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Abstract

The Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) directly

detected gravitational waves for the first time on the 14th of September 2015. In 2017

the detection of gravitational waves from a binary neutron star merger was subsequently

followed up by observations by optical and radio astronomers — the first time an

astrophysical event was observed by two completely separate astrophysical signals.

This marked the beginning of multi-messenger astronomy. Since then 90 astrophysical

events have been observed using gravitational waves. To increase the rate of event

detection the sensitivity of gravitational wave detectors must be improved.

Current state of the art gravitational wave detectors are optical interferometers in the

dual recycled Fabry-Perot Michelson (DRFPMI) configuration with quantum squeezed

light injected to reduce vacuum noise. Future plans to improve the sensitivity further

rely on increasing the circulating laser power and improving the efficiency of quantum

squeezing. Squeezing efficiency is drastically reduced by optical losses in the interfer-

ometer of which mode mismatch is a large component. Higher laser power introduces

larger thermal distortions in the interferometer, which increase mode mismatch.

This thesis covers topics relevant to optical modelling of coupled cavity interferometers

such as the DRFPMI with a focus on mode mismatch. Novel applications in aLIGO

commissioning based on existing mode mismatch sensing techniques using the output

mode cleaner (OMC) are presented. A new mode mismatch sensing technique based on

transverse higher order mode sidebands is demonstrated on an optical tabletop and its

applications to mode mismatch sensing in aLIGO is discussed. A new optical modelling

framework based on linear canonical transformations and signal flow graph theory is

also presented.

iii



iv



Declaration

I certify that this work contains no material which has been accepted for the award of

any other degree or diploma in my name, in any university or other tertiary institution

and, to the best of my knowledge and belief, contains no material previously published

or written by another person, except where due reference has been made in the text. In

addition, I certify that no part of this work will, in the future, be used in a submission in

my name, for any other degree or diploma in any university or other tertiary institution

without the prior approval of the University of Adelaide and where applicable, any

partner institution responsible for the joint award of this degree.

I give permission for the digital version of my thesis to be made available on the web,

via the University’s digital research repository, the Library Search and also through

web search engines, unless permission has been granted by the University to restrict

access for a period of time.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship.

v



vi



Acknowledgements

This thesis has been the largest project in my life and I would like to thank a number

of people. I would like to thank my parents for giving me the opportunity to study

and work on this project, supporting me every step of the way.

To Dave, thank you for agreeing to be my supervisor. You gave me a lot of freedom

to pursue what I was interested in and I greatly appreciate it. To Dan, you are one of

the main reasons this PhD went as smooth as it did. I can’t imagine how any of this

would have gone without you. Thanks for your efforts and your patience with me. To

Peter and Jesper, thank you for your continued insights and wisdom.

I would like to thank the people I met at the LIGO Hanford observatory. I would like

to thank Daniel, Sheila, Jenne, TVo, Georgia, Craig, and Nutsinee. I enjoyed our time

together and thanks to you I have fond memories of the site.

I would like to thank the people at OzGrav. I enjoyed meeting all of you at the annual

retreats and discussing each others work. It helped to put my work into perspective

and make it feel like a part of a larger whole.

The University of Adelaide felt like a second home to me and I would like to thank

everyone that has shared it with me in making it such a friendly place. To Sarah,

Jonathan, Jarrah, Jamie, Rhona, Jed, Kyle, and Joshua thanks for the great company.

To Alex and Baden, it has been fun. I enjoyed our time together. I hope we will have

more fun in the future.

I would like to thank everyone who shared the office with me. I would like to thank

Seb, Cao, Craig, Mitchell, Tom, Sophie, Georgia, Kendall, Muskan, Deeksha, Zac, and

Madi. You’re all lovely people.

vii



viii



Contents

Abstract iii

Declaration v

Acknowledgements vii

1 Introduction 1

1.1 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Laser interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Michelson interferometer . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Dual recycled Fabry-Perot Michelson interferometer . . . . . . . 12

1.2.3 The LIGO interferometer . . . . . . . . . . . . . . . . . . . . . 14

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Modelling optical transverse fields 19

2.1 Hermite-Gauss modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Complete orthonormal set . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Solution of the paraxial wave equation . . . . . . . . . . . . . . 25

2.1.3 Eigenmodes of a cavity with spherical mirrors . . . . . . . . . . 26

2.2 ABCD matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Modelling cavities using the LCT 41

3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Linear Canonical Transform . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Continuous LCT . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



x CONTENTS

3.3.2 Discrete LCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 LCT Composition . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Optical propagation using the LCT . . . . . . . . . . . . . . . . . . . . 47

3.4.1 1D propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Separable 2D propagation . . . . . . . . . . . . . . . . . . . . . 48

3.5 Circulating field in ideal resonant cavities . . . . . . . . . . . . . . . . 49

3.5.1 Linear cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Ring cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Linear cavity with apertures and mirror defects . . . . . . . . . . . . . 54

3.6.1 Example: aLIGO linear cavity with finite-aperture mirrors . . . 57

3.6.2 Case study: aLIGO point absorbers . . . . . . . . . . . . . . . . 60

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Towards coupled cavity LCT models 67

4.1 Signal flow graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Graph reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Single linear cavity . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.3 Power recycled Fabry-Perot cavity . . . . . . . . . . . . . . . . 76

4.1.4 Dual recycled Fabry-Perot Michelson interferometer . . . . . . . 80

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Commissioning for Advanced LIGO 87

5.1 Squeezer beam and LHO OMC astigmatism . . . . . . . . . . . . . . . 87

5.1.1 Comparison of LHO and LLO astigmatism . . . . . . . . . . . . 92

5.2 Beam shape inference from SR3 rear heater scans . . . . . . . . . . . . 95

5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Mode matching error signals 103

6.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Ideal mode matching error signal . . . . . . . . . . . . . . . . . 107



CONTENTS xi

6.3.2 Single sideband error signal . . . . . . . . . . . . . . . . . . . . 108

6.3.3 Mode matching actuators . . . . . . . . . . . . . . . . . . . . . 112

6.4 Experimental Demonstration . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Optical path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 Electronic path . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.1 Error signal offset . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5.2 Validating measurement . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Application in a gravitational wave detector . . . . . . . . . . . . . . . 130

6.6.1 Online mode matching . . . . . . . . . . . . . . . . . . . . . . . 131

6.6.2 Offline mode matching . . . . . . . . . . . . . . . . . . . . . . . 132

6.6.3 Beacon mode-matching . . . . . . . . . . . . . . . . . . . . . . 132

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Conclusion 135

7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Wave Theory 139

A.1 The wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3 Paraxial scalar wave equation . . . . . . . . . . . . . . . . . . . . . . . 142

A.3.1 Fresnel diffraction integral . . . . . . . . . . . . . . . . . . . . . 143

A.3.2 Exponential paraxial wave propagation operator . . . . . . . . . 144

A.4 Complex source point (CSP) method . . . . . . . . . . . . . . . . . . . 147

A.5 Bayer-Helms scattering coefficients . . . . . . . . . . . . . . . . . . . . 149

B Linear Canonical Transform 153

B.1 Metaplectic sign ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.1.1 Metaplectic Matrices . . . . . . . . . . . . . . . . . . . . . . . . 154

B.2 Structured Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.3 Apertured LCT model . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.3.1 LCT model parameters . . . . . . . . . . . . . . . . . . . . . . 157

B.3.2 LCT model outputs . . . . . . . . . . . . . . . . . . . . . . . . 158



xii CONTENTS

C LIGO commissioning 161

C.1 aLIGO design Finesse3 model . . . . . . . . . . . . . . . . . . . . . . . 161

D Mode matching error signal 167

D.1 Gaussian beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.2 Basis change and projections . . . . . . . . . . . . . . . . . . . . . . . . 168

D.3 Mode matching error signals . . . . . . . . . . . . . . . . . . . . . . . . 170

D.3.1 Mode matching error signal between two beams . . . . . . . . . 170

D.3.2 Mode matching error signal for resonant cavity . . . . . . . . . 171

D.4 Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

List of Publications 175



Chapter 1

Introduction

A fundamental fact about the nature of our reality that is all but confirmed is that

the relationship between space, time, and energy is described by the Einstein field

equation from general relativity (GR), first published in 1915 [2]. It is the most well

tested and one of the most complete descriptions of all gravitational phenomena. A

simple interpretation of the Einstein field equation is given by the phrase: “space tells

matter how to move and matter tells space how to curve.” [29]. The consequences of

such a theory are far-reaching, some of which are still being researched.

Einstein initially developed the theory of general relativity to extend his theory of

special relativity to accelerating reference frames, which he found to be equivalent to

inertial reference frames in a gravitational potential. The first major success of general

relativity was to accurately predict the precession of the perihelion of Mercury’s orbit.

The precession of the perihelion of Mercury’s orbit was first published in 1859 [1] and

could not be explained with Newtonian gravity without introducing a hypothetical

planet “Vulcan” that orbited between Mercury and the Sun [7]. In 1915 Einstein

accurately modelled the perihelion’s precession using only general relativity without

needing to introduce any hypothetical planets [3]. The precession of Mercury’s orbit

was shown to be due to the curvature of spacetime caused by the mass of the Sun —

exacerbated by the high eccentricity of Mercury’s orbit. Corrections to the orbits of

all other planets in the solar system were also made but the deviation from Newtonian

gravity are greatly diminished the further the orbit is from the Sun.

1



2 CHAPTER 1. INTRODUCTION

The ability of general relativity to accurately predict celestial phenomena of the day led

to its adoption as the prevailing theory of gravity. However, in addition to explaining

past results the theory of general relativity was used to make predictions about physical

phenomena that were yet to be observed. One of these phenomena is a motivation for

this thesis: gravitational waves.

1.1 Gravitational waves

The prediction of the existence of gravitational waves was first published by Einstein in

1916 [4, 5] where he found that the linearized weak-field equations had wave solutions

generated by time variations of the mass quadrupole of the source [146]. Einstein found

that the amplitude of these gravitational waves would be too small to be measured by

anything available at the time. He also did not know about the existence of compact

stellar objects such as black holes, and neutron stars, which are the only sources of

gravitational waves observed to date.

The first experimental observation of the effects of gravitational waves was published

in 1982 by Taylor and Weisberg [39], where the orbital period of a binary pulsar [30]

was found to decay in agreement with the energy dissipation predicted by the emission

of gravitational waves [94, 149]. The measured orbital period decay from 1975 to 2013

and the decay predicted from general relativity is shown in figure 1.1. It would not be

until 2015 before a direct measurement of gravitational waves was made.

Direct measurements of gravitational waves are challenging due to the fact that gravita-

tional waves have an extremely small measurable impact, even if the waves themselves

have a significant energy density when they reach Earth. Gravitational waves modu-

late a length L proportional to the gravitational wave strain h such that the change in

length ∆L is given by

∆L = hL, (1.1)

where the strain h given by the lowest order correction to Newtonian gravity by general
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Figure 1.1: Cumulative orbital decay measurements of the B1913+16 pulsar from 1975
to 2013. The measurements closely follow to the predicted orbital decay from general
relativity via gravitational wave emission. Source: [149].

relativity, ie the post-Newtonian expansion [108] is

hjk =
2G

c4r

d2Qjk

dt2
, (1.2)

where G is the gravitational constant, c is the speed of light, r is the distance to the

source, d2Qjk/dt
2 is the second time derivative of the quadrupole moment tensor Q.

The lowest order gravitational waves are quadrupole waves. They can be decomposed

into two orthogonal polarizations: h+ and h×, which are shown in figure 1.2.

The constant out the front of equation (1.2) is 2G/c4 = 10−44 s2kg−1m−1. A tiny

quantity that has to be offset by a massive second time derivative of the quadrupole

in order to produce a measurable strain. Fortunately, the universe provides us with

such massive changing quadrupoles: binary black holes — a pair of black holes that

orbit their common center of mass. The strain amplitude of any random binary black

hole unfortunately is not enough; their orbiting speeds are not large enough. But as
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Figure 1.2: A ring of space being deformed under a full period of a gravitational wave.
The two orthogonal gravitational wave polarizations h+ and h× are shown in the top
and bottom row respectively.

we saw with the binary pulsar earlier gravitational waves function as a loss mechanism

in a binary system — dissipating energy and bringing the black holes in the binary

closer together. Conservation of angular momentum means the binaries’ orbiting speed

must increase, in the process leading to greater emission of gravitational waves. This

forms a loop of ever increasing gravitational wave emission until the two black holes

collide and merge forming a larger black hole. In the final moments of this process the

black holes orbit each other at relativistic speeds, emitting more energy in gravitational

waves than any other known process in physics. This energy, which is on the order

of a solar mass radiates away from the merger as gravitational waves at the speed of

light in all directions. It will be precisely this moment that the first gravitational wave

detectors observed roughly 1.4 billion years after it happened [146].

The first direct measurement of gravitational waves from the merger of a binary

black hole system occurred at the twin LIGO observatories on the 14th of Septem-

ber 2015 [146]. The measured gravitational wave strain in both detectors is shown

in figure 1.3.

Fits to these waveforms by numerical relativity predictions of various binary black hole

mergers allows the physical properties of the binary system to be determined [138, 139].

The masses of the two black holes were found to be 36+5
−4 and 29+4

−4 solar masses, with

the final merged black hole mass of 62+4
−4 solar masses. This means that 3.0+0.5

−0.5 solar
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Figure 1.3: Gravitational wave strain data as observed by the LIGO Hanford (left)
and LIGO Livingston (right) detectors for the GW150914 event. Figure reproduced
from [146]. Top row: measured strain data in the H1 and L1 detectors. Note that the
top right also has the H1 signal shifted and inverted to demonstrate the similarity of
the waveform. Second row: Best fit strain prediction of a binary black hole merger
calculated using numerical relativity. Third row: subtraction of the best fit numerical
relativity model from the measured data. The residual structure is consistent with
interferometer noise giving confidence to the predictions of extreme general relativity.
Bottom row: time-frequency representation of the strain data showing the amplitude
of strain frequency as a function of time at H1 (left) and L1 (right).

masses was radiated as gravitational waves, making it the most energetic astrophysical

event recorded to date. Despite all that energy the peak gravitational wave strain

measured on Earth was only 1×10−21, meaning that the induced length change in the

4 km detector arms was only 4×10−18 m — 250 times less than the diameter of a

proton. Measuring this was an unprecedented feat of precision measurement that was

achieved using state of the art laser based interferometry, which we will discuss later

in section 1.2.



6 CHAPTER 1. INTRODUCTION

Nearly two years later the LIGO and Virgo gravitational wave detectors observed

gravitational waves from a binary neutron star merger in the GW170817 event [160].

This event is significant because it was the first time an astrophysical event was de-

tected with both gravitational waves and electromagnetic waves — the first event to

be observed with two different kinds of astronomical “messengers” in what is called

multi-messenger astronomy. The gravitational wave strain data of the merger, and the

subsequent optical spectra over several days are both shown in figure 1.4.

Figure 1.4: Gravitational wave strain time-frequency spectrum as observed by the
LIGO Hanford, LIGO Livingston, and Virgo detectors for the GW170817 event (left).
Source: [160]. Optical emission spectra evolution over the course of 10.5 days (right).
Source: [156].

The sky localization of GW170817 was possible due to a simultaneous measurement

by three separate gravitational wave detectors triangulating the signal based on the

arrival time and measured amplitude. The Virgo detector contributed to this despite
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not measuring any signal during the event because the sky localization was narrowed

down by requiring that the signal came from one of the blind spots in Virgo’s antenna

pattern. This significantly decreased the area of the sky that had to be searched by the

optical astronomers and within 11 hours they were able to locate the precise patch of sky

to point their telescopes to. The subsequent spectral analysis of the optical observations

allowed the elemental composition of the event to be analyzed [164]. Large quantities

of elements heavier than iron were detected. This confirmed that neutron star mergers

play an important role in producing the heavy elements of the universe [158].

The measured gravitational wave strain from GW170817 played an important role in

validating general relativity, placing further constraints and excluding some alternative

theories to general relativity. An estimate of the Hubble constant, which quantifies the

expansion of the universe was also obtained. For neutron stars tidal effects are expected

to have significant contributions to gravitational wave emission. The estimated tidal

deformability from GW170817 provided constraints on the neutron star equation of

state, which has ruled out some models of dense matter physics [179, 203].

Sources of gravitational waves

We’ve discussed compact binary inspirals as a source of gravitational wave emission

with their characteristic chirp signal as seen in the BH-BH merger in GW150914 and

NS-NS merger in GW170817. Signals of that magnitude are infrequent, happening

once every couple of years. As GW detectors become more sensitive they will be more

sensitive to more distant events. As of time of writing a total of 90 GW events have

been detected by the LIGO and Virgo detectors [221]. At some point the event rate

will become so high that at any particular moment there will be so many GW events

happening simultaneously that it would be difficult if not impossible to separate them

out from the sea of signals. That point is referred to as the astrophysical stochastic

background of gravitational waves. Anisotropies in the stochastic background could be

used to study populations of stellar objects in different regions of the universe [187].

Additionally there is also a cosmological stochastic background of gravitational waves,

which is expected to contain information about the early universe much in the same

way that the cosmic microwave background (CMB) does for electromagnetic waves [57].

This is interesting because in principle the early universe was not opaque to gravita-
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tional waves and so the cosmological GW background could contain information about

the universe much closer to inflation than the CMB [173].

Continuous wave (CW) GW signals are continuous single frequency gravitational waves

that are emitted by binary systems long before they merge. These signals are generally

at frequencies below 10 Hz, outside the LIGO band. A possible source of higher

frequency CW gravitational waves are rapidly rotating neutron stars that do not have

axial symmetry due to cracks in the star’s crust or “mountains” that form on the

surface causing the rotation of the star to emit GW [57, 165].

GW burst signals are transients that appear simultaneously in multiple detectors but

do not fit any inspiral chirp template. Signals of this type are predicted to come from

core collapse supernovae [57]. There are also more exotic sources of GW bursts that

are predicted to exist, such as GW from cosmic strings [79].

Figure 1.5: Diagram of the gravitational wave frequency spectrum with sources and
detectors corresponding to particular frequency ranges. Image source: NASA [116].
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Methods of detecting gravitational waves

Gravitational waves can be detected via a number of methods. Ground based interfer-

ometers such as LIGO are the focus of this thesis and will be discussed more in-depth

in section 1.2. They are sensitive to gravitational waves in the range from several Hz

to kHz where it is predicted that most compact binary mergers lie.

