-based methods used to analyse queueing systems.

In the context of the ICU, we require independence between the patient

inter-arrival times and the distribution of patient length of stay. However, studies

have suggested that a correlation structure may exist between the patient

inter-arrival times and patient lengths of stay due to the moderated admissions

and discharges in the ICU.
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Varney et al. [47] used semi-experiments to show that there is evidence of a

correlation structure between the patient inter-arrival times and the distribution of

patient length of stay at various ICUs across hospitals in Australia and New

Zealand. Within this analysis, Varney et al. considered the different admission and

length of stay behaviour between elective and emergency patients, as well as the

time-dependent behaviour of admissions and discharges. Taking this into account,

Varney et al. showed that there was dependence between the patient inter-arrival

times and the distribution of patient length of stay in the RAH ICU.

5.6 Summary

Despite the patient inter-arrival times and patient lengths of stay not following

exponential distributions, M/M/• queueing models are still widely used to model

the bed occupancy in ICUs due to their simplicity. Alternatively, simulation-based

methods can be used to model the distributions of the patient inter-arrival times

and patient lengths of stay [2]. However, neither approach addresses the lack of

independence between the patient inter-arrival times and the patient length of stay

in the ICU. Hence, the standard queueing models used to model the bed occupancy

in ICUs are invalid for this research problem and alternative modelling methods are

needed.



Chapter 6

Structured Markov chains

Quasi-birth-and-death (QBD) processes are Markov processes in two dimensions,

the level and the phase, such that the process is skip-free in the level. That is, the

QBD process does not move across several levels in a single transition. Furthermore,

QBD processes provide freedom in the distribution of sojourn times for each level, as

well as provide a framework to model queueing systems with a dependence structure

between the arrival process and the service times. In this chapter, we first review

phase-type distributions and matrix-exponential distributions which form a basis

for the discussion of quasi-birth-and-death processes.

6.1 Phase-type distributions

The distributions of many natural phenomena are not symmetric or are possibly

only defined for positive real numbers, thus rendering many common distributions

unsuitable for such research problems. Phase-type distributions have the ability to

model any given distribution with non-negative data and are commonly used in the

modelling of healthcare systems and telecommunication systems due to tractability

and preservation of the Markovian structure.

80
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In this section, we define phase-type distributions, discuss the representation of

phase-type distributions, and provide some examples.

6.1.1 Continuous phase-type distributions

Consider a continuous-time Markov chain {J(t); t ≥ 0} on a finite state space

S = {0, 1, 2, . . . ,m}, where state 0 is an absorbing state. Let the initial state

probability distribution be (α0,α) = (α0, α1, α2, . . . , αm), such that
m∑
i=0

αi = 1.

We define the generator matrix, Q, as

Q =

0 0

t T

 ,
where T is an m ×m matrix containing the transition rates between the transient

states {1, 2, . . . ,m} and t = −Te is a m×1 vector containing the rates of absorption

into the absorbing state. Given that Q is a generator matrix of a Markov process,

Ti,j ≥ 0, 1 ≤ i 6= j ≤ m,

Ti,i < 0 with Ti,i = −ti −
m∑
j=1
j 6=i

Ti,j, 1 ≤ i 6= j ≤ m,

ti ≥ 0, 1 ≤ i ≤ m,

and

Te + t = 0,

where e = (1, . . . , 1)T .
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The distribution of time τ until the process reaches the absorbing state, state 0,

is said to be phase-type distributed. The phase-type distribution is said to have

representation (α, T ) of order m, where T is the PH-generator, α is the initial state

probability distribution, and α0 is known as the point mass at zero. That is,

τ ∼ PH(α, T ).

Since each non-absorbing state is transient, absorption into state 0 in finite time

will occur with probability one. Phase-type distributions also have the property

that each state has a positive probability of being visited before the process is

absorbed into state 0.

The cumulative distribution function for a phase-type distribution with

representation (α, T ) is defined as

F (t) =

α0, t = 0,

1−α exp(Tt)e, t > 0,

where the matrix exponential is defined as

exp(A) =
∞∑
n=0

1

n!
An. (6.1.1)

For a proof of Equation 6.1.1, see Latouche and Ramaswami [34]. Differentiating

F (t) with respect to t > 0 gives the probability density function,

f(t) = α exp(Tt)t, t > 0.

The Laplace-Stieltjes transform for a phase-type distribution with representation

(α, T ) is given by

φ(s) = α0 + α (sI − T )−1 t, Re(s) ≥ 0.

Differentiating the Laplace-Stieltjes transform k times with respect to s and setting

s = 0 gives the kth non-central moment

mk = (−1)kk!αT−ke, k ≥ 0.
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6.1.2 Representation and minimal order

Phase-type distributions have a non-uniqueness of representation, such that the

density of a phase-type distribution may have two distinct representations, (α, T )

and (β, U). For example, the phase-type distribution with density

f(t) = e−t, t > 0,

has representations (α, T ) and (β, U) given by

α = 1,

T = −1.

and

β = (1, 0),

U =

−2 1

0 −1

 .

For phase-type distributions, there is always a representation of minimal order which

is called the minimal representation. That is, a representation (α, T ) of a phase-type

distribution is of minimal order if no other representation (β, U) exists with dim(U)

< dim(T ). However, representations are not necessarily unique. In the example

above, (α, T ) is the minimal representation for the given phase-type distribution.
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6.1.3 Examples

Exponential distribution

One of the most commonly used distributions in applied probability is the

exponential distribution. In the context of a phase-type distribution, the

exponential distribution with density function

f(t) = λe−λt, t > 0,

has a phase-type representation

α = 1,

T = −λ.

Here, we can interpret the exponential distribution as the distribution of time until

some Markov process changes state, as illustrated in Figure 6.1.1.

1 0
λ

Figure 6.1.1: Phase-type representation of the exponential distribution.

Erlang distribution

The exponential distribution forms a building block to construct more complex

distributions, such as the Erlang distribution which is the sum of m ≥ 1 independent

exponential random variables with parameter λ. The Erlang distribution of order

m ≥ 1 with density function

f(t) =
λmtm−1e−λt

(m− 1)!
, t > 0,
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has a phase-type representation

α = (1, 0, . . . , 0) ,

T =



−λ λ 0 . . . 0 0

0 −λ λ
. . . 0 0

...
. . . . . . . . .

...
...

0 0 0 . . . −λ λ

0 0 0 . . . 0 −λ


.

In this case, the time until absorption into state 0 is the sum of the exponential

sojourn times in each of the states 1, 2, . . . ,m, as illustrated in Figure 6.1.2.

1 2 . . . m 0
λ λ λ λ

Figure 6.1.2: Phase-type representation of the Erlang distribution.

In the context of a queueing system, we can interpret this as m successive stages

of service, each taking an independent, identically, and exponentially distributed

amount of time.

Hyper-exponential distribution

Another complex distribution based on the exponential distribution is the

hyper-exponential distribution which is defined as the convex mixture of m ≥ 1

independent exponential distributions. The hyper-exponential distribution with

density function

f(t) =
m∑
i=1

αiλie
−λit, t > 0,
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has a phase-type representation

α = (α1, α2, . . . , αm) ,

where for i = 1, 2, . . . ,m,

αi > 0,

m∑
i=1

αi = 1, and

T =


−λ1 0 . . . 0

0 −λ2
. . . 0

...
. . . . . .

...

0 0 . . . −λm

 .

Here, the time until absorption is the convex mixture of m ≥ 1 independent

exponential distributions where absorption into state 0 can be achieved from any

state, as illustrated in Figure 6.1.3. Hence, in the context of a queueing system this

may represent m different types of services that run in parallel.

1

2

...

m

0

α1

α2

αm

λ1

λ2

λm

Figure 6.1.3: Phase-type representation of the hyper-exponential distribution.
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Coxian distribution

The Coxian distribution of order m ≥ 1 is a generalisation of the Erlang distribution

which has a phase-type representation

α = (α1, α2, . . . , αm) ,

where for i = 1, 2, . . . ,m, αi > 0 and
m∑
i=1

αi = 1, and for 0 < λ1 ≤ λ2 ≤ . . . ≤ λm,

T =



−λ1 λ1 0 . . . 0

0 −λ2 λ2 . . . 0

0 0 −λ3
. . . 0

...
...

. . . . . .
...

0 0 0 . . . −λm


.

Building upon the interpretation for the Erlang distribution, we can interpret the

Coxian distribution as m ≥ 1 successive stages of service, each taking an

independent, exponentially distributed amount of time but absorption into state 0

can only achieved from state m, as illustrated in Figure 6.1.4.

1

2

...

m 0

α1

α2

αm

λ1

λ2

λm−1

λm

Figure 6.1.4: Phase-type representation of the Coxian distribution.
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6.1.4 Parameter estimation

Various parameter estimation methods for phase-type distributions have been

developed, many of which use the Expectation-Maximisation (EM)

algorithm [1, 15, 42] or Markov-Chain Monte-Carlo methods [7].

The parameter estimation method for phase-type distributions developed by

Asmussen et al. [1] used the connection between continuous-time Markov chains

and phase-type distributions to calculate the maximum likelihood estimates.

Let y ≥ 0 represent the observation of the time to absorption into state 0.

Asmussen et al. viewed this as an incomplete observation of a Markov process,

{X(t); t ≥ 0}, since we only see when the process hits state 0 and do not observe

how the process became to be absorbed. That is, we do not observe the starting

state of the process, which states the process visited before absorption, or how long

the process spent in each state.

Assume that over a time period [0, T ], we continuously observed K jumps of the

process {X(t); t ≥ 0} until X(t) was absorbed into state 0. Let Sk denote the state

of the process at the kth jump and let Tk denote the sojourn time before the kth

jump. Then the complete data in this case is defined as X = {S,T}, where

• S = (S0, S1, . . . , SK−1), where SK = 0, and

• T = (T0, T1, . . . , TK−1), where TK =∞.

Now suppose we have N independent realisations of the process, X1(t), . . . , XN(t),

and let S(n) denote the set of visited states and T(n) denote the set of sojourn

times for the nth process. In this case, the observed data is now defined

as y = (y1, . . . , yN) and the complete data is now defined as

X = {S(1), . . . ,S(N),T(1), . . . ,T(N)}.
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Assuming a phase-type distribution of order p, the density of the complete data, x,

under representation PH(α, T ) is of the form

f(x|α, T ) =

p∏
i=1

αMi
i

p∏
i=1

eTi,iZi
p∏
i=1

p∏
j=0
j 6=i

T
Ni,j
i,j ,

where the sufficient statistics are defined as follows:

• Mi is the total number of processes starting in state i ∈ {1, 2, . . . , p}, such

that

Mi =
N∑
n=1

1{S(n)
0 =i},

• Zi is the total time spent in state i ∈ {1, 2, . . . , p}, such that

Zi =
N∑
n=1

K(n)−1∑
m=0

1{S(n)
m =i}T

(n)
m ,

• and Ni,j is the total number of jumps from state i to state j, for i = 1, 2, . . . , p,

j = 0, 1, . . . , p, and i 6= j, such that

Ni,j =
N∑
n=1

K(n)−1∑
m=0

1{S(n)
m =i, S

(n)
m+1=j}.

It then follows that the maximum likelihood estimates θ̂ =
(
α̂, T̂ , t̂

)
are defined as

α̂i =
Mi

N
,

T̂i,j =
Ni,j

Zi
,

t̂i =
Ni,0

Zi
, and

T̂i,i = −

t̂i +

p∑
i=1

p∑
j=0
j 6=i

T̂i,j

 ,

for i, j = 1, 2, . . . , p, where N is the number of observed Markov processes.
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6.2 Matrix exponential distributions

Matrix exponential distributions are an algebraic generalisation of phase-type

distributions and were first introduced by Cox [12, 13] as distributions with a

rational Laplace-Stieltjes transform. It was later shown that such distributions can

be defined by vectors α and t and a square matrix T , similar to phase-type

distributions. However, the representations do not necessarily have a probabilistic

interpretation [6, 36].

6.2.1 Distribution and moments

A non-negative random variable X has a matrix exponential distribution if there

exists a 1 × m vector α, a value 0 ≤ α0 ≤ 1 which represents the point mass at

state 0, an m×m matrix T , and an m× 1 vector t, such that

Fα,T,t(t) =

α0, t = 0,

1 + α exp(Tt)T−1t, t > 0,

is a valid cumulative distribution function; that is, it is right continuous, non-

decreasing,

lim
t→−∞

Fα,T,t(t) = 0,

and,

lim
t→∞

Fα,T,t(t) = 1.

In that case, the distribution of X is said to have a matrix exponential

representation (α, T, t). That is, X ∼ME(α, T, t).

The corresponding probability density function is defined as

fα,T,t(t) = α exp(Tt)t ≥ 0, t > 0,

and the Laplace-Stieltjes transform is given by

φ(s) = α0 + α (sI − T )−1 t, Re(s) ≥ 0.
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Differentiating the Laplace-Stieltjes transform k times with respect to s and setting

s = 0 gives the kth non-central moment

mk = (−1)k+1k!αT−(k+1)t, k ≥ 0.

6.2.2 Representation and minimal order

Matrix exponential distributions also have a non-uniqueness of representation,

such that the density of a matrix exponential distribution may have two distinct

representations, (α, T, t) and (β, U,u). According to He et al. [25], the matrix

exponential representations (α, T, t) and (β, U,u) represent the same probability

distribution if and only if αT kt = βUku for −∞ < k <∞.

The Laplace-Stieltjes transform of a matrix exponential distribution can also be

expressed as a rational function of the form

φ(s) =
aps

p−1 + ap−1s
p−2 + . . .+ a1

sp + bpsp−1 + bp−1sp−2 + . . .+ b1

+ a0,

where p ≥ 1, 0 ≥ a0 ≥ 1, and a1, . . . , ap, b1, . . . , bp are all real. If this is the case,

then the matrix exponential distribution has a representation (α, T, t) where,

α = (a1, a2, a3, . . . , ap−1, ap),

T =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

−b1 −b2 −b3 . . . −bp−1 −bp


,

and

t = (0, 0, 0, . . . , 0, 1)T .
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If the polynomials aps
p−1 + ap−1s

p−2 + . . .+ a1 and sp + bps
p−1 + bp−1s

p−2 + . . .+ b1,

for Re(s) ≥ 0, have no common factors then the representation defined above is a

representation of minimal order and is called the minimal representation [4].

6.2.3 Examples

Phase-type distribution

A simple example of a matrix-exponential distribution is any phase-type

distribution, where α is the initial state probability vector, T is the infinitesimal

generator matrix, and t = −Te.

Matrix-exponential distribution

Consider a distribution with density,

f(t) =
15

7 + 15δ
e−t
(
(2e−2x − 1)2 + δ

)
, t > 0.

O’Cinneide [40] showed that this is an example of a phase-type distribution when

δ > 0, where the order of such distribution increases as δ tends to zero. However,

this distribution is not phase-type since when δ = 0, f(0.5 log(2)) = 0.

By considering the Laplace-Stieltjes transform of f(t),

f̂(s) =
15(1 + δ)s2 + 120δs+ 225δ + 105

(7 + 15δ)s3 + (63135δ)s2 + (161 + 345δ)s+ 225δ + 105
,

we see that f(t) represents a matrix-exponential distribution of (minimal) order

3 for all δ ≥ 0, thus presenting itself as an advantage compared to a phase-type

distribution.
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6.2.4 Parameter estimation

The use of matrix exponential distributions in the literature is less widespread than

that of phase-type distributions. As a result, limited research has been done on

the fitting of matrix exponential distributions to data. Fackrell [18] developed an

estimation method using semi-infinite programming which calculates the maximum

likelihood estimates of the vectors a = (a1, . . . , ap) and b = (b1, . . . , bp). The reader

is referred to the paper for further discussion of the parameter estimation method.

6.3 Quasi-birth-and-death processes

A quasi-birth-and-death (QBD) process is a continuous-time Markov process

{X(t), J(t); t ≥ 0} with state space S = {(`, j); ` ≥ 0, j = 1, 2, . . . ,m}, where `

denotes the level of the QBD process and j denotes the phase of the QBD process.

The state space S is also represented by `∗(0) ∪ `∗(1) ∪ `∗(2) ∪ . . ., where

`∗(`) = {(`, j) : ` ≥ 0, j = 1, 2, . . . ,m} defines the phases associated with level

` ≥ 0. The infinitesimal generator matrix for the QBD process is of the form

Q =



B0 A+ 0 0 . . .

A− A0 A+ 0 . . .

0 A− A0 A+ . . .

0 0 A− A0 . . .

...
...

...
...

. . .


where the rates of moving down one level, staying in the same level, or moving up

one level are given by the matrices A−, A0, and A+ respectively. Looking at the

structure of the infinitesimal generator matrix for the QBD process, we see that

transitions between levels are restricted to the adjacent levels, whereas the phase

transitions are unrestricted.
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A simple example of a QBD process is a single-server queueing system where the

rates vary over time according to a phase or an environment process [34]. In this

case, X(t) represents the number of customers in the system at time t ≥ 0 and

J(t) represents the phase or environment at time t ≥ 0, where the number of

phases or possible environments is held constant at m ≥ 1.

Suppose that at time s ≥ 0 the phase of the QBD process is such that J(s) = i, for

1 ≤ i ≤ m, and at time t > s > 0 the phase or environment changes such that

J(t) = j, for 1 ≤ j ≤ m. Then the arrival rate is defined as λi,j and the departure

rate is defined as µi,j, assuming that the server is occupied. A change in phase or

environment can also occur without a change in the number of customers, which

occurs at a rate of si,j. Table 6.3.1 summarises the possible transitions and the

corresponding rates.

From To Rate Conditions

(`, i) (`− 1, j) µi,j ` ≥ 1

(0, i) (1, j) s∗i,j i 6= j

(`, i) (`, j) si,j ` ≥ 0 and i 6= j

(`, i) (`+ 1, j) λi,j ` ≥ 0

Table 6.3.1: Possible transitions and rates for a single-server queueing system where

the rates vary over time according to a phase or environment process.

To illustrate the transitions between levels and phases, a subset of the state

transition diagram is shown in Figure 6.3.1, and Equation (6.3.1) displays the

infinitesimal generator matrix for this type of QBD process, where the diagonal

entries are the negative of the relevant row sums.
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Q =

(0, 1)

(0, 2)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

...



(0, 1)

s∗1,1

(0, 2)

s∗1,2

(1, 1)

λ1,1

(1, 2)

λ1,2

(2, 1)

0

(2, 2)

0

. . .

· · ·

s∗2,1 s∗2,2 λ2,1 λ2,2 0 0 . . .

µ1,1 µ1,2 s1,1 s1,2 λ1,1 λ1,2 . . .

µ2,1 µ2,2 s2,1 s2,2 λ2,1 λ2,2 . . .

0 0 µ1,1 µ1,2 s1,1 s1,2 . . .

0 0 µ2,1 µ2,2 s2,1 s2,2 . . .
...

...
...

...
...

...
. . .


(6.3.1)

6.4 Level-dependent quasi-birth-and-death

process

A level-dependent QBD process is also a continuous-time Markov process

{X(t), J(t); t ≥ 0} with state space S = {(`, j); ` ≥ 0, j = 1, 2, . . . , J`}, where `

denotes the level of the QBD process, j denotes the phase of the QBD process, and

J` is the number of phases at the `th level. However, the transition rates and the

number of phases at each level for a level-dependent QBD process depends on

which level the QBD process is in. For example, the infinitesimal generator matrix

for the level-dependent QBD process is of the form

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


, (6.4.1)
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where the rates of moving down from level ` ≥ 1, staying in level ` ≥ 0, or moving

up from level ` ≥ 0 are given by the matrices A
(`)
− , A

(`)
0 , and A

(`)
+ respectively, and

the phases associated with level ` are `∗(`) = {(`, j) : ` ≥ 0, j = 1, 2, . . . , J`}.

For each ` ≥ 0, the matrices A
(`)
0 are square matrices of order J` with strictly

negative diagonal entries and non-negative off-diagonal entries. The matrices A
(`)
−

and A
(`)
+ are non-negative matrices with dimensions J` × J`−1 and J` × J`+1

respectively. Note that the row sums of the matrix A
(0)
0 + A

(0)
+ are zero, as are the

row sums for the matrices A
(`)
− + A

(`)
0 + A

(`)
+ , for ` ≥ 1.

The behaviour of a queueing process can be split into two categories: stationary and

transient. Stationary behaviour relates to the long term behaviour of the queueing

process, whereas the transient behaviour relates to short term behaviour of the

queueing process.

6.4.1 Stationary distribution

If there exists a limiting distribution π = (π0,π1, . . .), then it must satisfy the

system of equations πQ = 0 and πe = 1, where π is a row vector and e = (1, . . . , 1)T

is a column vector. The vectors π0,π1, . . . satisfy the relation

π` = π`−1R`−1, ` ≥ 0,

where the matrices R`, for ` ≥ 0, record the expected time spent in the states in

level `+ 1 before the first return to level ` ≥ 0 which is measured in units of sojourn

time of level ` ≥ 0. The matrices R` are the minimal, non-negative solutions to the

set of equations

A
(`−1)
+ +R`−1A

(`)
0 +R`−1R`A

(`+1)
− = 0, ` ≥ 0,

and π0 is the solution to

π0(A
(0)
0 +R0A

(1)
− ) = 0.
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The matrices R`, for ` ≥ 0 are calculated using an algorithm developed by Bright

and Taylor [9].

For a finite level-dependent QBD process with C levels, we set A
(C)
+ = 0 and A

(`)
+ = 0,

A
(`)
0 = 0, and A

(`)
− = 0 for ` ≥ C + 1 [21]. The vectors π0,π1, . . . ,πC now satisfy

the relation

π` = π`−1R`−1, 0 ≤ ` ≤ C,

where the matrices R`, for 0 ≤ ` ≤ C, are the minimal, non-negative solutions to

the set of equations

A
(`−1)
+ +R`−1A

(`)
0 +R`−1R`A

(`+1)
− = 0, 0 ≤ ` ≤ C − 1,

A
(C−1)
+ +RC−1A

(C)
0 = 0,

and π0 is the solution to

π0(A
(0)
0 +R0A

(1)
− ) = 0.

In this case, the matrices R`, for 0 ≤ ` ≤ C, are calculated using an algorithm

developed by Latouche, Jacobs, and Gaver [21].

6.4.2 Sojourn time

In the context of a level-dependent QBD process, we can think of the distribution

of time spent in level ` ≥ 0 as the distribution of time τ` until the level-dependent

QBD process leaves level ` ≥ 0. This type of distribution is called a phase-type

distribution, such that

τ` ∼ PH
(
α`, A

(`)
0

)
,

where α` represents the distribution of phase upon first entry into level ` ≥ 0.
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Let S(t) represent the state of the level-dependent QBD process at time t ≥ 0, such

that

S(t) ∈ {(`, j); ` ≥ 0, j = 1, 2, . . . , J`},

For ` ≥ 1, we define the probability of being in phase i ∈ J` upon first entry into

level ` ≥ 0 as

[α`]i = lim
∆t→0

P (S(t+ ∆t) = (`, i)|X(t) 6= `,X(t+ ∆t) = `)

= lim
∆t→0

P (S(t+ ∆t) = (`, i), X(t+ ∆t) = `|X(t) 6= `)

P (X(t+ ∆t) = `|X(t) 6= `)

= lim
∆t→0

P (S(t+ ∆t) = (`, i)|X(t) 6= `)

∆t
P (X(t+ ∆t) = `|X(t) 6= `)

∆t

= lim
∆t→0

∑
k∈J`−1

P (S(t+ ∆t) = (`, i)|S(t) = (`− 1, k))

∆t
P (S(t) = (`− 1, k)|X(t) 6= `) +

∑
k∈J`+1

P (S(t+ ∆t) = (`, i)|S(t) = (`+ 1, k))

∆t
P (S(t) = (`+ 1, k)|X(t) 6= `)

∑
j∈J`

∑
k∈J`−1

P (S(t+ ∆t) = (`, j)|S(t) = (`− 1, k))

∆t
P (S(t) = (`− 1, k)|X(t) 6= `) +

∑
j∈J`

∑
k∈J`+1

P (S(t+ ∆t) = (`, j)|S(t) = (`+ 1, k))

∆t
P (S(t) = (`+ 1, k)|X(t) 6= `)

=

∑
k∈J`−1

[
A

(`−1)
+

]
k,i
π`−1,k +

∑
k∈J`+1

[
A

(`+1)
−

]
k,i
π`+1,k

∑
j∈J`

 ∑
k∈J`−1

[
A

(`−1)
+

]
k,j
π`−1,k +

∑
k∈J`+1

[
A

(`+1)
−

]
k,j
π`+1,k



=

[
π`−1A

(`−1)
+ + π`+1A

(`+1)
−

]
i

π`−1A
(`−1)
+ e + π`+1A

(`+1)
− e

.
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Similarly, for ` = 0, we define the probability of being in phase i ∈ J` upon first

entry into level 0 as

[α0]i = lim
∆t→0

P (S(t+ ∆t) = (0, i)|X(t) 6= 0, X(t+ ∆t) = 0)

= lim
∆t→0

P (S(t+ ∆t) = (0, i), X(t+ ∆t) = 0|X(t) 6= 0)

P (X(t+ ∆t) = 0|X(t) 6= 0)

= lim
∆t→0

P (S(t+ ∆t) = (0, i)|X(t) 6= 0)

∆t
P (X(t+ ∆t) = 0|X(t) 6= 0)

∆t

= lim
∆t→0

∑
k∈J1

P (S(t+ ∆t) = (0, i)|S(t) = (1, k))

∆t
P (S(t) = (1, k)|X(t) 6= 0)

∑
j∈J0

∑
k∈J1

P (S(t+ ∆t) = (0, j)|S(t) = (1, k))

∆t
P (S(t) = (1, k)|X(t) 6= 0)

=

∑
k∈J1

[
A

(1)
−

]
k,i
π1,k∑

j∈J0

∑
k∈J1

[
A

(1)
−

]
k,j
π1,k

=

[
π1A

(1)
−

]
i

π1A
(1)
− e

.

Therefore, the distribution of phase upon first entry to level ` ≥ 0 is defined as

α` =


π1A

(1)
−

π1A
(1)
− e

, if ` = 0

π`−1A
(`−1)
+ + π`+1A

(`+1)
−

π`−1A
(`−1)
+ e + π`+1A

(`+1)
− e

, if ` ≥ 1.
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6.4.3 Conditional sojourn time

In some cases, the behaviour of the level-dependent QBD process before moving to

the level above in taboo of the levels below (interval of time where the QBD

process does not move below the current level) may be different to the behaviour of

the level-dependent QBD process before moving to the level below in taboo of the

levels above. Hence, sojourn times conditioned on the transition may provide more

information about the transient behaviour of the level-dependent QBD process.

Here, we introduce the conditional distribution of the sojourn time in level ` ≥ 1,

given that the first transition from level ` ≥ 1 is to level ` + 1. The conditional

distribution of the sojourn time in level ` ≥ 1, given that the first transition from

level ` ≥ 1 is to level `− 1 follows a similar discussion.

Let τ+
` be the time at which the level-dependent QBD process leaves level ` ≥ 1

and transitions to level `+ 1 in taboo of levels `− 1, `− 2, . . . , 1, 0. Note that if the

level-dependent QBD process moves from level ` ≥ 1 to level ` − 1 first, then

τ+
` =∞.

The distribution of τ+
` can be described by a phase-type distribution with

infinitesimal generator matrix,

Q =

 0 0

A
(`)
+ e A

(`)
0

 ,
where A

(`)
0 is the m×m matrix containing the transition rates between the phases

in level ` ≥ 1 and A
(`)
+ e is the m × 1 vector containing the rates of moving up to

level ` + 1 from each phase in level ` ≥ 1. Given that the row sums of this

generator matrix are non-positive and are not always zero, this distribution is

called a dishonest phase-type distribution.
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The dishonest phase-type distribution has presentation PHd

(
α`, A

(`)
0 , A

(`)
+ e
)

,

where α` is the distribution of phase upon first entry into level ` ≥ 1, A
(`)
0 contains

the transitions rates for phases 1, 2, . . . ,m, and A
(`)
+ e contains the rates of

absorption into level `+ 1 from level ` ≥ 1. Hence, τ+
` ∼ PHd

(
α`, A

(`)
0 , A

(`)
+ e
)

.

We define the cumulative distribution function of PHd

(
α`, A

(`)
0 , A

(`)
+ e
)

as

F
α`,A

(`)
0 ,A

(`)
+ e

(t) = P (τ+
` ≤ t|X(0) = `),

= α`

(
−A(`)

0

)−1 [
I − eA

(`)
0 t
]
A

(`)
+ e, t ≥ 0

Differentiating with respect to t ≥ 0 gives the probability density function,

f
α`,A

(`)
0 ,A

(`)
+ e

(t) = αeA
(`)
0 tA

(`)
+ e, t ≥ 0.

By the construction of this distribution, there is a chance that the level-dependent

QBD process may move down to level ` − 1 from level ` ≥ 1 instead of moving to

level ` + 1. In this case, we say that the level-dependent QBD process is absorbed

in level `− 1 and τ+
` =∞. Hence,

lim
t→∞

F
α`,A

(`)
0 ,A

(`)
+ e

(t) = α`

(
−A(`)

0

)−1

A
(`)
+ e < 1.

Now consider the conditional distribution of the time taken for the level-dependent

QBD process to leave level ` ≥ 1, τ`, given that the transition was to level `+ 1.

Using the cumulative distribution function of the joint distribution, we have that

for t ≥ 0 and T = {0, 1, . . . , `},
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P (τ` ≤ t|X(τ`) = `+ 1, X(τ`) 6∈ T,X(0) = `) =
P (τ` ≤ t,X(τ`) = `+ 1|X(0) = `)

P (X(τ`) = `+ 1|X(0) = `)

=
F
α`,A

(`)
0 ,A

(`)
+ e

(t)

F
α`,A

(`)
0 ,A

(`)
+ e

(∞)

= α`

(
−A(`)

0

)−1 [
I − eA

(`)
0 t
] A

(`)
+ e

α`

(
−A(`)

0

)−1

A
(`)
+ e

= 1−
α`

(
−A(`)

0

)−1

eA
(`)
0 tA

(`)
+ e

α`

(
−A(`)

0

)−1

A
(`)
+ e

.

Given that this is a non-negative cumulative distribution function, we find that

the conditional distribution of the sojourn time in level ` ≥ 1, given that the first

transition from level ` ≥ 1 is to level `+ 1, is defined as

τ` ∼ME

α`, A
(`)
0 ,

A
(`)
+ e

α`

(
−A(`)

0

)−1

A
(`)
+ e

 .

By a similar method, the conditional distribution of the sojourn time in level ` ≥ 1,

given that the first transition from level ` ≥ 1 is to level `− 1, is defined as

τ` ∼ME

α`, A
(`)
0 ,

A
(`)
− e

α`

(
−A(`)

0

)−1

A
(`)
− e

 .

6.4.4 Transition probabilities

We do not observe the phase process when modelling queueing systems using QBD

processes. Therefore, the transition probabilities we define here describe the QBD

process moving between levels. That is, given that the QBD process is leaving

level ` ≥ 1, we are interested in calculating the probability that the QBD process

moves to level `+ 1, as well as the probability that the QBD process moves to level

`− 1. Note that the transition probability of moving from level 0 to level 1 is 1 by

definition.
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We begin by defining η+ to be the first time that the level-dependent QBD process

is in a level above ` ≥ 0, such that

η+ = inf{t > 0 : X(t) > k},

and η− to be the first time that the level-dependent QBD process is in a level below

` ≥ 1, such that

η− = inf{t > 0 : X(t) < k}.

Let p+
` denote the probability of moving up from level ` ≥ 0 to level ` + 1, given

that the QBD process is moving out of level ` ≥ 0. That is,

p+
` = lim

∆t→0
P (η+ < η−|min(η+, η−) < ∆t,X(0) = `).

Using the definition of conditional probability,

p+
` = lim

∆t→0

P (η+ < η− ∩min(η+, η−) < ∆t|X(0) = `)

P (min(η+, η−) < ∆t|X(0) = `)
.

By the law of total probability, we sum over the possible phases i ∈ J` that the

level-dependent QBD process could be moving up from, such that

p+
` = lim

∆t→0

∑
i∈J`

P (η+ < η− ∩min(η+, η−) < ∆t|X(0) = `, J(0) = i)P (J(0) = i|X(0) = `)∑
i∈J`

P (min(η+, η−) < ∆t|X(0) = `, J(0) = i)P (J(0) = i|X(0) = `)
.

Therefore,

p+
` = lim

∆t→0

∑
i∈J`

P (η+ < η−|min(η+, η−) < ∆t,X(0) = `, J(0) = i)

P (min(η+, η−) < ∆t|X(0) = `, J(0) = i)P (J(0) = i|X(0) = `)∑
i∈J`

P (min(η+, η−) < ∆t|X(0) = `, J(0) = i)P (J(0) = i|X(0) = `)
.
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Assuming stationarity and focusing only on when the level-dependent QBD process

changes level, we have that

p+
` = lim

∆t→0

∑
i∈J`

eiA
(`)
+ e

eiA
(`)
+ e + eiA

(`)
− e


(
eiA

(`)
+ e + eiA

(`)
− e
)

∆t+ o(∆t)

∆t

 [π̃`]i

∑
i∈J`


(
eiA

(`)
+ e + eiA

(`)
− e
)

∆t+ o(∆t)

∆t

 [π̃`]i

,

where π̃` is the normalised stationary probability vector for level ` ≥ 0. That is,

π̃` =
π`
π`e

, ` ≥ 0.

To justify the interchange the summation and limit, we use the Monotone

Convergence Theorem since all elements of this expression are non-negative and

bounded by definition and both the numerator and denominator are monotonically

increasing as ∆t tends to zero.

Therefore,

p+
` =

∑
i∈J`

eiA
(`)
+ e

eiA
(`)
+ e + eiA

(`)
− e

lim
∆t→0


(
eiA

(`)
+ e + eiA

(`)
− e
)

∆t+ o(∆t)

∆t

 [π̃`]i

∑
i∈J`

lim
∆t→0


(
eiA

(`)
+ e + eiA

(`)
− e
)

∆t+ o(∆t)

∆t

 [π̃`]i

=

∑
i∈J`

[π̃`]ieiA
(`)
+ e

∑
i∈J`

[π̃`]i

(
eiA

(`)
+ e + eiA

(`)
− e
)

=
π̃`A

(`)
+ e

π̃`A
(`)
+ e + π̃`A

(`)
− e

.

By a similar method, the transition probability of moving from level ` ≥ 1 to level

`− 1 is defined as,

p−` =
π̃`A

(`)
− e

π̃`A
(`)
+ e + π̃`A

(`)
− e

.
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6.5 Level-independent quasi-birth-and-death

process

Now let’s focus on QBD processes where the transition rates are independent of

the level, except for level 0. A QBD process with an infinitesimal generator matrix

of the form (6.4.1) is called a level-independent QBD process with a boundary at

level 0 if

• Ji = m, for all i ≥ 1,

• A
(i)
− = A−, for all i ≥ 1,

• A
(i)
0 = A0, for all i ≥ 0, and

• A
(i)
+ = A+, for all i ≥ 1.

So the infinitesimal generator matrix for a level-independent quasi-birth-and-death

process is of the form

Q =



B0 A+ 0 0 . . .

A− A0 A+ 0 . . .

0 A− A0 A+ . . .

0 0 A− A0 . . .

...
...

...
...

. . .


where the rates of staying in level zero are given by the matrix B0 and the rates of

moving down one level, staying in the same level, or moving up one level are given

by the matrices A−, A0, and A+ respectively.

The stationary and transient behaviour of a level-independent QBD process is

defined similar to that of a level-dependent QBD process. Hence, we only draw

attention to the changes in distributions.
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6.5.1 Stationary distribution

If there exists a limiting distribution π = (π0,π1, . . .), then it must satisfy the

system of equations πQ = 0 and πe = 1. The vectors π0,π1, . . . satisfy the relation

π` = π`−1R, ` ≥ 0,

where R is the minimal, non-negative solution to the set of equations

A+ +RA0 +R2A− = 0, ` ≥ 0,

and π0 is uniquely determined by solving the boundary condition,

π0(B0 +RA−) = 0,

and the normalising condition,

π0(I −R)−1e = 1,

where I is the identity matrix of appropriate dimension and e = (1, . . . , 1)T .

6.5.2 Sojourn time

In the context of a level-independent QBD process, we focus on the distribution of

time spent in level 0 and the distribution of time spent in levels 1 and above.

For the case of ` = 0, we can think of the distribution of time spent in level 0 as the

distribution of time τ0 until the level-independent QBD process moves up to level

1. Hence, τ0 ∼ PH (α0, B0), where α0 is the initial phase probability distribution

for level 0, such that

α0 =
π1A−
π1A−e

.
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For the case of ` ≥ 1, we can think of the distribution of time spent in level ` ≥ 1

as the distribution of time τ` until the level-independent QBD process leaves level

` ≥ 1. Hence, τ` ∼ PH
(
α`, A

(`)
0

)
, for level ` ≥ 1, where α` is the initial phase

probability distribution for level ` ≥ 1, such that

α` =
π`−1A

(`−1)
+ + π`+1A

(`+1)
−

π`−1A
(`−1)
+ e + π`+1A

(`+1)
− e

.

6.5.3 Conditional sojourn time

For the level-independent QBD process, the behaviour of the QBD process before

moving to the level above in taboo of the levels below may be different to the

behaviour of the level-dependent QBD process before moving to the level below in

taboo of the levels above.

In this section, we introduce the conditional distribution of the sojourn time in

level ` ≥ 1, given that the first transition from level ` ≥ 1 is to level ` + 1. The

conditional distribution of the sojourn time in level ` ≥ 1, given that the first

transition from level ` ≥ 1 is to level `− 1 follows a similar discussion.

Let τ`, for ` ≥ 1 be the time at which the QBD process leaves level ` ≥ 1 and the

QBD process transitions to level `+ 1 in taboo of levels `− 1, `− 2, . . . , 1, 0. Then

the conditional distribution of the sojourn time in level ` ≥ 1, given that the first

transition from level ` ≥ 1 is to level `+ 1, is defined as

τ` ∼ME

(
α`, A0,

A+e

α` (−A0)−1A+e

)
.
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6.6 Summary

Quasi-birth-and-death processes provide freedom in the distribution of inter-arrival

times and service times and have the potential to explain more of the behaviour of

a queueing system than explained using a general birth-and-death process.

Depending on the identifiability of the model and data availability, we can fit

queueing models to queueing systems by exploiting the design of the queueing

system and the observed data. However, limited research has been done on the

statistical modelling of queueing systems using quasi-birth-and-death processes. In

the next chapter, we develop a statistical modelling method to fit arbitrary

quasi-birth-and-death processes to queueing system data.



Chapter 7

Fitting Quasi-Birth-and-Death

processes to queueing system data

Quasi-birth-and-death processes provide a natural framework to model queueing

systems with a dependence structure between the arrival process and the

distribution of service times, such as an intensive care unit which may have a

dependence structure between the patient admission process and the distribution

of patient length of stay in an ICU [47].

The modelling approach for QBD processes with independence between the arrival

process and the distribution of service times remains a relatively straight-forward

task, such that the arrival process is modelled independently to the distribution of

service times. Whereas, the modelling approach becomes less clear in situations

where the phases of the arrival process and the distribution of service times

interact, thus leading to dependence between the arrival process and the

distribution of service times. Therefore, statistical model fitting methods of

arbitrary QBD processes to queueing system data are needed in order to allow the

phases of the arrival process and the distribution of service times to interact where

needed.

110
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While observing a QBD queueing process, all that is observed are the changes in

level and the times at which a change in level occurs. The transitions between

phases remain hidden, thus leading to incomplete data. For statistical model

fitting problems where we have incomplete data, the expectation-maximisation

(EM) algorithm is used to compute the maximum likelihood estimators. In this

chapter, we develop an EM algorithm for the parameter estimation of arbitrary

quasi-birth-and-death processes.

7.1 Expectation-maximisation algorithm

The EM algorithm is an iterative algorithm used to compute the maximum

likelihood estimates of a set of parameters, θ, in situations where we have

incomplete data [15].

Suppose we wish to fit a probability distribution F (X,θ), with k parameters

θ = {θ1, θ2, . . . , θk} to a data set of observed data X = {X1, X2, . . . , XN}. In the

context of maximum likelihood estimation, we aim to find an estimate θ̂ given

X = x that maximises the log-likelihood function,

l(θ|x) = log (L(θ|x)) ,

where L(θ|x) is the likelihood of x given θ. That is, θ̂ = argmaxθ∈Θl(θ|x), where

Θ is the parameter space.

Suppose we have unobserved or hidden data, Y = {Y1, Y2, . . . , YM}. So the complete

data is denoted by D = (X,Y) and the complete data log-likelihood is defined as

lC(θ|d) = log (LC(θ|d)) .
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The EM algorithm maximises the conditional expected value of the complete

log-likelihood, EY

[
lC(θ|d)|x, θ̂

]
with respect to the unobserved data, where θ̂ is

the current estimate of the parameters, θ.

Each iteration of the EM algorithm consists of an expectation step and a

maximisation step. In the expectation step (E-step), we calculate the expected

value of the log-likelihood using the current estimates of the parameters and the

observed data. That is, in the E-step we calculate the conditional expectation

EY

[
lC(θ|d)|x, θ̂(t)

]
.

In the maximisation step (M-step), we maximise the conditional log-likelihood and

obtain new estimates of the parameters. So we compute θ(t+1) by maximising

Q(θ|θ̂(t)), such that

θ̂(t+1) = argmaxθ

{
EY

[
lC(θ|d)|x, θ̂(t)

]}
.

The EM algorithm iterates between the E-step and the M-step until only small

improvements are being made in the log-likelihood function between successive

iterations. That is,

lC(θ̂(t+1)|d)− lC(θ̂(t)|d) < ε,

where ε is some tolerance.

7.1.1 Expectation-conditional maximisation algorithm

An extension of the EM algorithm is the expectation-conditional maximisation

(ECM) algorithm, where the maximisation step of the EM algorithm is replaced by

a sequence of conditional maximisation (CM) steps [38].

Consider a set of S vector functions of θ,

{gs(θ); s = 1, . . . , S}.
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For each iteration t = 0, 1, . . ., we find the value of

θ(t+s/S) = {θ(t+1)
1 , . . . , θ(t+1)

s , θ
(t)
s+1, . . . , θ

(t)
S }

that maximises the conditional log-likelihood subject to the constraint

gs(θ) = gs(θ
(t+(s−1)/S).

For example, suppose the parameter θ is partitioned into sub-vectors

θ = {θ1, . . . , θS}. Then the sth step of the CM step maximises the conditional

log-likelihood with respect to θs, for 1 ≤ s ≤ S, subject to all other parameters

held fixed.

7.2 EM algorithm for infinite level-dependent

QBD processes

In this section, we first describe the data and the estimators for a level-dependent

QBD process under the assumption that the phase process is unobservable. We

then define the EM algorithm for a level-dependent QBD process, under the same

assumption.

7.2.1 Observed data

Assume that over a time period [0, T ] we continuously observe the input and output

of a queueing system. The observed data consists of K observed changes in level

and the times at which each change in level occurred. Let X = (T,L) denote the

observed random vector, where

• T = (t1, t2, . . . , tK), with tk the inter-event time between the k − 1th and kth

level changes, and

• L = (l1, l2, . . . , lK+1), with lk the level after the k − 1th change in level.
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So the time of the kth change in level is defined as sk =
k∑
i=1

ti, where s0 = 0.

7.2.2 Unobserved data

Since the phase process of the QBD process is unobservable, we have incomplete

data Y = {Y` = (Z`, S`, D`, U`); ` ≥ 0}, where

• Z
(k)
`,i is the total amount of time spent in phase i in the interval [sk−1, sk) while

in level ` ≥ 0, for 1 ≤ i ≤ J`,

• S
(k)
`,i,j is the number of transitions from phase i to phase j in the time interval

[sk−1, sk), while in level ` ≥ 0, for 1 ≤ i, j ≤ J`, and i 6= j,

• D
(k)
`,i,j is the indicator random variable for the event that the transition at time

sk is from level ` ≥ 1 to level ` − 1 and leads to a phase transition from i to

j, for 1 ≤ i ≤ J` and 1 ≤ j ≤ J`−1,

• U
(k)
`,i,j is the indicator random variable for the event that the transition at time

sk is from level ` ≥ 0 to level ` + 1 and leads to a phase transition from i to

j, for 1 ≤ i ≤ J` and 1 ≤ j ≤ J`+1,

and,

[Z`]i = Z`,i =
K∑
k=1

Z
(k)
`,i ` ≥ 0, 1 ≤ i ≤ J`,

[S`]i,j = S`,i,j =
K∑
k=1

S
(k)
`,i,j ` ≥ 0, 1 ≤ i 6= j ≤ J`, ,

[D`]i,j = D`,i,j =
K∑
k=1

D
(k)
`,i,j ` ≥ 1, 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1, and,

[U`]i,j = U`,i,j =
K∑
k=1

U
(k)
i,j ` ≥ 0, 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1.

Hence, the sufficient statistic for the complete data D is the collection of random

variables Y = {Y` = (Z`, S`, D`, U`); ` ≥ 0}.
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7.2.3 Likelihood

Using a similar argument to that in Asmussen et al. [1], the likelihood of the complete

data D = (X, Y ) (i.e. if the phase process were observable) with parameters

θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}), is

LC(θ|d) =
∞∏
`=0

J∏̀
i=1

exp(A
(`)
0i,i
Z`,i)

∞∏
`=0

J∏̀
i=1

J∏̀
j=1
j 6=i

A
(`)
0i,j

S`,i,j

∞∏
`=1

J∏̀
i=1

J`−1∏
j=1

A
(`)
−i,j

D`,i,j
∞∏
`=0

J∏̀
i=1

J`+1∏
j=1

A
(`)
+i,j

U`,i,j
,

and the complete data log-likelihood is given by

`C(θ|d) =
∞∑
`=0

J∑̀
i=1

A
(`)
0i,i
Z`,i +

∞∑
`=0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+
∞∑
`=1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

∞∑
`=0

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j.

