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Abstract: Sensor-based sorting techniques offer the potential to improve ore grades and reduce
the amount of waste material processed. Previous studies show that sensor-based sorting can
reduce energy, water and reagent consumption and fine waste production by discarding waste
prior to further processing. In this literature review, recent investigations of sensor-based sorting
and the fundamental mechanisms of the main sorting techniques are evaluated to inform optimal
sensor selection. Additionally, the fusing of data from multiple sensing techniques to improve
characterization of the sensed material and hence sorting capability is investigated. It was found that
the key to effective implementation of sensor-based sorting is the selection of a sensing technique
which can sense a characteristic capable of separating ore from waste with a sampling distribution
sufficient for the considered sorting method. Classes of potential sensor fusion sorting applications
in mineral processing are proposed and illustrated with example cases. It was also determined that
the main holdup for implementing sensor fusion is a lack of correlatable data on the response of
multiple sensing techniques for the same ore sample. A combined approach of experimental testing
supplemented by simulations is proposed to provide data to enable the evaluation and development
of sensor fusion techniques.

Keywords: sensor fusion; sensor-based sorting; ore sorting in mining and mineral processing;
particle sorting; bulk sorting; simulation; X-ray fluorescence; X-ray transmission imaging; hyperspectral
imaging; data synchronization

1. Introduction

The mining industry is facing numerous challenges such as meeting rising global
resource demand, declining ore grades and limiting environmental impact. The move to
renewable energy sources, population growth, and global development are increasing the
demand for most mineral resources [1–3]. Concurrently, the richest mineral deposits are
being depleted leading to the development of low-grade/substandard ores, resulting in a
continual reduction in the average grade of mined ore [4,5]. This requires larger volumes
of lower grade ore to be mined and processed to meet rising demand [4]. The mining
and processing of increased volumes of lower grade ore risks rapid increases in energy
consumption and waste production at a time of increasing social expectations and legisla-
tive requirements to reduce the environmental impact of mining [4]. Overcoming these
challenges will require the development of improved mining and processing techniques.

Selective mining and processing are approaches that can be used to more efficiently
mine and process low grade ores [6]. Selective processing control can be implemented using
algorithms based on sensor input which also provides the benefit of reducing potential
human error [6]. Sensing techniques can provide real-time data that may be used to
optimize production and reduce unnecessary processing of waste. Sensor based ore sorting
provides a means of increasing processing efficiency and reducing tailings by diverting
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sub-economic material [7–9]. The early removal of mined material that cannot be processed
economically avoids unnecessary grinding and flotation. This can significantly reduce
the consumption of electricity, water, and chemical reagents, especially for low grade
heterogeneous ores which contain high quantities of gangue. Additionally, by avoiding
unnecessary grinding of gangue, the production of fine tailings is reduced. While the
amount of mined material is not reduced, more of the waste rock remains at a coarse size,
reducing the environmental impact from fine tailings which are difficult to contain [7–9].

Sensor-based sorting originated in the mid-20th century [8,9]. Most of the initial sorting
machines separated the ore based on appearance and effectively automated traditional hand
sorting techniques. A major reason for implementing this form of automated sorting was
rising labor costs which made hand sorting uneconomic. In addition, the desire for greater
security by having fewer people involved in handling the ore resulted in diamond mines
being significant initial adopters of sensor-based sorting technology. Scientific advances,
particularly in the fields of radiation, nuclear and fluorescence physics enabled new sensing
techniques that could provide additional information on the sensed material [8,9]. These
sensing techniques enabled the sorting of mined material based on characteristics other than
appearance, allowing for the sorting of more ore types which could not be readily classified
by appearance alone. The major sensing techniques used in mineral sorting are detailed
later in this paper. The history of the development of sensor-based sorting, the principles
of sorting particles based on sensor information and significant implementations of sensor-
based sorting are detailed in a review and book chapters by Arvidson and Wotruba [7],
Robben and Wotruba [8], and Chelgani and Neisiani [9].

The two main approaches to sensor-based sorting of mined material are particle sorting
and bulk sorting. In particle sorting, individual particles of the mined material are sensed
and characterized as either valuable or waste. The particles are then selectively ejected
from the stream according to their classification. Note that it is possible either to eject the
valuable particles or the waste depending on the expected proportions. In bulk sorting,
parcels of bulk material transported on a conveyor belt are sorted instead of individual
particles. The parcels are defined as the material transported on the belt for a given time,
determined by the speed at which the material can be diverted within the system. Typical
parcels consist of the transported material for a period between 30 s and a few minutes. As
for particle sorting, parcels are classified as valuable material or waste depending on the
sensor results and the material is then separated by diverting either the valuable material
or the waste to a separate conveyer belt or stockpile.

The choice of particle or bulk sorting depends on the use case as each has strengths
and limitations. Particle based sorting is more selective and can result in a higher upgrade
of the ore quality. This is especially beneficial for ores with a high level of particle scale
heterogeneity, where a small number of particles containing most of the valuable material
are mixed with many barren particles, reducing the total grade. The main limitation
of particle sorting is capacity, as the volume of material presented to the sensor must
be sufficiently low to enable individual particles to be separated. Additionally, particle
sorters typically can only handle a limited range of particle sizes, a maximum size ratio
of approximately 3 between the smallest and largest particle is generally recommended
for effective sorting [8]. Therefore, given the broad size distribution typically produced
during blasting and crushing, the processed material must be separated by size into several
streams before particle sorting. The capacity constraints and size range limitations result in
a requirement for many particle sorters, operating in parallel, to provide sufficient capacity
for a high output mine. As relatively small particles are sorted, the surface characteristics
of the particles typically provide enough information for sorting the particles. This often
allows surface sensing techniques to be used effectively for particle sorting. While surface
sensors can be more affordable than bulk sensing techniques this is offset by the requirement
for many sensors.

Bulk ore sorting, while not as selective as particle sorting, enables sorting decisions
to be made for larger batches of material on a scale appropriate for high output mines. A
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single bulk sorter can process a high tonnage per hour corresponding to the output of a
large scale mine. Bulk sorting is particularly amenable for the sorting of ore with a high
level of heterogeneity on a medium scale with changes in the mined ore quality over a
period of 30 s to a few minutes. A benefit of bulk sorting is that the separation techniques
can handle a broad distribution of particle sizes. This enables the whole ore stream to be
sorted without being separated by size range as would be required for particle sorting. As
the entire ore flow is sorted together only one detector (per sensor type used) is required.
However, given the large volume of ore being sorted, bulk sensing techniques are typically
required to achieve sufficient sampling. While bulk sensing systems for bulk sorting often
have a higher cost than the surface sensing systems commonly used in particle sorting, this
is offset by the requirement for only a single sensor. Additionally, for relatively homogenous
ore, results from the visible ore surface can provide a reasonable representation of the ore.
Thus, for such ores, surface sensors can be sufficient for bulk sorting [10].

As has been discussed global resource demand is increasing while ore grades are de-
clining. To meet demand without significant cost and environmental impact, improvements
in mining and mineral processing technologies are required. Sensor-based sorting has been
identified as a key technology which can help efficiently process large volumes of low-
grade material as shown by case studies in previous reviews [7–9]. Determining the best
sensing technologies and sorting technique for a mining operation is vital for the effective
implementation of sensor-based sorting. In this work a literature review of state-of-the-art
sensor-based sorting techniques in mineral processing is performed to provide information
to help select the optimal sensor(s) and sorting technique(s) to process given ore types. The
review results can also be used to evaluate the potential to combine data from multiple
sensor types to better characterize the processed ore to improve sorting efficiency.