Space based interferometers such as the Laser Interferometer Space Antenna (LISA) [64,

105, 155] operate by measuring the time delay between three satellites orbiting the sun.

With an arm length of 2.5 million km and a lack of terrestrial noise sources allow the

LISA detector to be sensitive to gravitational in the range of 10−4 to 10−1 Hz [155].

Pulsar timing use the period of rotating neutron stars to study a wide range of as-

trophysical phenomena. Pulsar timing arrays (PTAs) use sets of extremely well-timed

pulsars as a galaxy scale detector with the detector arms extending between Earth

and each pulsar in the array [226]. By studying the correlations between the timings

in a PTA it should be possible to detect gravitational waves in the range of 10−10 to

10−6 Hz. This band is of interest for studying inspiralling supermassive binary black

holes and cosmic strings [223].

1.2 Detection of gravitational waves using laser in-

terferometry

1.2.1 Michelson interferometer

A Michelson interferometer (shown in figure 1.6) can be used to measure differential

arm length change while ignoring any common path length change in the arms. A

gravitational wave where the polarization lines up with the Michelson arms induces a

purely differential path length change. Noise sources that only couple into common

path length change are greatly reduced. This gives the Michelson improved signal to

noise for a particular polarization of gravitational waves at the cost of being completely

insensitive to the orthogonal polarization where the strain induces zero differential path

length change.

A question that is often asked about gravitational wave interferometry is “how is there a
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laser

symmetric
port port

anti-symmetric

ETMY

ETMX

photodetector

Ly

Lx

Figure 1.6: A diagram of a Michelson interferometer. By convention in GW interfer-
ometry the end mirrors are referred to as the end test masses (ETM). The X and Y
arms line up with the h+ gravitational wave polarization shown in figure 1.2. The h×
polarization in this case would not produce a signal at the anti-symmetric port.

signal in the detector if a gravitational wave stretches everything including the photons

in the detector?”. This question has a trivial answer for low frequency gravitational

waves: the detector appears stationary from the perspective of a photon travelling

from the laser along the Michelson arms to the photodetector at the antisymmetric

port. The effect of low frequency gravitational waves on the photons in the detector

is negligible and the difference in arm path length is measured as usual. The phase

change ∆φ in a Michelson under a constant gravitational wave strain h0 is given by

∆φ = ω0∆τ (1.3)

= ω0τh0 (1.4)

where ω0 = 2πc/λ0 where λ0 is the wavelength of the laser, and τ = 2L/c is the light

travel time in a Michelson with arm length L = Lx = Ly.

As the Michelson arms get longer and the time that a photon spends inside the arms

increases the overall phase shift that a photon experiences depends on the frequency

of the gravitational wave. The change in phase shift that the laser light experiences in

a Michelson due to a time dependent gravitational wave strain h(t) is given by

∆φ = ω0

∫ t0

t0−τ
h(t)dt (1.5)
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where t0 is the time at which we measure the signal at the antisymmetric port. Note

that if the frequency of the gravitational wave is negligible h(t) ≈ h0 then the we get

back ∆φ = ω0τh0 as before. Now we assume that the gravitational wave is a continuous

wave at angular frequency ωgw so the strain is

h(t) = h0 sin
(
ωgwt+ ϕgw

)
(1.6)

where h0 is the amplitude, and ϕgw is an arbitrary phase shift of the gravitational

wave corresponding to some initial condition. The accumulated phase change in the

Michelson under a continuous gravitational wave is then

∆φ = ω0h0

∫ t0

t0−τ
sin
(
ωgwt+ ϕgw

)
dt (1.7)

=
ω0h0
ωgw

(
cos
(
ωgw(t0 − τ) + ϕgw

)
− cos

(
ωgwt0 + ϕgw

))
(1.8)

using cos(a)− cos(b) = −2 sin(a−b
2
) sin(a+b

2
) and simplifying we get

∆φ =
2ω0h0
ωgw

sin

(
ωgwτ

2

)
sin

(
ωgwt0 −

ωgwτ + ϕgw

2

)
(1.9)

which is just a sinusoidal signal in t0 of the form

∆φ = a0 sin
(
ωgwt0 + ϕ0

)
(1.10)

where the amplitude and phase are

a0 =
2ω0h0
ωgw

sin

(
ωgwτ

2

)
(1.11)

ϕ0 = −ωgwτ + ϕgw

2
(1.12)

A plot of Michelson signal amplitude a0 as a function of gravitational wave frequency

is shown in figure 1.7. The response of Michelson is essentially flat at lower frequencies

with the DC level set by 2ω0L/c. This means that we can improve the sensitivity of the

detector by using longer arms. At some point when the gravitational wave frequency is

high enough the response begins to decline. This turnover point can be characterized

by the first frequency where the Michelson has no response to the gravitational wave.
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Figure 1.7: Strain amplitude response of a Michelson interferometer with 8 km, and
100 km arm lengths using a 1064 nm laser wavelength.

This happens when the photon travel time coincides with a full period of a gravitational

wave. The GW frequencies where this happens are at

fnull =
N

τ
(1.13)

=
Nc

2L
(1.14)

where N is any positive integer. These frequencies are shown as the sharp dips in inter-

ferometer response in figure 1.7, which goes to exactly zero at those frequencies. The

choice of interferometer arm length is then a tradeoff between low and high frequency

sensitivity.

Modifications to the Michelson design allow for overall improvements to performance

and a greater degree of control over the tradeoff between low and high frequency

sensitivity. The culmination of these modifications is the dual recycled Fabry-Perot

Michelson interferometer.

1.2.2 Dual recycled Fabry-Perot Michelson interferometer

Current state of the art gravitational wave detectors are dual recycled Fabry-Perot

Michelson interferometers. Interferometer design for gravitational wave detection has

evolved since the 70’s and here we will briefly sketch the development outline. In 1972

Rainer Weiss at Massachusetts Institute of Technology (MIT) did the first detailed noise
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study for a gravitational wave detector using Herriot delay lines in the Michelson arms

in order to reduce the length of the vacuum tubes [28]. It was found by the Glasgow

and Garching groups that incoherent scattering of light from the delay line mirrors

caused excessive readout noise [38, 53]. In 1981 Ronald Drever et al. at University

of Glasgow and California Institute of Technology (Caltech) proposed to replace the

Herriot delay lines with Fabry-Perot cavities [38], where the beam would be confined

to a single path inside the arms and hence could use smaller mirrors for a given beam

size.

ITMX ETMX

ITMY

ETMY

PRM

SRM

laser

photodetector

Figure 1.8: Diagram of a dual recycled Fabry-Perot Michelson interferometer
(DRFPMI). By convention in GW interferometry the input and end mirror in the
Fabry-Perot arm cavities are referred to as the input test mass (ITM) and end test mass
(ETM) respectively. The two recycling mirrors in the symmetric and anti-symmetric
port are the power recycling (PRM) and signal recycling (SRM) mirrors respectively.

The decision to use Fabry-Perot arms necessitated the stabilization of the laser fre-

quency to a reference cavity. This resulted in the development of the Pound-Drever-

Hall locking technique for laser frequency stabilization, published by Drever et al. in

1983 [41], which is now used extensively in precision optical experiments. In 1983 Dr-

ever et al. proposed the introduction of a mirror in the symmetric port of the Michelson

to increase circulating power and reduce shot noise [40] in a configuration which is now

referred to as the power recycled Fabry-Perot Michelson interferometer (PRFPMI).

In 1989 Brian Meers et al. from the University of Glasgow proposed the addition of

a mirror to the anti-symmetric port of a PRFPMI in order to shape the frequency

response of the detector to optimize it for particular gravitational wave signals [52,
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56]. In 1993 Jun Mizuno et al. proposed an alternative to signal recycling where the

reflectivity, separation, and tuning of the mirror in the anti-symmetric port is chosen

such that the gravitational wave signal is extracted out of the arm cavities faster [61].

This technique is called signal extraction, or resonant sideband extraction (RSE). It

decreased the need for power recycling by allowing higher finesse arm cavities to be

used to increase arm circulating power. This decreases the power incident on the

beamsplitter, which reduces the thermal distortion inside the beamsplitter.

The combination of either signal recycling or signal extraction together with power

recycling came to be known as the dual recycled Fabry-Perot Michelson interferometer

(DRFPMI), which is shown in figure 1.8. The base DRFPMI design is currently used

in most GW interferometers such as LIGO, and Virgo.

1.2.3 The LIGO interferometer

Initial LIGO (iLIGO) began construction in 1992 with the base design being a PRFPMI

with an RF readout scheme [58, 227]. In 2006 the enhanced LIGO (eLIGO) upgrade

was proposed [102, 107], which switched the RF readout to a DC readout to reduce

the coupling from several technical noise sources. It also introduced the output mode

cleaner (OMC) to reduce shot noise by removing most of the light that does not con-

tribute to the GW signal. The next major upgrade was Advanced LIGO (aLIGO),

which began installation in 2011 [135]. The addition of signal recycling and increased

laser power necessitated the redesign of most of the core optics. The recycling cavities

were redesigned from marginally stable to geometrically stable by folding the cavities

with curved mirrors [104]. This meant that the recycling cavities had a well defined

fundamental mode and the detector sensitivity was less susceptible to mirror imperfec-

tions [135]. By the time of aLIGO’s third observation run (O3) both LIGO detectors

were operating with broadband squeezing to reduce shot noise below the standard

quantum limit, a description of this was reported in 2019 [192].

At the time of writing LIGO is in between O3 and O4. A comprehensive and up to

date review of current aLIGO sensitivity and noise analysis can be found in [218]. The

current detector is aLIGO with broadband squeezing which is shown in figure 1.9. The

next planned major upgrade is aLIGO+, aka A+, which is the change of broadband

to frequency dependent squeezing via a filter cavity [134, 176, 207]. After aLIGO+
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Figure 1.9: A simplified diagram of the current optical layout of aLIGO.

a proposed major upgrade is LIGO Voyager, which plans to replace fused silica test

masses with cryogenic silicon at 123 K in order to mitigate thermo-elastic noise [195].

This will necessitate a change in the laser wavelength to somewhere in the 1.5-2 µm

range because silicon is opaque to the current 1 µm wavelength.

The significance of GW170817 has shown that there is a compelling science case for

more detailed studies of neutron star mergers using gravitational waves. This will

require construction of new gravitational wave detectors that are sensitive to higher

frequencies in the kilohertz region where it is expected that neutron star postmerger

remnants produce gravitational waves [215]. These detectors, which include the up-

coming Cosmic Explorer [151, 208, 222] (CE) in the USA, and Einstein Telescope [111]

(ET) in Europe are referred to as the third generation (3G) of gravitational wave detec-

tors. To get improved sky localization with 3G detectors it is important for at least one

detector to be located in the southern hemisphere [215]. An Australian based detector

currently referred to as the Neutron star Extreme Matter Observatory [194] (NEMO)

has been proposed, which is aiming to have sensitivity comparable with CE and ET at

frequencies around 2 kHz.
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The predicted strain sensitivity of all of these upgrades, NEMO, and CE is shown in

figure 1.10.
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Figure 1.10: The predicted strain sensitivity of aLIGO and its proposed upgrades,
NEMO, CE, and ET. The LIGO data was generated using the design parameters from
the pygwinc [209] package. NEMO sensitivity data was taken from [194]. Einstein
Telescope (ET) sensitivity data was taken from [112].

1.3 Thesis outline

In this thesis we present a new mode matching sensing schemes for the adaptive mode

matching actuators planned for aLIGO+ [186, 202] and new optical modelling tech-

niques for simulating detailed scattering effects in coupled cavity interferometers. We

believe these will be important in the short term for reaching aLIGO+ design sensi-

tivity, and far into the future where mode matching and optical modelling will play

an important role in gravitational wave interferometry and precision optical measure-

ments.

Chapter 2 will review current modelling techniques using Hermite-Gauss (HG) modes

and ABCD matrices. It will establish the concept of a HG basis, which is extremely

useful when studying mode matching and is used extensively in chapter 6. The rela-

tionship between ABCD matrices and HG basis transformations is established, which is

required to connect HG modes to the Linear Canonical Transform (LCT) propagation

in chapter 3.
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Chapter 3 introduces the LCT as an optical modelling tool. It reviews the established

applications of using the LCT as a paraxial diffraction integral through an arbitrary

ABCD system. A new application of the LCT for solving steady state circulating fields

in optical cavities is presented, which is used to model the aLIGO arm cavity loss due

to a point absorption defect on the ITM. This work was published in A. A. Ciobanu,

D. D. Brown, P. J. Veitch, and D. J. Ottaway. “Modeling circulating cavity fields

using the discrete linear canonical transform”. In: Journal of the Optical Society of

America A 38.9 (Sept. 1, 2021). Number: 9, p. 1293. issn: 1084-7529, 1520-8532. doi:

10.1364/JOSAA.433575.

Chapter 4 expands on the LCT model presented in chapter 3 towards modelling coupled

cavities such as the dual recycled Fabry-Perot Michelson (DRFPMI). It introduces a

formal method of simplifying operator algebra following an established matrix signal

flow graph reduction procedure by representing an optical system as a directed cyclic

graph. This allows one to write down a generalized notion of a round trip inside an

arbitrarily complex coupled cavity, which is necessary for solving the circulating field

in these systems.

Chapter 5 presents my commissioning work at the LIGO Hanford detectors during

2018 and 2019. An analysis is presented of the astigmatism present in the output mode

cleaner (OMC) that was measured using cavity length scans. It presents a procedure

for measuring the transverse mode splitting inside the OMC using OMC cavity length

scans and compares to previous results. An analysis of the SR3 rear heater’s ability to

correct mode mismatch was performed and compared to experimental results.

Chapter 6 introduces a fast radio-frequency (RF) mode matching error signal using

second order HG modes. This works because there is an equivalence between the

addition of second order HG modes and a change of HG basis, which determines mode

matching. This mode matching error signal is simple, not requiring any Gouy phase

telescopes and only needing single element photodetectors. An experimental tabletop

demonstration of the mode matching error signal is presented where it was able to

increase the mode matching of a laser beam to a cavity to 99.9%. This work was

published in A. A. Ciobanu, D. D. Brown, P. J. Veitch, and D. J. Ottaway. “Mode

matching error signals using radio-frequency beam shape modulation”. In: Applied

https://doi.org/10.1364/JOSAA.433575
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Optics 59.31 (Nov. 1, 2020). Number: 31, p. 9884. issn: 1559-128X, 2155-3165. doi:

10.1364/AO.404646.

Chapter 7 is the conclusion and recaps each chapter while giving an outlook for future

research.

https://doi.org/10.1364/AO.404646


Chapter 2

Modelling optical transverse fields

Models are required to make predictions about the behavior of any physical system

and optical systems are no different. The fundamental phenomenon that optical mod-

els are concerned with is the propagation of light, which is completely described by

Maxwell’s equations in the classical limit. Despite it being a “solved” problem the

direct application of Maxwell’s equations is not practical for most optical models, and

so approximations are introduced. The most common of these approximations is the

paraxial or small-angle approximation, followed by the scalar field approximation. Two

popular models arise from the scalar paraxial approximation: the Fresnel diffraction

integral and Hermite-Gauss (HG) modes. In chapter 6 we use the HG modes to model

a mode matching error signal generated in a tabletop experimental setup. The parax-

ial diffraction integral approach when combined with paraxial focusing elements forms

the Linear Canonical Transform (LCT); a powerful framework capable of efficiently

tackling a wide array of optical models. We discuss the application of the LCT in

modelling resonant optical systems with hard aperture and point defects in chapters 3

and 4.

In GW modelling the optical models one often works with in practice often fall into two

distinct categories, modal and grid based. Grid based models work with the electric

field discretely sampled on a grid with propagations given by discrete approximations

of diffraction integrals. This style of modelling in GW interferometers has been first

developed by Vinet [59] and has seen extensive usage in Virgo [87]. One of the popular

grid based optical GW interferometer modelling tools that is currently being used is

19
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SIS [106, 212].

Modal models work representing the electric field as a sum of orthonormal modes,

typically the Hermite-Gauss (HG), or Laguerre-Gauss (LG) modes. Currently, some of

the popular modal based GW interferometer optical modelling tools are Melody [73,

90], Optickle2 [142, 143], Finesse2 [93, 123, 127, 200]. In writing this thesis we have

used Finesse2 and the upcoming Finesse3, and occasionally used SIS for reference.

In this chapter we draw our attention to HG modes, which are a complete and or-

thonormal set of functions that solve the paraxial wave equation. We use this chapter

to set the stage for discussing the mode matching error signal presented in chapter 6,

and the work on the linear canonical transform in chapters 3 and 4. This should be

review for people familiar with HG modes interspersed with discussion. The discussion

is kept brief, delegating a large portion of interesting but not strictly necessary topics

to the appendix. This chapter does not present any new results but does allude to

them, with the aim being that the new results presented in chapters 3, 4 and 6 and

their significance are made clearer with this chapter.

2.1 Hermite-Gauss modes

The HG modes are solutions to the paraxial wave equation, specifically each HG mode

is a valid solution to the paraxial wave equation. For a 1D HG mode of order n

and wavelength λ propagating along the z axis, the amplitude distribution across a

transverse axis x is given by

un[x, q, λ] =

(
2

λzR

)1/4(
izR
2nn!q

)1/2(−q∗

q

)n/2

Hn

[
x
√
2

w[q, λ]

]
exp

[
−iπx2

λq

]
(2.1)

where q is the Gaussian beam parameter or simply the q-parameter

q = z + izR (2.2)

where z is the distance from the waist and zR is the Rayleigh range, which is the

distance distance from the waist where the beam size increases by a factor of
√
2. The
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Rayleigh range can be defined in terms of the beam waist size w0 with

zR =
πw2

0

λ
(2.3)

In general the beam size w[q, λ] is given by

w[q, λ] =

√
λ|q|2
πzR

(2.4)

The Hermite polynomials Hn[x] can be recursively defined using

Hn+1[x] = 2xHn[x]− 2nHn−1[x] (2.5)

with the base cases being

H0[x] = 1 (2.6)

H1[x] = 2x (2.7)

The amplitude distribution of a 2D HG mode is separable in x and y and so can be

obtained by taking the outer product of two 1D HG amplitude distributions

Unm[x, y, qx, qy, λ] = un[x, qx, λ]um[y, qy, λ] (2.8)

For brevity we may sometimes omit λ from the list of arguments where in most contexts

λ is constant. Additionally we may sometimes only specify a single q-parameter to the

2D Unm distribution. In that case it is implied both q-parameters are equal q = qx = qy.

