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Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from
immature lymphocytes that show uncontrolled proliferation and arrested differentiation.
Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest
outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase
inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating
JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential
targeted therapies. However, the molecular mechanisms by which these alterations
activate JAK2 and promote downstream signaling is poorly understood. Furthermore,
as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative
disorders matures, there is a growing awareness of the need for alternative precision
medicine approaches for specific JAK2 lesions. This review focuses on the molecular
mechanisms behind ALL-associated JAK2mutations and JAK2 fusion genes, known and
potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted
using alternative and novel rationally designed therapies to guide precision medicine
approaches for these high-risk subtypes of ALL.
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INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy, but despite cure
rates now approaching 90% with refined chemotherapy regimens, relapse remains the leading cause
of mortality in children (Hunger and Mullighan, 2015; Iacobucci and Mullighan, 2017; Khan et al.,
2018). Furthermore, only 30–40% of adult ALL patients achieve long-term remission (Jabbour et al.,
2015; Terwilliger and Abdul-Hay, 2017). Over the last decade, technological advances in genomic
profiling, such as transcriptome and whole genome sequencing, have transformed risk stratification
and treatment approaches for ALL patients by revealing the genomic basis of the disease (Roberts
and Mullighan, 2015; Khan et al., 2018). In 2009, large-scale gene expression profiling identified a
high-risk B-cell precursor ALL (B-ALL) subtype, termed Philadelphia chromosome-like ALL (Ph-
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like ALL), which displays a gene expression profile similar to that
of Philadelphia chromosome-positive ALL (Ph+ ALL), harbors a
high frequency of IKZF1 (IKAROS family zinc finger 1)
alterations, but lacks the hallmark BCR::ABL1 (breakpoint
cluster region protein/Abelson 1) fusion gene of Ph+ ALL
(Mullighan et al., 2009b; Den Boer et al., 2009).
Comprehensive genomic profiling studies revealed the
diversity of genomic alterations that constitute the
heterogeneous genomic landscape of Ph-like ALL (Tasian
et al., 2017b; Pui et al., 2017; Khan et al., 2018; Iacobucci and
Roberts, 2021). These genomic alterations can include
translocations, cryptic rearrangements, mutations, and copy
number variations, often in genes that regulate cytokine
receptor and kinase signaling pathways. Genes commonly
rearranged include ABL1/2, CRLF2 (cytokine receptor like
factor 2), EPOR (erythropoietin receptor) and JAK2 (Janus
kinase 2). Activating mutations or deletions are usually
identified within JAK/STAT (Janus kinase/signal transducer
and activator of transcription) or RAS/MAPK (RAS GTP-
activating protein/mitogen-activated protein kinase) signaling
pathways, although other rare kinase alterations have been
reported (Roberts et al., 2012; Roberts et al., 2014a; Roberts
and Mullighan, 2015; Tran and Loh, 2016).

JAK2 alterations, including rearrangements and gain-of-
function mutations, are associated with poor outcome within
the Ph-like ALL subtype (Roberts et al., 2014a). It is unclear why
JAK2 alterations are predominantly identified within B-ALL
rather than T-cell ALL (T-ALL), although there have been
rare reports in T-ALL (Lacronique et al., 1997; Peeters et al.,
1997; Cheng et al., 2017; Huang et al., 2020; Kaplan et al., 2021).
JAK2 chromosomal rearrangements (JAK2r) which result in JAK2
fusion genes, correlate with some of the lowest survival rates
within the Ph-like ALL subtype (Figure 1) (Roberts et al., 2014a;
Roberts K. G. et al., 2017). Similar to oncogenic kinase drivers
observed in myeloid disorders, JAK2 alterations were identified to
be driving ALL lesions, offering renewed hope for precision
medicine approaches beyond high intensity combination
chemotherapy. Based on the success of tyrosine kinase
inhibitors (TKIs) for the treatment of chronic myeloid
leukemia (CML) and Ph+ ALL, there is potential for targeted
JAK2 inhibitors to improve outcomes for patients with high-risk,
JAK2-altered ALL. The semi-selective JAK1/2 inhibitor,
ruxolitinib, is currently being assessed in a number of clinical
trials (NCT02723994, NCT03117751, NCT03571321,
NCT02420717) for the treatment for ALL after promising
efficacy was demonstrated in several pre-clinical models
(Maude et al., 2012; Roberts et al., 2014a; Roberts KG. et al., 2017).

In 2011, ruxolitinib was the first JAK inhibitor approved for
the treatment of myelofibrosis (MF), a myeloproliferative
neoplasm (MPN) that harbors a high frequency of the
recurrent activating JAK2 p. V617F point mutation. Although
ruxolitinib reduces the symptomatic burden of MF,
unfortunately, it does not significantly reduce the mutant allele
frequency (Deininger et al., 2015; Greenfield et al., 2018;
Bewersdorf et al., 2019). Furthermore, the use of ruxolitinib as
a first-line therapy for MF has revealed several clinical limitations
(also apparent with a subsequently approved JAK inhibitor
fedratinib), which are directly relevant to ALL and are
discussed in detail below. There have been few case reports to
date documenting successful responses to ruxolitinib in Ph-like
ALL, with only one report in JAK2-mutant Ph-like ALL (Mayfield
et al., 2017) and four reports in JAK2r Ph-like ALL (Ding et al.,
2018; Chen X. et al., 2019; Chen et al., 2022; Rizzuto et al., 2022).
It is also difficult to decipher the role of graft-versus-leukemia
effect in the context of allogeneic transplant and the “on-target”
but “off-cancer” effects of ruxolitinib on the immune system.
Here, we comprehensively review the molecular biology and
clinical knowledge of JAK2 alterations in ALL. The therapeutic
implications of current and future precision medicine approaches
for this high-risk subtype of ALL are discussed, emphasizing the
need for further lesion-specific molecular insights and a new suite
of JAK-targeting approaches.

NORMAL JAK2 STRUCTURE AND
FUNCTION

Wild-type (WT) JAK2 is a non-receptor tyrosine kinase that pre-
associates with a variety of type I (containing a WSXWS motif)
and type II (lacking a WSXWS motif) cytokine receptors. Upon

FIGURE 1 | The CRLF2r/JAK-mutant and JAK2/EPORr subtypes of Ph-
like ALL are associated with poor outcomes. Outcome analyses for different
genomic subtypes of Ph-like ALL for all ages combined, probabilities of 5-
years event-free survival (EFS) and overall survival (OS) are shown. There
are significant differences in the 5-years EFS and OS of CRLF2r/JAK-mutant
and JAK2/EPORr cases compared with other Ph-like ALL subtypes. Figure
adapted from Roberts et al. (2014a).
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FIGURE 2 | WT JAK2 structure and function (A) Schematic representation of the JAK2 domain structure (NCBI reference sequence: NP_004963.1) encoded by
the seven JAK homology (JH) domains. The FERM (4.1 protein, ezrin, radixin, moesin), SH2 (Src homology 2)-like (SH2L), pseudokinase (JH2) and kinase (JH1) domains
are represented by purple, red, light blue, and dark blue respectively. Key residues for phosphorylation for positive (green) or negative (red) regulation are shown.
Mutations commonly associated with ALL (black lines) and JAK2 fusion breakpoints (black arrows) are indicated. Adapted from Silvennoinen and Hubbard (2015b)
(Silvennoinen and Hubbard, 2015a). (B) Schematic representation of JAK/STAT signaling pathway activation through JAK2. The JAK2 FERM and SH2L domains
associate with the cytoplasmic juxtamembrane motifs of a cytokine receptor (grey) to recruit JAK2 to the cell membrane. The four domains of JAK2 are presented: FERM
(green), SH2-like (orange), pseudokinase (JH2, purple), and kinase (JH1, blue). JAK2 is shown bound to ATP (black). The proposed model of JAK2 activation suggests
that JAK2 exists in an equilibrium between inactive and partially active conformations. In the inactive conformation (left), the JAK2 kinase domain is inhibited by a JH2-
mediated autoinhibitory interaction. In the partially active conformation (right), the JAK2 kinase domain is released from the JH2-mediated auto-inhibition and is available
for some limited transphosphorylation. Cytokine (cyan) binding to their cognate receptor promotes receptor dimerisation, which facilitates JAK2 activation by

(Continued )
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cytokine binding, both classes of cytokine receptors activate
downstream intracellular signaling pathways, predominantly
the JAK/STAT signaling pathway (Babon et al., 2014; Morris
et al., 2018). The JAK family kinases (comprising JAK1, JAK2,
JAK3, and TYK2 (tyrosine kinase 2)) all share a common protein
structure comprising seven JAK homology (JH) domains
(Gnanasambandan and Sayeski, 2011; Steeghs et al., 2017).
The FERM (4.1 protein, ezrin, radixin, moesin) domain and
Src homology 2 (SH2)-like (SH2L) domains are N-terminally
located (Figure 2A), and mediate protein-protein interactions
and cytokine binding respectively (Kesarwani et al., 2015; Leroy
and Constantinescu, 2017). The FERM and SH2L domains are
required for JAK2 binding to specific juxtamembrane Box1 and
Box2 motifs of associated cytokine receptors (Saharinen et al.,
2000; Hubbard, 2018; Morris et al., 2018; Raivola et al., 2021).
Phosphorylation of conserved tyrosine residues within the FERM
domain can also positively or negatively regulate JAK2 activity
(Gnanasambandan and Sayeski, 2011; Hammaren et al., 2019b).
At the C-terminal end of JAK2 are the catalytic kinase (JH1), and
pseudokinase (JH2) domains (Figure 2A) (Kesarwani et al., 2015;
Leroy and Constantinescu, 2017). The kinase domain is
responsible for catalyzing the phosphorylation of substrate-
specific tyrosine residues (Babon et al., 2014; Morris et al.,
2018). The pseudokinase domain lies directly upstream of the
kinase domain, sharing conserved motifs, but exhibits minimal
catalytic activity (Ungureanu et al., 2011; Lupardus et al., 2014).
The pseudokinase domain allows a basal level of kinase activity to
be maintained in the absence of cytokine through direct
inhibition of the kinase domain (Saharinen et al., 2000;
Saharinen and Silvennoinen, 2002; Hubbard, 2018). The JH2-
SH2 linker region has been hypothesized to stabilize the
interaction between the pseudokinase and kinase domains
during this JH2-mediated auto-inhibition (Babon et al., 2014;
Shan et al., 2014). Release of JH2-mediated auto-inhibition plays
an important role in facilitating full JAK2 activation upon
cytokine binding, as discussed below, and as such, this
mechanism is often exploited by leukemogenic drivers.

Physiological JAK2 Activation
Precise activation of cytokine receptor signaling via JAK2 is
essential for the complex co-ordination of hematopoietic cell
proliferation and differentiation (Vainchenker and
Constantinescu, 2013; Raivola et al., 2021). In the traditional
model of cytokine-induced receptor activation, high affinity
cytokine binding to cognate receptor subunits results in
conformational changes that facilitate and stabilize receptor
dimerization and, in many cases, oligomerization of higher
order protein complexes at the cell surface (Livnah et al.,
1999; Vainchenker and Constantinescu, 2013). If the cytokine
receptor is a homodimer then JAK2 will homodimerize, whereas
heterodimeric cytokine receptors enable either
JAK2 homodimerization, or heterodimerization with other

JAK family members (Morris et al., 2018; Raivola et al., 2021).
In contrast, several biochemical studies have reported pre-
dimerization of JAK2-associated receptors, including EPOR
and human growth hormone receptor (hGHR), in which
cytokine binding may facilitate receptor reorientation and
subsequent JAK2 activation (Livnah et al., 1999;
Constantinescu et al., 2001; Gent et al., 2002; Hammaren
et al., 2019b). However, the use of over-expression systems or
cysteine cross-linking may have confounded such data by
enriching the cell-surface density of expressed receptors
(Hubbard, 2018; Wilmes et al., 2020) and thus the mechanism
for pre-formed receptor activation remains speculative
(Hammaren et al., 2019b). Indeed, recent single-molecule
imaging by Wilmes et al. (2020) identified almost no co-
trajectories of thrombopoietin receptor (TPOR) (a Type I
receptor), EPOR or hGHR acting as a stable “single dimeric
molecule” over time in the absence of cytokine (Wilmes et al.,
2020).

In a model first proposed by Silvennoinen and Hubbard
(2015a), inactive and partially active dimers of JAK2 may exist
in an equilibrium at the cell membrane, where the inactive
conformation is stabilized by JH2-mediated auto-inhibition
(Figure 2B) (Shan et al., 2014; Silvennoinen and Hubbard,
2015a; Hubbard, 2018). In the inactive conformation, the
JAK2 pseudokinase domain binds the kinase domain in a
front-to-back orientation to inhibit kinase activity, a
conformation stabilized by trans-phosphorylation of JAK2
p. S523 and p. Y570 by the JAK2 pseudokinase domain
(Saharinen et al., 2000; Saharinen and Silvennoinen, 2002;
Bandaranayake et al., 2012; Shan et al., 2014; Hubbard, 2018;
Hammaren et al., 2019a). In the partially active conformation, the
JAK2 kinase domain is released from the JH2-mediated auto-
inhibition potentially through loosening of the linker region
between the SH2L and pseudokinase domains
(Gnanasambandan and Sayeski, 2011; Shan et al., 2014). The
partially active conformation of JAK2 is proposed to support
limited trans-phosphorylation in the absence of cytokine to
maintain a low, basal level of JAK2 activity (Shan et al., 2014;
Silvennoinen and Hubbard, 2015a; Hubbard, 2018). In the
traditional model, where JAK2-associated receptors do not
exist as pre-formed dimers, auto-inhibition of the JAK2 kinase
domain by the pseudokinase domain likely occurs in cis (within
the same JAK2 molecule) (Hubbard, 2018). However, the
disordered JAK2 JH2-JH1 linker region could be long enough
to enable trans phosphorylation of the JAK2 kinase domain in a
pre-formed receptor dimer (Hubbard, 2018). Potentially,
JAK2 activation requires both cytokine-mediated receptor
dimerization and release of the JH2-mediated auto-inhibitory
interaction, facilitating trans-phosphorylation of a string of
tyrosine residues located on the JAK2 activation loop,
including JAK2 p. Y1007 and p. Y1008 (Figure 2A,
Figure 2B) (Feng et al., 1997; Chatti et al., 2004; Silvennoinen

FIGURE 2 | transphosphorylation (arrows). JAK2 then auto-phosphorylates the cytoplasmic region of the receptor creating recruitment sites for cytoplasmic STATs
(red). JAK2-mediated STAT phosphorylation facilitates STAT dimerisation. These STAT dimers are then translocated to the nucleus where they regulate gene expression
by binding to promoters with STAT-binding sites. Adapted from Hubbard (2018) and “Cytokine Signaling through the JAK-STAT Pathway” (BioRender.com, 2021).
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FIGURE 3 | Active and inactive conformations of JAK2. (A)Co-crystal structure of the type-I JAK inhibitor, ruxolitinib, bound to the JAK2 kinase domain in the active
conformation (PDB: 6VGL). Ruxolitinib (yellow) is presented in ball-and-stick representation with nitrogen atoms in blue. The JAK2 kinase domain is presented in ribbon
representation with amino acid side chains shown for essential phosphotyrosine residues, JAK2 p. Y1007 and p. Y1008. The N-terminal lobe (residues 840–931), shown
in cyan, comprises a 5-stranded antiparallel β-sheet and one α-helix (αC). The C-terminal lobe (residues 932–1,132), shown in green, comprises 8 α-helices, 3 3/
10 helices, and 3 pairs of antiparallel β-strands. The glycine loop is colored in pink, the hinge region between the 2 lobes in peach, the catalytic loop in orange, the
activation loop in red, DFG-motif in blue, and the insertion loop in grey. (B) Superimposition of the active (blue) and inactive (pink) conformations of the JAK2 kinase
domain ATP-binding site within co-crystal structures bound to JAK inhibitors. Ruxolitinib (dark blue) and the type-II JAK inhibitor, BBT594 (dark pink), are bound to the
active (PDB: 6VGL) and inactive (PDB: 3UGC) conformations respectively. JAK inhibitors are presented in ball-and-stick representations with oxygen atoms in red and
nitrogen atoms in blue. The JAK2 activation loop is disordered in the inactive conformation. Structures were visualized with PyMOL 2.0 (Schrödinger, LCC). (C) 2D
chemical structures of ruxolitinib (ChemSpider, CSID: 25027389) and BBT594 (ChemSpider, CSID: 34980928)
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and Hubbard, 2015a). However, the mechanism by which these
individual phosphorylation events activate JAK2 is yet to be fully
elucidated (Babon et al., 2014; Hammaren et al., 2019b).