Using the complete data log-likelihood, we find that the entries of the maximum

likelihood estimates θ̂ = ({Â0

(`)
; ` ≥ 0}, {Â−

(`)
; ` ≥ 1}, {Â+

(`)
; ` ≥ 0}) are defined

as

Â0

(`)

i,j =
S`,i,j
Z`,i

, for ` ≥ 0 and 1 ≤ i 6= j ≤ J`, (7.2.1)

Â−
(`)

i,j =
D`,i,j

Z`,i
, for ` ≥ 1 and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1, (7.2.2)

Â+

(`)

i,j =
U`,i,j
Z`,i

, for ` ≥ 0 and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1, (7.2.3)

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.
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For each iteration of the EM algorithm, there are two steps; the E-step and the M-

step. The E-step of the algorithm involves calculating the conditional expectation

of the sufficient statistics given the observed data and the current estimates of the

parameters, θ. In the M-step of the algorithm, the complete-data likelihood is

maximised using the values of the conditional expectations calculated in the E-step.

We now detail the E-step and then the M-step of the EM algorithm.

7.2.4 E-step

Assuming we know the values of the parameters, θ, the likelihood of the observed

data is defined as

f(x) = α exp(N1t1)M1× exp(N2t2)M2× . . .× exp(NKtK)MK exp(NK+1(T − sK))e,

(7.2.4)

where α = (α1, . . . , αJ0) is the starting distribution, e is a column vector of ones,

Nk = A
(`k)
0 ,

and

Mk =

A
(`k)
+ , if `k+1 = `k + 1,

A
(`k)
− , if `k+1 = `k − 1.

Let fk(u) represent the forward likelihood of the observed data before time

sk−1 + u with u ∈ [0, tk] and let bk(u) represent the backward likelihood of the

observed data after time sk − u, again with u ∈ [0, tk]. Let N(t) be the number of

level changes before time t and let J(t) be the index of the phase at time t. Let Fk
denote the set of events for the time interval [0, sk] and let Bk denote the set of

events for the time interval [sk, sK ].
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The ith element of fk(u) is defined as

[fk(u)]i = P (Fk−1, N(sk−1 + u−)−N(sk−1) = 0, J(sk−1 + u−) = i).

The ith element of bk(u) is defined as

[bk(u)]i = P (Bk, N(s−k )−N(sk − u) = 0|J(sk − u) = i).

So the forward and backward likelihoods of the observed data are defined as

fk(u) = α

(
k−1∏
j=1

exp(Njtj)Mj

)
exp(Nku), (7.2.5)

and,

bk(u) = exp(Nku)Mk

(
K∏

j=k+1

exp(Njtj)Mj

)
exp(NK+1(T − sK))e, (7.2.6)

where fk(u) is a row vector and bk(u) is a column vector. Using the forward and

backward likelihoods, the conditional expectations used in the E-step of the EM

algorithm are as follows.

If the process is in level ` ≥ 0 during the time interval [sk−1, sk):

E
[
Z

(k)
`,i |D,θ

]
=

∫ tk
0

[fk(τ)]i[bk(tk − τ)]idτ

α • b1(t1)
, for 1 ≤ i ≤ J`, and

E
[
S

(k)
`,i,j|D,θ

]
=

∫ tk
0

[fk(τ)]i(A
(`)
0 i,j)[bk(tk − τ)]jdτ

α • b1(t1)
, for 1 ≤ i 6= j ≤ J`.

Here, • represents the dot product.

If the process is moving from level ` ≥ 1 to level `− 1 at the kth event:

E
[
D

(k)
`,i,j|D,θ

]
=

[fk(tk)]i(A
(`)
− i,j)[bk+1(tk+1)]j

α • b1(t1)
, for 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1.

If the process is moving from level ` ≥ 0 to level `+ 1 at the kth event:

E
[
U

(k)
`,i,j|D,θ

]
=

[fk(tk)]i(A
(`)
+ i,j)[bk+1(tk+1)]j

α • b1(t1)
, for 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1.
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7.2.5 M-step

In the M-step of the EM algorithm, we estimate the values of the parameters by

replacing the statistics in Equations (7.2.1), (7.2.2), (7.2.3) with the conditional

expectations calculated in the E-step, as follows:

Â0

(`)

i,j =

K∑
k=1

E
[
S

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] , for ` = N(sk−1) ≥ 0 and 1 ≤ i 6= j ≤ J`,

Â−
(`)

i,j =

K∑
k=1

E
[
D

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] , for ` = N(sk−1) ≥ 1 and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

Â+

(`)

i,j =

K∑
k=1

E
[
U

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] , for ` = N(sk−1) ≥ 0 and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

7.2.6 Avoiding numerical overflow and underflow

Recall the forward and backward likelihoods of the observed data defined in

Equations (7.2.5) and (7.2.6) respectively. As the number of events increases, the

elements of fk(u) and bk(u) become progressively smaller or larger, depending on

the values of the transition rates in Q.
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In order to avoid numerical overflow or underflow in the E-step of the algorithm,

the forward and backward likelihood vectors, fk(u) and bk(u), must be scaled [45].

Since fk(u) and bk(u) are the product of matrices and not scalars, computing the

log of fk(u) and bk(u) is not effective in avoiding numerical overflow or underflow.

Instead, we normalise the forward and backward likelihood vectors at each event

k = 1, . . . , K.

Consider the forward likelihood vector, fk(u) and let f̂k(u) denote the scaled forward

likelihood vector. We start by defining f
(0)
k (u) = α. Since α is a probability vector,

f̂
(0)
k (u) = α. For m = 1, 2, 3, . . . , k − 1,

f̂
(m)
k (u) =

f̂
(m−1)
k (u) exp(Nmtm)Mm

f̂
(m−1)
k (u) exp(Nmtm)Mme

and,

f̂
(k)
k (u) =

f
(k−1)
k (u) exp(Nku)

f
(k−1)
k (u) exp(Nku)e

.

So the scaled forward likelihood vector is

f̂k(u) = f̂
(k)
k (u).

The scaled backward likelihood vector, b̂k(u), is calculated in a similar way.

7.2.7 Reducing computation time

The EM algorithm has been widely used to estimate the parameters of phase-type

distributions [1], Markovian arrival processes (MAPs) [41], and Markovian binary

trees (MBTs) [24]. There have been several improvements to the EM algorithm for

MAPs, particularly relating to the computational time of the algorithm.

Buchholz [10], Klemm et al. [33], and Okamura et al. [41] presented improvements

to the EM algorithm for BMAPs and MAPs involving the uniformisation

technique.
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In the E-step of the EM algorithm described in Section 7.2.4, the computation of

E
[
Z

(k)
`,i |D,θ

]
and E

[
S

(k)
`,i,j|D,θ

]
involves the integral of matrix expressions, thus

increasing the computation time of the algorithm. In this section, we extend the

uniformisation-based EM algorithm developed by Okamura et al. [41] to

quasi-birth-and-death processes in order to reduce the computation time of the

EM algorithm.

Consider a continuous-time Markov chain with transition rate matrix, Q. Let q be

a constant which is at least as large as the maximum absolute value of the diagonal

elements of the transition rate matrix, Q. That is,

q ≥ max
i

(|qi,i|) .

We can write the matrix exponential as

exp(Qt) =
∞∑
z=0

Poi(z; qt)

(
I +

Q

q

)z
,

where P = I + Q/q is the transition probability matrix of the associated discrete-

time Markov chain, and

Poi(z; qt) =
e−qt(qt)z

z!
, z = 0, 1, 2, . . . .

By finding the right truncation point, R, such that

R∑
z=0

Poi(z; qt) ≥ 1− ε,

where ε is some defined tolerance, we can approximate the matrix exponential as

exp(Qt) ≈
R∑
z=0

Poi(z; qt)

(
I +

Q

q

)z
.

Recall the joint probability density function of the inter-event times defined in

Equation (7.2.4) and the forward and backward likelihood vectors defined in

Equations (7.2.5) and (7.2.6) respectively.
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We define the matrix Hk as

Hk =

∫ tk

0

exp(Nkτ)Mkbk+1(tk+1)fk−1(tk−1)Mk−1 exp(Nk(tk−τ))dτ, for k = 1, 2, . . . , K,

noting that fk(u) is a row vector and bk(u) is a column vector. Using the matrix

Hk, we can re-write the equations in the M-step as follows.

If the process is in level ` = N(sk−1) ≥ 0:

E
[
Z

(k)
`,i |D,θ

]
=

[Hk]i,i
α • b1(t1)

, for ` ≥ 0 and 1 ≤ i ≤ J`, and

E
[
S

(k)
`,i,j|D,θ

]
=

(A
(`)
0 i,j) [Hk]j,i
α • b1(t1)

, for ` ≥ 0 and 1 ≤ i 6= j ≤ J`.

The algorithm for computing the matrix Hk is presented below. For further

discussion of this algorithm, the reader is referred to Okamura et al. [41].
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Algorithm 1: Uniformisation-based integral of matrix exponential

Step 1: Choose the value of q, such that

q ≥ max
i

(|qi,i|) .

Step 2: Calculate the right truncation point Rk for k = 1, 2, . . . , K,K + 1.

Step 3: Calculate the probability mass function for the Poisson

distribution, Poi(z; qtk), for k = 1, 2, . . . , K,K + 1 and

z = 0, 1, 2, . . . , Rk + 1, where

q ≥ max (|diag (N1)| , |diag (N2)| , . . . , |diag (NK+1)|) .

Step 4: For k = K + 1, K, . . . , 2, 1 and z = 1, 2, . . . , Rk, calculate bk,z.

bk,0 = Mkb̂k+1(tk+1), bk,z =

(
I +

Nk

q

)
bk,z−1.

Step 5: For k = K + 1, K, . . . , 2, 1 and z = Rk − 1, Rk − 2, . . . , 2, 1, 0,

calculate ck,z, where

ck,Rk = Poi(Rk + 1; qtk)f̂k−1(tk−1)Mk, and

ck,z =

(
I +

Nk

q

)
ck,z+1 + Poi(z + 1; qtk)f̂k(0).

Step 6: For k = K + 1, K, . . . , 2, 1, calculate Hk.

Hk =
1

q

Rk∑
z=0

bk,zck,z.
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7.2.8 Initial values and termination condition

The choice of initial values and a stopping condition are significant problems with

the EM algorithm [29]. In terms of QBD processes, there is no standard way to

determine the initial values of the parameters in the EM algorithm. Hence, we

start the EM algorithm with randomly generated initial values from a uniform

distribution, U(0, 1).

The stopping condition must be able to detect whether the EM algorithm has found

the maximum and that no further improvements can be made to the parameter

estimates and the log-likelihood of the observed data given the estimated parameters.

A suitable stopping condition for the EM algorithm developed in this section is based

on the relative difference between successive log-likelihood values of the observed

data. That is, we terminate the EM algorithm according to the stopping condition,

EY

[
lC(θ|d)|x, θ̂(t+1)

]
− EY

[
lC(θ|d)|x, θ̂(t)

]
EY

[
lC(θ|d)|x, θ̂(t+1)

] < ε,

where ε is some tolerance.

7.2.9 Convergence and identifiably issues

It is well known that the EM algorithm has a convergence property in that the

algorithm converges to any local maximum or to a saddle point of a likelihood

function [8, 15]. This does not guarantee that the EM algorithm converges to the

global maximisation of the conditional likelihood function. Hence, the results of

the EM algorithm may depend on the initial values of the parameters.
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For quasi-birth-and-death processes, there is a non-uniqueness of representation

inherited from the non-uniqueness of representation in phase-type distributions [1,

39]. That is, there may be several sets of parameters θ resulting in stochastically

equivalent level processes. Therefore, the log-likelihood may have infinitely many

maxima of similar magnitude. However, this does not present itself as a problem in

this work as we are more interested in the behaviour of the QBD process than the

specific values of the parameters.

7.2.10 Finite case

The EM algorithm for level-dependent finite QBD processes with a capacity of C

customers is similar to the EM algorithm for infinite level-dependent QBD processes,

where we truncate at level C such that A
(C)
+ = 0 and A

(`)
− = 0, A

(`)
0 = 0, and A

(`)
+ = 0

for ` ≥ C + 1.

7.3 EM algorithm for infinite level-independent

QBD processes

In this section, we extend the EM algorithm to estimate the parameters for a

level-independent QBD process under the assumption that the phase process is

unobservable. Since much of the method will remain the same for level-independent

QBD processes, we only draw attention to the differences in the methods.

7.3.1 Observed data

Similar to Section 7.2, suppose we continuously observe the input and output of

a queueing system over some finite time period [0, T ]. As before, let X = (T,L)

denote the observed data.
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7.3.2 Unobserved data

Since the phase process of the QBD process is unobservable, we have incomplete

data Y = (Z`=0, S`=0,Z`≥1, S`≥1, D, U) defined as follows.

Given that the phase transition behaviour for level 0 is different for that in any other

level, we carefully define the sufficient statistics relating to time and the transitions

within each level as,

• Z
(k)
`=0,i is the total amount of time spent in phase i in the interval [sk−1, sk)

while in level 0, for 1 ≤ i ≤ m,

• S
(k)
`=0,i,j is the number of transitions from phase i to phase j in the time interval

[sk−1, sk), while in level 0, for 1 ≤ i, j ≤ m and i 6= j,

• Z
(k)
`≥1,i is the total amount of time spent in phase i in the interval [sk−1, sk)

while in any level ` ≥ 1, for 1 ≤ i ≤ m and

• S
(k)
`≥1,i,j is the number of transitions from phase i to phase j in the time interval

[sk−1, sk), while in any level ` ≥ 1, for 1 ≤ i, j ≤ m, and i 6= j,

where,

[Z` = 0]i = Z`=0,i =
K∑
k=1

Z
(k)
`=0,i 1 ≤ i ≤ m,

[S` = 0]i,j = S`=0,i,j =
K∑
k=1

S
(k)
`=0,i,j 1 ≤ i, j ≤ m, i 6= j,

[Z` ≥ 1]i = Z`≥1,i =
K∑
k=1

Z
(k)
`≥1,i 1 ≤ i ≤ m, and

[S` ≥ 1]i,j = S`≥1,i,j =
K∑
k=1

S
(k)
`≥1,i,j 1 ≤ i, j ≤ m, i 6= j.
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The rates describing a change in level are independent of the level. Hence, we have

that

• D
(k)
i,j is the indicator random variable for the event that the transition at time

sk is from any level ` ≥ 1 to level `− 1 and leads to a phase transition from i

to j, for 1 ≤ i, j ≤ m, and

• U
(k)
i,j is the indicator random variable for the event that the transition at time

sk is from any level ` ≥ 0 to level `+ 1 and leads to a phase transition from i

to j, for 1 ≤ i, j ≤ m,

where,

[D]i,j = Di,j =
K∑
k=1

D
(k)
i,j 1 ≤ i, j ≤ m, and,

[U ]i,j = Ui,j =
K∑
k=1

U
(k)
i,j 1 ≤ i, j ≤ m.

Hence, the sufficient statistic for the complete data D is the collection of random

variables Y = (Z`=0, S`=0,Z`≥1, S`≥1, D, U).

7.3.3 Likelihood

Similar to Section 7.2, the likelihood of the complete data D = (X, Y ) (i.e. if the

phase process were observable) with parameters θ = (A−, B0, A0, A+), is

LC(θ|d) =
m∏
i=1

exp(B0i,iZ`=0,i)
m∏
i=1

exp(A0i,iZ`≥1,i)
m∏
i=1

m∏
j=1
j 6=i

B0i,j
S`=0,i,j

m∏
i=1

m∏
j=1
j 6=i

A0i,j
S`≥1,i,j

m∏
i=1

m∏
j=1

A−i,j
Di,j

m∏
i=1

m∏
j=1

A+i,j
Ui,j .
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Then the complete data log-likelihood is defined as

`C(θ|d) =
m∑
i=1

B0i,iZ`=0,i +
m∑
i=1

A0i,iZ`≥1,i +
m∑
i=1

m∑
j=1
j 6=i

log
(
B0i,j

)
S`=0,i,j+

m∑
i=1

m∑
j=1
j 6=i

log
(
A0i,j

)
S`≥1,i,j +

m∑
i=1

m∑
j=1

log
(
A−i,j

)
Di,j+

m∑
i=1

m∑
j=1

log
(
A+i,j

)
Ui,j.

Using the complete data log-likelihood we find that the entries of the maximum

likelihood estimates θ̂ = (Â−, B̂0, Â0, Â+), are defined as

B̂0i,j =
S`=0,i,j

Z`=0,i

, for 1 ≤ i 6= j ≤ m, (7.3.1)

Â0i,j =
S`≥1,i,j

Z`≥1,i

, for 1 ≤ i 6= j ≤ m, (7.3.2)

Â−i,j =
Di,j

Z`≥1,i

, for 1 ≤ i, j ≤ m, and (7.3.3)

Â+i,j =
Ui,j
Z`≥0,i

, for 1 ≤ i, j ≤ m. (7.3.4)

We now describe the E-step and M-step of the EM algorithm for level-independent

QBD processes.

7.3.4 E-step

Using the forward and backward likelihoods described in Section 7.2.4, the

conditional expectations used in the E-step of the EM algorithm are as follows.
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If the process is in level ` = 0 during the time interval [sk−1, sk):

E
[
Z

(k)
`=0,i|D,θ

]
=

∫ tk
0

[fk(τ)]i[bk(tk − τ)]idτ

α • b1(t1)
, for 1 ≤ i ≤ m, and

E
[
S

(k)
`=0,i,j|D,θ

]
=

∫ tk
0

[fk(τ)]i(B0i,j)[bk(tk − τ)]jdτ

α • b1(t1)
, for 1 ≤ i 6= j ≤ m.

Here, • represents the dot product.

If the process is in any level ` ≥ 1 during the time interval [sk−1, sk):

E
[
Z

(k)
`≥1,i|D,θ

]
=

∫ tk
0

[fk(τ)]i[bk(tk − τ)]idτ

α • b1(t1)
, for 1 ≤ i ≤ m.

E
[
S

(k)
`≥1,i,j|D,θ

]
=

∫ tk
0

[fk(τ)]i(A0i,j)[bk(tk − τ)]jdτ

α • b1(t1)
, for 1 ≤ i 6= j ≤ m.

If the process is moving from any level ` ≥ 1 to level `− 1 at the kth event:

E
[
D

(k)
i,j |D,θ

]
=

[fk(tk)]i(A−i,j)[bk+1(tk+1)]j

α • b1(t1)
, for 1 ≤ i, j ≤ m.

If the process is moving from any level ` ≥ 0 to level `+ 1 at the kth event:

E
[
U

(k)
i,j |D,θ

]
=

[fk(tk)]i(A+i,j)[bk+1(tk+1)]j

α • b1(t1)
, for 1 ≤ i, j ≤ m.

7.3.5 M-step

In the M-step of the EM algorithm, we update the values of the parameters by

replacing the statistics in Equations (7.3.1), (7.3.2), (7.3.3), (7.3.4) with the

conditional expectations calculated in the E-step, as follows:
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B̂0i,j =

K∑
k=1

E
[
S

(k)
`=0,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`=0,i|D,θ

] , for ` = N(sk−1) = 0 and 1 ≤ i 6= j ≤ m,

Â0i,j =

K∑
k=1

E
[
S

(k)
`≥1,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`≥1,i|D,θ

] , for ` = N(sk−1) ≥ 1 and 1 ≤ i 6= j ≤ m,

Â−i,j =

K∑
k=1

E
[
D

(k)
i,j |D,θ

]
K∑
k=1

E
[
Z

(k)
`≥1,i|D,θ

] , for ` = N(sk−1) ≥ 1 and 1 ≤ i, j ≤ m, and

Â+i,j =

K∑
k=1

E
[
U

(k)
i,j |D,θ

]
K∑
k=1

E
[
Z

(k)
`≥0,i|D,θ

] , for ` = N(sk−1) ≥ 0 and 1 ≤ i, j ≤ m.

7.3.6 Finite case

The EM algorithm for finite level-independent QBD processes with a capacity of C

customers is similar to the EM algorithm for infinite level-independent QBD

processes expect for the following.

Given that the phase transition behaviour for levels 0 and C are different for that

in any other level, we carefully define the sufficient statistics relating to time and

the transitions within each level as,
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• Z
(k)
`=0,i is the total amount of time spent in phase i in the interval [sk−1, sk)

while in level 0, 1 ≤ i ≤ m,

• S
(k)
`=0,i,j is the number of transitions from phase i to phase j in the time interval

[sk−1, sk), while in level 0, 1 ≤ i, j ≤ m, and i 6= j,

• Z
(k)
`≥1,i is the total amount of time spent in phase i in the interval [sk−1, sk)

while in any level ` ≥ 1, 1 ≤ i ≤ m,

• S
(k)
`≥1,i,j is the number of transitions from phase i to phase j in the time interval

[sk−1, sk), while in any level ` ≥ 1, 1 ≤ i, j ≤ m, and i 6= j,

• Z
(k)
`=C,i is the total amount of time spent in phase i in the interval [sk−1, sk)

while in level C, 1 ≤ i ≤ m, and

• S
(k)
`=C,i,j is the number of transitions from phase i to phase j in the time interval

[sk−1, sk), while in level C, 1 ≤ i, j ≤ m, and i 6= j,

where,

[Z`=0]i = Z`=0,i =
K∑
k=1

Z
(k)
`=0,i 1 ≤ i ≤ m,

[S`=0]i,j = S`=0,i,j =
K∑
k=1

S
(k)
`=0,i,j 1 ≤ i, j ≤ m, i 6= j,

[Z`≥1]i = Z`≥1,i =
K∑
k=1

Z
(k)
`≥1,i 1 ≤ i ≤ m,

[S`≥1]i,j = S`≥1,i,j =
K∑
k=1

S
(k)
`≥1,i,j 1 ≤ i, j ≤ m, i 6= j,

[Z`=C ]i = Z`=C,i =
K∑
k=1

Z
(k)
`=C,i 1 ≤ i ≤ m, and

[S`=C ]i,j = S`=C,i,j =
K∑
k=1

S
(k)
`=C,i,j 1 ≤ i, j ≤ m, i 6= j.
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We then define the maximum likelihood estimates of the parameters

{B0, A0, C0, A−, A+} as

B̂0i,j =
S`=0,i,j

Z`=0,i

, for 1 ≤ i 6= j ≤ m,

Â0i,j =
S1≤`≤C−1,i,j

Z1≤`≤C−1,i

, for 1 ≤ i 6= j ≤ m,

Ĉ0i,j =
S`=C,i,j
Z`=C,i

, for 1 ≤ i 6= j ≤ m,

Â−i,j =
Di,j

Z1≤`≤C,i
, for 1 ≤ i, j ≤ m, and

Â+i,j =
Ui,j

Z0≤`≤C−1,i

, for 1 ≤ i, j ≤ m.

7.4 Numerical examples

In this section, we show how the EM algorithm for both level-dependent and

level-independent QBD processes performs with two numerical examples. In each

numerical example, we simulate data from a QBD process with known parameters

and then use the simulated data as input to our EM algorithm, implemented using

R [43].

We start the EM algorithm with randomly generated initial values from a uniform

distribution, U(0, 1) and we stop the EM algorithm once the relative difference

between two successive log-likelihood values falls below 10−6. We then compare

the estimated QBD process to the true QBD process.



CHAPTER 7. FITTING QBD PROCESSES TO DATA 132

Given that there is a non-uniqueness of representation in QBD processes, we

cannot simply compare the true parameters of the QBD process, θ, to the

estimated parameters of the QBD process, θ̂. Instead, we choose to compare the

stationary distributions and transient behaviours of each QBD process.

Additionally, the comparison of stationary distributions is by each level and not by

phase due to the non-uniqueness of representation and interchangeability of phases

for each estimated QBD process. Hence, we define the level-stationary distribution

as π̃ = (π̃0, π̃1, . . .), where π̃n = πne, for all n ≥ 0. The comparison of transient

behaviours, also by each level and not by phase, is by considering the conditional

sojourn time spent in each level before changing level and the transition

probabilities between levels.

For each type of behaviour, the mean squared error (MSE) is calculated to

demonstrate the overall accuracy. Let Y` denote the value of the true QBD process

corresponding to level ` and Ŷ
(i)
` denote the value of the ith estimated QBD

process corresponding to level `, for ` = Lmin, . . . , Lmax where Lmin and Lmax are

the minimum and maximum levels associated with the calculation, respectively.

Then the mean squared error for each estimated structured QBD process, i, is

calculated as

MSE =
1

Lmax − Lmin + 1

Lmax∑
`=Lmin

(
Y` − Ŷ (i)

`

)2

,

For example, Y` could denote the upward transition probability for level ` of the

true QBD process and Ŷ
(i)
` denote the estimated upward transition probability for

level ` of the ith estimated QBD process.

Lastly, we also comment on the sensitivity of the EM algorithm by analysing the

log-likelihood of the observed data given the estimated parameters for various initial

starting values.
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7.4.1 Level-dependent QBD process

In this example, we consider a finite level-dependent QBD process of the form

Q =



A
(0)
0 A+ 0 . . . 0 0 0

1
2
A− A

(1)
0 A+ . . . 0 0 0

0 A− A
(2)
0 . . . 0 0 0

0 0 3
2
A− . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 4A− A
(8)
0 A+

0 0 0 . . . 0 9
2
A− A

(9)
0



,

where

A+ =

2 0

1 1

 , A
(`)
0 =

∗ 2

1 ∗

 , A− =

 0 1

0.5 0.5

 ,

and the diagonal entries of A
(`)
0 for 0 ≤ ` ≤ 9 are the negative of the relevant row

sums.

We simulated 1000 samples of the above level-dependent QBD process, each with

10,000 changes in level, and used the EM algorithm described in Section 7.2 to

estimate the parameters of the level-dependent QBD process for each sample. We

then calculated the level-stationary distribution, conditional sojourn times in

levels, and the transition probabilities between levels of each estimated

level-dependent QBD process and compared the values to that of the true

level-dependent QBD process.
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The stationary behaviour of the level-dependent QBD process is captured as

illustrated in Figure 7.4.1a, which compares the estimated level-stationary

distribution with the true level-stationary distribution of the true level-dependent

QBD process.

In terms of transient behaviour, we first look at the conditional sojourn times. We

considered both the conditional sojourn time within a level before the process

moves up a level, as well as the conditional sojourn time within a level before the

process moves down a level. In both situations, there is a strong similarity between

the expected conditional sojourn times for each level of each estimated

level-dependent QBD processes and the expected conditional sojourn times for

each level of the true level-dependent QBD process, as illustrated in Figures 7.4.1b

and 7.4.1c.

Secondly, we consider transitions between levels. Here, we considered the

transition probability of moving up from each level and the transition probability

of moving down from each level. Figure 7.4.1d illustrates the strong similarity

between the transition probabilities to the level above and below of each estimated

level-dependent QBD process and the transition probabilities to the level above

and below of the true level-dependent QBD process. These results are also

confirmed by the small MSE values summarised in Table 7.4.1.
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(a) (b)

(c) (d)

Figure 7.4.1: Comparison of the behaviour of the 1000 estimated level-dependent

QBD processes to the behaviour of the true level-dependent QBD process. (a)

Box-plots of the estimated level-stationary distribution and the true level-stationary

distribution (red points). (b) Box-plots of the expected sojourn times conditioned on

moving up from a level and the true expected sojourn times conditioned on moving

up a level (red points). (c) Box-plots of the expected sojourn times conditioned on

moving down from a level and the true expected sojourn times conditioned on moving

down a level (red points). (d) Box-plots of the estimated transition probabilities

between each level and the true transition probabilities between each level (red

points). By design, the sojourn times conditioned on moving up from level 9 are 0,

the sojourn times conditioned on moving down from level 0 are 0, and the transition

probabilities for levels 0 and 9 are either 0 or 1.
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Type Mean Variance

Stationary distribution 3.121×10−5 5.601×10−10

Sojourn time conditioned on moving up a level 3.337×10−4 1.308×10−7

Sojourn time conditioned on moving down a level 2.105×10−4 5.601×10−8

Transition probabilities 1.880×10−4 1.134×10−8

Table 7.4.1: Mean and variance of the MSE for each type of behaviour for the

level-dependent QBD process.

As is well known about the EM algorithm, there is a dependence on the initial

values of the parameters. To assess this dependence, we simulated a single sample

of the above level-dependent QBD process with 10,000 changes in level and then

started the EM algorithm with 1000 different sets of randomly generated initial

values of the parameters. Figure 7.4.2 plots the log-likelihood of the observed data

for each of the 1000 different level-dependent QBD process estimations.

Figure 7.4.2: Log-likelihood values of the observed data for each of the fitted level-

dependent QBD processes from the 1000 different starting values.
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Notice the bimodal behaviour in the log-likelihood of the observed data for each

of the 1000 different level-dependent QBD process estimations. To investigate the

cause of the bimodal behaviour observed in Figure 7.4.2, we compared the behaviour

of the estimated level-dependent QBD process with log-likelihood values less than

7500 to the estimated level-dependent QBD processes with log-likelihood values

greater than or equal to 7500. Looking at Figure 7.4.3, we can see that there is little

difference between the groups in terms of stationary and transient behaviour. Note

that we expect to see a difference between the true and estimated behaviours as the

1000 estimations are based on a single sample of data.
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(a) (b)

(c) (d)

Figure 7.4.3: Comparison of the behaviour of the estimated level-dependent QBD

processes with log-likelihood values less than 7500 to the behaviour of the estimated

level-dependent QBD process with log-likelihood values greater than or equal to

7500. (a) Box-plots of the estimated level-stationary distribution and the true

level-stationary distribution (black points). (b) Box-plots of the expected sojourn

times conditioned on moving up from a level and the true expected sojourn times

conditioned on moving up a level (black points). (c) Box-plots of the expected

sojourn times conditioned on moving down from a level and the true expected

sojourn times conditioned on moving down a level (black points). (d) Box-plots

of the estimated transition probabilities between each level and the true transition

probabilities between each level (black points). By design, the sojourn times

conditioned on moving down from level 0 are 0, the sojourn times conditioned on

moving up from level 9 are 0, and the transition probabilities for levels 0 and 9 are

either 0 or 1.
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7.4.2 Level-independent QBD process

In this example, we consider an infinite level-independent QBD process of the form

Q =



B0 A+ 0 0 . . .

A− A0 A+ 0 . . .

0 A− A0 A+ . . .

0 0 A− A0 . . .

...
...

...
...

. . .


,

where

A+ =

2 0

1 0

 , B0 =

−3 1

1 −2

 , A0 =

−4 0.5

0.5 −3.5

 , A− =

0 1.5

0 2

 .

In this example, we simulated 1000 samples of the above level-independent QBD

process, each with 10,000 changes in level, and used the EM algorithm described in

Section 7.3 to estimate the parameters of the level-independent QBD process for

each sample. We then calculated the level-stationary distribution, conditional

sojourn times in levels, and the transition probabilities between levels of each

estimated level-independent QBD process and compared the values to that of the

true level-independent QBD process.

Firstly, the stationary behaviour of the level-independent QBD process is captured

as illustrated in Figure 7.4.4a, which compares the estimated level-stationary

distribution for the first 11 levels with the true level-stationary distribution of the

true level-independent QBD process.
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Secondly, we consider the both the conditional sojourn time within a level before

the process moves up a level, as well as the conditional sojourn time within a level

before the process moves down a level. Note that given the level-independent

nature of the QBD process, behaviour above level 1 is omitted in the figures. In

both cases, there is strong similarity between the expected conditional sojourn

times for each level of each estimated level-independent QBD processes and the

expected conditional sojourn times for each level of the true level-independent

QBD process, as illustrated in Figures 7.4.4b and 7.4.4c.

Lastly, there is strong similarity between the transition probabilities to the level

above and below of each estimated level-independent QBD process and the

transition probabilities to the level above and below of the true level-independent

QBD process, as illustrated in Figure 7.4.4d. These results are also demonstrated

by the small MSE values summarised in Table 7.4.2. Similar to earlier, we omit

the transition probabilities above level 1 due to the level-independent nature of the

QBD process.

Type Mean Variance

Stationary distribution 1.411×10−5 3.409×10−10

Sojourn time conditioned on moving up a level 4.204×10−5 2.673×10−9

Sojourn time conditioned on moving down a level 3.082×10−3 4.755×10−6

Transition probabilities 5.928×10−3 1.366×10−6

Table 7.4.2: Mean and variance of the MSE for each type of behaviour for the

level-independent QBD process.
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(a) (b)

(c) (d)

Figure 7.4.4: Comparison of the behaviour of the 1000 estimated level-independent

QBD processes to the behaviour of the true level-independent QBD process for the

first 11 levels. (a) Box-plots of the estimated level-stationary distribution and the

true level-stationary distribution (red points). (b) Box-plots of the expected sojourn

times conditioned on moving up from a level and the true expected sojourn times

conditioned on moving up a level (red points). (c) Box-plots of the expected sojourn

times conditioned on moving down from a level and the true expected sojourn times

conditioned on moving down a level (red points). (d) Box-plots of the estimated

transition probabilities between each level and the true transition probabilities

between each level (red points). By design, the sojourn times conditioned on moving

down from level 0 are 0 and the transition probabilities for level 0 are either 0 or

1. Also note that transient behaviour above level 1 is omitted due to the level-

independent nature of the QBD process.
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Similar to before, we assessed the dependence on the initial values of the parameters

by simulating a single sample of the above level-independent QBD process with

10,000 changes in level and then started the EM algorithm with 1000 different sets

of randomly generated initial values of the parameters. As mentioned previously, this

EM algorithm tends to converge to local maxima rather than the global maximum

as illustrated in Figure 7.4.5, which plots the log-likelihood of the observed data for

each of the 1000 different level-independent QBD process estimations.

Figure 7.4.5: Log-likelihood values of the observed data for each of the fitted level-

independent QBD processes from the 1000 different starting values.
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7.5 Summary

Despite there being a non-uniqueness of representation of QBD processes, we have

developed an EM algorithm for the model fitting of quasi-birth-and-death processes

and demonstrated the accuracy of our method by means of two numerical examples.

However, caution is needed when using level-dependent QBD processes to make

predictions about the future state of a queueing system as there could be a risk of

over-parameterisation. In the next chapter, we define a new class of QBD processes

which remain level-dependent in nature but with fewer parameters than that of a

level-dependent QBD process.



Chapter 8

Structured quasi-birth-and-death

processes

Inherent with fitting QBD processes to queueing system data is the risk of fitting

an over-parameterised model and hence being unable to use the fitted QBD

process to predict behaviours of the queueing system. This is particularly true

when fitting level-dependent QBD processes to queueing system data. While

level-independent QBD processes have fewer parameters than a level-dependent

QBD process, some aspects of the queueing process may not be explained by a

level-independent QBD process. Alternatively, information about the behaviour of

the transition rates of a fitted level-dependent QBD process can be used to reduce

the number of parameters in the model, thus forming a structured QBD process

which reflects the behaviour and properties of the queueing process.

In this chapter, we first motivate the development of structured QBD processes

and then formally define various forms of structured QBD processes. Finally, we

extend the statistical model fitting method developed in Chapter 7 to structured

QBD processes.

144
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8.1 Motivation

Consider a queueing system where we know that customers arrive according to a

Poisson process with parameter λ, there are c servers, and the service time of each

customer follows a phase-type distribution, PH(α, T ) with b phases. This type of

queueing system is an example of an M/PH/c queue, where level ` ≥ 1 in the

M/PH/c queueing model has `bc phases. However, the dimensionality of such a

model increases dramatically as the number of servers and phases increases, thus

limiting the practicality of using M/PH/• queueing models to model real-life

systems.

Now suppose we simply observe a queueing system, such that all we know is when

customers arrive and leave and have no or limited information about the design of

the queueing system. In this case, directly modelling the unknown structures of

the queueing system using a classical queueing approach is impossible. Instead, we

look towards a statistical approach to indirectly model the unknown structures

using quasi-birth-and-death processes as these models have the flexibility to model

the non-exponential distributions of sojourn times for each level and any

dependence structure between the arrival process and the service times.

Recall that the infinitesimal generator matrix for the level-dependent QBD process

is defined as

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


.
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In terms of queueing system behaviour, A
(`)
− , A

(`)
0 , and A

(`)
+ each play a role in

modelling the arrival and departure process of a queueing system. However, A
(`)
+

predominately describes the arrival rate when there are ` ≥ 0 customers in the

queueing system, whereas A
(`)
− predominately describes the departure rate when

there are ` ≥ 1 customers in the queueing system.

In some queueing systems, the departure rate depends on the number of occupied

servers or the number of customers waiting in the queue, whereas the arrival rate

may be independent of the number of customers in the queueing system. In terms

of a birth-and-death process, such a queueing system may be represented as

Q =



−λ λ 0 0 . . .

µ −(µ+ λ) λ 0 . . .

0 2µ −(2µ+ λ) λ . . .

0 0 3µ −(3µ+ λ) . . .

...
...

...
...

. . .


.

However, the departure rate need not be solely dependent on the number of

customers in the queueing system. For example, the departure rate may also be

effected by an external source, such that

A
(`)
− = a+ `µ, ` ≥ 1,

where a represents the departure rate due to an external source and `µ represents

the departure rate due to direct service of customers in the queueing system.

In the context of a birth-and-death process, such models are known as linear birth-

and-death processes [28]. In these types of birth-and-death processes the arrival rate

may also change at a linear rate, such that

A
(`)
+ = b+ `λ, ` ≥ 0.
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Such descriptions of A
(`)
− and A

(`)
+ are well studied, thus providing various ways to

model queueing systems by incorporating structure into the birth-and-death

process. However, such descriptions do not naturally translate to QBD processes.

In this chapter, we look to use QBD processes to model queueing systems in such a

way that we avoid over-parameterisation while maintaining the level-dependent

nature of a process where needed. However, we assume that we have no or limited

information about the structure of the queueing system including the definition of

a server, the service process, and the service time distribution. As a result, a

meaningful phase space of a QBD process becomes difficult to pre-determine.

Instead, we consider a statistical approach to modelling queueing systems using

QBD processes that indirectly model the unknown structures of a queueing

system. This approach will also allow for dependence between the arrival process

and service time distribution, something which is not attainable with standard

queueing models such as the M/PH/• queueing model.

For example, consider the application of modelling the bed occupancy of the Royal

Adelaide Hospital intensive care unit. In the context of a queueing process, the

definition of a server in an ICU is not clear as it could be classified as a bed, staff,

or medical equipment. In addition to this, studies have found evidence of a

dependence between the patient admission process and the distribution of length

of stay [47]. Hence, the phase structure of any QBD process fitted to such data is

complex.
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Recall that the analysis of the RAH ICU data set in Section 5.1 revealed that the

minimum observed bed occupancy was 20 and the maximum observed bed

occupancy was 45, as illustrated in Figure 8.1.1. Hence, any QBD process fitted to

the RAH ICU data set will be finite where levels 0 and 25 correspond to bed

occupancies of 20 and 45 respectively.

Figure 8.1.1: Time series plot of the bed occupancy in the RAH ICU.

Using the EM algorithm developed in Chapter 7, we consider a level-dependent QBD

process with one phase for the RAH ICU, where the maximum likelihood estimates,

θ̂ = ({{Â−
(`)

; 1 ≤ ` ≤ 25}, Â0

(`)
; 0 ≤ ` ≤ 25}, {Â+

(`)
; 0 ≤ ` ≤ 24}

plotted in Figure 8.1.2 show that the fitted level-dependent QBD process with one

phase for the RAH ICU had a decreasing admission rate and a relatively constant

discharge rate as the bed occupancy increases.
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Figure 8.1.2: Maximum likelihood estimates for the level-dependent QBD process

with one phase fitted to the RAH ICU data set.

While we cannot determine exactly what the servers are in this intensive care unit,

we can indirectly model the unknown structures of the RAH ICU by considering

the behaviour of the transition rates of the fitted level-dependent QBD process

with one phase.

Using weighted least-squares regression, where the weights are the normalised

expected number of times the RAH ICU is at each bed occupancy, we fitted linear

regression models to the estimated arrival and departure rates of a level-dependent

QBD process with one phase.
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A linear term is required to explain the behaviour of the arrival rates, such that

f̂(`) =

20.051− 0.724`, for 0 ≤ ` ≤ 24,

0, for ` = 25,

whereas, only a constant term is needed to explain the behaviour of the departure

rates, such that

ĥ(`) =

8.914, for 1 ≤ ` ≤ 25,

0, for ` = 0,

as illustrated in Figure 8.1.3.

Figure 8.1.3: Fitted weighted least-squares regression models plotted against the

estimated arrival and departure rates for a level-dependent QBD process with one

phase for the RAH ICU.
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Therefore, a possible birth-and-death process which incorporates the structural

behaviour of the admission and discharge rates of the RAH ICU could have transition

rates defined as

Â−
(`)

= 8.914, for 1 ≤ ` ≤ 25,

Â+

(`)
= 20.051− 0.724`, for 0 ≤ ` ≤ 24, and

Â0

(`)
=


−20.051, for ` = 0,

− (8.914 + (20.051− 0.724`)) , for 1 ≤ ` ≤ 24,

−8.914, for ` = 25.

Figure 8.1.4 shows that the expected proportion of time spent at each bed

occupancy differs slightly to the observed proportion of time spent at each bed

occupancy, which is due to a reduction in the degree of model saturation. In

addition to this, we decrease the diversity of behaviour and thus reduce the

dispersion of the stationary distribution by smoothing the rates across levels.
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Figure 8.1.4: Observed proportion of time spent in each level (blue) versus the

expected proportion of time spent in each level assuming a structured level-

dependent QBD process with one phase (red).

Let’s now increase the model flexibility by introducing a phase process but remain

within the framework of scaled transition rates in order to model the

level-dependent nature of the RAH ICU. That is, we now consider a QBD process

with an infinitesimal generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,
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where [
A

(`)
−

]
i,j

= h` [A−]i,j , for ` ≥ 1,[
A

(`)
0

]
i,j

= g` [A0]i,j , for ` ≥ 0, i 6= j,[
A

(`)
+

]
i,j

= f` [A+]i,j , for ` ≥ 0,

the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums, and

f`, g`, and h` are non-negative scale functions of the level to ensure that the

non-diagonal entries of the infinitesimal generator matrix remain non-negative.

Conceptually, this type of model replicates the notion of the linearly increasing

departure rate of an M/M/∞ queue (i.e. h` = ` for ` ≥ 1 and f` = g` = 1 for

` ≥ 0) but it does not reflect the exponentially growing phase space of an

M/PH/∞ queueing model. In doing so, we introduce additional model flexibility

for the purposes of statistically fitting QBD processes to data, while also limiting

the dimension of the phase space and the overall number of parameters of the

model.

Figure 8.1.5 plots the maximum likelihood estimates of the fitted level-dependent

QBD process with two phases for the RAH ICU. Given that the dominating rate

of the (1, 1) phase transition is the departure rate, we assume that phase 1

represents the discharge phase of the RAH ICU. Similarly, since the dominating

rate of the (2, 2) phase transition is the arrival rate, we assume that phase 2

represents the admission phase of the RAH ICU.
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(a)

(b)

Figure 8.1.5: Maximum likelihood estimates for the level-dependent QBD process

with two phases fitted to the RAH ICU data set. Note that (b) zooms in on the

rates presented in (a).
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We can now reduce the number of parameters in the level-dependent QBD process

by considering a likelihood of the form

LC(θ|d) =
∞∏
`=0

J∏̀
i=1

exp(A
(`)
0i,i
Z`,i)

∞∏
`=0

J∏̀
i=1

J∏̀
j=1
j 6=i

g`A0i,j
S`,i,j

∞∏
`=1

J∏̀
i=1

J`−1∏
j=1

h`A−i,j
D`,i,j

∞∏
`=0

J∏̀
i=1

J`+1∏
j=1

f`A+i,j
U`,i,j ,

where g`, h`, and f` are non-negative polynomial forms of the level.

The degree of each polynomial form depends on the behaviour observed in the

data. For example, the admission rates may decrease at a linear rate and the rates

associated with discharges or no change in the number of patients in the ICU may

remain relatively constant, thus suggesting that f` for 0 ≤ ` ≤ 24 is of degree 1,

h` = 1 for 1 ≤ ` ≤ 25, and g` = 1 for 0 ≤ ` ≤ 25.

However, the behaviour of the arrival, departure, and within level rates are

dependent on both the level and phase. For example, the (1, 1) and (2, 2) phase

transitions appear to have a decreasing admission rate and a relatively constant

discharge rate as the bed occupancy increases, whereas both the admission and

discharge rates appear to be relatively constant for the (1, 2) and (2, 1) phase

transitions.
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Therefore, more structure may need to be incorporated into the QBD process, such

that we consider a likelihood of the form

LC(θ|d) =
∞∏
`=0

J∏̀
i=1

exp(A
(`)
0i,i
Z`,i)

∞∏
`=0

J∏̀
i=1

J∏̀
j=1
j 6=i

g`,i,jA0i,j
S`,i,j

∞∏
`=1

J∏̀
i=1

J`−1∏
j=1

h`,i,jA−i,j
D`,i,j

∞∏
`=0

J∏̀
i=1

J`+1∏
j=1

f`,i,jA+i,j
U`,i,j ,

where g`,i,j, h`,i,j, and f`,i,j are polynomial forms of the level and of the phase

transition process.

These types of QBD processes provide the motivation for the development of a new

type of QBD process called the structured QBD process. Therefore, in the following

sections we formally define various types of structured QBD processes and develop

methodology to fit these types of structured QBD processes to queueing system data

using the EM and ECM algorithms.

8.2 Structured QBD processes

A structured quasi-birth-and-death process is a continuous-time Markov process

{X(t), J(t); t ≥ 0} with state space S = {(`, j); i ≥ 0, j = 1, 2, . . . , J`}, where

` denotes the level of the process, j denotes the phase of the process, and J` is

the number of phases at the `th level. The infinitesimal generator matrix for the

structured QBD process is the same as the infinitesimal generator matrix for the

level-dependent QBD process,
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Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


, (8.2.1)

but with constraints defining the relationships between levels. For example, a QBD

process whose infinitesimal generator matrix is of the form (8.2.1) is called a level-

independent QBD process with a boundary at level 0 if

• J` = m, for all ` ≥ 1,

• A
(`)
− = A−, for all ` ≥ 2,

• A
(`)
0 = A0, for all ` ≥ 1, and

• A
(`)
+ = A+, for all ` ≥ 1.

So the infinitesimal generator matrix for a level-independent quasi-birth-and-death

process with a boundary at level 0 is of the form

Q =



B0 B+ 0 0 . . .

B− A0 A+ 0 . . .

0 A− A0 A+ . . .

0 0 A− A0 . . .

...
...

...
...

. . .