This review paper presents a comprehensive study of the literature for sensor-based
dry sorting techniques and their recent applications. The potential to improve sensor-
based sorting via sensor fusion techniques is also evaluated. In Section 2 of this review
the literature search strategy is detailed and the main results of each identified study are
tabularized along with key information such as the sensor and sorting type used, and the
ore investigated. The fundamental bases of the main sensing technologies are detailed and
this information along with the literature search results are used to analyze and discuss
the capabilities and limitations of each sensor type for ore sorting. Section 3 of this review
discusses the potential benefits of sensor data fusion. Based on the literature review and
discussion of sensor capabilities several potential applications of sensor fusion in mineral
processing and a classification of these applications are proposed. For each class of sensor
fusion application, examples of their implementation in published works and/or potential
applications are discussed. Finally, the challenges involved with implementing sensor
fusion and potential pathways to overcome these challenges are discussed.

2. Review of Sensor-Based Sorting in Mineral Processing
2.1. Search Strategy

A search of the literature on sensor-based dry ore sorting was undertaken using the
Scopus database. The Boolean search terms used to select potentially relevant papers are
listed in Table 1. The abstracts of the papers identified by the Scopus search were manually
checked to select papers appropriate for the review as detailed in Figure 1. The selected
papers were then further examined. Additional papers of interest were identified from the
references in the selected papers and were included in the review.

The scope of the review was chosen to cover studies of the implementation of sensor-
based sorting techniques in mining operations, test work for the implementation of sensor-
based sorting in a mining operation and development and testing of sensors for sorting.
Sensing techniques that cannot provide data effectively in real time, i.e., providing data in a
time period less than the sorting interval, were excluded from the study. For similar reasons
sensing techniques for which sample preparation is required were also excluded. The
review is limited to recent developments in the field of sensor-based sorting since 2017. For
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a review of earlier sensor-based sorting implementations see the review and book chapters
by Arvidson and Wotruba [7], Robben and Wotruba [8], and Chelgani and Neisiani [9].

Table 1. Keywords for the literature search.

Search Term Papers Remaining

sensing OR detector OR sensor 2,826,453
mineral OR ore 25,542

sort OR separat OR online OR on line 2249
NOT remote OR satel OR uav OR data mining OR sinter OR furnac OR soft

sens OR mineral oil OR mineral water OR sensory 1361

Published in 2017 or later AND Language is English 383
Abstract examination 29
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2.2. Review Findings

The literature review search found numerous recent studies investigating sensor-based
ore sorting. The studies are summarized in Table 2, and include the sensor(s) used, the ore
type, the sorting method, and the main findings. The reviewed studies are ordered within
the table first by the primary sensor type used and then by the investigated ore. A majority
of the studies investigated the use of X-ray Transmission (XRT), X-ray Fluorescence (XRF),
Prompt Gamma Neutron Activation Analysis (PGNAA), Optical fluorescence or Optical
reflection/absorption sensors. The reviewed cases using these main sensing techniques, the
physical basis of the techniques and how this impacts sensor-based sorting are discussed in
the following subsections.

The large number of recent studies indicates significant interest in the implementa-
tion of sensor-based sorting. Note that, due to commercial confidence concerns, many
implementations and investigations of sensor-based sorting may not be publicly published.
It is, therefore, likely that there are even more implementations and investigations of
sensor-based sorting in mining operations than those detailed in this review. The uptake of
sensor-based control in mining is increasing the likelihood of two or more sensors being
used in a mining operation. This increased use of multiple sensors offers the potential to
gain additional information from fusing the results from multiple sensor types. Sensor
fusion is discussed in the later sections of this review.
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Table 2. Summary of recent sensor-based sorting papers.

Sensor Type(s) Ore/Material Sorting Type Findings Reference

XRF Copper porphyry ore
Particle (Test
work) Bulk
(Economic
analysis)

Testing of six ore samples from different areas of two
mines found varying efficiencies of XRF sorting. With
a 0.3% Cu cut-off grade XRF sorting achieved
recoveries of between 61% and 91% within 22% to
65% of the ore mass resulting in grade improvements
of between 40% and 275%. Economic modelling
predicted an increase in profit of between 20% and
151%, however, this is likely an overestimate as it is
using particle sorting results evaluated with the costs
for bulk sorting which would be less selective,
particularly with a surface only sensor.

Nayak, Hitch and
Bamber [11]

XRF Copper ore Bulk

Experimental test using low grade copper ore to
evaluate the potential for using XRF sensors for bulk
sorting. For 250 g samples it was found that 50 spot
XRF measurements were sufficient to produce results
within 2% of the bulk copper grade. Artificial 250 g
material lots were produced with proportions of
copper bearing particles ranging from 0% –100%.
Surface XRF measurements of the lots were used to
evaluate XRF bulk sorting. It was found that the XRF
sensor results enabled rejection of 30% of the lots with
the retention of 90% of the copper.

Li et al. [12]

XRF Copper and silver ore Bulk

Testing of XRF sensors installed over conveyors at
operational mine sites showed that the sensors could
measure the copper and silver grades of
processed ore.

Oliinyk et al. [13]

Fluorine optical
fluorescence

sensor
Copper porphyry ore Bulk

Experimental tests on fluorine crystal samples
demonstrated fluorine specific up-conversion
fluorescence. Tests on artificial samples made by
combining a no-fluorine copper ore with fluorite
showed that the sensor could measure fluorite
content ranging from 1%–100%

Moffatt et al. [14]

XRT Coal Particle

Experimental tests found a correlation between XRT
measurements and the specific gravity (R2 = 0.83) and
ash content (R2 = 0.75) of the coal. This enabled
estimation of the washability curve for processing
the coal.

Zhang, Yoon and
Holuszko [15]

XRT Coal/Rare Earth
Elements (REE) Particle

Sampling from the XRT sorting plant showed that the
sorters were able to separate the processed coal by
ash content into high-grade and low-grade product
and waste. Testing showed that REE content was
correlated with ash content and that the XRT sorting
upgraded the total REE grade in the discard by 21.3%

Akdogan et al. [16]

Dual Energy XRT Copper ore Particle

Tests on low grade, finely disseminated copper ore
showed that sorting using high resolution XRT was
able to extract 99.7% of the copper in 68% of the
ore mass.

Kolacz [17]

Micro-CT and
Dual Energy XRT Copper Particle

Experimental tests showed that micro-CT imaging
could identify the copper content of particles and
predict sortability. Pilot XRT sorting tests showed that
90% of the copper could be retained in 69% of the
material mass.

Jin et al. [18]

XRT and LASER Gold ore Particle

Test work on a mine site demonstrated that sequential
XRT and LASER based sorting was able to extract 88%
of the gold from 50% of the mass. Financial modelling
found that the use of sensor-based sorting reduced
the cut-off grade from ~2.5 g/t to ~1 g/t.

Assis et al. [19]

Dual Energy XRT Poly-metallic (Au, Ag,
Zn, Pb) sulfide ore Particle

Experimental assessment of XRT sorting potential for
sulfide ore. 500 representative particles selected from
run of mine ore were investigated using XRT.
Archetype sample particles for both high grade ore
and waste were chosen and used for material
decomposition using XRT data. This resulted in a
variable giving the similarity of the sensed particle to
the high-grade ore particle or the waste particle. This
was found to be effective for classifying ore and waste
particles for sorting, with the potential to extract 90%
of the sulfides in 55% of the mass.

Zhang, Yoon and
Holuszko [20]
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Table 2. Cont.