JAK2 dimerization and trans-phosphorylation orientates the
overall JAK2 structure to an active, or “DFG-in” conformation,
characterized by the positioning of the N-lobe αC helix, and the
DFGmotif (residues 994–996) at the N-terminus of the activation
loop (Figure 3A, Figure 3B) (Shan et al., 2014; Leroy and
Constantinescu, 2017). In the active conformation, the DFG
motif faces inward to enable hydrophobic interactions with the
αC helix and catalytic loop (Shan et al., 2014; Leroy and
Constantinescu, 2017). This rotates the αC helix towards the
active site for catalysis and extends the activation loop outward to
enable substrate binding (Lucet et al., 2006; Babon et al., 2014).
This contrasts the inactive, or “DFG-out” conformation of JAK2,
where the αC helix is rotated away from the active site and the
activation loop is disordered (Figure 3B) (Silvennoinen and
Hubbard, 2015b). The active conformation of JAK2 promotes
ATP (adenosine triphosphate) to bind within the critical ATP-
binding site, which lies between the N- and C-terminal lobes of
the kinase domain (Lucet et al., 2006; Bandaranayake et al., 2012).
ATP binding is stabilized by hydrogen bonds with residues
located in the JAK2 hinge region and positions the terminal
phosphates of ATP for phosphoryl transfer (Bandaranayake et al.,
2012; Hammaren et al., 2015; Bhullar et al., 2018). A number of
residues within the ATP-binding site are conserved between JAK
family members, suggesting that they are essential for JAK kinase
activity (Lucet et al., 2006; Bhullar et al., 2018). Following
activation, JAK2 auto-phosphorylates cytoplasmic receptor
tyrosine residues generating docking sites for proteins
containing SH2 domains, including STATs (Figure 2B) (Levy
and Darnell, 2002; Morris et al., 2018).

The JAK/STAT Signaling Pathway
The JAK/STAT pathway is the primary signaling pathway
activated by JAK2, regulating the transcription of numerous
genes involved in critical pleiotropic cell processes, particularly
cell proliferation, differentiation and apoptosis (Vainchenker and
Constantinescu, 2013; Brachet-Botineau et al., 2020). While
many JAK/STAT genes are expressed ubiquitously, mouse
knockout and patient data suggest the JAK/STAT pathway is
critically involved in stimulatory (rather than inhibitory)
responses of immune effector cells in both innate and adaptive
immunity, including mucosal cell integrity (Ye et al., 2019).
JAK3 is critical for γc receptor signaling in T cells and natural
killer cells, resulting in severe immunodeficiency if mutated,
whereas JAK1 and TYK2 have more pleiotropic roles (Ye
et al., 2019; Musella et al., 2021). JAK2 activation occurs in
response to a variety of cytokines and is essential for a
plethora of normal cellular functions, particularly those
involved in normal hematopoiesis (Levine et al., 2007;
Vainchenker and Constantinescu, 2013; Akada et al., 2014).
JAK2 knockout is embryonic lethal in mice (Neubauer et al.,
1998), and is critical for signaling through homo-dimeric type-I
cytokine receptors and some heterodimeric type-I receptors
(Morris et al., 2018; Raivola et al., 2021). Juvenile mice with
conditional JAK2 homozygous knockout demonstrate a rapid

increase in HSC apoptosis and subsequent lethality (Akada et al.,
2014; Fasouli and Katsantoni, 2021; Raivola et al., 2021).
STAT1 and STAT2 are critical for suppressing intracellular
viral and mycobacterial infections through type-I interferon
receptors; STAT3 is critical for regulating immunoglobulin E
production; STAT4 and STAT6 for CD4+ T-helper 1 and
T-helper 2 responses in adaptive immunity, respectively; while
STAT5a and STAT5b are more pleiotropic in function with roles
in both myeloid cell proliferation and differentiation as well as
mammary gland development mediated by prolactin (Benekli
et al., 2003; Awasthi et al., 2021).

Inactive STATs exist primarily in the cytoplasm as anti-
parallel, inactive homo- and hetero-dimers, formed through
interactions between the coiled-coil (CC) domain and the
DNA-binding domain of two different STAT monomers
(Neculai et al., 2005; Morris et al., 2018). The anti-parallel
conformation of these inactive STAT dimers places their
SH2 domains on opposing ends, accessible for binding to
SH2 phosphotyrosine docking sites on cytokine receptors
(Mao et al., 2005; Neculai et al., 2005). The SH2 domains of
different STAT proteins determine their affinity for different
cytokine receptors (Woldman et al., 2001; Ivashkiv and Hu,
2004). Receptors that activate JAK2 predominantly bind
STAT5 and STAT3, which are activated by JAK2-mediated
phosphorylation of a single, conserved tyrosine residue at the
C-terminal end, Y705 in STAT3 (Schaefer et al., 1997), Y694 in
STAT5a (Barber et al., 2001), and Y699 in STAT5b (Azam et al.,
1995)). The SH2 domains of each STAT monomer then
reorientate to bind this phosphorylation site in the other
monomer, facilitating a conformation change to produce
parallel, active dimers with exposed DNA-binding domains
(Figure 2B) (Babon et al., 2014; Morris et al., 2018). These
now active STAT dimers are translocated and retained in the
nucleus where they act as transcription factors to regulate gene
expression (Schindler and Darnell, 1995; Vainchenker and
Constantinescu, 2013). The promoter regions of these genes
often harbor conserved STAT-binding motifs with interferon
gamma-activated site (GAS)-like core sequences (Kang et al.,
2013; Brachet-Botineau et al., 2020). JAK2 also activates other
signaling pathways including RAS/MAPK, phosphatidylinositol-
4,5-bisphosphate 3-kinase/protein kinase B (PI3K/PKB), and
mammalian target of rapamycin (mTOR) pathways (Morris
et al., 2018).

Strict regulation of JAK2 activity via a variety of negative
feedback loops ensures an appropriate cellular response to
cytokines (Babon et al., 2014; Hammaren et al., 2019b). The
suppressor of cytokine signaling (SOCS1) and SOCS3 are the key
intermolecular JAK2 negative regulators that are upregulated by
JAK/STAT signaling (Starr et al., 1997; Babon et al., 2014;
Hammaren et al., 2019b). All SOCS family proteins contain a
central SH2 domain and a short C-terminal SOCS box domain
(Kershaw et al., 2013b; Morris et al., 2018). The SH2 domains of
SOCS1/3 bind specific phosphotyrosine motifs to inhibit JAK1/
2 and TYK2, but not JAK3 (Babon et al., 2008; Liau et al., 2018).
The SOCS box domain recruits the adaptor complex, elonginBC,
RING-finger-domain-only protein (RBX2) and E3 ligase
scaffolds, Cullins (Babon et al., 2008; Babon et al., 2009;
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Zhang et al., 2015). These E3 ligase complexes catalyze the
polyubiquitination and subsequent proteasomal degradation of
proteins bound by the SOCS SH2 domains including JAK2 or
more commonly, its associated cytokine receptors (Babon et al.,
2009; Babon et al., 2014; Zhang et al., 2015). SOCS1 and
SOCS3 also contain a short kinase inhibitory region (KIR)
motif upstream of their SH2 domains, which can inhibit
JAK2 activity by sterically hindering substrate binding (Krebs
and Hilton, 2001; Kershaw et al., 2013b). The KIR is an
unstructured domain that by undergoing a conformation
change, can bind within the JAK2 hydrophobic substrate
binding pocket with non-ATP-competitive kinetics (Krebs and
Hilton, 2001; Kershaw et al., 2013a). This enables simultaneous
targeting of JAK2-associated receptors for degradation and direct
JAK2 inhibition (Kershaw et al., 2013a; Kershaw et al., 2013b;
Liau et al., 2018).

Another SH2-domain containing protein, the lymphocyte
adaptor protein (LNK or SH2B3), also negatively regulates
JAK2 activity (Babon et al., 2014; Morris et al., 2018). LNK
inhibits JAK2 activity by directing binding regulatory
JAK2 phosphotyrosine residues including JAK2 p. Y813, which
lies within the JH1-JH2 linker region (Maslah et al., 2017). LNK
may also inhibit signaling activation through JAK2 by
competitively binding critical cytoplasmic phosphotyrosine
residues on cytokine receptors (Maslah et al., 2017).
Furthermore, JAK/STAT signaling can be negatively regulated
by protein tyrosine phosphatases (PTPs), which dephosphorylate
critical tyrosine residues within JAK2, STATs or JAK2-associated
cytokine receptors (Bohmer and Friedrich, 2014). Cytoplasmic
phosphatases that regulate JAK2 include protein tyrosine
phosphatase non-receptor type 1 (PTPN1 or PTP1B), type 6
(PTPN6 or SHP1) and type 11 (PTPN11 or SHP2) (Babon et al.,
2014). PTPN6 is primarily expressed in hematopoietic cells and
inhibits JAK2 by binding and dephosphorylating JAK2
p. Y429 within the JAK2 SH2-like domain (Klingmüller et al.,
1995; Bohmer and Friedrich, 2014). In contrast, PTPN11 is
ubiquitously expressed and can positively or negatively
regulate JAK/STAT signaling in different contexts (Hammaren
et al., 2019b). JAK/STAT signaling can also be regulated through
receptor phosphatases such as protein tyrosine phosphatase
receptor type C (PTPRC or CD45) and type T (PTPRT)
(Babon et al., 2014; Morris et al., 2018). PTPRT can
dephosphorylate STAT3 p. Y705 (Zhang et al., 2007), whereas
CD45 is highly expressed in hematopoietic cells and has been
demonstrated to dephosphorylate all JAK family proteins in
murine cells (Irie-Sasaki et al., 2001), and JAK1 and JAK3 in
human cells (Yamada et al., 2002; Bohmer and Friedrich, 2014).
The suite of JAK2 regulators highlights the critical role of strict
JAK2 control for appropriate responses to cytokine stimulation in
normal cells.

JAK2 MUTATIONS IN PH-LIKE ALL

Appropriate regulation of JAK/STAT signaling plays a critical
role in the development and functional activation of crucial
hematopoietic cells, including hematopoietic stem cells (HSCs)

(Wang and Bunting, 2013; Fasouli and Katsantoni, 2021; Raivola
et al., 2021). The importance of JAK2 in hematological
malignancies became apparent in 2005 after four research
groups identified a single missense mutation within the
pseudokinase domain of JAK2; JAK2 p. V617F, as the primary
driving alteration underlying most MPNs (Baxter et al., 2005;
James et al., 2005; Kralovics et al., 2005; Levine et al., 2005;
Silvennoinen and Hubbard, 2015a; Hubbard, 2018). Following
identification of JAK2 p. V617F in 2005 (Baxter et al., 2005; James
et al., 2005; Kralovics et al., 2005; Levine et al., 2005), an array of
other JAK2 mutations have been identified in MPNs, myeloma,
lymphoma, and chronic and acute leukaemias of either myeloid
or lymphoid lineage (Lee et al., 2006; Krämer et al., 2007; Furqan
et al., 2013; Vainchenker and Constantinescu, 2013; Fasouli and
Katsantoni, 2021; Raivola et al., 2021). Gain-of-function
mutations in JAK2 have been identified in the high-risk Ph-
like ALL subtype, occurring exclusively with rearrangements of
CRLF2 (CRLF2r), which lead to CRLF2 overexpression (Roberts
et al., 2012; Roberts et al., 2014a; Boer et al., 2017; Tasian et al.,
2017b; Pui et al., 2017; Reshmi et al., 2017; Steeghs et al., 2017).
Approximately 50% of Ph-like ALL patients harbor CRLF2r, and
roughly half of these patients also harbor activating point
mutations in JAK1 or JAK2 (Table 1) (Mullighan et al., 2009a;
Mullighan et al., 2009c; Russell et al., 2009; Pui et al., 2017;
Reshmi et al., 2017). JAK alterations also occur in approximately
20% of Down-Syndrome ALL (DS-ALL) patients, with CRLF2r
identified in approximately 60% of DS-ALL patients (Bercovich
et al., 2008; Mullighan et al., 2009c; Hertzberg et al., 2010;
Schwartzman et al., 2017; Page et al., 2018; Harvey and
Tasian, 2020).

JAK2 Exon 14 Mutations and the Molecular
Activation Mechanisms of JAK2 p. V617F
Most JAK2 mutations associated with hematological
malignancies encode missense mutations that localize
within JAK2 exon 12 of SH2L-JH2 linker region, or within
JAK2 exons 14 or 16 of the pseudokinase domain, highlighting
these regions as oncogenic hot-spots for mutation (Figure 4A)
(Mullighan et al., 2009c; Gnanasambandan and Sayeski, 2011;
Silvennoinen and Hubbard, 2015b). Mutations within JAK2
exon 14 associate primarily with MPNs, where JAK2 p. V617F
occurs in >95% of patients with polycythemia vera (PV), and
~60% of patients with essential thrombocythemia (ET) or
primary myelofibrosis (PMF) (Baxter et al., 2005; James
et al., 2005; Kralovics et al., 2005; Levine et al., 2005;
Vainchenker and Constantinescu, 2013; Silvennoinen and
Hubbard, 2015a). Interestingly, the JAK2 p. V617F mutation
has not been identified in ALL and only a single JAK2 exon
14 mutation, JAK2 p. L611S, has been reported in an ALL
setting (Kratz et al., 2006; Funakoshi-Tago et al., 2009;
Gnanasambandan and Sayeski, 2011; Jain et al., 2017;
Konoplev et al., 2017). This suggests that JAK2 exon
14 mutations associate primarily with myeloid lineage
diseases. Different JAK2 mutants have demonstrated
varying affinities to lineage-specific cytokine receptors,
which may explain phenotypic differences induced by
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different JAK2 mutations and their association with either
myeloid or lymphoid lineage diseases (Yao et al., 2017).