.
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If we set

• Ji = m, for all 1 ≤ ` ≤ C − 1,

• A
(`)
− = A−, for all 2 ≤ ` ≤ C − 1,

• A
(`)
0 = A0, for all 1 ≤ ` ≤ C − 1,

• A
(`)
+ = A+, for all 1 ≤ ` ≤ C − 2, and

• A
(C)
+ = 0,

we obtain the infinitesimal generator matrix for the finite level-independent QBD

process with boundaries at levels 0 and C, which is of the form

Q =



B0 B+ 0 . . . 0 0 0

B− A0 A+ . . . 0 0 0

0 A− A0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A0 A+ 0

0 0 0 . . . A− A0 C+

0 0 0 . . . 0 C− C0



.

Further to this, the relationships between the block matrices in the infinitesimal

generator matrix presented in Equation (8.2.1) may resemble a functional form of

the level.
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To capture such relationships, we consider the infinitesimal generator matrix

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,

where [
A

(`)
−

]
i,j

= h` [A−]i,j , for ` ≥ 1,

[
A

(`)
0

]
i,j

= g` [A0]i,j , for ` ≥ 0, i 6= j,

[
A

(`)
+

]
i,j

= f` [A+]i,j , for ` ≥ 0,

the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums, and

f`, g`, and h` are non-negative scale functions of the level. For example, h` could be

a linear function of the level, such that

h` = `, ` ≥ 1.

This can also be extended to situations where the relationships between the block

matrices in the infinitesimal generator matrix presented in Equation (8.2.1) are

explained by functional forms of the level and the phase transition process, such

that the infinitesimal generator matrix is defined as

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,
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where

A
(`)
− = H` ◦ A−, for ` ≥ 1,

A
(`)
0 = G` ◦ A0, for ` ≥ 0,

A
(`)
+ = F` ◦ A+, for ` ≥ 0,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

The matrices F`, G`, and H` defined as

H` =



h`,1,1 h`,1,2 . . . h`,1,J`−1

h`,2,1 h`,1,2 . . . h`,1,J`−1

...
... . . .

...

h`,J`,1 h`,J`,2 . . . h`,J`,J`−1


,

G` =



g`,1,1 g`,1,2 . . . g`,1,J`

g`,2,1 g`,1,2 . . . g`,1,J`

...
... . . .

...

g`,J`,1 g`,J`,2 . . . g`,J`,J`


,

and,

F` =



f`,1,1 f`,1,2 . . . f`,1,J`+1

f`,2,1 f`,1,2 . . . f`,1,J`+1

...
... . . .

...

f`,J`,1 f`,J`,2 . . . f`,J`,J`+1


,
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are non-negative to ensure that the non-diagonal entries of the infinitesimal

generator matrix remain non-negative. For example, f`,i,j, for 1 ≤ i ≤ J`,

1 ≤ j ≤ J`+1, is some non-negative scalar function of level ` and the phase

transition (i, j). While this increases the number of parameters in the structured

QBD process, such a model may further uncover hidden features of a queueing

system.

Note that B ◦ A indicates the Hadamard product of the matrices B and A. For

example, the Hadamard product of 3× 3 matrices B and A is
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 ◦

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 =


b1,1a1,1 b1,2a1,2 b1,3a1,3

b2,1a2,1 b2,2a2,2 b2,3a2,3

b3,1a3,1 b3,2a3,2 b3,3a3,3

 .

For each structured QBD process, we can identify a set of boundary levels and

levels where the block matrices in the infinitesimal generator matrix presented in

Equation (8.2.1) are related. We can also enforce the row sums of certain block

matrices to be the same, if required. By this construction, we can consider QBD

processes with specific boundary behaviours and related behaviour for levels

between the boundaries.

Let L−, U−, L0, U0, L+, and U+ define the lower and upper boundaries for the block

matrices in the generator matrix for a structured QBD process, such that

• the block matrices describing a decrease in level between the levels L− and U−

are related,

• the block matrices describing no change in level between the levels L0 and U0

are related, and

• the block matrices describing an increase in level between the levels L+ and

U+ are related.
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For example, consider the generator matrix for an infinite level-independent QBD

process with no unique lower boundary behaviour,

Q =



B0 A+ 0 0 . . .

A− A0 A+ 0 . . .

0 A− A0 A+ . . .

0 0 A− A0 . . .

...
...

...
...

. . .


.

In this case, L− = 1, L0 = 1, L+ = 0, and U− = U0 = U+ =∞.

In the case of a finite level-independent QBD process with boundaries at level 0 and

level C and generator matrix,

Q =



B0 B+ 0 . . . 0 0 0

B− A0 A+ . . . 0 0 0

0 A− A0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A0 A+ 0

0 0 0 . . . A− A0 C+

0 0 0 . . . 0 C− C0


we set L− = 2, L0 = 1, L+ = 1, U− = C − 1, U0 = C − 1, and U+ = C − 2.

Note that the dimensions of the matrices between the lower and upper boundaries

in the generator matrix must be the same in order to define relationships of the

matrices between the lower and upper boundaries.
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8.2.1 Stationary and transient behaviour

The stationary and transient behaviour of a structured QBD process is defined

similar to that of a level-dependent QBD process, since the structured QBD process

can be level-dependent in nature.

8.2.2 Observed and unobserved data

For any QBD process, including a structured QBD process, we only observe the

changes in level and the times at which a change in level occurs. The transitions

between phases remain hidden, thus leading to incomplete data. In the following

sections, we extend the EM algorithm developed in Chapter 7 to various types of

structured QBD processes.

8.3 Structured QBD process with

level-dependent scales

Firstly, we consider a structured QBD process with infinitesimal generator matrix

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,

where the block matrices describing a decrease in level between the levels L− and

U− are related, such that for L− ≤ ` ≤ U−,

A
(`)
−i,j = h`A−i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,



CHAPTER 8. STRUCTURED QUASI-BIRTH-AND-DEATH PROCESSES 164

the block matrices describing no change in level between the levels L0 and U0 are

related, such that for L0 ≤ ` ≤ U0,

A
(`)
0i,j

= g`A0i,j , 1 ≤ i 6= j ≤ J`,

the block matrices describing an increase in level between the levels L+ and U+ are

related, such that for L+ ≤ ` ≤ U+,

A
(`)
+i,j = f`A+i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums, and

f`, g`, and h` are non-negative, level-dependent scales.

This form of structured QBD process has a level-dependent nature inherited from

the scales but contains fewer parameters than that of a level-dependent QBD

process, and hence could be a suitable alternative when predicting behaviours of a

queueing system.

In this section, we first define the EM algorithm for a structured QBD process

with level-dependent scales under the assumption that the phase process is

unobservable. As this estimation method is an extension to the EM algorithm for

level-dependent QBD processes developed in Chapter 7, we only describe the parts

of the method that are different. We then focus on a special type of structured

QBD process and define the associated EM algorithm in a similar way to before.
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8.3.1 Likelihood

From Chapter 7, the likelihood of the complete data D = (X, Y )

(i.e. if the phase process were observable) with parameters

θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}), is

LC(θ|d) =
∞∏
`=0

J∏̀
i=1

exp(A
(`)
0i,i
Z`,i)

∞∏
`=0

J∏̀
i=1

J∏̀
j=1
j 6=i

A
(`)
0i,j

S`,i,j
∞∏
`=1

J∏̀
i=1

J`−1∏
j=1

A
(`)
−i,j

D`,i,j
∞∏
`=0

J∏̀
i=1

J`+1∏
j=1

A
(`)
+i,j

U`,i,j
,

and the complete data log-likelihood is given by

`C(θ|d) =
∞∑
`=0

J∑̀
i=1

A
(`)
0i,i
Z`,i +

∞∑
`=0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j (8.3.1)

+
∞∑
`=1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

∞∑
`=0

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j.

(8.3.2)

Expanding the complete data log-likelihood to show the relationships between the

block matrices, we have that

`C(θ|d) =
∞∑
`=0

J∑̀
i=1

A
(`)
0i,i
Z`,i +

L0−1∑
`=0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
g`A0i,j

)
S`,i,j +

∞∑
`=U0+1

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+

L−−1∑
`=1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

log
(
h`A−i,j

)
D`,i,j

+
∞∑

`=U−+1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

L+−1∑
`=0

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j

+

U+∑
`=L+

J∑̀
i=1

J`+1∑
j=1

log
(
f`A+i,j

)
U`,i,j +

∞∑
`=U++1

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j.
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Theorem 8.3.1.

Using the constrained log-likelihood, the maximum likelihood estimates of the

parameters θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}) for a structured QBD

process with level-dependent scales are as follows:

Â
(`)
−i,j

=
D`,i,j
Z`,i

, for 1 ≤ ` ≤ L− − 1, U− + 1 ≤ ` <∞, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

Â−i,j =

U−∑
`=L−

D`,i,j

U−∑
`=L−

h`Z`,i

, for 1 ≤ i ≤ JL− and 1 ≤ j ≤ JL−−1,

ĥ` =

J∑̀
i=1

J`−1∑
j=1

D`,i,j

J∑̀
i=1

J`−1∑
j=1

A−i,jZ`,i

, for L− ≤ ` ≤ U−,

Â
(`)
0i,j

=
S`,i,j
Z`,i

, for 0 ≤ ` ≤ L0 − 1, U0 + 1 ≤ ` <∞, and 1 ≤ i 6= j ≤ J`,

Â0i,j =

U0∑
`=L0

S`,i,j

U0∑
`=L0

g`Z`,i

, for 1 ≤ i 6= j ≤ JL0 ,

ĝ` =

J∑̀
i=1

J∑̀
j=1
j 6=i

S`,i,j

J∑̀
i=1

J∑̀
j=1
j 6=i

A0i,jZ`,i

, for L0 ≤ ` ≤ U0,

Â
(`)
+i,j

=
U`,i,j
Z`,i

, for 0 ≤ ` ≤ L+ − 1, U+ + 1 ≤ ` <∞, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

Â+i,j =

U+∑
`=L+

U`,i,j

U+∑
`=L+

f`Z`,i

, for 1 ≤ i ≤ JL+ and 1 ≤ j ≤ JL++1,
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f̂` =

J∑̀
i=1

J`+1∑
j=1

U`,i,j

J∑̀
i=1

J`+1∑
j=1

A+i,jZ`,i

, for L+ ≤ ` ≤ U+.

Note: the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Proof: See Appendix A.

8.3.2 E-step and CM-step

We use the ECM algorithm to estimate the parameters of the structured QBD

process with level-dependent scales. The calculations involved in the E-step follow

those described in Section 7.2.4. The calculations involved in the CM-step are as

follows.

In the CM-step of the ECM algorithm, we update the values of the parameters by

replacing the statistics in Theorem 8.3.1 with the conditional expectations

calculated in the E-step.

At the (t + 1)th iteration, the conditional maximum likelihood estimates of the

parameters θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}) given h` = h

(t)
` , g` = g

(t)
` ,

and f` = f
(t)
` are as follows.

For 1 ≤ ` ≤ L− − 1, U− + 1 ≤ ` <∞, 1 ≤ i ≤ J`, and 1 ≤ j ≤ J`−1:

Â−
(`)

i,j =

K∑
k=1

E
[
D

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .
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For 1 ≤ i ≤ J` and 1 ≤ j ≤ JL− :

Â−i,j =

U−∑
`=L−

K∑
k=1

E
[
D

(k)
`,i,j|D,θ

]
U−∑
`=L−

ĥ
(t)
`

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 0 ≤ ` ≤ L0 − 1, U0 + 1 ≤ ` <∞, and 1 ≤ i 6= j ≤ J`:

Â0

(`)

i,j =

K∑
k=1

E
[
S

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 1 ≤ i 6= j ≤ JL0 :

Â0i,j =

U0∑
`=L0

K∑
k=1

E
[
S

(k)
`,i,j|D,θ

]
U0∑
`=L0

ĝ
(t)
`

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .
For 0 ≤ ` ≤ L+ − 1, U+ + 1 ≤ ` <∞, 1 ≤ i ≤ J`, and 1 ≤ j ≤ J`+1:

Â+

(`)

i,j =

K∑
k=1

E
[
U

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 1 ≤ i ≤ J` and 1 ≤ j ≤ JL+ :

Â+

=

i,j

U+∑
`=L+

K∑
k=1

E
[
U

(k)
`,i,j|D,θ

]
U+∑
`=L+

f̂
(t)
`

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .
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Then, the conditional maximum likelihood estimates for {h`;L− ≤ ` ≤ U−},

{g`;L0 ≤ ` ≤ U0}, and {f`;L+ ≤ ` ≤ U+} given Â−i,j = Â−
(t+1)

i,j , Â0i,j = Â0

(t+1)

i,j ,

and Â+i,j = Â+

(t+1)

i,j are

ĥ` =

J∑̀
i=1

J∑̀
j=1

K∑
k=1

E
[
D

(k)
`,i,j|D,θ

]
J∑̀
i=1

J∑̀
j=1

Â−
(t+1)

i,j

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] , for L− ≤ ` ≤ U−,

ĝ` =

J∑̀
i=1

J∑̀
j=1
j 6=i

K∑
k=1

E
[
S

(k)
`,i,j|D,θ

]
J∑̀
i=1

J∑̀
j=1
j 6=i

Â0

(t+1)

i,j

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] , for L0 ≤ ` ≤ U0, and

f̂` =

J∑̀
i=1

J∑̀
j=1

K∑
k=1

E
[
U

(k)
`,i,j|D,θ

]
J∑̀
i=1

J∑̀
j=1

Â+

(t+1)

i,j

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] , for L+ ≤ ` ≤ U+.

8.3.3 Special case

Now let’s consider the special case of a finite level-independent QBD process with

boundaries at level 0 and level C. To obtain the maximum likelihood estimators for

the parameters in the infinitesimal generator matrix
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B0 B+ 0 . . . 0 0 0

B− A0 A+ . . . 0 0 0

0 A− A0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A0 A+ 0

0 0 0 . . . A− A0 C+

0 0 0 . . . 0 C− C0



,

we set L− = 2, L0 = 1, L+ = 1, U− = C − 1, U0 = C − 1, U+ = C − 2, h`1 for all

1 ≤ ` ≤ C, and g` = f` = 1 for all 0 ≤ ` ≤ C.

Note that the rows sums of the block matrices B− and A− need to be the same.

Hence, we must include the following Lagrangian term:

J∑
i=1

λ
(L)
i

JL−−2∑
j=1

A
(L−−1)
−i,j −

JL−−1∑
j=1

A
(L−)
−i,j

 .

Similar issues occur for the rows sums of the block matrices A+ and C+. Hence, we

must include the following additional Lagrangian term:

J∑
i=1

λ
(U)
i

JU++1∑
j=1

A
(U+)
+i,j −

JU++2∑
j=1

A
(U++1)
+i,j

 .

Corollary 8.3.1.1. The maximum likelihood estimates of the parameters

θ = (B−, B0, B+, A−, A0, A+, C−, C0, C+)

are identical to those presented in Theorem 8.3.1, except for the following:

B̂−i,j = Â
(1)
−i,j

=
D1,i,j

Z1,i − λ(L)
i

, for 1 ≤ i ≤ J1, 1 ≤ j ≤ J0,

and,
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Â−i,j = Â
(2)
−i,j

=

C−1∑
`=2

D`,i,j

C−1∑
`=2

Z`,i + λ
(L)
i

, for 1 ≤ i ≤ J2, 1 ≤ j ≤ J1,

where,

λ
(L)
i =

Z1,i

J1∑
j=1

C−1∑
`=2

D`,i,j −

(
C−1∑
`=2

Z`,i

)
J0∑
j=1

D1,i,j

J0∑
j=1

D1,i,j +

J1∑
j=1

C−1∑
`=2

D`,i,j

,

Â+i,j = Â
(1)
+i,j

=

C−2∑
`=1

U`,i,j

C−2∑
`=1

Z`,i − λ(U)
i

, for 1 ≤ i ≤ J1, 1 ≤ j ≤ J2,

and,

Ĉ+i,j = Â
(C−1)
+i,j

=
UC−1,i,j

ZC−1,i + λ
(U)
i

, for 1 ≤ i ≤ JC−1, 1 ≤ j ≤ JC ,

where,

λ
(U)
i =

(
C−2∑
`=1

Z`,i

)
JC∑
j=1

UC−1,i,j − ZC−1,i

J2∑
j=1

C−2∑
`=1

U`,i,j

J2∑
j=1

C−2∑
`=1

U`,i,j +

JC∑
j=1

UC−1,i,j

, for 1 ≤ i ≤ J`,

and B̂0 = Â
(0)
0 , Â0 = Â

(1)
0 , Ĉ0 = Â

(C)
0 , Ĉ− = Â

(C)
− , B̂+ = Â

(0)
+ .

Note: to obtain the maximum likelihood estimates of the parameters θ = (B0, B−, B+, A0, A−, A+) for an

infinite level-independent QBD process with a boundary at level 0, set C =∞.

Proof: See Appendix B.

E-step and M-step

In this case, we use the standard EM algorithm to estimate the parameters of the

finite level-independent QBD process with boundaries at level 0 and level C. The

calculations involved in the E-step follow those described in Section 7.2.4. The

calculations involved in the M-step are as follows.
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In the M-step, we update the values of the parameters by replacing the statistics

in Corollary 8.3.1.1 with the conditional expectations calculated in the E-step.

At the (t + 1)th iteration, the conditional maximum likelihood estimates of the

parameters θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}) are as follows.

For 1 ≤ i ≤ J1 and 1 ≤ j ≤ J0:

Â−
(1)

i,j =

K∑
k=1

E
[
D

(k)
1,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
1,i |D,θ

]
− λ(L)

i

.

For 1 ≤ i ≤ J2 and 1 ≤ j ≤ J1:

Â−i,j =

C−1∑
`=2

K∑
k=1

E
[
D

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

]
+ λ

(L)
i

.

For 1 ≤ i ≤ JC and 1 ≤ j ≤ JC−1:

Â−
(C)

i,j =

K∑
k=1

E
[
D

(k)
C,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
C,i |D,θ

]
− λ(L)

i

.

For 1 ≤ i 6= j ≤ J0:

Â0

(0)

i,j =

K∑
k=1

E
[
S

(k)
0,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
0,i |D,θ

] .
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For 1 ≤ i 6= j ≤ J1:

Â0i,j =

C−1∑
`=1

K∑
k=1

E
[
S

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 1 ≤ i 6= j ≤ JC :

Â0

(C)

i,j =

K∑
k=1

E
[
S

(k)
C,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
C,i |D,θ

] .
For 1 ≤ i ≤ J0, and 1 ≤ j ≤ J1:

Â+

(0)

i,j =

K∑
k=1

E
[
U

(k)
0,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
0,i |D,θ

]
+ λ

(U)
i

.

For 1 ≤ i ≤ J1 and 1 ≤ j ≤ J2:

Â+i,j =

C−2∑
`=1

K∑
k=1

E
[
U

(k)
`,i,j|D,θ

]
U+∑
`=L+

K∑
k=1

E
[
Z

(k)
`,i |D,θ

]
− λ(U)

i

.

For 1 ≤ i ≤ JC−1, and 1 ≤ j ≤ JC :

Â+

(C−1)

i,j =

K∑
k=1

E
[
U

(k)
C−1,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
C−1,i|D,θ

]
+ λ

(U)
i

.
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8.3.4 Discussion

The structured QBD process with level-dependent scales remains level-dependent in

nature but with fewer parameters than the standard level-dependent QBD process.

This type of structured QBD process also allows us to define structural relationships

between the levels to define special types of QBD processes, such as the finite level-

independent QBD process. In the following sections, we structurally reduce the

number of parameters again by considering functional forms of the level.

8.4 Structured QBD processes with linear

functional forms

The arrival and departure rates of queueing systems sometimes increase or decrease

at a linear rate, which resembles the nature of a M/M/c or a M/M/∞ queue. Using

this as motivation, we now consider a structured QBD process with infinitesimal

generator matrix

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,

where the block matrices describing a decrease in level between the levels L− and

U− are related, such that for L− ≤ ` ≤ U−,

A
(`)
−i,j = (1 + βh1 (`− 1))A−i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,



CHAPTER 8. STRUCTURED QUASI-BIRTH-AND-DEATH PROCESSES 175

the block matrices describing no change in level between the levels L0 and U0 are

related, such that for L0 ≤ ` ≤ U0,

A
(`)
0i,j

= (1 + βg1`)A0i,j , 1 ≤ i 6= j,≤ J`,

the block matrices describing an increase in level between the levels L+ and U+ are

related, such that for L+ ≤ ` ≤ U+,

A
(`)
+i,j = (1 + βf1 `)A+i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Given that the non-diagonal entries of the infinitesimal generator matrix must be

non-negative, the following constraints must be satisfied:

1 + βh1 (`− 1) ≥ 0 =⇒ βh1 ≥ −
1

`− 1
, for all ` ∈ [L−, U−],

1 + βg1` ≥ 0 =⇒ βg1 ≥ −
1

`
, for all ` ∈ [L0, U0], and

1 + βf1 ` ≥ 0 =⇒ βf1 ≥ −
1

`
, for all ` ∈ [L+, U+].

In this section, we define the EM algorithm for a structured QBD process with

linear functional forms under the assumption that the phase process is unobservable.

Note that the method described in this section will be similar to that presented in

Section 8.3. Hence, we only describe the parts of the method which are different.
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8.4.1 Likelihood

Similar to Section 8.3, we expand the complete data log-likelihood in

Equation (8.3.2) to show the relationships between the block matrices, such that

`C(θ|d) =
∞∑
`=0

J∑̀
i=1

A
(`)
0i,i
Z`,i +

L0−1∑
`=0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
(1 + βg1`)A0i,j

)
S`,i,j +

∞∑
`=U0+1

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+

L−−1∑
`=1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

log
(
(1 + βh1 (`− 1))A−i,j

)
D`,i,j

+
∞∑

`=U−+1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

L+−1∑
`=0

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j

+

U+∑
`=L+

J∑̀
i=1

J`+1∑
j=1

log
(

(1 + βf1 `)A+i,j

)
U`,i,j +

∞∑
`=U++1

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j.

Theorem 8.4.1. Using the complete data log-likelihood, the maximum likelihood

estimates of the parameters θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}) for a

structured QBD process with linear functional forms of the level are as follows:

Â
(`)
−i,j

=
D`,i,j
Z`,i

, for 1 ≤ ` ≤ L− − 1, ` ≥ U− + 1, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

Â−i,j =

U−∑
`=L−

D`,i,j

U−∑
`=L−

(1 + βh1 (`− 1))Z`,i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1,

Â
(`)
0i,j

=
S`,i,j
Z`,i

, for 0 ≤ ` ≤ L0 − 1, ` ≥ U0 + 1, and 1 ≤ i 6= j ≤ J`,

Â0i,j =

U0∑
`=L0

S`,i,j

U0∑
`=L0

(1 + βg1 `)Z`,i

, for 1 ≤ i 6= j ≤ JL0 ,

Â
(`)
+i,j

=
U`,i,j
Z`,i

, for 0 ≤ ` ≤ L+ − 1, ` ≥ U+ + 1, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,
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Â+i,j =

U+∑
`=L+

U`,i,j

U+∑
`=L+

(1 + βf1 `)Z`,i

, for 1 ≤ i ≤ JL+ , 1 ≤ j ≤ JL++1.

Note: the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Proof: Similar to the proof of Theorem 8.3.1.

Taking the partial derivative of the complete data log-likelihood with respect to βh1 ,

βg1 , and βf1 , we obtain the following expressions:

∂`C(θ|d)

∂βh1
= −

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

(`− 1)A−i,jZ`,i +

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

`D`,i,j

1 + βh1 (`− 1)
, (8.4.1)

∂`C(θ|d)

∂βg1
= −

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`A0i,jZ`,i +

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`S`,i,j
1 + βg1`

, and (8.4.2)

∂`C(θ|d)

∂βf1
= −

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`A+i,jZ`,i +

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`U`,i,j

1 + βf1 `
. (8.4.3)

Explicit expressions for the maximum likelihood estimates of βh1 , βg1 , and βf1 cannot

be found. As a result, we numerically solve for βh1 , βg1 , and βf1 using the bisection

method.

8.4.2 Bisection Method

The bisection method is a root-finding algorithm that approximates the root of

a continuous function, f(x), that changes sign at least once for x ∈ [a0, b0]. At

each iteration, the algorithm halves the interval and selects the sub-interval which

contains the root, thus refining the approximation of the root of f(x). The algorithm

of the bisection method is presented in Algorithm 2.
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Algorithm 2: Bisection method

Initialise

• a0 and b0, such that f(a0)× f(b0) < 0

• m0 = a0+b0
2

while |f(mn)| ≥ ε do

if f(mn) = 0 then
Stop, as we have found the solution.

else
Calculate the midpoint of the interval:

mn =
an + bn

2

if f(an)× f(mn) < 0 then
an+1 = an

bn+1 = mn

else
an+1 = mn

bn+1 = bn

8.4.3 Feasible regions

Consider the partial derivative of the complete data log-likelihood with respect to

βf1 ,

∂`C(θ|d)

∂βf1
= −

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`A+i,jZ`,i +

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`U`,i,j

1 + βf1 `
.

Notice that this function is undefined when 1 + βf1 ` = 0, for L+ ≤ ` ≤ U+. The

vertical asymptotes of this function are then defined as

−1

`
, for L+ ≤ ` ≤ U+.
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Recall that the non-diagonal entries of the infinitesimal generator matrix must be

non-negative, and so we have the constraint

βf1 ≥ −
1

`
, for all ` ∈ [L+, U+].

Therefore, we use the bisection method to numerically solve for βf1 by searching for

a solution within the regions defined not only by the vertical asymptotes but also

those that satisfy the constraint

βf1 ≥ −
1

`
, for all ` ∈ [L+, U+].

That is, we use the bisection method to numerically solve for βf1 by searching for a

solution within the region
(
− 1
U+
,∞
)

. Note that we set the solution to be − 1
U+

+ δ

for small δ if the bisection method is searching for a solution too close to − 1
U+

, so

as to avoid undefined values.

Similarly, we numerically solve for βg1 by searching for a solution within the region(
− 1
U0
,∞
)

and we numerically solve for βh1 by searching for a solution within the

region
(
− 1
U−−1

,∞
)

.

8.4.4 E-step and CM-step

Similar to before, we use the ECM algorithm to estimate the parameters of the

structured QBD process with linear functional forms. The calculations involved in

the E-step follow those described in Section 7.2.4. The calculations involved in the

CM-step are as follows.

In the CM-step of the ECM algorithm, we update the values of the parameters by

replacing the statistics in Theorem 8.4.1 with the conditional expectations

calculated in the E-step.
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At the (t + 1)th iteration, the conditional maximum likelihood estimates of the

parameters θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}) given h` = h

(t)
` , g` = g

(t)
` ,

and f` = f
(t)
` are as follows.

For 1 ≤ ` ≤ L− − 1, U− + 1 ≤ ` <∞, 1 ≤ i ≤ J`, and 1 ≤ j ≤ J`−1:

Â−
(`)

i,j =

K∑
k=1

E
[
D

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 1 ≤ i ≤ J` and 1 ≤ j ≤ JL− :

Â−i,j =

U−∑
`=L−

K∑
k=1

E
[
D

(k)
`,i,j|D,θ

]
U−∑
`=L−

ĥ
(t)
`

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 0 ≤ ` ≤ L0 − 1, U0 + 1 ≤ ` <∞, and 1 ≤ i 6= j ≤ J`:

Â0

(`)

i,j =

K∑
k=1

E
[
S

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 1 ≤ i 6= j ≤ JL0 :

Â0i,j =

U0∑
`=L0

K∑
k=1

E
[
S

(k)
`,i,j|D,θ

]
U0∑
`=L0

ĝ
(t)
`

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .
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For 0 ≤ ` ≤ L+ − 1, U+ + 1 ≤ ` <∞, 1 ≤ i ≤ J`, and 1 ≤ j ≤ J`+1:

Â+

(`)

i,j =

K∑
k=1

E
[
U

(k)
`,i,j|D,θ

]
K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

For 1 ≤ i ≤ J` and 1 ≤ j ≤ JL+ :

Â+

=

i,j

U+∑
`=L+

K∑
k=1

E
[
U

(k)
`,i,j|D,θ

]
U+∑
`=L+

f̂
(t)
`

K∑
k=1

E
[
Z

(k)
`,i |D,θ

] .

Then, the conditional maximum likelihood estimates for {h`;L− ≤ ` ≤ U−},

{g`;L0 ≤ ` ≤ U0}, and {f`;L+ ≤ ` ≤ U+} given Â−i,j = Â−
(t+1)

i,j , Â0i,j = Â0

(t+1)

i,j ,

and Â+i,j = Â+

(t+1)

i,j are found by solving Equations (8.4.1), (8.4.2), and (8.4.3)

using the bisection method, respectively.

8.4.5 Discussion

The structured QBD process with linear functional forms has more model flexibility

than standard queueing models of the form M/M/c or M/M/∞, as well as fewer

parameters that that of a level-dependent QBD process whilst remaining level-

dependent in nature. In the next section, we consider quadratic functional forms of

the level which describes unique behaviour in queueing systems.
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8.5 Structured QBD processes with quadratic

functional forms

The behaviour of certain queueing systems may be unexpected, such that the

arrival and departure rates may be convex or concave in nature. For example, such

behaviour may reflect demand for a service where the server’s productivity is low

when the system is near empty and close to capacity (too much stress). Therefore,

in this section we consider a structured QBD process with infinitesimal generator

matrix

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,

where the block matrices describing a decrease in level between the levels L− and

U− are related, such that for L− ≤ ` ≤ U−,

A
(`)
−i,j = (1 + βh1 (`− 1) + βh2 (`− 1)2)A−i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

the block matrices describing no change in level between the levels L0 and U0 are

related, such that for L0 ≤ ` ≤ U0,

A
(`)
0i,j

= (1 + βg1`+ βg2`
2)A0i,j , 1 ≤ i 6= j,≤ J`,

the block matrices describing an increase in level between the levels L+ and U+ are

related, such that for L+ ≤ ` ≤ U+,

A
(`)
+i,j = (1 + βf1 `+ βf2 `

2)A+i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.
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Given that the non-diagonal entries of the infinitesimal generator matrix must be

non-negative, the following constraints must be satisfied:

1 + βh1 (`− 1) + βh2 (`− 1)2 ≥ 0 for all ` ∈ [L−, U−],

1 + βg1`+ βg2`
2 ≥ 0, for all ` ∈ [L0, U0], and

1 + βf1 `+ βf2 `
2 ≥ 0 for all ` ∈ [L+, U+].

For example, suppose the quadratic associated with the block matrices describing

no change in level is convex. If the vertex of the quadratic lies within the domain

[L0, U0] then we must have that the y-coordinate of the vertex is non-negative, as

shown in Figure 8.5.1.

Figure 8.5.1: Illustration of the non-negative requirement of a convex quadratic

when the vertex of the quadratic lies within the domain [L0, U0]. Note that the red

circle indicates the vertex of the quadratic.
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If the vertex does not lie within the domain [L0, U0] then we must have that the

minimum value of the quadratic within the domain [L0, U0] is non-negative, as

demonstrated in Figure 8.5.2.

Figure 8.5.2: Illustration of the non-negative requirement of a convex quadratic

when the vertex of the quadratic does not lie within the domain [L0, U0]. Note that

the red circle indicates the minimum values within the domain.

Suppose now that the quadratic associated with the block matrices describing no

change in level is concave. In this case, we must ensure that the minimum value of

the quadratic within the domain [L0, U0] is non-negative, as illustrated in

Figure 8.5.3.
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Figure 8.5.3: Illustration of the non-negative requirement of a concave quadratic.

Note that the red circle indicates the minimum values within the domain.

The requirement for such detailed constraints is motivated by the potential to use

fitted structured QBD processes for prediction modelling. For example, suppose we

fit a structured QBD process to observed data associated with a queueing system

with a capacity of 10 customers. In this case, we consider an infinitesimal generator

matrix defined as

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(9)
− A

(9)
0 A

(9)
+

0 0 0 . . . 0 A
(10)
− A

(10)
0


,
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where the block matrices describing a decrease in level between the levels 1 and 10

are related, such that for 1 ≤ ` ≤ 10,

A
(`)
−i,j = (1 + βh1 (`− 1) + βh2 (`− 1)2)A−i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

the block matrices describing no change in level between the levels 0 and 10 are

related, such that for 0 ≤ ` ≤ 10,

A
(`)
0i,j

= A0i,j , 1 ≤ i 6= j,≤ J`,

the block matrices describing an increase in level between the levels 0 and 9 are

related, such that for 0 ≤ ` ≤ 9,

A
(`)
+i,j = A+i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

and the diagonal entries of A
(`)
0 for 0 ≤ ` ≤ 10 are the negative of the relevant row

sums.

Now suppose we wanted to reduce the capacity of the queueing system to 8 customers

in such a way that the smaller queueing system will have similar arrival and service

processes to those of the original queueing system. Consider now the infinitesimal

generator matrix of the smaller queueing system,

Q̃ =



Ã
(0)
0 Ã

(0)
+ 0 . . . 0 0 0

Ã
(1)
− Ã

(1)
0 Ã+ . . . 0 0 0

0 Ã
(2)
− Ã

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . Ã
(7)
− Ã

(7)
0 Ã

(7)
+

0 0 0 . . . 0 Ã
(8)
− Ã

(8)
0


.
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Since the scales associated with the A
(`)
0 and A

(`)
+ block matrices are constant, we

set

Ã
(`∗)
0 = A

(`)
0 , 0 ≤ `∗ ≤ 8,

and

Ã
(`∗)
+ = A

(`)
0 , 0 ≤ `∗ ≤ 7.

Note that the diagonal entries of Ã
(`)
0 for 0 ≤ ` ≤ 8 are the negative of the relevant

row sums.

In the case of the Ã
(`)
− block matrices, we transform the domain from [a, b] to [c, d]

by using the transformation,

`∗ =
(b− a)(`− c)

(d− c)
+ a,

That is,

Ã
(`∗)
− = (1 + βh1 (`− 1) + βh2 (`− 1)2)A−, 1 ≤ `∗ ≤ 8,

such that

` =
(10− 1)(`∗ − 1)

(8− 1)
+ 1, `∗ ∈ [1, 8].

Even though the level-dependent scales associated with the fitted structured QBD

process are non-negative, the vertex of the quadratic associated with the block

matrices describing a decrease in level may have a negative y-coordinate. Hence,

the transformation in domain may introduce negative scales and thus lead to an

invalid structured QBD process. Therefore, we must ensure that the quadratic is

non-negative for all values between the minimum and maximum levels.

Similar to previous sections, we now define the EM algorithm for a structured QBD

process with quadratic functional forms under the assumption that the phase process

is unobservable. Note that the method described in this section will be similar to

that presented in Section 8.4. Hence, we only describe parts of the method which

are different.
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8.5.1 Likelihood

Similar to Section 8.4, we expand the complete data log-likelihood in

Equation (8.3.2) to show the relationships between the block matrices, such that

`C(θ|d) =
∞∑
`=0

J∑̀
i=1

A
(`)
0i,i
Z`,i +

L0−1∑
`=0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
(1 + βg1`+ βg2`

2)A0i,j

)
S`,i,j +

∞∑
`=U0+1

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+

L−−1∑
`=1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

log
(
(1 + βh1 (`− 1) + βh2 (`− 1)2)A−i,j

)
D`,i,j

+
∞∑

`=U−+1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

L+−1∑
`=0

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j

+

U+∑
`=L+

J∑̀
i=1

J`+1∑
j=1

log
(

(1 + βf1 `+ βf2 `
2)A+i,j

)
U`,i,j +

∞∑
`=U++1

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j.

Theorem 8.5.1. Using the complete data log-likelihood, the maximum likelihood

estimates of the parameters θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}) for a

structured QBD process with quadratic functional forms of the level are as follows:

Â
(`)
−i,j

=
D`,i,j
Z`,i

, for 1 ≤ ` ≤ L− − 1, ` ≥ U− + 1, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

Â−i,j =

U−∑
`=L−

D`,i,j

U−∑
`=L−

(1 + βh1 (`− 1) + βh2 (`− 1)2)Z`,i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1,

Â
(`)
0i,j

=
S`,i,j
Z`,i

, for 0 ≤ ` ≤ L0 − 1, ` ≥ U0 + 1, and 1 ≤ i 6= j ≤ J`,

Â0i,j =

U0∑
`=L0

S`,i,j

U0∑
`=L0

(1 + βg1 `+ βg2 `
2)Z`,i

, for 1 ≤ i 6= j ≤ JL0 ,

Â
(`)
+i,j

=
U`,i,j
Z`,i

, for 0 ≤ ` ≤ L+ − 1, ` ≥ U+ + 1, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,
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Â+i,j =

U+∑
`=L+

U`,i,j

U+∑
`=L+

(1 + βf1 `+ βf2 `
2)Z`,i

, for 1 ≤ i ≤ JL+ , 1 ≤ j ≤ JL++1,

Note: the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Proof: Similar to the proof of Theorem 8.3.1.

Taking the partial derivative of the complete data log-likelihood with respect to βh1 ,

βh2 , βg1 , βg2 , βf1 , and βf2 , we obtain the following expressions:

∂`C(θ|d)

∂βh1
= −

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

(`−1)A−i,jZ`,i+

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

`D`,i,j

1 + βh1 (`− 1) + βh2 (`− 1)2
,

(8.5.1)

∂`C(θ|d)

∂βh2
= −

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

(`−1)2A−i,jZ`,i+

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

`2D`,i,j

1 + βh1 (`− 1) + βh2 (`− 1)2
,

(8.5.2)

∂`C(θ|d)

∂βg1
= −

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`A0i,jZ`,i +

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`S`,i,j
1 + βg1`+ βg2`

2
, (8.5.3)

∂`C(θ|d)

∂βg2
= −

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`2A0i,jZ`,i +

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`2S`,i,j
1 + βg1`+ βg2`

2
, (8.5.4)

∂`C(θ|d)

∂βf1
= −

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`A+i,jZ`,i +

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`U`,i,j

1 + βf1 `+ βf2 `
2
, (8.5.5)

and,

∂`C(θ|d)

∂βf2
= −

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`2A+i,jZ`,i +

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`2U`,i,j

1 + βf1 `+ βf2 `
2
. (8.5.6)
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Explicit expressions for the maximum likelihood estimates of βh1 , βh2 , βg1 , βg2 , βf1 , and

βf2 cannot be found. As a result, we numerically solve for βh1 , βh2 , βg1 , βg2 , βf1 , and βf2

using the bisection method. Note that to ensure h`, g`, and f` remain non-negative,

we iteratively update each value, such that

βh1 ≥
−1− βh2 (`− 1)2

(`− 1)
, βh2 ≥

−1− βh1 (`− 1)

(`− 1)2
, for all ` ∈ [L−, U−],

βg1 ≥
−1− βg2`2

`
, βg2 ≥

−1− βg1`
`2

, for all ` ∈ [L0, U0],

and

βf1 ≥
−1− βf2 `2

`
, βf2 ≥

−1− βf1 `
`2

, for all ` ∈ [L+, U+],

while also ensuring that each quadratic remains non-negative in the respective

domains.

8.5.2 E-step and CM-step

Each iteration of the ECM algorithm consists of an E-step and a CM-step. The

calculations involved in the E-step follow those described in Section 7.2.4. In the

CM-step of the ECM algorithm, we update the values of the parameters by

replacing the statistics in Theorem 8.5.1 with the conditional expectations

calculated in the E-step, similar to those described in Section 8.4.

The conditional maximum likelihood estimates for {h`;L− ≤ ` ≤ U−},

{g`;L0 ≤ ` ≤ U0}, and {f`;L+ ≤ ` ≤ U+} given Â−i,j = Â−
(t+1)

i,j , Â0i,j = Â0

(t+1)

i,j ,

and Â+i,j = Â+

(t+1)

i,j are found by solving Equations (8.5.1), (8.5.2), (8.5.3),

(8.5.4), (8.5.5), and (8.5.6) using the bisection method, respectively.
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8.5.3 Discussion

The structured QBD process with quadratic forms of the level describes the

behaviour queueing systems with non-linear rates without having to consider

over-parameterised models such as the level-dependent QBD process. Higher order

forms of the level, such as cubics or quartics, have the ability to explain more of

the behaviour of the queueing system compared to linear and quadratic forms. For

completeness, in the next section we consider structured QBD processes with

higher order polynomial forms of the level.

8.6 Structured QBD processes with polynomial

functional forms

The statistical model fitting method developed in Section 8.5 can be extended

to structured QBD processes with polynomial forms, such that the infinitesimal

generator matrix is defined as

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,

where the block matrices describing a decrease in level between the levels L− and

U− are related, such that for L− ≤ ` ≤ U−,

A
(`)
−i,j = (1+βh1 (`−1)+βh2 (`−1)2 + . . .+βhp (`−1)p)A−i,j , 1 ≤ j ≤ J`−1, 1 ≤ i ≤ J`,
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the block matrices describing no change in level between the levels L0 and U0 are

related, such that for L0 ≤ ` ≤ U0,

A
(`)
0i,j

= (1 + βg1`+ βg2`
2 + . . .+ βgp`

p)A0i,j , 1 ≤ i 6= j,≤ J`,

the block matrices describing an increase in level between the levels L+ and U+ are

related, such that for L+ ≤ ` ≤ U+,

A
(`)
+i,j = (1 + βf1 `+ βf2 `

2 + . . .+ βfp `
p)A+i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1.

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Given that the non-diagonal entries of the infinitesimal generator matrix must be

non-negative, the following constraints must be satisfied:

1 + βh1 (`− 1) + βh2 (`− 1)2 + . . .+ βhp (`− 1)p ≥ 0 for all ` ∈ [L−, U−],

1 + βg1`+ βg2`
2 + . . .+ βgp`

p ≥ 0, for all ` ∈ [L0, U0], and

1 + βf1 `+ βf2 `
2 + . . .+ βfp `

p ≥ 0 for all ` ∈ [L+, U+].

The method described in this section is an extension of the method presented in

Section 8.5. Therefore, we only describe parts of the method which are different.
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8.6.1 Likelihood

Similar to Section 8.5, the complete data log-likelihood is defined as

∆C(θ|d) =
∞∑
`=0

J∑̀
i=1

A
(`)
0i,i
Z`,i +

L0−1∑
`=0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j

+

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
(1 + βg1`+ βg2`

2 + . . .+ βgp`
p)A0i,j

)
S`,i,j

+
∞∑

`=U0+1

J∑̀
i=1

J∑̀
j=1
j 6=i

log
(
A

(`)
0i,j

)
S`,i,j +

L−−1∑
`=1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j

+

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

log
(
(1 + βh1 (`− 1) + βh2 (`− 1)2 + . . .+ βhp (`− 1)p)A−i,j

)
D`,i,j

+
∞∑

`=U−+1

J∑̀
i=1

J`−1∑
j=1

log
(
A

(`)
−i,j

)
D`,i,j +

L+−1∑
`=0

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j

+

U+∑
`=L+

J∑̀
i=1

J`+1∑
j=1

log
(

(1 + βf1 `+ βf2 `
2 + . . .+ βfp `

p)A+i,j

)
U`,i,j

+
∞∑

`=U++1

J∑̀
i=1

J`+1∑
j=1

log
(
A

(`)
+i,j

)
U`,i,j.

Theorem 8.6.1. Using the complete data log-likelihood, the maximum likelihood

estimates of the parameters θ = ({A(`)
− ; ` ≥ 1}, {A(`)

0 ; ` ≥ 0}, {A(`)
+ ; ` ≥ 0}) for a

structured QBD process with polynomial functional forms of the level are as follows:

Â
(`)
−i,j

=
D`,i,j
Z`,i

, for 1 ≤ ` ≤ L− − 1, ` ≥ U− + 1, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

Â−i,j =

U−∑
`=L−

D`,i,j

U−∑
`=L−

(1 + βh1 (`− 1) + βh2 (`− 1)2 + . . .+ βhp (`− 1)p)Z`,i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1,

Â
(`)
0i,j

=
S`,i,j
Z`,i

, for 0 ≤ ` ≤ L0 − 1, ` ≥ U0 + 1, and 1 ≤ i 6= j ≤ J`,
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Â0i,j =

U0∑
`=L0

S`,i,j

U0∑
`=L0

(1 + βg1 `+ βg2 `
2 + . . .+ βgp`

p)Z`,i

, for 1 ≤ i 6= j ≤ JL0 ,

Â
(`)
+i,j

=
U`,i,j
Z`,i

, for 0 ≤ ` ≤ L+ − 1, ` ≥ U+ + 1, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

Â+i,j =

U+∑
`=L+

U`,i,j

U+∑
`=L+

(1 + βf1 `+ βf2 `
2 + . . .+ βfp `

p)Z`,i

, for 1 ≤ i ≤ JL+ , 1 ≤ j ≤ JL++1,

Note: the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Proof: Similar to the proof of Theorem 8.3.1.

Taking the partial derivative of the complete data log-likelihood with respect to βfk ,

βgk , and βhk , we obtain the following expressions:

∂`C(θ|d)

∂βhk
= −

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

(`− 1)kA−i,jZ`,i (8.6.1)

+

U−∑
`=L−

J∑̀
i=1

J`−1∑
j=1

`kD`,i,j

1 + βh1 (`− 1) + βh2 (`− 1)2 + . . .+ βhp (`− 1)p
,

(8.6.2)

∂`C(θ|d)

∂βgk
= −

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`kA0i,jZ`,i +

U0∑
`=L0

J∑̀
i=1

J∑̀
j=1
j 6=i

`kS`,i,j
1 + βg1`+ βg2`

2 + . . .+ βgp`p
,

(8.6.3)

and,

∂`C(θ|d)

∂βfk
= −

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`kA+i,jZ`,i +

U+∑
`=L+

J∑̀
i=1

J∑̀
j=1

`kU`,i,j

1 + βf1 `+ βf2 `
2 + . . .+ βfp `p

.

(8.6.4)
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Explicit expressions for the maximum likelihood estimates of βhk , βgk , and βfk cannot

be found. As a result, we numerically solve for βhk , βgk , and βfk using the bisection

method. Note that to ensure h`, g`, and f` remain non-negative we iteratively update

each value, such that

βhk ≥
−1− βh1 (`− 1)− . . .− βhk−1(`− 1)k−1 − βhk+1(`− 1)k+1 − . . .− βhp (`− 1)p

`k
,

βgk ≥
−1− βg1`− . . .− β

g
k−1`

k−1 − βgk+1`
k+1 − . . .− βgp`p

`k
, and

βfk ≥
−1− βf1 `− . . .− β

f
k−1`

k−1 − βfk+1`
k+1 − . . .− βfp `p

`k
,

while also ensuring that each polynomial remains non-negative in the respective

domains.

8.6.2 E-step and CM-step

Similar to before, the calculations involved in the E-step follow those described in

Section 7.2.4. In the CM-step of the ECM algorithm, we update the values of the

parameters by replacing the statistics in Theorem 8.6.1 with the conditional

expectations calculated in the E-step, similar to those described in Section 8.5.