Sensor Type(s) Ore/Material Sorting Type Findings Reference

Dual Energy XRT Rare Earth Element ore Particle

Experimental tests showed that the XRT sensor was
able to sort the REE ore particles into batches by
grade. Setting various cut-off thresholds enabled the
recovery of 68%, 89% and 96% of heavy REEs within
3%, 15% and 66% of the mass respectively.

Veras et al. [21]

XRT, NIR, Color,
LASER Rare Earth Element ore Particle

Drill core samples were crushed and the grades of 107
selected particles were determined using ICP-MS.
The effectiveness of each sensor type to sort the
material into product and waste was determined for a
0.1% cut-off grade. It was found that XRT sorting was
the most effective followed by LASER. Color and NIR
sorting were not effective. Tests on a larger sample
showed that XRT sorting could recover 98% of REE in
30% of the ore mass.

Cardenas-Vera
et al. [22]

XRT Rare Earth Element ore Particle

Experimental tests and Monte Carlo simulations of
artificial particle samples consisting of REE-bearing
minerals and quartz were used to determine the effect
of REE mineral grade on X-ray transmission. The
experiments showed that the transmission was
reduced progressively by 5%–30% as the REE grade
was increased from 0.5% to 1%–5%. Simulations
predicted roughly double the decrease which was
attributed to oversimplification of the model. Both
methods indicated XRT was well suited to REE
sorting. It was also found that the heterogeneity of
the XRT could be related to the REE grain size.

Neubert and
Wotruba [23]

Dual Energy XRT
and Infrared

Imaging (SWIR)
Tin ore Particle

Experimental tests showed that using SWIR imaging
to detect chlorite content enabled sorting of skarn ore
to extract 70% of the cassiterite while rejecting 75% of
the gangue. Tests also showed that for mica schist ore,
XRT-based density sorting enabled the extraction of
95% of cassiterite with rejection of 45% of the gangue.

Kern et al. [24]

XRT Tin ore Particle

Test work on ore samples determined that XRT-based
sorting could extract 93% of the tin within 26% of the
mass. When implemented on site it was found that
the sorting extracted 90% of tin within 19% of
the mass.

Robben et al. [25]

Dual Energy XRT Zinc ore Particle Experimental tests showed that XRT sorting could
extract 93% of the zinc within 70% of the mass. Neto et al. [26]

PGNAA and XRF Copper Gold
Porphyry ore

Bulk (PGNAA)
and Particle

(XRF)

Test work on ore samples showed that PGNAA and
XRF sensors were able to measure accurately the
copper and gold content of the bulk ore and ore
particles respectively. XRF sorting was able to extract
90% of the copper in 40% of the mass. Economic
analysis evaluating the use of PGNAA bulk sorting to
discard waste and select intermediate grade ore for
XRF particle sorting found that the combined sorting
could increase NSR by 6.5%.

Nadolski et al. [27]

Optical Coal Particle
Deep learning neural networks were able to sort
high-grade coal from low-grade waste using optical
imaging with a classification efficiency of 90%–96%.

Liu et al. [28]

Optical Coal Particle

Testing showed that machine learning based analysis
of optical images enabled classification of coal into
four different qualities with efficiencies of 78%–90%
for a variety of algorithms. Using a majority vote of
the algorithms improved classification accuracy
to 92%.

Zhang et al. [29]

NIR Copper ore Particle

Testing of ore samples showed minimal NIR signal
for copper minerals amongst iron bearing minerals
while calcite showed a strong NIR signal. This
indicated the NIR sorting could sort high carbonate
waste from the copper ore.

Phiri, Glass and
Mwamba [30]

Optical and XRT Marble Particle

Testing showed that optical sorting was able to
classify particles as marble or waste with an accuracy
of up to 85%–98% for particle sizes from 25–70 mm.
XRT sorting was found to be ineffective due to the
similar densities of marble and the host rock.

Paranhos et al. [31]
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Table 2. Cont.

Sensor Type(s) Ore/Material Sorting Type Findings Reference

Optical Mineral Sands Particle

Experimental tests on mineral sands samples showed
that machine learning based analysis of optical
images was able to classify the mineral components
of the sand with 91% efficiency.

Basu, Rao and
Das [32]

Infrared Imaging
(MWIR and

LWIR)

Poly-metallic (Cu, Zn,
Pb) sulfide ore Particle

Tests demonstrated that the accuracy for classifying
particles as ore/waste was up to 90%, 86% and 85%
for the combined FTIR, MWIR and LWIR
spectra respectively.

Desta and
Buxton [33]

Infrared Imaging
(VNIR, SWIR,

MWIR and LWIR)

Poly-metallic (Cu, Zn,
Pb) sulfide ore Particle

Experimental tests showed that fusion of the results
for all the measured IR spectra was able to be used to
classify the particles as ore or waste with an accuracy
of 87%–95% depending on cut-off grade (3%, 5%, 7%)
and classification algorithm (K-means and SVC).
Fused datasets provided an improvement of 0%–3%
in classification probability over the best performing
single spectra.

Desta and
Buxton [34]

Infrared Imaging
(VNIR and SWIR)

Tin ore and copper-gold
porphyry ore Particle

Tests showed that sorting based on machine learning
classification of hyperspectral data was able to
recover 90% of the desired metal in 27% and 43% of
the mass for the tin and copper ore respectively.

Tusa et al. [35]

Inductive
electromagnetic

impedance sensor
Aluminum ore Particle

Finite Element Method simulations of the sensor
response to an ore particle model showed that the
simulations were able to reproduce published
experimental results by Tong et al. [36] and that the
sensor response increased for higher aluminum
grades. Simulated detector responses for a range of
modelled ore particles were used as a dataset to train
a neural network classification algorithm to sort the
material into waste and product based on an
aluminum cut-off grade of 2%. Testing of the
algorithm found that ore and waste were classified
correctly 82% and 97% of the time respectively.

Li et al. [37]

Camera based
particle size
distribution

sensor

Copper ore Bulk

On-site tests showed that the sensor could extract the
sizes of 60% of the visible large (20 mm–250 mm)
particles on the surface of conveyed copper ore. The
particle size distribution could be found for particle
sizes over 20 mm.

Leiva, Acuña and
Castillo [38]

Gamma
Activation
Analysis

Gold ore Bulk

Experimental tests demonstrated that the GAA sensor
could accurately measure the gold grade of ore and
concentrate samples for gold concentrations from
0.1–4000 ppm

Tickner et al. [39]

Microwave
Imaging Gold and silver ore Particle

The microwave imaging response to sample ore
particles built from micro-CT and QEMSCAN data
was simulated. It was found that the imaging
technique could detect even small inclusions of the
highly conductive gold and silver.

Duan, Bobicki and
Hum [40]

A wide range of sensing technologies have been used, or considered for use, in sensing
of ore characteristics for sorting and processing control. Most sensing techniques involve
exposing the examined ore to electromagnetic radiation, both ionizing and non-ionizing,
and sensing a response from the material to help identify its properties. The fundamental
principles of each of the major techniques are discussed below.