Mutagenesis studies have demonstrated that JAK2 p. V617F
confers cytokine-independent signaling activation (Baxter et al.,
2005; James et al., 2005; Kralovics et al., 2005; Senkevitch and
Durum, 2017). Activating JAK2 mutations, including JAK2
p. V617F, were initially predicted to confer cytokine-
independent signaling through disruption of the JH2-mediated
autoinhibitory interaction, facilitating mutant-JAK2
dimerization (Gnanasambandan and Sayeski, 2011; Ungureanu
et al., 2011; Hubbard, 2018; Glassman et al., 2022). In addition, a
recent report using single-molecule microscopy demonstrated
that the JAK2 p. V617F mutation confers cytokine-independent
dimerization of receptor subunits (50% of the maximum level for
TPOR, 25% for EPOR and 10% for hGHR), with a stable time-
dependent dimer formation similar to cytokine binding (Wilmes
et al., 2020). However, introduction of JAK2 p. V617F into
JAK2 JH2-JH1 protein fragments revealed that the JAK2
p. V617F mutation only resulted in a 3-fold increase in
JAK2 catalytic activity, while deletion of the pseudokinase
domain produced a 20-fold increase (Sanz et al., 2011). This
suggested that disruption of the JH2-mediated autoinhibitory
interaction alone is not sufficient to constitutively activate
signaling through JAK2 (Hammaren et al., 2019a; Hammaren
et al., 2019b). Leroy et al. (2016) and Glassman et al. (2022) have
proposed two molecular mechanisms for JAK2 constitutive
activation by JAK2 p. V617F (Leroy et al., 2016; Glassman
et al.). The first mechanism destabilizes the JH2-JH1
autoinhibitory interaction through the formation of a π
stacking interaction between JAK2 p. V617F and JAK2
p. F595, which stabilizes the JAK2 pseudokinase domain αC
helix in a straightened conformation (Bandaranayake et al., 2012;
Leroy et al., 2016; Hubbard, 2018). The second mechanism
involves the formation of a positive regulatory interaction that
favors dimerisation of active JAK2 monomers (Leroy et al., 2016;
Glassman et al.). The combination of this positive regulatory

interaction, in addition to the disruption of the JH2-mediated
autoinhibition, may explain the high driving activity of the JAK2
p. V617F mutation (Hammaren et al., 2019a; Hammaren et al.,
2019b).

JAK2Disruption of JH2-Mediated
Autoinhibition and the role of CRLF2
Overexpression
In contrast to JAK2 p. V617F, the molecular mechanisms by
which JAK2 mutations identified ALL disrupt JH2-mediated
autoinhibition and facilitate JAK2 dimerization are yet to be
fully elucidated (Hammaren et al., 2019a). JAK2 mutations
reported in patients with ALL and DS-ALL are shown in
Table 2. The transformative ability of all ALL-associated JAK2
mutations are dependent on cytokine receptor association,
suggesting that these mutations are dependent on
JAK2 dimerization (Lu et al., 2008; Wernig et al., 2008; Yao
et al., 2017; Hammaren et al., 2019b). The majority of ALL-
associated JAK2 mutations lie within JAK2 exon 16 (Table 2),
where the most frequent mutations are JAK2 p. R683G/S
(Mullighan et al., 2009a; Harvey et al., 2010; Pui et al., 2017;
Kim et al., 2018). JAK2 exon 16 mutations all localize to the ATP-
binding site of the JAK2 pseudokinase domain between the N-
and C-terminal lobes (Figure 4A) (Gnanasambandan and
Sayeski, 2011; Ungureanu et al., 2011; Bandaranayake et al.,
2012). ATP binding to the JAK2 pseudokinase domain is
essential for JAK2 activation as mutations within this region
are known to suppress JAK2 kinase activity (Hammaren et al.,
2015; Hammaren et al., 2019a). JAK2 p. R683 maps to the
JAK2 pseudokinase domain β7-β8 loop and forms an ionic
interaction with JAK2 p. D873 within the JAK2 kinase domain
β2-β3 loop (Figure 4B) (Hammaren et al., 2019a; Hammaren
et al., 2019b). Mutations of JAK2 p. R683 (Table 2) are predicted
to disrupt this ionic interaction within the JH2-JH1 interface and
hinder the JH2-mediated autoinhibitory interaction (Lupardus

TABLE 1 | Frequency of JAK2 mutations and JAK2 rearrangements within Ph-like ALL. Prevalence of CRLF2r/JAK mutant and JAK2r subtypes of Ph-like ALL compared
with Ph-like ALL cases without CRLF2 overexpression.

Clinical trial Age (years) Total (N) Non-CRLF2 CRLF2r JAK WT CRLF2r JAK mutant JAK2r References

AALL0232 1–18 31 8 10 12 1 Loh et al. (2013)
Multiple trials* Roberts et al., 2014a

1–15 (SR) 33 25 5 3 0
1–15 (HR) 108 57 19 26 6
16–20 77 27 14 32 4
21–39 46 15 17 7 7

GMALL 15–65 16 5 5 6 N/A** Herold et al. (2017)
University Pennsylvania Tasian et al., 2017a

18–39 7 2 3 2 0
40–88 11 2 4 5 0

Multiple trials
21–39 96 41 35 14 6 Roberts et al., 2017a
40–59 62 27 24 5 6
60–86 36 13 15 6 2

St. Jude Total XV 1–18 40 29 5 6 0 Roberts et al., 2014b

*Multiple trials include cohorts from St. Jude’s Children’s Research Hospital, the Children’s Oncology Group (COG), the Eastern Cooperative Oncology Group (ECOG), M.D., Anderson
Cancer Center (MDACC), and the Alliance for Clinical Trials in Oncology (Cancer and Leukemia Group B, CALGB).
**Data not available.
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FIGURE 4 | JAK2 mutations in hematological malignancies. (A)Model of JAK2 JH2-JH1 interface showing the positions of known activating JAK2 mutations. The
JAK2 JH2-JH1model was generated by Shan et al. (2014) usingmolecular dynamics simulations and annotated using ChimeraX-1.2.5 (University of California). The JH2
(pseudokinase domain) N-terminal (residues 536–629) and C-terminal (residues 630–839) lobe are colored in light blue and green respectively. The JH1 (kinase domain)
N-terminal (residues 840–931) and C-terminal (932–1,132) lobes are colored in pink and purple respectively. Residues that when mutated are known to be
activating are shown as red spheres (α carbon). Two critical inhibitory phosphorylation sites, pS523 and pY570, are encircled. Other key residues predicted to be
involved in activating JAK2 mechanisms are colored in red and presented with amino acid side chains shown. Proposed interactions are represented by dashed lines.
Figure adapted from Shan et al. (2014), Hammarén et al. (2019a), Leroy et al. (2016) and Lupardus et al. (2014). (B) Schematic representation of JAK/STAT signaling
pathway activation through mutant-JAK2. CRLF2 (dark grey) heterodimerizes with IL-7Rα (light grey) to form the cytokine receptor for TSLP. The JAK2 FERM and SH2-
like domains associate with the cytoplasmic juxtamembrane motifs of the receptor to recruit JAK2 to the cell membrane. The four domains of JAK2 are presented: FERM
(green), SH2-like (orange), pseudokinase (JH2, purple), and kinase (JH1, blue). JAK2 is shown bound to ATP (black). The proposed model of mutant-JAK2 activation
suggests that mutations such as JAK2 p. R683G (represented by a yellow sphere) disrupt the JH2-mediated autoinhibitory interaction with the kinase domain. This shifts
the equilibrium of JAK2 from the inactive, auto-inhibited state towards the partially active state, supporting mutant-JAK2 dimerisation. Although mutant-JAK2 alone
remains dependent on cytokine binding, additional mechanisms such as receptor overexpression may promote malignant transformation. Adapted from “Cytokine
Signaling through the JAK-STAT Pathway” (BioRender.com, 2021).
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et al., 2014; Shan et al., 2014; Hammaren et al., 2019a; Hammaren
et al., 2019b). Similarly, mutations of JAK2 p. L681 and p. I682 are
predicted to alter the positioning of JAK2 p. R683, thereby
disrupting JH2-mediated autoinhibition by affecting its
interaction with JAK2 p. D873 (Li et al., 2015).

While JAK2 mutations associated with ALL are predicted to
disrupt JH2-mediated autoinhibition, these mutations alone are
not sufficient to constitutively activate JAK2 (Hammaren et al.,
2019a; Hammaren et al., 2019b). Instead, release of this
autoinhibitory interaction may support the partially active
conformation of JAK2, potentially exposing an interface to
facilitate JAK2 dimerization (Figure 4A) (Hubbard, 2018). The
high association of JAK1/2 mutations with CRLF2r (Mullighan
et al., 2009a; Mullighan et al., 2009c; Russell et al., 2009; Pui et al.,
2017; Reshmi et al., 2017) in ALL suggests that these events
functionally cooperate to drive lymphoid transformation (Russell
et al., 2009; Tasian and Loh, 2011; Kim et al., 2018). CRLF2
overexpression has been demonstrated to increase the
proliferation of primary lymphoid progenitors (Russell et al.,
2009). However, similar to JAK1/2 mutations, CRLF2
overexpression alone is not sufficient to transform cytokine-
dependent cells (Russell et al., 2009; Roll and Reuther, 2010).
Several groups discovered that murine pro-B cells expressing
human CRLF2 can only drive cytokine-independent proliferation
when co-expressed with ALL-associated JAK2 mutations
(Mullighan et al., 2009a; Mullighan et al., 2009c; Hertzberg
et al., 2010; Roll and Reuther, 2010; Yoda et al., 2010). As
further support, a more recent study using transgenic mice
demonstrated that while expression of CRLF2 alone in

B-lineage hematopoietic cells did not induce B-ALL
development, CRLF2 transgenic mice transplanted with fetal
liver cells expressing JAK2 p. R683G or JAK2 p. P933R-
mutant JAK2 succumbed to ALL disease within 10–20 days
post-transplantation (Kim et al., 2018). These studies suggest
that CRLF2r and JAK2 mutations cooperate to drive
leukaemogenesis (Russell et al., 2009; Tasian and Loh, 2011;
Kim et al., 2018), a fact which could be exploited for
therapeutic advantage in Ph-like ALL. CRLF2 heterodimerizes
with interleukin 7 receptor alpha chain (IL-7Rα) to form the
thymic stromal lymphopoietin receptor (TSLPR) (Tasian and
Loh, 2011; Bugarin et al., 2015; Page et al., 2018), and CRLF2r
highly correlate with increased TSLPR surface expression
(Bugarin et al., 2015; Konoplev et al., 2017; Pastorczak et al.,
2018). Potentially, the combination of increased TSLPR
expression and an increased ratio of JAK2 in the partially
active conformation resulting from JAK2 mutations, cooperate
to drive a leukaemic transformation.

There have also been some rare activating JAK2 mutations
identified in ALL that localize to the JAK2 kinase domain
(Mullighan et al., 2009c; Marty et al., 2014; Sadras et al., 2017;
Hammaren et al., 2019b). These include JAK2 p. D873N,
p. T875N, p. P933R, and p. R938Q (Mullighan et al., 2009c;
Marty et al., 2014; Suryani et al., 2015; Jain et al., 2017; Sadras
et al., 2017). JAK2 p. D873N and p. T875N that localize to JAK2
exon 20, encoding part of the JAK2 ATP-binding site that lies
in the proximity of the glycine loop (Lucet et al., 2006). JAK2
p. D873N is expected to activate JAK2 through loss of its ionic
interaction with JAK2 p. R683, weakening the JH2-JH1

TABLE 2 | All reported JAK2 mutations in patients with ALL. The majority of mutations reported in ALL and DS-ALL localize to JAK2 exon 14 or 16, encoding the
JAK2 pseudokinase domain (JH2). Some mutations have also been reported to localize to JAK2 exon 20 or 21, encoding the JAK2 kinase domain (JH1). Amino acids
(aa.) encoded by each JAK2 exon are shown.

Domain location Exon
location (Aa
encoded)

Mutation ALL/
DS-ALL

References

Pseudokinase
Domain (JH2)

Exon 14 (593–622) L611S ALL Kratz et al. (2006), Funakoshi-Tago et al. (2009), Gnanasambandan and Sayeski
(2011), Jain et al. (2017), Konoplev et al. (2017)

Exon 16 (665–710) L681-I682ins DS-ALL Bercovich et al. (2008)
TPYEGMPGH

I682F ALL Mullighan et al. (2009c), Suryani et al. (2015), Jain et al. (2017), Konoplev et al. (2017)
I682del
insMPAP

DS-ALL Bercovich et al. (2008)

R683G ALL,
DS-ALL

Bercovich et al. (2008), Mullighan et al. (2009c), Gaikwad et al., 2009, Kearney et al.
(2009), Suryani et al. (2015), Jain et al. (2017), Konoplev et al. (2017)

R683S ALL,
DS-ALL

Bercovich et al. (2008), Mullighan et al. (2009c), Gaikwad et al. (2009), Kearney et al.
(2009), Jain et al. (2017), Konoplev et al. (2017)

R683K DS-ALL Bercovich et al. (2008)
R683T DS-ALL Gaikwad et al. (2009)

QGinsR683 ALL Mullighan et al., 2009c
2GinsR683 ALL Malinge et al. (2007)
GPinsI683 ALL Suryani et al. (2015)

I682-D686 del DS-ALL Malinge et al. (2007)
R687Q ALL Mullighan et al. (2009c), Suryani et al. (2015), Jain et al. (2017)

Kinase Exon 20 (858–920) D873N ALL Mullighan et al. (2009c), Suryani et al. (2015), Jain et al. (2017)
T875N ALL Jain et al. (2017)

Domain (JH1) Exon 21 (921–962) P933R ALL (Mullighan et al., 2009c; Suryani et al., 2015; Kim et al., 2018)
R938Q ALL (Marty et al., 2014; Sadras et al., 2017)
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FIGURE 5 | JAK2 fusion proteins in ALL. (A) Schematic representation of a genomic rearrangement between JAK2 exon 15 and BCR exon 1 that produces the
BCR-JAK2 fusion gene. BCR isoform 1 (encoded by BCR variant 1) contains the following domains: BCR coiled-coil (CC), serine/threonine kinase (S/T kinase), DH (Dbl
homology), PH (pleckstrin homology), Cal-B (calcium-dependent lipid-binding) and Rac-GAP (Rac GTPase-activating protein) domains. The BCR DH and PH domains
form the Rho-GEF domain (Rho guanine nucleotide exchange factor). JAK2 isoform A (encoded by JAK2 variant 1) contains FERM (4.1 protein, ezrin, radixin,
moesin), SH2-like (SH2L, Src homology 2), pseudokinase (JH2) and kinase (JH1) domains. The BCR-JAK2 fusion protein retains the BCR CC and S/T kinase domains,
three exons of the JAK2 pseudokinase domain and the full-length JAK2 kinase domain. BCR-JAK2 is predicted to homodimerise via its retained BCRCCmotif. Domains
encoded by the BCR, JAK2 and BCR-JAK2 transcripts were annotated using InterPro (EMBL-EBI, 2021) (Jones et al., 2014; Blum et al., 2021) and Maru amd Witte
(1991). (B) Schematic representation of JAK/STAT signaling pathway activation through JAK2 fusions. All JAK2 fusions comprise of an N-terminal fusion partner (orange)
and the full-length JAK2 kinase domain (JH1, blue). The full-length or truncated JAK2 pseudokinase domain (JH2, purple) may also be present or absent in different
JAK2 fusions. The absence of the JAK2 FERM and SH2-like domains prevent JAK2 fusions from associating with the cytoplasmic juxtamembrane motifs of cytokine
receptors (dark grey). JAK2 fusions are shown bound to ATP (black). The proposed model of JAK2 fusion activation suggests that oligomerization domains within the
fusion partner may facilitate JAK2 fusion dimerisation and subsequent trans-phosphorylation, promoting malignant transformation. Adapted from “Cytokine Signaling
through the JAK-STAT Pathway” (BioRender.com, 2021).
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autoinhibitory interaction to facilitate JAK2 dimerization
(Chen C. et al., 2019; Hammaren et al., 2019a). Likewise,
JAK2 p. T875N is proposed to weaken the JH2-JH1
autoinhibitory interaction via an allosteric mechanism
involving the disruption of a hydrogen bond with JAK2
p. D873 (Dusa et al., 2010; Gnanasambandan and Sayeski,
2011; Chen C. et al., 2019). JAK2 exon 21 mutations, JAK2
p. P933R and p. R938Q, are also expected to disrupt the JH2-
JH1 autoinhibitory interaction but these mutations map to the
conserved JAK2 hinge region of the ATP-binding site (Lucet
et al., 2006; Marty et al., 2014). The mechanism of JAK2
p. P933R activation is poorly understood, however, JAK2
p.938Q has been proposed to disrupt JH2-mediated
autoinhibition through loss of an ionic interaction between
JAK2 p. R867 and JAK2 p. D869 (Marty et al., 2014). Overall,
all JAK2 mutations reported in ALL are predicted to weaken
JH2-mediated autoinhibition, similar to JAK2 p. V617F, likely
increasing the probability of receptor dimerization. However,
the lack of an additional second molecular mechanism driven
by JAK2 exon 16 mutations, unlike JAK2 p. V617F, may
explain why ALL-associated JAK2 mutations require CRLF2

overexpression to cooperatively drive malignant
transformation and subsequent leukemogenesis.