The conditional maximum likelihood estimates for {h`;L− ≤ ` ≤ U−},

{g`;L0 ≤ ` ≤ U0}, and {f`;L+ ≤ ` ≤ U+} given Â−i,j = Â−
(t+1)

i,j , Â0i,j = Â0

(t+1)

i,j ,

and Â+i,j = Â+

(t+1)

i,j are found by solving Equations (8.6.2), (8.6.3), and (8.6.4) for

all parameters using the bisection method, respectively.
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8.6.3 Discussion

Higher order forms of the level are generally able to explain more of the behaviour

of the queueing system compared to linear and quadratic forms. However, the

interpretability of structured QBD processes with higher order polynomial forms of

the level in the context of a queueing process may be more complicated than that

of linear and quadratic forms. As such, the benefits of a potentially better fitting

structured QBD process need to be considered alongside an interpretable structured

QBD process.

8.7 Finite case

Note that the EM algorithm for a finite structured QBD process is similar to the

EM algorithm for an infinite structured QBD process where we truncate at level

C <∞, such that A
(C)
+ = 0 and A

(`)
− = 0, A

(`)
0 = 0, and A

(`)
+ = 0 for ` ≥ C + 1.

8.8 Extensions

Firstly, the methods presented in this chapter can be combined to form a structured

QBD process with various types of functional forms. For example, we could consider

a structured QBD process where

• the rates corresponding to an increase in level decrease at a linear rate,

• the rates corresponding to no change in level increase for lower levels but

decrease for higher levels, and

• the rates corresponding to a decrease in level are independent of level change.
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That is, we could consider a structured QBD process such that

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,

where the block matrices describing a decrease in level between the levels L− and

U− are related, such that for L− ≤ ` ≤ U−,

A
(`)
−i,j = A−i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1

the block matrices describing no change in level between the levels L0 and U0 are

related, such that for L0 ≤ ` ≤ U0,

A
(`)
0i,j

= (1 + βg1`+ βg2`
2)A0i,j , 1 ≤ i 6= j,≤ J`

and the block matrices describing an increase in level between the levels L+ and U+

are related, such that for L+ ≤ ` ≤ U+,

A
(`)
+i,j = (1 + βf1 `)A+i,j , 1 ≤ i ≤ J`, and 1 ≤ j ≤ J`+1.

Secondly, this work can be extended to general and polynomial functional forms of

the level and the phase transition process, such that

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,
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where the block matrices describing a decrease in level between the levels L− and

U− are related, such that for L− ≤ ` ≤ U−,

A
(`)
−i,j = h`,i,jA−i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

the block matrices describing no change in level between the levels L0 and U0 are

related, such that for L0 ≤ ` ≤ U0,

A
(`)
0i,j

= g`,i,jA0i,j , 1 ≤ i 6= j ≤ J`,

the block matrices describing an increase in level between the levels L+ and U+ are

related, such that for L+ ≤ ` ≤ U+,

A
(`)
+i,j = f`,i,jA+i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums, and

g`,i,i = 1 for i 6= j and all levels L0 ≤ ` ≤ U0.

For example, the parameters of a structured QBD process with polynomial

functional forms of the level and the phase transition process are such that for

L− ≤ ` ≤ U− and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

A
(`)
−i,j = h`,i,jA−i,j ,

for L0 ≤ ` ≤ U0 and 1 ≤ i 6= j ≤ J`,

A
(`)
0i,j

= g`,i,jA0i,j ,

and for L+ ≤ ` ≤ U+ and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

A
(`)
+i,j = f`,i,jA+i,j ,
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where

h`,i,j = 1 + βh,i,j1 (`− 1) + βh,i,j2 (`− 1)2 + . . .+ βh,i,jp (`− 1)p,

g`,i,j = 1 + βg,i,j1 `+ βg,i,j2 `2 + . . .+ βg,i,jp `p,

f`,i,j = 1 + βf,i,j1 `+ βf,i,j2 `2 + . . .+ βf,i,jp `p.

Note that the non-diagonal entries of the infinitesimal generator matrix must be

non-negative, such that

h`,i,j ≥ 0 for all ` ∈ [L−, U−], 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

g`,i,j ≥ 0 for all ` ∈ [L0, U0], 1 ≤ i 6= j ≤ J`, and

f`,i,j ≥ 0 for all ` ∈ [L+, U+], 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1.

Lastly, this work can be extended to other functional forms of the level and phase

transition. Note that the functional forms must be non-negative to ensure that the

off-diagonal entries of the infinitesimal generator matrix remain non-negative. For

example, consider a structured QBD process with infinitesimal generator matrix

with exponential functional forms of the level,

Q =



A
(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+ . . .

0 0 A
(3)
− A

(3)
0 . . .

...
...

...
...

. . .


,
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where the block matrices describing a decrease in level between the levels L− and

U− are related, such that for L− ≤ ` ≤ U−,

A
(`)
−i,j = exp(βh(`− 1))A−i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

the block matrices describing no change in level between the levels L0 and U0 are

related, such that for L0 ≤ ` ≤ U0,

A
(`)
0i,j

= exp(βg`))A0i,j , 1 ≤ i 6= j ≤ J`,

the block matrices describing an increase in level between the levels L+ and U+ are

related, such that for L+ ≤ ` ≤ U+,

A
(`)
+i,j = exp(βf`))A+i,j , 1 ≤ i ≤ J`, 1 ≤ j ≤ J`+1,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

8.9 Model fitting and selection

Each of the structured QBD processes presented in this chapter provide the

opportunity to capture the stationary and transient behaviour of a QBD process

without over-fitting the model. However, the choice of a structured QBD process

may not always be clear when modelling a queueing process. Therefore, we

describe a method of choosing which structured QBD processes to fit based on the

information available, which is presented below.

1. If there is no or limited information on whether the arrival or service

processes exhibit any form of polynomial characteristics, fit a structured QBD

process to the data where the scales are both level and phase dependent.

(a) If the fitted values of f`,i,j, g`,i,j, and h`,i,j appear to be independent of

phase, then fit a structured QBD process to the data where the scales are

level-dependent.
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i. Assess the forms of f`, g`, and h` for all possible levels ` respectively.

ii. Identify which, if any, of the functional forms can be represented

by a polynomial form. Statistical modelling such as weighted least

squares regression and likelihood ratio tests can be used to identify

suitable polynomial forms.

iii. Decide on which, if any, polynomial forms are to be used in the

structured QBD process.

(b) If the fitted values of f`,i,j, g`,i,j, and h`,i,j appear to be dependent on

phase, then assess the forms of f`,i,j, g`,i,j, and h`,i,j for all possible levels

` and phase transitions (i, j) respectively.

i. Identify which, if any, of the functional forms can be represented

by a polynomial form. Statistical modelling such as weighted least

squares regression and likelihood ratio tests can be used to identify

suitable polynomial forms.

ii. Decide on which, if any, polynomial forms are to be used in the

structured QBD process.

2. If there is relevant information on whether the arrival or service processes

exhibit any form of polynomial characteristics, identify which of the functional

forms can be represented by a polynomial form.

(a) Decide on which polynomial forms are to be used in the structured QBD

process.
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8.9.1 Likelihood ratio test

The likelihood ratio test (LRT) is used to compare the goodness of fit of two

statistical models, where the null and alternative hypotheses are defined as

H0 : θ ∈ Θ0,

Ha : θ 6∈ Θ0,

where θ = (θ1, . . . , θp) is the parameter vector and Θ0 is a subset of the parameter

space Θ. The likelihood ratio test statistic is defined as

λ = −2

(
sup
θ∈Θ0

log(L(θ; Y))− sup
θ∈Θ

log(L(θ; Y))

)
,

where Y denotes the data and L(θ; Y) denotes the likelihood function. Under the

null hypothesis, this test statistic has an approximate chi-square distribution with

p degrees of freedom.

The LRT is also used to compare nested models M1 and M2, such that M1 is the

restricted model or simpler model andM2 is the less restricted model or the model

with more parameters. In this case, the likelihood ratio test statistic is defined as

λ = −2
(

log(L(θ̂1; Y))− log(L(θ̂2; Y))
)
,

where θ̂1 = (θ̂11, . . . , θ̂1p1) denotes the maximum likelihood estimate of the

parameters for the restricted model and θ̂2 = (θ̂21, . . . , θ̂2p2) denotes the maximum

likelihood estimate of the parameters for the less restricted model.

Under the null hypothesis, this test statistic has an approximate chi-square

distribution with p2 − p1 degrees of freedom.
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For example, consider a two-phase structured QBD process with infinitesimal

generator matrix

Q =



A
(0)
0 f0A+ 0 0 0

A− A
(1)
0 f1A+ 0 0

0 A− A
(2)
0 f2A+ 0

0 0 A− A
(3)
0 f3A+

0 0 0 A− A
(4)
0


.

Suppose we were considering two structured QBD processes; one with linear forms

for the scales associated with an increase in level and the other with quadratic forms

for the scales associated with an increase in level. The likelihood ratio test statistic

is

λ = −2
(

log(L(θ̂1; Y))− log(L(θ̂2; Y))
)
,

where θ̂1 =

(
Â0, Â−, Â+, β̂

f
1

)
denotes the maximum likelihood estimates of the

parameters for the structured QBD process with linear forms for the scales

associated with an increase in level and θ̂2 =

(
Â0, Â−, Â+, β̂

f
1 , β̂

f
2

)
denotes the

maximum likelihood estimates of the parameters for the structured QBD process

with quadratic forms for the scales associated with an increase in level.

Under the null hypothesis,

λ ∼ χ2
1.

Therefore, we reject the null hypothesis if λ is greater than the 100(1−α) percentile

of χ2
1, where α is a chosen significance level.
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8.10 Numerical examples

In this section, we show how the EM algorithm for structured QBD processes

performs with three numerical examples. In each numerical example, we simulate

data from a structured QBD process with known parameters and then use the

simulated data as input to the appropriate EM algorithm, implemented using

R [43].

We start the EM algorithm with randomly generated initial values from a uniform

distribution, U(0, 1) and we stop the EM algorithm once the relative difference

between two successive log-likelihoods falls below 10−6. We then compare the

estimated structured QBD process to the true structured QBD process by

considering the stationary distribution, conditional sojourn time before the level

change, and transition probabilities for each level of each structured QBD process.

Note that the comparison of stationary distributions and transient behaviour is by

each level and not by phase due to the non-uniqueness of representation of

structured QBD processes and interchangeability of phases for each estimated

structured QBD process.

For each type of behaviour, the mean squared error (MSE) is calculated to

demonstrate the overall accuracy. Let Y` denote the value of the true structured

QBD process corresponding to level ` and Ŷ
(i)
` denote the value of the ith

estimated structured QBD process corresponding to level `, for ` = Lmin, . . . , Lmax

where Lmin and Lmax are the minimum and maximum levels associated with the

calculation, respectively. Then the mean squared error for each estimated

structured QBD process, i, is calculated as

MSE =
1

Lmax − Lmin + 1

Lmax∑
`=Lmin

(
Y` − Ŷ (i)

`

)2

.
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For example, Y` could denote the upward transition probability for level ` of the true

structured QBD process and Ŷ
(i)
` denote the estimated upward transition probability

for level ` = Lmin, . . . , Lmax of the ith estimated structured QBD process.

8.10.1 Structured QBD process with linearly increasing

scales associated with a decrease in level

In many queueing systems, the service rate often depends on the workload. For

example, the productivity of a bank teller will be relatively low when few

customers are in the bank but as the number of customers increases, the

productivity of the bank teller increases. This type of service reflects the service

behaviour described in an M/M/∞ queue.

In this example, we consider a structured QBD process with linearly increasing

scales associated with a decrease in level, where the infinitesimal generator matrix

is of the form

Q =



A
(0)
0 A+ 0 0 . . .

h1A− A
(1)
0 A+ 0 . . .

0 h2A− A
(2)
0 A+ . . .

0 0 h3A− A
(3)
0

. . .
...

...
...

. . . . . .


,

where

A0i,j =

∗ 1

1 ∗

 , A+i,j =

1 2

1 1

 , A−i,j =

2 1

1 2

 ,
h` = `, for ` ≥ 1,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.
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We simulated 1000 samples of the above structured QBD process, each with 10,000

changes in level and used the simulated data as input into the EM algorithm

described in Section 8.4. For both stationary and transient behaviour, the

estimated structured QBD processes capture the behaviour observed in the true

structured QBD process as demonstrated by the plots presented in Figure 8.10.1

and the small MSE values presented in Table 8.10.1.

Type Mean Variance

Stationary distribution 1.190×10−5 2.023×10−10

Sojourn time conditioned on moving up a level 9.964×10−6 1.266×10−10

Sojourn time conditioned on moving down a level 6.618×10−6 2.246×10−11

Transition probabilities 1.630×10−3 1.581×10−7

Table 8.10.1: Mean and variance of the MSE for each type of behaviour for the

structured QBD process with linearly increasing scales associated with a decrease

in level.

Similar to Chapter 7, we assessed the dependence on the initial values of the

parameters by simulating a single sample of the above QBD process with 10,000

changes in level and then started the EM algorithm with 1000 different sets of

randomly generated initial values of the parameters. Little difference was found

between the stationary and transient behaviour of each estimated QBD process

despite seeing variation in the complete data log-likelihood for each of the 1000

different structured QBD process estimations, as illustrated in Figure 8.10.2. Refer

to Appendix C.1 for a summary of the analysis.



CHAPTER 8. STRUCTURED QUASI-BIRTH-AND-DEATH PROCESSES 207

(a) (b)

(c) (d)

Figure 8.10.1: Comparison of the behaviour of the 1000 estimated structured

QBD processes to the behaviour of the true structured QBD process with linearly

increasing scales associated with a decrease in level, for the first six levels. (a) Box-

plots of the estimated level-stationary distribution and the true level-stationary

distribution (red points). (b) Box-plots of the estimated expected sojourn times

conditioned on moving up from a level and the true expected sojourn times

conditioned on moving up a level (red points). (c) Box-plots of the estimated

expected sojourn times conditioned on moving down from a level and the true

expected sojourn times conditioned on moving down a level (red points). (d)

Box-plots of the estimated transition probabilities between each level and the true

transition probabilities between each level (red points). By design, the sojourn times

conditioned on moving down from level 0 are 0 and the transition probabilities for

level 0 are omitted as they are either 0 or 1.
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Figure 8.10.2: Log-likelihoods of the observed data for each of the fitted structured

QBD process with linearly increasing scales associated with a decrease in level from

the 1000 different starting values.

8.10.2 Structured QBD process with linearly decreasing

scales associated with an increase in level

In other queueing systems, the rate of arrivals may depend on the amount of

customers presently in the system. For example, customers may avoid the bank if

they see that the bank is busy. Alternatively, they may be a finite number of

customers attending a service facility, and so the rate of arrivals may decrease as

service continues.

In this example, we consider a structured QBD process with linearly decreasing

scales associated with an increase in level, where the infinitesimal generator matrix

is of the form
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Q =



A
(0)
0 f0A+ 0 0 . . .

A− A
(1)
0 f1A+ 0 . . .

0 A− A
(2)
0 f2A+ . . .

0 0 A− A
(3)
0

. . .
...

...
...

. . . . . .


,

where

A0i,j =

∗ 1

1 ∗

 , A+i,j =

1 2

1 1

 , A−i,j =

2 1

1 2

 ,
f` = 1− 1

50
`, for ` ≥ 0,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Similar to before, we simulated 1000 samples of the above QBD process, each with

10,000 changes in level and used the simulated data as input into the EM algorithm

described in Section 8.4. Figure 8.10.3 and Table 8.10.2 compare the stationary

and transient behaviour of the estimated structured QBD process to the true

structured QBD process. In each case, there is similarity between the behaviours

of the estimated structured QBD processes to the true structured QBD process.

Type Mean Variance

Stationary distribution 1.542×10−5 4.059×10−10

Sojourn time conditioned on moving up a level 2.608×10−5 1.072×10−9

Sojourn time conditioned on moving down a level 7.582×10−4 2.424×10−8

Transition probabilities 6.960×10−3 1.752×10−6

Table 8.10.2: Mean and variance of the MSE for each type of behaviour for the

structured QBD process with linearly decreasing scales associated with an increase

in level.
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(a) (b)

(c) (d)

Figure 8.10.3: Comparison of the behaviour of the 1000 estimated structured

QBD processes to the behaviour of the true structured QBD process with linearly

decreasing scales associated with an increase in level for the first eleven levels.

(a) Box-plots of the estimated level-stationary distribution and the true level-

stationary distribution (red points). (b) Box-plots of the estimated expected sojourn

times conditioned on moving up from a level and the true expected sojourn times

conditioned on moving up a level (red points). (c) Box-plots of the estimated

expected sojourn times conditioned on moving down from a level and the true

expected sojourn times conditioned on moving down a level (red points). (d)

Box-plots of the estimated transition probabilities between each level and the true

transition probabilities between each level (red points). By design, the sojourn times

conditioned on moving down from level 0 are 0 and the transition probabilities for

level 0 are omitted as they are either 0 or 1.
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Similar to before, we assessed the dependence on the initial values of the

parameters by simulating a single sample of the above structured QBD process

with 10,000 changes in level and then started the EM algorithm with 1000

different sets of randomly generated initial values of the parameters. Despite

seeing variation in the estimated log-likelihood for each of the 1000 different

structured QBD process estimations, we found little difference between the

stationary and transient behaviour of each estimated QBD process, as illustrated

in Figure 8.10.4. Refer to Appendix C.2 for a summary of the analysis.

Figure 8.10.4: Log-likelihoods of the observed data for each of the fitted structured

QBD process with linearly decreasing scales associated with an increase in level from

the 1000 different starting values.
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8.10.3 Structured QBD process with linearly decreasing

scales associated with an increase in level and

quadratic scales associated with a decrease in level

In this example, we consider a structured QBD process with linearly decreasing

scales associated with an increase in level and quadratic scales associated with a

decrease in level, where the infinitesimal generator matrix is of the form

Q =



A
(0)
0 f0A+ 0 0 0

h1A− A
(1)
0 f1A+ 0 0

0 h2A− A
(2)
0 f2A+ 0

...
. . . . . . . . . . . .

0 0 h9A− A
(9)
0 f9A+

0 0 0 h10A− A
(10)
0


,

A0i,j =

∗ 1

1 ∗

 , A+i,j =

2 2

1 2

 , A−i,j =

0 1

0 1

 ,
f` = 1− 1

50
`, for 0 ≤ ` ≥ 9,

h` = 1 + 1.8× (`− 1)− 0.1× (`− 1)2, for 1 ≤ ` ≥ 10,

and the diagonal entries of A
(`)
0 for ` ≥ 0 are the negative of the relevant row sums.

Such a queueing model may reflect behaviours where the server’s productivity is

low when the system is near empty (due to limited work available) and close to

capacity (due to being overworked and stressed).
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Similar to before, we simulated 1000 samples of the above structured QBD process,

each with 10,000 changes in level. In this example, we first use the simulated data

as input into the EM algorithm described in Section 8.4. Figure 8.10.5 compares

the stationary and transient behaviour of the estimated structured QBD process to

the true structured QBD process. These results illustrate the need for a quadratic

term, as the stationary and transient behaviour are poorly estimated.

Type Mean Variance

Stationary distribution 3.569×10−5 6.628×10−10

Sojourn time conditioned on moving up a level 7.950×10−5 1.024×10−9

Sojourn time conditioned on moving down a level 1.863×10−4 3.134×10−9

Transition probabilities 7.066×10−4 1.826×10−7

Table 8.10.3: Mean and variance of the MSE for each type of behaviour for the

structured QBD process with linearly decreasing scales associated with an increase

in level and linear scales associated with a decrease in level.
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(a) (b)

(c) (d)

Figure 8.10.5: Comparison of the behaviour of the 1000 estimated structured

QBD processes to the behaviour of the true structured QBD process with linearly

increasing scales associated with an increase in level and quadratic scales associated

with a decrease in level. (a) Box-plots of the estimated level-stationary distribution

and the true level-stationary distribution (red points). (b) Box-plots of the estimated

expected sojourn times conditioned on moving up from a level and the true expected

sojourn times conditioned on moving up a level (red points). (c) Box-plots of the

estimated expected sojourn times conditioned on moving down from a level and

the true expected sojourn times conditioned on moving down a level (red points).

(d) Box-plots of the estimated transition probabilities between each level and the

true transition probabilities between each level (red points). By design, the sojourn

times conditioned on moving up from level 10 are 0, the sojourn times conditioned

on moving down from level 0 are 0, and the transition probabilities for levels 0 and

10 are omitted as they are either 0 or 1.
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We now use the simulated data as input into the EM algorithm described in

Section 8.5. Of particular interest is the improvement in capturing the stationary

and transient behaviour of the true structured QBD process, as demonstrated in

Figure 8.10.6 and Table 8.10.3.

Type Mean Variance

Stationary distribution 1.232×10−5 1.824×10−10

Sojourn time conditioned on moving up a level 1.688×10−5 2.819×10−10

Sojourn time conditioned on moving down a level 2.722×10−5 1.507×10−9

Transition probabilities 1.160×10−4 4.525×10−8

Table 8.10.4: Mean and variance of the MSE for each type of behaviour for the

structured QBD process with linearly decreasing scales associated with an increase

in level and quadratic scales associated with a decrease in level.
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(a) (b)

(c) (d)

Figure 8.10.6: Comparison of the behaviour of the 1000 estimated structured

QBD processes to the behaviour of the true structured QBD process with linearly

increasing scales associated with an increase in level and quadratic scales associated

with a decrease in level. (a) Box-plots of the estimated level-stationary distribution

and the true level-stationary distribution (red points). (b) Box-plots of the estimated

expected sojourn times conditioned on moving up from a level and the true expected

sojourn times conditioned on moving up a level (red points). (c) Box-plots of the

estimated expected sojourn times conditioned on moving down from a level and

the true expected sojourn times conditioned on moving down a level (red points).

(d) Box-plots of the estimated transition probabilities between each level and the

true transition probabilities between each level (red points). By design, the sojourn

times conditioned on moving up from level 10 are 0, the sojourn times conditioned

on moving down from level 0 are 0, and the transition probabilities for levels 0 and

10 are omitted as they are either 0 or 1.
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A more statistical approach to demonstrate the improvement in capturing the

stationary and transient behaviour is to use the likelihood ratio test. Denote M1

as the model with linearly decreasing scales associated with moving down a level

and let M2 as the model with quadratic scales associated with moving down a

level. The observed value of the likelihood ratio test statistic is

λ = −2
(

log(L(θ̂1; Y))− log(L(θ̂2; Y))
)

= −2(−7159.59 + 1048.13)

= 12222.92,

where θ̂1 =

(
Â0, Â−, Â+, β̂

f
1

)
denotes the maximum likelihood estimate of the

parameters for the structured QBD process with linearly decreasing scales

associated with a decrease in level and θ̂2 =

(
Â0, Â−, Â+, β̂

f
1 , β̂

f
2

)
for the

structured QBD process with quadratic forms for the scales associated with a

decrease in level. Note that the model with the highest observed log-likelihood of

the data was used in each case.

Under the null hypothesis, H0 : θ = θ1,

λ ∼ χ2
1,

which leads to a p-value approximately equal to zero. Therefore, we reject the null

hypothesis and conclude that the structured QBD process with quadratic scales

associated with a decrease in level is the better suited model, as expected.
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Similar to before, we assessed the dependence on the initial values of the

parameters by simulating a single sample of the above structured QBD process

with 10,000 changes in level and then started the EM algorithm with 1000 different

sets of randomly generated initial values of the parameters. After an investigation,

there was little difference between the stationary and transient behaviour of each

estimated QBD process despite seeing bi-modal behaviour in the estimated

log-likelihood for each of the 1000 different structured QBD process estimations, as

illustrated in Figure 8.10.7. Refer to Appendix C.3 for a summary of the analysis.

Figure 8.10.7: Log-likelihoods of the observed data for each of the fitted structured

QBD process with linearly decreasing scales associated with an increase in level and

quadratic scales associated with a decrease in level from the 1000 different starting

values.
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8.11 Summary

In this chapter, we have developed a new type of QBD process which offers a

reduction in the number of parameters whilst remaining level-dependent in nature.

In doing so, we are able to predict behaviours of a queueing system without using

an over-parameterised queueing model.

While the development of structured QBD processes expands the range of models

that can be used to model queueing systems with dependence, there remains a need

to develop statistical methods to assess the fit of such queueing models to queueing

system data. In the next chapter, we review goodness of fit tests in a statistical

framework and then develop a goodness of fit test that assesses the suitability of

any QBD process to queueing system data.



Chapter 9

Goodness of fit

Assessing the fit of a model to data is crucial before using such a model to predict

behaviours of a process. For QBD processes, there are two different types of

behaviour; stationary and transient. Stationary behaviour relates to the long term

behaviour of the queueing system, such as the long term probability of being in

each level, and transient behaviour relates to the short term behaviour, such as

conditional sojourn times in each level and the transitions between levels.

In this chapter, we first review distance measures in a statistical setting and then

develop a goodness of fit test of QBD processes to queueing system data, as well as

diagnostic plots to be used in situations where the QBD process is not adequate. We

then demonstrate how our goodness of fit test performs with several examples and

complete a small simulation study to explore the statistical power and significance.

220
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9.1 Distance measures

Distance measures greatly contribute to the development of hypothesis tests and

goodness of fit tests as they quantify the distance between two statistical objects,

such as two random variables, two probability distributions or an individual

sample point and a probability distribution [22].

A function d : X ×X → R+, where R+ = {x ∈ R : x ≥ 0}, is distance measure on

the set X if for all x, y, z ∈ X,

• d(x, y) ≥ 0,

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x), and

• d(x, z) ≤ d(x, y) + d(y, z).

9.1.1 Euclidean distance

Consider the distance between two numbers x, y ∈ R. The distance between numbers

x and y is given by

dE(x, y) = |x− y|,

which satisfies the conditions of a distance measure defined above.

This distance measure is known as the Euclidean distance in one dimension, which

is equivalently defined as

dE(x, y) =
√

(x− y)2.
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In two dimensions, the Euclidean distance between points x,y ∈ R2 is defined as

dE(x,y) =
√

(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2) and y = (y1, y2). This is also illustrated in Figure 9.1.1.

Figure 9.1.1: Example of the Euclidean distance in two dimensions.

Generalising this to higher dimensions, we have that for points x,y ∈ Rn, the

Euclidean distance is defined as

dE(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2,

=
√

(x− y)T (x− y),

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
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Suppose we are interested in calculating the distance between the individual sample

point (blue) and the distribution of data (red points) shown in Figure 9.1.2.

Figure 9.1.2: Example of two dimensional data.

In the Euclidean setting, the distance between the individual sample point, x ∈ R2,

and a distribution of data is

dE(x, x̄) =
√

(x− x̄)T (x− x̄),

where x̄ is the sample mean of the data. However, this calculation does not take

the positive correlation between x1 and x2 into account. For example, consider

uncorrelated and correlated data presented in Figures 9.1.3a and 9.1.3b. The red

and blue points are equally distant from the centre of the distribution in terms of

Euclidean distance for both the uncorrelated and correlated data sets. However, it

is clear that the blue point is more typical of the correlated data than the red

point.
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(a) Uncorrelated data. (b) Correlated data.

This example illustrates that the Euclidean distance is just a measure of distance

between two points and it does not consider correlation between variables or the

variability present in the data. As a result, the Euclidean distance is not usually

used to determine how close a point is to a distribution of data.

9.1.2 Mahalanobis distance

The Mahalanobis distance measure is used to measure the distance between an

individual sample point and a probability distribution and is typically used in

multivariate outlier problems [11]. The Mahalanobis distance is a scale invariant

and unitless distance measure and provides a measure of distance between a point

x ∈ Rp generated from a p-variate probability distribution fX(·) and µ = E(X).
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First, we provide the formal definition of the Mahalanobis distance [11],

dΣ(X,µ) =
√

(X− µ)TΣ−1(X− µ),

which provides a measure of distance between a p × 1 random vector X and it’s

mean vector E[X] = µ, where E[(X − µ)(X − µ)T ] = Σ is the p × p covariance

matrix. Note that if Σ = I, such that there is no correlation between variables and

each variable has unit-variance, then the Mahalanobis distance reduces to the

Euclidean distance.

A special property of the Mahalanobis distance is that if X = {X1,X2, . . . ,Xn} is

an m-variate normal random vector such that X ∼ N(µ,Σ) where Σ is invertible,

then the square Mahalanobis distance d(X,µ,Σ)2 is distributed as a χ2 variable

with n degrees of freedom [26]. This result is particularly useful in determining

whether a point is identified as an outlier, such that points that do not fit the

distribution of data will have a squared Mahalanobis distance lying above a

pre-defined cut-off value of the χ2 distribution with p degrees of freedom [20].

When the mean vector µ and covariance matrix Σ are unknown, the sample mean X̄

and the sample covariance matrix S are used as estimators of µ and Σ instead. For

example, suppose that {X1,X2, . . . ,Xn} are independent realisations of the random

vector X. Then the sample mean vector is calculated as

X̄ =
1

n

n∑
i=1

Xi,

and the sample covariance matrix is calculated as

S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T .
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In this case, the Mahalanobis distance is defined as

dS(X, X̄) =
√

(X− X̄)TS+(X− X̄),

where S+ is the inverse of the sample covariance matrix calculated using the

Moore-Penrose pseudo-inverse [5].

The Moore-Penrose pseudo-inverse is calculated using the singular value

decomposition method, where if a matrix A ∈ Rn×n has the singular value

decomposition UΣV T , then

A+ = V Σ+UT .

Here, Σ ∈ Rn×n is a diagonal matrix of ordered eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn,

Σ =


λ1 0 . . . 0

0 λ2 . . . 0
...

. . . . . .
...

0 0 . . . λn

 ,

where Σ+ is calculated by taking the reciprocal of all non-zero elements,

Σ+ =


1/λ1 0 . . . 0

0 1/λ2 . . . 0
...

. . . . . .
...

0 0 . . . 1/λn

 ,

and U ∈ Rn×n and V ∈ Rn×n contain the left and right eigenvectors, respectively.
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If the matrix A is invertible, such that the determinant is non-zero, then the

pseudo-inverse of A is equal to the usual matrix inverse of A, A−1.

If A is a singular matrix with rank q < n, then the last p = n − q eigenvalues will

be zero. Therefore, the eigenvectors corresponding to non-zero eigenvalues form a

basis for the range of A and the eigenvectors corresponding to the zero eigenvalues

form a basis for the null space of A. In this case, Σ+ is calculated as

Σ+ =



1/λ1 . . . 0 0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 1/λq 0 . . .
...

0 . . . . . . 0 . . .
...

...
. . . . . .

...
. . .

...

0 . . . . . . 0 . . . 0


.

The use of the Moore-Penrose pseudo-inverse may be problematic in situations where

the covariance matrix, Σ, is singular. For example, consider the distance between

the point x ∈ R2 and the sample mean x̄, where the sample covariance matrix S is

singular. Suppose x can be written as a linear combination of the eigenvectors of S,

such that

x = a1v1 + a2v2,

where a1, a2 > 0. If λ2 < 10−10, for example, then

Σ+ =

1/λ1 0

0 0

 ,
which suggests that the Mahalanobis distance between x and x̄,

dS(x, x̄) =
√

(x− x̄)TS+(x− x̄),

is unreliable, since critical information associated with the second eigenvalue and

eigenvector will be discounted.
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For example, consider two variables X ∼ N(0, 1) and Y = X + Z, where

Z ∼ N(0, σ) for some σ > 0. As σ gets smaller in value, the second eigenvalue of

the covariance matrix decreases in magnitude, as illustrated in Figure 9.1.4.

Figure 9.1.4: Change in the value of the second eigenvalue of the covariance matrix

as σ decreases.

Given that Σ+ is calculated by taking the reciprocal of all non-zero elements, the

magnitude of the Mahalanobis distance increases as σ decreases. However, there is

a sharp decline in the value of the Mahalanobis distance when the second

eigenvalue becomes too small which incorrectly suggests that the point (1, -1)

belongs to the bivariate distribution of X and Y , as illustrated in Figure 9.1.5.
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(a) (b)

Figure 9.1.5: Change in the value of the Malahanobis distance between the bivariate

distribution of X and Y and the three points, (0, 0), (1, -1), and (2, 1) as σ decreases.

Note that plot (b) zooms in on the sharp decline in the value of the Mahalanobis

distance.

Therefore, caution should be taken when using the Moore-Penrose pseudo-inverse to

calculate the Mahalanobis distance, such that critical information is not lost when

comparing a point x ∈ Rn generated from an n-variate probability distribution fX(·)

to µ = E(X).

9.1.3 Distance between two probability distributions

Lastly, we also consider how well a continuous distribution fits a set of

observations. That is, we are interested in calculating the distance between an

empirical cumulative distribution function and a known cumulative distribution

function.
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For example, let x1, x2, . . . , xn be observations of continuous random variables

X1, X2, . . . , Xn with a cumulative distribution function, F0. If F0 is a known

cumulative distribution function, the Kolmogorov-Smirnov statistic [37] measures

the distance between an empirical cumulative distribution function F̂ (x) defined as

F̂ (x) =

n∑
i=1

I(xi ≤ x)

n

and F0, such that

Dn = maxx|F̂ (x)− F0(x)|.

9.1.4 Discussion

Distance measures provide a measure of the distance between statistical objects and

are important to the development of goodness of fit tests. In the following section,

we develop a goodness of fit test to assess the fit of a QBD process to queueing

system data using the distance measures described above.

9.2 Goodness of fit test

To assess the fit of a QBD process to queueing system data, we must focus on

whether the stationary and transient behaviour observed in the data is captured by

the QBD process of interest. In particular, we focus on the stationary distribution,

conditional sojourn times, and transitions between levels. Note that since observed

queueing system data only consists of the changes in level and the times at which

those changes in level occurred, the goodness of fit test developed in this section will

compare the QBD process to the observed queueing system data by each level and

not by phase.
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9.2.1 Null and alternative hypotheses

Let X represent a sample trajectory of a ergodic, time-homogeneous, random

process, such that it contains information on the changes in level and the times at

which those changes occurred. For example, X may represent a sample trajectory

of a queueing process, such that it describes the changes in the number of

customers in the queueing system and the times at which those changes occurred.

The stationary and transient behaviour of X relate to the long term and short term

behaviour of the process, respectively. More specifically, we are interested in four

specific types of behaviour.

• O`: the long term proportion of time the process X spends in level ` ≥ 0.

• R`: an indicator variable which describes a transition out of level `, such that

R` =

1 if the process X moves from level ` ≥ 0 to level `+ 1,

0 if the process X moves from level ` ≥ 1 to level `− 1.

• S−` : the distribution of time spent in level ` ≥ 1 before the process moves

down from level ` ≥ 1.

• S+
` : the distribution of time spent in level ` ≥ 0 before the process moves up

from level ` ≥ 0.



CHAPTER 9. GOODNESS OF FIT 232

The goodness of fit test developed in this section addresses the question of whether

observed data X̃ can be modelled as a realisation of a QBD process Q, where Q

belongs to a given class of QBD processes Ω. More specifically, we are interested in

whether a QBD process Q ∈ Ω captures both the stationary and transient behaviour

observed in data X̃. Hence, we define g as the set of expected behaviours,

g = {ρ, {p+
` ; ` ≥ 0}, {F−` ; ` ≥ 0}, {F+

` ; ` ≥ 0}},

where, conditional on some sample trajectory X of Q ∈ Ω and assuming a maximum

observed level of L,

• ρ = E[O] is the expected level frequencies for 0 ≤ ` ≤ L, where

O = (O0, O1, . . . , OL) and ρ = (ρ0, ρ1, . . . , ρL),

• p+ = E[R] is the expected proportion of times the process X moves up from

each level 1 ≤ ` ≤ L, where p+ = (p+
1 , p

+
2 , . . . , p

+
L),

• F−` represents the cumulative distribution function of S−` for ` ≥ 1, and

• F+
` represents the cumulative distribution function of S+

` for ` ≥ 0.

Therefore, our null and alternative hypotheses are defined as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

and

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

respectively.

Here, the function f(Q) returns the required stationary and transient behaviour of

any given QBD process, Q, such that

f(Q) : Q → GQ,

where GQ represents the set of all behaviours of QBD processes Q ∈ Ω.
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9.2.2 Multivariate setting

Summarising the stationary and transient behaviour into a single object, such as a

vector, is problematic since the stationary distribution and transition probabilities

are contained within a vector but the conditional sojourn times are summarised by

continuous distributions.

Instead, we define V(X̃) = {Vπ̃,VP+ ,Vτ− ,Vτ+} to be an n-variate random vector

which quantifies the difference between the stationary and transient behaviour of

observed data X̃ and the expected stationary and transient behaviour ĝ, where ĝ

is estimated from a QBD process Q̂ ∈ Ω fitted to X̃.

That is, for stationary behaviour,

Vπ̃ = O− ρ,

where O = (O0, O1, . . . , OL), such that O` is the observed proportion of time spent

in each level ` ≥ 0, and [ρ]` is the estimated proportion of time spent in each level

` ≥ 0 from ĝ. Note that the last element of this vector is omitted since the

stationary vector is a probability vector and hence has L − 1 degrees of freedom,

assuming L is the maximum observed level.

For transient behaviour relating to the transition probability of moving up from

level ` ≥ 0 to level `+ 1,

VP+ = P− P+,

where P = (P1, P2, . . . , PL), such that P` is the observed proportion of times the

process moves up from level ` ≥ 1 to level ` + 1, and [P+]` contains the estimated

transition probability of moving up from level ` ≥ 1 to level ` + 1 from ĝ. Note

that the transition probability of moving up from level 0 to level 1 is 1 by design

and hence is omitted from the goodness of fit test.
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For transient behaviour relating to the sojourn time conditioned on moving down

from level ` ≥ 1, we consider a signed Kolmogorov-Smirnov statistic defined as

Vτ− = sign(F̂−` (x∗)− F−` (x∗))|F̂−` (x∗)− F−` (x∗)|,

where x∗ = argmaxx|F̂−` (x) − F−` (x)|, F̂−` is the empirical distribution of the

sojourn time conditioned on moving down from level ` ≥ 1, F−` (x) is the estimated

distribution of the sojourn time conditioned on moving down from level ` ≥ 1 from

ĝ, and

sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Lastly, for transient behaviour relating to the sojourn time conditioned on moving

up from level ` ≥ 0, we again consider a signed Kolmogorov-Smirnov statistic defined

as

Vτ+ = sign(F̂+
` (x∗)− F+

` (x∗))|F̂+
` (x∗)− F+

` (x∗)|,

where x∗ = argmaxx|F̂+
` (x)−F+

` (x)|, F̂+
` is the empirical distribution of the sojourn

time conditioned on moving up from level ` ≥ 0 and F+
` (x) is the estimated

distribution of the sojourn time conditioned on moving up from level ` ≥ 0 from ĝ.

9.2.3 Test statistic

Using the Mahalanobis distance, we define the test statistic as

dΣ(V(X̃),µ) =

√
(V(X̃)− µ)TΣ−1(VQ(X̃)− µ),

where µ = E[V(X)], Σ = E[(V(X) − µ)(V(X) − µ)T ], and X is a trajectory of

Q ∈ Ω.
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Given that the differences associated with conditional sojourn times are calculated

using a modified version of the Kolmogorov-Smirnov statistic, the distribution of

V(X) is not multivariate normal (see Appendix D for an illustrative example).

Hence, we cannot assume that dΣ(V(X),µ)2 follows a Chi-Square distribution with

p degrees of freedom. Instead, we consider empirical estimation.

9.2.4 Parametric bootstrap

We empirically estimate the distribution of V(X), where X is a trajectory from

Q̂ ∈ Ω, using the parametric bootstrap method, which involves simulating data from

a model that has been fitted to observed data [17, 16]. The method to calculate the

empirical cumulative distribution function, FD(t) for t ≥ 0, is described below.

1. Fit a QBD process, Q̂ ∈ Ω to data X using maximum likelihood techniques.

2. Simulate D data sets of K level changes, Xj, for j = 1, . . . , D, from the fitted

QBD process, Q̂.

3. Fit a QBD process, Q̂j ∈ Ω, for j = 1, ..., D, to each simulated data set using

an appropriate method from Chapter 7 or 8.

4. Calculate the distance vector v(Xj) = {vπ̃,vP+ ,vτ− ,vτ+} which quantifies

the difference between the stationary and transient behaviour of simulated

data Xd to that expected under the associated fitted QBD process Q̂j ∈ Ω.

5. Calculate the Mahalanobis distance for each distance vector v(Xj), for

j = 1, . . . , D,

dS|j(v(Xj), x̄
|j) =

√
(v(Xj)− x̄|j)TS|j

+
(v(Xj)− x̄|j),

where x̄|j is the sample mean defined as

x̄|j =
1

D

D∑
i=1
i 6=j

v(Xi),
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and S|j is the sample covariance matrix defined as

S|j =
1

D − 2

D∑
i=1
i 6=j

((.v(Xi)− x̄|j)(d(v(Xi)− x̄|j)T .

6. Calculate the empirical cumulative distribution function,

FD(t) =
1

D

D∑
j=1

I(dS|j(v(Xj), x̄
|j) ≤ t).

9.2.5 P-value

We empirically estimate the p-value as

p-value =
1

D

D∑
j=1

I
(
dS|j(v(Xj), x̄

|j) > dS(v(X), x̄)
)
,

where d(v(X), x̄,S) is the observed value of the test statistic. If the p-value is less

than α, then we reject H0 at the α% level of significance. Otherwise, we retain H0.

9.2.6 Preliminary checks and level aggregation

Firstly, we note that a QBD process can be discounted if it structurally unable to

produce the same behaviour to that observed in the data. For example, if the

observed queueing system data has a maximum level of 10, then the maximum

level of the fitted QBD process must be at least 10. A fitted QBD process with less

than the required number of levels will not fully capture the behaviour of the

queueing process.

Secondly, inherent with fitting some QBD processes, such as infinite QBD

processes, to observed queueing system data is the possibility of visiting levels

higher than that actually observed in the data. For example, the maximum level

observed in the data may be 10 but an infinite QBD process may allow transitions

to levels higher than 10.
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To ensure there is enough data within each level and to avoid missing data in the

estimation of the null distribution, we aggregate levels such that

• the observed number of visits to each level is at least 5,

• the expected number of visits to each level is at least 5, and

• the simulated number of visits to each level is at least 5.

Note that the expected number of visits to each level is taken from the stationary

distribution of the embedded discrete-time jump chain, X̃t, of the fitted continuous-

time QBD process defined by the probability transition matrix

P̃ =



0 Ã
(0)
+ 0 0 . . .

Ã
(1)
− 0 Ã

(1)
+ 0 . . .

0 Ã
(2)
− 0 Ã

(2)
+ . . .

0 0 Ã
(3)
− 0 . . .

...
...

...
...

. . .


,

where Ã
(`)
+ =

(
−A(`)

0

)−1

A
(`)
+ and Ã

(`)
− =

(
−A(`)

0

)−1

A
(`)
− , for all ` ≥ 0 [34].

Note that the method of aggregating levels to ensure that the expected number of

visits is sufficiently large is similar to the method of combining bins in the

Chi-Square test to ensure each cell has an expected count of at least 5.

For example, consider a level-dependent QBD process with a capacity of 10 and

suppose the expected visit counts of levels 8, 9, and 10 are 7, 3, and 1 respectively,

these levels will be aggregated to form a new level ≥ 8 with an expected visit

count of 11.
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More specifically, suppose π̃ contains the proportion of time spent in each level. We

update π̃ = (π̃0, π̃1, . . . , π̃10) such that π̃ = (π̃0, π̃1, . . . , π̃≥8), where

π̃≥8 =
10∑
`=8

π̃`.

In the case of transitions between levels, suppose p contains the upward transition

probabilities for each level. We update p+ = (p+
0 , p

+
1 , . . . , p

+
10) such that

p+ = (p+
0 , p

+
1 , . . . , p

+
≥8), where

p+
≥8 =

10∑
`=8

nE`,`+1p
+
`

10∑
`=8

nE`,`+1p
+
` +

10∑
`=8

nE`,`−1

(
1− p+

`

) ,
nE`,`+1 is the expected number of times the QBD process moves from level ` ≥ 1 to

` + 1, and nE`,`−1 is the expected number of times the QBD process moves from

level ` ≥ 1 to `− 1.

Lastly, we consider the case of sojourn times conditioned on moving down a level.

Suppose {F−1 , F−2 , . . . , F−10} represents the set of distributions of sojourn times

conditioned on moving down from each level. We update this set of distributions

to achieve the set {F−1 , F−2 , . . . , F−≥8} where

F−≥8 =
10∑
`=8

ω`F
−
` ,

such that

ω` =
π̃E`

10∑
`=8

π̃E`

and π̃E` is the expected proportion of times the QBD process visits level 8, 9, and

10. The method for sojourn times conditioned on moving up a level is similar.
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9.2.7 Discussion

In the goodness of fit method described above, we test all relevant behavioural

components at the same time and the reasoning for this is as follows. Firstly, it

provides a single test rather than individual tests for each type of behaviour and

each level, thus leading to multiple hypothesis testing adjustments. Secondly, it is

not easily attainable to always perform simulations that have the same number of

upward and downward transitions from each ` ≥ 1. For example, the higher levels

of an infinite level-independent QBD process may be infrequently visited compared

to the lower levels and thus harder to achieve the same number of visits to each level

across all simulations.

9.2.8 Discussion

We have developed a goodness of fit method using the Mahalanobis distance, the

Kolmogorov-Smirnov statistic, and statistical theory to determine if observed data

X̃ can be modelled as a realisation of a QBD process Q ∈ Ω, where Ω is a particular

class of QBD processes. However, this method does not identify which behavioural

component caused the test to fail in the event of a QBD process inadequately

modelling the stationary and transient behaviour observed in data X̃. In the

next section, we develop a diagnostic method to determine where, if at all, the

observed stationary and transient behaviour deviates from the expected stationary

and transient behaviour.
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9.3 Diagnostic plots

In this section, we develop a diagnostic method which illustrates where, if at all,

the stationary and transient behaviour of a fitted QBD process Q̂ ∈ Ω differs to

that observed in the data, X̃. In particular, we compare the observed stationary

distribution, upward transition probabilities, and conditional sojourn times to that

of the simulated data sets, Xj for j = 1, . . . , D, used in the goodness of fit test.

Note that for each behavioural component, we present an example of a diagnostic

plot which is based on data generated from a level-dependent QBD process with a

maximum capacity of 5.