The definition of the HG modes in optics can be traced back to Kogelnik in 1966 [18],

but this was missing normalization and Gouy phase which can be found in later work

by Siegman [50]. Equation (2.1) was reproduced from Siegman [50] equation 16.54.

A diagram of the amplitude distribution of the first couple of HG modes is shown in

figure 2.1.
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HG01 HG11 HG21 HG31
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Figure 2.1: Amplitude distributions Unm of the first couple of HG modes. The beam
is taken to be at the waist and so the amplitude is purely real. In this colormap yellow
is positive amplitude and blue is negative amplitude.

2.1.1 Complete orthonormal set

The 1D and 2D HG modes form a complete orthonormal basis set over the space of all

possible square-integrable functions. What this means is that any arbitrary amplitude

distribution can be described as a sum of (potentially an infinite number of) HG modes.

To find an HG mode coefficient of a particular arbitrary amplitude distribution E[x, y]

we can perform the following overlap integral

anm[qx, qy] =

∫∫ ∞
−∞

E[x, y]U∗nm[x, y, qx, qy]dydx (2.9)

In principle to completely describe an arbitrary amplitude E[x, y] with HG modes we

would have to perform the integral in equation (2.9) over all possible n and m, which

is countably infinite. In practice however only a small number of modes can be used to

accurately approximate most amplitude distributions one would work with in practice.
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This is because of another property of HG modes; that they are the eigenmodes of

optical resonators with spherical mirrors, which we will discuss later.

Often the q-parameter dependence is dropped from the mode amplitudes anm in equa-

tion (2.9). We will also do so but have chosen to include it here to highlight an

important point about the nature of HG modes: that they are not unique. For any

pair of mode indices (n,m) there is an uncountably infinite number of beams that

are described by that HG mode, which differ only by their q-parameters (qx, qy). Put

another way we can use any pair of q-parameters (qx, qy) to decompose an arbitrary

amplitude distribution E[x, y] into HG modes using equation (2.9). We choose to call

the degree of freedom corresponding to the choice of q-parameters (qx, qy) the basis

of a set of HG modes, or the HG basis. For now will consider HG mode amplitudes

in a fixed, but arbitrary choice of HG basis. We will discuss later, ways to make an

informed choice of q-parameters (qx, qy).

The orthonormality of HG modes means that modes with different mode indices do not

interfere or produce any optical beat, provided the modes are all in the same HG basis.

Orthonormality can be formally stated as that the HG modes satisfy the following

equation

∫ ∞
−∞

un[x, q]u
∗
m[x, q]dx = δnm (2.10)

where the Kronecker delta δnm = 1 if n = m and is otherwise equal to zero. This

result trivially generalizes to 2D using the outer product definition in equation (2.8).

Orthonormality proves very convenient when calculating the power in a beam. Consider

a 1D beam consisting of two mode amplitudes (a0, a2).

E[x] = a0u0[x] + a2u2[x] (2.11)
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The power is given by the integral of the intensity distribution

P =

∫ ∞
−∞

I[x]dx (2.12)

=

∫ ∞
−∞

E[x]E∗[x]dx (2.13)

=

∫ ∞
−∞

(
|a0u0[x]|2 + |a2u2[x]|2 + a0a

∗
2u0[x]u

∗
2[x] + a∗0a2u

∗
0[x]u2[x]

)
dx (2.14)

due to the orthonormality property in equation (2.10) the terms with u0[x]u
∗
2[x] and

u∗0[x]u2[x] both integrate to zero and so we can drop them

P =

∫ ∞
−∞

(
|a0u0[x]|2 + |a2u2[x]|2

)
dx (2.15)

=

∫ ∞
−∞

|a0u0[x]|2dx+
∫ ∞
−∞

|a2u2[x]|2dx (2.16)

= |a0|2
∫ ∞
−∞

|u0[x]|2dx+ |a2|2
∫ ∞
−∞

|u2[x]|2dx (2.17)

and by the orthonormality property again in equation (2.10) we know that both inte-

grals evaluate to 1 and so we simplify further to

P = |a0|2 + |a2|2 (2.18)

which is just the sum of the mode amplitudes squared. This result generalizes to all

modes and the general expression for the power of a beam described by HG mode

amplitudes is given by

P =
∑
n

|an|2 (2.19)

and similarly in 2D

P =
∑
n

∑
m

|anm|2 (2.20)

The HG modes provide a convenient way of computing the power of a beam and much

more importantly each mode has a well defined power that does not depend on other

modes. This would not be the case if the HG modes were not orthogonal, which is the

case when working with eigenmodes of unstable resonators.
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2.1.2 Solution of the paraxial wave equation

HG modes are a solution to the paraxial wave equation. An important consequence is

that the HG modes in equation (2.8) describe the field across all of 3D space and not

just a single plane. To highlight just how useful this is consider the alternative where

we do not use HG modes. Begin by considering an arbitrary electric field distribution

E[x, y] specified for a particular plane at z = z0. To get the field at any other plane

we have to use the paraxial wave equation either directly or indirectly. For now we

consider using the paraxial wave equation directly, which tells us that the field at an

adjacent plane at an infinitesimal distance εz is

E[x, y, z0 + εz] =

(
1 +

εz
2ik

(
∂2x + ∂2y

))
E[x, y, z0] (2.21)

To propagate the electric field to a noninfinitesimal distance we then have a number

of options. The first is to approximate the infinitesimal step εz as small but non-

infinitesimal and simply repeatedly apply equation (2.21) to propagate the field to the

desired plane. Alternatively, one could construct a noninfitesimal propagator directly

from an infinitesimal one by solving for the propagator in the paraxial wave equation as

a matrix exponential. This method is not new but is unconventional in optics. It is the

same standard method for solving for the time evolution operator in the Schrodinger

equation. For readers who are interested we present a derivation in appendix A.3.2.

And last but not least one could use the Green’s function of the scalar paraxial wave

equation to construct a diffraction integral. This diffraction integral is then exactly

the Fresnel diffraction integral which can be found in most optics textbooks and is also

given in equation (A.32).

We can however sidestep having to worry about any of this by performing an HG mode

decomposition of the field E[x, y, z0] at a single plane using equation (2.9). The field

at any other plane is then given by rearranging equation (2.9) and summing over all

of the modes

E[x, y, z0 + z] =
∑
n

∑
m

anm[qx, qy]Unm[x, y, qx + z, qy + z] (2.22)

Note that the mode coefficients anm do not depend on the propagation distance z, only
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the HG basis that was used to decompose the field E[x, y, z0]. This is a bit bizarre when

compared to the previous propagation methods where it seems like with HG modes

we do not have to do any work. The answer is already there. Just multiply the HG

functions at another plane by the same mode amplitudes and that is what the field is

at that plane. The reason this works is that the HG functions are the solutions to the

scalar paraxial wave equation.

On a closer inspection we find that the work that we would have had to do to propagate

the field has gone instead into computing the HG mode coefficients. One can see this by

considering a field distribution with a sharp edge, such as a field right after interacting

with an aperture. In that case the amount of work we have to put into computing the

HG mode coefficients is similar if not more than the work we would have done using

the other propagation methods. We can gain back some computational performance

by neglecting to compute mode amplitudes that are sufficiently small, but then we are

back to approximating the propagation. When our field is accurately described by a

small number of HG modes computing the HG decomposition is cheap, which is the

best case for an HG modal model. Fortunately it is often the case that the fields we

work with in practice are described by a small number of HG modes because the HG

modes are eigenmodes of geometrically stable optical cavities.

2.1.3 Eigenmodes of a cavity with spherical mirrors

The laser beams that one often interacts with, especially in high precision optical mea-

surements tend to be predominantly very pure Gaussian beams. This is because pure

HG00 beams are one of the simplest beams to create. One of the best ways to gener-

ate high quality beams is by spatially filtering a beam with a resonant geometrically

stable optical cavity with spherical mirrors. This is because the eigenmodes of geomet-

rically stable optical cavities with spherical mirrors are precisely the HG modes defined

in equation (2.1). To prove this we first consider a cavity comprised of two mirrors

separated by a space.

First we will prove that each component of the cavity (in this case free space and

reflection off of a mirror) when acting on an HG mode can be thought of as changing

the basis of that HG mode. For free space this is trivial since we know that the HG

modes are defined to be solutions to the paraxial wave equation and that propagation
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of an HG mode is equivalent to changing the real part of the mode’s q-parameter, which

is a change of basis. The change of basis under a free space propagation of length z is

simply given by

q2 = q1 + z (2.23)

For mirror reflection we consider a spherical mirror of radius Rc. Under the parax-

ial approximation we approximate it as a thin phase plate that applies a quadratic

transverse phase.

m[x, y] = exp

[
iπ

λ

2(x2 + y2)

Rc

]
(2.24)

we note that this thin phase plate is separable in to two 1D components in the following

way

m[x] = exp

[
iπ

λ

2x2

Rc

]
(2.25)

with the original 2D phase plate given by the outer product

m[x, y] = m[x]m[y] (2.26)

For simplicity we neglect any parity transformations that are produced by a mirror

reflection since they do not effect HG basis of the eigenmodes. Because both mirrors

and HG modes are separable we will consider a 1D mirror acting on a 1D HG mode.

An HG mode after being reflected by the mirror is given by

m[x]un[x, q1] = Hn

[
x
√
2

w[q1]

]
exp

[
iπ

λ

2x2

Rc

]
exp

[
−iπx2

λq1

]
(2.27)

= Hn

[
x
√
2

w[q1]

]
exp

− iπ

λ

(
x2

q1
− 2x2

Rc

) (2.28)

= Hn

[
x
√
2

w[q1]

]
exp

− iπ

λ

(
x2(Rc − 2q1)

q1Rc

) (2.29)

We can identify the new basis q2 as q2 = q1Rc/(Rc − 2q1). Making that substitution
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leaves us with

m[x]un[x, q1] = Hn

[
x
√
2

w[q1]

]
exp

[
− iπx2

λq2

]
(2.30)

There is still the issue that the Hermite polynomial is still scaled by the beam size from

the old basis q1 so we do not yet have a proper change of basis transformation. This

turns out to not be a problem since the beam size function w[q] gives the same result

for both q1 and q2 when reflecting from a mirror. This can be physically intuited by

noting that on reflection the beam does not travel any distance and so it has to be the

same size as it was before the reflection, but we can also show this is also true strictly

from the algebra. To make the algebra simpler we will use an alternate, but equivalent

definition of the q-parameter in terms of its reciprocal

1

q
=

1

B
− iλ

πw2
(2.31)

where we can read off a definition of the beam size w as

w[q] =

√
−π
λ

Im
[
1

q

]
(2.32)

which implies that w[q1] = w[q2] if the imaginary parts Im
[

1
q1

]
= Im

[
1
q2

]
are equal.

This is not difficult to show

Im
[
1

q2

]
= Im

[
R− 2q1
q1R

]
(2.33)

= Im
[
R

q1R
− 2q1
q1R

]
(2.34)

= Im
[
1

q1
− 2

R

]
(2.35)

= Im
[
1

q1

]
− Im

[
2

R

]
(2.36)

The mirror radius of curvature R is purely real so the imaginary part of its reciprocal

is zero and so we arrive at Im
[

1
q1

]
= Im

[
1
q2

]
as required. This completes the proof that

spherical mirrors act on HG modes by changing their basis.

We have shown that 1D HG modes are transformed by free space and reflection off of
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a mirror by a basis change of q-parameters. This result generalizes to 2D HG modes

due to it being separable into an outer product of 1D HG modes using equation (2.8).

To show that the HG modes are the eigenmodes of an optical cavity we now seek a

sequence of basis change transformations such that completing a single round trip in

the cavity results in the same HG basis. The sequence of transformations for a two

mirror resonator are as follows

• Free space propagation of length d

• Mirror reflection with radius of curvature R2

• Free space propagation of length d

• Mirror reflection with radius of curvature R1

The starting point of these transformations is arbitrary and so their ordering is only

determined up to a cyclic permutation. All cyclic permutations should yield equivalent

results and so we will continue with this ordering. Starting with q1 the sequence of

basis changes is then

q2 = q1 + d (2.37)

q3 =
q2R2

R2 − 2q2
(2.38)

q4 = q3 + d (2.39)

q5 =
q4R1

R1 − 2q4
(2.40)

Expanding q5 in terms of q1 we get

q5 =
R1R2(2d+ q1)− 2dR1(d+ q1)

2(d+ q1)(2d−R1) +R2(R1 − 4d− 2q1)
(2.41)

To show there is an eigenmode basis we want to find a q1 such that q5 = q1. This ends

up being equivalent to solving a quadratic equation in q1 with the solution being

qeig =
−ds2 ±

√
s1s2d(s1 + s2 − d)

s1 + s2
(2.42)

which is the HG basis that defines the eigenmodes of a free space cavity with spherical
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mirrors where s1 and s2 are common subexpressions

s1 = d−R1 (2.43)

s2 = d−R2. (2.44)

The solution is only physical if qeig has some imaginary component as that is what

defines the transverse extent of the beam. This is only true if the term inside the

square root of equation (2.42) is negative. This condition is related to the geometrical

stability of the cavity which indicates if the cavity can support an eigenmode. The two

solutions arising from a choice of positive or negative root in equation (2.42) can be

reduced down to a single choice. The root should be taken such that the imaginary part

of qeig is positive. The root where the imaginary part of qeig is negative corresponds to

an unphysical solution of a beam whose intensity exponentially increases to infinity as

you move away from the beam axis and so it is discarded.

Equation (2.42) uniquely defines a q-parameter in terms of physical parameters such

as the cavity length and mirror curvatures. It is very convenient to work in the cavity

basis and it is often the case that the beam is described with very few modes in this

basis. This is because when a cavity is on resonance it predominantly transmits only

a single, or a small number of HG modes of that cavity and reflects every other HG

mode. For a cavity with length d, amplitude reflection coefficients r1, r2 and amplitude

transmission coefficients t1, t2 for the first and second mirror in the cavity respectively,

the transmitted HG mode amplitudes bnm are given by

bnm =
it1t2anm

1− r1r2e−i2kdψnmanm
(2.45)

where anm are the incident HG amplitude coefficients in the cavity eigenmode HG basis

qeig, and ψnm is a cavity mode dependent phase shift given by

ψn =

norm

[
q∗eig

(
1 + 2d− 2d(1 + d)

R2

)](1+n)

(2.46)

ψnm = ψnψm (2.47)

where norm[z] = z/|z| is a function that normalizes the magnitude of a complex number
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to be equal to 1. The mode dependent phase shift ψnm is often called the Gouy phase.

Equation (2.45) is only valid if the mode amplitudes anm are in the cavity eigenmode

basis qeig, which in general will not be the case without deliberately and carefully

setting up the incident beam to match the cavity eigenmode basis. To find what set

of HG mode amplitudes in one HG basis looks like in the cavity eigenmode HG basis

we need to perform the change of HG basis on the HG mode amplitudes, which is not

trivial.

Change of HG basis on HG mode amplitudes

The HG basis change transformation from HG basis q1 to q2 for a set of mode amplitudes

is given by

am[q2] =

∫ ∞
−∞

(∑
n

an[q1]un[x, q1]u
∗
m[x, q2]

)
dx (2.48)

Integration and summation commute so we can swap their order

am[q2] =
∑
n

an[q1]

∫ ∞
−∞

un[x, q1]u
∗
m[x, q2]dx (2.49)

The overlap integral between two HG modes in different bases is not trivial since we

cannot use HG mode orthonormality in this case. For now we can give that integral a

label

knm[q1, q2] =

∫ ∞
−∞

un[x, q1]u
∗
m[x, q2]dx (2.50)

where knm are typically called the mode scattering coefficients. For the 2D mode

scattering coefficients we once again use the separability into 1D outer products to

write

kn1m1n2m2 [q1x, q1y, q2x, q2y] = kn1n2 [q1x, q2x]km1m2 [q1y, q2y] (2.51)

The integrals in the mode scattering coefficients can be computed numerically relatively

quickly since they are 1D overlap integrals where the integrand has an explicit function

and so can be evaluated with Gaussian quadrature. Approximate analytical solutions to
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equation (2.50) are also relatively straightforward to obtain. These can be obtained by

assuming that q1 ≈ q2 and so the integrand in equation (2.50) can be Taylor expanded

at q2 around q1. The integral for the lowest order terms can be solved with relative ease

using symbolic algebra packages and the results have been published in [204], which

can also be found in table D.1.

What is remarkable is that the integral in equation (2.50) has been solved without

any approximations by F. Bayer-Helms and published in 1984 as equation 18 in [43].

In fact the integral solved by Bayer-Helms was more general than equation (2.50)

because his basis change transformation included a change of q-parameters along with

the misalignment transformations: translations and rotations about the beam axis.

With the scattering coefficients computed the change of HG basis operation can be

written as

an[q1] = knm[q2, q1] am[q2] (2.52)

which is just an index expression for the following matrix-vector multiplication

a[q1] = K[q2, q1]a[q2] (2.53)

where the scattering coefficients knm make up the elements of the matrix K and an

and am are the elements of the vectors a[q1] and a[q2] respectively.

In 2D the change of HG basis is given by the following index expression

an1m1 [q1x, q1y] = kn1m1n2m2 [q2x, q2y, q1x, q1y] an2m2 [q2x, q2y] (2.54)

which may not appear immediately as a familiar linear algebra operation but the index

pair (ni,mi) can be mapped to a single index µi under the following transformation

µi =
1

2

(
ni

2 + 2nimi + n+mi
2 + 3mi

)
(2.55)

which produces the following mapping



2.1. HERMITE-GAUSS MODES 33

µi 0 1 2 3 4 5 6 7 8 9 …

ni 0 1 0 2 1 0 3 2 1 0 …

mi 0 0 1 0 1 2 0 1 2 3 …

Table 2.1: A table of the first couple of elements of the one-to-one mapping from a
pair of indices (ni,mi) to a single index µi given in equation (2.55).

with this equation (2.54) then becomes

aµ1 [q1x, q1y] = kµ1µ2 [q2x, q2y, q1x, q1y]aµ2 [q2x, q2y] (2.56)

which is once again an index expression for matrix-vector multiplication but now in

terms of µ. Alternatively, we can use the fact that the 2D scattering coefficients are

separable to write

an1m1 [q1x, q1y] = kn1n2 [q2x, q1x] km1m2 [q2y, q1y] an2m2 [q2x, q2y] (2.57)

which can be identified as an index expression for the following matrix multiplication

A[q1x, q1y] = K[q2x, q1x]A[q2x, q2y]K
T [q2y, q1y] (2.58)

Using separability in this way gives us a more efficient way to compute the 2D HG basis

change than the (ni,mi) → µi mapping. In general, operations that use separability

will be more efficient since a lot of the internal calculations are reused.