JAK2 REARRANGEMENTS IN PH-LIKE ALL

In addition to JAK2 mutations, JAK2 rearrangements have been
associated with various myeloid and lymphoid hematological
malignancies (Furqan et al., 2013; Vainchenker and
Constantinescu, 2013; Levavi et al., 2019; Raivola et al., 2021).
The ETV6::JAK2 (ETS variant transcription factor 6/JAK2) fusion
(initially known as TEL::JAK2) was the first JAK2r identified by
cytogenics in both ALL and CML patients 1997 and was the first
JAK2 alteration demonstrated to induce constitutive activation of
JAK2 (Lacronique et al., 1997; Peeters et al., 1997; Raivola et al.,
2021). The JAK2 fusion proteins encoded by these JAK2r
comprise the N-terminus of a fusion partner and the
C-terminus of JAK2 (Figure 4B) (Ho et al., 2010; Babon et al.,
2014; Boer and den Boer, 2017). For example, the rearrangement
between BCR and JAK2 produces the BCR::JAK2 fusion gene
(Figure 5A). All reported JAK2 fusion genes retain JAK2 exons

TABLE 3 | Reported JAK2 fusion gene partners in patients with JAK2r ALL. For more details and corresponding references see Supplementary Table S1. The
JAK2 pseudokinase domain is encoded by JAK2 exons 13-18.

Fusion partner N Number of JAK2r ALL patients M:F ratio Exon
break within JAK2Child AYA Adult

ATF7IP 3 1 2 2:1 8, 16, & 17
BCR 12a 5 1 2 7:0 15, 17, & 19
EBF1 1 1 NA 17
ERC1 1a NA NA NA NA NA
ETV6 9a 3 3 1 7:1 17, & 19
GOLGA4 1 1 1:0 12
GOLGA5 1 1 1:0 19
HMBOX1 1 NA NA NA NA NA
MPRIP 1 NA NA NA 1:0 NA
NPHP3 1a NA NA NA NA NA
OFD1 2 2 2:0 13
PAX5 27a 11 4 3 3:5 18, & 19
PCM1 3a 1 1 2:1 9
PPFIBP1 1 1 1:0 19
RFX3 1 NA NA NA 0:1 NA
RNPC3 2a 1 0:1 13
ROCK1 1a NA NA NA NA NA
SMU1 1 1 0:1 13
SNX29 2a NA NA NA NA NA
SPAG9 1 1 1:0 19
SSBP2 6a 1 2 1 1:1 11, 17, & 18
STRBP 1 1 0:1 19
STRN3 2 2 0:2 17
TBL1XR1 1 1 1:0 14
TERF2 3a 1 1 1:1 19
TPM3 1 1 1:0 17
TPR 1 1 1:0 17
USP25 1 NA NA NA 1:0 NA
ZBTB20 2 2 0:2 19
ZBTB46 2a 1 0:1 19
ZEB2 1 NA NA NA 1:0 NA
ZNF274 1 NA NA NA 0:1 NA

N, total number of reported ALL, cases harboring JAK2 fusion genes with the specified fusion partner; JAK2r ALL, JAK2-rearranged acute lymphoblastic leukemia; Child, aged <15 years;
AYA, adolescent or young adult, aged 16–39 years; Adult, aged 40–86 years; NA, data not available.
aAge/sex of some patients not specified.
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19-25 encoding the kinase domain (Table 3), however the
influence of the 5’ fusion partner gene is not well
characterized. A diverse range of JAK2 fusion partner genes
have been reported across different lymphoid and myeloid
malignancies (Levavi et al., 2019). There have been
94 reported cases of JAK2r in ALL (Table 3), in comparison,
only four cases of JAK2r have been reported in MPNs, including
BCR::JAK2, PCM1::JAK2 (pericentriolar material 1/JAK2),
RPN1::JAK2 (ribophorin 1/JAK2) and PEX14::JAK2
(peroxisomal biogenesis factor 14/JAK2) (Murati et al., 2005;
Mark et al., 2006; Elnaggar et al., 2012; Lundberg et al., 2014; He
et al., 2016; Levavi et al., 2019). Albeit in very low numbers, JAK2r
have also been identified in solid tumors including breast cancer
(Quesada et al., 2021) and small lung cancer (Iwakawa et al., 2013;
Levavi et al., 2019), but these particular JAK2r have not been
reported in any hematological malignancies.

JAK2r in B-ALL are identified exclusively within the Ph-like
subtype, occurring in approximately 5% of pediatric Ph-like ALL
cases (<15 years) with the highest frequency in young adult
patients (16–39 years) (~14%) (Table 1) (Roberts et al., 2012;
Roberts et al., 2014a; Imamura et al., 2016; Roberts K. G. et al.,
2017; Boer et al., 2017; Tasian et al., 2017b; Jain et al., 2017;
Reshmi et al., 2017). In MPNs, JAK2r are associated with a more
aggressive phenotype than fusions involving other kinase genes
such as PDGFRA (platelet-derived growth factor receptor A), and
long-term remission can often only be achieved after allogenic
stem cell transplantation (Allo-SCT) (Schwaab et al., 2015;
Schwaab et al., 2020). Similarly, JAK2r in ALL are associated
with the poorest outcomes compared with other Ph-like ALL
subtypes (Roberts K. G. et al., 2017; Jain et al., 2017; Iacobucci and
Roberts, 2021). All reported JAK2 fusion genes retain JAK2 exons
19-15 encoding the kinase domain (Table 3) and the chimeric
JAK2 fusion proteins encoded by these JAK2 fusion genes have
demonstrated constitutive JAK2 kinase activation (Cuesta-
Domínguez et al., 2012; Roberts et al., 2012; Roberts et al.,
2014a; Schinnerl et al., 2015; Boer and den Boer, 2017; Steeghs
et al., 2017). In contrast to JAK2 mutations, expression of JAK2r
in primary murine pre-B cells results in cytokine-independent
proliferation, suggesting that JAK2 fusion genes alone are driving
genomic lesions in JAK2r ALL (Cuesta-Domínguez et al., 2012;
Roberts et al., 2014a; Schinnerl et al., 2015). Over 30 different
JAK2 fusion partner genes have been identified in Ph-like ALL to
date, the most common of which is PAX5 (Paired box 5) (28.7%)
(Table 3, Supplementary Table S1) (Roberts et al., 2012; Roberts
et al., 2014a; Yano et al., 2015; Imamura et al., 2016; Roberts K. G.
et al., 2017; Boer et al., 2017; Reshmi et al., 2017; Li et al., 2018;
Schwab and Harrison, 2018; Gu et al., 2019; Tang et al., 2019).
Other commonly identified JAK2 fusion partners in ALL are
BCR::JAK2 (12.8%), ETV6::JAK2 (9.6%), SSBP2 (single stranded
DNA binding protein 2/JAK2) (6.4%) and ATF7IP (activating
transcription factor 7 interacting protein) (3.2%) (Table 3,
Supplementary Table S1) (Roberts et al., 2014a; Roberts K. G.
et al., 2017).

Similar to other Ph-like ALL subtypes, JAK2r often co-occur
with deletions in genes involved in B-cell development including
IKZF1 (IKAROS family zinc finger 1) (Mullighan et al., 2008;
Mullighan et al., 2009b). The most common IKZF1 alteration

associated with Ph-like (and JAK2r) ALL is a deletion of IKZF1
exons 3-6, encoding the dominant negative IK6 isoform of
IKAROS, which lacks the N-terminal DNA binding domain
(Roberts et al., 2014a; Tran et al., 2018; Shiraz et al., 2020).
IKAROS IK6 is unable to bind DNA to regulate the expression of
genes required for B-cell differentiation, implying that JAK2r and
IKZF1 deletions both drive deregulation of B-cell maturation and
promote development of B-ALL (Mullighan et al., 2009b; Harvey
et al., 2010; Pui et al., 2017). IKZF1 alterations are also associated
with inferior event-free survival in Ph-like ALL patients
(Mullighan et al., 2009b; Van der Veer et al., 2013; Roberts
et al., 2014a). A number of other genomic alterations also co-
occur with JAK2 fusion genes and often involve B-cell pathways,
including deletions of PAX5, BTG1 (BTG anti-proliferation factor
1), and CDKN2A/B (cyclin-dependent kinase inhibitor 2A/B)
(Roberts et al., 2012; Roberts et al., 2014a; Boer et al., 2015;
Kawamura et al., 2015; Roberts K. G. et al., 2017). Deletions of
RAG1/2 (recombination-activating gene 1 and 2), VPREB (V-set
pre-B cell surrogate light chain 1), EBF1 (EBF transcription factor
1), RUNX1 (RUNX family transcription factor 1), BTLA (B and T
lymphocyte associated), CD200 (CD200 molecule) and ETV6
have also been reported to co-occur with JAK2 fusion genes,
as well as mutations within IKZF1, KRAS (KRAS proto-
oncogene), SETD1 (SET domain-containing 1A), and PTPN11
(Roberts et al., 2012; Roberts et al., 2014a; Boer et al., 2015;
Roberts K. G. et al., 2017). Although prognostic significance of
some of these alterations have been demonstrated in Ph-like ALL
(Tran and Loh, 2016; Roberts K. G. et al., 2017; Pui et al., 2017;
Roberts et al., 2018; Tran et al., 2018; Zhang et al., 2019), the
influence of these additional alterations on JAK2r patient survival
rates is not well elucidated.

Cytokine-Independent Oligomerization
In contrast to JAK2 mutations, the molecular mechanism by
which JAK2 fusion genes lead to constitutive JAK2 activation
remains largely unknown. The JAK2 regions encoding the full-
length JAK2 FERM domain are absent in all reported JAK2 fusion
genes (Table 3, Figure 2A). The presence of the JAK2 FERM
domain has been demonstrated to be critical for JAK2 localization
to the plasma membrane (Zhao et al., 2010) and JAK/STAT
signaling activation (Eder-Azanza et al., 2017). The absence of
FERM and SH2-like domains in JAK2r likely prevents binding of
JAK2 fusions to membrane-associated cytokine receptors,
implying these fusion products can promote signaling in the
absence of cytokine. Considering the critical role of cytokine-
mediated receptor dimerization in WT JAK2 activation
(Silvennoinen and Hubbard, 2015a), activation of
JAK2 fusions, unlike mutant-JAK2, likely occurs via a
mechanism that does not require receptor association. The
normal function and tissue specificity of JAK2 fusion partner
genes is diverse and their typical expression, or lack of expression,
with B-cells is varied (Table 3, Supplementary Table S2).
However, the majority of these JAK2 fusion partners have the
ability to oligomerize (Supplementary Table S2), suggesting that
JAK2 fusion activation occurs through direct homodimerization.
The proposed model suggests that JAK2 fusions oligomerize via
the presence of oligomerization domains within the N-terminal

Frontiers in Cell and Developmental Biology | www.frontiersin.org July 2022 | Volume 10 | Article 94205313

Downes et al. JAK2-Altered ALL: Targeted Therapies

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fusion partner (Medves and Demoulin, 2012). The most common
of these oligomerization domains are CC motifs, present in 44%
of JAK2 fusion partners reported in ALL, including BCR:JAK2
(Figure 5A) (Cuesta-Domínguez et al., 2012; The UniProt
Consortium, 2019). These oligomerization domains may
facilitate JAK2 fusion trans-phosphorylation (Figure 5B),
however, the quaternary structure of different JAK2 fusions
has not yet been elucidated and there are limited published
studies investigating the functional impact of JAK2 fusion
partner oligomerization domains (Medves and Demoulin, 2012).

Disruption of the BCR CC motif within the BCR:ABL1 fusion
has been shown to abrogate the transformative ability of BCR:
ABL1 (Beissert et al., 2008; Mian et al., 2009), suggesting that the
BCR CC motif is essential for BCR:ABL oligomerization and
subsequent constitutive activation. The therapeutic potential of
CC mimetics is now being investigated but may be amenable to
CC-containing JAK2r (Dixon et al., 2012; Bruno and Lim, 2015;
Woessner et al., 2015; Peiris et al., 2020). The helix-loop-helix
(HLH) domain, also known as the sterile alpha motif (SAM) or
pointed (PNT) domain, is another oligomerization domain that
can facilitate self-association (Medves and Demoulin, 2012; Hock
and Shimamura, 2017). Deletion of the ETV6 HLH domain has
been shown to abrogate the transforming kinase activity of ETV6:
LYN (ETV6/tyrosine-protein kinase Lyn) (Takeda et al., 2011)
and ETV6:JAK2 (Lacronique et al., 1997) fusion proteins. This
suggests that the ETV6 HLH domain may enable constitutive
activation of ETV6:JAK2 and EBF1:JAK2 fusions by facilitating
JAK2 fusion homodimerization (Medves and Demoulin, 2012;
Hock and Shimamura, 2017). Other domains within JAK2 fusion
partners that may facilitate JAK2 fusion oligomerization include
BR-C, ttk and bab (BTB) domains, scan motifs and
LIS1 homology (LisH) domains, but there are likely more
oligomerization domains to be identified (Supplementary
Table S2) (Poitras et al., 2008; Tijchon et al., 2013). BTB
domains are present in ZBTB20 (Zinc finger and BTB
domain-containing 20) and ZBTB46, scan motifs in ZNF274
(Zinc finger protein 274), and LisH domains in SSBP2 (single
stranded DNA binding protein 2) (Poitras et al., 2008; Tijchon
et al., 2013) (Supplementary Table S2).

JAK2 fusions may also be trans-phosphorylated through
indirect oligomerization such as via recruitment to larger
protein complexes such as centrioles, spliceosomes, nuclear
pore complexes (NPCs), or telomere nucleoprotein complexes
(Medves and Demoulin, 2012). For example, OFD1:JAK2
((OFD1 centriole and centriolar satellite protein/JAK2) and
PCM1:JAK2 (pericentriolar material 1/JAK2) may be activated
by indirect oligomerization at centriolar satellites, as both
OFD1 and PCM1 are components of centrioles
(Supplementary Table S2) (Medves and Demoulin, 2012; Lee
and Stearns, 2013). To support this, a kinase fusion containing the
centrosome protein, FGFR1 oncogene partner (FOP), was
demonstrated to localize to centriolar satellites where tyrosine
phosphorylation was increased (Lee and Stearns, 2013). FOP
shares homology with OFD1 and co-localizes with PCM1 (Lee
and Stearns, 2013). In addition, some domains and regulatory
sites retained within the JAK2 fusion partner could mediate
interactions that facilitate JAK2 fusion activation or contribute

to leukemogenesis. For example, tyrosine residues within the
fusion partner could be phosphorylated and influence
intracellular signaling by enabling recruitment of proteins
containing SH2 domains (Medves and Demoulin, 2012).
However, the significance of these potential interactions to
overall cell transformation and disease phenotype is debated
(Medves and Demoulin, 2012). Further research is required to
understand whether these potential interactions are retained or
whether higher order protein complexes can form.