9.3.1 Stationary distribution

In this section, we describe a diagnostic method to illustrate where, if at all, the

stationary behaviour of the fitted QBD process differs to that observed in the data.

In particular, we use a parametric bootstrap approach as described in Algorithm 3.

Figure 9.3.1 shows an example of a diagnostic plot, where the red points illustrate

the observed proportion of time spent in each level and the box-plots represent the

proportion of time spent in each level observed in the simulated data sets.
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Figure 9.3.1: Example of a diagnostic plot for the stationary distribution.
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Algorithm 3: Stationary distribution - Diagnostic method.
Step 1: If no level aggregation is required, calculate the observed proportion of

time spent in each level, `, and denote it O`(X). If levels need to be aggregated

such that L∗ = {`∗, . . . , L}, then

OL∗(X) =

L∑
`=`∗

O`(X).

Note that if levels need to be aggregated at the lower boundary, then we also

need to calculate

OL∗(X) =
`∗∑
`=0

O`(X),

where L∗ = {0, . . . , `∗}.

Step 2: For each simulated data set, Xj , and each level `, calculate the

proportion of time spent in each level. We call this value the simulated

summary statistic for level ` and denote it O`(Xj). If levels need to be

aggregated such that L∗ = {`∗, . . . , L}, then

Od,L∗(Xj) =
L∑

`=`∗
O`(Xj).

Note that if levels need to be aggregated at the lower boundary, then we also

need to calculate

Od,L∗(Xj) =

`∗∑
`=0

O`(Xj),

where L∗ = {0, . . . , `∗}.

Step 3: Use box-plots to compare the observed proportion of time spent in each

level to that observed in each simulated data set.
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9.3.2 Transitions between levels

In this section, we describe a diagnostic method to illustrate where, if at all, the

transition behaviour of the fitted QBD process differs to that observed in the data.

We again use a parametric bootstrap approach as described in Algorithm 4.

Note that if the stationary behaviour of the observed data X̃ is not captured by

the fitted QBD process Q̂ ∈ Ω, then the observed number of times each level is

visited may be different to the simulated number of times each level is visited.

Therefore, we truncate the data such that the observed number of times level ` ≥ 0

is visited is equal to the simulated number of times level ` ≥ 0 is visited to avoid

under-sampling or over-sampling of levels.

Figure 9.3.2 shows an example of a diagnostic plot, where the red points illustrate

the observed transition probabilities between levels and the box-plots represent the

transition probabilities between levels observed in the simulated data sets. Note

that the data for the minimum and maximum levels are omitted as the

probabilities are 0 and 1 by definition.

Given that the downward transition probability from level ` ≥ 1 is equal to one

minus the upward transition probability, we can omit the plot of downward transition

probabilities from the diagnostic analysis if it is not required.
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Algorithm 4: Transition probabilities - Diagnostic method.
Step 1: If no level aggregation is required, calculate the observed transition probability

of moving up a level and denote it R`(X). If levels need to be aggregated such that

L∗ = {`∗, . . . , L}, then

RL∗(X) =

L∑
`=`∗

n`,`+1

L∑
`=`∗

n`,`−1 +

L∑
`=`∗

n`,`+1

.

Note that if levels need to be aggregated at the lower boundary, then we also need to

calculate

RL∗(X) =

`∗∑
`=0

n`,`+1

`∗∑
`=0

n`,`−1 +

`∗∑
`=0

n`,`+1

,

where L∗ = {0, . . . , `∗}. Also note that the transition probability of moving down a

level is calculated as 1−R`(X).

Step 2: For each simulated data set, Xj , and each level `, calculate the transition

probability of moving up a level and denote it R`(Xj). If levels need to be aggregated

such that L∗ = {`∗, . . . , L}, then

Rd,L∗(Xj)(X) =

L∑
`=`∗

n`,`+1

L∑
`=`∗

n`,`−1 +

L∑
`=`∗

n`,`+1

Note that if levels need to be aggregated at the lower boundary, then we also need to

calculate

Rd,L∗(Xj)(X) =

L∑
`=`∗

n`,`+1

L∑
`=`∗

n`,`−1 +

L∑
`=`∗

n`,`+1

,

where L∗ = {0, . . . , `∗}. Also note that the transition probability of moving down from

level ` ≥ 1 is calculated as 1−R`(Xj).

Step 3: Use box-plots to compare the observed transition probabilities between levels to

that observed in each simulated data set.



CHAPTER 9. GOODNESS OF FIT 245

Figure 9.3.2: Example of a diagnostic plot for the transition probabilities between

levels.

9.3.3 Conditional sojourn time

In this section, we develop a diagnostic method to illustrate where, if at all, the

distribution of conditional sojourn time for each level of the fitted QBD process

differs to that observed in the data. Similar to before, we truncate the data such

that the observed number of times level ` ≥ 0 is visited is equal to the simulated

number of times level ` ≥ 0 is visited to avoid under-sampling of levels.

The diagnostic method in this case is a moment based approach, where we

compare the first three moments (mean, variance, and skewness) of the conditional

sojourn time for each level of the fitted QBD process to that of the observed data.

The parametric bootstrap approach described in Algorithm 5 focuses on the first

moment. The methods for the second and third moments are similar.
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Note that we only describe the goodness of fit test for the sojourn time

conditioned on the process moving up a level. The diagnostic method for the

sojourn time conditioned on the process moving down a level is similar.

Algorithm 5: Conditional sojourn time - Moment based diagnostic

method.
Step 1: If no level aggregation is required, calculate the observed average time

spent in each level ` before moving up a level and denote it S`(X). If levels need

to be aggregated such that L∗ = {`∗, . . . , L}, then

SL∗(X) =
L∑

`=`∗
S`(X).

Note that if levels need to be aggregated at the lower boundary, then we also

need to calculate

SL∗(X) =
`∗∑
`=0

S`(X),

where L∗ = {0, . . . , `∗}.

Step 2: For each simulated data set, Xj , and each level `, calculate the observed

average time spent in each level. We call this value the simulated summary

statistic for level ` and denote it S`(Xj).

If levels need to be aggregated such that L∗ = {`∗, . . . , L}, then Sd,L∗(Xj) is the

average of the set of conditional sojourn times observed across levels `∗, . . . , L.

Note that if levels need to be aggregated at the lower boundary, then we also

need to calculate Sd,L∗(Xj), where L∗ = {0, . . . , `∗}.

Step 3: Use box-plots to compare the observed conditional sojourn times to that

observed in each simulated data set.
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Figure 9.3.3 shows an example of a diagnostic plot, where the red points illustrate

the average conditional sojourn times for each level in the observed data and the

box-plots represent the average conditional sojourn times for each level observed in

each of the simulated data sets. Note that in a finite QBD process, the data

associated with the average sojourn time conditioned on moving up from the

maximum level is omitted as the process cannot transition to levels above what is

defined in the QBD process.

Figure 9.3.3: Example of a diagnostic plot for the conditional sojourn times.

For visualisation purposes, we also plot the empirical densities of the conditional

sojourn time for each level of each simulated data set against that of the observed

data. Similar to before, if levels need to be aggregated such that L∗ = {`∗, . . . , L},

then we calculate the empirical density of the conditional sojourn time across levels

`∗, . . . , L. Similarly for levels that need to be aggregated at the lower boundary.
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Figure 9.3.4 shows an example of such a plot, where the red lines represent the

empirical densities of the conditional sojourn time for each level of each simulated

data set and the black line represents the empirical density of the conditional

sojourn time for each level of the observed data.

Figure 9.3.4: Example of a density diagnostic plot for the conditional sojourn times.
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9.4 Numerical Examples

In the following sections, we demonstrate how our goodness of fit method performs

with several numerical examples. In each example, an original data set, X̃, will be

simulated from an example QBD process, Q. The best fitting QBD process, Q̂

based on the value of the log-likelihood will be chosen from several QBD process

estimations. We then simulate 1000 data sets, Xj, for j = 1, . . . , 1000, from Q̂. In

each example, we fit a QBD process, Q̂j, to each simulated data set, Xj, for

j = 1, . . . , 1000 and then proceed with the goodness of fit test as developed in

Sections 9.2 and 9.3. This process is illustrated in Figure 9.4.1.

Figure 9.4.1: Illustration of the goodness of fit process for the numerical examples.
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9.4.1 Fitting a finite level-independent QBD process to

infinite level-independent QBD process data

In this example, we consider the continuous-time equivalent of the discrete-time

QBD process described by Latouche et al. [34]. This infinite level-independent QBD

process has the following properties.

• 2 phases per level.

• Process moves from (0, 1) to (0, 2) with rate 1.

• Process moves from (`, 1) to (`, 2) with rate p, for ` ≥ 1.

• Process moves from (`, 1) to (`− 1, 1) with rate 1− p, for ` ≥ 1.

• Process moves from (`, 2) to (`, 1) with rate 2p, for ` ≥ 0.

• Process moves from (`, 2) to (`+ 1, 2) with rate 1− 2p, for ` ≥ 0.

The infinitesimal generator for this infinite level-independent QBD process is defined

as

Q =


B0 A+ 0 0 . . .

A− A0 A+ 0 . . .

0 A− A0 A+
. . .

...
. . . . . . . . . . . .

 ,

where

B0 =

−1 1

2p −1

 , A0 =

−1 p

2p −1

 ,

A+ =

0 0

0 1− 2p

 , A− =

1− p 0

0 0

 .
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We use this example to show how our goodness of fit method performs when fitting

a finite level-independent QBD process to infinite level-independent QBD process

data. In particular, we fit a finite level-independent QBD process with two phases

to observed data, X̃, generated from an infinite level-independent QBD process with

two phases and p = 0.3.

Goodness of fit test

In this example, we define the null and alternative hypotheses as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all finite level-independent QBD processes with two phases.

Using the goodness of fit test developed in Section 9.2, we obtain an empirical

p-value of 0.54 which suggests that there is no evidence of dissimilarity between

the observed data and that expected under a finite level-independent QBD

process. This result is also demonstrated in Figure 9.4.2 which plots the observed

Mahalanobis distance (red line) against the expected Mahalanobis distances under

the null hypothesis (histogram).
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Figure 9.4.2: Comparison of the observed Mahalanobis distance (red line) against the

expected Mahalanobis distances assuming a finite level-independent QBD process

(histogram).

Discussion

The finite and infinite level-independent QBD processes are very similar in

behaviour, with the exception of the upper boundary. Given the nature of this

example, this result was expected and therefore requires no further investigation.

We now consider the reverse situation; fitting an infinite level-independent QBD

process to data generated from a finite level-independent QBD process.



CHAPTER 9. GOODNESS OF FIT 253

9.4.2 Fitting an infinite level-independent QBD process to

finite level-independent QBD process data

In this example, we consider a breakdown and repair model, which is often used to

model production lines [19]. This queueing system has the following properties.

• 2 phases per level.

• Poisson arrivals with rate λ.

• Exponential service times with rate µ.

• 1 server.

• If the server is operating, it breaks down exponentially with rate α.

• Once the breakdown occurs, the repair starts. The time to the end of the

repair is exponential with rate β.

• At the time of a breakdown, the part that was being processed is not processed.

Once repaired, service starts on the same part.

The infinitesimal generator for this finite level-independent QBD process is defined

as

Q =


B0 A+ 0 0

A− A0 A+ 0

0 A− A0 A+

0 0 A− C0

 ,
where

B0 =

−α− λ α

β −β − λ

 , A0 =

−α− λ− µ α

β −β − λ

 , C0 =

−α− µ α

β −β

 ,

A+ =

λ 0

0 λ

 , A− =

µ 0

0 0

 .
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We use this example to show how our goodness of fit method performs when fitting

an infinite level-independent QBD process to finite level-independent QBD process

data. In particular, we fit an infinite level-independent QBD process with two phases

to data generated from a finite level-independent QBD process with two phases, such

that λ = 1, µ = 2, α = 1, and β = 2.

Goodness of fit test

In this example, we define the null and alternative hypotheses as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all infinite level-independent QBD processes with two phases.

Using the goodness of fit test developed in Section 9.2, we obtain an empirical

p-value of 0 which suggests that the behaviour of the finite level-independent QBD

process is not captured by the infinite level-independent QBD process. This result

is also illustrated in Figure 9.4.3 which shows how far the observed Mahalanobis

distance (red line) is from the expected Mahalanobis distances under the null

hypothesis (histogram). Let’s now consider the diagnostic plots to see where the

dissimilarities exist.
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Figure 9.4.3: Comparison of the observed Mahalanobis distance (red line) against

the expected Mahalanobis distances assuming an infinite level-independent QBD

process (histogram).

Stationary Distribution

Figure 9.4.4 compares the observed proportion of time spent in each level to the

observed proportion of time spent in each level based on 1000 simulated data sets

generated from the fitted infinite level-independent QBD process. By design, the

infinite level-independent QBD process can go beyond the maximum level observed

in the data which in this case is level 4. Therefore, the stationary distribution of

the infinite level-independent QBD process does not match the stationary

distribution corresponding to the observed data.

Given that the stationary behaviour is incorrectly estimated, the data used to

generate the diagnostic plots for the transient behaviour will be truncated to ensure

equal comparisons between observed and simulated data.
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Figure 9.4.4: Comparison of the observed proportion of time spent in each level

(red points) to the observed proportion of time spent in each level based on 1000

simulated data sets generated from the fitted infinite level-independent QBD process

(box-plots).

Upward transition Probabilities

The observed upward transition probabilities for each level based on 1000

simulated data sets generated from the fitted infinite level-independent QBD

process slightly underestimate the upward transition probabilities observed in the

data, as illustrated in Figure 9.4.5. In addition to this, the infinite

level-independent QBD process allows transitions above the maximum observed

level in the data, thus leading to omitted data for levels 4 and above.
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Figure 9.4.5: Comparison of the observed upward transition probabilities between

levels (red points) to the observed upward transition probabilities between levels

based on 1000 simulated data sets generated from the fitted infinite level-

independent QBD process (box-plots). Note that the data for level 0 is omitted

since the upward transition probability for level 0 is 1 by design and data associated

with upward transitions from levels above 3 are omitted due to minimal data.

Conditional Sojourn Time

Figure 9.4.6a shows that the average conditional sojourn times are incorrectly

estimated, particularly for the downward transitions. In addition to this,

Figures 9.4.6b and 9.4.6c show that the second and third moments of the

distribution of conditional sojourn times are also incorrectly estimated. Therefore,

the fitted infinite level-independent QBD process is unable to model the

conditional sojourn times associated with the finite level-independent QBD

process. Visualisations of the observed versus estimated densities of conditional

sojourn times for selected levels and transitions are provided in Figure 9.4.7.
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(a) (b)

(c)

Figure 9.4.6: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each level based on observed data

(red points) and the distribution of conditional sojourn times for each level based on

1000 simulated data sets generated from the fitted infinite level-independent QBD

process (box-plots). Note that the data associated with level 0 and a downward

transition is omitted since the process cannot move below level 0 and data associated

with upward transitions from levels above 3 are omitted due to minimal data.
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(a) Level 0, Up (b) Level 1, Down (c) Level 1, Up

(d) Level 2, Down (e) Level 2, Up (f) Level 3, Down

(g) Level 3, Up

Figure 9.4.7: Comparison of the observed density (black line) of conditional sojourn

times for each level and transition to the observed density of conditional sojourn

times for each level and transition based on 1000 simulated data sets (red lines)

generated from the fitted infinite level-independent QBD process.
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Discussion

To summarise, the fitted infinite level-independent QBD process did not capture

the stationary and transient behaviour observed in the finite level-independent

QBD process data. This was a result of the infinite level-independent QBD process

allowing transitions to levels above the maximum level observed in the data.

The next three examples will now focus on level-dependent QBD process data, where

we fit various level-independent QBD process and level-dependent QBD processes

to data generated from a level-dependent QBD process with three phases.

9.4.3 Fitting a level-independent QBD process to

level-dependent QBD process data

In this example, we consider a specific type of PH/M/∞ queue described by

Baumann and Sandmann [3]. This level-dependent QBD process has the following

properties.

• Phase-type inter-arrival times, PH(α, T ).

• Exponential service times with rate µ.

• Infinite number of servers.

The infinitesimal generator for this level-dependent QBD process is defined as

Q =


A

(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+

. . .
...

. . . . . . . . . . . .

 ,

where A
(n)
0 = T − nµI, A

(n)
− = nµI, and A

(n)
+ = tα.
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We use this example to show how our goodness of fit method performs when

fitting level-independent QBD processes to level-dependent QBD process data. In

particular, we fit an infinite level-independent QBD process with three phases to

data generated from an infinite level-dependent QBD process with three phases,

such that

• α = (1, 0, 0),

• T =


−10 10 0

0 −10 10

0 0 −10

, and

• µ = 3.

Goodness of fit test

In this example, we define the null and alternative hypotheses as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all infinite level-independent QBD processes with three

phases.

Using the goodness of fit test developed in Section 9.2, we find that the observed

Mahalanobis distance (red line) is larger than the expected Mahalanobis distances

under the null hypothesis (histogram), as shown in Figure 9.4.8. As a result, we

obtain an empirical p-value of 0 which suggests that the behaviour of the

level-dependent QBD process is not captured by the infinite level-independent

QBD process. We now consider the diagnostic plots to determine where the

dissimilarities exist.
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Figure 9.4.8: Comparison of the observed Mahalanobis distance (red line) against

the expected Mahalanobis distances assuming an infinite level-independent QBD

process (histogram).

Stationary Distribution

The rates of the infinite level-independent QBD process are independent of the

level by design which can inhibit the ability to capture the stationary behaviour of

data generated from a level-dependent QBD process. As a result, the observed

proportion of time spent in each level differs to the observed proportion of time

spent in each level based on 1000 simulated data sets generated from the fitted

infinite level-independent QBD process, as illustrated in Figure 9.4.9.

Similar to the previous example, the data used to generate the diagnostic plots

for the transient behaviour will be truncated to ensure equal comparisons between

observed and simulated data.
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Figure 9.4.9: Comparison of the observed proportion of time spent in each level

(red points) to the observed proportion of time spent in each level based on 1000

simulated data sets generated from the fitted infinite level-independent QBD process

(box-plots).

Upward transition Probabilities

Figure 9.4.10 compares the observed upward transition probabilities for each level

to the upward transition probabilities for each level based on 1000 simulated data

sets generated from the fitted infinite level-independent QBD process. Similar to

before, the transition probabilities of the infinite level-independent QBD process

are independent of the level by design and are therefore unable to capture the

transition behaviour between levels observed in the data.
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Figure 9.4.10: Comparison of the observed upward transition probabilities between

levels (red points) to the observed upward transition probabilities between levels

based on 1000 simulated data sets generated from the fitted level-independent QBD

process (box-plots). Note that the data for level 0 is omitted since the upward

transition probability for level 0 is 1 by design and the data associated with upward

transitions from level 5 are omitted due to only one data point in the observed data.

Conditional Sojourn Time

As illustrated in Figure 9.4.11, the first three moments of the distribution of

conditional sojourn times are incorrectly estimated due to the level-dependent

nature of the data, thus suggesting that the fitted infinite level-independent QBD

process is incapable of modelling the sojourn times of a level-dependent QBD

process. Plots of the observed versus estimated densities of conditional sojourn

times are provided in Figure 9.4.12. Note that the densities for level 4 are

estimated on minimal data since the QBD process spends more time in levels

below 4.
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(a) (b)

(c)

Figure 9.4.11: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each level based on observed data

(red points) and the distribution of conditional sojourn times for each level based on

1000 simulated data sets generated from the fitted infinite level-independent QBD

process (box-plots). Note that the data associated with level 0 and a downward

transition is omitted since the process cannot move below level 0 and the data

associated with level 5 are omitted due to minimal data.



CHAPTER 9. GOODNESS OF FIT 266

(a) Level 0, Up (b) Level 1, Down (c) Level 1, Up

(d) Level 2, Down (e) Level 2, Up (f) Level 3, Down

(g) Level 3, Up (h) Level 4, Down (i) Level 4, Up

Figure 9.4.12: Comparison of the observed density (black line) of conditional sojourn

times for each level and selected transitions to the observed density of conditional

sojourn times for each level and transition based on 1000 simulated data sets (red

lines) generated from the fitted infinite level-independent QBD process.
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Discussion

Overall, the level-dependent nature of the stationary and transient behaviour

could not be captured by the fitted infinite level-independent QBD process.

The next two examples will show how our goodness of fit method performs when

fitting QBD processes with fewer number of phases required.

9.4.4 Fitting a level-dependent QBD process with one phase

to three-phase level-dependent QBD process data

In this example, we fit an infinite level-dependent QBD process with one phase to

data generated from an infinite level-dependent QBD process with three phases,

such that the infinitesimal generator matrix is defined as

Q =


A

(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+

. . .
...

. . . . . . . . . . . .

 ,

where A
(n)
0 = T − nµI, A

(n)
− = nµI, and A

(n)
+ = tα. Similar to before, we fit an

infinite level-dependent QBD process with one phase to data generated from an

infinite level-dependent QBD process with three phases, such that

• α = (1, 0, 0),

• T =


−10 10 0

0 −10 10

0 0 −10

, and

• µ = 3.
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Goodness of fit test

In this example, we define the null and alternative hypotheses as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all level-dependent QBD processes with one phase.

Given that the fitted QBD process has only one phase, there is limited variability

in the transition probabilities estimated from the simulated data and hence are

approximately equal to the estimated transition probabilities of the fitted QBD

process. Hence, the covariance matrix is singular as the expected differences

associated with transition probabilities are close to zero, as illustrated in

Figure 9.4.13.

Therefore, we cannot use the goodness of fit test described in Section 9.2 as we

would lose critical information relating to the transition probabilities. Instead, we

use the diagnostic plots to explore what types of behaviour the level-dependent

QBD process with one phase may or may not have captured.
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Figure 9.4.13: Expected differences associated with transition probabilities assuming

a level-dependent QBD process with 1 phase.
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Stationary Distribution

Given the level-dependent nature of the QBD process, the stationary behaviour of

the data is captured by the level-dependent QBD process with one phase, as

illustrated in Figure 9.4.14. Therefore, we look towards the transient behaviour for

dissimilarities between the observed data and the fitted level-dependent QBD

process with one phase.

Figure 9.4.14: Comparison of the observed proportion of time spent in each level

(red points) to the observed proportion of time spent in each level based on 1000

simulated data sets generated from the fitted level-dependent QBD process with one

phase (box-plots).
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Upward transition Probabilities

By a similar reasoning, there is no evidence of dissimilarity between the transition

behaviour observed in the data compared to that expected under the null

hypothesis. This is illustrated in Figure 9.4.15 which compares the observed

upward transition probabilities between levels to the observed upward transition

probabilities between levels based on 1000 simulated data sets generated from the

fitted level-dependent QBD process with one phase. Let’s now consider the

conditional sojourn times.

Figure 9.4.15: Comparison of the observed upward transition probabilities between

levels (red points) to the observed upward transition probabilities between levels

based on 1000 simulated data sets generated from the fitted level-dependent QBD

process with one phase (box-plots). Note that the data for level 0 is omitted since

the upward transition probability for level 0 is 1 by design and the data associated

with upward transitions from level 5 are omitted due to only one data point in the

observed data.
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Conditional Sojourn Time

Comparing the first three moments of the distribution of conditional sojourn times

for each level based on observed data to those of the distribution of conditional

sojourn times for each level based on 1000 simulated data sets generated from the

fitted level-dependent QBD process with one phase, we see that the sojourn times

are poorly estimated for each level and transition, as illustrated in Figure 9.4.16.

Illustrations of the observed versus estimated densities of conditional sojourn times

for selected levels and transitions are provided in Figures 9.4.17 and 9.4.18. Note

that the densities for levels 4 and above are estimated on minimal data since the

QBD process spends more time in levels below 4.
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(a) (b)

(c)

Figure 9.4.16: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each level based on observed

data (red points) and the distribution of conditional sojourn times for each level

based on 1000 simulated data sets generated from the fitted level-dependent QBD

process with one phase (box-plots). Note that the data associated with level 0 and

a downward transition is omitted since the process cannot move below level 0 and

the data associated with upward transitions from level 5 are omitted due to only

one data point in the observed data.
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(a) Level 0, Up (b) Level 1, Down

(c) Level 1, Up (d) Level 2, Down

(e) Level 2, Up (f) Level 3, Down

Figure 9.4.17: Comparison of the observed density (black line) of conditional sojourn

times for levels 0, 1, 2, and 3 and selected transitions to the observed density of

conditional sojourn times for each level and transition based on 1000 simulated data

sets (red lines) generated from the fitted level-dependent QBD process with one

phase.
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(a) Level 3, Up (b) Level 4, Down

(c) Level 4, Up (d) Level 5, Down

Figure 9.4.18: Comparison of the observed density (black line) of conditional sojourn

times for levels 3, 4, and 5 and selected transitions to the observed density of

conditional sojourn times for each level and transition based on 1000 simulated

data sets (red lines) generated from the fitted level-dependent QBD process with

one phase.

Discussion

The fitted level-dependent QBD process with one phase was able to capture the

stationary behaviour of the level-dependent QBD process with three phases, as well

as the transition behaviour between levels. However, dissimilarities were observed

in the conditional sojourn times which comes as a result of not enough phases.



CHAPTER 9. GOODNESS OF FIT 276

We now explore the fit of a level-dependent QBD process with two phases to data

generated from a level-dependent QBD process with three phases.

9.4.5 Fitting a level-dependent QBD process with two

phases to three-phase level-dependent QBD process

data

In this example, we fit an infinite level-dependent QBD process with two phases

to data generated from an infinite level-dependent QBD process with three phases,

such that the infinitesimal generator matrix is defined as

Q =


A

(0)
0 A

(0)
+ 0 0 . . .

A
(1)
− A

(1)
0 A

(1)
+ 0 . . .

0 A
(2)
− A

(2)
0 A

(2)
+

. . .
...

. . . . . . . . . . . .

 ,

where A
(n)
0 = T −nµI, A

(n)
− = nµI, and A

(n)
+ = tα. Similar to the previous example,

we fit an infinite level-dependent QBD process with two phases to data generated

from an infinite level-dependent QBD process with three phases, such that

• α = (1, 0, 0),

• T =


−10 10 0

0 −10 10

0 0 −10

, and

• µ = 3.
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Goodness of fit test

In this example, we define the null and alternative hypotheses as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all level-dependent QBD processes with two phases.

Using the goodness of fit test developed in Section 9.2, we obtain an empirical

p-value of 0.038. Assuming a 5% significance level, there is evidence of

dissimilarity between the behaviour of the level-dependent QBD process with three

phases and that of the level-dependent QBD process with two phases. This result

is also illustrated in Figure 9.4.19 which plots the observed Mahalanobis distance

(red line) against the expected Mahalanobis distances under the null hypothesis

(histogram).
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Figure 9.4.19: Comparison of the observed Mahalanobis distance (red line) against

the expected Mahalanobis distances assuming a level-dependent QBD process with

2 phases (histogram).

Stationary Distribution

Figure 9.4.20 shows that the observed proportion of time spent in each level is

similar to the observed proportion of time spent in each level based on 1000

simulated data sets generated from the fitted level-dependent QBD process with

two phases. Similar to the previous example, this was expected due to the

level-dependent nature of the fitted QBD process.
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Figure 9.4.20: Comparison of the observed proportion of time spent in each level

(red points) to the observed proportion of time spent in each level based on 1000

simulated data sets generated from the fitted level-dependent QBD process with two

phases (box-plots).

Upward transition Probabilities

Similarly, Figure 9.4.21 compares the observed upward transition probabilities

between levels to the observed upward transition probabilities between levels based

on 1000 simulated data sets generated from the fitted level-dependent QBD

process with two phases. As expected, the transition behaviour between levels is

captured by the level-dependent QBD process with two phases.
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Figure 9.4.21: Comparison of the observed upward transition probabilities between

levels (red points) to the observed upward transition probabilities between levels

based on 1000 simulated data sets generated from the fitted level-dependent QBD

process with two phases (box-plots). Note that the data for level 0 is omitted since

the upward transition probability for level 0 is 1 by design and the data associated

with upward transitions from level 5 are omitted due to only one data point in the

observed data.

Conditional Sojourn Time

As illustrated in Figure 9.4.22a, the average sojourn time conditioned on moving

up a level is slightly underestimated, and only slightly over-estimated for the

downward transitions. Despite a slight improvement in capturing the mean of the

conditional sojourn times, Figures 9.4.22b and 9.4.22c show that the second and

third moments of the distribution of conditional sojourn times remain poorly

estimated. Visualisations of the observed versus estimated densities of conditional

sojourn times are provided in Figures 9.4.23 and 9.4.24. Similar to before, the

densities for levels 4 and above are estimated on minimal data, thus demonstrating

less precision compared to levels below 4 which are more frequently visited.
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(a) (b)

(c)

Figure 9.4.22: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each level based on observed

data (red points) and the distribution of conditional sojourn times for each level

based on 1000 simulated data sets generated from the fitted level-dependent QBD

process with two phases (box-plots). Note that the data associated with level 0 and

a downward transition is omitted since the process cannot move below level 0 and

the data associated with upward transitions from level 5 are omitted due to only

one data point in the observed data.
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(a) Level 0, Up (b) Level 1, Down

(c) Level 1, Up (d) Level 2, Down

(e) Level 2, Up (f) Level 3, Down

Figure 9.4.23: Comparison of the observed density (black line) of conditional sojourn

times for levels 0, 1, 2, and 3 and selected transitions to the observed density of

conditional sojourn times for each level and transition based on 1000 simulated data

sets (red lines) generated from the fitted level-dependent QBD process with two

phases.
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(a) Level 3, Up (b) Level 4, Down

(c) Level 4, Up (d) Level 5, Down

Figure 9.4.24: Comparison of the observed density (black line) of conditional sojourn

times for levels 3, 4, and 5 and selected transitions to the observed density of

conditional sojourn times for each level and transition based on 1000 simulated

data sets (red lines) generated from the fitted level-dependent QBD process with

two phases.
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Discussion

Despite capturing the stationary behaviour and part of the transient behaviour,

the two-phase level-dependent QBD process was not able to completely capture the

behaviour relating to sojourn times within each level. We noticed an improvement

between the fitted one-phase level-dependent QBD process and the fitted two-phase

level- dependent QBD process but the dissimilarities were still strong enough to

reject the null hypothesis.

9.5 Estimation of statistical significance and

statistical power

With each statistical hypothesis test, there are four possible decisions, as described

in Table 9.5.1.

Null hypothesis Accept H0 Reject H0

True Correct decision Type I error

False Type II error Correct decision

Table 9.5.1: Statistical errors in hypothesis testing.

The Type I error is known as the statistical significance α of a hypothesis test and

the statistical power of a hypothesis test is 1− β, where β is the Type II error.
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In this section, we demonstrate the statistical significance and statistical power of

our goodness of fit test by considering the level-dependent QBD process described in

Section 9.4.3. Hence, in this section we consider the null and alternative hypotheses,

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all level-dependent QBD processes with three phases.

To estimate the statistical significance and power of our goodness of fit test, we

use empirical estimation, implemented using R [43], as described in the following

sections.

9.5.1 Statistical significance

The statistical significance of a goodness of fit test refers to the probability of

rejecting H0 when H0 is true. Hence, in this section we fit several level-dependent

QBD processes with three phases to the observed data to estimate the statistical

significance. The empirical estimation method for the statistical significance of our

goodness of fit test is described in Algorithm 6.
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Algorithm 6: Empirical estimation of the statistical significance of our

goodness of fit test.

Step 1: Fit a level-dependent QBD process with three phases to the

observed data, X̃, and denote it Q̂.

Step 2: Simulate the null distribution, as described in steps (a) and (b).

(a) Simulate K events from the fitted level-dependent QBD process with

three phases, Q̂. Denote the simulated data set as Xd, for d = 1, . . . , D.

(b) Fit a level-dependent QBD process with three phases to each

simulated data set. Denote the fitted level-dependent QBD process with

three phases as Q̂d, for d = 1, . . . , D.

Step 3: Determine the fit of Q̂ to the observed data X̃ using the goodness

of fit test described in Section 9.2.

Step 4: Repeat Steps 1 to 3 a large number of times to estimate the

statistical significance.

Typically, a large number of simulations are required to approximate the statistical

significance of a goodness of fit test. For example, we would need to repeat steps 1

to 3 10,000 times, each with an empirical null distribution consisting of 10,000

points. However, this is computationally demanding as each individual step

requires the estimation of a QBD process. Therefore, we only repeat steps 1 to 3

50 times, each with an empirical null distribution consisting of 50 points.

We note that this does not accurately estimate the significance of the goodness of

fit test but it does provide an example of the performance of the goodness of fit

test. Further analysis is therefore required to confidently approximate the

statistical significance of this goodness of fit test.
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As shown in Figure 9.5.1 and Table 9.5.2, we retained H0 100% of the time which

provides some evidence to suggest that this goodness of fit test is unlikely to reject

the null hypothesis when it is true.

Figure 9.5.1: Histogram of the empirical p-values from the estimation of statistical

significance of our goodness of fit test.

Reject H0 when H0 is true Retain H0 when H0 is true

0 50

Table 9.5.2: Number of times we rejected/retained the null hypothesis when the null

hypothesis is true from the estimation of statistical significance of our goodness of

fit test.
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9.5.2 Statistical power

The statistical power of a goodness of fit test refers to the probability of rejecting

H0 when H0 is false. In terms of fitting QBD processes to queueing system data,

the QBD process could be incorrect for any of the following reasons.

• Incorrectly fit a QBD process with too few or too many levels.

• Incorrectly fit a QBD process with too few or too many phases.

• Incorrectly fit a level-independent or level-dependent QBD process to observed

data.

In this section we fit several level-dependent QBD processes with 1, 2, and 4

phases to the observed data to estimate the statistical power. In the case of the

level-dependent QBD process with one and two phases, we expect to reject the null

hypothesis as these QBD processes have fewer phases and thus will not capture the

transient behaviour of the level-dependent QBD process with three phases. The

level-dependent QBD process with four phases overfits the data, in that there are

more phases than required to capture the stationary and transient behaviour.

However, this does not mean that level-dependent QBD process with four phases is

incorrect. Therefore, our goodness of fit test may not be able to detect over-fitting

in this case.

We use the empirical estimation method described in Algorithm 7 to estimate the

statistical power of our goodness of fit test. The results of these estimations are

summarised in Figure 9.5.2 and illustrated in Table 9.5.3. For similar reasoning to

before, we only repeat steps 1 to 3 50 times, each with an empirical null

distribution consisting of 50 points. Hence, further analysis is required to

confidently approximate the statistical power of this goodness of fit test.
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Algorithm 7: Empirical estimation of the statistical power of our goodness

of fit test.
Step 1: Incorrectly fit a j phase level-dependent QBD process to the

observed data, X̃, and denote it Q̂.

Step 2: Simulate the null distribution, as described in steps (a) and (b).

(a) Simulate K events from the fitted j phase level-dependent QBD

process, Q̂. Denote the simulated data set as Xd, for d = 1, . . . , D.

(b) Fit a j phase level-dependent QBD process to each simulated data

set. Denote the fitted j phase level-dependent QBD process as Q̂d, for

d = 1, . . . , D.

Step 3: Determine the fit of Q̂ to the observed data X̃ using the goodness

of fit test described in Section 9.2.

Step 4: Repeat Steps 1 to 3 a large number of times to estimate the

statistical power.

As expected, we correctly rejected the null hypothesis in the case of the level-

dependent QBD process with one and two phases majority of the time, as illustrated

in Figures 9.5.2a. However, our goodness of fit test was not able to detect over-fitting

with a level-dependent QBD process with four phases as demonstrated by retaining

the null hypothesis for every estimation, as shown in Figure 9.5.2c. Therefore, in

a practical setting we recommend initially under-fitting the data and then increase

the number of phases as required to avoid over-fitting the data.

Model Reject H0 when H0 is false Retain H0 when H0 is false

1 Phase 50 0

2 Phases 49 1

4 Phases 0 50

Table 9.5.3: Summary of the estimation of the statistical power of our goodness of

fit test of our goodness of fit test.



CHAPTER 9. GOODNESS OF FIT 290

(a) 1 phase (b) 2 phases

(c) 4 phases

Figure 9.5.2: Histograms of the empirical p-values from the estimation of statistical

power of our goodness of fit test.
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9.6 Summary

The goodness of fit test developed in this chapter provides a way of determining

whether a particular type of QBD process captures the stationary and transient

behaviour observed in a queueing system data set. If the null hypothesis is

rejected, the diagnostic method provides further insight into the discrepancies

between the expected behaviours of the particular type of QBD process and the

behaviours observed in the data.

Given the computational demand inherent from our goodness of fit test, we only

provided a small simulation study to explore the statistical power and significance

of our goodness of fit test. However, the results provided some evidence that

our goodness of fit method correctly rejects or retains the null hypothesis where

required. Further analysis is therefore needed to approximate the statistical power

and significance of this goodness of fit test.



Chapter 10

Application: Royal Adelaide

Hospital intensive care unit

The identification of a suitable queueing model for an intensive care unit is a

challenging task due to the unpredictable nature of patient admissions and the

complexity of patient treatment and bed management. Additionally, the

dependence between the patient admission process and the distribution of patient

length of stay renders standard queueing models invalid for modelling ICUs.

If we simply observe the input and output of an ICU, we obtain information about

the changes in the number of patients in the ICU but minimal information is

obtained about the servers and waiting spaces in an ICU. Hence, the definition of

the number of servers and waiting spaces available for a standard queueing model

remains unclear. Therefore, we use QBD processes to model the bed occupancy of

an ICU due to the freedom in the distribution of sojourn times and the ability to

model ICUs with a dependence between the patient admission process and the

distribution of patient length of stay.

292
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In this chapter, we fit various QBD processes to the Royal Adelaide Hospital

intensive care unit data set using the methods developed in Chapters 7 and 8.

First, we consider the class of level-dependent QBD processes to gain insight into

the operation of the RAH ICU. Second, we identify and fit suitable structured

QBD processes to fit to the bed occupancy data. We then assess the fit of each

structured QBD process using the methods described in Chapter 9. Using the best

fitting structured QBD process, we then predict the behaviour of the RAH ICU

under various scenarios.

10.1 Insight into the RAH ICU

In this section, we look towards gaining insight into the operation of the Royal

Adelaide Hospital ICU by means of level-dependent QBD processes. We consider

two level-dependent QBD processes; a level-dependent QBD process with one

phase (general birth-and-death process) and a level-dependent QBD process with

two phases.

Recall from Section 5.1 that the minimum observed bed occupancy was 20 and the

maximum observed bed occupancy was 45, as illustrated in Figure 10.1.1. Despite

the physical lower limit of bed occupancy in the RAH ICU being 0, the minimum

bed occupancy in our queueing models will remain at 20 since there is no data

associated with bed occupancies less than 20. On the other hand, we have data up

to and including the physical upper limit of 45 beds. Therefore, the QBD

processes considered in this chapter will be finite.
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Figure 10.1.1: Bar graph of the observed bed occupancy in the RAH ICU.

10.1.1 Level-dependent QBD process with one phase

In this section, we fit a level-dependent QBD process with one phase to the RAH

ICU data set, where the generator matrix is of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0


.

Note that level 0 represents a bed occupancy of 20 and level 25 represents a bed

occupancy of 45.
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For a level-dependent QBD process with one phase, there are no hidden phase

transitions. Hence, we can directly calculate the maximum likelihood estimates of

the parameters for the level-dependent QBD process with one phase without the

EM algorithm.

As shown in Figure 10.1.2, the admission rate of patients to the ICU tends to

decrease as the number of patients in the ICU increases and the discharge rate of

patients from the ICU remains relatively constant. The variability in the estimated

rates for the lower and higher bed occupancies is due to minimal data.

Figure 10.1.2: Maximum likelihood estimates for the level-dependent QBD process

with one phase fitted to the RAH ICU data set.
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The fitted level-dependent QBD process with one phase captures the long term

proportion of time spent at each bed occupancy and the transition probabilities

between bed occupancies, as illustrated in Figures 10.1.3 and 10.1.4. However, the

distribution of sojourn times conditioned on moving up a bed occupancy are

generally underestimated in terms of mean and variance, as demonstrated in

Figure 10.1.5. Additionally, the mean sojourn time conditioned on moving down a

bed occupancy is generally overestimated, whereas the variance is generally

underestimated.

Figure 10.1.3: Comparison of the observed proportion of time spent at each bed

occupancy (red points) to the observed proportion of time spent at each bed

occupancy based on 1000 simulated data sets generated from the fitted level-

dependent QBD process with one phase (box-plots). Note that each simulated data

set contains the same number of changes in bed occupancy as that observed in the

RAH ICU data set.
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Figure 10.1.4: Comparison of the observed upward transition probabilities between

bed occupancies (red points) to the observed upward transition probabilities between

bed occupancies based on 1000 simulated data sets generated from the fitted level-

dependent QBD process with one phase (box-plots). Note that the data associated

with upward transitions below 26 and above 42 are omitted due to minimal data.

Also note that each simulated data set contains the same number of changes in bed

occupancy as that observed in the RAH ICU data set.
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(a)

(b)

Figure 10.1.5: Comparison between the first (a) and second (b) moments of the

distribution of conditional sojourn times for each bed occupancy based on observed

data (red points) and the distribution of conditional sojourn times for each bed

occupancy based on 1000 simulated data sets generated from the fitted level-

dependent QBD process with one phase (box-plots). Note that the data associated

with transitions below 26 and above 43 are omitted due to minimal data. Also note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.
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10.1.2 Level-dependent QBD process with two phases

Next, we fit a level-dependent QBD process with two phases to the RAH ICU data,

where the generator matrix is of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0


.

As before, level 0 represents a bed occupancy of 20 and level 25 represents a bed

occupancy of 45.

Particularly for the phase transitions (1, 1) and (2, 2), the admission rate of

patients to the ICU decreases as the number of patients in the ICU increases and

the discharge rate of patients from the ICU remains relatively constant, as shown

in Figure 10.1.6.

Further insight into the patient flow in the ICU is gained by considering the

dominant transitions within each phase transition. Given that the discharge rates

are the dominant rates for phase (1, 1) transitions and the admission rates are the

dominant rates for phase (2, 2) transitions, we label phase 1 as the discharge phase

and phase 2 as the admission phase. Hence, the ICU at the RAH is more likely to

see an admission following an admission rather than an arrival following a

discharge, and a discharge following a departure rather than a discharge following

an admission.
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Figure 10.1.6: Maximum likelihood estimates for the level-dependent QBD process

with two phases fitted to the RAH ICU data set, where a, b indicates a phase

transition from a to b.

Similar to before, the fitted level-dependent QBD process with two phases captures

the stationary behaviour observed in the bed occupancy data, as illustrated in

Figure 10.1.7. On the other hand, Figures 10.1.8, and 10.1.9 demonstrate that the

fitted level-dependent QBD process with two phases better captures the transient

behaviour compared to the fitted level-dependent QBD process with one phase.

Note that the variation towards the lower and upper bed occupancies is due to

minimal data.
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Figure 10.1.7: Comparison of the observed proportion of time spent at each bed

occupancy (red points) to the observed proportion of time spent at each bed

occupancy based on 1000 simulated data sets generated from the fitted level-

dependent QBD process with two phases (box-plots). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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Figure 10.1.8: Comparison of the observed upward transition probabilities between

bed occupancies (red points) to the observed upward transition probabilities between

bed occupancies based on 1000 simulated data sets generated from the fitted level-

dependent QBD process with two phases (box-plots). Note that the data associated

with upward transitions below 25 and above 42 are omitted due to minimal data.

Also note that each simulated data set contains the same number of changes in bed

occupancy as that observed in the RAH ICU data set.
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(a)

(b)

Figure 10.1.9: Comparison between the first (a) and second (b) moments of the

distribution of conditional sojourn times for each bed occupancy based on observed

data (red points) and the distribution of conditional sojourn times for each bed

occupancy based on 1000 simulated data sets generated from the fitted level-

dependent QBD process with two phases (box-plots). Note that the data associated

with transitions below 26 and above 42 are omitted due to minimal data. Also note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.
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10.1.3 Discussion

We have gained further insight into the operation of the RAH ICU by using

level-dependent QBD processes. Evident in both fitted level-dependent QBD

processes was a relatively constant discharge rate and a decreasing admission rate

as the bed occupancy in the RAH ICU increases. Furthermore, the one-phase and

two-phase level-dependent QBD processes captured the stationary behaviour of

the RAH ICU. However, we saw an improvement in the transient behaviour when

an additional phase was considered, thus emphasising the importance of phase

structure in the fitted QBD process.

In addition to this, the two-phase level-dependent QBD process uncovered a

dynamic relating to the admission and discharge of patients in the ICU, such that

you are more likely to see a patient admission following another patient admission

rather than a patient admission following a patient discharge, and a patient

discharge following another patient discharge rather than a patient discharge

following a patient admission.

Due to the level-dependent nature of such QBD processes, these queueing models

were able to capture elements of the stationary and transient behaviour observed

in the RAH ICU data set. However, level-dependent QBD processes are over-

parameterised and hence cannot be used for prediction modelling. Therefore, we

now look towards structured QBD processes to find a suitable model to use for

prediction.
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10.2 Identification of suitable models

In this section, we explore the class of structured QBD processes to find a suitable

QBD process with which we can predict the behaviour of the RAH ICU under

various conditions.

Within the structured QBD process framework, several forms of the infinitesimal

generator matrix may be suitable for the RAH ICU. In the following sections, we

first explore structured QBD processes with level-dependent scales and then

extend our investigation to structured QBD processes with level and phase

transition dependent scales. In doing so, we make an informative decision on the

structure required within the infinitesimal generator matrix.

For simplicity, we begin our investigation by considering a one-phase structured

QBD process with level-dependent polynomial forms. However, emphasis will be

placed on structured QBD process with two or more phases as the general

birth-and-death process was unable to capture the transient behaviour of the bed

occupancy within the RAH ICU.
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10.2.1 One-phase structured QBD process with

level-dependent polynomial forms

First, we consider a one-phase structured QBD process with an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where

A
(`)
− = h`A−, for 1 ≤ ` ≤ 25,

A
(`)
+ = f`A+, for 0 ≤ ` ≤ 24,

A
(`)
0 for 0 ≤ ` ≤ 25 are the negative of the relevant row sums, and f` and h` are

non-negative, level-dependent scales. Given that there are no hidden phase

transitions associated with a one-phase structured QBD process, we can calculate

the maximum likelihood estimates of the parameters for the one-phase structured

QBD process with level-dependent polynomial forms without the EM algorithm.
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To determine whether polynomial forms of the level are required for a one-phase

structured QBD process, we fitted a constant model, linear model, and a quadratic

model to the maximum likelihood estimates of the level-dependent arrival and

departure scales of the one-phase structured QBD process, as illustrated in

Figure 10.2.1.