2.2.1. X-ray Fluorescence (XRF)

In XRF sensing, the investigated ore is irradiated with incident X-ray photons. The
incident X-ray photons interact with the bound electrons of the ore resulting in the excitation
and ionization of the bound electrons. This results in a vacancy among the orbital electrons
which can be filled by a higher energy electron. The transfer of an electron from a higher
energy state to a lower energy state results in the emission of a photon with an energy equal
to the difference between the electron energy levels. The energy of the emitted photons is
characteristic of the energy gaps and hence the isotope of the material with which the initial
photon interacted. The resulting emitted X-rays are known as characteristic X-rays due to
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this association. The X-ray energy spectrum emitted from the sensed material is sensed by a
photon detector. The relative contribution from different characteristic X-rays can be used to
determine the elemental composition of the sensed ore. Note that the energy gaps between
orbital electron energy states are typically below 1 MeV. Therefore, the emitted X-rays are
of a relatively low energy with limited penetration potential. Hence, the observed photon
signal is primarily from the surface of the sensed material.

Several studies of the use of XRF for sensor-based sorting were identified in the
review [11–13,27]. All of these studies investigated the sorting of copper ore due to the
strong response of XRF to the copper grade [13]. Due to this strong response, it was found
that XRF sensing was capable of effectively sorting copper ore with typical recovery of
~90% of the Cu within 65%–70% of the input mass [11,12]. While XRF is a surface sensing
technique and as such is typically used for particle sorting it was found that for relatively
homogenous material that XRF is also suitable for bulk sorting [10,12]. Overall, XRF is a
capable sensing technique for sorting any material for which the element of interest has a
strong XRF response. Particle sorting is primarily used due to XRF being a surface sampling
technique, however bulk sorting is also feasible for more homogenous ores.

2.2.2. X-ray Luminescence (XRL) and Optical Fluorescence

In XRL and Optical Fluorescence, low energy X-rays and optical photons, respectively,
are used to irradiate the investigated ore. Due to the lower energy of the incident photons
compared with XRF, the electrons of the ore are not ionized, instead some of the higher
energy bound electrons are excited to a higher energy level. The excited electrons will
return to their original ground state with consequent photon emissions with energies corre-
sponding to the difference in energy between the energy levels involved in the transitions.
The energy spectrum of the emitted photons is scored and the relative contribution to the
spectrum from each characteristic energy provides information on the sampled material.
The higher energy level transitions that are investigated are located at a greater distance
from the nuclei of the excited atom than for XRF and are therefore affected by the adjacent
nuclei within the investigated material. This results in the sensor response being represen-
tative not only of the excited elements, but also their interactions with nearby elements, and
therefore the mineralogy of the investigated material. This is the key difference compared
to XRF where the higher energy photons used ionize bound electrons from lower energy
levels. These lower energy levels are closer to the excited atoms’ nuclei and therefore are
not significantly affected by the chemical state of the material. This results in XRF providing
information on the elemental composition. For XRL and Optical Fluorescence both the
photons used to excite the material and the resulting photon emissions have relatively low
energies and hence poor potential to penetrate the observed material. This results in the
sampling being limited predominantly to the surface of the sensed material.

As XRL based sorting is a well-established technique in diamond mining operations [8],
no recent publications of the technique were found. However, there is interest in developing
optical fluorescence sensors for detecting minerals of interest to enable sorting. This
was shown in the study by Moffat et al. [14] where a fluorine fluorescence sensor was
developed. These fluorescence sensors can excite and induce a characteristic response for a
target mineral enabling its abundance to be accurately measured. Note that a requirement
for florescence sensing to be feasible is that the target mineral must have a fluorescence
response, limiting the minerals for which the sensing technique is suitable. Additionally,
noise from other components of the sensed material and varied response strength of the
targeted mineral results in the requirement of extensive calibration of the technique for
each specific ore type.

2.2.3. X-ray Transmission (XRT)

In XRT sensing, the studied material is irradiated with an X-ray beam. The transmis-
sion of the incident X-ray photons through the material is measured via a photon detector,
beyond the sensed material, in the path of the X-ray beam. Given the known energy and
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flux of the incident X-rays, measurements of the photons penetrating the material enable
the transmission of the photons through the material to be determined. Information on
the sampled material can then be calculated from the transmission which is a measure of
the probability of the incident photons interacting with the material. The probability of an
incident photon interacting with the material depends on three factors, the thickness of
the material the photon passes through, the density of the material and its effective atomic
number. The effective atomic number is the equivalent atomic number of a single element
material that would have the same photon interaction probability as a material consisting of
different elements. The first two parameters determine how much material the photon must
pass through while the third affects the probability of some photon interactions occurring.
By using two incident X-ray energies which have different interaction probabilities and
hence transmission through the material it is possible to correct for the unknown material
thickness and determine a combined density/atomic number value. This enables separa-
tion of material based on density/atomic number. Due to the transmission of the photons
through the entirety of the investigated material the observed results are representative of
the entire bulk volume of the material.

The review identified numerous studies of XRT sensor-based sorting [15–26,31]. It
was found that XRT sorting was effective for a wide variety of ore types including coal,
copper, rare earth elements, tin and zinc. XRT sorting is suitable for sorting any material
where there is a difference in the density/atomic number between the desired component
and the waste material. This was demonstrated by the failure of XRT sorting for a marble
mine shown in a study by Paranhos et al. [31] resulting from minimal differences between
the densities of the marble product and the waste rock preventing effective sorting. The
studies showed that XRT particle sorting can typically extract 90%+ of the desired product
within 20%–70% of the processed mass. While the sorting is highly ore dependent there
was a general trend for more effective sorting for material with a greater density separation
between the desired product and waste such as for rare earth element ores. Despite XRT
being a bulk sensing technique for all the reviewed studies particle sorting was evaluated.
This is likely due to the high selectivity of particle sorting combined with greater thickness
uncertainties for bulk volumes of material. Additionally, particles can be penetrated by
lower energy X-rays, reducing shielding requirements.

2.2.4. Prompt Gamma Neutron Activation Analysis (PGNAA)

In PGNAA, the investigated ore is irradiated with neutrons. The incident neutrons
interact with nuclei within the material and are captured by the nuclei. In these neutron
capture events, compound nuclei are produced from a combination of the original nucleus
and a captured neutron. The newly formed nuclei are in highly excited states due to the
release of the binding energy from captured neutrons. The excited nuclei then return to the
ground state via the emission of gamma photons with energies corresponding to the energy
gaps between excitation levels of the nuclei. Hence, the energies of the emitted gamma
photons are characteristic of the nuclei of the investigated material. The energy spectrum
of the emitted gamma photons is scored by a photon detector. The spectrum is used to
determine the elemental composition of the material from the relative intensities of the
characteristic gamma photon emissions. The emitted characteristic gamma photons have
energies typically within a range of between 2 and 12 MeV. These high energy photons are
highly penetrative, which combined with the high penetration of the incident neutrons
allows for effective sampling of a large volume of bulk ore. Note that the characteristic
emissions are from the energy levels of the nucleus instead of the energy levels of the bound
electrons as is the case for most other sensing techniques. This is beneficial as while the
chemical state of the atom can alter the electron energy levels, the nucleus energy levels
are unaffected. This results in PGNAA being able to determine the elemental composition
of the material. However, due to the limited impact of the chemical state for PGNAA,
additional sensor results would likely be required to determine the ore mineralogy in
addition to the elemental composition.
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The PGNAA sorting study identified within the review demonstrated that PGNAA
was able to accurately determine the Cu grade for bulk material. The ability to accurately
determine the concentration of a range of elements within bulk material enables PGNAA to
be effective for bulk sorting material where the elements of interest have a measurable PG-
NAA response [41]. As the PGNAA signal is sampled from the entire bulk volume PGNAA
is not suitable for particle sorting. However, as shown in the study by Nadolski et al. [27],
it is possible to use PGNAA to select the feed to a particle sorter using another sensing
technique. This enables particle sorting only for the material most amenable to upgrading
via the technique, reducing capacity requirements and avoiding unnecessary processing.