Alternate Mechanisms of JAK2 Fusion
Activation
Constitutive activation of the majority of JAK2 fusions likely
occurs through a cytokine-independent oligomerization
mechanism. However, unlike all other reported JAK2 fusions,
PAX5:JAK2 does not harbor an oligomerization domain or self-
associate, yet still constitutively activates JAK/STAT signaling
similar to other JAK2r (Schinnerl et al., 2015; Sakamoto et al.,
2017; Jurado et al., 2022). This suggests that PAX5:JAK2 may be
activated via a mechanism distinct from cytokine-independent
oligomerization (Schinnerl et al., 2015). PAX5:JAK2 is the only
JAK2 fusion protein that has been shown to localize within the
nucleus due the presence of a nuclear localization signal (NLS)
within the PAX5 fusion partner (Schinnerl et al., 2015).
Potentially, PAX5:JAK2 may constitutively activate JAK/STAT
signaling by phosphorylation of nuclear STATs (Schinnerl et al.,
2015). PAX5:JAK2 also retains the ability of PAX5 to act as a
transcription factor, binding and activating PAX5 target loci
through its paired domain (Schinnerl et al., 2015; Jurado et al.,
2022). Similarly, the majority of JAK2 fusion partners are
transcription factors containing DNA-binding domains
including CC, HLH, zinc finger C2H2 type, or leucine zippers.
Two other JAK2 fusion proteins, ATF7IP:JAK2 and TERF2:JAK2
(Telomeric repeat binding factor 2/JAK2), also contain NLSs but
their localization has not been investigated to date, nor has their
ability to bind DNA. In addition, many of these DNA-binding
JAK2 fusion partners can act as tumor-suppressors, and their
DNA-binding domains may also function as oligomerization
domains (Medves and Demoulin, 2012). Therefore,
oligomerization between JAK2 fusions and their endogenous
JAK2 fusion partner may contribute to leukemogenesis by
impairing the tumor-suppressive function of the WT
JAK2 fusion partner (Medves and Demoulin, 2012). For
example, HLH-mediated oligomerization between WT
ETV6 and ETV6:JAK2 may reduce the availability of the
endogenous ETV6 HLH motif, which normally maintains
long-term transcriptional repression of genes by interaction
with Polycomb group complexes (De Braekeleer et al., 2012).

Interestingly, a study by Fortschegger et al. (2014)
demonstrated that PAX5:JAK2 phosphorylation occurs
independently of DNA-binding or trans-phosphorylation by
another kinase (Schinnerl et al., 2015). Fortschegger et al.
(2014) hypothesized that the absence of the
JAK2 pseudokinase domain within PAX5:JAK2 may enable
constitutive activation of PAX5:JAK2 by preventing JH2-
mediated pseudokinase domain auto-inhibition (Schinnerl
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et al., 2015). Consistent with this hypothesis, loss of the JH2-JH1
autoinhibitory interaction by either deletion of JAK2 JH2 or the
destabilizing JAK2 p. F739R mutation has been shown to increase
basal JAK2 kinase activity (Saharinen et al., 2000; Saharinen and
Silvennoinen, 2002; Hammaren et al., 2015). Therefore, that
truncation or deletion of this domain in JAK2 fusion genes
may contribute to constitutive activation of JAK2 fusions such
as PAX5:JAK2. The JAK2 pseudokinase domain (encoded by
JAK2 exons 13–18) is either absent or truncated in most JAK2
fusion genes (Table 3). Only four JAK2 fusions contain full-
length pseudokinase domains, including GOLGA5:JAK2 (Golgin
A5/JAK2) (Ding et al., 2018), OFD1:JAK2 (Yano et al., 2015;
Imamura et al., 2016), RNPC3:JAK2 (RNA binding region
containing 3/JAK2) (Chen X. et al., 2019; Chen et al., 2021),
SMU1:JAK2 (SMUDNAReplication Regulator and Spliceosomal
Factor/JAK2) (Roberts K. G. et al., 2017) (Table 3) and it is
currently unknown whether these fusions display less
JAK2 kinase activity in comparison to JAK2 fusions that
harbor truncated or deleted pseudokinase domains. The
functional effects of different truncations of the
JAK2 pseudokinase domain is also unknown.

In addition, one publication reported that JAK2 was highly
expressed in pediatric JAK2r B-ALL patients in comparison to
non-Ph-like B-ALL patients (Steeghs et al., 2017). JAK2 is
expressed at a low level in normal B-cells, in comparison to
some JAK2 fusion partner genes that are highly expressed in
normal B-cells (Supplementary Table S2). This high-level
expression may result from the JAK2r being placed under the
control of the JAK2 fusion partner’s promoter. However, no other
reports specify whether JAK2r are highly expressed in patients
and the importance JAK2r transcript expression levels are
currently unknown. Although overexpression may be
suggested to contribute the leukaemic potential of JAK2r,
overexpression of WT JAK2 alone is not transforming in vitro
(Yoda et al., 2010), suggesting that JAK2r transcript expression
levels are of marginal importance. Overall, the impact of the
fusion partner within JAK2 fusion genes is largely unknown but
cytokine-independent oligomerization is predicted to be the
driving mechanism behind JAK2 fusion constitutive activity.
There are also several other potential mechanisms by which
JAK2 rearrangements may contribute to upregulated
downstream signaling including loss of JH2-mediated
autoinhibition and upregulation of gene expression. Further
research assessing the biological phenotypes of different JAK2
fusion partner genes and different breakpoints within JAK2 is
required and may potentially reveal novel regulation
mechanisms.

JAK2 AS A TARGET FOR PRECISION
MEDICINE IN ALL

ALL patients harboring JAK2 alterations are currently treated
with multi-agent chemotherapy and corticosteroids (Terwilliger
and Abdul-Hay, 2017). Allo-SCT following high-dose
chemotherapy improves survival in selected patients.
(Terwilliger and Abdul-Hay, 2017). However, these intense

regimens result in a number of acute and chronic side effects
and are accompanied by an increased risk of treatment-related
mortality (Senkevitch and Durum, 2017). Intensive
chemotherapy regimens are often poorly tolerated in adults
and the elderly due to toxicity and an increased occurrence of
co-morbidities, a contributor to poor outcomes in these age
groups (Terwilliger and Abdul-Hay, 2017). Immunotherapies,
such as blinatumomab and chimeric antigen receptor (CAR)
T-cell immunotherapy, have proven their effectiveness as salvage
therapy in B-ALL (Inaba and Pui, 2019; Zhao et al., 2019). They
are now being incorporated into frontline therapy for high risk
disease, and may enable the dosage and duration of
chemotherapy to be reduced to alleviate toxicity (Inaba and
Pui, 2019; Zhao et al., 2019). Underscoring the importance of
JAK2 in the pathogenesis of ALL, Roberts et al. (2014a) reported
5-years event-free survival (EFS) rates of 38.8% for CRLF2r/JAK-
mutant ALL patients and 26.1% for ALL patients harboring a
rearrangement of either JAK2 or EPOR (Figure 1) (Roberts et al.,
2014a), subsequently reported as 23.5% in a later study (Roberts
K. G. et al., 2017). In both studies, these 5-years EFS were
significantly inferior to non-Ph-like ALL subtypes (Roberts
et al., 2014a; Roberts K. G. et al., 2017). The poor outcomes
associated with JAK2 alterations in ALL highlights the urgent
need for more effective and less toxic treatment strategies for
these high-risk patients (Roberts andMullighan, 2015). Targeting
of JAK2 with small molecule inhibitors in combination with
chemotherapy may be one such therapeutic approach, given the
remarkable success of TKIs for the treatment of CML (Ali, 2016).

TKIs as a Paradigm for Targeted Therapy
Direct inhibition of BCR:ABL1 using TKIs has served as a
paradigm for the application of targeted therapies (Ali, 2016;
Mughal et al., 2016). The first TKI identified to successfully
inhibit BCR:ABL1 kinase activity was STI571, now known as
imatinib (Druker et al., 1996; Apperley, 2015). This first-
generation TKI is classified as a type-II inhibitor, as it inhibits
BCR:ABL1 kinase activity by competitively binding the inactive
conformation of ABL1 within the ATP-binding site (Druker and
Lydon, 2000; Schindler et al., 2000; Rossari et al., 2018). CML
patients who achieve a deep molecular response on imatinib
therapy for 2 or more years can now expect a normal life
expectancy (Gambacorti-Passerini et al., 2011), and 10-years
overall survival rates have improved from less than 20% prior
to 1982, to now around 83% (Druker et al., 2006; Mughal et al.,
2016; Hochhaus et al., 2017). Identification of imatinib resistance,
often acquired through the emergence of point mutations within
the BCR:ABL1 kinase domain, has since driven the development
of second- and third-generation TKIs (Zabriskie et al., 2014; Patel
et al., 2017; Pottier et al., 2020; Shoukier et al., 2021). There are
now six TKIs that are FDA-approved for the treatment of CML
including imatinib, nilotinib, dasatinib, bosutinib, ponatinib and
asciminib (Hughes et al., 2019; Shoukier et al., 2021).
Incorporation of imatinib into treatment approaches for Ph+
ALL has also drastically improved EFS rates, from 27% to 72%
(Senkevitch and Durum, 2017), suggesting that similar
approaches may also be successful for the treatment of JAK2-
altered ALL. The success of TKIs as a precision medicine

Frontiers in Cell and Developmental Biology | www.frontiersin.org July 2022 | Volume 10 | Article 94205315

Downes et al. JAK2-Altered ALL: Targeted Therapies

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


approach for targeting BCR:ABL1 in CML and Ph+ ALL
launched a new era of discovery into targeted cancer therapies
(Sawyers, 2003; Rossari et al., 2018). In particular, the
development of small molecule inhibitors of other
constitutively active kinases were pursued to potentially treat a
variety of other diseases and malignancies (Sawyers, 2003; Zhang
et al., 2009; Cohen et al., 2021).

JAK2 as a Therapeutic Target
The identification of the JAK2 p. V617F mutation underlying the
majority of MPNs positioned JAK2 as an attractive molecular
target for small molecule screening and development
(Constantinescu, 2009; Kumar et al., 2009). Targeted
JAK2 inhibitors entered clinical development just 6 years
following the first report of JAK2 p. V617F (Levine et al.,
2007; Pardanani, 2007). In 2011, the semi-selective JAK1/
2 inhibitor, ruxolitinib (Figure 3C), was the first
JAK2 inhibitor to be FDA-approved for the treatment of MF
and hydroxyurea resistant PV (Vannucchi et al., 2015b;
Passamonti et al., 2017), followed by approval of the
JAK2 specific inhibitor, fedratinib, for the treatment of MF in
2019 (Harrison et al., 2017; Mullally et al., 2020; Venugopal and
Mascarenhas, 2020). Both ruxolitinib and fedratinib are classified
as type-I JAK inhibitors, competitively binding within the ATP-
binding site of JAK2 in the active (DFG-in) conformation
(Figure 3A) (Leroy and Constantinescu, 2017). Ruxolitinib
therapy can limit further bone marrow fibrosis in JAK2
p. V617F-driven MF and PV (Verstovsek et al., 2017b; Kroger
et al., 2021) and multiple studies have shown that ruxolitinib
therapy correlates with improved overall survival (Verstovsek
et al., 2012a; Vannucchi et al., 2015a; Bose and Verstovsek, 2020;
Kroger et al., 2021). However, the significance of this survival
benefit is debated due to statistical limitations of the pioneer
COMFORT-1 (NCT00952289) and COMFORT-2
(NCT00934544) trials (Passamonti et al., 2015; Cervantes and
Pereira, 2017). Despite these limitations, ruxolitinib therapy
significantly reduces splenomegaly, which is known to
correlate with improved overall survival and can also improve
patients’ quality of life (Verstovsek et al., 2012b; Vannucchi et al.,
2015a; Harrison et al., 2016; Verstovsek et al., 2017a; Cervantes
and Pereira, 2017; Bose and Verstovsek, 2020). Sustained
symptomatic reductions have also been reported in MF
patients who remain on long-term ruxolitinib therapy
(Harrison et al., 2016; Verstovsek et al., 2017b).

Unfortunately, the use of ruxolitinib and fedratinib in MF has
revealed a number of issues related to JAK2 as a therapeutic target
and the consequences of type-I JAK2 inhibition. Ruxolitinib does
not significantly reduce the mutant allele frequency. In a study by
Deininger et al. (2015), ruxolitinib treatment reduced the JAK2
p. V617F allele burden by >50% in only 12% of 236 MF patients
(Deininger et al., 2015). Several studies have also reported a lack
of significant spleen responses in a proportion of patients, where
there was a less than 35% reduction in spleen volume (Harrison
et al., 2012; Harrison et al., 2016; Verstovsek et al., 2017b; Gupta
et al., 2020; Palandri et al., 2020). Furthermore, the majority of
ruxolitinib-treated MF patients discontinue therapy due to dose-
dependent adverse events, including thrombocytopenia and

anemia (Harrison et al., 2016; Kuykendall et al., 2018;
Bewersdorf et al., 2019; Palandri et al., 2020). The toxicity
associated with ruxolitinib may be due to suppression of other
JAK family kinases, with 6-fold selectivity over TYK2 and 130-
fold selectivity over JAK3 (Quintas-Cardama et al., 2010). In
addition, treatment discontinuation has been associated with
severe ruxolitinib discontinuation syndrome, which is most
likely caused by a rebound cytokine storm driven by the
sudden release of accumulated phosphorylated JAK2 (pJAK2)
(Coltro et al., 2017; Tvorogov et al., 2018; Palandri et al., 2021;
Ross et al., 2021). Tvorogov et al. (2018) suggested that ruxolitinib
binding promotes pJAK2 accumulation by preventing
JAK2 dephosphorylation and degradation (Tvorogov et al.,
2018; Ross et al., 2021). Despite the dose-dependent toxicity,
low efficacy and the withdrawal syndrome associated with
ruxolitinib therapy in MPNs, ruxolitinib remains the best
available therapy (BAT) for MF and therefore, may be
beneficial for ALL patients harboring JAK2 alterations.

Resistance to JAK2 Inhibitors
Introduction of TKIs into front-line combination therapies for
Ph+ ALL has improved long-term outcomes primarily by
improving complete remission rates, enabling more patients to
become eligible for Allo-SCT (Bassan et al., 2010; Brissot et al.,
2015; Chalandon et al., 2015). Therefore, despite the ongoing
clinical challenges associated with JAK2 inhibition in the setting
of MPNs, JAK2 inhibition may still reduce symptomatic burden
of JAK2-altered ALL and improve outcomes by bridging more
patients to Allo-SCT. However, the development of treatment
resistance to kinase inhibitors is, unfortunately, a well-established
occurrence following long-term targeted therapy in both
hematologic malignancies and solid tumors (Gross et al., 2015;
Bhullar et al., 2018; Pottier et al., 2020). The majority of Ph+ ALL
patients treated with TKI who do not undergo Allo-SCT will
ultimately relapse (Bassan et al., 2010; Fielding et al., 2014;
Chalandon et al., 2015). Approximately 70–80% of Ph+ ALL
patients who relapse following imatinib therapy harbor emergent
mutations within the region encoding the ABL1 kinase domain of
BCR:ABL1 (Pfeifer et al., 2007; Pfeifer et al., 2012; Soverini et al.,
2014). Most imatinib-resistant mutations retain sensitivity to
second-generation TKIs, including dasatinib, nilotinib and
bosutinib, however resistance to these inhibitors can also
occur via mutations such as ABL1 p. T315I (Hochhaus et al.,
2020). Similar to TKIs, all clinically available JAK2 inhibitors are
ATP mimetics and there are concerns that incorporation of
JAK2 inhibitors into treatment approaches for JAK2r ALL will
lead to the development of resistance (Miller et al., 2014; Meyer,
2017).