Note that we used weighted least squares regression since the lower and upper bed

occupancies of the ICU are infrequently visited, which introduces uncertainty

associated with those maximum likelihood estimates. In this case, the weights for

each regression model considered are the normalised expected number of visits to

each level under the best fitting one-phase structured QBD process with

level-dependent scales.
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(a) Departure

(b) Arrival

Figure 10.2.1: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level-dependent scales

(points) for the fitted one-phase structured QBD process with level-dependent

polynomial forms.
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The level-dependent scales associated with arrivals are linearly decreasing, which

suggests that the rate of admissions to the ICU decreases as the number of

patients in the ICU increases. The results of the likelihood ratio test in

Table 10.2.1 confirm that a quadratic term is not needed to explain the behaviour

of the level-dependent scales associated with arrivals. Therefore, admissions to the

RAH ICU decrease at a linear rate as the bed occupancy increases.

On the other hand, the level-dependent scales associated with departures are

relatively constant across all levels which suggests that discharges from the ICU do

not depend on the number of patients in the ICU. This result is also confirmed by

the likelihood ratio tests presented in Table 10.2.1, which shows that neither a

linear or quadratic term is needed to explain the behaviour of the level-dependent

scales associated with departures.

Matrix Model 1 Model 2 Statistic Degrees of freedom P-value

Departure Constant Linear 0.064 1 0.800

Departure Linear Quadratic 0.114 1 0.736

Arrival Constant Linear 53.987 1 2.018× 10−13

Arrival Linear Quadratic 0.230 1 0.631

Table 10.2.1: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models for the one-phase structured QBD process

with level-dependent scales.
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Therefore, a linear functional form of the level is most suitable for arrivals and a

constant scale is most suitable for departures, such that the functional forms for the

block matrices describing a decrease in level, for 1 ≤ ` ≤ 25, take the form

h` = 1,

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `.

10.2.2 Two, three, and four-phase structured QBD

processes with level-dependent polynomial forms

Next, we consider a structured QBD processes with an infinitesimal generator matrix

of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where

A
(`)
− = h`A−, for 1 ≤ ` ≤ 25,

A
(`)
0 = g`A0, for 0 ≤ ` ≤ 25,

A
(`)
+ = f`A+, for 0 ≤ ` ≤ 24,



CHAPTER 10. APPLICATION: RAH ICU 311

the diagonal entries of A
(`)
0 for 0 ≤ ` ≤ 25 are the negative of the relevant row

sums, and h`, g`, and f` are non-negative, level-dependent scales.

By a similar method to Section 10.2.1, we determined suitable functional forms of

the level for the two, three, and four-phase structured QBD processes with

level-dependent scales.

Firstly, for a two-phase structured QBD process, the functional forms for the block

matrices describing a decrease in level, for 1 ≤ ` ≤ 25, take the form

h` = 1 + βh1 (`− 1),

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

g` = 1 + βg1`+ βg2`
2,

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `+ βf2 `
2.

Secondly, for a structured QBD process with three phases, the functional forms for

the block matrices describing a decrease in level, for 1 ≤ ` ≤ 25, take the form

h` = 1 + βh1 (`− 1) + βh2 (`− 1)2,

for 0 ≤ ` ≤ 25, the functional forms for the block matrices describing within level

changes, for 0 ≤ ` ≤ 25, take the form

g` = 1 + βg1`+ βg2`
2,

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `.
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Lastly, for a four-phase structured QBD process, the functional forms for the block

matrices describing a decrease in level, for 1 ≤ ` ≤ 25, take the form

h` = 1 + βh1 (`− 1) + βh2 (`− 1)2,

for 0 ≤ ` ≤ 25, the functional forms for the block matrices describing within level

changes, for 0 ≤ ` ≤ 25, take the form

g` = 1 + βg1`,

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `.

These results are also summarised in Table 10.2.2.

Phases Matrix Model

2 Departure Linear

Unchanged Quadratic

Arrival Quadratic

3 Departure Quadratic

Unchanged Quadratic

Arrival Linear

4 Departure Quadratic

Unchanged Linear

Arrival Linear

Table 10.2.2: Summary of the chosen functional forms for the two, three, and four-

phase structured QBD process with level-dependent scales.

See Appendices E.1.1, E.1.2, and E.1.3 for the relevant plots and likelihood ratio

test results.
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10.2.3 Two-phase structured QBD process with level and

phase transition dependent polynomial forms

Next, we extend the EM algorithm described in Section 8.3 to allow the scales

to depend on level and phase transitions. In this case, the infinitesimal generator

matrix is of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where [
A

(`)
−

]
i,j

= h`,i,j [A−]i,j , for 1 ≤ ` ≤ 25 and 1 ≤ i, j,≤ 2,

[
A

(`)
0

]
i,j

= g`,i,j [A0]i,j , for 0 ≤ ` ≤ 25 and 1 ≤ i 6= j,≤ 2,

[
A

(`)
+

]
i,j

= f`,i,j [A+]i,j , for 0 ≤ ` ≤ 24 and 1 ≤ i, j,≤ 2,

the diagonal entries of A
(`)
0 for 0 ≤ ` ≤ 25 are the negative of the relevant row

sums, and h`,i,j, g`,i,j, and f`,i,j are non-negative, level and phase transition

dependent scales.
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First, we look at the fitted constant, linear, and quadratic models of the maximum

likelihood estimates of the level and phase transition dependent scales associated

with a decrease in level of the fitted two-phase structured QBD process, as

illustrated in Figure 10.2.2.

(a) (1, 1) (b) (1, 2)

(c) (2, 1) (d) (2, 2)

Figure 10.2.2: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent departure scales for the fitted two-phase structured QBD process. Note

that (a, b) indicates a phase transition from phase a to phase b.
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According to the likelihood ratio tests presented in Table 10.2.3, a quadratic term

is needed to explain the behaviour of the level and phase transition dependent

scales associated with the (1, 1) and (2, 1) phase transitions but it is not needed

for the (1, 2) phase transition. For the (2, 2) phase transition, neither a linear or

quadratic term is needed.

Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 1) Constant Linear 0.703 1 0.402

(1, 1) Linear Quadratic 10.285 1 1.341×10−3

(1, 2) Constant Linear 21.836 1 2.971×10−6

(1, 2) Linear Quadratic 0.060 1 0.807

(2, 1) Constant Linear 8.673 1 3.230×10−3

(2, 1) Linear Quadratic 4.662 1 3.083×10−2

(2, 2) Constant Linear 0.004 1 0.947

(2, 2) Linear Quadratic 2.969 1 8.487×10−2

Table 10.2.3: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with departures for the two-phase

structured QBD process with level and phase transition dependent scales.

Next, we look at the fitted constant, linear, and quadratic models of the maximum

likelihood estimates of the level and phase transition dependent scales associated

with transitions within a level of the fitted two-phase structured QBD process, as

illustrated in Figure 10.2.3.

As confirmed by the likelihood test results presented in Table 10.2.4, the level and

phase transition dependent scales associated with the (2, 1) phase transition are

better explained by a quadratic model.
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There is an outlier in the plot of the maximum likelihood estimates associated

with the (1, 2) phase transition which makes it difficult to visually assess the

behaviour of the level and phase transition dependent scales. Including the outlier

in the analysis, the results of the likelihood ratio test suggest that neither a linear

or quadratic term is required to explain the behaviour of the level and phase

transition dependent scales.

(a) (1, 2) (b) (2, 1)

Figure 10.2.3: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent unchanged scales for the fitted two-phase structured QBD process. Note

that (a, b) indicates a phase transition from phase a to phase b.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 2) Constant Linear 2.849 1 9.145×10−2

(1, 2) Linear Quadratic 0.675 1 0.411

(2, 1) Constant Linear 3.317 1 6.858×10−2

(2, 1) Linear Quadratic 4.718 1 2.986×10−2

Table 10.2.4: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with transitions within a level for

the two-phase structured QBD process with level and phase transition dependent

scales.

Figure 10.2.4 plots the constant model, linear model, and a quadratic model that

were fitted to the maximum likelihood estimates of the level and phase transition

dependent scales that have a value below 20. Here, it appears that the level and

phase transition dependent scales associated with the (1, 2) phase transition are

linearly decreasing.



CHAPTER 10. APPLICATION: RAH ICU 318

Figure 10.2.4: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent unchanged scales with a value below 20 for the fitted two-phase structured

QBD process. Note that (a, b) indicates a phase transition from phase a to phase b.

Using the new likelihood test results presented in Table 10.2.5, a linear term is

required to explain the behaviour of the level and phase transition dependent

scales associated with the (1, 2) phase transition.

Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 2) Constant Linear 6.436 1 1.118×10−2

(1, 2) Linear Quadratic 0.000 1 0.988

Table 10.2.5: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with transitions within a level for

the two-phase structured QBD process with level and phase transition dependent

scales with a value below 20.
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Lastly, we fitted a constant model, linear model, and a quadratic model to the

maximum likelihood estimates of the level and phase transition dependent scales

associated with an increase in level using weighted least squares regression, as

illustrated in Figure 10.2.5.

(a) (1, 1) (b) (1, 2)

(c) (2, 1) (d) (2, 2)

Figure 10.2.5: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent arrival scales for the fitted two-phase structured QBD process. Note that

(a, b) indicates a phase transition from phase a to phase b.
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Based on the results of the likelihood ratio tests shown in Table 10.2.6, the linear

model best describes the level and phase transition dependent scales associated

with the (1, 2) phase transition, while the quadratic model best describes the level

and phase transition dependent scales associated with the (1, 1) phase transition.

For the (2, 1) and (2, 2) phase transitions, the outliers make it difficult to visually

assess the behaviour of the level and phase transition dependent scales. Including

the outliers in the analysis, the results of the likelihood ratio test suggest that

neither a linear or quadratic term is required to explain the behaviour of the level

and phase transition dependent scales associated with the (2, 2) phase transition,

but a quadratic term is needed for the (2, 1) phase transition.

Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 1) Constant Linear 20.710 1 5.344×10−6

(1, 1) Linear Quadratic 10.969 1 9.264×10−4

(1, 2) Constant Linear 6.421 1 1.128×10−2

(1, 2) Linear Quadratic 0.405 1 0.525

(2, 1) Constant Linear 0.569 1 0.451

(2, 1) Linear Quadratic 4.468 1 3.454×10−2

(2, 2) Constant Linear 2.232 1 0.135

(2, 2) Linear Quadratic 0.431 1 0.511

Table 10.2.6: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with arrivals for the two-phase

structured QBD process with level and phase transition dependent scales.
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We further explored the behaviour associated with the (2, 1) and (2, 2) phase

transitions by identifying values above 40 as outliers and removing them from the

data. Figure 10.2.6 plots the constant model, linear model, and quadratic model

that have been fitted to the maximum likelihood estimates of the level and phase

transition dependent scales that have a value below 40. Visually, it is much easier

to see that the level and phase transition dependent scales appear to be relatively

constant for the (2, 1) phase transition but the level and phase transition

dependent scales may decrease at a non-linear rate for the (2, 2) phase transition.

(a) (2, 1) (b) (2, 2)

Figure 10.2.6: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent arrival scales with a value below 40 for the fitted two-phase structured

QBD process. Note that (a, b) indicates a phase transition from phase a to phase b.

The results of the likelihood ratio test for these new models confirm that the level

and phase transition dependent scales associated with the (2, 1) phase transition

are constant but suggest that a quadratic term is required to explain the behaviour

of the level and phase transition dependent scales associated with the (2, 2) phase

transition, as shown in Table 10.2.7.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(2, 1) Constant Linear 0.329 1 0.566

(2, 1) Linear Quadratic 3.614 1 5.728×10−2

(2, 2) Constant Linear 31.689 1 1.810×10−8

(2, 2) Linear Quadratic 4.462 1 3.466×10−2

Table 10.2.7: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with arrivals for the two-phase

structured QBD process with level and phase transition dependent scales. Note

that the scales used in these tests have values below 40.

To summarise, the functional forms for the block matrices describing a decrease in

level, for 1 ≤ ` ≤ 25, take the form

[H`]i,j = h`,i,j =


1, if (i, j) ∈ {(2, 2)},

1 + βh,i,j1 (`− 1), if (i, j) ∈ {(1, 2)},

1 + βh,i,j1 (`− 1) + βh,i,j2 (`− 1)2, if (i, j) ∈ {(1, 1), (2, 1)},

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

[G`]i,j = g`,i,j =

1 + βg,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βg,i,j1 `+ βg,i,j2 `2, if (i, j) ∈ {(2, 1)},

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

[F`]i,j = f`,i,j =


1, if (i, j) ∈ {(2, 1)},

1 + βf,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βf,i,j1 `+ βf,i,j2 `2, if (i, j) ∈ {(1, 1), (2, 2)}.
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The results of the chosen functional forms for the two-phase structured QBD

process with level and phase transition dependent scales are also summarised in

Table 10.2.8.

Matrix Phase transition Model

Departure (1, 1) Quadratic

(1, 2) Linear

(2, 1) Quadratic

(2, 2) Constant

Unchanged (1, 2) Linear

(2, 1) Quadratic

Arrival (1, 1) Quadratic

(1, 2) Linear

(2, 1) Constant

(2, 2) Quadratic

Table 10.2.8: Summary of the chosen functional forms for the two-phase structured

QBD process with level and phase transition dependent scales.
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10.2.4 Three and four-phase structured QBD processes

with level and phase transition dependent

polynomial forms

Continuing on from the previous section, we now consider an infinitesimal generator

matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where [
A

(`)
−

]
i,j

= h`,i,j [A−]i,j , for 1 ≤ ` ≤ 25 and 1 ≤ i, j,≤ k,

[
A

(`)
0

]
i,j

= g`,i,j [A0]i,j , for 0 ≤ ` ≤ 25 and 1 ≤ i 6= j,≤ k,

[
A

(`)
+

]
i,j

= f`,i,j [A+]i,j , for 0 ≤ ` ≤ 24 and 1 ≤ i, j,≤ k,

k is the number of phases, the diagonal entries of A
(`)
0 for 0 ≤ ` ≤ 25 are the

negative of the relevant row sums, and h`,i,j, g`,i,j, and f`,i,j are non-negative, level

and phase transition dependent scales.

Using a similar method to Section 10.2.3, we determined suitable functional forms

of the level for the three and four-phase structured QBD processes with level and

phase transition dependent scales.
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Firstly, for the three-phase structured QBD process, the functional forms for the

block matrices describing a decrease in level, for 1 ≤ ` ≤ 25, take the form

[H`]i,j = h`,i,j =



1, if (i, j) ∈ {(1, 1), (1, 3),

(2, 1), (3, 2), (3, 3)},

1 + βh,i,j1 (`− 1), if (i, j) ∈ {(2, 3)},

1 + βh,i,j1 (`− 1) + βh,i,j2 (`− 1)2, if (i, j) ∈ {(1, 2), (2, 2),

(3, 1)},

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

[G`]i,j = g`,i,j =


1, if (i, j) ∈ {(1, 3), (2, 1), (2, 3), (3, 2)},

1 + βg,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βg,i,j1 `+ βg,i,j2 `2, if (i, j) ∈ {(3, 1)},

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

[F`]i,j = f`,i,j =


1, if (i, j) ∈ {(1, 3), (2, 1), (3, 1), (3, 2)},

1 + βf,i,j1 `, if (i, j) ∈ {(1, 2), (2, 2), (2, 3)},

1 + βf,i,j1 `+ βf,i,j2 `2, if (i, j) ∈ {(1, 1), (3, 3)}.

These results are also summarised in Table 10.2.9.
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Matrix Model Phase transitions

Departure Constant (1, 1), (1, 3), (2, 1), (3, 2), (3, 3)

Linear (2, 3)

Quadratic (1, 2), (2, 2), (3, 1)

Unchanged Constant (1, 3), (2, 1), (2, 3), (3, 2)

Linear (1, 2)

Quadratic (3, 1)

Arrival Constant (1, 2), (1, 3), (2, 1), (3, 1), (3, 2)

Linear (2, 2), (2, 3)

Quadratic (1, 1), (3, 3)

Table 10.2.9: Summary of the chosen functional forms for the three-phase structured

QBD process with level and phase transition dependent scales.

Lastly, for a structured QBD process with four phases, the functional forms for the

block matrices describing a decrease in level, for 1 ≤ ` ≤ 25, take the form

[H`]i,j = h`,i,j =



1, if (i, j) ∈ {(1, 3), (1, 4),

(2, 1), (2, 4), (3, 1), (3, 4)},

1 + βh,i,j1 (`− 1), if (i, j) ∈ {(3, 2), (4, 1)},

1 + βh,i,j1 (`− 1) + βh,i,j2 (`− 1)2, if (i, j) ∈ {(1, 1), (1, 2),

(2, 2), (2, 3), (3, 3), (4, 2),

(4, 3), (4, 4)},

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

[G`]i,j = g`,i,j =



1, if (i, j) ∈ {(1, 3), (1, 4), (2, 1), (2, 3), (2, 4),

(3, 1), (3, 2), (3, 4), (4, 2), (4, 3)},

1 + βg,i,j1 `, if (i, j) ∈ {(4, 1)},

1 + βg,i,j1 `+ βg,i,j2 `2, if (i, j) ∈ {(1, 2)},
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and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

[F`]i,j = f`,i,j =



1, if (i, j) ∈ {(1, 3), (1, 4), (2, 1), (2, 4), (3, 1),

(3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3)},

1 + βf,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βf,i,j1 `+ βf,i,j2 `2, if (i, j) ∈ {(1, 1), (2, 2), (2, 3), (4, 4)}.

These results are also summarised in Table 10.2.10.

Matrix Model Phase transitions

Departure Constant (1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 4)

Linear (3, 2), (4, 1)

Quadratic (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (4, 2), (4, 3), (4, 4)

Unchanged Constant
(1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1),

(3, 2), (3, 4), (4, 2), (4, 3)

Linear (4, 1)

Quadratic (1, 2)

Arrival Constant
(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4),

(4, 1), (4, 2), (4, 3)

Linear (1, 2)

Quadratic (1, 1), (2, 2), (2, 3), (4, 4)

Table 10.2.10: Summary of the chosen functional forms for the four-phase structured

QBD process with level and phase transition dependent scales.

See Appendices E.1.4 and E.1.5 for the relevant plots and likelihood ratio test results.
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10.2.5 Discussion

The analysis and modelling presented above assumes that the phases do not

interchange within the structured QBD process. However, this is an invalid

assumption as there is no direct meaning of a phase in the context of a queueing

system and phases can interchange as needed to explain the behaviour of the

queueing process. Hence, the functional forms of a structured QBD process should

not be pre-specified and instead the selection of the best fitting functional forms

should be incorporated in the EM algorithm itself.

For completeness, we continue with the investigation of finding the best fitting

structured QBD process for the RAH ICU. However, we suggest the development

of a statistical method for structured QBD process that correctly incorporates the

selection of functional forms as an area of future research.

10.3 Structured QBD process estimation and

goodness of fit

In this section, we find the most suitable model for the RAH ICU by fitting and

assessing the fit of each structured QBD processes described in Section 10.2. In

particular, we use the methods developed in Chapters 8 and 9 to assess the fit of

each fitted structured QBD process and then identify the most suitable model for

the RAH ICU.
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10.3.1 Four-phase structured QBD process with level and

phase transition dependent polynomial forms

In this section, we consider a four-phase structured QBD process, such that the null

and alternative hypotheses are defined as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all four-phase structured QBD processes with an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,
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where the functional forms for the block matrices describing a decrease in level, for

1 ≤ ` ≤ 25, take the form

[H`]i,j = h`,i,j =



1, if (i, j) ∈ {(1, 3), (1, 4),

(2, 1), (2, 4), (3, 1), (3, 4)},

1 + βh,i,j1 (`− 1), if (i, j) ∈ {(3, 2), (4, 1)},

1 + βh,i,j1 (`− 1) + βh,i,j2 (`− 1)2, if (i, j) ∈ {(1, 1), (1, 2),

(2, 2), (2, 3), (3, 3), (4, 2),

(4, 3), (4, 4)},

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

[G`]i,j = g`,i,j =



1, if (i, j) ∈ {(1, 3), (1, 4), (2, 1), (2, 3), (2, 4),

(3, 1), (3, 2), (3, 4), (4, 2), (4, 3)},

1 + βg,i,j1 `, if (i, j) ∈ {(4, 1)},

1 + βg,i,j1 `+ βg,i,j2 `2, if (i, j) ∈ {(1, 2)},

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

[F`]i,j = f`,i,j =



1, if (i, j) ∈ {(1, 3), (1, 4), (2, 1), (2, 4), (3, 1),

(3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3)},

1 + βf,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βf,i,j1 `+ βf,i,j2 `2, if (i, j) ∈ {(1, 1), (2, 2), (2, 3), (4, 4)}.

Using the hypothesis test described in Section 9.2, we obtain an empirical p-value

of 0.02 which suggests that a four-phase structured QBD process with the

functional forms defined above does not completely capture the elements of the

stationary and transient behaviour observed in the RAH ICU data. We now

further explore this result by considering the diagnostic plots relating to the

stationary and transient behaviour.
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Figure 10.3.1 illustrates that the fitted four-phase structured QBD process closely

estimates the proportion of time spent in the most frequently visited bed

occupancies, but generally poorly estimates the other bed occupancies.

Figure 10.3.1: Comparison of the observed proportion of time spent at each bed

occupancy (red points) to the observed proportion of time spent at each bed

occupancy based on 1000 simulated data sets generated from the fitted four-phase

structured QBD process with level and phase transition polynomial forms (box-

plots). Note that each simulated data set contains the same number of changes in

bed occupancy as that observed in the RAH ICU data set.

With the exception of the less frequently visited bed occupancies, the transition

probabilities of the fitted four-phase structured QBD process are similar to those

observed in the RAH ICU data set, as demonstrated in Figure 10.3.2. Note that

the variation towards the lower and higher bed occupancies is due to minimal data.
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Figure 10.3.2: Comparison of the observed transition probabilities between bed

occupancies (red points) to the observed transition probabilities between bed

occupancies based on 1000 simulated data sets generated from the fitted four-phase

structured QBD process with level and phase transition polynomial forms (box-

plots). Note that the transition probabilities for bed occupancies below 26 and

above 43 are omitted due to minimal data. Also note that each simulated data set

contains the same number of changes in bed occupancy as that observed in the RAH

ICU data set.

Particularly for the most frequently visited bed occupancies, the fitted four-phase

structured QBD process closely models the sojourn time within each bed

occupancy, as illustrated in Figures 10.3.3a, 10.3.3b, and 10.3.3c. These results are

further illustrated in Figures 10.3.4 and 10.3.5, which visually compare the

observed distributions of conditional sojourn times compared to the simulated

distributions of conditional sojourn times from the fitted four-phase structured

QBD process.
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(a) (b)

(c)

Figure 10.3.3: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each bed occupancy based on

observed data (red points) and the distribution of conditional sojourn times for each

bed occupancy based on 1000 simulated data sets generated from the fitted four-

phase structured QBD process with level and phase transition polynomial forms

(box-plots). Note that the conditional sojourn times for bed occupancies below 27

and above 43 are omitted due to minimal data. Also note that each simulated data

set contains the same number of changes in bed occupancy as that observed in the

RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure 10.3.4: Comparison of the observed density of sojourn times conditioned on

downward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on downward transitions based

on 1000 simulated data sets generated from the fitted four-phase structured QBD

process with level and phase transition dependent polynomial forms (red lines).

Also note that each simulated data set contains the same number of changes in bed

occupancy as that observed in the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure 10.3.5: Comparison of the observed density of sojourn times conditioned on

upward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on upward transitions based

on 1000 simulated data sets generated from the fitted four-phase structured QBD

process with level and phase transition polynomial forms (red lines). Also note that

each simulated data set contains the same number of changes in bed occupancy as

that observed in the RAH ICU data set.
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10.3.2 Other structured QBD processes

Given that the method of assessing the fit of each structured QBD process is

similar to above, we summarise the results of the goodness of fit test for each

type of structured QBD process considered in Table 10.3.1. We refer the reader

to Appendix E.2 for a detailed discussion of the diagnostic plots associated with

each goodness of fit test performed.

Number of phases Polynomial forms Section Empirical p-value

1 Level only 10.2.2 0

2 Level only 10.2.2 0.002

3 Level only 10.2.2 0.001

4 Level only 10.2.2 0

2 Level and phase 10.2.3 0

3 Level and phase 10.2.4 0.006

Table 10.3.1: Summary of the empirical p-values obtained from the goodness of

fit test performed on each type of structured QBD process considered. Note that

the Section column refers to the section in which the structured QBD process was

defined.

10.3.3 Discussion

Based on the results presented in Table 10.3.1, the four-phase structured QBD

process with level and phase transition dependent polynomial forms is the most

suitable model for the RAH ICU. While the four-phase structured QBD process

captured some elements of the stationary and transient behaviour observed in the

RAH ICU data set, improvements to the model could still be made.
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In any case, the best fitting model of those considered in this chapter is the

four-phase structured QBD process with level and phase transition dependent

polynomials forms. In the following sections, we first demonstrate how this

structured QBD process compares to the standard queueing models often used to

model ICUs. We then predict future behaviour of the RAH ICU under various

scenarios.

10.4 Comparison to standard queueing models

In this section, we use the diagnostic plots developed in Section 9.3 to illustrate

how the four-phase structured QBD process with level and phase transition

dependent polynomial forms compares to the M/M/• queueing models that are

often used to model intensive care units [2].

In terms of the long term proportion of time spent at each bed occupancy, the

four-phase structured QBD process provides a much better fit than the M/M/•

queueing models, as illustrated in Figure 10.4.1. Additionally, the M/M/∞ and

M/M/42 queueing models allow transitions above the maximum bed occupancy of

45 as indicated by the predicted proportion of time spent above a bed occupancy

of 45 being positive. However, such transitions do not exist within an intensive

care unit with a finite number of beds and resources, thus highlighting the

invalidity of such queueing models.
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Figure 10.4.1: Comparison of the observed proportion of time spent at each bed

occupancy (blue) versus the proportion of time spent at each bed occupancy

assuming an M/M/42/45 queueing model (purple), assuming an M/M/42 queueing

model (red), assuming an M/M/∞ queueing model (green), and assuming a four-

phase structured QBD process with level and phase transition dependent polynomial

forms (black).

Given that the stationary behaviour of the bed occupancy of the RAH ICU is

incorrectly estimated by the M/M/• queueing models, no further comparison

between the M/M/• queueing models and the fitted structured QBD process is

required here. We therefore refer the reader to Appendix F for a discussion of the

transient behaviour.
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10.4.1 Discussion

From the analysis and modelling presented above, we have developed a queueing

model that provides a better fitting model compared to the standard M/M/•

queueing models. In addition to this, we have captured elements of the stationary

and transient behaviour of the bed occupancy of the RAH ICU without the use of

an over-parameterised queueing model. Therefore, structured QBD processes can

provide more accurate and meaningful insights into the behaviour of the RAH ICU

compared to M/M/• queueing models.

10.5 Predicting future behaviour under various

scenarios

Patient admissions to an intensive care unit are known for being unpredictable and

highly variable [2, 46]. For example, admissions to an ICU may change suddenly

due to an accident resulting in several emergency admissions, or the overall trend

in admissions may change as a result of a decline in the demand of elective surgical

procedures.

Insight into how the stationary and transient behaviour of the RAH ICU changes

as the rate of patient admissions increases can be useful in situations where there

is an expected surge in elective surgeries or a series of unexpected emergency

admissions. On the other hand, a reduction in the rate of admissions (e.g. fewer

elective surgical procedures) will alleviate the pressure on ICU staff and resources

but the extent to which that occurs can be answered through the use of a fitted

structured QBD process.
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In addition to this, patient length of stay within an ICU also varies considerably

and often depends on the state of the ICU, the health status of the patient, and

the complexity of the medial condition [2, 46]. However, policy changes may

change the patient discharge process from the RAH ICU, and so an exploration

into how the behaviour of the RAH ICU is affected as the rate of discharges

changes may also prove useful.

As the COVID-19 pandemic unfolded across the world, the demand for intensive

care resources increased dramatically. As a result, the need for more informative

models of intensive care units increased [35, 48]. Through the enforcement of

worldwide lockdowns, intensive care units saw a reduction in the number of

non-COVID-19 related admissions due to the cancellation of elective procedures

and an overall reduction in human movement [23, 44]. However, non-COVID-19

related intensive care was still required for some patients and so only a proportion

of intensive care resources were reserved for COVID-19 patients who required

critical care.

Without an appropriate model of an ICU, we cannot predict how an ICU will respond

to changes in the admission and discharge processes or in the number of intensive care

resources available. Therefore, in this section we use the fitted four-phase structured

QBD process with level and phase transition dependent polynomial forms to predict

the behaviour of the RAH ICU under the following scenarios:

• the rate of patient admissions decreases/increases,

• the rate of patient discharges decreases/increases, and

• a proportion of the number of beds within the ICU are reserved for a certain

type of patient.
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10.5.1 Decrease in patient admissions

First, we explore the effect of decreasing the rate of patient admissions to the ICU

by scaling the A
(`)
+ block matrices of the fitted four-phase structured QBD process

with level and phase transition dependent polynomial forms. That is, we reduce the

rate of admissions to the RAH ICU by (1− γ)100% through scaling the A
(`)
+ block

matrices by γ = {0.2, 0.4, 0.6, 0.8}, such that

Q =



A
(0)
0 γA

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 γA

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 γA

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 γA

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



.

Figure 10.5.1 illustrates how the stationary and transient behaviour change as the

rate of patient admissions to the RAH ICU decreases. In particular, we notice a

decrease in proportion of time spent above 85% capacity as the rate of admissions

decreases, as well as an increase in the amount of time the ICU spends without a

patient admission or discharge. Note that 85% capacity is recognised by healthcare

professionals as a key performance measure and the capacity beyond which a

healthcare system may begin to struggle with demand [27, 30].
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(a) (b)

(c) (d)

Figure 10.5.1: Illustrations of how the stationary and transient behaviour of the

RAH ICU changes as the rate of patient admissions decreases. (a) Comparison of

the bed occupancy stationary distributions for each reduction in arrival rate. (b)

Comparison of the upward bed occupancy transition probabilities for each reduction

in arrival rate. (c) Comparison of the probability density functions of the upward

sojourn times for selected bed occupancies and for each reduction in arrival rate. (d)

Comparison of the probability density functions of the downward sojourn times for

selected bed occupancies and for each reduction in arrival rate. Note that the black

triangles indicate the stationary distribution without a reduction in arrival rate.



CHAPTER 10. APPLICATION: RAH ICU 343

10.5.2 Increase in patient admissions

Next, we explore the effect of increasing the rate of patient admissions to the ICU

by (γ − 1)100% through scaling the A
(`)
+ block matrices by γ = {1.2, 1.4, 1.6, 1.8},

such that

Q =



A
(0)
0 γA

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 γA

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 γA

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 γA

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



.

As shown in Figure 10.5.2a, the proportion of time spent above 85% capacity

increases as the rate of admissions increases. Despite increasing the rate of patient

admissions, the upward transition probabilities remain relatively the same as those

of the fitted structured QBD process, as illustrated in Figure 10.5.2b. However,

the time between a patient admission or discharge generally decreases as the rate

of admissions increases, as demonstrated in Figures 10.5.2c and 10.5.2d.
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(a) (b)

(c) (d)

Figure 10.5.2: Illustrations of how the stationary and transient behaviour of the

RAH ICU changes as the rate of patient admissions increases. (a) Comparison of

the bed occupancy stationary distributions for each increase in arrival rate. (b)

Comparison of the upward bed occupancy transition probabilities for each increase

in arrival rate. (c) Comparison of the probability density functions of the upward

sojourn times for selected bed occupancies and for each increase in arrival rate. (d)

Comparison of the probability density functions of the downward sojourn times for

selected bed occupancies and for each increase in arrival rate. Note that the black

triangles indicate the stationary distribution without an increase in arrival rate.
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10.5.3 Decrease in patient discharges

Now, let’s consider the effect of decreasing the rate of patient discharges from the

ICU by scaling the A
(`)
− block matrices of the fitted four-phase structured QBD

process with level and phase transition dependent polynomial forms. In this case,

we reduce the rate of discharges from the RAH ICU by (1−γ)100% through scaling

the A
(`)
− block matrices by γ = {0.2, 0.4, 0.6, 0.8}, such that

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

γA
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 γA
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . γA
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 γA
(25)
− A

(25)
0



.

As you slow the discharge process of the RAH ICU, you expectedly see a

significant increase in the proportion of time spent above 85% capacity and an

increase in the upward transition probabilities, as shown in Figures 10.5.3a

and 10.5.3b. Generally, Figures 10.5.3c and 10.5.3d show that the ICU spends less

time without a patient admission or discharge as the discharge process is slowed.
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(a) (b)

(c) (d)

Figure 10.5.3: Illustrations of how the stationary and transient behaviour of the

RAH ICU changes as the rate of patient discharges decreases. (a) Comparison of

the bed occupancy stationary distributions for each reduction in departure rate. (b)

Comparison of the upward bed occupancy transition probabilities for each reduction

in departure rate. (c) Comparison of the probability density functions of the upward

sojourn times for selected bed occupancies and for each reduction in departure rate.

(d) Comparison of the probability density functions of the downward sojourn times

for selected bed occupancies and for each reduction in departure rate. Note that the

black triangles indicate the stationary distribution without a reduction in departure

rate.
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10.5.4 Increase in patient discharges

Lastly, we explore the effect of speeding up the patient discharge process from the

RAH ICU by scaling the A
(`)
− block matrices of the fitted four-phase structured

QBD process with level and phase transition dependent polynomial forms. Here, we

increase the rate of discharges from the RAH ICU by (γ − 1)100% through scaling

the A
(`)
− block matrices by γ = {1.2, 1.4, 1.6, 1.8}, such that

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

γA
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 γA
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . γA
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 γA
(25)
− A

(25)
0



.

As expected, the proportion of time spent above 85% capacity is considerably

reduced as the discharge rate of patients from the RAH ICU increases, as shown in

Figures 10.5.4a. As shown in Figure 10.5.4b, the upward transition probabilities

only slightly decrease as the rate of patient discharges increase. However, little

change is observed in the time between patient admissions and discharges as the

discharge process speeds up, as shown in Figures 10.5.4c and 10.5.4d. Despite an

investigation into these results, the cause of this unexpected observation was not

found and therefore requires further investigation.
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(a) (b)

(c) (d)

Figure 10.5.4: Illustrations of how the stationary and transient behaviour of the

RAH ICU changes as the rate of patient discharges increases. (a) Comparison of

the bed occupancy stationary distributions for each increase in departure rate. (b)

Comparison of the upward bed occupancy transition probabilities for each increase

in departure rate. (c) Comparison of the probability density functions of the upward

sojourn times for selected bed occupancies and for each increase in departure rate.

(d) Comparison of the probability density functions of the downward sojourn times

for selected bed occupancies and for each increase in departure rate. Note that the

black triangles indicate the stationary distribution without an increase in departure

rate.
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10.5.5 Reservation of beds within an ICU

Due to the COVID-19 pandemic, the number of non-COVID-19 related admissions

reduced as a result of elective procedure cancellations and an overall reduction in

human movement [23, 44]. However, intensive care services were still needed for

some patients and so only a proportion of intensive care resources were reserved for

COVID-19 patients. Given the large degree of uncertainty during a pandemic, the

proportion of intensive care resources ICU staff should reserve for COVID-19

patients became an important area of research.

Hence, we now consider the problem of predicting the long-term behaviour of a split

ICU, such that a certain number of intensive care beds are reserved for COVID-

19 patients (infectious disease ICU) and the remaining intensive care beds form a

smaller ICU for non-COVID-19 patients (non-infectious disease ICU). In this section,

we divide the 45 intensive care beds between the infectious disease ICU and non-

infectious disease ICU in several ways as described in Table 10.5.1.

Infectious disease ICU Non-infectious disease ICU

Split 1 9 36

Split 2 18 27

Split 3 27 18

Split 4 36 9

Table 10.5.1: Details of how many beds are in the infectious disease ICU and non-

infectious disease ICU for each split considered.
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Non-infectious disease ICU

While we are reducing the capacity of the RAH ICU for non-infectious disease

patients by means of the fitted structured QBD process, we must still respect the

admission and discharge processes observed in the RAH ICU data. That is, we

must reduce the capacity of the non-infectious disease ICU in such a way that we

minimise the risk of indirectly speeding up or slowing down the admission and

discharge processes.

Firstly, we look at how we adjust the block matrices associated with a decrease in

level of the fitted structured QBD process to model a non-infectious disease ICU

with a reduced capacity of Nmax, such that the infinitesimal generator matrix is of

the form

Q̃ =



Ã
(0)
0 Ã

(0)
+ 0 . . . 0 0 0

Ã
(1)
− Ã

(1)
0 Ã

(1)
+ . . . 0 0 0

0 Ã
(2)
− Ã

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . Ã
(CN−2)
0 Ã

(CN−2)
+ 0

0 0 0 . . . Ã
(CN−1)
− Ã

(CN−1)
0 Ã

(CN−1)
+

0 0 0 . . . 0 Ã
(CN )
− Ã

(CN )
0



.

Note that level CN corresponds to a new maximum capacity of Nmax and level 0

corresponds to a predicted observed minimum, Nmin, which has a similar

long-term proportion to that of level 20 in the structured QBD process fitted to

the RAH ICU data.
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Given the nature of the ICU, we adjust the block matrices associated with a decrease

in level such that we maintain the per-bed behaviour of the RAH ICU. For example,

consider the level and phase transition dependent scales h`,i,j of the fitted structured

QBD process.

• If h`,i,j = 1 for all ` ∈ [1, 25], then[
Ã

(`∗)
−

]
i,j

= [A−]i,j , for 1 ≤ `∗ ≤ CN .

• If h`,i,j = 1 + βh,i,j1 (` − 1) for all ` ∈ [1, 25], we first scale h`,i,j to reflect the

per-bed behaviour, such that

ψ`,i,j =
h`,i,j
`+ 20

, for ` ∈ [1, 25],

as illustrated in Figure 10.5.5b. Next, we translate the scales based on per-bed

behaviour from [1, 25] to [1, CN ] by using the transformation

` =
(25− 1)(`∗ − 1)

(CN − 1)
+ 1,

to obtain the scales based on per-bed behaviour for the reduced capacity

ICU, ψ̃`∗,i,j, as shown in Figure 10.5.5c. We then multiply ψ̃`∗,i,j by the bed

occupancies of the reduced capacity ICU, such that

h̃`∗,i,j = ψ̃`∗,i,j × (`∗ +Nmin), for `∗ ∈ [1, CN ],

as illustrated in Figure 10.5.5d. From this, we obtain the adjusted block

matrices associated with a decrease in level, such that[
Ã

(`∗)
−

]
i,j

= h̃`∗,i,j [A−]i,j , for 1 ≤ `∗ ≤ CN .

• If h`,i,j = 1 + βh,i,j1 (` − 1) + βh,i,j2 (` − 1)2 for all ` ∈ [1, 25], we transform the

domain of the scales in a similar way to before, such that[
Ã

(`∗)
−

]
i,j

= h̃`∗,i,j [A−]i,j , for 1 ≤ `∗ ≤ CN .



CHAPTER 10. APPLICATION: RAH ICU 352

(a) (b)

(c) (d)

Figure 10.5.5: Illustration of the process of transforming the scales associated with

the structured QBD process fitted to the RAH ICU data set to account for fewer

beds in the adjusted structured QBD process with a capacity of 36 patients. (a)

Plot of the scales from the structured QBD process fitted to the RAH ICU data set.

(b) Plot of the per-bed scales from the structured QBD process fitted to the RAH

ICU data set. (c) Plot of the new per-bed scales from the adjusted structured QBD

process to account for fewer beds in the ICU. (d) Plot of the new scales from the

adjusted structured QBD process to account for fewer beds in the ICU.
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Secondly, we adjust the block matrices associated with within level transitions to

reflect the quiet and busy behaviour of the ICU. For example, consider the level and

phase transition dependent scales f`,i,j of the fitted structured QBD process.

• If f`,i,j = 1 for all ` ∈ [0, 24], then[
Ã

(`∗)
+

]
i,j

= [A+]i,j , for 0 ≤ `∗ ≤ CN − 1.

• If f`,i,j = 1 +βf,i,j1 ` for all ` ∈ [0, 24], we adjust the slope of the linear function

to capture both the quiet and busy behaviour of the ICU. That is,[
Ã

(`∗)
+

]
i,j

= f̃`∗,i,j [A+]i,j , for 0 ≤ `∗ ≤ CN − 1,

where

f̃`∗,i,j = 1 +
f44,i,j − f20,i,j

(Nmax − 1)−Nmin

`∗, for 0 ≤ `∗ ≤ CN − 1.

• If f`,i,j = 1 + βf,i,j1 `+ βf,i,j2 `2 for all ` ∈ [0, 24], we transform the domain of the

quadratic function to capture both the quiet and busy behaviour of the ICU,

such that [
Ã

(`∗)
+

]
i,j

= f̃`∗,i,j [A+]i,j , for 0 ≤ `∗ ≤ CN − 1,

where f̃`∗,i,j is the resulting quadratic after transforming the domain from

[0, 24] to [0, CN − 1] using the transformation

` =
24`∗

CN − 1
.

Illustrations of each type of transformation are provided in Figure 10.5.6, which

compare the scales associated with the structured QBD process fitted to the RAH

ICU data set (blue points) to the scales associated with the adjusted structured

QBD process to account for fewer beds (red points).
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(a) (b)

(c)

Figure 10.5.6: Illustrations of how the scales of the adjusted structured QBD process

(red points) compare to the scales associated with the structured QBD process fitted

to the RAH ICU data set (blue points). (a) Comparison of the constant scales

associated with an increase in level and the phase transition (1, 3). (b) Comparison

of the linear scales associated with an increase in level and the phase transition

(1, 2). (c) Comparison of the quadratic scales associated with an increase in level

and the phase transition (4, 4).

Lastly, we consider two methods of adjusting the block matrices associated with

within level transitions; one method based on per-bed behaviour and the other

method reflecting the quiet and busy behaviour of the ICU. These methods are

similar to those described above.
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Let’s now explore the long-term behaviour of a non-infectious disease ICU with

various capacities of 9, 18, 27, and 36 beds, such that the scales associated with

within level changes and a decrease in level are adjusted on a per-bed basis. Note

that we also consider the effect of reducing the rate of patient admissions to reflect

a decline in the number of elective surgeries and emergency admissions.

Figure 10.5.7 illustrates the long-term proportion of time spent at each bed

occupancy alongside various reductions in patient admissions to the non-infectious

disease ICU. In doing so, we not only predict how much time the non-infectious

disease ICU spends above 85% capacity (refer to Figure 10.5.8), but we also gain

insight into how a decline in the rate of patient admissions caused by a drop in the

number of elective surgical procedures and emergency admissions will effect the

ICU.

To achieve a proportion of time spent above 85% capacity similar to that observed

in the RAH ICU data set, admissions would need to be reduced by around 60% for

a maximum capacity of 18 and roughly 50% for a maximum capacity of 27 beds, as

shown in Figure 10.5.8. For a maximum capacity of 9 beds, a reduction greater

than 80% is required to achieve a similar proportion of time spent above 85%

capacity to that observed in the RAH ICU data set. However, there are no

reductions necessary for a maximum capacity of 36 beds as the proportion of time

spent above 85% capacity is always less than that of the RAH ICU. This suggests

that the non-infectious disease ICU operates better than the RAH ICU despite no

change in admissions and a reduced capacity, therefore demonstrating the

invalidity of assuming that the scales associated with within level changes are

dependent on per-bed behaviour
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It is also worth noting that in terms of a functional capacity of 85%, an ICU with

a maximum capacity of 9 beds and an 80% reduction in the rate of patient

admissions is roughly similar to that of an ICU with a maximum capacity of 27

beds and a 40% reduction in the rate of patient admissions. Additionally, similar

comments can be made regarding the comparison of an ICU with a maximum

capacity of 18 beds and a 60% reduction in the rate of patient admissions and an

ICU with a maximum capacity of 36 beds and no reduction in the rate of patient

admissions.
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Figure 10.5.7: Comparison of how the long-term proportion of time the non-

infectious disease ICU spends at each bed occupancy changes as the rate of patient

admissions decreases for a maximum capacity of 9 (a), 18 (b), 27 (c), and 36 (d).

Note that the black triangles represent the predicted long-term proportion of time

the non-infectious disease ICU spends at each bed occupancy assuming no change in

the rate of patient admissions. Also note that these predictions are based on models

which assume the scales associated with block matrices describing a decrease in level

and within level changes are based on per-bed behaviour.
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Figure 10.5.8: Comparison of how the proportion of time spent above 85% capacity

changes as the rate of patient admissions decreases for a maximum capacity of 9, 18,

27 and 36, where the black line indicates the proportion of time spent above 85%

capacity without a reduction in the rate of patient admissions and the dashed line

indicates the proportion of time the RAH ICU operates above 85% capacity. Note

that these predictions are based on models which assume the scales associated with

block matrices describing a decrease in level and within level changes are based on

per-bed behaviour.
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Alternatively, let’s now explore the long-term behaviour of a non-infectious disease

ICU with various capacities of 9, 18, 27, and 36 beds, such that only the scales

associated with a decrease in level are adjusted on a per-bed basis. That is, the

scales associated with within level changes are adjusted to reflect both the empty

and full behaviours of the RAH ICU.

Similar to above, Figure 10.5.9 plots the long-term proportion of time spent at

each bed occupancy for each considered reduction in patient admissions to the

non-infectious disease ICU and Figure 10.5.10 plots the associated proportion of

time spent above 85% capacity.

In this scenario, admissions would need to be reduced by around 70% for a

maximum capacity of 9 beds, around 40% for a maximum capacity of 18 beds and

around 30% for a maximum capacity of 27 beds to achieve a proportion of time

spent above 85% capacity similar to that of the RAH ICU. However, there are no

reductions necessary for a maximum capacity of 36 beds as the proportion of time

spent above 85% capacity is similar to that of the RAH ICU.