2.2.5. Optical and Hyperspectral Imaging

In optical imaging a photon source is used to illuminate the sensed material. The
energy spectrum of the photons reflected from the material is detected and compared
with the spectrum used to illuminate the material. This enables the determination of the
reflectance and absorption of the incident photons by the material across the measured
energy spectrum. The absorption profile is indicative of the mineralogy of the sensed
material. However, different minerals can have similar absorption profiles. This can com-
plicate unique identification of the mineralogy present. Therefore, additional information
from geological knowledge or other sensors is often required to enable identification of
the material’s mineralogy. There are a wide variety of sensors that use the principles of
optical imaging over a wide spectrum of photon energies from infrared to ultraviolet,
utilizing a range of photons sources such as LEDs and lasers. While most sensors only use
a portion of the photon energy spectrum, it is possible to conduct absorption/reflection
studies over multiple sections of this spectrum using a technique known as hyperspectral
imaging. Using data from a broader spectrum of photon energies typically enables better
determination of the mineralogy of the sensed material. However, for some applications a
subset of the spectra is sufficient to capture a response characteristic of the material and
limited additional information can be gained by considering a broader spectrum. As the
low energy photons used in optical imaging techniques are unable to penetrate the sensed
material, the sampling is primarily from the surface of the material.

Numerous studies of sorting using optical/infrared imaging were identified within
the review [19,22,24,28–35]. It was found that optical and infrared imaging were suitable for
sorting a wide range of ores including coal, copper, gold, lead, marble, mineral sands, rare
earth elements, tin and zinc. It was found from particle sorting tests that optical/infrared
imaging was capable of correctly sorting ore and waste particles with a typical efficiency of
80%–95%. This resulted in being able to extract 70%–90% of the desired material within
25%–50% of the mass using optical sorting. Optical sorting is suitable for material where
the mineral of interest has a characteristic absorption response for the light spectrum
used. Note that when sorting based on elemental grade is required, the primary mineral
containing the element of interest can be used as a proxy for optical sorting. However, this
approach can cause some of the desired element not within the primary mineral bearing the
element to be discarded as waste when sorting. Additionally, as optical sensing is limited
to the visible surface, ore particles can be incorrectly discarded as waste if the present target
mineral is not expressed on the surface of the particle. These factors can result in lower
recovery and higher mass discard compared with bulk sensing and less mineral specific
techniques such as XRT as shown in the investigation by Kern et al. [24].

3. Sensor Fusion

Sensor fusion is the use of data from two or more sensor types to provide additional
information on the sensed material compared to a single sensing technique in isolation. This
can enable more efficient material sorting and feed-forward process control. Sensor fusion
is beneficial as each sensing technique has its own strengths and limitations. Therefore,
combining different techniques can help combine the strong points of each while reducing
the limitations of the sensing techniques. Additionally, sensing techniques often provide
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different types of information, which combined provide more detail to enable identification
of the ore mineralogy.

3.1. Sensor Fusion Classification

Several approaches to fusing data from multiple sensors for sorting in mineral pro-
cessing can be identified based on the analysis and discussion of sensor types and sorting
techniques in the previous sections. These approaches involve varying degrees of com-
bination of data from different sensor types. A classification system is proposed that can
separate applications of sensor fusion for sorting in mineral processing into four distinct
classes depending on how the sensor information is used and to what degree the sensor
data are combined. These classes are defined and discussed below and are presented in
order of the degree of data combination from greatest to least.

The first class consists of full sensor fusion to improve mineral identification. In this
class, data on the characteristics of the sensed material from two or more distinct sensor
types are combined. This enables more information on the ore mineralogy to be determined
than could be provided by each sensor type individually. This additional information can
be used to improve the classification of the mineralogy of the processed ore as well as
the sorting of the processed material into a product for further processing and waste to
be discarded. Sensor fusion can be performed at both a high and a low level. For high
level sensor fusion, the data from each sensor are processed individually and the combined
results from each sensor are used to identify the ore mineralogy. In low level data fusion,
the data from each sensor are combined and the data are processed together to provide
additional information on the sensed ore. Note that low level fusion is difficult using
standard data processing techniques, given the difference in data types for most sensors.
However, it may be possible to analyze the combined data set from multiple sensors using
machine learning techniques to enable classification of the sensed ore mineralogy.

The second class consists of the fusion of the primary sensing technique with a sec-
ondary technique which provides similar data to the primary technique. The secondary
sensing technique is used to supplement the results from the primary sensor for cases
where the primary sensor is ineffective. For this class, the secondary sensor is not providing
a different type of information but is only providing information instead of the primary
technique. This can be necessary because each sensing technique has varying sensitivity to
the components of the material, based on the suitability of the components for each given
sensing technique. Most sensing techniques will have cases for some minerals or elements
where the sensor provides a poor response. By combining multiple sensing techniques
that provide similar information on the material, it is possible to overcome the sensitivity
limitations for each individual technique.

The third class of sensor fusion consists of using results from a secondary sensor to
aid the processing of results of a primary sensor. This differs from full sensor fusion as
described in the first class as all the information on the sensed ore is derived from the
primary sensing technique. The secondary sensor data are used only to assist with the
processing of the primary sensor data. This is beneficial for sensing techniques where it
can be hard to resolve the observed data to determine precisely the characteristics of the
sensed ore.

The fourth class of sensor fusion consists of using multiple sensors to sequentially
sort the material based upon the individual sensor results. In this class, each sensor-based
sorting step selects the ore for later sensor-based sorters to process. This can be done
by selecting a portion of the processed material that is suitable for further sorting or by
removing material that could reduce sorting efficiency. This allows for selection of the
optimal feed material for later sensor-based sorting. Note that while multiple sensors are
used for ore sorting, the results from the sensors are not directly combined.
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3.2. Sensor Fusion Examples

Several papers have considered sensor fusion, and these are summarized and dis-
cussed below. Additionally, given the limited number of studies on sensor fusion, several
potential sensor fusion applications are also proposed and discussed to illustrate potential
applications of each class of sensor fusion.

A study by Desta and Buxton [34] conducted an investigation of class 1 data fusion for
infrared sensors. Data from several infrared sensors, each covering sections of the infrared
spectrum, were combined to provide information on the reflectance and absorbance of the
material across the entire infrared spectrum. The combined dataset was then analyzed using
machine learning classification algorithms to sort the poly-metallic (Cu, Zn and Pb) sulfide
particles into product and waste. The fused dataset covered a broader spectrum providing
more information to aid classification, improving the correct classification probability by
up to 3% compared with the data from a single section of the IR spectrum. While this is a
good example of techniques involved in data fusion, only limited additional information is
gained due to fusing two similar sensors based on the same fundamental technique. This
limits the potential for additional information to be gained on the sensed particles.