The majority of ruxolitinib-treated MF patients lose their
response over time, with a 3-years median duration of
response (Harrison et al., 2016; Verstovsek et al., 2017b). The
emergence of ruxolitinib-resistant mutations was initially
suspected to underlie relapse of MF these patients, similar to
the emergence of resistant mutations in TKI-treated CML and
Ph+ ALL. JAK2 inhibitor-resistant mutations within JAK2 have
been identified primarily through in vitro random mutagenesis
screens of JAK2 (Hornakova et al., 2011; Deshpande et al., 2012;
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Weigert et al., 2012; Kesarwani et al., 2015; Wu et al., 2015).
Screens performed in vitro by Kesarwani et al. (2015) identified
39 different JAK2mutations spanning across all domains of JAK2
(FERM, SH2, pseudokinase, and kinase) that conferred resistance
to ruxolitinib (Kesarwani et al., 2015). The JAK2 p. Y931C
mutation, homologous to the activating JAK1 p. F958C
mutation, was the first JAK2 mutation identified to confer
resistance to ruxolitinib and has been detected by in vitro
screens from multiple groups (Hornakova et al., 2011). Several
other JAK2 mutations that confer resistance to ruxolitinib have
been identified by saturation mutagenesis screens using cell lines
expressing JAK2 p. V617F or CRLF2/JAK2 p. R683F (Deshpande
et al., 2012; Weigert et al., 2012). All ruxolitinib-resistant JAK2
mutations localize to the ATP/ruxolitinib binding site of the
JAK2 kinase domain and confer cross-resistance to multiple type-
I JAK inhibitors, suggesting that the ATP/ruxolitinib binding site
is susceptible to JAK inhibitor-resistant mutations (Deshpande
et al., 2012; Weigert et al., 2012; Downes et al., 2021).

However, despite in vitro predictions, clinical resistance to
ruxolitinib in MF has not been reported to associate with any
JAK2 point mutations. This may be due to an insufficient selective
pressure related to the low specificity and high toxicity of
ruxolitinib (Downes et al., 2021; Ross et al., 2021). The
absence of any JAK2 point mutations in MF patients who
acquired resistance to ruxolitinib suggests a role for a
mutation-independent mechanism that enables persistent JAK/
STAT signaling in the setting of long-term JAK2 inhibition
(Koppikar et al., 2012; Harrison et al., 2020a; Ross et al.,
2021). Ruxolitinib resistance in MF has been modelled in vitro
by culturing cell lines expressing JAK2 p. V617F long-term with
ruxolitinib and demonstrated that ruxolitinib resistance occurs
due to heterodimeric activation of JAK2 p. V617F pJAK2 by other
JAK family members, a mechanism now known as ruxolitinib
persistence (Andraos et al., 2012; Koppikar et al., 2012; Tvorogov
et al., 2018). Interestingly, ruxolitinib persistent cells could be re-
sensitized following ruxolitinib withdrawal (Koppikar et al.,
2012), consistent with a number of clinical reports following
ruxolitinib rechallenging (Gisslinger et al., 2014; Gerds et al.,
2018). However, this ruxolitinib persistence mechanism is not
predicted to occur in JAK2r ALL as a recent study modelling
acquired ruxolitinib resistance in JAK2r ALL in vitro identified
emergent JAK inhibitor-resistant JAK2 point mutations (Downes
et al., 2021). Interestingly, one of these acquired mutations, JAK2
p. G993A, also conferred resistance to the type-II JAK inhibitor,
CHZ-868 (Downes et al., 2021). However, ruxolitinib resistance
has not yet been reported in any ongoing clinical trials for ALL.
There has only been one report of primary B-ALL leukemia cells
harboring a JAK2 kinase domain mutation and these cells
demonstrated a reduced sensitivity to ruxolitinib (Sadras et al.,
2017).

PROGRESS OF TARGETED THERAPIES
FOR JAK2-ALTERED ALL

There were high expectations for ruxolitinib following its FDA-
approval for MPNs in 2011 but unfortunately, ruxolitinib therapy

has not matched the success of TKIs for CML. Consistent with
reports of adverse events, JAK2 is a difficult protein to potently
inhibit without toxic side effects as it plays an essential role in
several normal cellular functions, including hematopoiesis
(Levine et al., 2007; Vainchenker and Constantinescu, 2013;
Akada et al., 2014). JAK2 conditional knockout mice display
severely impaired erythropoiesis (Akada et al., 2014; Grisouard
et al., 2014; Fasouli and Katsantoni, 2021), whereas the myeloid-
erythroid system of ABL1 knockout mice appears normal
(Hardin et al., 1995; Walz et al., 2008). All JAK2 inhibitors
currently in development also target the JAK2 ATP-binding
site, which is highly conserved across the JAK family and
other kinases (Lucet et al., 2006; Singer et al., 2019). Imatinib
also binds within the highly conserved ATP-binding site of ABL1,
however, ruxolitinib inhibits a significantly higher number of
kinases compared to imatinib (Davis et al., 2011), which may
contribute to ruxolitinib’s increased treatment-related toxicity.
Furthermore, clinical resistance to ruxolitinib occurs primarily
through heterodimeric activation (Andraos et al., 2012; Koppikar
et al., 2012; Tvorogov et al., 2018), rather than the emergence of
point mutations, enabling therapeutic resistance despite
ruxolitinib binding to WT and/or JAK2 p. V617F-mutant
JAK2. The adverse events associated with ruxolitinib therapy
in MPNs suggests that similar clinical challenges will be observed
when incorporating ruxolitinib into treatment approaches for
JAK2-altered ALL.

Despite these limitations, the efficacy of JAK2 inhibitors has
been demonstrated in several pre-clinical models of JAK2-mutant
(Bercovich et al., 2008; Mullighan et al., 2009c; Yoda et al., 2010;
Tasian et al., 2012; Van Bodegom et al., 2012; Wu et al., 2015;
Steeghs et al., 2017) and JAK2r (Maude et al., 2012; Chase et al.,
2013; Boer and den Boer, 2017; Downes et al., 2021) ALL. Type-I
JAK2 inhibitors have been demonstrated to reduce cell
proliferation and STAT5 phosphorylation in cell lines co-
expressing JAK2 p. R683 mutations and either EPOR or
CRLF2 (Bercovich et al., 2008; Mullighan et al., 2009c; Yoda
et al., 2010; Tasian et al., 2012). However, there have been limited
ex vivo studies assessing the efficacy of JAK2 inhibition in
primary CRLF2r/JAK2-mutant ALL cells. Importantly, Steeghs
et al. (2017) demonstrated that the ex vivo efficacy of ruxolitinib
in CRLF2r/JAK2-mutant primary ALL cells was highly dependent
on the addition of human TSLP (Steeghs et al., 2017). Human
TSLPR cannot be activated by mouse TSLP (Van Bodegom et al.,
2012; Francis et al., 2016) yet despite this dependence, patient-
derived xenograft (PDX) models of CRLF2r/JAK2-mutant ALL
cells have been generated in NSG mice (Maude et al., 2012;
Suryani et al., 2015; Tasian SK. et al., 2017). This suggests the
activation of alternative signaling pathways, such as RAS/MAPK,
PI3K/PKB and mTOR, arguing against JAK2 inhibition as a
precision medicine strategy for in CRLF2r/JAK2-mutant ALL
(Winter et al., 2014; Tasian SK. et al., 2017; Steeghs et al., 2017).
Furthermore, the dependence of JAK2 mutations on human
TSLPR activation suggests that conventional patient-derived
xenograft (PDX) models of CRLF2r/JAK2-mutant ALL are not
suitable to assess the efficacy of JAK2 inhibition (Francis et al.,
2016; Steeghs et al., 2017; Kim et al., 2018). Consistent with this
principle, ruxolitinib has only exhibited a low efficacy in PDX
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models of CRLF2r/JAK2-mutant ALL, despite reductions in
peripheral blood and splenic blast counts (Maude et al., 2012).
CRLF2r/JAK2-mutant PDX models engineered by Francis et al.
(2016) to produce human TSLP may prove to be more clinically
relevant models, enabling the in vivo efficacy of JAK2 inhibition
for CRLF2r/JAK2-mutant ALL to be determined (Francis et al.,
2016).

In contrast to CRLF2r/JAK2 mutant primary cells, Roberts
et al. (2014b) and Steeghs et al. (2017) have demonstrated that
ruxolitinib treatment of JAK2r primary leukemic cells can
significantly reduce cell viability and STAT5 phosphorylation
(Roberts et al., 2014a; Steeghs et al., 2017). Similar results were
also shown using murine B-cells transduced to express JAK2
fusions (BCR::JAK2, ETV6::JAK2, PAX5::JAK2, GOLGA4::JAK2,
or ATF7IP::JAK2) (Cuesta-Domínguez et al., 2012; Marit et al.,
2012; Chase et al., 2013; Schinnerl et al., 2015; Downes et al.,
2021; Downes et al., 2022), and PAX5::JAK2 expressing Arf−/−

murine pre-B cell models (Roberts et al., 2014a). Unlike PDX
models of CRLF2r/JAK2-mutant ALL, the efficacy of ruxolitinib
has also been demonstrated in vivo using PDX models of JAK2r
ALL, where ruxolitinib treatment reduced peripheral blood blast
counts and tumor burden (Roberts et al., 2012; Roberts et al.,
2014a; Roberts KG. et al., 2017). An additive effect was also
observed when used in combination with dexamethasone
(Roberts KG. et al., 2017). However, ruxolitinib treatment
did not induce complete remission in PDX models of JAK2r
ALL (Maude et al., 2012; Roberts et al., 2012; Roberts et al.,
2014a; Roberts KG. et al., 2017). This suggests that
JAK2 inhibition in combination with chemotherapy may
improve outcomes for ALL patients harboring JAK2r
(Downes et al., 2021). This also suggests JAK2 inhibitors may
also be an effective precision medicine strategy for CRLF2r/
JAK2-mutant ALL, but more clinically relevant in vivomodels of
CRLF2r/JAK2-mutant ALL, that include human TSLP, are
required to assess their efficacy.

Ruxolitinib is the only JAK inhibitor known to be undergoing
clinical assessment in an ALL setting. High clinical effectiveness
of ruxolitinib in combination with multi-agent chemotherapy has
been reported in only small number of patients with either
CRLF2r/JAK-mutant or JAK2r ALL (Schrappe et al., 2012;
Roberts et al., 2014a; Schwab et al., 2016; Mayfield et al., 2017;
Ding et al., 2018; Chen X. et al., 2019; Chen et al., 2022; Rizzuto
et al., 2022). A phase 2 clinical trial (NCT02723994) led by the
Children’s Oncology Group is currently assessing ruxolitinib in
combination with chemotherapy for the treatment of ALL
patients harboring CRLF2 and/or JAK pathway alterations
(Senkevitch and Durum, 2017). Results from the phase I of
this trial recently reported no dose-limiting toxicity up to
50 mg/m2 dosed day 1–14 of a 28 days cycle, as well as
continuous dosing at 40 mg/m2 post-induction chemotherapy
(Tasian et al., 2018). Ruxolitinib therapy was also well tolerated
and induced morphologic remission in a case report of a child
with chemo-resistant JAK2r ALL and induction failure (Ding
et al., 2018; Tasian et al., 2018). A phase 3 clinical trial
(NCT03117751) is now investigating ruxolitinib/chemotherapy
combination in patients with JAK-STAT signaling activation
(Harvey and Tasian, 2020). There are also a number of other

phase 1/2 clinical trials (NCT02420717, NCT03571321) assessing
ruxolitinib for the treatment of Ph-like ALL harboring JAK/STAT
pathway alterations. Early findings suggest that JAK inhibitors in
combination with chemotherapy may improve outcomes for
patients with these high-risk ALL subtypes, but we await the
results of ongoing trials.

Additional/Alternate Type-I JAK2 Inhibitors
in Clinical Development
The myelosuppression resulting from ruxolitinib treatment in
MF suggests that this should also be expected when including
ruxolitinib in ALL treatment regimens. To attempt to overcome
these limitations, several other JAK2 inhibitors have been
assessed in clinical trials, but most have been discontinued
primarily due to toxicity (Sonbol et al., 2013; Bose and
Verstovsek, 2017). Current clinical studies of JAK2 inhibitors
and their specificities are shown in Table 4. All JAK2 inhibitors
being assessed clinically are type-I inhibitors, targeting the ATP-
binding site of JAK2 in the active conformation. As the ATP-
binding site is highly conserved among kinases, off-target
suppression of JAK1 has been proposed to contribute to the
myelosuppression and opportunistic infections associated with
ruxolitinib therapy (Singer et al., 2016). Fedratinib is the most
selective JAK2 inhibitor currently available and is likely less
immunosuppressive than ruxolitinib due to weaker inhibition
of JAK1 (Mullally et al., 2020; Talpaz and Kiladjian, 2021).
Fedratinib has been demonstrated to significantly reduce
splenomegaly and symptom burden in patients with either
intermediate- or high-risk MF (Pardanani et al., 2011;
Pardanani et al., 2015; Harrison et al., 2017; Mullally et al.,
2020; Talpaz and Kiladjian, 2021). It is recent FDA-approval
may reveal whether more selective JAK2 inhibition improves
therapy-associated thrombocytopenia and anemia (Talpaz and
Kiladjian, 2021).

Unfortunately, fedratinib has also been associated with dose-
dependent thrombocytopenia and anemia, in addition to
gastrointestinal adverse events (Pardanani et al., 2011; Mullally
et al., 2020). Approval of fedratinib also includes a “black box
warning” on the risk of serious and fatal Wernicke
encephalopathy (WE), a neurodegenerative condition
traditionally caused by thiamine deficiency (Bewersdorf et al.,
2019; Mullally et al., 2020). Suspected treatment-associated cases
of WE resulted in the FDA issuing a clinical hold on fedratinib
between 2013-2017, however these cases were ultimately
determined to not be caused by fedratinib therapy (Bewersdorf
et al., 2019; Mullally et al., 2020). The thrombocytopenia and
anemia associated with fedratinib may be related to its on-target
inhibition of WT JAK2 and off-target inhibition of FMS-like
tyrosine kinase 3 (FLT3) and bromodomain-containing protein 4
(BRD4) (Talpaz and Kiladjian, 2021). It is currently unknown
whether fedratinib is more effective than ruxolitinib as a first-line
treatment for MF and no clinical trials are currently planned to
assess these inhibitors head-to-head. However, a phase 2 study
evaluating the efficacy of fedratinib for the treatment of
ruxolitinib relapsed, refractory, or intolerant MF demonstrated
significant reductions in splenomegaly and symptomatic burden
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(Harrison et al., 2020b; Talpaz and Kiladjian, 2021). In addition,
fedratinib has been shown to bind both the ATP-binding site and
the less conserved substrate-binding site of JAK2, a site which
may be less prone to acquiring inhibitor-resistant mutations
(Kesarwani et al., 2015). The high specificity of fedratinib for
JAK2 suggests that it may associate with less dose-limiting
toxicity in comparison to ruxolitinib and therefore, may be a
more efficacious JAK inhibitor for the treatment of JAK2-altered
ALL when used in combination with chemotherapy.