Additionally, an ICU with a maximum capacity of 18 beds and a 60% reduction in

the rate of patient admissions is roughly similar to that of an ICU with a

maximum capacity of 36 beds and an 20% reduction in the rate of patient

admissions in terms of a functional capacity of 85%. Similar comments can be

made about an ICU with a maximum capacity of 27 beds and a 40% reduction in

the rate of patient admissions and an ICU with a maximum capacity of 36 beds

and no reduction in the rate of patient admissions.
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Figure 10.5.9: Comparison of how the long-term proportion of time the non-

infectious disease ICU spends at each bed occupancy changes as the rate of patient

admissions decreases for a maximum capacity of 9 (a), 18 (b), 27 (c), and 36 (d).

Note that the black triangles represent the predicted long-term proportion of time

the non-infectious disease ICU spends at each bed occupancy assuming no change in

the rate of patient admissions. Also note that these predictions are based on models

which assume the scales associated with block matrices describing a decrease in level

are based on per-bed behaviour.
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Figure 10.5.10: Comparison of how the proportion of time spent above 85% capacity

changes as the rate of patient admissions decreases for a maximum capacity of 9, 18,

27 and 36, where the black line indicates the proportion of time spent above 85%

capacity without a reduction in the rate of patient admissions and the dashed line

indicates the proportion of time the RAH ICU operates above 85% capacity. Note

that these predictions are based on models that assume the scales associated with

block matrices describing a decrease in level are based on per-bed behaviour.
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Overall, the approach which maintains the per-bed behaviour only for the

downward level transitions provides more sensible models compared to the models

which maintain the per-bed behaviour for the within level and downward level

transitions. Therefore, the admission process of a reduced capacity ICU should

reflect both the quiet and busy nature of the original ICU and the patient

discharges of a reduced capacity ICU should reflect the per-bed nature of the

original ICU.

Infectious disease ICU

To protect non-infectious disease patients within the ICU, intensive care beds are

reserved to treat those with COVID-19. The demand for COVID-19 related intensive

care services depends on a number of factors; four of which include

• the number of positive COVID-19 cases per day,

• the percentage of COVID-19 patients directed to each hospital or medical

facility,

• the percentage of COVID-19 cases that require intensive care, and

• the duration of time COVID-19 patients require intensive care.

For completeness, we now explore how the bed occupancy of the infectious disease

ICU could behave under various scenarios. We note that this is not a detailed

model of how the COVID-19 pandemic has impacted or could impact the RAH

ICU, as the pandemic is still unfolding and thus remains an open area of research.
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For simplicity, we assume an M/M/c/c queueing model for the infectious disease

ICU such that

λk =

NCOV ID−19PICUPRAH , k < c,

0, k ≥ c,

and

µk =
k

LOSCOV ID−19

, k = 1, 2, . . . , c,

where

• c is the number of beds in the infectious disease ICU,

• NCOV ID−19 is the number of positive COVID-19 cases reported per day,

• PICU is the percentage of COVID-19 cases that will need intensive care,

• PRAH is the percentage of COVID-19 patients requiring intensive care being

directed to the RAH infectious disease ICU, and

• LOSCOV ID−19 is the average number of days COVID-19 patients require

intensive care.

This queueing model is also known as the Erlang-loss queueing system as there are

no waiting spaces available for patients to queue in [32]. Hence, any patients who

find all beds occupied upon admission to the infectious disease ICU are blocked.

While this does not reflect the true behaviour of health care services, the M/M/c/c

queueing model will provide insight as to the proportion of blocked patients who

required COVID-19 related intensive care, Pc, which is defined as

Pc =
γc

c!
c∑

k=0

γk

k!

,

where γ = λ/µ is the traffic intensity.
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In this modelling, we explore how the proportion of time spent above 85% capacity

changes as we vary the values of the above parameters, such that

1. c = 9, 18, 27, and 36 beds,

2. NCOV ID−19 = 50, 100, 500, 1000, 5000, and 10000 cases per day,

3. PICU is held fixed at 5% [35, 48],

4. PRAH = 25, 50%, 75%, and 100%, and

5. LOSCOV ID−19 = 2, 7, 12, 14 days [35, 48].

As expected, the infectious disease ICU becomes overloaded as the number of

positive COVID-19 cases per day increases, as well as when the percentage of

COVID-19 patients directed to the RAH infectious disease ICU increases and the

average number of days COVID-19 patients require intensive care increases, as

shown in Figure 10.5.11.

This result is also reflected in the blocking probabilities shown in Figure 10.5.12

which illustrates that there is an increasing proportion of COVID-19 patients

being blocked from the infectious disease ICU as the number of positive COVID-19

cases per day increases, the percentage of COVID-19 patients directed to the RAH

infectious disease ICU increases, and the average number of days COVID-19

patients require intensive care increases.
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Figure 10.5.11: Comparison of how the proportion of time spent above 85% capacity

(y-axis) changes as the number of positive COVID-19 cases per day (coloured lines)

increases, the average number of days COVID-19 patients require intensive care

(rows) increases, and the accepted percentage of COVID-19 ICU admissions the

RAH ICU (columns) increases for a maximum capacity (x-axis) of 9, 18, 27 and 36.
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Figure 10.5.12: Comparison of how the blocking probability (y-axis) changes as the

number of positive COVID-19 cases per day (coloured lines) increases, the average

number of days COVID-19 patients require intensive care (rows) increases, and the

accepted percentage of COVID-19 ICU admissions the RAH ICU (columns) increases

for a maximum capacity (x-axis) of 9, 18, 27 and 36.
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With public health measures such as social distancing, lockdowns, and mask wearing,

we can reduce the transmission of COVID-19. Additionally, vaccinations and early-

intervention treatments will reduce hospitalisation rates and hence reduce the rate of

COVID-19 related ICU admissions. However, the duration of intensive care required

for each COVID-19 patient depends on the patient’s condition and the availability

of COVID-19 specific treatments. Lastly, the percentage of COVID-19 patients who

require intensive care sent to each hospital depends on the operational status and

the capacity to care and treat more patients.

10.6 Summary

By means of level-dependent QBD processes, we gained valuable insight into the

operation of the RAH ICU. In particular, we discovered that the RAH ICU is more

likely to have a patient admission following a patient admission rather than a

patient admission following a patient discharge and is also more likely to have a

patient discharge following a patient discharge rather than a patient discharge

following a patient admission. In addition to this, we also discovered that as the

number of occupied beds increased, the rate of patient admissions decreased but

the rate of patient discharges remained relatively constant.

Through the use of structured QBD processes, we demonstrated the ability to predict

the behaviour of the RAH ICU under various scenarios which may reflect changes

in hospital policies, a short-term surge in emergency admissions, or a decline in

the number of elective surgical procedures. Furthermore, the exploration of a split

ICU to accomodate both non-infectious disease infectious disease ICU admissions

revealed how often each ICU would operate above 85% capacity. In doing so, health

care professionals are able to make informed decisions on the number of beds to

reserve for infectious disease patients based on the state of the healthcare system

and the demand for intensive care services.



Chapter 11

Conclusion

In this thesis, we have developed statistical methods to fit quasi-birth-and-death

processes to queueing system data, irrespective of the possibility of dependence

between the arrival process and the distribution of service times. In particular, we

have developed various statistical estimation methods and a goodness of fit test to

suit level-dependent, level-independent, and structured quasi-birth-and-death

processes. The following discussion provides a summary of the research presented

in this thesis, the main results from each estimation method and the goodness of

fit method developed in this thesis, as well as some directions for further research

in this area.
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11.1 Summary

An intensive care unit is a crucial and limited resource in a hospital which provides

high-level care to critically ill patients. The performance of intensive care units is

continuously monitored and improvements to patient care and bed occupancy

management are an important area of research, as discussed in Chapter 2. Of

particular interest is the modelling of bed occupancy in intensive care units using

queueing theory.

Stochastic processes and Markov chains form a basis for queueing theory and the

modelling of queueing systems, such as telecommunication and healthcare systems.

In Chapter 3, we reviewed the Poisson process which is often used to model

arrivals to a queueing system. Markov processes are another type of stochastic

process that are used to model random phenomena, such as changes in population

size or changes in the stock market. In Chapter 4, we reviewed the fundamentals

of queueing theory and then explored how Markov processes are used to derive the

maximum likelihood estimates of the parameters of various elementary queueing

models.

Following the review of stochastic processes and queueing theory, we modelled the

bed occupancy of the Royal Adelaide Hospital intensive care unit using elementary

Markovian queueing models. Through a discussion of the modelling assumptions

in Chapter 5, the issue of dependence between patient admissions and length of

stay became apparent. In particular, the queueing models typically used to model

intensive care units assume independence between the arrival process and the

distribution of service times. However, studies have found evidence of a

dependence between the patient arrival process and the distribution of length of

stay, thus rendering standard queueing models invalid for this research problem.



CHAPTER 11. CONCLUSION 370

We began Chapter 6 with a review of phase-type distributions which form a basis

for the development of quasi-birth-and-death processes. QBD processes are a

generalisation of the birth-and-death process and present themselves as an

alternative to modelling queueing systems with a dependence between the arrival

process and the distribution of service times. QBD processes are either

level-dependent or level-independent in nature, such that the transition rates will

either depend on the level the process is currently in or remain independent of the

level. In either case, all that is observed while watching a QBD process evolve are

the changes in level and the times at which those changes occurred. That is, the

phase process remains hidden. For example, we observe the changes in bed

occupancy in an intensive care unit but we cannot observe the change in

environment such as patient care or bed management.

A natural approach to modelling situations with unobserved data is the

expectation-maximisation algorithm. Asmussen et al. [1] developed an EM

algorithm to fit phase-type distributions to data by using the connection between

continuous-time Markov chains and phase-type distributions to calculate the

maximum likelihood estimates. Building upon the work completed by Asmussen,

in Chapter 7 we developed two statistical model fitting methods based on the EM

algorithm that fit level-dependent and level-independent QBD processes to

queueing system data, respectively. We assessed the accuracy of each method by

comparing the stationary and transient behaviour of a known QBD process to that

of several QBD processes fitted to data simulated from the known QBD process.

In particular, we considered stationary and transient behaviour, such as the long

term proportion of time spent in each level, transitions between levels, and the

sojourn time before the process moves up or down from each level.
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Despite level-dependent QBD processes being able to provide insight into the

operation of a queueing system, such models cannot be used for predicting future

behaviour due to the possibility of over-parameterisation. Although

level-independent QBD processes have fewer parameters than that of a

level-dependent QBD process, not all queueing systems are level-independent in

nature. With this motivation, in Chapter 8 we developed a new type of QBD

process called a structured QBD process which is a blend between level-dependent

and level-independent QBD processes. That is, the infinitesimal generator matrix

of a structured QBD process is defined in such a way as to explain the behaviour

of the queueing system through the use of functional forms of the level and phase

transition. Examples of such behaviours include queueing systems with linear or

quadratic trends in the arrival or departure rates, as well as queueing systems that

exhibit constant arrival or departure trends regardless of the state of the queueing

system.

Following the development of structured QBD processes, we then extended the EM

algorithm developed in Chapter 7 to structured QBD processes. Similar to before,

we assessed the accuracy of this method by using simulated data from several

structured QBD processes that exhibit combinations of constant, linear, and

quadratic behaviour in the transition rates. For each structured QBD process

considered, we compared several estimations of each structured QBD process to

the respective known structured QBD process by considering several components

of stationary and transient behaviour.
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As with any statistical modelling method, the question of how well the fitted

model explains the behaviour observed in the data is generally answered by means

of a goodness of fit test. Goodness of fit tests typically measure the distance

between the observed data and what is expected under the fitted model. Hence,

we began Chapter 9 by reviewing distance measures which formed a basis for the

development of a goodness of fit test that quantifies how well a fitted QBD process

explains the stationary and transient behaviour observed in queueing system data.

We then developed a diagnostic method which illustrates where, if at all, a fitted

QBD process inadequately models the stationary and transient behaviour. To

demonstrate the performance of our goodness of fit test, we considered various

numerical examples and completed a small simulation study to illustrate the

statistical power and significance.

In Chapter 10, we applied the methods developed in this thesis to a data set

obtained from the Royal Adelaide Hospital intensive care unit. While a

level-dependent QBD process provides meaningful insight into the operation of the

Royal Adelaide Hospital intensive care unit, such a model cannot be used to

predict the behaviour of the intensive care unit as it is over-parameterised.

Therefore, an investigation into suitable types of structured QBD processes was

completed. However, this investigation brought to light the issue of phase

interchangeability thus suggesting that pre-specification of the functional forms of

a structured QBD process is not always a suitable approach.
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Despite this finding, it was found that the stationary and transient behaviour of

the bed occupancy in the RAH ICU was better explained by the best-fitting

structured QBD process than the standard Markovian queueing models used in

practice. We then used the best-fitting structured QBD process to predict the

state of the intensive care unit as the rate of admissions and departures changed.

We also considered a simulation study which explored the effect of reserving beds

for infectious disease patients, thus limiting the number of beds available to

provide intensive care for non-infectious disease patients.

The queueing models used in practice to model the bed occupancy of intensive care

units do not allow for dependence between patient admissions and the distribution

of patient length of stay. These queueing models also have limited freedom in the

distribution of time spent at each bed occupancy. Therefore, analyses and future

predictions of intensive care units using such models may provide inaccurate

results. With this motivation, we have developed statistical modelling methods

that fit various types of QBD processes to queueing system data that allow for

dependence between the arrival process and the distribution of service times. We

have also developed a goodness of fit test to assess the fit of any QBD process to

queueing system data to ensure the reliability of future predictions.
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11.2 Future work

In Section 8.9, we described a method of choosing the functional forms of a

structured QBD process which is based on data visualisation and model

comparisons. However, this method ignores the possibility of phases interchanging

within the structured QBD process. Therefore, an improvement to the methods

developed in Chapter 8 would be to incorporate the selection of the best fitting

functional form into the EM algorithm.

The Mahalanobis distance defined in our goodness of fit test does not follow a

multivariate normal distribution, and hence the squared Mahalanobis distance is

not chi-square distributed. As a result, we empirically estimated the statistical

power and significance of the goodness of fit test developed in Chapter 9. However,

only a small number of simulations were performed due to the computational

demand of estimating the power and significance of the goodness of fit test.

Further research into the distribution of non-multivariate normal Mahalanobis

distances is therefore required.
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In Chapter 10, we assumed that there is only one class of patient admitted to the

Royal Adelaide Hospital intensive care unit. However, several patient classes exist

within the intensive care unit; an example of which is elective and emergency

patients. In addition to this, the QBD processes presented in this thesis are

time-homogeneous which therefore assumes that the ICU operates no differently at

night compared to during the day. However, the assumption of time-homogeneity

is incorrect as there is less movement during the night shifts compared to day and

afternoon shifts, as explored in Chapter 5. Therefore, extending this work to

two-dimensional QBD processes or time-inhomogeneous QBD processes could

provide more informative models of an intensive care unit, and hence is another

direction for future research.



Appendix A

Proof of Theorem 8.3.1

By taking the appropriate partial derivatives of the log-likelihood, we can

obtain the maximum likelihood estimates of the parameters

θ = ({A(`)
0 ; 0 ≤ ` < ∞}, {A(`)

− ; 1 ≤ ` < ∞}, {A(`)
+ ; 0 ≤ ` < ∞}) for a structured

QBD process. Note that in the following proofs, j∗ and J∗ denote the appropriate

lower and upper limits of the summation where required.

Lemma A.0.1.

Â(`)
•i,j =

M`,i,j

Z`,i
, for ` < SL and ` > SU ,

where

M`,i,j =


S`,i,j, if • = 0,

D`,i,j, if • = −,

U`,i,j, if • = +,

and,

(SL, SU) =


(L0, U0) if • = 0,

(L−, U−), if • = −,

(L+, U+) if • = +.
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Proof:

∂`C(θ|d)

∂A
(`)
•i,j

=
∂

∂A
(`)
•i,j

(
J∑̀
i=1

A
(`)
0i,i

Z`,i +

J∑̀
i=1

J∗∑
j=j∗

log
(
A(`)
•i,j

)
M`,i,j

)
,

by selecting the relevant terms from the constrained log-likelihood,

=
∂

∂A
(`)
•i,j

− J∑̀
i=1

 J∑̀
j=1
j 6=i

A
(`)
0i,j

+

J`−1∑
j=1

A
(`)
−i,j

+

J`+1∑
j=1

A
(`)
+i,j

Z`,i +

J∑̀
i=1

J∗∑
j=j∗

log
(
A(`)
•i,j

)
M`,i,j

 ,

since the diagonal entries of A
(`)
0 are the negative of the relevant row sums,

= −Z`,i +
M`,i,j

A
(`)
•i,j

.

By rearranging, we get

Â(`)
•i,j =

M`,i,j

Z`,i
.

Lemma A.0.2.

Â•i,j =

SU∑
`=SL

M`,i,j

SU∑
`=SL

φ(`)Z`,i

, for SL ≤ ` ≤ SU .

where

M`,i,j =


S`,i,j, if • = 0,

D`,i,j, if • = −,

U`,i,j, if • = +,

and,

(SL, SU , φ(`)) =


(L0, U0, g`), if • = 0,

(L−, U−, h`), if • = −,

(L+, U+, f`), if • = +.
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Proof:

∂`C(θ|d)

∂A•i,j
=

∂

∂A•i,j

 SU∑
`=SL

J∑̀
i=1

A
(`)
0i,i

Z`,i +

SU∑
`=SL

J∑̀
i=1

J∗∑
j=j∗

log
(
φ(`)A•i,j

)
M`,i,j

 ,

by selecting the relevant terms from the constrained log-likelihood,

=
∂

∂A•i,j

− SU∑
`=SL

J∑̀
i=1

 J∑̀
j=1
j 6=i

g`A0i,j +

J`−1∑
j=1

h`A−i,j +

J`+1∑
j=1

f`A+i,j

Z`,i +

SU∑
`=SL

J∑̀
i=1

J∗∑
j=j∗

log
(
φ(`)A•i,j

)
M`,i,j

 ,

since the diagonal entries of A0 are the negative of the relevant row sums,

= −
SU∑
`=SL

φ(`)Z`,i +

SU∑
`=SL

M`,i,j

A•i,j
.

By rearranging, we get •

Â•i,j =

SU∑
`=SL

M`,i,j

SU∑
`=SL

φ(`)Z`,i

.

Lemma A.0.3.

φ̂` =

SU∑
`=SL

M`,i,j

SU∑
`=SL

A•i,jZ`,i

, for SL ≤ ` ≤ SU .

where

M`,i,j =


S`,i,j, if • = 0,

D`,i,j, if • = −,

U`,i,j, if • = +,

and,

(SL, SU , •) =


(L0, U0, 0), if φ(`) = g(`),

(L−, U−,−), if φ(`) = h(`),

(L+, U+,+), if φ(`) = f(`).
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Proof:

∂`C(θ|d)

∂φ(`)
=

∂

∂φ(`)

 SU∑
`=SL

J∑̀
i=1

A
(`)
0i,i

Z`,i +

SU∑
`=SL

J∑̀
i=1

J∗∑
j=j∗

log
(
φ(`)A•i,j

)
M`,i,j

 ,

by selecting the relevant terms from the constrained log-likelihood,

=
∂

∂φ(`)

− SU∑
`=SL

J∑̀
i=1

 J∑̀
j=1
j 6=i

g`A0i,j +

J`−1∑
j=1

h`A−i,j +

J`+1∑
j=1

f`A+i,j

Z`,i +

SU∑
`=SL

J∑̀
i=1

J∗∑
j=j∗

log
(
φ(`)A•i,j

)
M`,i,j

 ,

since the diagonal entries of A0 are the negative of the relevant row sums,

= −
J∑̀
i=1

J∗∑
j=j∗

A•i,jZ`,i +

J∑̀
i=1

J∗∑
j=j∗

M`,i,j

φ(`)
.

By rearranging, we get

φ̂` =

J∑̀
i=1

J∗∑
j=j∗

M`,i,j

J∑̀
i=1

J∗∑
j=j∗

A•i,jZ`,i

.
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Proof of Corollary 8.3.1.1

By taking the appropriate partial derivatives of the constrained log-likelihood, we

can obtain the maximum likelihood estimates of the parameters

θ = (B0, B−, B+, A0, A−, A+, C0, C−, C+) for a finite level-independent QBD

process with boundaries at level 0 and level C.

Lemma B.0.1.

B̂− = Â
(L−−1)
−i,j =

DL−−1,i,j

ZL−−1,i − λ(L)
i

, for 1 ≤ i ≤ JL−−1, 1 ≤ j ≤ JL−−2.
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Proof:

∂∆C(θ|d)

∂A
(L−−1)
−i,j

=
∂

∂A
(L−−1)
−i,j

JL−−1∑
i=1

A
(L−−1)
0i,i

ZL−−1,i +

JL−−1∑
i=1

JL−−2∑
j=1

log
(
A

(L−−1)
−i,j

)
DL−−1,i,j

+

JL−−1∑
i=1

λ
(L)
i

JL−−2∑
j=1

A
(L−−1)
−i,j

 ,

by selecting the relevant terms from the constrained log-likelihood,

=
∂

∂A
(L−−1)
−i,j

−
JL−−1∑
i=1


JL−−1∑
j=1
j 6=i

A
(L−−1)
0i,j

+

JL−−2∑
j=1

A
(L−−1)
−i,j

+

JL−∑
j=1

A
(L−−1)
+i,j

ZL−−1,i

+

JL−−1∑
i=1

JL−−2∑
j=1

log
(
A

(L−−1)
−i,j

)
DL−−1,i,j

+

JL−−1∑
i=1

λ
(L)
i

JL−−2∑
j=1

A
(L−−1)
−i,j

 ,

since the diagonal entries of A
(L−−1)
0 are the negative of the relevant row sums,

= −ZL−−1,i +
DL−−1,i,j

A
(L−−1)
−i,j

+ λ
(L)
i .

By rearranging, we get

B̂− = Â
(L−−1)
−i,j

=
DL−−1,i,j

ZL−−1,i − λ(L)
i

, for 1 ≤ i ≤ JL−−1, 1 ≤ j ≤ JL−−2.



APPENDIX B. PROOF OF COROLLARY 8.3.1.1 382

Lemma B.0.2.

Â− = Â
(L−)
−i,j =

DL−,i,j

ZL−,i −
U−∑

l=L−+1

λ
(−)
l,i,j + λ

(L)
i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1.

Proof:

∂∆C(θ|d)

∂A
(L−)
−i,j

=
∂

∂A
(L−)
−i,j

JL−∑
i=1

A
(L−)
0i,i

ZL−,i +

JL−∑
i=1

JL−−1∑
j=1

log
(
A

(L−)
−i,j

)
DL−,i,j +

U−∑
l=L−+1

Jl∑
i=1

Jl−1∑
j=1

λ
(−)
l,i,jA

(L−)
−i,j

−
JL−∑
i=1

λ
(L)
i

JL−−1∑
j=1

A
(L−)
−i,j

 ,

by selecting the relevant terms from the constrained log-likelihood,

=
∂

∂A
(L−)
−i,j

−
JL−∑
i=1


JL−∑
j=1
j 6=i

A
(L−)
0i,j

+

JL−−1∑
j=1

A
(L−)
−i,j

+

JL−+1∑
j=1

A
(L−)
+i,j

ZL−,i +

JL−∑
i=1

JL−−1∑
j=1

log
(
A

(L−)
−i,j

)
DL−,i,j

+

U−∑
l=L−+1

Jl∑
i=1

Jl−1∑
j=1

λ
(−)
l,i,jA

(L−)
−i,j

−
JL−∑
i=1

λ
(L)
i

JL−−1∑
j=1

A
(L−)
−i,j

 ,

since the diagonal entries of A
(L−)
0 are the negative of the relevant row sums,

= −ZL−,i +
DL−,i,j

A
(L−)
−i,j

+

U−∑
l=L−+1

λ
(−)
l,i,j − λ

(L)
i .

By rearranging, we get

Â− = Â
(L−)
−i,j

=
DL−,i,j

ZL−,i −
U−∑

l=L−+1

λ
(−)
l,i,j + λ

(L)
i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1.
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Lemma B.0.3.

Â+ = Â
(U+)
−i,j =

UU+,i,j

ZU+,i + λ
(+)
U+,i,j

− λ(U)
i

, for 1 ≤ i ≤ JU+ , 1 ≤ j ≤ JU++1.

Proof:

∂∆C(θ|d)

∂A
(U+)
+i,j

=
∂

∂A
(U+)
+i,j

JU+∑
i=1

A
(U+)
0i,i

ZU+,i +

JU+∑
i=1

JU++1∑
j=1

log
(
A

(U+)
+i,j

)
DU+,i,j

−
Jl∑
i=1

Jl−1∑
j=1

λ
(+)
l,i,jA

(U+)
+i,j

+

JU+∑
i=1

λ
(U)
i

JU++1∑
j=1

A
(U+)
+i,j

 ,

by selecting the relevant terms from the constrained log-likelihood,

=
∂

∂A
(U+)
+i,j

−
JU+∑
i=1


JU+∑
j=1
j 6=i

A
(U+)
0i,j

+

JU+−1∑
j=1

A
(U+)
−i,j

+

JU++1∑
j=1

A
(U+)
+i,j

ZU+,i

+

JU+∑
i=1

JU++1∑
j=1

log
(
A

(U+)
+i,j

)
DU+,i,j

−
Jl∑
i=1

Jl+1∑
j=1

λ
(+)
l,i,jA

(U+)
+i,j

+

JU+∑
i=1

λ
(U)
i

JU++1∑
j=1

A
(U+)
+i,j

 ,

since the diagonal entries of A
(U+)
0 are the negative of the relevant row sums,

= −ZU+,i +
DU+,i,j

A
(U+)
+i,j

− λ(+)
U+,i,j

+ λ
(U)
i .

By rearranging, we get

Â+ = Â
(U+)
+i,j

=
DU+,i,j

ZU+,i + λ
(+)
l,i,j − λ

(U)
i

, for 1 ≤ i ≤ JU+ , 1 ≤ j ≤ JU++1.
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Lemma B.0.4.

Ĉ+ = Â
(U++1)
−i,j =

UU++1,i,j

ZU++1,i + λ
(U)
i

, for 1 ≤ i ≤ JU++1,≤ j ≤ JC .

Proof:

∂∆C(θ|d)

∂A
(U++1)
+i,j

=
∂

∂A
(U++1)
+i,j

JU++1∑
i=1

A
(U++1)
0i,i

ZU++1,i +

JU++1∑
i=1

JC∑
j=1

log
(
A

(U++1)
+i,j

)
DU++1,i,j

−
JC∑
i=1

λ
(U)
i

JC∑
j=1

A
(U++1)
+i,j

)
,

by selecting the relevant terms from the constrained log-likelihood,

=
∂

∂A
(U++1)
+i,j

−
JU++1∑
i=1


JU++1∑
j=1
j 6=i

A
(U++1)
0i,j

+

JU+∑
j=1

A
(U++1)
−i,j

+

JC∑
j=1

A
(U++1)
+i,j

ZU++1,i

+

JU++1∑
i=1

JC∑
j=1

log
(
A

(U++1)
+i,j

)
DU++1,i,j −

JC∑
i=1

λ
(U)
i

JC∑
j=1

A
(U++1)
+i,j

 ,

since the diagonal entries of A
(U++1)
0 are the negative of the relevant row sums,

= −ZU++1,i +
DU++1,i,j

A
(U++1)
+i,j

− λ(U)
i .

By rearranging, we get

Ĉ+ = Â
(U++1)
+i,j

=
DU++1,i,j

ZU++1,i + λ
(U)
i

, for 1 ≤ i ≤ JU++1,≤ j ≤ JC .

Next, we shall use Lemmas A.0.1, A.0.2, B.0.1, B.0.2, B.0.3, and B.0.4 to

derive the maximum likelihood estimates of the parameters

θ = (B0, B−, B+, A0, A−, A+, C0, C−, C+) for a finite level-independent QBD

process with boundaries at level 0 and level C. Note that this is the proof of

Corollary 8.3.1.1.

Given that the proofs for each maximum likelihood estimate are similar, we only

show the proofs for the maximum likelihood estimates of B− and A−.



APPENDIX B. PROOF OF COROLLARY 8.3.1.1 385

Using Lemma B.0.1, we have that

B̂− = Â
(L−−1)
−i,j =

DL−−1,i,j

ZL−−1,i − λ(L)
i

, for 1 ≤ i ≤ J1, 1 ≤ j ≤ J0. (B.0.1)

Notice that we have not solved for λ
(L)
i . Recall that if f` = g` = h` = 1, ∀`, then we

have the additional constraint

JLB∑
i=1

λ
(L)
i

JL−−2∑
j=1

A
(LB−1)
−i,j −

JLB−1∑
j=1

A
(LB)
−i,j

 .

In order to solve for λ
(L)
i , we need to find an expression for the maximum likelihood

estimate of A
(L−)
−i,j . Using Lemma B.0.2, we have that

A
(L−)
−i,j =

DL−,i,j

ZL−,i −
U−∑

`=L−+1

λ
(−)
L−,i,j

+ λ
(L)
i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1. (B.0.2)

To find the maximum likelihood estimate of A
(L−)
−i,j , we need to solve for λ

(−)
`,i,j, for

L− + 1 ≤ ` ≤ U−. Using Lemma A.0.2, we have that

A
(`)
−i,j =

D`,i,j

Z`,i + λ
(−)
`,i,j

, for L− + 1 ≤ ` ≤ U−, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1,

which tells us that

λ
(−)
`,i,j =

D`,i,j − A(`)
−i,jZ`,i

A
(`)
−i,j

, for L− + 1 ≤ ` ≤ U−, and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1.

By substituting the expressions for λ
(−)
`,i,j, L− + 1 ≤ ` ≤ U− into Equation (B.0.2),

we obtain an expression for the maximum likelihood estimate of A
(L−)
−i,j .
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A
(L−)
−i,j

=
DL−,i,j

ZL−,i −
U−∑

`=L−+1

λ
(−)
L−,i,j

+ λ
(L)
i

A
(L−)
−i,j

ZL−,i −A
(L−)
−i,j

U−∑
`=L−+1

λ
(−)
`,i,j +A

(L−)
−i,j

λ
(L)
i = DL−,i,j

A
(L−)
−i,j

ZL−,i −A
(L−)
−i,j

U−∑
`=L−+1

D`,i,j −A(`)
−i,j

Z`,i

A
(`)
−i,j

+A
(L−)
−i,j

λ
(L)
i = DL−,i,j

substituting the expressions for λ
(−)
`,i,j , L− + 1 ≤ ` ≤ U− into the equation,

A
(L−)
−i,j

ZL−,i −A
(L−)
−i,j

U−∑
`=L−+1

D`,i,j

A
(`)
−i,j

+A
(L−)
−i,j

U−∑
`=L−+1

Z`,i +A
(L−)
−i,j

λ
(L)
i = DL−,i,j

A
(L−)
−i,j

 U−∑
`=L−

Z`,i

−A(L−)
−i,j

U−∑
`=L−+1

D`,i,j

A
(`)
−i,j

+A
(L−)
−i,j

λ
(L)
i = DL−,i,j

collecting the terms involving Z`,i

A
(L−)
−i,j

 U−∑
`=L−

Z`,i

−A(L−)
−i,j

U−∑
`=L−+1

D`,i,j

A
(L−)
−i,j

+A
(L−)
−i,j

λ
(L)
i = DL−,i,j ,

since A
(L−)
−i,j

= A
(`)
−i,j

for L− + 1 ≤ ` ≤ U− and 1 ≤ i ≤ J`, 1 ≤ j ≤ J`−1.

A
(L−)
−i,j

 U−∑
`=L−

Z`,i

− U−∑
`=L−+1

D`,i,j +A
(L−)
−i,j

λ
(L)
i = DL−,i,j

A
(L−)
−i,j

 U−∑
`=L−

Z`,i

+A
(L−)
−i,j

λ
(L)
i =

U−∑
`=L−

D`,i,j

A
(L−)
−i,j

 U−∑
`=L−

Z`,i + λ
(L)
i

 =

U−∑
`=L−

D`,i,j

By rearranging, we have that

A
(L−)
−i,j =

U−∑
`=L−

D`,i,j

U−∑
`=L−

Z`,i + λ
(L)
i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1.
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Let’s now solve for λ
(L)
i . Recall the additional constraint,

J∑
i=1

λ
(L)
i

JL−−2∑
j=1

A
(L−−1)
−i,j −

JL−−1∑
j=1

A
(L−)
−i,j

 .

By substitution, we have the following.

JL−−2∑
j=1

A
(L−−1)
−i,j

=

JL−−1∑
j=1

A
(L−)
−i,j

JL−−2∑
j=1

L−−1∑
`=1

D`,i,j

L−−1∑
`=1

Z`,i − λ(L)
i

=

JL−−1∑
j=1

U−∑
`=L−

D`,i,j

U−∑
`=L−

Z`,i + λ
(L)
i

substituting the expressions for A
(L−−1)
−i,j

and A
(L−)
−i,j

into the equation, U−∑
`=L−

Z`,i

 JL−−2∑
j=1

L−−1∑
`=1

D`,i,j + λ
(L)
i

JL−−2∑
j=1

L−−1∑
`=1

D`,i,j =

L−−1∑
`=1

Z`,i

 JL−−1∑
j=1

U−∑
`=L−

D`,i,j − λ(L)
i

JL−−1∑
j=1

U−∑
`=L−

D`,i,j

λ
(L)
i

JL−−2∑
j=1

L−−1∑
`=1

D`,i,j +

JL−−1∑
j=1

U−∑
`=L−

D`,i,j

 =

L−−1∑
`=1

Z`,i

 JL−−1∑
j=1

U−∑
`=L−

D`,i,j −

 U−∑
`=L−

Z`,i

 JL−−2∑
j=1

L−−1∑
`=1

D`,i,j

collecting terms with λ
(L)
i .

By rearranging, we have that

λ
(L)
i =

(
L−−1∑
`=1

Z`,i

) JL−−1∑
j=1

U−∑
`=L−

D`,i,j −

 U−∑
`=L−

Z`,i

 JL−−2∑
j=1

L−−1∑
`=1

D`,i,j

JL−−2∑
j=1

L−−1∑
`=1

D`,i,j +

JL−−1∑
j=1

U−∑
`=L−

D`,i,j

. (B.0.3)
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Hence, the maximum likelihood estimate of A− is

Â− = Â
(L−)
−i,j =

U−∑
`=L−

D`,i,j

U−∑
`=L−

Z`,i + λ
(L)
i

, for 1 ≤ i ≤ JL− , 1 ≤ j ≤ JL−−1,

where λ
(L)
i is given in Equation (B.0.3).

The proofs for the remaining maximum likelihood estimates follow a similar

structure to that presented above.



Appendix C

Summary of the dependence on

initial values for Section 8.10

C.1 Structured QBD process with linearly

increasing scalars associated with a decrease

in level

In this section, we explore the dependence on the initial values of the parameters

in the example described in Section 8.10.1. Recall that we simulated a single

sample of the assumed QBD process with 10,000 changes in level and then started

the EM algorithm with 1000 different sets of randomly generated initial values of

the parameters to create the histogram of observed log-likelihoods of the data

shown in Figure 8.10.2.

389
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Of particular interest is whether there is any difference in the stationary and

transient behaviours between the estimated structured QBD processes with

observed log-likelihoods of the data less than -3000 (labelled Group A) compared

to those with observed log-likelihoods of the data greater than or equal to -3000

(labelled Group B). Note that we expect to see a difference between the true and

expected behaviours as the 1000 estimations are based on a single sample of data.

Figure C.1.1 shows that there is very little difference between the stationary and

transient behaviours of the estimated structured QBD processes in Group A

compared to the estimated structured QBD processes in Group B. These results

are also demonstrated by the similar MSE values presented in Table C.1.1.

Behaviour Group Mean Variance

Stationary distribution A 9.295 ×10−6 1.067 ×10−12

B 1.030 ×10−5 8.919 ×10−12

Sojourn time (Up) A 5.156 ×10−6 2.604 ×10−12

B 6.866 ×10−6 2.114 ×10−12

Sojourn time (Down) A 7.760 ×10−6 5.773 ×10−13

B 8.308 ×10−6 3.759 ×10−12

Transition probabilities A 2.013 ×10−3 1.688 ×10−11

B 2.017 ×10−3 5.318 ×10−11

Table C.1.1: Mean and variance of the MSE for each type of behaviour and each

group of structured QBD processes with linearly increasing scalars associated with

a decrease in level.
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(a) (b)

(c) (d)

Figure C.1.1: Comparison of the behaviour of the estimated structured QBD processes

with log-likelihoods less than -3000 to the behaviour of the estimated structured QBD

process with log-likelihoods greater than or equal to -3000. (a) Box-plots of the estimated

level-stationary distribution and the true level-stationary distribution (black points) for

the first six levels. (b) Box-plots of the expected sojourn times conditioned on moving up

from a level and the true expected sojourn times conditioned on moving up a level (black

points) for the first six levels. (c) Box-plots of the expected sojourn times conditioned

on moving down from a level and the true expected sojourn times conditioned on moving

down a level (black points) for the first six levels. (d) Box-plots of the estimated transition

probabilities between each level and the true transition probabilities between each level

(black points) for the first six levels. By design, the sojourn times conditioned on moving

down from level 0 are 0 and the transition probabilities for level 0 are omitted as they are

either 0 or 1.



APPENDIX C. SUMMARY FOR SECTION 8.10 392

C.2 Structured QBD process with linearly

decreasing scalars associated with an

increase in level

In this section, we explore the dependence on the initial values of the parameters

in the example described in Section 8.10.2. The histogram of observed

log-likelihoods of the data shown in Figure 8.10.4 was created by fitting 1000 QBD

processes, each with a different set of randomly generated initial values of the

parameters, to a single sample of data with 10,000 changes in level.

Here, we are interested in whether there is any difference in the stationary and

transient behaviours between the estimated structured QBD processes with

observed log-likelihoods of the data less than -6000 (labelled Group A) compared

to those with observed log-likelihoods of the data greater than or equal to -6000

(labelled Group B). Similar to before, we expect to see a difference between the

true and expected behaviours as the 1000 estimations are based on a single sample

of data.

Figures C.2.1a and C.2.1d show that there is very little difference between the

stationary distributions and transition probabilities between levels of the estimated

structured QBD processes in Group A compared to those of the estimated

structured QBD processes in Group B, respectively. These results are also

demonstrated by the similar MSE values presented in Table C.2.1.
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Additionally, the expected sojourn times of the estimated structured QBD

processes in Group A are similar to the expected sojourn times of the estimated

structured QBD processes in Group B, as illustrated in Figures C.2.1b and C.2.1c.

Behaviour Group Mean Variance

Stationary distribution A 6.930 ×10−6 5.977 ×10−12

B 7.855 ×10−6 9.409 ×10−12

Sojourn time (Up) A 1.015 ×10−5 6.397 ×10−11

B 1.677 ×10−5 7.181 ×10−10

Sojourn time (Down) A 7.661 ×10−4 2.436 ×10−9

B 8.019 ×10−4 2.064 ×10−8

Transition probabilities A 6.774 ×10−3 7.485 ×10−10

B 6.782 ×10−3 7.793 ×10−10

Table C.2.1: Mean and variance of the MSE for each type of behaviour and each

group of structured QBD processes with linearly decreasing scalars associated with

an increase in level.
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(a) (b)

(c) (d)

Figure C.2.1: Comparison of the behaviour of the estimated structured QBD processes

with log-likelihoods less than -6000 to the behaviour of the estimated structured QBD

process with log-likelihoods greater than or equal to -6000. (a) Box-plots of the estimated

level-stationary distribution and the true level-stationary distribution (black points) for

the first eleven levels. (b) Box-plots of the expected sojourn times conditioned on moving

up from a level and the true expected sojourn times conditioned on moving up a level

(black points) for the first eleven levels. (c) Box-plots of the expected sojourn times

conditioned on moving down from a level and the true expected sojourn times conditioned

on moving down a level (black points) for the first eleven levels. (d) Box-plots of the

estimated transition probabilities between each level and the true transition probabilities

between each level (black points) for the first eleven levels. By design, the sojourn times

conditioned on moving up from level 10 are 0, the sojourn times conditioned on moving

down from level 0 are 0, and the transition probabilities for levels 0 and 10 are omitted as

they are either 0 or 1.
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C.3 Structured QBD process with linearly

decreasing scalars associated with an

increase in level and quadratic scalars

associated with a decrease in level

Lastly, we explore the dependence on the initial values of the parameters in the

example described in Section 8.10.3. Again, recall that we simulated a single

sample of data from the assumed QBD process with 10,000 changes in level and

then started the EM algorithm with 1000 different sets of randomly generated

initial values of the parameters. From this process, we obtain the histogram of

observed log-likelihoods of the data shown in Figure 8.10.7.

In this example, we are interested in whether there is any difference in the

stationary and transient behaviours between the estimated structured QBD

processes with observed log-likelihoods of the data less than -6000 (labelled Group

A) compared to those with observed log-likelihoods of the data greater than or

equal to -6000 (labelled Group B). Similar to before, we expect to see a difference

between the true and expected behaviours as the 1000 estimations are based on a

single sample of data.

Firstly, Figure C.3.1a shows that there is very little difference between the

stationary distributions of the estimated structured QBD processes in Group A

compared to the stationary distributions of the estimated structured QBD

processes in Group B.
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Secondly, Figures C.3.1b and C.3.1c show that the expected sojourn times of the

estimated structured QBD processes in Group A are slightly different to the

expected sojourn times of the estimated structured QBD processes in Group B but

not enough to suggest that estimated structured QBD processes with higher

observed log-likelihoods better estimate the conditional sojourn times.

Lastly, Figure C.3.1d shows that there is very little difference between the transition

probabilities between levels of the estimated structured QBD processes in Group A

compared to the transition probabilities between levels of the estimated structured

QBD processes in Group B. These results are also demonstrated by the similar MSE

values presented in Table C.3.1.

Behaviour Group Mean Variance

Stationary distribution A 1.188 ×10−5 2.246 ×10−14

B 1.341 ×10−5 1.049 ×10−12

Sojourn time (Up) A 5.300 ×10−6 5.170 ×10−13

B 5.817 ×10−6 1.859 ×10−12

Sojourn time (Down) A 1.780 ×10−5 2.703 ×10−12

B 1.282 ×10−5 1.109 ×10−11

Transition probabilities A 1.039 ×10−4 2.519 ×10−10

B 2.287 ×10−4 6.793 ×10−9

Table C.3.1: Mean and variance of the MSE for each type of behaviour and each

group of structured QBD processes with linearly decreasing scalars associated with

an increase in level and quadratic scalars associated with a decrease in level.
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(a) (b)

(c) (d)

Figure C.3.1: Comparison of the behaviour of the estimated structured QBD processes

with log-likelihoods less than -6000 to the behaviour of the estimated structured QBD

process with log-likelihoods greater than or equal to -6000. (a) Box-plots of the estimated

level-stationary distribution and the true level-stationary distribution (black points). (b)

Box-plots of the expected sojourn times conditioned on moving up from a level and the

true expected sojourn times conditioned on moving up a level (black points). (c) Box-

plots of the expected sojourn times conditioned on moving down from a level and the

true expected sojourn times conditioned on moving down a level (black points). (d) Box-

plots of the estimated transition probabilities between each level and the true transition

probabilities between each level (black points). By design, the sojourn times conditioned

on moving up from level 10 are 0, the sojourn times conditioned on moving down from

level 0 are 0, and the transition probabilities for levels 0 and 10 are omitted as they are

either 0 or 1.



Appendix D

Normal QQ-plots for Section 9.2.3

In this section, we present an illustrative example of why we cannot assume

multivariate normality in our goodness of fit test, as discussed in Section 9.2.3.

Consider the example described in Section 9.4.2, which involved fitting an infinite

level-independent QBD process to data generated from a finite level-independent

QBD process. To generate the Mahalanobis distances for the empirical null

distribution, we fitted an infinite level-independent QBD process to each simulated

set of data generated from the infinite level-independent QBD process.

Figure D.0.1 plots the QQ-plots which compare the observed differences associated

with each level and transition of interest (points) to the expected differences

assuming a normal distribution (line). As observed in each QQ-plot, the data do

not appear to be normally distributed. Therefore, the distribution of V(X) is not

multivariate normal.
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Figure D.0.1: Comparison of the observed differences associated with each level

and transition of interest (points) to the expected differences assuming a normal

distribution (line). Note that this information is taken from the null distribution of

the example described in Section 9.4.2.



Appendix E

Summary of the structured QBD

processes from Chapter 10

E.1 Identifying suitable models

In this section, we review the relevant plots and likelihood ratio test results used

to determine the most suitable polynomial forms for each of the remaining types of

structured QBD processes considered in Chapter 10.

E.1.1 Two-phase structured QBD process with

level-dependent polynomial forms

Using the EM algorithm described in Section 8.3, we fitted several two-phase

structured QBD processes with level-dependent scales to the RAH ICU data and

chose the model with the highest log-likelihood.

We used weighted least squares regression to fit a constant, linear, and quadratic

model to the maximum likelihood estimates of the departure, unchanged, and arrival

level-dependent scales of the two-phase structured QBD process, as illustrated in

Figure E.1.1.

400
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(a) Departure

(b) Unchanged

(c) Arrival

Figure E.1.1: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level-dependent scales

(points) for the fitted two-phase structured QBD process.
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Based on the results of the likelihood-ratio tests presented in Table E.1.1, the

behaviour of the level-dependent scales associated with arrivals and within level

transitions are better explained using a quadratic model. However, a quadratic

term is not needed to explain the behaviour of the level-dependent scales

associated with departures.

Taking into consideration that an additional phase captures more of the variability

in the bed occupancy data, these results suggest that admissions to the ICU are

not necessarily decreasing at a linear rate and the rate of discharge depends on the

number of patients in the ICU.

Matrix Model 1 Model 2 Statistic Degrees of freedom P-value

Departure Constant Linear 32.275 1 1.339× 10−8

Departure Linear Quadratic 3.032 1 8.164× 10−2

Unchanged Constant Linear 7.953 1 4.800× 10−3

Unchanged Linear Quadratic 20.304 1 6.608× 10−6

Arrival Constant Linear 52.205 1 5.001× 10−13

Arrival Linear Quadratic 6.949 1 8.388× 10−3

Table E.1.1: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models for the two-phase structured QBD process

with level-dependent scales.
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E.1.2 Three-phase structured QBD process with

level-dependent polynomial forms

Using the EM algorithm described in Section 8.3, we fitted several three-phase

structured QBD processes with level-dependent scales to the RAH ICU data and

chose the model with the highest log-likelihood.

Using weighted least squares regression modelling, we fitted a constant, linear, and

quadratic model to the maximum likelihood estimates of the level-dependent

scales, as illustrated in Figure E.1.2.