A potential application of class 1 data fusion using distinct sensor types would be
the fusion of hyperspectral sensor data with sensors that can measure the elemental com-
position of the ore such as PGNAA or XRF. The fusion of these sensors is beneficial as
each sensing technique can provide complementary information which can improve the
processing of the data and provide more comprehensive information on the sensed ore.
The hyperspectral reflectance/absorbance spectrum observed from the sensed material
can be used to detect some mineralogy. However, the spectra for some minerals can be
similar, making precise identification difficult. Information on the elemental composition
of the sensed material from a PGNAA or XRF sensor can help to limit the range of poten-
tial minerals, improving the classification of the mineralogy based on hyperspectral data.
Knowledge of the mineralogy of at least part of the sensed material from the hyperspectral
analysis can also assist ratiometric analysis of the elemental composition data from PGNAA
or XRF sensors, enabling the extraction of additional data on the mineralogy of the sensed
material. This potential application of sensor fusion could enable the extraction of more
information than the use of both sensor types individually, providing greater information
on the elemental composition and mineralogy of the sensed ore which would enable more
effective ore sorting. Note that the varied sampling distributions of different sensing tech-
niques complicate the combination of data from multiple sensor types as considered in
this example. It would be difficult to combine data from a surface only sensing technique
such as hyperspectral imaging with a bulk sensing technique such as PGNAA. While it is
easier to combine hyperspectral data with XRF, which is also surface sampling, information
on the bulk volume of the material would not be available. The combination of differing
sampling distributions is discussed in later sections of this paper.

An example of a sensor designed for class 2 sensor fusion is the fluorine fluorescence
sensor developed by Moffatt et al. [14]. This fluorine specific sensor was able to accu-
rately measure the fluorite content of a copper bearing ore. The sensor was developed
to complement PGNAA analysis, a technique which has poor sensitivity to the fluorine
content of the sensed ore. The combined PGNAA and fluorescence sensors can detect the
elemental composition of the ore, including fluorine. This application of sensor fusion can
help improve the utility of PGNAA based ore quantification and sorting for ores where the
fluorine content is an important indicator of difficulties in ore processing or the ore grade.

A potential application for class 3 sensor fusion would be to assist the processing of
data from XRT sensors that measure the X-ray transmission to determine the density/atomic
number of the sensed material. In XRT sensing, the thickness of the sensed material plays
a key role in the transmission. This means that it is typically not possible to determine
precisely the thickness, density and effective atomic number of the material even with
measurements at numerous X-ray energies for a 2D image [42]. Other sensing techniques,
such as a 3D camera or LIDAR, can provide information on the thickness of the sensed
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ore. This information can be used when analyzing XRT data to resolve the thickness
uncertainty. With a known thickness, it would be possible with measurements at multiple
X-ray energies to provide a better determination of the density and the effective atomic
number of the sensed material. The density and atomic number can be separated using the
change in relative probability of different types of photon interaction with photon energy.
This is due to the interaction types having varying sensitivity to the atomic number of
the material [43]. Determining the density and atomic number of the sensed material can
enable better identification of the ore mineralogy [42].

An example of class 4 sensor fusion was reported in the investigation by Nadolski
et al. [27], of the use of a combination of PGNAA and XRF sorting for upgrading a copper-
gold porphyry ore. It was proposed to use a PGNAA sensor for bulk sorting of the mined
product into waste, which is discarded, low-grade ore which undergoes particle sorting
using XRF sensors to improve the grade and high-grade ore which is sent directly to the
mill. In this implementation, the PGNAA sensor is used to select the feed for XRF particle
sorting, ensuring that only low-grade ore, which will benefit the most from upgrading, is
sent to the particle sorter. This enables a reduction in the required particle sorting capacity
while still delivering most of the potential economic return. Economic modelling of the
combined PGNAA and XRF sorting predicted a 6.5% increase in net smelter return.

Another example of the implementation of class 4 sensor fusion was presented in the
study by Assis et al. [19], where particles of a sulfide gold ore were sorted using both XRT
imaging and LASER reflection sensing. In this case, the sensors were used individually
to sense different characteristics of the ore associated with gold enrichment. The LASER
sensor identified quartz bearing ore particles, while the XRT sensor identified denser
particles associated with sulfide mineralization. The sorting was done sequentially based
on each technique to select ore particles with characteristics indicative of higher gold grades
for further processing. The initial XRT sorting removed denser ore particles with sulfide
mineralization, reducing the material required to be sorted by the LASER sensor. Sorting
particles based on an individual sensor results in discarding particles that have some quartz
mineralization and some sulfide mineralization just below the cut-off for each sensor type
despite the potential for an economic gold grade. This suggests that a higher level of fusion
of the data from each sensor could potentially increase the gold recovery.

3.3. Limitations on Implementing Sensor Fusion

The presented literature review of sensor-based sorting in mineral processing has
shown that, while sensor-based ore sorting and characterization is of growing interest and
has been investigated for numerous mining operations, few studies have considered the
use of two or more sensor types. Furthermore, even when the use of multiple sensor types
is considered, there has been no or only limited investigation of the potential fusion of
these different sensor types. From the review findings several potential factors limiting
the investigation and implementation of multiple sensor types and data fusion have been
identified. These factors are discussed along with potential avenues to overcome these
issues to enable the progression of sensor fusion development and implementation.

A major reason why the consideration of multiple sensors is limited, is that prior to
adoption of a sensing strategy for a mining operation, it is typical to send an ore sample
for testing and evaluation of the sorting potential of the ore for a given sensor of interest.
However, this testing is typically performed by a research group or sensor manufacturer
that has expertise on only one sensor type. As a result of this, mining operations that choose
to acquire sensors typically acquire one sensor type at a time, with limited consideration
of sensor fusion. This results in very few mining operations with multiple sensor types
installed, limiting the availability of data from multiple sensors which can be evaluated for
fusion potential.

Another challenge to evaluating the potential for sensor fusion is the availability of
correlated and comparable data. Even in the case of mine sites with two or more sensor
types installed, it is not sufficient to have the data from each sensor type available, the data
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must be able to be compared. There are numerous potential difficulties in comparing sensor
data. Only sensors located at the same position on the mine site can generally be compared
effectively. This is due to the mixing of ore through stockpiles and during transport, as
well as changes in the condition of the ore during crushing and grinding. These changes
in the ore prevent sensor information from different locations being directly compared as
different distributions of the ore would be presented to the sensors.

Even when the same ore is presented to multiple sensors, this is not sufficient to ensure
direct comparability between sensors. It is also important to consider, and correct for, the
temporal and spatial sampling of the ore. Different sensors can have different sampling
time intervals, which results in data from the sensors being not directly correlatable as
different volumes of ore passed the sensors for each sample period. Another issue is that
different sensing techniques have different spatial sampling distributions. Sensors can
sample a ‘spot’, a minute volume on the surface of the material, the entire visible surface of
the material or the bulk volume of the material. This typically limits direct comparison of
results from bulk, surface and spot sensors because the sensor results are from different
spatial samplings of a heterogeneous material. Furthermore, even for the same sampling
distribution there can be differences in the distribution of the extracted data. For example,
both PGNAA and XRT are bulk sampling techniques, however PGNAA provides results
for the entire sampled volume while XRT typically provides a 2D image of the transmission
through the bulk volume. This can cause additional difficulties in comparing the sensor
results. Additionally, even if the same sampling type is used, there can be differences
in the field of view and spatial sampling bias for different sensors that can still result in
complications in comparing the simulation results.

Another challenge when sorting material via the use of fused data, is determining
the uncertainty of the combined dataset. Every sensing technique involves some level of
uncertainty within the output data which must be considered when making an operational
decision based upon said data. When multiple sensor sources are used this can compound
the effect of uncertainty as the uncertainty within each individual sensor measurement is
combined within the fused dataset. This results in the possibility for fused data that any
individual sensor type and any potential combination of sensor types could be giving an
erroneous response which does not reflect the processed material. As such, any processing
of the fused dataset should take this possibility into account when making control decisions.