Other type-I JAK2 inhibitors currently being assessed in phase
3 clinical trials include momelotinib and pacritinib. Momelotinib
is also type-I JAK1/2 specific inhibitor, similar to ruxolitinib, that
was expected to improve symptoms of therapy-induced anemia
by also inhibiting activin A receptor type 1 (ACVR1) (Asshoff
et al., 2017). Unfortunately, momelotinib was not found to be
superior at reducing symptom burden compared with ruxolitinib
and consistent with this lower efficacy, momelotinib therapy was
associated with fewer reports of anemia (Mesa et al., 2017a;
Harrison et al., 2018; Bassiony et al., 2020). Another type-I
JAK inhibitor assessed in phase 3 clinical trials is pacritinib, a
type-I JAK2/FLT3 inhibitor that, similar to fedratinib, does not
inhibit JAK1 (Talpaz and Kiladjian, 2021). Pacritinib therapy was
demonstrated to be superior to the BAT at reducing
splenomegaly (Mesa et al., 2017b; Mascarenhas et al., 2018)
and was mostly non-myelosuppressive, likely due to weaker
inhibition of JAK1 (Singer et al., 2016; Mesa et al., 2017b;
Talpaz and Kiladjian, 2021). Pacritinib was also well-tolerated
in patients with severe thrombocytopenia, suggesting that
pacritinib may be beneficial for patients with anemia (Gerds
et al., 2019; Harrison et al., 2020a; Bassiony et al., 2020;
Verstovsek et al., 2021). To note, the efficacy of momelotinib
and pacritinib for patients previously treated with ruxolitinib has
not been reported (Harrison et al., 2020a). Fedratinib and
pacritinib may reduce the leukaemic burden of JAK2-alterated
ALL with superior or equivalent efficacy to ruxolitinib, potential
improving complete remission rates and associating with less
treatment-associated adverse events.

Type-II JAK Inhibitors
In contrast to type-I JAK inhibitors, type-II JAK inhibitors bind
the ATP-binding site of JAK2 in the inactive (DFG-out)

conformation (Figure 3B) (Leroy and Constantinescu, 2017).
Although type-II JAK inhibitors are still ATP-competitive, they
are more specific for JAK2 by also binding a less conserved
allosteric pocket, potentially minimizing toxicity by reduced
inhibition of other kinases (Li et al., 2019). This type-II
binding mode is similar to the inhibition of BCR:ABL1 with
imatinib (Druker and Lydon, 2000; Schindler et al., 2000). The
first type-II JAK inhibitor identified was BBT594 (Figure 3C),
which was originally designed to inhibit BCR:ABL1 harboring the
TKI-resistant ABL1 p. T315I-mutation (Andraos et al., 2012).
BBT594 inhibited STAT5 phosphorylation in cell models
expressing either TEL::JAK2 or JAK2 p. V617F-mutant JAK2,
albeit with low specificity and limited potency (Andraos et al.,
2012). These findings prompted the development of the only
other type-II JAK inhibitor, CHZ868 (Meyer et al., 2015; Li et al.,
2019). CHZ868 potently inhibited JAK2 with a high selectivity
over other JAK family members (Meyer et al., 2015; Wu et al.,
2015). Promising pre-clinical studies showed that CHZ868 not
only improved survival and leukaemic burden in vivo models of
MPN and B-ALL, but preferentially inhibited JAK2 p. V617F-
mutant JAK2 hematopoietic cells over WT JAK2 cells (Meyer
et al., 2015; Wu et al., 2015). CHZ868 also reduced the JAK2
p. V617F allele burden in these MPN models, which is not
observed with type-I inhibitor treatment (Meyer et al., 2015).
The potent activity of type-II inhibitors against JAK2 p. V617F-
mutant hematopoietic cells suggests that they may be a more
effective than type-I JAK inhibitors for the treatment of JAK2-
altered ALL.

By binding the inactive conformation of JAK2, type-II JAK
inhibitors may also prevent the development of resistance
through the persistent JAK/STAT signaling that is associated
with ruxolitinib therapy. Type-II JAK inhibitors have been
demonstrated to reduce the proliferation of ruxolitinib-
persistent cell models and inhibit JAK2 activation loop
phosphorylation (Andraos et al., 2012; Koppikar et al., 2012;
Meyer et al., 2015; Tvorogov et al., 2018). The inhibition of
JAK2 activation loop phosphorylation by CHZ868 has been
suggested to prevent accumulation of pJAK2, preventing
heterodimeric JAK2 activation and subsequent inhibitor
persistence (Meyer et al., 2015; Tvorogov et al., 2018).
CHZ868 did not facilitate the accumulation of phosphorylated

TABLE 4 | Clinical studies of type-I JAK2 inhibitors in hematological malignancies and their specificities. Myelofibrosis (MF), polycythemia vera (PV), essential
thrombocythemia (ET), chronic myeloid leukemia (CML), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic leukemia (SLL), acute
lymphoblastic leukemia (ALL). Adapted from Raivola et al. (2021)(Raivola et al., 2021) and Vainchenker et al. (2018)(Vainchenker et al., 2018).

Inhibitor Selectivity Off-target Diseases Clinical phase

Ruxolitinib (INCB-018424) JAK1/2> MF, PV FDA-approved
TYK2, JAK3 CML, AML, CLL, SLL, ALL Phase 2/3

Fedratinib (TG101348) JAK2 FLT3, BRD4 MF FDA-approved
Momelotinib (CYT-387) JAK1/2 ALK-2, TBK1 IKKε MF Phase 3
Pacritinib (SB11518) JAK2>TYK2 FLT3 MF Phase 3
Lestaurtinib JAK2/3 AML, MF, PV, ET Phase 2
Gandotinib (LY2784544) JAK2>JAK1 PV, ET, MF Phase 2
Ilginatinib (INCB-039110) JAK2> MF Phase 2

JAK1/3, TYK2
NS-018 JAK2 Src MF Phase 2/3
AZD1480 JAK2>JAK1 Aurora A, FGFR1, FLT4 MF Phase 1
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JAK2 in hematopoietic cell lines or primary JAK2 p. V617F cells
(Tvorogov et al., 2018). Furthermore, CHZ868 withdrawal was
not associated with a rebound in STAT5 signaling (Tvorogov
et al., 2018), suggesting that type-II JAK2 inhibition may not be
associated with withdrawal syndrome (Meyer et al., 2015; Wu
et al., 2015; Tvorogov et al., 2018). However, one JAK2 mutation
(JAK2 p. L884P) confers resistance to both BBT594 and CHZ868,
suggesting that resistance to type-II JAK inhibitors may still occur
through mutations within the JAK2 ATP-binding site (Wu et al.,
2015; Leroy and Constantinescu, 2017). Unfortunately, the potent
activity of type-II JAK inhibitors also risks stronger suppression
of normal hematopoiesis through greater inhibition of WT JAK2,
but without clinical assessment it is unknown whether type-II
JAK inhibitors would result in more or less pronounced cytopenia
(Vainchenker et al., 2018; Ross et al., 2021). The risk of severe
cytopenia may underlie why neither CHZ868 nor BBT594 were
pursued for further drug development (Andraos et al., 2012; Wu
et al., 2015). Further research is needed to determine whether
type-II JAK inhibitors are clinically viable and their susceptibility
to persistence or resistance. The development of type-II JAK
inhibitors may be an effective therapeutic approach for JAK2-
altered ALL, enabling JAK2 inhibition without risking the
withdrawal syndrome and disease persistence that is associated
with type-I JAK inhibitors.

Allosteric JAK Inhibitors (Type-III JAK
Inhibitors)
Type-II JAK inhibitors still target the highly conserved ATP-
binding site of JAK2, which may lead to toxicity due to off-target
effects on other kinases. In contrast, allosteric JAK inhibitors,
also referred to as type-III JAK inhibitors, bind less conserved
allosteric pockets outside of the JAK2 ATP-binding site (Leroy
and Constantinescu, 2017). In addition to the substrate binding
site, three potentially targetable allosteric sites of the
JAK2 kinase domain have been computationally identified,
but inhibitors of these sites have not yet been verified
(Kesarwani et al., 2015; Leroy and Constantinescu, 2017).
These allosteric sites are less conserved than the ATP-
binding site and therefore, may offer greater selectivity and
potency compared with type-I or type-II JAK inhibitors
(Kesarwani et al., 2015). Two non-ATP-competitive JAK
inhibitors, ON044580 and LS104, have been described as
allosteric JAK inhibitors and demonstrated efficacy in vitro
against JAK2 p. V617F transformed cell lines and primary
patient cells (Lipka et al., 2008; Jatiani et al., 2010). The
allosteric binding mechanisms of these compounds and their
in vivo efficacy were never determined, although they did
demonstrate substrate-competitive binding modes (Lipka
et al., 2008; Jatiani et al., 2010; Raivola et al., 2021). The
JAK2 substrate-binding site may be less susceptible to
inhibitor-resistant mutations than other allosteric sites as
mutations may prevent substrate binding, which is essential
for the downstream signaling activation (Kesarwani et al., 2015).
To support this hypothesis, no JAK inhibitor-resistant
mutations have been identified within the substrate-binding
site by random mutagenesis of JAK2 (Kesarwani et al., 2015).

These findings suggest that the JAK2 substrate-binding site may
be a novel and effective targetable site for JAK2-alterated
malignancies, and long-term therapy may not result in the
development of resistance (Kesarwani et al., 2015).

Targeted JAK2 Degradation
Direct targeting of JAK2 by proteolysis-targeting chimeras
(PROTACS) have recently emerged as an approach to limit
withdrawal syndrome and ruxolitinib persistence, whilst still
inhibiting signaling activation through JAK2 (Shah et al., 2020;
Chang et al., 2021). PROTACS comprise three distinct
components: a ligand for E3 ligase, a ligand for the protein of
interest, and a linker to couple the two functional ligands
(Kargbo, 2021). JAK2 PROTACs facilitate the formation of
E3-PROTAC-JAK2 complexes, inducing E3 ligase-mediated
ubiquitination and subsequent proteasomal degradation of
JAK2 (Kargbo, 2021). Current JAK2 PROTACs have been
designed using the full-length, or a portion, of known type-I
JAK inhibitors as the JAK2-targeting ligand and have been shown
to induce JAK2 ubiquitination and degradation in leukaemic cell
lines (Shah et al., 2020; Chang et al., 2021; Kargbo, 2021).
Strikingly, Chang et al. (2021) demonstrated significant
reductions in leukaemic burden in vivo CRLF2r ALL models
treated with JAK2 PROTACS, but not ruxolitinib monotherapy
(Chang et al., 2021). The superior activity of these PROTACs was
attributed to both JAK2 inhibition and targeted degradation of
proteins including JAK1/2/3, TKY2, IKZF1/3, and G1 to S Phase
Transition 1 (GSPT1) (Chang et al., 2021). Degradation of
multiple targets with a single PROTAC establishes the basis
for PROTACs with modifiable specificity and high efficacy in
malignancies driven by JAK-STAT. However, this degradation of
multiple targets may result in toxic side effects if PROTAC target
proteins are required for hematopoiesis or B-cell maintenance.
Furthermore, the clinical viability of JAK2 PROTACs is yet to be
determined and, in the absence of PROTAC ligands specific for
mutant-JAK2 or JAK2 fusions, JAK2 PROTACS may induce
anemia and thrombocytopenia due to degradation of WT JAK2,
therefore, further investigations are required.

Inhibition of heat shock protein 90 (HSP90) has also been
explored as a less targeted approach to degrade JAK2 (Brkic and
Meyer, 2021; Raivola et al., 2021). Degradation of JAK2 is reduced
through stabilization by chaperones including HSP90 (Bose and
Verstovsek, 2017; Ross et al., 2021). HSP90 inhibitors, such as
PU-H71 and AUY922, degrade JAK2 and inhibit downstream
signaling in cell lines expressing JAK2 p. V617F (Marubayashi
et al., 2010; Fiskus et al., 2011) and cells harboring JAK inhibitor-
resistant mutations (Weigert et al., 2012). HSP90 inhibitor
monotherapy (Marubayashi et al., 2010), or in combination
with a JAK2 inhibitor (Fiskus et al., 2011; Bhagwat et al.,
2014), also significantly reduced leukaemic burden in JAK2
p. V617F murine models. Early phase clinical trials assessing
PU-H71 (Speranza et al., 2018) and AUY922(Hobbs et al., 2018)
demonstrated reductions in splenomegaly, however, both trials
were terminated due to toxicity. Histone deacetylase (HDAC)
inhibitors, such as panobinostat and vorinostat, have also been
investigated as a strategy to inhibit HSP90 activity by promoting
HSP90 hyperacetylation (Brkic and Meyer, 2021). The efficacy of
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HDAC inhibitors has been demonstrated in vitro and in vivo
models of JAK2 p. V617F-mutant MPN, particularly in
combination with a JAK inhibitor (Wang et al., 2009; Akada
et al., 2012; Evrot et al., 2013). However, HDAC inhibitors in
combination with ruxolitinib were not superior to ruxolitinib
alone in recent phase 1/2 MPN clinicals trials (Bose et al., 2019;
Mascarenhas et al., 2020). Similar to AUY922, vorinostat was also
associated with adverse effects (Andersen et al., 2013). This
suggests that HSP90 inhibition may be too toxic to be
clinically viable. However, the more tolerable HDAC inhibitor,
givinostat, is expected to be assessed in a phase 3 clinical trial for
the treatment of PV, suggesting that givinostat may be a potential
therapeutic approach for the treatment of JAK2-altered ALL
when in combination with chemotherapy or type-I
JAK2 inhibition (Chifotides et al., 2020).

DISCUSSION - FUTURE OUTLOOKS

The CRLF2/JAK2-mutant and JAK2r subtypes of ALL correlate
with poor prognosis and targeted JAK2 inhibition remains a
feasible precision medicine approach. Inhibition of mutant-JAK2
or JAK2 fusions using targeted therapeutic strategies would
abolish the resulting constitutively active JAK/STAT signaling.
Such approaches may improve patient outcomes by increasing
complete remission rates, enabling more patients to be eligible for
allogeneic transplantation therapy. Current precision medicine
approaches that are being investigated for the treatment of JAK2-

altered ALL are shown in Table 5. To date, only type-I JAK
inhibitors have been tested in vivo for the treatment of JAK2-
altered ALL with most clinical data involving ruxolitinib thus far.
Since the approval of ruxolitinib for the treatment of MF,
development of other type-I JAK inhibitors has focused on
reducing the treatment-related myelosuppression associated
with ruxolitinib therapy. However, momelotinib has not
demonstrated superior efficacy compared with ruxolitinib, and
no clinical trials are planned to assess fedratinib or pacritinib
against ruxolitinib head-to-head. Nonetheless, the recent FDA
approval of fedratinib for the treatment of MPNs may, in future,
give some indication as to whether highly specific JAK2 inhibition
can improve treatment-related thrombocytopenia and anemia.
Several studies have also assessed ruxolitinib combination
therapies with other disease-modifying agents to improve side
effects and therapeutic responses through synergistic activities
(Böhm et al., 2021). The vast array of ruxolitinib combination
therapies have been extensively reviewed by Kuykendall et al.
(2020) and includes HDAC inhibitors, DNA methyltransferases
inhibitors, erythropoiesis-stimulating agents, BCL-2 (B-cell
lymphoma 2) inhibitors, BET (bromodomain and extra-
terminal protein) inhibitors, and many others (Kuykendall
et al., 2020).

Type-II JAK inhibitors offer several potential advantages over
type-I inhibition. Type-II JAK inhibitors offer the opportunity to
specifically target JAK2 by binding an additional allosteric site, and
the potential to prevent withdrawal syndrome by binding the
inactive conformation of JAK2. Although clinical development of

TABLE 5 | Current precision medicine approaches to target JAK2 in JAK2-altered ALL and their associated benefits and disadvantages.