The forms of the level-dependent scales associated with arrivals and departures are

very similar to those of the two-phase structured QBD process with

level-dependent scales. However, an additional phase has changed the behaviour of

the level-dependent scales associated with within level changes.

Overall, a quadratic term is not needed to explain the behaviour of the level-

dependent scales associated with arrivals but it is required to explain the behaviour

of the level-dependent scales associated with departures and within level transitions,

as demonstrated by the likelihood-ratio test results presented in Table E.1.2.
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(a) Departure

(b) Unchanged

(c) Arrival

Figure E.1.2: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level-dependent scales

(points) for the fitted three-phase structured QBD process.
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Matrix Model 1 Model 2 Statistic Degrees of freedom P-value

Departure Constant Linear 26.677 1 2.404×10−7

Departure Linear Quadratic 5.208 1 2.248×10−2

Unchanged Constant Linear 22.200 1 2.456×10−6

Unchanged Linear Quadratic 8.204 1 4.181×10−3

Arrival Constant Linear 36.197 1 1.784×10−9

Arrival Linear Quadratic 2.738 1 9.801×10−2

Table E.1.2: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models for the three-phase structured QBD process

with level-dependent scales.

E.1.3 Four-phase structured QBD process with

level-dependent polynomial forms

Using the EM algorithm described in Section 8.3, we fitted several four-phase

structured QBD processes with level-dependent scales to the RAH ICU data and

chose the model with the highest log-likelihood.

Using weighted least squares regression modelling, we fitted a constant, linear, and

quadratic model to the maximum likelihood estimates of the level-dependent

scales, as illustrated in Figure E.1.3.

The level-dependent scales are very similar to those of the three-phase structured

QBD process with level-dependent scales, except for the level-dependent scales

associated with within level changes which now appear to be more constant.
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(a) Departure

(b) Unchanged

(c) Arrival

Figure E.1.3: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level-dependent scales

(points) for the fitted four-phase structured QBD process.
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Again, a quadratic term is not needed to explain the behaviour of the level-dependent

scales associated with arrivals and is no longer needed to explain the behaviour of the

level-dependent scales associated with within level changes. However, a quadratic

term is now required to explain the behaviour of the level-dependent scales associated

with departures, as demonstrated by the likelihood-ratio test results presented in

Table E.1.3.

Matrix Model 1 Model 2 Statistic Degrees of freedom P-value

Departure Constant Linear 9.972 1 1.589×10−3

Departure Linear Quadratic 18.608 1 1.606×10−5

Unchanged Constant Linear 16.166 1 5.803 ×10−5

Unchanged Linear Quadratic 1.420 1 0.233

Arrival Constant Linear 26.254 1 2.993×10−7

Arrival Linear Quadratic 0.305 1 0.581

Table E.1.3: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models for the four-phase structured QBD process

with level-dependent scales.

E.1.4 Three-phase structured QBD process with level and

phase transition dependent polynomial forms

Extending the EM algorithm described in Section 8.3, we fitted several three-phase

structured QBD processes with level and phase transition dependent scales to the

RAH ICU data and chose the model with the highest log-likelihood.
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First, we consider the constant, linear, and quadratic models fitted to the

maximum likelihood estimates of the level and phase transition dependent scales

associated with a decrease in level of the fitted three-phase structured QBD

process, as illustrated in Figure E.1.4. Note that zero valued level and phase

transition dependent scales are omitted in the case where the corresponding block

matrix element is also zero.

(a) (1, 1) (b) (1, 2) (c) (1, 3)

(d) (2, 1) (e) (2, 2) (f) (2, 3)

(g) (3, 1) (h) (3, 2) (i) (3, 3)

Figure E.1.4: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent departure scales for the fitted three-phase structured QBD process. Note

that (a, b) indicates a phase transition from phase a to phase b.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 1) Constant Linear 2.693 1 0.101

(1, 1) Linear Quadratic 0.082 1 0.775

(1, 2) Constant Linear 6.684 1 9.726×10−3

(1, 2) Linear Quadratic 4.721 1 2.980×10−2

(1, 3) Constant Linear 0.077 1 0.781

(1, 3) Linear Quadratic 0.311 1 0.577

(2, 1) Constant Linear 1.189 1 0.276

(2, 1) Linear Quadratic 2.297 1 0.130

(2, 2) Constant Linear 1.023 1 0.312

(2, 2) Linear Quadratic 9.146 1 2.493×10−3

(2, 3) Constant Linear 6.979 1 8.247×10−3

(2, 3) Linear Quadratic 0.008 1 0.927

(3, 1) Constant Linear 2.386 1 0.122

(3, 1) Linear Quadratic 11.165 1 8.336×10−4

(3, 2) Constant Linear 2.421 1 0.120

(3, 2) Linear Quadratic 1.181 1 0.277

(3, 3) Constant Linear 1.419 1 0.234

(3, 3) Linear Quadratic 0.320 1 0.571

Table E.1.4: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with departures for the three-

phase structured QBD process with level and phase transition dependent scales.
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Using the results of the likelihood-ratio tests presented in Table E.1.4, neither

linear or quadratic terms are needed to explain the behaviour of the level and

phase transition dependent scales associated with the (1, 1), (1, 3), (2, 1), (3, 2),

and (3, 3) phase transitions. However, further investigation is needed for the (1, 3)

and (2, 1) phase transitions. For the remaining phase transitions, the quadratic

functional form best fits the level and phase transition dependent scales associated

with the (1, 2), (2, 2), and (3, 1) phase transitions, whereas a linear functional

form best fits the level and phase transition dependent scales associated with the

(2, 3) phase transition.

Given the presence of outliers for the (1, 3) and (2, 1) phase transitions, we further

explored the behaviour of the level and phase transition dependent scales by

removing data with a value above 50. Using a similar process to before, the results

of the updated likelihood ratio tests confirmed that neither a linear term or a

quadratic term is needed to explain the behaviour of the level and phase transition

dependent scales associated with the (1, 3) and (2, 1) phase transitions.

Next, the estimated constant, linear, and quadratic models of the maximum

likelihood estimates of the level and phase transition dependent scales associated

with transitions within a level of the fitted three-phase structured QBD process

are plotted in Figure E.1.5. Note that zero valued level and phase transition

dependent scales are omitted in the case where the corresponding block matrix

element is also zero.



APPENDIX E. SUMMARY FROM CHAPTER 10 411

(a) (1, 2) (b) (1, 3)

(c) (2, 1) (d) (2, 3)

(e) (3, 1) (f) (3, 2)

Figure E.1.5: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent unchanged scales for the fitted three-phase structured QBD process. Note

that (a, b) indicates a phase transition from phase a to phase b.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 2) Constant Linear 11.080 1 8.725×10−4

(1, 2) Linear Quadratic 0.022 1 0.881

(1, 3) Constant Linear 2.049 1 0.152

(1, 3) Linear Quadratic 5.125 1 2.358×10−2

(2, 1) Constant Linear 0.316 1 0.574

(2, 1) Linear Quadratic 1.015 1 0.314

(2, 3) Constant Linear 2.361 1 0.124

(2, 3) Linear Quadratic 1.712 1 0.191

(3, 1) Constant Linear 8.055 1 4.539×10−3

(3, 1) Linear Quadratic 6.001 1 1.430×10−2

(3, 2) Constant Linear 1.397 1 0.237

(3, 2) Linear Quadratic 0.163 1 0.686

Table E.1.5: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with transitions within each

level for the three-phase structured QBD process with level and phase transition

dependent scales.
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The linear form best describes the behaviour observed in the level and phase

transition dependent scales associated with the (1, 2) phase transition and the

quadratic form best describes the behaviour observed in the level and phase

transition dependent scales associated with the (1, 3) and (3, 1) phase transitions,

as shown in Table E.1.5. For the remaining phase transitions, neither a linear or

quadratic term is needed to explain the behaviour. However, further investigation

is needed for the (2, 1) phase transition.

We further explored the behaviour of the level and phase transition dependent scales

associated with the (2, 1) phase transition by removing values above 50. The

results of the updated likelihood ratio test confirmed that behaviour of the level

and phase transition dependent scales associated with the (2, 1) phase transition

are independent of the level.

Lastly, using weighted least squares regression, we fitted a constant, linear, and

quadratic model to the maximum likelihood estimates of the level and phase

transition dependent scales associated with an increase in level of the fitted

three-phase structured QBD process, as illustrated in Figure E.1.6.

Note that zero valued level and phase transition dependent scales are omitted in

the case where the corresponding block matrix element is also zero.
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(a) (1, 1) (b) (1, 2) (c) (1, 3)

(d) (2, 1) (e) (2, 2) (f) (2, 3)

(g) (3, 1) (h) (3, 2) (i) (3, 3)

Figure E.1.6: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent arrival scales for the fitted three-phase structured QBD process. Note

that (a, b) indicates a phase transition from phase a to phase b.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 1) Constant Linear 31.949 1 1.583×10−8

(1, 1) Linear Quadratic 6.596 1 1.022×10−2

(1, 2) Constant Linear 4.919 1 2.657×10−2

(1, 2) Linear Quadratic 4.919 1 5.239×10−2

(1, 3) Constant Linear 1.185 1 0.276

(1, 3) Linear Quadratic 0.362 1 0.548

(2, 1) Constant Linear 0.118 1 0.731

(2, 1) Linear Quadratic 1.002 1 0.317

(2, 2) Constant Linear 8.175 1 4.247×10−3

(2, 2) Linear Quadratic 2.418 1 0.120

(2, 3) Constant Linear 3.880 1 4.888×10−2

(2, 3) Linear Quadratic 3.121 1 7.730×10−2

(3, 1) Constant Linear 0.367 1 0.545

(3, 1) Linear Quadratic 1.569 1 0.210

(3, 2) Constant Linear 0.028 1 0.867

(3, 2) Linear Quadratic 3.800 1 5.125×10−2

(3, 3) Constant Linear 18.827 1 1.431×10−5

(3, 3) Linear Quadratic 9.684 1 1.859×10−3

Table E.1.6: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with arrivals for the three-phase

structured QBD process with level and phase transition dependent scales.
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Using the results of the likelihood-ratio tests presented in Table E.1.6, the linear

form best describes the level and phase transition dependent scales associated with

the (1, 2), (2, 2), and (2, 3) phase transitions and the quadratic form best describes

the level and phase transition dependent scales associated with the (1, 1) and (3, 3)

phase transitions. Neither a linear or quadratic term is needed to explain the

behaviour of the level and phase transition dependent scales for the (1, 3), (2, 1),

(3, 1), and (3, 2) phase transitions. However, further investigation for the (1, 2),

(2, 1), (3, 1), and (3, 2) phase transitions is required given the presence of outliers.

Figure E.1.7 plots the constant model, linear model, and a quadratic model fitted

to the maximum likelihood estimates of the level and phase transition dependent

scales that have a value below 50. This confirms that the level and phase transition

dependent scales associated with the (2, 1), (3, 1), and (3, 2) phase transitions are

constant and that the level and phase transition dependent scales associated with

the (1, 2) phase transition may also be constant, rather than linearly decreasing.
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(a) (1, 2) (b) (2, 1)

(c) (3, 1) (d) (3, 2)

Figure E.1.7: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent arrival scales with a value below 50 for the fitted three-phase structured

QBD process. Note that (a, b) indicates a phase transition from phase a to phase b.

The likelihood ratio tests presented in Table E.1.7 now suggest that the level and

phase transition dependent scales associated with the (1, 2) phase transition are

linear, and the level and phase transition dependent scales associated with the

(2, 1), (3, 1), and (3, 2) phase transitions are constant.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 2) Constant Linear 7.399 1 6.527×10−3

(1, 2) Linear Quadratic 2.331 1 0.127

(2, 1) Constant Linear 1.835 1 0.176

(2, 1) Linear Quadratic 2.188 1 0.139

(3, 1) Constant Linear 2.144 1 0.143

(3, 1) Linear Quadratic 0.213 1 0.645

(3, 2) Constant Linear 1.705 1 0.192

(3, 2) Linear Quadratic 2.201 1 0.138

Table E.1.7: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with arrivals for the three-phase

structured QBD process with level and phase transition dependent scales with a

value below 50.

E.1.5 Four-phase structured QBD process with level and

phase transition dependent polynomial forms

Similar to before, we extended the EM algorithm described in Section 8.3 to fit

several four-phase structured QBD processes with level-dependent scales to the RAH

ICU data and chose the model with the highest log-likelihood.

First, we consider the constant, linear, and quadratic models fitted to the

maximum likelihood estimates of the level and phase transition dependent scales

associated with a decrease in level of the fitted four-phase structured QBD process,

as illustrated in Figures E.1.8 and E.1.9.
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(a) (1, 1) (b) (1, 2)

(c) (1, 3) (d) (1, 4)

(e) (2, 1) (f) (2, 2)

(g) (2, 3) (h) (2, 4)

Figure E.1.8: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of selected level and phase

transition dependent departure scales for the fitted four-phase structured QBD

process. Note that (a, b) indicates a phase transition from phase a to phase b.
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(a) (3, 1) (b) (3, 2)

(c) (3, 3) (d) (3, 4)

(e) (4, 1) (f) (4, 2)

(g) (4, 3) (h) (4, 4)

Figure E.1.9: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of selected level and phase

transition dependent departure scales for the fitted four-phase structured QBD

process. Note that (a, b) indicates a phase transition from phase a to phase b.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 1) Constant Linear 2.497 1 0.114

(1, 1) Linear Quadratic 6.423 1 1.127×10−2

(1, 2) Constant Linear 5.656 1 1.739×10−2

(1, 2) Linear Quadratic 4.921 1 2.654×10−2

(1, 3) Constant Linear 0.595 1 0.441

(1, 3) Linear Quadratic 1.590 1 0.207

(1, 4) Constant Linear 0.614 1 0.434

(1, 4) Linear Quadratic 1.600 1 0.206

(2, 1) Constant Linear 2.077 1 0.150

(2, 1) Linear Quadratic 0.263 1 0.608

(2, 2) Constant Linear 3.170 1 7.502×10−2

(2, 2) Linear Quadratic 5.477 1 1.927×10−2

(2, 3) Constant Linear 17.270 1 3.242×10−5

(2, 3) Linear Quadratic 4.846 1 2.770×10−2

(2, 4) Constant Linear 0.047 1 0.829

(2, 4) Linear Quadratic 4.346 1 3.71×10−2

(3, 1) Constant Linear 1.990 1 0.158

(3, 1) Linear Quadratic 0.152 1 0.697

(3, 2) Constant Linear 4.494 1 3.402×10−2

(3, 2) Linear Quadratic 3.518 1 6.071×10−2

(3, 3) Constant Linear 0.001 1 0.977

(3, 3) Linear Quadratic 9.812 1 1.734×10−3

(3, 4) Constant Linear 0.172 1 0.678

(3, 4) Linear Quadratic 3.468 1 6.257×10−2

(4, 1) Constant Linear 5.536 1 1.862×10−2

(4, 1) Linear Quadratic 0.392 1 0.531

(4, 2) Constant Linear 2.983 1 8.416×10−2

(4, 2) Linear Quadratic 5.284 1 2.152×10−2

(4, 3) Constant Linear 0.360 1 0.548

(4, 3) Linear Quadratic 5.209 1 2.247×10−2

(4, 4) Constant Linear 0.237 1 0.627

(4, 4) Linear Quadratic 9.392 1 2.180×10−3

Table E.1.8: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with departures for the four-phase

structured QBD process with level and phase transition dependent scales.
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Based on the results of the likelihood-ratio tests presented in Table E.1.8, the level

and phase transition dependent scales associated with the (1, 1), (1, 2), (2, 2), (2,

3), (2, 4), (3, 3), (4, 2), (4, 3), and (4, 4) phase transitions behave in a quadratic

manner, whereas only the level and phase transition dependent scales associated

with the (3, 2) and (4, 1) phase transitions behave linearly. The behaviour of the

level and phase transition dependent scales for the remaining phase transitions

remains relatively constant.

After removing outliers from the above analysis, only the level and phase transition

dependent scales associated with the (2, 4) phase transition behaved differently. In

this case, the suggested behaviour of the level and phase transition dependent scales

associated with the (2, 4) phase transition changed from quadratic to constant, as

demonstrated in Figure E.1.10 and Table E.1.9.

Figure E.1.10: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent deaprture scales associated with the (2, 4) phase transition and a value

below 50 for the fitted four-phase structured QBD process.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(2, 4) Constant Linear 2.750 1 9.725×10−2

(2, 4) Linear Quadratic 3.755 1 5.264×10−2

Table E.1.9: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with departures, the (2, 4) phase

transition, and a value below 50 for the four-phase structured QBD process with

level and phase transition dependent scales.

Next, we consider the constant, linear, and quadratic models fitted to the

maximum likelihood estimates of the level and phase transition dependent scales

associated with no changes in level of the fitted four-phase structured QBD

process, as illustrated in Figures E.1.11 and E.1.12.
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(a) (1, 2) (b) (1, 3)

(c) (1, 4) (d) (2, 1)

(e) (2, 3) (f) (2, 4)

Figure E.1.11: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of selected level and phase

transition dependent unchanged scales for the fitted four-phase structured QBD

process. Note that (a, b) indicates a phase transition from phase a to phase b.
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(a) (3, 1) (b) (3, 2)

(c) (3, 4) (d) (4, 1)

(e) (4, 2) (f) (4, 3)

Figure E.1.12: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of selected level and phase

transition dependent unchanged scales for the fitted four-phase structured QBD

process. Note that (a, b) indicates a phase transition from phase a to phase b.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 2) Constant Linear 7.114 1 7.648×10−3

(1, 2) Linear Quadratic 4.136 1 4.198×10−2

(1, 3) Constant Linear 0.638 1 0.424

(1, 3) Linear Quadratic 1.630 1 0.202

(1, 4) Constant Linear 0.053 1 0.817

(1, 4) Linear Quadratic 0.219 1 0.640

(2, 1) Constant Linear 1.029 1 0.310

(2, 1) Linear Quadratic 3.849 1 4.979×10−2

(2, 3) Constant Linear 0.000 1 0.995

(2, 3) Linear Quadratic 1.108 1 0.293

(2, 4) Constant Linear 0.121 1 0.728

(2, 4) Linear Quadratic 0.461 1 0.497

(3, 1) Constant Linear 1.293 1 0.255

(3, 1) Linear Quadratic 1.449 1 0.229

(3, 2) Constant Linear 2.029 1 0.154

(3, 2) Linear Quadratic 0.838 1 0.360

(3, 4) Constant Linear 0.150 1 0.698

(3, 4) Linear Quadratic 0.141 1 0.707

(4, 1) Constant Linear 4.226 1 3.981×10−2

(4, 1) Linear Quadratic 1.183 1 0.277

(4, 2) Constant Linear 1.214 1 0.271

(4, 2) Linear Quadratic 0.646 1 0.422

(4, 3) Constant Linear 1.157 1 0.282

(4, 3) Linear Quadratic 3.636 1 5.653×10−2

Table E.1.10: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with within level changes for the

four-phase structured QBD process with level and phase transition dependent scales.
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From the results of the likelihood-ratio tests presented in Table E.1.10, only the

level and phase transition dependent scales associated with the (1, 2) and (2, 1)

phase transitions require a quadratic term, and only the level and phase transition

dependent scales associated with the (4, 1) phase transition requires a linear term.

All remaining phase transitions have level and phase transition dependent scales

that remain relatively constant.

Similar to before, we further explored the behaviour of level and phase transition

dependent scales when values above 50 were removed. In this case, only the level and

phase transition dependent scales associated with the (2, 1) phase transition behaved

differently. That is, the suggested behaviour of the level and phase transition

dependent scales associated with the (2, 1) phase transition changed from quadratic

to constant, as demonstrated in Figure E.1.13 and Table E.1.11.

Figure E.1.13: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent arrival scales associated with the (2, 1) phase transition and a value below

50 for the fitted four-phase structured QBD process.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(2, 1) Constant Linear 0.049 1 0.826

(2, 1) Linear Quadratic 0.211 1 0.646

Table E.1.11: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with within level changes, the

(2, 1) phase transition, and a value below 50 for the four-phase structured QBD

process with level and phase transition dependent scales.

Finally, using weighted least squares regression, we fitted a constant, linear, and

quadratic model to the maximum likelihood estimates of the level and phase

transition dependent scales associated with an increase in level of the fitted

four-phase structured QBD process, as illustrated in Figures E.1.14 and E.1.15.

Note that zero valued level and phase transition dependent scales are omitted in

the case where the corresponding block matrix element is also zero.
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(a) (1, 1) (b) (1, 2)

(c) (1, 3) (d) (1, 4)

(e) (2, 1) (f) (2, 2)

(g) (2, 3) (h) (2, 4)

Figure E.1.14: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of selected level and phase

transition dependent arrival scales for the fitted four-phase structured QBD process.

Note that (a, b) indicates a phase transition from phase a to phase b.
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(a) (3, 1) (b) (3, 2)

(c) (3, 3) (d) (3, 4)

(e) (4, 1) (f) (4, 2)

(g) (4, 3) (h) (4, 4)

Figure E.1.15: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of selected level and phase

transition dependent arrival scales for the fitted four-phase structured QBD process.

Note that (a, b) indicates a phase transition from phase a to phase b.
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Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(1, 1) Constant Linear 12.587 1 3.884×10−4

(1, 1) Linear Quadratic 8.909 1 2.837×10−3

(1, 2) Constant Linear 6.208 1 1.272×10−2

(1, 2) Linear Quadratic 0.625 1 0.429

(1, 3) Constant Linear 0.145 1 0.704

(1, 3) Linear Quadratic 0.944 1 0.331

(1, 4) Constant Linear 1.261 1 0.261

(1, 4) Linear Quadratic 2.349 1 0.125

(2, 1) Constant Linear 0.491 1 0.483

(2, 1) Linear Quadratic 1.593 1 0.207

(2, 2) Constant Linear 14.213 1 1.632×10−4

(2, 2) Linear Quadratic 8.518 1 3.516×10−3

(2, 3) Constant Linear 3.196 1 7.382×10−2

(2, 3) Linear Quadratic 5.932 1 1.487×10−2

(2, 4) Constant Linear 2.634 1 0.105

(2, 4) Linear Quadratic 2.158 1 0.142

(3, 1) Constant Linear 1.320 1 0.251

(3, 1) Linear Quadratic 2.603 1 0.107

(3, 2) Constant Linear 0.085 1 0.770

(3, 2) Linear Quadratic 1.586 1 0.208

(3, 3) Constant Linear 1.038 1 0.308

(3, 3) Linear Quadratic 1.174 1 0.279

(3, 4) Constant Linear 0.316 1 0.574

(3, 4) Linear Quadratic 0.068 1 0.794

(4, 1) Constant Linear 3.004 1 8.307×10−2

(4, 1) Linear Quadratic 0.540 1 0.462

(4, 2) Constant Linear 1.304 1 0.253

(4, 2) Linear Quadratic 2.389 1 0.122

(4, 3) Constant Linear 1.394 1 0.238

(4, 3) Linear Quadratic 4.787 1 2.868×10−2

(4, 4) Constant Linear 6.383 1 1.152×10−2

(4, 4) Linear Quadratic 6.676 1 9.775×10−3

Table E.1.12: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with arrivals for the four-phase

structured QBD process with level and phase transition dependent scales.
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Firstly, the results of the likelihood-ratio tests presented in Table E.1.12 suggest

that a quadratic form is needed to explain the behaviour of the level and phase

transition dependent scales associated with the (1, 1), (2, 2), (2, 3), (4, 3), and

(4, 4) phase transitions. These results also suggest that only a linear term is

required to describe the level and phase transition dependent scales associated

with the (1, 2) phase transition, and neither a linear or quadratic term is required

for the remaining phase transitions.

Further exploration into the behaviour of level and phase transition dependent scales

when outliers were removed revealed that only the (4, 3) phase transition behaved

differently without the presence of outliers. That is, the suggested behaviour of

the level and phase transition dependent scales associated with the (4, 3) phase

transition changed from quadratic to constant, as demonstrated in Figure E.1.16

and Table E.1.13.
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Figure E.1.16: Estimated constant model (red), linear model (green), and quadratic

model (blue) of the maximum likelihood estimates of the level and phase transition

dependent arrival scales associated with the (4, 3) phase transition and a value below

50 for the fitted four-phase structured QBD process.

Phase Transition Model 1 Model 2 Statistic Degrees of freedom P-value

(4, 3) Constant Linear 0.630 1 0.428

(4, 3) Linear Quadratic 1.192 1 0.275

Table E.1.13: Summary of the likelihood-ratio tests which compare the fitted

constant, linear, and quadratic models associated with arrivals, the (4, 3) phase

transition, and a value below 50 for the four-phase structured QBD process with

level and phase transition dependent scales.
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E.2 Goodness of fit

In this section, we review the diagnostic plots associated with each goodness of fit

test summarised in Table 10.3.1.

E.2.1 One-phase structured QBD process with

level-dependent polynomial forms

First, we consider the one-phase structured QBD process with level-dependent

polynomial forms, such that the null and alternative hypotheses are defined as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all one-phase structured QBD processes with an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

such that the functional forms for the block matrices describing a decrease in level,

for 1 ≤ ` ≤ 25, take the form

h` = 1,

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `.
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Using the hypothesis test described in Section 9.2, we obtain an empirical p-value

of 0 which suggests that this particular type of QBD process does not capture the

stationary and transient behaviour observed in the RAH ICU data. Let’s now

consider the diagnostic plots for the stationary and transient behaviour.

Figure E.2.1 illustrates that the fitted one-phase structured QBD process

over-estimates the proportion of time spent in bed occupancies 12 to 18, and

generally under-estimates the proportion of time spent in the remaining bed

occupancies.

Figure E.2.1: Comparison of the observed proportion of time spent in each bed

occupancy (red points) to the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted one-phase

structured QBD process with level-dependent polynomial forms (box-plots). Note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.
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Despite not accurately capturing the stationary behaviour, the transition

probabilities of the fitted one-phase structured QBD process are similar to those

observed in the RAH ICU data set, as demonstrated in Figure E.2.2. Note that the

variation towards the lower and higher bed occupancies is due to minimal data.

Figure E.2.2: Comparison of the observed transition probabilities between bed

occupancies (red points) to the observed transition probabilities between bed

occupancies based on 1000 simulated data sets generated from the fitted one-phase

structured QBD process with level-dependent polynomial forms (box-plots). Note

that the transition probabilities for bed occupancies below 26 and above 42 are

omitted due to minimal data. Also note that each simulated data set contains the

same number of changes in bed occupancy as that observed in the RAH ICU data

set.
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Figures E.2.3a, E.2.3b, and E.2.3c demonstrate that the distributions of

conditional sojourn times are inaccurately represented by the fitted one-phase

structured QBD process. Furthermore, Figures E.2.4 and E.2.5 illustrate the

difference in the observed distributions of conditional sojourn times compared to

those of the data simulated from the fitted one-phase structured QBD process,

drawing attention to the differences observed in the downward transitions.
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(a) (b)

(c)

Figure E.2.3: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each bed occupancy based on

observed data (red points) and the distribution of conditional sojourn times for

each bed occupancy based on 1000 simulated data sets generated from the fitted

level-dependent QBD process with two phases (box-plots). Note that the conditional

sojourn times for bed occupancies below 26 and above 42 are omitted due to minimal

data. Also note that each simulated data set contains the same number of changes

in bed occupancy as that observed in the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.4: Comparison of the observed density of sojourn times conditioned on

downward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on downward transitions based

on 1000 simulated data sets generated from the fitted one-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.5: Comparison of the observed density of sojourn times conditioned on

upward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on upward transitions based

on 1000 simulated data sets generated from the fitted one-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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E.2.2 Two-phase structured QBD process with

level-dependent polynomial forms

Here, we consider the two-phase structured QBD process, such that the null and

alternative hypotheses are defined as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all two-phase structured QBD processes with an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where the functional forms for the block matrices describing a decrease in level, for

1 ≤ ` ≤ 25, take the form

h` = 1 + βh1 (`− 1),

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

g` = 1 + βg1`+ βg2`
2,

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `+ βf2 `
2.
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Figure E.2.6 shows that despite introducing an extra phase into the structured

QBD process, the proportion of time spent in the most frequently visited bed

occupancies remains under-estimated.

Figure E.2.6: Comparison of the observed proportion of time spent in each bed

occupancy (red points) to the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted two-phase

structured QBD process with level-dependent polynomial forms (box-plots). Note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.

There is less variability in the transition probabilities of the two-phase structured

QBD process compared to those of the one-phase structured QBD process, but

evidence of dissimilarity still remains, as shown in Figure E.2.7.
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Figure E.2.7: Comparison of the observed transition probabilities between bed

occupancies (red points) to the observed transition probabilities between bed

occupancies based on 1000 simulated data sets generated from the fitted two-phase

structured QBD process with level-dependent polynomial forms (box-plots). Note

that the transition probabilities for bed occupancies below 23 and above 43 are

omitted due to minimal data. Also note that each simulated data set contains the

same number of changes in bed occupancy as that observed in the RAH ICU data

set.

Despite the previous differences, the addition of an extra phase has improved the

modelling of the conditional sojourn times, as illustrated in Figures E.2.8a, E.2.8b,

and E.2.8c. However, dissimilarities remain as further illustrated in Figures E.2.9

and E.2.10.
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(a) (b)

(c)

Figure E.2.8: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each bed occupancy based on

observed data (red points) and the distribution of conditional sojourn times for

each bed occupancy based on 1000 simulated data sets generated from the fitted

two-phase structured QBD process with level-dependent polynomial forms (box-

plots). Note that the conditional sojourn times for bed occupancies below 24 and

above 43 are omitted due to minimal data. Also note that each simulated data set

contains the same number of changes in bed occupancy as that observed in the RAH

ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.9: Comparison of the observed density of sojourn times conditioned on

downward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on downward transitions based

on 1000 simulated data sets generated from the fitted two-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.10: Comparison of the observed density of sojourn times conditioned

on upward transitions for the most frequently visited bed occupancies (black line)

to the observed densities of sojourn times conditioned on upward transitions based

on 1000 simulated data sets generated from the fitted two-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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E.2.3 Three-phase structured QBD process with

level-dependent polynomial forms

Next, we consider a three-phase structured QBD process which has an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where the functional forms for the block matrices describing a decrease in level, for

1 ≤ ` ≤ 25, take the form

h` = 1 + βh1 (`− 1) + βh2 (`− 1)2,

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

g` = 1 + βg1`+ βg2`
2,
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and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `.

Hence, we define the null and alternative hypotheses as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all structured QBD processes of this particular form.

Introducing another phase into the structured QBD process has further improved

the fit in terms of stationary behaviour but there is still some under-estimation

and over-estimation of bed occupancies, as shown in Figure E.2.11.
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Figure E.2.11: Comparison of the observed proportion of time spent in each bed

occupancy (red points) to the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted three-phase

structured QBD process with level-dependent polynomial forms (box-plots). Note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.

Despite seeing an improvement in terms of stationary behaviour, there remains

some variability and evidence of dissimilarity in the transition probabilities of the

fitted three-phase structured QBD process compared to that observed in the RAH

ICU data set, as shown in Figure E.2.12. Note that the variation towards the lower

and higher bed occupancies is due to minimal data.
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Figure E.2.12: Comparison of the observed transition probabilities between bed

occupancies (red points) to the observed transition probabilities between bed

occupancies based on 1000 simulated data sets generated from the fitted three-

phase structured QBD process with level-dependent polynomial forms (box-plots).

Note that the transition probabilities for bed occupancies below 24 are omitted due

to minimal data. Also note that each simulated data set contains the same number

of changes in bed occupancy as that observed in the RAH ICU data set.

The addition of another phase slightly improved the fit in terms of the distribution

of sojourn time for each bed occupancy, as demonstrated in

Figures E.2.13a, E.2.13b, and E.2.13c. However, dissimilarities still remain as

further illustrated in Figures E.2.14 and E.2.15.
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(a) (b)

(c)

Figure E.2.13: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each bed occupancy based on

observed data (red points) and the distribution of conditional sojourn times for

each bed occupancy based on 1000 simulated data sets generated from the fitted

three-phase structured QBD process with level-dependent polynomial forms (box-

plots). Note that the conditional sojourn times for bed occupancies below 25 and

above 43 are omitted due to minimal data. Also note that each simulated data set

contains the same number of changes in bed occupancy as that observed in the RAH

ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.14: Comparison of the observed density of sojourn times conditioned on

downward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on downward transitions based

on 1000 simulated data sets generated from the fitted three-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.15: Comparison of the observed density of sojourn times conditioned

on upward transitions for the most frequently visited bed occupancies (black line)

to the observed densities of sojourn times conditioned on upward transitions based

on 1000 simulated data sets generated from the fitted three-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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E.2.4 Four-phase structured QBD process with

level-dependent polynomial forms

Now, let’s consider a four-phase structured QBD process which has an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
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0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where the functional forms for the block matrices describing a decrease in level, for

1 ≤ ` ≤ 25, take the form

h` = 1 + βh1 (`− 1) + βh2 (`− 1)2,

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

g` = 1 + βg1`,

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

f` = 1 + βf1 `.
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Hence, we define the null and alternative hypotheses as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all structured QBD processes of this particular form.

Once again, introducing another phase has improved the fit in terms of stationary

behaviour but there is still some under-estimation and over-estimation of higher

bed occupancies, as shown in Figure E.2.16.

Figure E.2.16: Comparison of the observed proportion of time spent in each bed

occupancy (red points) to the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted four-phase

structured QBD process with level-dependent polynomial forms (box-plots). Note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.
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Similar to before, there remains some variability and evidence of dissimilarity in

the transition probabilities of the fitted four-phase structured QBD process

compared to that observed in the RAH ICU data set, as shown in Figure E.2.17.

Note that the variation towards the lower and higher bed occupancies is due to

minimal data.

Figure E.2.17: Comparison of the observed transition probabilities between bed

occupancies (red points) to the observed transition probabilities between bed

occupancies based on 1000 simulated data sets generated from the fitted four-phase

structured QBD process with level-dependent polynomial forms (box-plots). Note

that the transition probabilities for bed occupancies below 24 are omitted due to

minimal data. Also note that each simulated data set contains the same number of

changes in bed occupancy as that observed in the RAH ICU data set.
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Despite the structured QBD process having four phases, dissimilarities still exist

between the observed distributions of conditional sojourn times for each bed

occupancy and the that of the fitted four-phase structured QBD process, as

illustrated in Figures E.2.18a, E.2.18b, and E.2.18c, as well as in Figures E.2.19

and E.2.20.
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(a) (b)

(c)

Figure E.2.18: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each bed occupancy based on

observed data (red points) and the distribution of conditional sojourn times for

each bed occupancy based on 1000 simulated data sets generated from the fitted

four-phase structured QBD process with level-dependent polynomial forms (box-

plots). Note that the conditional sojourn times for bed occupancies below 25 and

above 43 are omitted due to minimal data. Also note that each simulated data set

contains the same number of changes in bed occupancy as that observed in the RAH

ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.19: Comparison of the observed density of sojourn times conditioned on

downward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on downward transitions based

on 1000 simulated data sets generated from the fitted four-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.20: Comparison of the observed density of sojourn times conditioned

on upward transitions for the most frequently visited bed occupancies (black line)

to the observed densities of sojourn times conditioned on upward transitions based

on 1000 simulated data sets generated from the fitted four-phase structured QBD

process with level-dependent polynomial forms (red lines). Note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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E.2.5 Two-phase structured QBD process with level and

phase transition dependent polynomial forms

In this section, we now consider a two-phase structured QBD process, such that the

null and alternative hypotheses are defined as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all two-phase structured QBD processes with an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,
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where the functional forms for the block matrices describing a decrease in level, for

1 ≤ ` ≤ 25, take the form

[H`]i,j = h`,i,j =


1, if (i, j) ∈ {(2, 2)},

1 + βh,i,j1 (`− 1), if (i, j) ∈ {(1, 2)},

1 + βh,i,j1 (`− 1) + βh,i,j2 (`− 1)2, if (i, j) ∈ {(1, 1), (2, 1)},

the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

[G`]i,j = g`,i,j =

1 + βg,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βg,i,j1 `+ βg,i,j2 `2, if (i, j) ∈ {(2, 1)},

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

[F`]i,j = f`,i,j =


1, if (i, j) ∈ {(2, 1)},

1 + βf,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βf,i,j1 `+ βf,i,j2 `2, if (i, j) ∈ {(1, 1), (2, 2)}.

Figure E.2.21 illustrates that the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted two-phase

structured QBD process is similar to the observed proportion of time spent in each

bed occupancy from the RAH ICU data set.
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Figure E.2.21: Comparison of the observed proportion of time spent in each bed

occupancy (red points) to the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted two-phase

structured QBD process with level and phase transition dependent polynomial forms

(box-plots). Note that each simulated data set contains the same number of changes

in bed occupancy as that observed in the RAH ICU data set.

Figure E.2.22 shows that for the most frequently visited bed occupancies, the

transition probabilities of the fitted two-phase structured QBD process are similar

to that observed in the RAH ICU data set. Note that the variation towards the

lower and higher bed occupancies is due to minimal data.
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Figure E.2.22: Comparison of the observed transition probabilities between bed

occupancies (red points) to the observed transition probabilities between bed

occupancies based on 1000 simulated data sets generated from the fitted two-phase

structured QBD process with level and phase transition dependent polynomial forms

(box-plots). Note that the transition probabilities for bed occupancies below 25 and

above 43 are omitted due to minimal data. Also note that each simulated data set

contains the same number of changes in bed occupancy as that observed in the RAH

ICU data set.

Despite observing positive results for the previous two behavioural components,

the observed distributions of conditional sojourn times are incorrectly estimated by

the fitted two-phase structured QBD process, as illustrated in

Figures E.2.23a, E.2.23b, and E.2.23c. This result is further illustrated in

Figures E.2.24 and E.2.25.
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(a) (b)

(c)

Figure E.2.23: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each bed occupancy based on

observed data (red points) and the distribution of conditional sojourn times for

each bed occupancy based on 1000 simulated data sets generated from the fitted two-

phase structured QBD process with level and phase transition dependent polynomial

forms (box-plots). Note that the conditional sojourn times for bed occupancies below

26 and above 43 are omitted due to minimal data. Also note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.24: Comparison of the observed density of sojourn times conditioned on

downward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on downward transitions based

on 1000 simulated data sets generated from the fitted two-phase structured QBD

process with level and phase transition dependent polynomial forms (red lines). Note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.25: Comparison of the observed density of sojourn times conditioned

on upward transitions for the most frequently visited bed occupancies (black line)

to the observed densities of sojourn times conditioned on upward transitions based

on 1000 simulated data sets generated from the fitted two-phase structured QBD

process with level and phase transition dependent polynomial forms (red lines). Note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.



APPENDIX E. SUMMARY FROM CHAPTER 10 468

E.2.6 Three-phase structured QBD process with level and

phase transition dependent polynomial forms

In this section, we consider a three-phase structured QBD process, such that the

null and alternative hypotheses are defined as

H0 : g ∈ {G : G = f(Q),Q ∈ Ω},

Ha : g 6∈ {G : G = f(Q),Q ∈ Ω},

where Ω is the set of all three-phase structured QBD processes with an infinitesimal

generator matrix of the form

Q =



A
(0)
0 A

(0)
+ 0 . . . 0 0 0

A
(1)
− A

(1)
0 A

(1)
+ . . . 0 0 0

0 A
(2)
− A

(2)
0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . A
(23)
0 A

(23)
+ 0

0 0 0 . . . A
(24)
− A

(24)
0 A

(24)
+

0 0 0 . . . 0 A
(25)
− A

(25)
0



,

where the functional forms for the block matrices describing a decrease in level, for

1 ≤ ` ≤ 25, take the form

[H`]i,j = h`,i,j =



1, if (i, j) ∈ {(1, 1), (1, 3),

(2, 1), (3, 2), (3, 3)},

1 + βh,i,j1 (`− 1), if (i, j) ∈ {(2, 3)},

1 + βh,i,j1 (`− 1) + βh,i,j2 (`− 1)2, if (i, j) ∈ {(1, 2), (2, 2),

(3, 1)},
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the functional forms for the block matrices describing within level changes, for

0 ≤ ` ≤ 25, take the form

[G`]i,j = g`,i,j =


1, if (i, j) ∈ {(1, 3), (2, 1), (2, 3), (3, 2)},

1 + βg,i,j1 `, if (i, j) ∈ {(1, 2)},

1 + βg,i,j1 `+ βg,i,j2 `2, if (i, j) ∈ {(3, 1)},

and the functional forms for the block matrices describing an increase in level, for

0 ≤ ` ≤ 24, take the form

[F`]i,j = f`,i,j =



1, if (i, j) ∈ {(1, 2), (1, 3), (2, 1), (3, 1),

(3, 2)},

1 + βf,i,j1 `, if (i, j) ∈ {(2, 2), (2, 3)},

1 + βf,i,j1 `+ βf,i,j2 `2, if (i, j) ∈ {(1, 1), (3, 3)}.

As illustrated in Figure E.2.26, the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted three-phase

structured QBD process under-estimates the observed proportion of time spent in

each bed occupancy from the RAH ICU data set for the most frequently visited bed

occupancies.
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Figure E.2.26: Comparison of the observed proportion of time spent in each bed

occupancy (red points) to the observed proportion of time spent in each bed

occupancy based on 1000 simulated data sets generated from the fitted three-phase

structured QBD process with level and phase transition dependent polynomial forms

(box-plots). Note that each simulated data set contains the same number of changes

in bed occupancy as that observed in the RAH ICU data set.

The transition probabilities of the fitted three-phase structured QBD process for

the most frequently visited bed occupancies are similar to that observed in the

RAH ICU data set, as illustrated in Figure E.2.27. Note that the variation towards

the lower and higher bed occupancies is due to minimal data.
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Figure E.2.27: Comparison of the observed transition probabilities between bed

occupancies (red points) to the observed transition probabilities between bed

occupancies based on 1000 simulated data sets generated from the fitted three-phase

structured QBD process with level and phase transition dependent polynomial forms

(box-plots). Note that the transition probabilities for bed occupancies below 23 are

omitted due to minimal data. Also note that each simulated data set contains the

same number of changes in bed occupancy as that observed in the RAH ICU data

set.

Despite introducing another phase, the distribution of sojourn times conditioned

on moving up a bed occupancy are slightly over-estimated, whereas the

distribution of sojourn times conditioned on moving down a bed occupancy are

slightly under-estimated, as demonstrated in Figures E.2.28a, E.2.28b,

and E.2.28c. Figures E.2.29 and E.2.30 further illustrate the difference in the

distribution of conditional sojourn times observed in the RAH ICU data compared

to those of the fitted three-phase structured QBD process.
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(a) (b)

(c)

Figure E.2.28: Comparison between the first (a), second (b), and third (c) moments

of the distribution of conditional sojourn times for each bed occupancy based on

observed data (red points) and the distribution of conditional sojourn times for each

bed occupancy based on 1000 simulated data sets generated from the fitted three-

phase structured QBD process with level and phase transition dependent polynomial

forms (box-plots). Note that the conditional sojourn times for bed occupancies below

24 and above 43 are omitted due to minimal data. Also note that each simulated

data set contains the same number of changes in bed occupancy as that observed in

the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.29: Comparison of the observed density of sojourn times conditioned on

downward transitions for the most frequently visited bed occupancies (black line) to

the observed densities of sojourn times conditioned on downward transitions based

on 1000 simulated data sets generated from the fitted three-phase structured QBD

process with level and phase transition dependent polynomial forms (red lines). Note

that each simulated data set contains the same number of changes in bed occupancy

as that observed in the RAH ICU data set.
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(a) Bed occupancy of 32 (b) Bed occupancy of 33 (c) Bed occupancy of 34

(d) Bed occupancy of 35 (e) Bed occupancy of 36 (f) Bed occupancy of 37

(g) Bed occupancy of 38 (h) Bed occupancy of 39 (i) Bed occupancy of 40

Figure E.2.30: Comparison of the observed density of sojourn times conditioned on

upward transitions for the most frequently visited bed occupancies (black line) to the

observed densities of sojourn times conditioned on upward transitions based on 1000

simulated data sets generated from the fitted three-phase structured QBD process

with level and phase transition dependent polynomial forms (red lines). Note that

each simulated data set contains the same number of changes in bed occupancy as

that observed in the RAH ICU data set.



Appendix F

Transient behaviour analysis from

Section 10.4

In this section, we complete the comparison of the M/M/• queueing models and

the fitted four-phase structured QBD process with level and phase transition

dependent polynomial forms in terms of capturing the transient behaviour present

in the RAH ICU bed occupancy data set.

The four-phase structured QBD process with level and phase transition dependent

polynomial forms is able to capture more of the transient behaviour compared to

the M/M/• queueing models, as illustrated in Figures F.0.1, F.0.2, F.0.3,

and F.0.4.

475
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Figure F.0.1: Comparison of the transition probabilities between bed occupancies

(blue) versus the transition probabilities between bed occupancies assuming an

M/M/42/45 queueing model (purple), assuming an M/M/42 queueing model

(red), assuming an M/M/∞ queueing model (green), and assuming a four-phase

structured QBD process with level and phase transition dependent polynomial forms

(black). Note that the conditional sojourn times for levels below 24 and above 44

are omitted due to minimal data.
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Figure F.0.2: Comparison between the first moment of the distribution of conditional

sojourn times for each level based on observed data (blue), the distribution of

conditional sojourn times for each level assuming an M/M/42/45 queueing model

(purple), assuming an M/M/42 queueing model (red), assuming an M/M/∞

queueing model (green), and assuming a four-phase structured QBD process with

level and phase transition dependent polynomial forms (black). Note that the

conditional sojourn times for levels below 25 and above 43 are omitted due to

minimal data.
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Figure F.0.3: Comparison between the second moment of the distribution of

conditional sojourn times for each level based on observed data (blue), the

distribution of conditional sojourn times for each level assuming an M/M/42/45

queueing model (purple), assuming an M/M/42 queueing model (red), assuming

an M/M/∞ queueing model (green), and assuming a four-phase structured QBD

process with level and phase transition dependent polynomial forms (black). Note

that the conditional sojourn times for levels below 25 and above 43 are omitted due

to minimal data.
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Figure F.0.4: Comparison between the third moment of the distribution of

conditional sojourn times for each level based on observed data (blue), the

distribution of conditional sojourn times for each level assuming an M/M/42/45

queueing model (purple), assuming an M/M/42 queueing model (red), assuming

an M/M/∞ queueing model (green), and assuming a four-phase structured QBD

process with level and phase transition dependent polynomial forms (black). Note

that the conditional sojourn times for levels below 25 and above 43 are omitted due

to minimal data.
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