The place where the change of HG basis operation shows up is when computing the

interference of two fields in different HG bases. In general this is given by

a[q3] + b[q3] = K[q3, q1]a[q1] +K[q3, q2]b[q2] (2.59)

but often we pick q3 to coincide with one of the given bases q1 or q2 which gives us the

following two equivalent expressions

a[q2] + b[q2] = K[q2, q1]a[q1] + b[q2] (2.60)

a[q1] + b[q1] = a[q1] +K[q1, q2]b[q2] (2.61)
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From here it is easy to spot the following identity about the inverse of the HG basis

change operation

(K[q1, q2])
−1 = K[q2, q1] (2.62)

which can be intuitively read as “changing HG basis from q1 to q2 and then from q2

to q1 is the same as doing nothing”. Note that however this is only true with infinite

number of modes and in practice, for finite-sized K the relation is only approximate

(K[q1, q2])
−1 ≈ K[q2, q1] (2.63)

and the relation does not approach equality as the number of modes increases, which

may seem counterintuitive. However, with a small modification the following identity

does approach equality as the number of modes increases

(K[q1, q2])
−1a[q1] ≈ K[q2, q1]a[q1], (2.64)

for all a[q1]. The reason that equation (2.64) approaches equality and equation (2.63)

does not is not trivial and involves arguments about the representation of infinite

groups. A proper analysis of this requires to treat the HG basis change as a linear

canonical transformation and some discussion is provided in chapter 3.

Circulating field inside a cavity

The fact that HG modes form the eigenmodes of a cavity with spherical mirrors means

that we can use HG modes to compute the circulating field with relative ease. Consider

a cavity with length d, amplitude reflection coefficients r1, r2 and amplitude transmis-

sion coefficients t1, t2 for the first and second mirror in the cavity respectively. The

cavity has an arbitrary incident field ainc[q1] with some circulating field acirc[q2]. The

mode amplitudes of the field after a single round trip art are then given by

K[q2, q3]art[q3] = e−i2kdr1r2Ψacirc[q2] + it1K[q2, q1]ainc[q1] (2.65)

where Ψ is a diagonal matrix containing the round trip Gouy phases, and q3 is given

by the round trip cavity basis change in equation (2.41) acting on q2. We can save a
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lot of trouble by picking q2 to be the cavity eigenmode HG basis qeig where we know

q2 = q3 = qeig. Equation (2.65) then becomes

art[qeig] = e−i2kdr1r2Ψacirc[qeig] + it1K[qeig, q1]ainc[q1] (2.66)

to get the steady state solution we set the circulating field acirc to be equal to the field

after completing a round trip in the cavity art

acirc = e−i2kdr1r2Ψacirc + it1Kainc (2.67)

we can then rearrange to isolate the circulating field acirc to the left hand side

acirc − e−i2kdr1r2Ψacirc = it1Kainc (2.68)(
I − e−ikdr1r2Ψ

)
acirc = it1Kainc (2.69)

where I is the identity matrix. Solving for the circulating field acirc yields

acirc = it1

(
I − e−i2kdr1r2Ψ

)−1
Kainc (2.70)

We know that Ψ is a diagonal matrix where the elements Ψii = ψi are the 1D Gouy

phases from equation (2.46). This implies that the matrix
(
I − e−i2kdr1r2Ψ

)
is also

diagonal and so its inverse is given by the reciprocal of the diagonal elements. We can

then write the elements of the circulating field in the following way

(acirc)n =
it1 (Kainc)n

1− e−i2kdr1r2Ψnn

(2.71)

2.2 ABCD matrices

Traditionally ray transfer or ABCD matrices originate from ray tracing. Given a ray

with a position x propagating with slope x′ = dx/dz to an optical axis we can write
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all possible linear transformations acting on that ray as

r2 =Mr1 (2.72)x2
x′2

 =

A B

C D


x1
x′1

 (2.73)

where the matrix M is the ABCD matrix. This is particularly useful as the ABCD

matrix cleanly separates the ray transformation from the ray itself, allowing us to

work with the composition of ray transformations without a reference to any specific

ray. Most basic optical components can be represented with an ABCD matrix, we will

list the ones that relevant in this thesis in table 2.2. A more complete list of ABCD

matrices can be found in Kogelnik [18] and Siegman [50].

Component ABCD matrix

Free space of length d

1 d

0 1


Thin lens of focal length f

 1 0

−1
f

1


Curved mirror of radius Rc

 1 0

−2
Rc

1


Table 2.2: List of ABCD matrices

It is difficult to trace back the origins of using ABCD matrices in ray tracing to a single

source though a possible candidate is W. Brouwer in 1964 [13], which is given as the

reference for ABCD matrices in ray tracing independently by a number of pioneers in

the field: Kogelnik [17, 16, 18], Collins [20], and Siegman [50].

A remarkable fact about these ABCD matrices is that they are equally applicable to

HG beam propagation as they are for ray propagation. The ABCD law for transforming

HG q-parameters was first given by Kogelnik in 1965 [17]

q2 =
Aq1 +B

Cq1 +D
. (2.74)
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The derivation that Kogelnik gives for equation (2.74) is not rigorous. He derives it by

noting that in the case for a free space and a thin lens the q-parameter transforms the

same way as the radius of curvature of a ray, which he defines as the position of the

ray divided by its slope

R =
x

x′
. (2.75)

From those two special cases Kogelnik extrapolates that the q-parameter transforms

the same way as the ray radius of curvature. While it gives the correct q-parameter

Kogelnik’s derivation completely neglects any treatment of the Gouy phase that is

accumulated going through an ABCD system. This is because there is no analogue of

Gouy phase for rays. One can easily spot the error by plugging in the q parameter

before and after the thin lens into the amplitude of an HG mode given in equation (2.1)

and noting that there is a change of Gouy phase. This is incorrect because a beam only

accumulates Gouy phase from propagation for which there is none with a thin lens.

Siegman attempts to remedy this by providing an alternative derivation in which he

transforms an arbitrary HG mode with the generalized Huygens’ integral in [48] (which

is Siegman’s name for the linear canonical transform). He finds that the q-parameter

transforms following the same ABCD law as Kogelnik predicted, but with an additional

overall complex scalar for the HG mode. The absolute value of this scalar is just a

normalization to conserve energy as the beam changes in size. The phase of the scalar is

then the accumulated Gouy phase for propagating through the ABCD system. Siegman

states this phase in equation 20.26 of [50] as

ψ =
A+B/q1
|A+B/q1|

(2.76)

Ψnm = ψx
(1/2+n)ψy

(1/2+m) (2.77)

which he calls the generalized Gouy phase. There are 2 issues with equation (2.76)

that we can see. The first appears to be a relatively minor typo in Siegman’s original

definition which does not produce the correct Gouy phase shift unless we conjugate
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the q-parameter in equation (2.76). We state the corrected generalized Gouy phase as

ψ =
A+B/q∗1
|A+B/q∗1|

(2.78)

which was deduced by comparing it to diffraction integral calculations and an inde-

pendent derivation of accumulated Gouy phase by Erden [65] who also used the linear

canonical transform to derive the accumulated Gouy phase.

The second issue is present in both the original and corrected forms for the accumulated

Gouy phase and that is that it has a sign ambiguity. Unfortunately this sign ambiguity

is not trivial and is rooted in the fundamental geometric structure of paraxial optics.

In order to fully understand it requires to treat the problem in the framework of group

theory which is beyond the scope of this thesis. We will provide a short explanation

of the sign ambiguity without requiring any group theory. Fundamentally it stems

from the definition of the 1D accumulated Gouy phase being the square root of equa-

tion (2.78). The square root is always a double valued function in the complex domain

where the two roots differ by a sign. The sign cannot be discarded as it has physi-

cal meaning, which essentially reduces to containing information about the history of

the optical system. A more in-depth discussion of the sign ambiguity is provided in

appendix B.1.

Siegman derived his linear canonical transform by considering the optical path length

of rays in an arbitrary ABCD system using Fermat’s principle. An alternative deriva-

tion of the linear canonical transform that captures the sign ambiguity was presented

independently by Bacry [36] and Wolf [95]. The explicit derivation is beyond the scope

of this thesis but a simple outline can be presented. It begins by considering trans-

formations that are induced by an arbitrary combination of infinitesimal free space

propagation and thin lenses with infinitesimal focal power. One finds that the space

of these transformations is locally isomorphic to transformations produced by ABCD

matrices, but globally the infinitesimal transformations form a double cover over the

ABCD transformations. The two covers differ by an overall sign (180 degrees of phase)

applied to the entire field. In other words, an arbitrary combination of free spaces and

lenses can reduce to a either a single ABCD matrix and Gouy phase given by (2.78),

or the Gouy phase times −1.
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In this chapter we have introduced the basics of HG modal propagation models with

discussions to broader paraxial wave theory. In the next chapter we will shift the focus

to more grid based modelling in the framework of the linear canonical transform. This

will ultimately lead into the development of a working LCT model of the circulating

field in a gravitational wave interferometer in chapter 4.
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Chapter 3

Modelling circulating cavity fields

using the discrete linear canonical

transform

3.1 Preface

The following work presents a modelling framework for circulating cavity fields using

the discrete linear canonical transform [220]. This work has been published in the peer

reviewed OSA journal, Journal of the Optical Society of America A.

A. A. Ciobanu, D. D. Brown, P. J. Veitch, and D. J. Ottaway. “Modeling circulating

cavity fields using the discrete linear canonical transform”. In: Journal of the Optical

Society of America A 38.9 (Sept. 1, 2021). Number: 9, p. 1293. issn: 1084-7529,

1520-8532. doi: 10.1364/JOSAA.433575.

Fabry-Perot cavities are central to many optical measurement systems. In high pre-

cision experiments, such as aLIGO and AdVirgo, coupled cavities are often required

leading to complex optical behaviour. We show, for the first time, that discrete LCTs

can be used to compute circulating optical fields for cavities in which the optics have

arbitrary apertures, reflectance and transmittance profiles, and shape. We compare the

predictions of LCT models with those of alternative methods. To further highlight the

utility of the LCT, we present a case study of point absorbers on the aLIGO mirrors

41
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and compare with recently published results.

3.2 Introduction

Optical cavities, such as Fabry-Perot interferometers are commonly used in precision

optical experiments. The circulating field of any single geometrically stable cavity is

a sum of the Hermite-Gauss (HG) modes of the cavity, which are given by analytical

expressions [18, 50].

HG decomposition can accurately model the steady state and time domain field that

exists in multiple coupled cavities and is extensively used for optical modelling for the

advanced gravitational wave detectors [73, 200]. This method however, is not ideally

suited for modelling high spatial-frequency features, such as finite mirror apertures

and small scale aberrations such as point absorbers [216]. This is because of the large

number of HG modes needed to accurately model them [140, 211].

An alternative to HG decomposition is to consider the complex beam amplitude sam-

pled on a uniform cartesian grid. In such a model the spaces in an optical system are

represented by diffraction integrals and the optical elements (e.g. mirrors, and lenses)

are approximated with thin phase plates. The accuracy of the model is determined by

the resolution of the sampled grid. This allows non-Gaussian features to be accurately

modelled to the resolution limit of the sampled grid.

In the cartesian basis the diffraction integral becomes a linear operator that couples all

points in the input plane to all points in the output plane. This causes the issue that in

two dimensions the size of the linear operator grows as the square of the number of grid

points, quickly becoming too large for practical simulations due to memory limitations.

A common optimization is to perform the diffraction integrals in the Fourier domain

where the convolution in the diffraction integral becomes multiplication in the Fourier

domain, and hence cheaper to compute. This optimization has led to the use of iterative

algorithms for solving for circulating fields in the cartesian basis [106].

The first known usage of an iterative algorithm for solving steady state circulating

fields is the Fox-Li method demonstrated in 1961 [11]. The method involves taking a

guess at a circulating field and repeatedly computing round trip propagations inside
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the cavity until the circulating field converges to a steady state, with the number of

iterations typically scaling with the finesse of the cavity [59]. The speed of each iteration

is typically limited by the diffraction integral. Fast Fourier transforms (FFTs) can be

used to efficiently compute the diffraction integrals, which has in turn led to this class of

models being colloquially called FFT models. The number of iterations is reduced with

a better initial guess of the circulating field or by accelerating the rate of convergence

by using a modified iteration scheme [67, 91, 129]. The Fox-Li method has also been

used in modelling eigenmodes of unstable resonators [82, 81].

FFT models can be used to model more complicated optical systems involving multiple

coupled cavities, such as the Fabry-Perot power recycled Michelson interferometers

(FPPRMI) used in Gravitational Wave (GW) detectors as modeled by Bochner et

al. in 2003 [91]. Bochner et al. additionally state that FFT models are difficult to

implement in code and that accelerating the rate of convergence of their FFT models

often leads to instability—which was also found to be an issue by Day et al. [129].

A 2017 review of unstable resonator eigenmode modelling by New [163] showed that

the Fox-Li method can be outperformed by general purpose linear algebra algorithms

available in MATLAB in cases where the sampling grid resolution is not larger than

512× 512.

Linear Canonical Transforms (LCT) provides an alternative modeling formalism to

modal and FFT models. The LCT was first introduced to the optical modelling com-

munity in 1970 by Collins [20] and has been widely used to derive beam propagation

formulas and model single pass optical systems. Recently the LCT has been applied in

modelling 1D unstable cavity eigenmodes [120], and propagation in Herriott cells [154].

Over the past 20 years there have been many efforts to refine discrete approximations

of the LCT across multiple disciplines [83, 147, 175, 188].

In this paper we apply the discrete LCT (DLCT) for modeling circulating fields in

resonant cavities, for the first time to the best of our knowledge. A particular benefit

of the LCTs is that it enables us to use highly optimized general purpose linear algebra

algorithms instead of the Fox-Li method. The paper is laid out as follows: in section 3.3

we define the continuous LCT and some of its properties. Section 3.4 covers a brief

review of the application of the LCT in optical propagation in ABCD optical systems.



44 CHAPTER 3. MODELLING CAVITIES USING THE LCT

Section 3.5 demonstrates a new application of the LCT to calculate the circulating

field of single linear and ring cavities, as well as linear cavities with finite apertures and

mirror deformations including point absorbers. Appendix B.1 also contains a discussion

on the metaplectic nature of the LCT, which is used to derive new expressions for

accumulated Gouy phase of HG modes in ABCD optical systems.

3.3 Linear Canonical Transform

The history of the linear canonical transform (LCT) can be traced back to two inde-

pendent origins [159, 150]; one in optics [20], and one in quantum mechanics [24]. In

optics alone the LCT has appeared under a number of other names such as: the gen-

eralized Huygens’ integral [48], and the affine Fourier transform [62]. More abstractly

the LCT is a faithful representation of the metaplectic group acting on phase space [36,

95].

The LCT is a paraxial diffraction integral that models the propagation of an arbitrary

electric field through an optical system that is represented by an ABCD matrix [48].

Formally, the LCT is a family of integral transforms, which include the Fourier and

fractional Fourier transforms, as well as Laplace transforms, and the Fresnel integral.

Any particular LCT can be parameterized up to an overall sign by four complex num-

bers denoted A,B,C,D, and one constraint AD −BC = 1 [85, 144].

3.3.1 Continuous LCT

The continuous LCT, g(x), of a function f(x) is defined as

g(x2) =

∫ ∞
−∞

L(x1, x2)f(x1)dx1 (3.1)

where L is a linear operator and the kernel of the LCT integral transform

L(x1, x2) =


√

i

Bλ
× exp

[
−iπ

Bλ

(
Ax21 − 2x1x2 +Dx22

)]
√
D × exp

[
−iπC

λD
x22

]
δ(x1 −Dx2) if B = 0

(3.2)

where λ is the optical wavelength, {A,B,C,D} are the LCT parameters, and δ(x) is

the Dirac delta function.
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3.3.2 Discrete LCT

A discrete LCT can be obtained by taking N samples of (3.1) at regular intervals ∆x

g(xk) = ∆x×
N∑
j=1

L(xj, xk)f(xj) (3.3)

where ∆x = xi+1 − xi, and f(x) → 0 for x < x1 and x > xN .

We can simplify the notation by introducing the following N-vector x

x = [x1, x2, . . . , xN−1, xN ]
T . (3.4)

Then (3.3) can be rewritten as a matrix-vector product

g = ∆x× Lf (3.5)

where f = f(x), g = g(x) are N-vectors, and L is an N ×N matrix. The matrix L is

given by

L =

√
i

Bλ
× exp◦

[
−iπ

Bλ

(
AX1

2 − 2xxT +DX2
2
)]

(3.6)

where B 6= 0, exp◦[X] is an element-by-element exponentiation,

X1
2 =


x21 . . . x2N
... . . . ...

x21 . . . x2N

, X2
2 =


x21 . . . x21
... . . . ...

x2N . . . x2N

 , (3.7)

and xxT = x⊗ x is an outer product.

This DLCT implementation is sometimes called the “direct” implementation [83, 147].

It accurately approximates the continuous LCT except when |B| � 1, for which the

magnitude of the exponent in (3.2) become large and thus a higher resolution array of

samples is required to avoid aliasing in the kernel L.

A number of alternative DLCT implementations have been constructed over the years,

most of which are well-behaved for |B| � 1 [147, 188]. However, it appears there is no
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single DLCT implementation that has a consistently lower approximation error for all

possible LCT parameters and input functions.

For modelling geometrically stable resonant optical cavities where |A+D| < 2, and |B|

is not close to zero [47, 49] we find that the “direct” implementation in (3.3) performs

adequately.

3.3.3 LCT Composition

Composition is perhaps the most powerful property when working with LCTs. For op-

tical models the composition property allows for any arbitrary ABCD optical system to

be accurately modelled with a single LCT. This drastically reduces the amount of com-

putation compared to equivalent FFT models, which require each optical component

in a system to be modelled individually.