Therapeutic strategy Examples Benefits Disadvantages

Type-I inhibitors Ruxolitinib May reduce blast counts when in combination with
chemotherapy

Withdrawal syndrome
Fedratinib Resistant/persistent disease
Momelotinib Cytopenia
Pacritinib

Type-II inhibitors BBT594 High JAK2 specificity Risk of severe cytopenia
CHZ868 May not associate with withdrawal syndrome Risk of resistant/persistent disease

Development of both available inhibitors has
terminated

Allosteric inhibitors (type-III
inhibitors)

LS104 Lower risk of cytopenia Binding mechanisms of available inhibitors
unknown

ON044580 May be less susceptible to resistant/persistent disease Development of both available inhibitors has
terminated
Association with withdrawal syndrome unknown

HSP90 inhibitors PU-H71 May reduce blast counts when in combination with type-I JAK
inhibitors

Associated with severe adverse events

AUY922 Degrades JAK2 harboring inhibitor-resistant mutations Unknown risk of resistant disease
Not associated with withdrawal syndrome Development of both available inhibitors has

terminated

HDAC inhibitors Panobinostat May reduce blast counts when in combination with type-I JAK
inhibitors

May associate with severe adverse events

Vorinostat Degrades JAK2 harboring inhibitor-resistant mutations Unknown risk of resistant disease
Givinostat Not associated with withdrawal syndrome

PROTACS - Demonstrates superior efficacy than ruxolitinib in vivo Risk of cytopenia and adverse events
Should degrade JAK2 harboring inhibitor-resistant mutations Unknown risk of resistant disease
Not associated with withdrawal syndrome
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CHZ868 was not pursued, pre-clinical studies demonstrated
promising results. Research and development should continue to
determine the clinical viability of type-II JAK inhibitors.
JAK2 PROTACs, which degrade ligand bound-JAK2, also offer
another potentially efficacious approach and may prevent
withdrawal syndrome. Recent research demonstrating the
superior efficacy of JAK2 PROTACS over ruxolitinib in murine
models suggests that JAK2 PROTACs may be an effective
therapeutic strategy for the treatment of JAK2-altered
malignancies, and future clinical evaluation is warranted.
Allosteric inhibitors are also another possible approach to more
specifically target JAK2 by binding regions that are less conserved
among other kinases. The field of allosteric JAK inhibitors are still in
their relative infancy but the discovery that fedratinib binds to both
the ATP- and substrate-binding sites of JAK2 suggests that this is
promising area for future development. Allosteric JAK inhibitors
used in combination with type-I JAK inhibitors, or inhibitors
targeting the substrate-binding site, may also impede the
development of acquired resistance.

The ATP-binding site of the JAK2 pseudokinase domain could
potentially be targetable with small molecular inhibitors to stabilize
the JH2-JH1 autoinhibitory interaction. To support this
hypothesis, targeting of the TYK2 pseudokinase domain has
been demonstrated to inhibit TYK2 activation (Tokarski et al.,
2015). However, it is unknown whether this approach is
translatable to JAK2 as targeting this site may actually activate
JAK2 by preventing JAK2 p. S523 and p. Y570 phosphorylation,
destabilizing the JH2-JH1 autoinhibitory interaction. No
compounds have been identified to bind to the
JAK2 pseudokinase domain ATP-binding site to date. In
addition, point mutations within the JAK2 FERM domain have
been demonstrated to abolish the JAK2 association with TPOR
(Royer et al., 2005), indicating that the interface between the
JAK2 FERM-SH2 domains and the cytoplasmic region of the
associated cytokine receptors may be a novel targetable site.
Inhibiting the association of JAK2 with cytokine receptors may
prevent JAK2 dimerization and subsequent activation. This
approach may also reduce toxic side effects by not only
specifically targeting JAK2, but also specific receptors and their
complexes with JAK2. Another precision medicine approach for
CRLF2/JAK2-mutant ALL could also include strategies that inhibit
TSLPR dimerization or activation (Markovic and Savvides, 2020)
potentially by using antagonistic monoclonal antibodies (Zhang
et al., 2011; Mohamed et al., 2021; Numazaki et al., 2021),
inhibitors (Van Rompaey et al., 2017), or CAR T-cells (Qin
et al., 2015). Therapeutic approaches that offer more selectivity
for JAK2 should improve the toxic side effects associated with
JAK2 inhibition. However, due to the inherent essential role ofWT
JAK2 in normal hematopoiesis, therapeutic approaches that do not
offer selectivity for JAK2 alterations over WT JAK2 will likely
associate with a risk of anemia and thrombocytopenia.

Future drug design approaches that are specific for mutant-JAK2
or JAK2 fusions would ultimately provide less toxic and more
effective therapies for MPN and ALL patients harboring JAK2
alterations. If JAK2 mutations or JAK2r are overexpressed in ALL
patients, there are potentially therapeutic strategies that can
influence gene expression. One such approach may be through

BET inhibitors, which have been shown to disrupt super-enhancers,
promoter enhancers often associated with oncogenes (Crump et al.,
2021). Additionally, the majority of JAK2mutations associated with
ALL lie within JAK2 exon 16, localizing to the ATP-binding site of
the JAK2 pseudokinase domain. Several lines of evidence suggest
that allosteric inhibitors could target the JAK2 pseudokinase domain
ATP-binding site, and there is potential for these inhibitors to be
designed to target specific JAK2 mutants. In particular, it has been
postulated that JAK2 p. R683 mutations disrupt the pseudokinase
domain-mediated autoinhibitory interaction, therefore inhibitors
that can stabilize this interaction may be able to overcome the
effects of these mutations. The recent discovery that apposing
JAK1 monomers dimerize via their pseudokinase domains also
positions this dimerisation interface as a potentially novel
targetable site (Glassman et al., 2022). JAK2 dimerisation may
also be mediated via the pseudokinase domains however the full-
length structure of JAK2 is yet to be determined. Future development
of JAK2 inhibitors that aim to either stabilize the pseudokinase
domain-mediated autoinhibitory interaction, or hinder
pseudokinase-domain mediated dimerisation, may prove to be
effective new therapeutic approaches to target JAK2. Importantly,
targeting JAK2 dimerisation, rather than its activation, through such
precision medicine strategies may prevent JAK2 heterodimerization
as a mechanism of drug resistance.

Therapeutic targeting of the JAK2 pseudokinase domain also
offers opportunities to target JAK2 proteins that harbor specific
mutations within this region. The molecular activation
mechanisms of ALL-associated JAK2 p. R683 mutations are
yet to be fully elucidated but further structural research may
inform future drug design strategies to target JAK2 p. R683-
mutant JAK2. However, in contrast to JAK2 mutations, the
majority of JAK2 fusions do not retain the ATP-binding site
of the JAK2 pseudokinase domain (encoded by JAK2 exons
13–15). This restricts targetable regions within the
JAK2 portion of the fusion to the kinase domain. Therapeutic
approaches that target the JAK2 kinase domain will not have the
ability to distinguish between JAK2 fusions and WT JAK2,
preventing potent inhibition of leukaemic cell growth without
toxic side effects. Future work to elucidate the structure of
different JAK2 fusions may potentially reveal novel targetable
sites that are specific for JAK2 fusions over WT JAK2. A deeper
understanding of the cytokine-independent oligomerization
mechanism that is hypothesized to underlie the constitutive
activation of JAK2 fusions may also reveal novel targetable
sites. In particular, there may be similar oligomerization
domains within the JAK2 fusion partners, such as the CC and
HLH motifs. Inhibitors that can bind these motifs and prevent
JAK2 fusion dimerization may be a potential therapeutic strategy
to achieve specificity for JAK2 fusions and reduce the toxic side
effects observed with traditional JAK2 inhibition.

Ultimately, future approaches targeting JAK2 need to 1) target
less conserved regions to achieve a higher specificity for
JAK2 over other JAK family members, 2) avoid other kinases
with potential for off-target toxicity, 3) inhibit inactive rather that
active conformation and 4) target mutant forms of JAK vs. WT
using allosteric or novel domain-domain inhibition.
Combination strategies using type-I JAK inhibitors or

Frontiers in Cell and Developmental Biology | www.frontiersin.org July 2022 | Volume 10 | Article 94205322

Downes et al. JAK2-Altered ALL: Targeted Therapies

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


PROTACs may also offer improved efficacy over ruxolitinib.
Future research into these therapeutic approaches, and the
design of inhibitors targeting mutant-JAK2 and JAK2-fusions,
is urgently needed to improve outcomes for the high-risk JAK2-
altered subtypes of ALL.
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GLOSSARY

ABL1 Abelson 1

ACVR1 Activin A Receptor Type 1

ALK ALK Receptor Tyrosine Kinase

Allo-SCT Allogenic Stem Cell Transplantation

ATF7IP Activating Transcription Factor 7 Interacting Protein

ATP Adenosine Triphosphate

ALL Acute Lymphoblastic Leukemia

B-ALL B-cell Acute Lymphoblastic Leukemia

BAT Best Available Therapy

BCL-2 B-cell Lymphoma 2

BCR Breakpoint Cluster Region Protein

BET Bromodomain and Extra-terminal Protein

BRD4 Bromodomain-Containing Protein 4

BTB BR-C, ttk and bab

BTG1 BTG Anti-Proliferation Factor 1

BTLA B and T Lymphocyte Associated

CAR Chimeric Antigen Receptor

CDKN2 Cyclin-Dependent Kinase Inhibitor 2

CD200 CD200 Molecule

CML Chronic Myeloid Leukemia

C-Terminus Carboxyl Terminus

CC Coiled Coil

CRLF2 Cytokine Receptor-Like Factor 2

CRLF2r CRLF2-Rearrangment/Rearranged

DS-ALL Down-Syndrome Acute Lymphoblastic Leukemia

EBF1 EBF Transcription Factor 1

ET Essential Thrombocythemia

EPOR Erythropoietin Receptor

ETV6 ETS Variant Transcription Factor 6

FERM 4.1 Protein, Ezrin, Radixin, Moesin

FGFR1 Fibroblast Growth Factor Receptor 1

FLT3 FMS-like Tyrosine Kinase 3

FOP FGFR1 Oncogene Partner

GAP GTPase Activating Protein

GAS Gamma-Activated Site

GEF Guanidine Nucleotide Exchange factor

GHR GH Receptor

GOLGA Golgin Subfamily A

GSPT1 G1 to S Phase Transition 1

HDAC Histone Deacetylase

hGHR Human Growth Hormone Receptor

HLH Helix-Loop-Helix

HMBOX1 Homeobox Containing 1

HR High-Risk

HSC Hematopoietic Stem Cell

HSP Heat Shock Protein

IL-7Rα Interleukin 7 Receptor Alpha Chain

IKZF1 IKAROS Family Zinc Finger 1

JAK Janus Kinase

JAK2 Janus Kinase 2

JAK2r JAK2-Rearrangment/Rearranged

JH JAK Homology

KIR Kinase Inhibitory Region

KRAS KRAS Proto-Oncogene

LisH LIS1 Homology

LNK Lymphocyte Adaptor Protein

MAPK Mitogen-Activated Protein Kinase

MF Myelofibrosis

MPN Myeloproliferative Neoplasms

MPRIP Myosin Phosphatase Rho Interacting Protein

mTOR Mammalian Target Of Rapamycin

NTRK3 Neurotrophic Receptor Tyrosine Kinase 3

NPC Nuclear Pore Complexes

N-terminus Amino Terminus

NLS Nuclear Localization Signal

OFD1 OFD1 Centriole and Centriolar Satellite Protein

PAX5 Paired Box 5

PCM1 Pericentriolar Material 1

PDGFRA Platelet-Derived Growth Factor Receptor A

PDX Patient-Derived Xenograft

PI3K Phosphatidylinositol-4,5-Bisphosphate 3-
KinasePhosphatidylinositol-4,5-Bisphosphate 3-Kinase

Ph+ ALL Ph-positive Acute Lymphoblastic Leukemia

Ph-like ALL Ph-like Acute Lymphoblastic Leukemia

PI3K Phosphatidylinositol-4,5-Bisphosphate 3-
KinasePhosphatidylinositol-4,5-Bisphosphate 3-Kinase

PKB Protein Kinase B

PMF Primary Myelofibrosis

PNT Pointed Domain

PPFIBP PTPRF Interacting Protein

PROTACS Proteolysis-Targeting Chimeras

PTP Protein Tyrosine Phosphatase

PTPN Protein Tyrosine Phosphatase Non-Receptor

PTPR Protein Tyrosine Phosphatase Receptor

PV Polycythemia Vera

RAG Recombination-Activating Gene
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RAS RAS GFP-Activating Protein

RBX2 RING-Finger-Domain-Only Protein

RFX3 Regulatory Factor X3

RNPC3 RNA Binding Region Containing 3

ROCK Rho Associated Coiled-Coil Containing Protein Kinase

RUNX1 RUNX Family Transcription Factor 1

SAM Sterile Alpha Motif

SETD1 SET Domain-Containing 1A

SH2 Src Homology 2

SH2L SH2-like

SLL Small Lymphocytic Leukemia

SMU1 SMU1 DNA Replication Regulator and Spliceosomal Factor

SNX29 Sorting Nexin 29

SOCS Suppressor Of Cytokine Signaling

SPAG9 Sperm Associated Antigen 9

SR Standard Risk

SSBP2 Single Stranded DNA Binding Protein 2

STAT Signal Transducer and Activator of Transcription

STRBP Spermatid Perinuclear RNA Binding Protein

STRN3 Striatin 3

T-ALL T-cell Acute Lymphoblastic Leukemia

TBL1XR1 TBL1Z Receptor

TERF2 Telomeric Repeat Binding Factor 2

TKI Tyrosine Kinase Inhibitor

TPM3 Tropomyosin 3

TPOR Thrombopoietin Receptor

TPR Translocated Promoter Region

TSLPR Thymic Stromal Lymphopoietin Receptor

TYK2 Tyrosine Kinase 2

USP25 Ubiquitin Specific Peptidase 25

VPREB V-set Pre-B Cell Surrogate Light Chain 1

WE Wernicke Encephalopathy

WT Wild-Type

ZBTB Zinc Finger and BTB Domain-Containing

ZEB2 Zinc Finger E-box Binding Homeobox 2

ZMYM2 Zinc Finger MYM-type Protein 2

ZNF Zinc Finger Protein

Frontiers in Cell and Developmental Biology | www.frontiersin.org July 2022 | Volume 10 | Article 94205334

Downes et al. JAK2-Altered ALL: Targeted Therapies

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies
	Introduction
	Normal JAK2 Structure and Function
	Physiological JAK2 Activation
	The JAK/STAT Signaling Pathway

	JAK2 Mutations in Ph-like ALL
	JAK2 Exon 14 Mutations and the Molecular Activation Mechanisms of JAK2 p. V617F
	JAK2Disruption of JH2-Mediated Autoinhibition and the role of CRLF2 Overexpression

	JAK2 Rearrangements in Ph-like ALL
	Cytokine-Independent Oligomerization
	Alternate Mechanisms of JAK2 Fusion Activation

	JAK2 as a Target for Precision Medicine in ALL
	TKIs as a Paradigm for Targeted Therapy
	JAK2 as a Therapeutic Target
	Resistance to JAK2 Inhibitors

	Progress of Targeted Therapies for JAK2-Altered ALL
	Additional/Alternate Type-I JAK2 Inhibitors in Clinical Development
	Type-II JAK Inhibitors
	Allosteric JAK Inhibitors (Type-III JAK Inhibitors)
	Targeted JAK2 Degradation

	Discussion - Future Outlooks
	Author Contributions
	Funding
	Supplementary Material
	References
	Glossary