3.4. Pathways to Implementing Sensor Fusion in Mining

In the previous section, numerous challenges in the implementation of sensor fusion
for mining applications were identified. These challenges are not insurmountable and
have the potential to be overcome through improved interdisciplinary collaboration and an
increased uptake of techniques new to mining applications. Potential approaches to help
overcome the issues of data availability, data synchronization and data analytics and hence
achieve sensor fusion are proposed and discussed in this section.

3.4.1. Data Availability

Availability of correlatable data from multiple sensor types to aid evaluation of optimal
sensor fusion combinations is key to the development and implementation of sensor fusion
techniques. As discussed in the previous section, most mining operations evaluate and
acquire one sensor type at a time. However, given the growing interest in sensor-based
sorting and control, gradually over time more mine sites will acquire multiple sensors
providing valuable data for evaluating the potential for sensor fusion. As data from mining
operations is currently limited, testing of the response of multiple sensor types for a range of
ore archetypes should be performed to enable a timely evaluation of sensor fusion potential.

An optimal approach to producing high quality data for evaluating sensor fusion
requires the close co-operation and integration of multiple research teams across various dis-
ciplines, each with expertise in a specific sensor or sensor class. The combined knowledge
would enable effective evaluation of the sensor response to an ore type for a wide range
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of sensors. Traditionally, experimental tests have been used to evaluate sensor response,
however it can be difficult to ensure correlatability of the experimental results. While each
team could perform experiments on the same material sample to ensure correlatability,
it would be difficult and time consuming to ship the same sample to numerous research
groups for each to perform a sensor evaluation sequentially. Additionally, it would be
difficult to ensure that the sample investigated by each research group consisted of the
same material in the same presentation, given the disturbances of the sample and potential
for loss of, and damage to, the sample during multiple stages of transport and handling.

A promising technique to help overcome the difficulties involved with ensuring that
each research team receives the same sample to ensure data correlatability is the use of
sensor simulation. We propose that sensor simulation techniques can be used to model
the sensor response for a range of sensor types for a given ore type. This can be achieved
by developing uniform sample models which are representative of the ore type for which
sensor fusion is being evaluated. These models can then be used, by each research group
with expertise on a given sensor, to simulate the response of the sensor to the material.
This can enable the simultaneous simulation of the sensor response to a given material
in the same conditions for a wide range of sensor types, enabling correlated datasets to
be produced. These datasets can be combined with any available experimental data to
evaluate the sensor fusion potential for the material. The potential for using simulations to
evaluate the suitability of a single sensor type for sorting a given ore was demonstrated in
three papers identified in the review as discussed below.

In an investigation by Neubert and Wotruba [23] the potential use of XRT sensor-based
sorting for rare earth element (REE) ore was evaluated using a combination of experiments
and Monte Carlo simulations. Artificial samples containing the REE mineral bastnaesite
with concentrations from 0.5%–5% and grain sizes from 125 to 1000 µm within a calcite
or quartz matrix were prepared. A XRT sensor was used to measure the effect of the REE
content and grain size on the X-ray transmission to evaluate the sorting potential of the
technique. Additionally, a Monte Carlo simulation was used to model the transport and
interactions of incident X-rays passing through a representation of the artificial samples. It
was found via both experimental tests and Monte Carlo simulations that the transmission
was reduced significantly as the REE grade was increased, indicating a strong sorting
potential, as shown in Figure 2. As well as showing the suitability of the sorting technique
for REE ores, the study also showed that the Monte Carlo simulations were able to model
accurately the change in transmission with increased REE content. Note that while the
trends were very similar, the simulation consistently predicted changes in transmission
approximately twice that of the experimental tests. This difference was attributed by the
authors to over simplified assumptions made in the design of the Monte Carlo model. An-
other potential aspect contributing to the difference is that the experimental measurements
were compared directly with the simulated photon fluence. This did not take into account
any effect from the photon detector used in the experiments.

In a study by Li et al. [37] a Finite Element Method simulation of an inductance-based
sensor to measure the electrical impedance of ore was developed. The model was used
to simulate the response of the sensing technique for copper and aluminum ores. First
the simulations were validated against published experimental impedance measurements
from an investigation by Tong et al. [36]. As shown in Figure 3, it was found that the
simulations were able to reproduce effectively the response observed in experiments. This
confirmed that the simulation was able to model effectively the sensor results. A simulation
model of aluminum ore particles was developed. The model was able to generate particles
with heterogeneous aluminum distributions reflecting the natural heterogeneity of the ore.
The response to each modelled particle was simulated, producing a dataset of the sensor
response to evaluate the potential of the sensor for sorting the ore. This dataset was used to
train a neural network classification algorithm to sort the material into product and waste
classes with particles containing more than 2% aluminum classified as product. It was
found that for the evaluated material that the sensor data processed using the classification
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algorithm was able to sort product to product with an 82% efficiency and waste to waste
with a 97% efficiency. This paper demonstrates that simulations can accurately reproduce
experimental results and can be used to produce a dataset, with which sensor-based sorting
can be evaluated.
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In a study by Duan et al. [40] finite-difference time-domain simulations were used
to perform an initial evaluation of the use of microwave imaging to sense gold and silver
inclusions within ore. Micro-CT scans of core samples combined with mineralogical
mapping data were used to generate a model of the core samples within the simulation.
The simulation showed that the highly conductive silver and gold particles resulted in a
strong response even from small inclusions, indicating that the technique is a promising
method for determining the presence of trace quantities of the precious metals. Future
experimental tests are planned by the group to validate these simulation results. This paper
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demonstrates the potential of using off-line sensor data such as micro-CT and QEMSCAN
data to produce an ore model for use in simulations to evaluate sensor response.

These simulation studies show that it is possible to model the response for a range of
sensing techniques for a given material and that models could be used to predict sorting
efficiency for a group of simulated ore particles [23,37,40]. Additionally, it was found
that geological data from off-line sensing techniques can be used to build an ore particle
model [40]. These findings suggest an approach to evaluate sensor techniques for sensor
fusion would be to create a common model of ore for which sensing techniques are inves-
tigated using geological knowledge of the mined ore supplemented with off-line sample
sensing such as micro-CT. This common model can then be used to simulate the response
for a range of sensing techniques to provide data for analyzing the potential for sensor
fusion. The use of a common model can be facilitated by using open-source simulation
software capable of modelling a wide range of particle physics, such as Geant4 [44,45]. As
many of the main sensing techniques such as XRF, XRT, fluorescence and PGNAA rely
on particle physics interactions, their response can be modelled within the same software
toolkit, helping to ensure comparability.

3.4.2. Data Synchronization

Once data is available for evaluation of sensor fusion techniques, it is important to
ensure that the data is correlatable and comparable. This generally requires the synchro-
nization of both the temporal and spatial sampling of the evaluated sensing techniques to
ensure that data from the same sampled material is compared. Approaches to achieve data
synchronization are proposed and discussed.

To ensure correlatability in test work studies, as discussed in the previous section,
care must be taken to ensure that the same samples are presented to each evaluated sensor
and any supplementary simulation data must use a sample model representative of the
sampled material. For measurements from multiple sensors installed at a mining operation,
the resulting data can only be correlated if the sensors are installed at the same point within
the mining and mineral processing operation. For example, two sensors would have to
be located on the same conveyor belt in order to be correlatable and preferably as close
together as possible.