We adopt the standard convention of packaging the {A,B,C,D} parameters into a

matrix M =
[
A B
C D

]
. These matrices use the “reduced” ray slope method defined in

[47]. They are identical to the standard ABCD matrices [18], except for the case where

a refractive index change occurs. The ABCD matrix elements are real in most optical

models, but can be complex if the model contains soft Gaussian apertures [48].

The composition property states that composing two LCTs is the same as single LCT

(up to a sign difference) whose ABCD matrix is given by the matrix product of the

ABCD matrices of the composed LCTs [44]

LM2LM1 = σLM2M1 , (3.8)

where σ ∈ {−1, 1} is the metaplectic sign. In general, when composing ABCD matrices

it is necessary to keep track of the metaplectic sign σ. Failing to do so may introduce

erroneous minus signs in the calculation of the accumulated Gouy phase. Further

discussions on the metaplectic sign, as well as instructions on how to compute it are

presented in appendix B.1.

Unfortunately, all known DLCT implementations only satisfy composition approxi-
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mately [148, 188].

LM2LM1 ≈ σLM2M1 (3.9)

Exact composition for specific subsets of LCT parameters can be recovered in some

DLCT implementations [137]. This approximation error can be made arbitrarily small

by using higher resolution DLCT matrices LM. This is similar to how the accuracy of

an FFT based model scales with grid resolution.

3.4 Optical propagation using the LCT

Here we review a well known application of the LCT: the propagation of paraxial

electric fields through an ABCD optical system. We discuss both analytical solutions

of the LCT and its discrete approximations to 1D and separable 2D systems.

3.4.1 1D propagation

An 1D paraxial electric field Ein(x) at an input plane can be propagated through a

paraxial optical system represented by an ABCD matrix M using (3.1)

Eout(x
′) =

∫ ∞
−∞

LM(x, x′)Ein(x)dx (3.10)

where Eout(x) is the electric field at the output plane.

In the discrete case, the N samples of the output electric field uout can be calculated by

matrix multiplying an N-vector representation of the input electric field uout by N ×N

DLCT matrix LM

uout = LMuin. (3.11)

The DLCT provides a simple framework for viewing optical propagation as a product

of matrices, each corresponding to a basic optical component, to yield a single DLCT

matrix for the overall optical system as illustrated in figure 3.1.
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InputTransformOutput

Space SpaceLens

Figure 3.1: A visualization of a 1D DLCT where the electric field propagates from right-
to-left to maintain consistency with the matrix-vector multiplication in the bottom row.
The optical system consists of 3 ABCD matrices, each of which yields a DLCT kernel,
the real part of which is shown. The overall kernel is determined using (3.9), and used
to propagate a tophat beam from the input plane to the output plane using (3.11).

3.4.2 Separable 2D propagation

In general, a 2D propagation through a paraxial system is given by the following integral

Eout(x
′, y′) =

∫∫ ∞
−∞

LM(x, x′, y, y′)Ein(x, y)dxdy (3.12)

whereM is a 4×4 2D ABCDmatrix. The definition of the 2D LCT kernel LM(x, x′, y, y′)

is given in [20, 98].

In optics it is often the case that instead of a 4×4 ABCD matrix M we have two 2×2

ABCD matrices Mx and My, one for each axis. The 2D LCT kernel is then separable

in the two axes and can therefore be written as a product of two 1D LCT kernels.

LM(x, x′, y, y′) = LMx(x, x
′)LMy(y, y

′) (3.13)

The propagation through a 2D separable paraxial optical system is then given by

Eout(x
′, y′) =

∫ ∞
−∞

LMy(y, y
′)

(∫ ∞
−∞

LMx(x, x
′)Ein(x, y)dx

)
dy. (3.14)
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In the discrete approximation of equation (3.14), the N ×M samples of the output

electric field Uout using

Uout = ∆x∆y × LMyUin
(
LMx

)T (3.15)

where LMy is an N ×N 1D DLCT matrix for the y-axis and
(
LMx

)T is the transpose

of an M ×M 1D DLCT matrix for the x-axis.

In the case where the 2D LCT kernel is not separable equation (3.12) has to be dis-

cretized differently in order to obtain the 2D non-separable DLCT [148, 193]. This is

necessary if one is interested in modelling general astigmatism [19, 99] using ABCD

matrices, which comes about from propagation through rotated astigmatic lenses [97].

Throughout the rest of this paper we will only consider separable 2D LCTs.

3.5 Circulating field in ideal resonant cavities

3.5.1 Linear cavities

The circulating field in a stable optical cavity is determined by generalizing the strategy

used by Siegman [46] for plane waves.

1 3

2

5 7

6 84

Figure 3.2: A directed network graph of a Fabry-Perot cavity. Each node corresponds
to a distinct electric field, and each edge/red arrow corresponds to a linear operator
that transforms a field from the input to the output node. Multiple edges leading into
a single node are summed together to obtain the field at that node.

For the cavity shown in figure 3.2 the circulating field at node 3 is given by

E3 = R3←4D4←6R6←5D5←3E3 + T3←1E1, (3.16)

where we assume E8 = 0. The definition of symbols that convert (3.16) into an LCT

model for an ideal cavity is given in table 3.1, where r1, r2,MR1 ,MR2 are amplitude
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Edge Analytical Discrete 1D Discrete 2D

T3←1[X] it1LMT1
[X] it1LMT1

X it1LMT1y
X
(
LMT1x

)T
R3←4[X] r1LMR1

[X] r1LMR1
X r1LMR1y

X
(
LMR1x

)T
R6←5[X] r2LMR2

[X] r2LMR2
X r2LMR2y

X
(
LMR2x

)T
D4←6[X] eiφ/2LMd

[X] eiφ/2LMd
X eiφ/2LMd

X
(
LMd

)T
D5←3[X] eiφ/2LMd

[X] eiφ/2LMd
X eiφ/2LMd

X
(
LMd

)T
Table 3.1: Definition of symbols in (3.16) for modelling an ideal linear cavity in an
analytical, 1D and 2D discrete LCT models. The symbol X is either an analytical
expression, a vector, or a matrix respectively.

reflection coefficients and ABCD matrices of the input and end mirror respectively, t1
and MT1 is the amplitude transmission coefficient, and ABCD matrix for the input

mirror, Md is the free-space propagation ABCD matrix for the distance between the

mirrors, and φ = 2kd is the accumulated round-trip plane-wave phase.

Substituting in the LCT operators gives

Ecirc = eiφr1r2LMR1
LMd

LMR2
LMd

Ecirc + it1LMT1
Einc. (3.17)

We can use the LCT composition property to simplify the sequence of LCTs

LMR1
LMd

LMR2
LMd

into a single round-trip LCT LMRT , and thus

Ecirc = eiφr1r2LMRTEcirc + it1LMT1
Einc (3.18)

Rearranging for Ecirc gives us

Ecirc = it1

(
I − eiφr1r2LMRT

)−1
LMT1

Einc (3.19)

where I is the identity operator (Ix = x).

Unfortunately, the
(
I − eiφr1r2LMRT

)
operator has no known closed form inverse, but

it can be approximated with discrete numerical methods. Rewriting (3.19) in the 1D

discrete case yields the following matrix-vector equation

ucirc = it1

(
I− eiφr1r2LMRT

)−1
LMT1

uinc (3.20)
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where I is an N ×N identity matrix. (3.20) can be trivially computed with a matrix

inverse algorithm.

For 2D the solution is more complicated. Starting from (3.18) the N ×N 2D discrete

circulating field Ucirc is given by

Ucirc − eiφr1r2LMRTy
Ucirc(LMRTx

)T = it1LMT1y
Uinc(LMT1x

)T . (3.21)

(3.21) is of the form where the left-hand-side (LHS) consists of purely linear operations

on the unknown Ucirc and the right-hand-side (RHS) contains only known quantities.

Therefore, (3.21) is equivalent to an N2 × N2 system of linear equations given by

Ax = b. However, the Ax = b form is not practical due to memory limitations arising

from the N2 ×N2 dimensionality.

(3.21) can be rewritten as a Sylvester equation AX+XB = Q, where X is unknown,

and A,B,Q are known N×N matrices, which can be solved efficiently by the Bartels-

Stewart algorithm [26] in LAPACK [54]. Alternatively (3.21) can be solved using

iterative sparse linear solvers such as GMRES [45], which can also be used to model

cavities with mirror surface imperfections and is discussed in more detail in section 3.6.

3.5.2 Ring cavities

The approach to modelling ring cavities is similar to the linear cavity except that the

reflection operators have to be modified to include a parity transformation for the

reflected electric field. This parity transformation is also present in linear cavities,

however is often neglected as the parity from each mirror cancels in the round trip.

The triangular cavity is an interesting example as it is the simplest cavity with an

odd number of mirrors, which has an overall parity in the round trip and hence splits

the resonances of its horizontal and vertical eigenmodes [15, 14, 71]. Typically, this

phenomenon is modelled in HGmodels by explicitly counting the number of mirrors and

manually applying a minus sign in specific equations to produce the desired transverse

mode splitting.

For both LCT and FFT models the transverse mode splitting in triangular cavities is

generated by parity operators P that swap the left and right side of the electric field on
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reflection P [E(x, y)] = E(−x, y) to maintain a consistent coordinate system [47]. We

can identify the mirror counting behavior by noting that the parity operator commutes

with the LCT PLM = LMP . The parity operators can thus all be commuted to one

side where we only need to consider whether there are an odd or even number of parity

operators (i.e. odd or even number of mirrors) because the parity operator is its own

inverse PP = I. In the case of a round trip in a triangular cavity we are then left with

a single overall parity operator P , which flips the sign of the odd part of the electric

field along the x-axis. Decomposing the parity operator into the HG basis we find all

HGn,m modes that have an odd mode order index n for the x-axis pick up an additional

minus sign.

For the LCT we can simplify this analysis since the parity operation P is a subset of

the LCT that can be represented by an ABCD matrix, namely the negative identity

matrix

MP =

−1 0

0 −1

 , (3.22)

which can be interpreted as the reflection off of a flat mirror. It should be noted that in

separable 2D models the parity operation should only be included in the x-axis ABCD

matrix. So for example the ABCD matrices for reflecting off of a curved mirror in the

x and y axis respectively are given by

Mx =

−1 0

2
Rx

−1

 , My =

 1 0

−2
Ry

1

 , (3.23)

where Rx and Ry are the radii of curvature of the mirror in the x and y axes respectively.

This approach of encoding the parity transformations with the ABCD matrix allows

(3.21) to be valid for both linear and ring cavities. It has also previously been justi-

fied by Siegman based on purely geometrical arguments in figure 15.8 of [47], and by

Arai [121] for computing the transverse mode splitting in ring cavities.

It should be noted that encoding the parity operator into the ABCD matrix introduces

90◦ of phase on reflection to the entire electric field from the
√
D term in (3.2). This
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affects the phase relationship between reflection and transmission that is needed to

maintain conservation of energy (section 2.4 in [140]). However, it can be trivially

accounted for by defining all scalar amplitude reflectivities to have an additional -90◦

of phase to counteract the 90◦ from the LCT parity operation.

3.5.3 Results

The normalized circulating power predicted by (3.21) as the round trip phase, φ, is

varied is plotted in figure 3.3 for a linear and ring cavity. The incident field consists

of the sum of equal power HG00, HG22, and HG33 modes. Note that for the HG33 the

resonance phase differs in the linear and ring cavities by 180◦ due to the overall parity

operator in the round trip in a ring cavity with an odd number of mirrors.

The circulating power as computed in the LCT model is compared to an equivalent

HG modal model calculated using the Finesse optical modelling package [93, 123,

128, 200]. figure 3.3 shows that the LCT and HG model agree to at least 10−8 of the

circulating power in the test case shown.

The difference between the two models seen in figure 3.3 can be attributed entirely due

to the limited resolution in the LCT grid as the HG model in this case corresponds to

the complete analytic solution.
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Figure 3.3: The upper plot shows the calculated circulating power inside a linear (solid
blue) and triangular (red dashed) cavity with infinite mirrors versus cavity tuning φ.
The free spectral range (FSR) and round trip Gouy phase identical to a 4 km aLIGO
arm cavity. The power is normalized so that on-resonance the circulating power is 1.
The LCT model uses a 200×200 grid. The circulating power computed by both models
is indistinguishable by eye and so only the LCT solution is shown in the upper plot.
The relative difference between the LCT and Finesse models are shown in the lower
plot.

3.6 Linear cavity with apertures and mirror defects

We have only considered optical models that are able to be completely described by

ABCD matrices and hence use mirrors of infinite extent.

The LIGO arm cavities are tightly constrained with respect to their resonant eigen-

mode. The beam size at the test masses should be as large as possible to reduce

thermal coating noise by averaging over more of the coating [69, 88, 101]. The beam

size cannot be too big however since too much power would be lost to mirror aperture

scattering. In the design of the LIGO arm cavity a balance was found between the

various constraints.

Recently there has been an increased interest in modelling the field inside the arms

with attention on how the intensity distribution changes with aperture scattering and
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different mirror polishing profiles. The aim is to design a mirror polishing profile that

further optimizes the performance of the detector.

Modelling these kind of effects is well suited to grid based FFT models such as SIS. To

ensure that a model is correct it should be compared to experimental data. However in

cases where experimental data is difficult or impossible to obtain, the next best method

of model validation is consensus with other models. If many independent models agree

on the same result then that result is more likely to be accurate. Typically FFT models

are compared against HG models. This poses a challenge since HG models tend to

converge slowly when hard apertures are involved. Often to get good agreement an

impractically large number of HG modes have to be used.

LCT models provide another way of simulating the circulating field in optical systems.

The calculation is independent and different to the methods used in FFT models,

making them suitable for validating existing FFT models. This section describes an

LCT model of the circulating field in the LIGO arm cavity with apertures.

To incorporate finite aperture mirrors into the DLCT framework we need to formulate

the action of an aperture as a linear operator. For an electric field X sampled on a

2D N ×N grid, apertures (and most mirror surface maps) become diagonal N2 ×N2

matrices when implemented as a linear operator. The off-diagonal elements become

non-zero when propagating the beam away from the mirror and so in general all N2 ×

N2 elements are non-zero in any optical model. This poses a technical challenge as

the computer storage requirements of an N2 × N2 matrix are prohibitively large for

current consumer hardware for N > 200. Specifically for 128-bit complex floating

point numbers, the amount of memory required to store an N2 × N2 matrix is N4 ×

1.6× 10−8 GB. This O(N4) scaling in storage requirements has been documented as a

primary bottleneck in similar linear operator based approaches [163].

The approach to 2D we have described in sections 3.4 and 3.5 avoids this O(N4) space

complexity by exploiting the structure of the separable 2D DLCT kernel as described

in appendix B.2. Specifically, our approach has an O(N2) space complexity since

we only store the N × N matrices and never explicitly construct the full N2 × N2

2D propagation matrix. The apertures can also be incorporated as an element-wise

product a.k.a Hadamard product of the aperture map with the incident field. This is
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similar to how FFT models implement their apertures and mirror maps, which also

achieve the same O(N2) space complexity.

To compute the circulating field with apertures we first consider the general operator

solution in (3.16). The reflection and transmission operators are given by

T3←1[X] = T1 ◦X (3.24)

R6←5[X] = R2 ◦X (3.25)

R3←4[X] = R1 ◦X (3.26)

where ◦ is the Hadamard product (a.k.a. element-by-element array product), T1 is

the complex amplitude transmission map of the input mirror R1 and R2 are complex

amplitude reflection maps of the input and output mirror respectively. There are no

structural requirements on these reflection and transmission maps and as such they

can be used to model any arbitrary aperture, reflectivity, and height maps. The space

propagation edges D4←6 and D5←3 are the same as the last column of table 3.1.

To solve (3.16) it is more convenient to rewrite it into a familiar form

A[X] = B (3.27)

where we relabel the circulating field E3 to X, B = T3←1[E1], and A is a procedure

given by

A[X] = I[X]−R3←4D4←6R6←5D5←3[X]. (3.28)

(3.27) can be interpreted as a linear equation in X as A is made up of only linear

operations it itself must be a linear operator where A[x + y] = A[x] + A[y] for all x

and y. The round trip part of equation (3.28) is expanded at the end of of appendix B.2.

Since equation (3.28) contains a mix of matrix and Hadamard products equation (3.27)

cannot be rewritten into a Sylvester equation like equation (3.21). A number of algo-

rithms are available to solve equation (3.27) using only the procedure that computes

the matrix-vector product A[X]. These algorithms typically employ the use of a Krylov

subspace such as GMRES [45], and BICGSTAB [60], both of which have easy to use
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python wrappers available in scipy [210].

3.6.1 Example: aLIGO linear cavity with finite-aperture mir-

rors

Cavity scan

For the numerical comparison we once again perform a cavity scan on the aLIGO arm

cavity as in figure 3.3, except now we add 34 cm circular apertures to both mirrors in

the arm cavity, corresponding to the diameter of the aLIGO arm cavity mirrors. We

change our incident beam to be composed of equal parts HG00, HG10, and HG60. The

resulting cavity scan is shown in figure 3.4.
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Figure 3.4: The upper plot is the circulating power inside an aLIGO arm cavity with
34 cm diameter mirrors as a function of cavity tuning φ. The difference between each
model is indistinguishable by eye and so only the LCT circulating power is plotted.
The lower plot shows the relative difference between the LCT model and an HG model
Finesse (dashed red) and the SIS [106] FFT model (dashed black). The maxtem N
parameter tells Finesse to only model the HGnm modes that have their mode order
n+m ≤ N . Finesse, SIS, and the LCT model use the same 256 × 256 grid.

The HG10 and HG60 modes that were chosen primarily for their difference in physical

extent. The larger HG60 interacts more strongly with the aperture than the HG10 and

is therefore expected to have a higher clipping loss. This can be seen in figure 3.4 where



58 CHAPTER 3. MODELLING CAVITIES USING THE LCT

the HG60 resonance is both smaller and wider than the HG10 resonance. Additionally,

a small resonance can be seen 165 degrees that corresponds to a fourth order mode.

This resonance is explained by the mode scattering of the HG60 by the aperture to

produce fourth order modes.

The LCT prediction is compared in figure 3.4 (lower) with the modal-based: Finesse,

and an FFT-based model: SIS, which is typically used for modelling high spatial

frequency effects in optical cavities. To maintain consistency between the models we

used the same 256×256 grid in all 3 models to describe the aperture maps in figure 3.4.