It is necessary to ensure that the sampling times are synchronized to ensure that the
compared data is corresponding to measurements of the same material. For the sampling
of material in motion on a conveyor belt the distance between the installed sensors and the
velocity of the conveyed material must be accounted for to correct for the time delay be-
tween the same material being presented to each sensor. By comparing data measurements
separated by this delay it is possible to compare the results from the sensors as the same
material is being measured. An effective way to ensure that data from multiple sensors
correspond to measurements of the same material is to co-locate several sensor types within
a single sensing unit. Sensor units with multiple sensor types were used in several of the
discussed studies, however the potential for sensor fusion was not evaluated [17,22,31]. To
correct for varying sensor sampling times to ensure that the same material is sampled data
from a sensor with a shorter sampling time can be integrated to match the sampling time
of the slower sampling sensor. Although this can enable comparison of the sensor results,
it is at the cost of the higher time resolution of the faster sampling sensor.

It is also necessary to synchronize the spatial sampling of the material to ensure
that measurements are comparable. It is easier to compare sensor results with the same
spatial sampling profiles, however, in some cases techniques can be used to compare
sensors with different spatial sampling types. It is possible to compare results from bulk
sampling and surface sampling sensors for relatively homogenous ore types where the
sampling distribution has a reduced effect on the observed values [10]. It is also possible to
compare data from spot sensors and surface sensors provided sufficient and representative
spot sample measurements are taken to ensure results represent the surface of the sensed
material [12,34]. Different sensor types can also provide data in different spatial formats,
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e.g., image and point data. It is possible to integrate data with a higher spatial resolution
to compare with lower spatial resolution data. However, like the case with temporal
integration this is at the expense of spatial resolution in the measured data. Another
technique for comparing image and point data is to take a weighted combination of
features extracted from the image [34]. For different sensor fields of view, it can be possible
to restrict a sensor which is capable of sampling a wide field of view to match the narrower
field of view of the sensor it is being fused with. While this enables direct comparison it is
at the expense of the capability to sample a wider distribution of the ore.

3.4.3. Data Analytics

With the availability of synchronized and correlatable multi-sensor data, it would be
possible to evaluate the potential for sensor fusion. There are two main approaches to eval-
uating the sensor fusion potential, via expert knowledge of the fundamental characteristics
of each sensing technique and via the use of machine learning techniques.

The information on the sensing techniques from the literature review can be used to
evaluate potential sensor-fusion pairings based on the fundamental mechanisms of the
considered sensing techniques and the sampling profiles. Ideal sensor pairings would
provide complimentary information, have similar sampling profiles and have a good
response to the considered ore type. Examples of potential sensor fusion combinations
identified using knowledge of the sensing techniques that were previously discussed
include the combination of PGNAA/XRF elemental data with hyperspectral imaging,
using fluorine fluorescence sensors to augment PGNAA sensor data and using LIDAR
data to aid extracting material density and atomic number from XRT data. Evaluating
potential data fusion applications based on knowledge of the sensing techniques requires
the collaboration of several research groups with expertise covering the sensors and their
fundamental mechanisms. With synchronized and correlatable data and the knowledge of
the sensing techniques from the research groups, it would be possible to identify potential
beneficial sensor combinations based on the ore characteristics and the sensor capabilities.

There are likely to be beneficial sensor combinations that are not readily apparent from
the characteristics of the sensors. For these cases, a data driven approach could be used to
evaluate such beneficial combinations using machine learning techniques. Collaboration
with a research group with expertise in machine learning techniques would be beneficial to
help identify the best ways for combining and analyzing the distinct data sets from multiple
sensor types. An example of analyzing combined datasets from separate sensors and using
classification algorithms to sort ore particles is presented by Desta and Buxton [34]. An
advantage of some machine learning techniques, such as deep learning, is the ability to
process a large heterogeneous data superset consisting of the results from multiple distinct
sensor types. This can enable the processing of data from a broad range of sensor types to
determine whether their combination can improve ore classification.

As previously discussed, it is important to consider the uncertainty within the sensor
measurements used in sensor fusion and the resulting potential for misclassification when
using the fused data set for control decisions. For sensor fusion applications where expert
knowledge is used to combine sensor results, the method for combining the data is known
and therefore traditional uncertainty propagation techniques can be used to determine the
uncertainty of the fused result. It is more difficult to determine the uncertainty for sensor
fusion performed via a machine learning technique such as deep learning algorithms, as the
dependence of the fused result on the input data sources is often complex. For these cases,
traditional uncertainty propagation techniques are not feasible, however new techniques to
evaluate the combined uncertainty are being developed. One example is the determination
of uncertainty for deep learning techniques using Bayesian dropout as discussed by Gal
and Ghahramani [46].
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4. Conclusions

Numerous studies and reports of sensor-based sorting in mineral processing using
a wide range of sensing techniques including XRT, optical/infrared imaging, XRF and
PGNAA were identified and discussed in this review. It was found that for all the identified
papers at least one of the sensing techniques evaluated was capable of effectively sorting
the investigated material, showing the potential benefits from implementing sensor-based
sorting. The basis of each of the major sensing technologies and the resulting measured
characteristics and sampling was discussed. This information can aid selection of sensing
technique, based on geological information, to ensure the selected method has a reasonable
potential to differentiate ore and waste and provides sufficient sampling to provide repre-
sentative data for the considered sorting technique. The large number of recent publications
demonstrates a significant interest in implementing sensor-based sorting techniques to
upgrade ore grades while reducing the processing of waste rock. This increase is driven
by the current conditions of declining ore grades and a significant demand for resources
resulting in a need for the efficient processing of low-grade ores [4].

The growing uptake of sensor-based sorting techniques in mining increases the likeli-
hood that a mining operation will install two or more sensor types. This offers the potential
to combine data from multiple sensor types to improve the characterization of sensed ore
and hence improve sorting efficiency and processing control. A classification of sensor-
fusion applications in mineral processing was proposed. A few implementations of sensor
fusion [19,27,34] were found in the literature and were discussed along with several identi-
fied potential applications. It was found that while sensor fusion offers significant potential,
few implementations have been reported, and these typically have some limitations. The
reported cases generally consist of a relatively low level of data fusion, or when a high
degree of fusion was performed it was done for two similar sensing systems, reducing the
new information that could be extracted. When considering potential combinations of sens-
ing techniques for sensor-fusion it was determined that ideally the fused techniques should
provide distinct types of information on the sensed material to maximize the information
available for sorting. Additionally, the sensing techniques should have as similar sampling
profiles as possible to minimize complications arising from comparing the sensor data.

It was determined that a major factor limiting implementation of sensor fusion is
the poor availability of correlatable datasets of the sensor response from multiple sensor
types for the same material sample. This was found to result from most research groups
specializing in a single sensor type, generally leading to each sensor being considered
and installed in isolation. A program involving multiple research groups collaborating to
evaluate the response of multiple sensor types for a particular ore is a requirement to ensure
effective evaluation of sensor fusion potential. A complication for lab testing is the logistical
issues involved with shipping a large sample to many groups and ensuring the sample
is in the same configuration. A potential solution proposed is the use of simulations of
sensor response for a standardized ore model to supplement experimental results. Another
potential solution for providing correlatable data is the use of sensor systems providing
multiple sensing techniques in the same installed device. The co-location of the sensing
techniques helps ensure data correlatability. With available data, the potential for sensor
fusion can be evaluated using traditional techniques relying on expert knowledge of the
fundamental sensing mechanisms of each technique or via a machine learning approach.

The use of sensor-based sorting enables efficient processing of lower ore grades, re-
ducing fine waste production and energy and reagent consumption. With greater sensor
use, fusing multiple sensor types offers the potential to improve significantly ore classifica-
tion and sorting efficiency. However, significant work on acquiring correlatable data and
developing sensor fusion techniques will be required to realize this potential.
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