While the LCT and SIS models agree to within about 1 ppm, the disagreement between

Finesse and LCT is several orders of magnitude worse, particularly at the heavily-

clipped HG60 mode.

This disagreement is perhaps expected as in Finesse an aperture is represented by a

scattering matrix where each element describes how the amplitude of each apertured

HG mode couples to each HG modes. The elements of this scattering matrix are given

by overlap integrals, which are computed numerically. The accuracy of an HG model

with apertures is then dependent on the numerical accuracy of the scattering matrix

element integration, and the number of HG modes used.

Circulating field intensity distribution
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Figure 3.5: Circulating field incident onto the ETM as modelled by the LCT. The
ETM aperture edge is outlined in red.

Figure 3.5 shows the complex amplitude of the circulating field incident onto the ETM.

The input field is a pure HG00 of the arm cavity eigenmode and the arm cavity itself
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is locked to the HG00 resonance. The field appears identical to the eigenmode of the

cavity, however three orders of magnitude below what is shown in figure 3.5 are the

diffraction effects caused by the finite test mass aperture. This is shown in figure 3.6

which is the same field incident onto the ETM as shown in figure 3.5 but with the field

inside the ETM aperture set to zero to highlight the aperture scattering effects.
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Figure 3.6: Circulating field incident onto the ETM as modelled by the LCT with the
field inside the ETM aperture set to zero. The ETM aperture edge is outlined in red.

Since the diffraction effects are radially symmetric due to the circular aperture we can

take a 1D cross section through figure 3.5 without losing any information. In figure 3.7

we plot the cross section of the log of the intensity against the radial distance squared.

In this plot the log of the intensity of a HG00, given by I00 is a straight line with respect

to r2.

log
[
I00(r)

]
= log

[
a exp

[
−r2/(2w)

]]
(3.29)

= log [a]− r2

2w
(3.30)

with the slope is given by the beam size w, and the y-intercept by the peak intensity a.

This makes it easy to visually identify when the intensity begins to deviate from HG00.

We see that all models agree that inside the ETM aperture the field is well described

by a HG00. As we move beyond the ETM aperture edge we start to see deviation

from a HG00. The FFT based SIS and LCT model broadly agree on the field beyond

the aperture edge. The early break in the SIS data was because it was ran with a

smaller grid than the LCT model. As expected the modal Finesse model has a hard
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Figure 3.7: Cross section of the arm cavity circulating field incident on the ETM as
modelled by an LCT model, SIS, and Finesse for varying number of HG modes.

time describing the field beyond the aperture with a small number of modes, but does

appear to tend to the FFT/LCT result as the number of modes increases. It should be

noted that at maxtem=60 Finesse runs several times slower than the LCT model with

a 500× 500 grid.

We have applied the LCT modelling framework to model how finite apertures in the

LIGO arm cavity effect the circulating field distribution. We find that it shows good

agreement with previous FFT models. This demonstrates that the LCT can be used

to validate FFT models in cases where modal models converge slowly.

3.6.2 Case study: aLIGO point absorbers

Example 3.6.1 assumed that the reflection maps for the mirrors described a uniform

reflectivity, spherical mirror with a finite circular clear aperture. Here, we consider the

effect of a point-like absorbing defect on the mirror surface, such as those discovered

in the aLIGO arm-cavity mirrors [135]. These point absorbers caused a large decrease

in the power recycling gain (PRG) as the power stored in the arms increased [201]. An

analysis of this effect has recently been published by Brooks et al. [216]
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The complex amplitude reflection map for a mirror m; Rm is given by

(Rm)ij =


0 if

√
x2j + y2i ≥ Dm

2

rm × exp

[
− i4π

λ

[
(Sm)ij + (Cm)ij

]]
otherwise,

(3.31)

where rm is the amplitude reflection coefficient, Dm is the diameter of the mirror,

(Cm)ij = −
x2j

2Rm,x

− y2i
2Rm,y

(3.32)

is the curvature height map and Rm,x, and Rm,y are the radii of curvature along the

x, and y-axis respectively. The point absorber height map Sm is derived using Eq. B8

and B9 in [216].

(Sm)ij =



−αPabs

2πκ

(
rij√
2ω

)2

αPabs

2πκ

−1

2
+ log


ω

(
h2m +

√
h2m + r2ij

)
rij

(
h2m +

√
h2m + ω2

)



(3.33)

where the top case is for rij ≤ ω and the bottom case is for rij > ω. The radial

coordinate rij is given by

rij =

√(
xj − x0

)2
+
(
yi − y0

)2
(3.34)

and x0, y0 is the location of the point absorber, ω is the radius of the point absorber, hm
is the thickness of the mirror, Pabs is the absorbed power, and α

2πκ
≈ 6.3× 10−8 m/W

is a scaling factor derived from the thermal expansion coefficient α and thermal con-

ductivity κ of fused silica.

A map of a surface bump due to a 40 µm diameter point absorber offset by 3 cm from

the center of a 34 cm diameter, 20 cm thick mirror and 20 mW of absorbed power is

shown in figure 3.8. The eigenmodes and eigenvalues of (3.28) were computed using the

Arnoldi method in ARPACK [68] for a range of absorbed powers and defect locations.

While the shape of the lowest-order eigenmode is almost identical to the HG00 mode,
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Figure 3.8: A height map of a 34 cm mirror with a 40 µm diameter point absorber
with 20 mW of absorbed power offset 3 cm in the x-axis from the center of the optic.

its eigenvalue varies significantly with point absorber position and mirror diameter as

shown in figure 3.9.
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Figure 3.9: A plot of round trip loss for the lowest order mode in the aLIGO arm cavity
versus point absorber position along the x-axis for three different arm cavity test mass
(TM) mirror diameters: 32 cm (blue), 34 cm (red), and 40 cm (black). The loss is
explicitly computed as 1− |γ0|2.
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We can compute the decrease in PRG that would result from this point absorber loss

by using Eq. 6 in [145]

PRG =

(
tp

1− rpra

)2

(3.35)

where tp and rp are the amplitude transmission and reflection coefficients of the power

recycling mirror (PRM) respectively. In this equation and following two, r =
√
1− t2.

We define the effective arm cavity amplitude reflection coefficient ra as

ra =
1

ri

(
grt − r2i
1− grt

)
(3.36)

where ti and ri are the amplitude transmission and reflection coefficients of the input

test mass (ITM) and grt is the round trip arm gain on resonance, given by

grt = rire|γ0|
√
1− Γ (3.37)

where re is the amplitude reflectivity of the end test mass (ETM) mirror, γ0 is the

round trip eigenvalue of the u0 arm cavity eigenmode, and Γ is an additional round

trip loss factor. Taking the absolute value of the eigenvalue γ0 is effectively equivalent

to making the arm cavity resonant for the u0 eigenmode.

A summary of the necessary constant parameters needed to compute the PRG are

given in table 3.2.

t2p t2i t2e Γ

0.03 0.014 5× 10−6 60× 10−6

Table 3.2: Relevant aLIGO parameters for computing the PRG.

In this study we assume the point absorber has a negligible effect on all previously

mentioned parameters with the exception of γ0. Computing the PRG as a function

of point absorber absorbed power for three different absorber positions is shown in

figure 3.10. The additional round trip loss Γ was set to 60 ppm to match the experi-

mentally observed PRG at low power. We assume that for less than 40 mW of absorbed

power the height map is linearly proportional to the absorbed power. This is to be
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Figure 3.10: A plot of the PRG decreasing with increased power absorbed by a 40 µm
point absorber located at 0 cm (blue), 2 cm (red), and 5 cm (black) away from the
center of the optic.

compared to figure 4 in [216], which shows a similar trend for PRG decreasing as a

function of circulating power in the arm cavity.

Perhaps surprisingly the loss increases initially as the point absorber moves away from

the center of the optic, peaking at about 2 cm where afterwards it monotonically

decreases. This is better shown in figure 3.9 where the point absorber power is kept

constant at 20 mW as it is moved across the optic. This loss peak at 2 cm is very

sensitive to the arm cavity mirror size.

The explanation for the peak in arm cavity loss at 2 cm seen in figure 3.9 is that the

point absorber scattering maximizes scattering the HG00 into 7th order modes. The

7th order modes resonate nearly at the same phase as the HG00 and so are partially

resonantly enhanced when the arm cavity is locked onto the HG00. This can be most

clearly seen by performing an HG decomposition on the arm cavity circulating field as

was done in figure 3.11.

The explanation behind the dependence on mirror size then follows as the larger 7th

order modes interact strongly with the edges of the hard aperture. Decreasing the size of

the mirrors increases the loss on the 7th order modes, thus broadening their resonance,

allowing for more resonant enhancement from the HG00. Conversely, increasing the
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Figure 3.11: An HG decomposition of the arm cavity circulating field with 34 cm
mirrors. The seventh order modes are highlighted in red. The power in all HGn,m with
n+m ≤ 10 are plotted with the exception of the HG00 mode.

size of the mirrors narrows the 7th order resonance, decreasing the enhancement from

the HG00.

A similar conclusion about the contribution of 7th order modes to the loss was made

by Brooks et al. [216], though following a different formalism. This case study demon-

strates that a combination of apertures, reflection maps, and resonant conditions must

be modelled sufficiently to see these HOM loss effects.

3.7 Conclusion

We have presented an introduction to LCTs and their application to free-space wave

propagation through first order optical systems [220]. A new application of the LCT

for solving the circulating field in a Fabry-Perot cavity using general purpose sparse

linear algebra algorithms was demonstrated. The LCT method shows good numerical

agreement with analytical solutions and established FFT-models, as well as reproducing

results from recent aLIGO point absorber models. This highlights how such modeling

tools can be used in designing future detectors to avoid such problems. Future work

will need to extend the LCT method to coupled cavities to allow us to model complete

interferometric systems. Further work is also needed to identify which linear algebra

methods optimally solve the LCT matrices as well as packaging it up into a usable
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tool, such as Finesse or SIS.



Chapter 4

Towards coupled cavity LCT

models

The next step in developing the LCT modelling framework is to extend it from solving

the circulating field in a single cavity to solving the circulating fields in coupled cavities.

We achieve this by treating an optical system as a matrix signal flow graph (MSFG),

which yields a small system of linear matrix equations after applying a graph reduction

procedure. The system of linear matrix equations can then be solved using Krylov

subspace methods on their structured matrix representations, similar to what was

described section 3.6.

A significant portion of this chapter relies on graph theory and frequently uses their

terminology. We make the assumption that the reader is not familiar with graph theory

and so we dedicate the following subsection to defining basic graph theoretic terms.

The reader may skip to the next section and refer back when an unfamiliar graph

theoretic term is used.

Graph theory introductory summary

A graph or network is a collection of nodes connected in pairs by edges. A node is a

fundamental graph element that in our use case denotes a variable in a linear equation.

An edge is the other fundamental graph element that represents a connection between

two nodes. We only use directed edges, where the input and output nodes are distinct

from each other. In our use case an edge denotes a linear transformation of the variable

67
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from the input node to the variable at the output node. It is convenient to draw a

directed edge as an arrow where the tail of the arrow connects to the input node and

the head of the arrow connects to the output node. The numerical value of a node or

edge is called the node weight and edge weight respectively.

Some special cases of nodes and edges have names associated to them. A source node

is a node that has no edges going into it. Conversely, a sink node is a node that has

no edges coming out of it. A loop, or self-loop is a name for an edge that starts and

ends at the same node.

4.1 Signal flow graphs

The input/output relations of a field interacting with an optical component can often

be described by a set of linear equations. These linear equations can be represented

by a transfer matrix acting on a field vector. The usage of transfer matrices to model

circulating cavity fields is well described in chapter 2 of [140].

A system of coupled transfer matrices can be rewritten as a single matrix describing

the couplings between all fields in an optical system. This matrix is called the system

transfer matrix, or the interferometer matrix. Any system transfer matrix can be

interpreted as the adjacency matrix of a graph, with the matrix elements corresponding

to weights of the graph edges. This is shown in figure 4.1.

Figure 4.1: A system of linear equations from a weighted adjacency matrix multiplied
with the node vector and its corresponding graph.

It should be noted that some authors define the adjacency matrix as the transpose of

the matrix in figure 4.1. This difference comes from the choice whether to map the

(input, output) node pairs on to (row, column) or (column, row) indices. We map

(input, output) nodes to (column, row) indices because the resulting adjacency matrix

can then be multiplied with the node vector to produce the system of equations that
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describe that graph as was done in figure 4.1.

The matrix representation is equivalent to the graph picture with one exception; the

matrix implicitly encodes an ordering on the nodes (in figure 4.1 the order is (a, b, c)),

whereas the nodes in the graph are unordered. For figure 4.1 there are a total of 6

distinct matrix-vector equations that produce the same graph. They can be obtained

by rearranging the nodes (a, b, c) and swapping the matrix rows and columns such that

they produce the same set of linear equations. The fact that a set of single set of

linear equations maps to a single graph regardless of how the equations are ordered

gives a distinct advantage to the graph picture over the matrix representation. Another

benefit of graphs is that operations add or remove nodes are expressed relatively cleanly

whereas in the matrix representation those operations would change the size of the

matrix, which is inelegant, and more importantly computationally inefficient.

A directed graph with edge weights like the one shown in figure 4.1 is sometimes called

a signal flow graph (SFG). Signal flow graphs have commonly been used to model

electronic circuits and control systems. The transfer function of the system at any node

can be obtained by Mason’s gain formula [8, 9]. In optics, scalar signal flow graphs

together with Mason’s gain formula have been used for planar optical models [22, 31,

63, 66, 114, 122, 214]. Despite their benefits, the usage of signal flow graphs has

diminished for modelling electronic circuits in favor of sparse matrix methods, likely

due to readily available and highly efficient sparse matrix libraries.

Unlike electrical circuits, optical models have an extra layer of complexity that makes

signal flow graphs particularly useful. The value or weight at an optical node is in

general not a scalar but a vector, where the elements of the vector describe the different

components of the transverse extent of the optical field. A natural choice is to use higher

order mode amplitudes as the elements of an optical node weight vector. Following

this description the edges in an optical model become linear operators that transform

the field vectors between nodes. In the sparse matrix formalism these vectorial optical

models correspond to sparse matrices with dense submatrix blocks, also known as block

sparse matrices. These block sparse matrices can be solved using the same sparse

matrix solvers as electrical circuits but often the dense blocks are handled poorly,

resulting in slower models.
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Extending the signal flow graph formalism to deal with vectors and linear operators

results in matrix signal flow graphs (MSFGs) [10, 12, 25, 27]. Solving MSFGs requires a

different approach as Mason’s gain formula is only valid for scalar signal flow graphs and

cannot be used to solve a MSFG. Recently Stone et. al. have demonstrated that MSFGs

can be used to model higher order mode conversion in resonant coupled cavities [225].

We show that a relatively unoptimized graph reduction procedure acting on an MSFG

can outperform highly optimized sparse matrix solvers when the number of higher order

transverse modes is large enough.

4.1.1 Graph reduction

A general method for solving both scalar and matrix SFGs is graph reduction, which is

a method for procedurally simplifying an SFG based on a handful of simple rules until

a irreducible graph is obtained. The irreducible graph is then a collection of sinks,

sources, and possibly self-loops where the solution can then be read off from the paths

connecting the sources to the sinks and inverting any self-loops if they are present.

There are a total of three graph reduction rules for reducing any MSFG. They are the

product rule, sum rule, and the self-loop rule.

Product rule

product
rule

Figure 4.2: Product rule for graph reduction

The product rule states that two edges in series can be combined into a single edge

where the new edge weight is applying the two operators one after each other. If

the operators are matrices then this is a matrix product of the two matrices. If the

operators are scalars then this just becomes a product of the two edges.

The product reduction rule can be expressed in a form that either eliminates or pre-

serves nodes. The eliminated nodes are always sinks and so do not contribute to the
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result. We use the node preserving form since these sink nodes correspond to viewing

the optical field at another point in the optical system, which can be useful. For large

graphs the sink nodes can lead to a cluttered diagram and in those cases we will remove

the sink nodes for clarity.

Sum rule

sum rule
Figure 4.3: Sum rule for graph reduction.

The sum rule states that two parallel edges can be combined into a single edge where

the new edge weight is given by the summing the result of applying each operator

individually. If the operators are matrices then this is the sum of the matrices. If the

operators are scalars then this is the sum of the scalars.

Self-loop rule

self-loop
rule

Figure 4.4: Self-loop rule for graph reduction. A short derivation of the self-loop rule
is shown in equation (4.1)

b = Bb+ Aa (4.1)

(I −B)b = Aa

b = (I −B)−1Aa
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The self-loop rule states that a self-loop can be transformed into an edge whose weight is

given by the inverse of the identity minus the loop operator. This rule is straightforward

to implement if the loop operator is a matrix. In the case of our LCT models where

the operators are given by structured matrix multiplication algorithms. The inverse

in our case is not readily available and so we do not include the self-loop rule in our

graph reduction procedure. The self-loops instead are all solved simultaneously at a

later stage.

4.1.2 Single linear cavity

1 3

2

5 7

6 84

Figure 4.5: Network graph of a cavity. Reproduced from figure 3.2.

Taking the graph from figure 4.5 we can obtain a irreducible graph from the following

graph reductions:

1. product rule at node 4

2. product rule at node 5

3. product rule at node 6

The resulting reduced graph shown in figure 4.6 contains only sources, sinks, and a

single self-loop at node 3. The graph can be made visually clearer by removing all sink

nodes since they do not contribute to the circulating field.

The edge weight of the self-loop is identical to the round-trip operator given in equa-

tion (3.18). Applying the self-loop rule results in equation (3.19), which can be solved in

a number of ways as described in section 3.5. These equations were originally obtained

using algebraic manipulation of operator expressions, which is not trivial to write as

a computer program. Whereas the graph reduction method allows one to obtain the

same expressions from a given signal flow graph by following two or three rules, making

for a relatively simple computer implementation. For a single cavity the benefit of ob-

taining operator expressions from a computer algorithm is minimal, however for more
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remove
sinks

Figure 4.6: Left is the result of graph reduction applied to figure 4.5. The resulting
operators are omitted from the diagram for brevity. Right is the same reduced graph
with all of the sink nodes removed.

complicated optical systems with multiple coupled cavities the expressions become too

unwieldy to manipulate by hand and the algorithm becomes helpful.

It should be noted that this graph reduction is not unique. The ordering of graph

reduction steps is arbitrary. A different sequence of reduction steps can result in a

different but equivalent irreducible graph. That is, the graph may look different but

should produce nearly identical numerical results when solved. The LCT composition

rule complicates this somewhat since it is not satisfied in the discrete case and can

make the differences between equivalent graph reductions much larger than floating

point precision unless a sufficiently fine LCT grid is used.

It is worth noting that the number of self-loops in an irreducible graph is not guar-

anteed to be constant. In most optical systems the number of self-loops often maps

directly onto the number of cavities and this is the case for the optical systems covered

here. However, Riegle showed a simple graph with 7 nodes in figure 3 of [27] that when

reduced can have either 2 or 3 self-loops depending on the order of reduced nodes.

The simplest optical systems that exhibit a variable number of self-loops when reduced

typically include multiple beamsplitters where the reflected and transmitted ports are

connected to each other in such a way that there is not an easy way to identify distinct

cavities. Riegle formulated the problem of finding the optimal reduction as the one that

produced the smallest number of self-loops, which he related to finding the minimum

feedback vertex set of the graph. More work is needed to be able to make definitive

statements about the number of self-loops in a reduced graph and the physical inter-

pretation of these self-loops. For our applications the most complicated optical system
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is the dual recycled Fabry-Perot Michelson, which has only one beamsplitter and so

the equivalence of self-loops to cavities is adequate.

After applying the self-loop rule to node 3 in figure 4.6 the field at every other node

cavity such as the cavity reflection and transmission can be obtained from linear com-

binations of the source and circulating fields. If the node preserving form of the graph

reduction rules was used then the nodes still exist as sinks. The edges that connect the

sources and circulating fields to the sinks in the irreducible graph are the propagation

matrix elements in equation (4.2).

The field at the remaining nodes is then given by

E2

E4

E5

E6

E7


=



M2←1 M2←3 M2←8

M4←1 M4←3 M4←8

M5←1 M5←3 M5←8

M6←1 M6←3 M6←8

M7←1 M7←3 M7←8




E1

E3

E8

 (4.2)

Where the propagation matrix elements for field E1 are

M2←1 = R2←1

M4←1 = 0

M5←1 = 0

M6←1 = 0

M7←1 = 0

where we adopt the convention that a lack of an edge between nodes i and j corresponds

to a zero or null operator for that propagation matrix element. The matrix propagation
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elements for field E3 are

M2←3 = T2←4D4←6R6←5D5←3

M4←3 = D4←6R6←5D5←3

M5←3 = D5←3

M6←3 = R6←5D5←3

M7←3 = T7←5D5←3

and the propagation matrix elements for field E8 are

M2←8 = 0

M4←8 = 0

M5←8 = 0

M6←8 = 0

M7←8 = R7←8

Though the matrix elements may seem obvious from a visual inspection of the graph,

they quickly becomes unobvious in more complicated systems. The approach outlined

here generalizes to arbitrarily complicated optical systems and so we will summarize

the algorithm here.

1. Construct a graph from coupling component-wise linear equations for the incom-

ing and outgoing fields as described in chapter 2 of [140].

2. Loop over every node in the graph and apply the product graph reduction rule

if it applies

3. Loop over every pair of nodes in the graph and apply the sum graph reduction

rule if it applies

4. Solve the linear system given by the irreducible graph

5. Propagate the solved and source fields to every remaining node in the graph

Steps 2 and 3 imply some kind of ordering on the nodes in the graph to loop over,



76 CHAPTER 4. TOWARDS COUPLED CAVITY LCT MODELS

which in general is arbitrary. In principle any ordering can be used provided the graph

at the end is reduced to sources, sinks, and self-loops. Step 4 is not illustrated well by

the single cavity example shown here, but is more clear for the power recycled cavity

discussed below.

4.1.3 Power recycled Fabry-Perot cavity

For the next step up in complexity we will consider the aLIGO power recycling cavity

into one of the arm cavities as an example of a coupled cavity. The graph for this

optical system is given in figure 4.7.
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Figure 4.7: Graph of a power recycled arm cavity.

The node naming convention is adopted from Finesse3 where the node name has three

parts delimited by dots. The first part is the component name (e.g. PRM, PR2, PR3,

ITMY, ETMY). The second part is the port number of the component, which in this

case maps onto either the front or back surface of a mirror. For example ITMY.p1 maps

onto the back surface of the ITMY whereas ETMY.p1 maps onto the front surface of

the ETMY. The third part determines if the field is incoming or outgoing relative to

the port. We also assign a unique integer to each of the nodes, which we will use as

a shorthand when referring to that node. The integer labelling in general is arbitrary,

we used the order in which the nodes were added to the graph.

To explain the visual appearance of figure 4.7, specifically the positioning of the nodes

we first have to note that the drawing of graphs is in general arbitrary. The nodes and

edges can be drawn by hand in a way that highlights some kind of physical intuition
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as was done in figures 3.2 and 4.6. However, for large graphs and in general it is more

appropriate to use a general purpose graph layout method for determining the position

of nodes when drawing these graphs. We provide a short summary of the technicalities

of graph layout methods below. The reader may skip to the next section where we

discuss how to analyze the graph.

Graph layout algorithms

The main general purpose graph layout methods come in two varieties: force-directed,

and energy minimizing. Both are similar in that they determine the positions of the

nodes by treating the graph dynamical system where all nodes experience a repulsive

and attractive force that has to be balanced. In this scheme it is common to model

the nodes as point charges and the edges as springs but other forces can be used to

produce a visually different layout. For instance in the Kamada-Kawai graph layout [55]

every node is connected to every other node by a spring regardless if there is an edge

connecting them or not. The natural length of the spring between two nodes is given

by the graph theoretic distance between them, which is the number of edges in the

shortest path connecting the two nodes.

Most graph layouts begin with the nodes initially placed, often in randomly generated

positions. The position of the nodes are then iteratively updated by the modelled

forces until the graph reaches a stationary state where each node experiences zero net

force. In energy minimizing layouts the forces give rise to a potential energy which is

fed into a minimization algorithm such as gradient descent to determine the optimal

position of the nodes that minimizes this potential energy.

Both methods produce similar results, but the force-directed layouts often run into

the issue that they settle on some kind of local minimum that might not look visually

pleasing. The energy minimizing method can also get stuck on local minima, but global

minimization methods can be used to alleviate this whereas the force-directed method

can only guarantee to settle on a local minimum. A spring-electrical force-directed

layout and an energy minimizing Kamada-Kawai layout is available in the graphviz

package [92] through the fdp and neato binaries respectively. For the graph diagrams

presented here we chose to use the neato layout, which produced the most visually

clear and aesthetically pleasing diagrams.
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Graph reduction

We begin by applying the product rule on the path from PRM.p2.o to ITMY.p1.i, and

the path from ITMY.p1.o to PRM.p2.o. This corresponds to applying the product rule

on the following nodes {3,6,7,10,11,12,9,8,5,4,1}. The next step is to reduce the arm

cavity by applying the product rule to nodes {15,16,13}, which is the same reduction

that was done in section 4.1.2.

The resulting irreducible graph is then a source node PRM.p1.i, two coupled self-loops

at PRM.p2.o and ITMY.p1.o, and a bunch of sink nodes. This graph is shown in

figure 4.8.

Figure 4.8: Resulting graph from applying the graph reduction procedure to the power
recycled cavity graph from figure 4.7.

For clarity we can remove all the sink nodes from the graph since they have no causal

influence on the graph. The sinkless reduced graph is shown in figure 4.9.

At this point the only graph reduction rule that applies is the self-loop elimination,

which we can only use for matrix and scalar edges. In our case the edges are operators

and so the self-loops ca not be removed at this stage.
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Figure 4.9: Reduced power recycled cavity graph from figure 4.8 with all of the sink
nodes removed.

Graph solving

To solve figure 4.8 we only consider the nodes with self-loops. We have labelled

PRM.p2.o as node 2 and ITMY.p1.o as node 14. From there we construct the fol-

lowing linear operator equation a2
a14

 =

M2←2 M2←14

M14←2 M14←14


 a2
a14

+

 b2
b14

 (4.3)

where [a2, a14]T is the vector containing the circulating fields at nodes 2 and 14 respect-

fully. [b2, b14]T is the vector containing the sum of all source fields propagated to nodes

2 and 14 respectively. The matrix elements Mi←i describe the self-loop operators and

Mi←j where i 6= j describes how the self-loops couple to each other. Equation (4.3) is

just a generalization of equation (3.16) to coupled cavities. We now list the explicit

form of the path operators.

M2←2 = R2←1D1←4R4←5D5←8R8←9D9←12R12←11D11←10R10←7D7←6R6←3D3←2

M14←2 = T14←11D11←10R10←7D7←6R6←3D3←2

M2←14 = R2←1D1←4R4←5D5←8R8←9D9←12T12←13D13←16R16←15D15←14

M14←14 = R14←13D13←16R16←15D15←14
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The source terms are

b2 = T2←0E0

b14 = 0

Rearranging into a more familiar form
I 0

0 I

−

M2←2 M2←14

M14←2 M14←14



 a2
a14

 =

 b2
b14

 (4.4)

where I is the identity operator. Equation (4.4) is then of the form Ax = b, where

A = I −M . The M operator can be thought of as a generalization of the round trip

operator in coupled cavities.

This operator equation can be solved using the same Krylov subspace methods as

in section 3.6. The difficulty is turning the A operator, which is a composite object

consisting of linear combinations of operators into something that looks like a first-class

operator. This will typically require some kind of method overloading for matrix-vector

multiplication. The scipy [210] library provides an API for defining arbitrary structured

linear operators using scipy.sparse.linalg.LinearOperator, which is what we use

with scipy’s Krylov solvers.

4.1.4 Dual recycled Fabry-Perot Michelson interferometer

The dual recycled Fabry-Perot Michelson interferometer (DRFPMI) is a more compli-

cated optical system than the power recycled Fabry-Perot cavity. The DRFPMI serves

as the base optical layout in current generation gravitational wave detectors such as

aLIGO and AdVirgo. The network graph of a DRFPMI is shown in figure 4.10.

To obtain the irreducible graph we apply the product rule on every node except

PRM.p1.i, PRM.p1.o PRM.p2.o, ITMX.p2.o, ITMY.p2.o, and SRM.p1.i, correspond-

ing to nodes 0, 2, 28, 22, and 39 respectively. The order in which the product rule is

applied seems to not change the final graph. We used the increasing order based on

the integer node label.
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Figure 4.10: Graph of a dual recycled Fabry-Perot michelson interferometer.
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The irreducible graph then consists of 4 coupled self-loops located at nodes

{2,28,22,39}, a source node at node 0 with every other node being a sink. The corre-

sponding reduced DRFPMI graph is shown in figure 4.11. For clarity we omit drawing

any of the 36 sink nodes.

Figure 4.11: An irreducible graph of a dual recycled Fabry-Perot michelson interfer-
ometer with integer node labels and all sink nodes removed.

To solve the graph we then apply the exact same procedure as before and write out

the linear equation describing the irreducible graph.
a2

a28

a22

a39


=


M2←2 M2←28 M2←22 M2←39

M28←2 M28←28 M28←22 M28←39

M22←2 M22←28 M22←22 M22←39

M39←2 M39←28 M39←22 M39←39




a2

a28

a22

a39


+


b2

b28

b22

b39


(4.5)

For the sake of brevity we will write out the matrix elements in a more compact form

where the series of operators are denoted by a node path through the graph.

M2←2 = (2, 1, 4, 5, 8, 9, 12, 13, 20, 19, 14, 11, 10, 7, 6, 3, 2)
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+ (2, 1, 4, 5, 8, 9, 12, 15, 26, 25, 16, 11, 10, 7, 6, 3, 2)

M2←28 = (2, 1, 4, 5, 8, 9, 12, 15, 26, 27, 30, 29, 28)

M2←22 = (2, 1, 4, 5, 8, 9, 12, 13, 20, 21, 24, 23, 22)

M2←39 = (2, 1, 4, 5, 8, 9, 12, 13, 20, 19, 14, 17, 32, 33, 36, 37, 40, 39)

+ (2, 1, 4, 5, 8, 9, 12, 15, 26, 25, 16, 17, 32, 33, 36, 37, 40, 39)

M28←2 = (28, 25, 16, 11, 10, 7, 6, 3, 2)

M28←28 = (28, 27, 30, 29, 28)

M28←22 = 0

M28←39 = (28, 25, 16, 17, 32, 33, 36, 37, 40, 39)

M22←2 = (22, 19, 14, 11, 10, 7, 6, 3, 2)

M22←28 = 0

M22←22 = (22, 21, 24, 23, 22)

M22←39 = (22, 19, 14, 17, 32, 33, 36, 37, 40, 39)

M39←2 = (39, 38, 35, 34, 31, 18, 13, 20, 19, 14, 11, 10, 7, 6, 3, 2)

+ (39, 38, 35, 34, 31, 18, 15, 26, 25, 16, 11, 10, 7, 6, 3, 2)

M39←28 = (39, 38, 35, 34, 31, 18, 15, 26, 27, 30, 29, 28)

M39←22 = (39, 38, 35, 34, 31, 18, 13, 20, 21, 24, 23, 22)

M39←39 = (39, 38, 35, 34, 31, 18, 13, 20, 19, 14, 17, 32, 33, 36, 37, 40, 39)

+ (39, 38, 35, 34, 31, 18, 15, 26, 25, 16, 17, 32, 33, 36, 37, 40, 39) (4.6)

The DRFPMI matrix elements have two new features when compared to the power

recycled arm cavity matrix elements. The first is that two of the matrix elements

M28←22 and M22←28 are exactly zero, denoting that there is no direct path between

these two nodes in the irreducible graph. These two edges describe the coupling between

XARM and YARM. Them being zero means that to first order there is no coupling

between the field circulating in the XARM and the field circulating in the YARM. The

second new feature is that there are two edges (a second degree multi-edge) for every

coupling between nodes 2 and 39. Following the addition graph reduction rule these

multi-edges are replaced by a single edge, whose operator is the sum of the operators
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in the multi-edge. Nodes 2 and 39 correspond to the PRC and SRC respectively. The

multi-edges between the PRC and SRC denote that their round trips and couplings

are comprised of a sum of the contribution the path interacting with ITMX and the

path interacting with ITMY.

To obtain the field at every one of the 41 nodes in the DRFPMI graph we can use the

36 × 5 matrix to propagate the one source and four circulating fields to every other

node in the graph. For the sake of brevity we will not list all of the 180 propagation

matrix elements but they can be trivially obtained from the edge operator weights to

these sink nodes.

4.2 Results

To validate the matrix signal flow graph formalism presented here we use it to solve

an HG model and compare it to the same HG model solved using traditional matrix

solving methods. Each optical model was initially created by hand in Finesse3, which

handled defining all model matrix elements based on given components. Those matrix

elements were then converted to the corresponding matrix signal flow graph. The graph

was reduced following the graph reduction rules presented section 4.1. The final self-

loop solving stage and propagation to all the sink nodes was done using dense matrix

algebra in the numpy [205] package. We recorded the end-to-end execution time as

the time taken from the beginning of graph reduction to when the solved fields were

propagated to all the sink nodes.

We compared the graph reduction solver to 2 alternatives: KLU and the numpy

dense matrix solver. KLU [100, 109] is a highly optimized sparse matrix solver from

the SuiteSparse library based on LU factorizations that is used in Finesse2 and

Finesse3. The dense solver is included as a worst case. In all cases the solved field

given by the graph solver was within floating point precision of both the dense solver

and KLU.

We see from the following figures that the graph reduction solver starts off being the

slowest with nearly a constant time taken for N < 10. This is most likely due to python

overhead associated with the graph operations. At N = 100 the graph reduction solver

and KLU both perform about the same for all 3 optical systems tested with the graph
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solver outperforming KLU for N > 100.
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Figure 4.12: Time taken to solve the model shown in figure 4.5 for various solvers.
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Figure 4.13: Time taken to solve the model shown in figure 4.7 for various solvers.

The speedup from the graph solver can be attributed to the fact that the size of

the matrix inverse that is computed is 10 times smaller than the matrix inverse that

is computed in the dense and KLU solver. The graph solver effectively separates

the single large block sparse inverse into a smaller dense inverse and a dense matrix
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Figure 4.14: Time taken to solve the model shown in figure 4.10 for various solvers.

multiplication. We can see that in the best case there is nearly a 100 times speedup

over the dense solver and a 10 times speedup over KLU.

This highlights a potential application of using graph reduction as the solver in HG

modelling packages such as Finesse. The graph structure inherently lends itself to a

parallel implementation. More work needs to be done to optimize the graph solver for

smaller models where the runtime is dominated by python overhead.

4.3 Summary and future work

We have shown a potential extension of LCT models for coupled cavities by converting

optical models into signal flow graphs. Applying graph reduction rules allows one to

construct a linear operator equation for coupled cavities that looks like an equation for

a single cavity, which can be solved using the same methods that we have presented in

chapter 3. This also allows us to define a generalization of the round trip operator in

coupled cavities that is model independent, which may prove valuable in HG and FFT

based optical models. The remaining work to write the code for an implementation of

a coupled cavity solver graph solver using LCTs.



Chapter 5

Commissioning for Advanced LIGO

This chapter describes the various contributions to commissioning efforts for Advanced

LIGO that I undertook during my PhD. For LIGO commissioning periods are between

observation runs where the detector is adjusted or modified to improve performance. I

was involved in LIGO commissioning in 2018 and 2019 with a focus on modelling and

understanding the issues related to mode matching between the various LIGO subsys-

tems. The two main activities presented here were the analysis of OMC astigmatism

from measurements of the OMC transverse mode splitting, and a measurement of the

SR3 rear heater’s ability to correct mode mismatch.

5.1 Squeezer beam and LHO OMC astigmatism

During commissioning leading up to LIGO’s third observation run (O3) it was found

that the squeezer beam was noticeably astigmatic going into the OMC [174]. This

limits the overall mode matching that can be achieved and generally degrades squeezing

performance. While the squeezer beam was profiled I analyzed the OMC cavity scans

to quantify the mode mismatch and investigate how it was impacted by the beam

astigmatism. The mode mismatch is obtained by measuring the ratio of the second

order mode peak height to the fundamental mode peak height during a cavity length

scan.

One of the OMC scans I took is shown in figure 5.1. The ratio between HG02 and

HG00 peaks is roughly 0.1, which yields a mode mismatch of 10%. The mode order

87
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Figure 5.1: A full period of an LHO OMC cavity length scan of the squeezer beam. All
known peaks are labelled based on the relative location of higher order mode resonances
based on OMC cavity geometry. The label HG0n is intended to denote all the n’th order
higher modes that should resonate at, or close to that frequency.

of a resonant peak is determined by their relative distance to the fundamental mode

peak and the design parameters of the OMC cavity geometry. The incident beam is

single frequency and so every peak in the cavity scan corresponds to a higher order

transverse mode of the incident beam in the OMC eigenmode basis.

If the OMC was operating to design the three second order peaks (HG02, HG11, HG20)

should be nearly degenerate and hence should not be resolvable. In this case when

the incident beam is astigmatic the ratio between the fundamental and second order

peaks should give an estimate for the average mode mismatch between the vertical and

horizontal axes, but this was not what I found. Instead the resonant power around the

resonance for the second order modes took an odd shape, which remained consistent

from scan to scan.

A close-up on the second order resonance peak is shown in figure 5.2 along with a

least-squares fit of a Lorentzian function, which closely approximates the line shape

of a single mode or degenerate multi-mode cavity resonance. The Lorentzian function
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Figure 5.2: The second order OMC resonance with a strongly astigmatic beam.

with a full-width-half-maximum (FWHM) Γ is given by

L(x,Γ) =

(
Γ
2

)2
x2 +

(
Γ
2

)2 (5.1)

This definition is chosen such that the maximum value of the Lorentzian is L(0,Γ) = 1.

The single Lorentzian fit in figure 5.2 is quite bad making it difficult to accurately

predict the resonant amplitude. Introducing a second Lorentzian function improves

the fit substantially, as shown in figure 5.3.

The two peaks in figure 5.3 correspond to the HG20 and HG02 modes respectively.

They are resolvable because the OMC cavity is more astigmatic than the design, which

breaks the frequency degeneracy for higher order modes. The resonance frequency for

vertical higher order modes is slightly shifted with respect to the horizontal higher

order modes. The difference in the heights of these two peaks gives a measure of beam

astigmatism, and the separation frequency of these two peaks gives a measure of the

cavity astigmatism.

This cavity astigmatism can be rephrased in terms of splitting of the transverse mode

spacing (TMS), which can be directly computed from the fits in figure 5.3. The TMS



90 CHAPTER 5. COMMISSIONING FOR ADVANCED LIGO

0.0 0.2 0.4 0.6 0.8
Time [sec]

0.00

0.01

0.02

0.03

0.04

0.05

O
M

C
 D

C
PD

 S
um

 [W
]

Data
Double
Lorentzian fit
HG02

HG20

Figure 5.3: Two Lorentzians fitted to a second order OMC resonance with a strongly
astigmatic beam.

splitting is a unitless quantity given by

TMS splitting =
|x02 − x20|

2Γ
(5.2)

where x02 and x20 are the locations of the HG02 and HG20 resonance peaks respectively.

The factor of 2 on the denominator comes from the fact that we are measuring the

TMS splitting using second order modes. The TMS splitting from figure 5.3 is about

0.43. To convert it to a frequency splitting the TMS splitting should be multiplied by

the FWHM of the OMC.

In principle in figure 5.3 there should be a another higher order mode: the HG11 mode,

whose resonance frequency sits exactly between the HG20 and HG02 modes. However

the amplitude of the HG11 mode was small enough here as to be negligible. This

can be justified by noting that the scattering into the HG11 mode primarily happens

through misalignment; mode mismatch only changes the strength of the misalignment

coupling [43]. Similar to mode mismatch, misalignment is obtained by taking the ratio

of the HG01 peak to the HG00 peak in a cavity length scan.

Figure 5.1 shows that the HG01 peak is about an order of magnitude smaller than

the HG02 peak. Since the mode mismatch was 10% this indicates that the beam was

misaligned to the cavity to less than 1%. The peak height for the HG11 mode is
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expected to be around 10−4 W, less than the noise floor and so its contribution to the

profile of the second order peak in figure 5.3 is negligible.

The least-squares fits to cavity scan peaks are accurate but difficult to automate for

commissioning due to requiring human expert knowledge to provide a reasonable guess

for initial fit parameters. Cases like figure 5.1 are relatively simple for an expert where

the beam has a single frequency and is well mode matched and aligned. Despite that

automatically identifying peaks is challenging even in simple cases since the relationship

between PZT voltage and cavity length is not exactly linear. This shifts the position

of the peaks relative to each other and can result in misidentified peaks.

These challenges make computer aided tools unappealing in comparison to estimating

the resonant amplitude by the maximum height of the resonant peak, especially when

quick answers important to keep up the pace of commissioning. Estimating mode mis-

match with peak heights in this case produces systematic underestimation as illustrated

by figure 5.4.

−3 −2 −1 0 1 2 3
Frequency [MHz]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
w

er
 [W

]

Lx
Ly
Lx+Ly
Lx+Ly
(no astigmatism)

Figure 5.4: A demonstration that the peak of the sum of two Lorentzians is reduced if
the Lorentzians are not on top of each other. The Lorentzian separation used here is
the same as was measured in the LHO OMC cavity scan in figure 5.3.

The maximum of the split peak in figure 5.4 is about 1.6 times less than if the OMC

had no astigmatism, which means that mode mismatch estimates need to be multiplied

by that amount to compensate. This correction factor is not constant and depends on
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the relative height of the two peaks, which in turn depends on the astigmatism of the

beam relative to the cavity. The correction factor as a function of the relative height

difference between the second order peaks is shown in figure 5.5. Zero mode mismatch
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Figure 5.5: A plot of the peak height correction factor as a function of relative height
difference between the two peaks. The Lorentzian separation used here is the same as
was measured in the LHO OMC cavity scan in figure 5.3.

symmetry corresponds to the height of one of the HG02 or HG20 to be exactly zero,

in which case the height of the remaining peak gives an accurate estimate of mode

mismatch and hence the correction factor is exactly 1. A mode mismatch symmetry of

1 corresponds to the HG02 and HG20 peaks having the same height, which is the case

depicted in figure 5.4 with the correction factor of 1.6. In general the mode mismatch

symmetry is given by

mode mismatch symmetry =
min [P02, P20]

max [P02, P20]
(5.3)

where P02 and P20 are the powers in the HG02 and HG20 modes respectively.

5.1.1 Comparison of LHO and LLO astigmatism

Here we compare the astigmatism of the LHO OMC to the LLO OMC using the

same method as section 5.1. A sample of second order resonance peaks from both

detectors was extracted from OMC cavity scans performed by on-site commissioners
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for a different purpose in early 2019. These are shown in figure 5.6. The LHO and

LLO cavity scans were ran for six and two cycles respectively. Two Lorentzians were

fit to each resonance peak and the residuals are shown in figure 5.7.
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Figure 5.6: A plot of OMC second order resonance peaks in the LHO (left) and LLO
(right) GW detectors.
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Figure 5.7: Residuals for the Lorentzian fits to the second order OMC resonance peaks
shown in figure 5.6. The colors of the traces correspond to the same traces from
figure 5.6.

We find that the LLO OMC is significantly less astigmatic than the LHO OMC, and

slightly less astigmatic than the aLIGO OMC design. It is known that the OMCs in

LHO and LLO differ slightly in their as built parameters, though direct measurements

of these parameters in-situ is difficult. This measurement of OMC TMS splitting gives

a way to directly measure the impact of some of these parameters. We find that the

TMS splitting in LHO and LLO are 0.44 and 0.17 respectively. A summary plot of the

measured OMC TMS splitting is shown in figure 5.8.

The time of the measured peaks was used to obtain the PZT voltage on PZT2, which
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Figure 5.8: Calculated OMC TMS splitting using equation (5.2) for both LHO and
LLO based on the separation of the two fitted Lorentzians to the transverse second
order OMC resonances in figure 5.6. The dashed line is the predicted TMS splitting
calculated by Finesse based on the aLIGO design parameters for the OMC.

was used to scan the OMC cavity length. The other PZT in the OMC — PZT1 was set

to 10 V is both detectors during that time. The nearby points in the LHO data show

the reproducibility of our method, which we estimate is about ±0.02. The uncertainty

estimates for each measurement point based on the least squares fits are orders of

magnitude less, indicating some degree of model misspecification.

Based on the results in figure 5.7 we conclude that that the TMS splitting and hence

OMC astigmatism does not strongly depend on the applied PZT voltage in both de-

tectors. This dependence broadly agrees with results published by Arai [133], who

measured the TMS splitting in both OMCs prior to them being installed in each de-

tector. His measured value for the TMS splitting for all OMCs was about 0.218, which

is closer to the aLIGO design than either the measured LLO or LHO TMS splitting

shown in figure 5.8.

To discuss this measured difference it is important to note that the TMS splitting is

only dependent on the cavity geometry, which is given by the lengths between each

mirror, the mirror radius of curvature, and angle of incidence (AOI) on each mirror.

Out of any of these the AOI seems the most likely to differ from design. The OMC

input coupler (IC) and output coupler (OC) are flat and so their AOI does not directly

contribute to the TMS splitting. Changing the angle of the IC and OC can change the
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Figure 5.9: OMC TMS splitting as a function of angle of incidence on the OMC curved
mirrors (CMs). The red dashed line is the measured LLO TMS splitting and the red
solid line is the measured LHO TMS splitting.

cavity round trip beam path so that the beam hits the CMs off-center, which means

the beam will see a different angle and hence lead to a change in the TMS splitting.

We neglect this effect and only look at the TMS splitting purely as a function of AOI

on the CMs to get a sense of scale of the TMS splitting in more concrete terms. In

figure 5.9 we show how the TMS splitting changes when the AOI on the curved mirrors

(CM) changes in an aLIGO design OMC. We see that to get the TMS splitting that

was measured for LHO the AOI on both CMs has to increase from their design by

about 1.5 degrees. Similarly the LLO TMS splitting can be obtained by decreasing

both the AOI on both CMs by about 0.5 degrees.

At the time of writing we do not know how this change in TMS splitting came about

in the time between being measured by Arai before installation and the in-situ mea-

surements we presented here. The difference that we report is small and likely has a

negligible impact on the mode cleaning capabilities of either OMC.

5.2 Beam shape inference from SR3 rear heater

scans

As part of the commissioning effort for the third observation run (O3) I investigated

how the SR3 rear heater impacted the mode matching from the SRC to the OMC.
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High mode matching is important for minimizing squeezing losses and at the time the

SR3 rear heater provided the only method of mode matching actuation from inside

the signal recycling cavity (SRC). During this measurement the interferometer was in

a “single bounce” state, where the PRM, SRM, ITMX, ETMX, and ETMY are all

misaligned in figure 5.10. This allows us to analyze the impact of the SR3 rear heater

on a beam that somewhat approximates the arm cavity mode without involving any

cavities in the interferometer. This allows us to operate without worrying about lock

loss. In practice, the dual recycled Fabry-Perot Michelson beam will differ in shape to

the “single bounce” beam due to mode mismatches between the internal cavities within

the interferometer, but the “single bounce” beam should be a good approximation when

all the cavities inside the interferometer are well mode matched.

ITMX ETMX

ITMY

ETMY

PRM

PR3

PR2

SRMSR3

SR2

OMC

OFI

OM1

OM2

OM3
ZM1

ZM2

DCPD

OPO

CLF

Figure 5.10: Dual recycled Fabry-Perot Michelson (DRFPMI) layout of the aLIGO
interferometer.

The SR3 rear heater — shown in figure 5.11 is a radiative heater mounted directly

against the back surface of the SR3 mirror. The heater has a max operating tempera-

ture of 360 K, or about 86◦C, which is modelled to increase the radius of curvature of

the SR3 mirror by 32 mm via thermoelastic deformation [132]. The nominal radius of

curvature of the SR3 is roughly 36 m and so the rear heater is equivalent to a 25 µD
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lens. The thermal time constant of the heater is about 15 minutes, which is the time

it takes for the difference between the current temperature and the target temperature

to drop by 1/e.

Figure 5.11: A diagram of the SR3 rear heater. Taken from [132].

The rear heater temperature was steadily increased from 25 to 70◦C over the period of

about 4 hours. During that time the OMC cavity length was continuously scanned by

driving the PZT with a sawtooth wave voltage signal. The mode mismatch into the

OMC was estimated by a peak detection algorithm running on the realtime data. This

peak detection algorithm picked out the HG00 and second order resonance peak height

each OMC scan period by a combination of heuristics and user guidance. The initial

guess for the position of the HG00 and second order peak positions are specified by

the user. The heuristic was derived from the assumption that the PZT voltage of each

OMC resonance peak changes very little from scan to scan, and so each scan period

the new peaks were acquired using their previously recorded PZT voltage. The raw

data for the SR3 heater element temperature and the OMC mode mismatches as a

function of time are shown in figure 5.12. The SR3 heater element temperature was set

by hand by setting the target temperature and waiting for the rear heater equilibrate

before increasing the target temperature again. The break in the data is in figure 5.12

corresponds to a lunch break when the experiment was not running.

After the experiment was finished the measured OMC mismatch was plotted against
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Figure 5.12: Plot of SR3 heater element temperature as a function of time (left). Plot
of measured mode mismatch into the OMC as a function of time during that period
(right).

the SR3 heater element temperature, which is shown in figure 5.13. The noise in
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Figure 5.13: A plot of measured OMC mismatch as a function of SR3 heater element
temperature.

the mode mismatch data was likely caused by intensity noise on the laser, which was

not intensity stabilized throughout the experiment. Intensity noise has an effect on

mode mismatch measurements since the intensity readings for the HG00 and HG20

peaks happen at different times, typically seconds apart, which means that the noise

is uncorrelated. This means that the impact of intensity noise on the measured mode

mismatch is significant.

However, despite the noise, through the sheer number of data points a trend is visible
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in figure 5.13. The data shows a near linear decrease in mode mismatch from about

10.5% at 25◦C to 9.75% at 65◦C. This decrease in OMC mode mismatch due to increase

in SR3 curvature is small, but the fact that it is small over that range can be used

to infer information about the beam parameter going in to the OMC. A parameter

map of how 10% mode mismatched beam parameters at the SRM change as the SR3

radius of curvature is increased is shown in figure 5.14. This map was generated by
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Figure 5.14: A map in beam parameter space at the SRM close to mode matching
to the OMC. Contours are shown for 0.1%, 1%, 5%, 10% mode mismatches. The
region highlighted in pink corresponds to the area where the SR3 actuator has a small
improvement on the mode matching of a 10% mismatched beam, which is similar to
what was seen in the measurement in figure 5.13. This means the measured beam
parameter is likely to be from that region.

taking a uniform sample of beam parameters that are 10% mode mismatched to the

OMC eigenmode. What we would like to know is what these beam parameters would

look like right before the SR3 so that we can model how they change when the SR3

curvature is increased. For this we need to reverse propagate the beam at the OMC to

the SR3 using inverse ABCD matrices.

After the mismatched OMC beam parameters are inverse propagated back to the SR3,

the SR3 curvature is changed and the beam is forward propagated to the SRM, which

is a common reference point for OMC mode matching used in commissioning. This is



100 CHAPTER 5. COMMISSIONING FOR ADVANCED LIGO

repeated for a range of SR3 curvatures. The resulting beam parameters that have been

transformed by different SR3 curvatures are shown as the points in figure 5.14.The plot

is a 2D map in beam parameter space where the x-axis is the beam’s waist position

and the y-axis is the beam’s beam size. These two degrees of freedom uniquely specify

a beam parameter.

We can see that for certain initial beam parameters it is possible to see a relatively

small decrease in mode mismatch as the SR3 rear heater temperature is increased,

corresponding to a beam parameter that has a waist position at -3.2 m and a beam

size at the SRM of about 1.55 mm. The information about the beam parameter from

scanning a mode matching actuator can be combined with other measurements, such

as beam profiles to further constrain the space of possibility.

Using the model in figure 5.14 we conclude that in the best case the SR3 heater is able

to fix mode mismatch of up to 5%. If the SR3 heater is operated at its middle point,

which is about 55◦C then we expect it to fix mismatches of about 2% on either side of

the SR3 actuation axis.

To be able to effectively actuate on an area of beam parameters and not just one line a

second mode matching actuator is required. This actuator should ideally be orthogonal

to the SR3 actuator, where orthogonal means that the axis on which it moves the beam

parameters is 90 degrees to the SR3 actuation axis in figure 5.14. This can be achieved

by having the actuator separated from the SR3 actuator by 90 degrees of Gouy phase,

where the Gouy phase is defined as

Ψ = arctan

[
z

zR

]
(5.4)

where z and zR are the waist position and Rayleigh range of the beam at the actuator.

In figure 5.15 we computed the accumulated Gouy phase in the signal recycling cavity

with Finesse3 using design aLIGO parameters. Unfortunately both SR2 and the ITMs

are close in Gouy phase as SR3, making them a poor choice for a pair of actuators

in the signal recycling cavity. The remaining optic is the SRM, which is somewhat

orthogonal to the SR3 by about 20 degrees of Gouy phase. Unfortunately the SRM is

used in both reflection and transmission. This is a problem since any thermal actuation

on the SRM will induce both a thermoelastic and thermorefractive deformation with
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the latter being undesirable in this case. The thermorefractive actuation will then

need to be compensated for in the OMC and squeezer paths to maintain good mode

matching to both of these subsystems.
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Figure 5.15: A plot of the beam size and accumulated Gouy phase in a round trip of
the SRC through the ITMX using aLIGO design parameters.

In summary, we have used the SR3 actuator combined with OMC cavity scans to

constrain the single bounce beam parameter to lie on a small section of the mode

mismatch contour in parameter space. From actuation data we found that in a model

of the design aLIGO the SR3 heater is able to correct mode mismatches of up to 5%.

A second orthogonal actuator inside the signal recycling cavity is needed to be able

to actuate on an area in beam parameter space. We have investigated the suitability

of each possible actuator and found that the SRM can provide the most orthogonal

actuator to the existing SR3 rear heater. We discussed the possibility of using the SRM

with a thermal actuator and the mode mismatch that is introduced on transmission due

to the thermorefractive effect, which affects the mode matching of the interferometer

beam going into to the OMC and the squeezer beam entering the interferometer.

5.3 Concluding remarks

We have shown in section 5.1 that using OMC cavity length scan data it is possible to

precisely measure the transverse mode spacing (TMS) splitting due to OMC astigma-
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tism by fitting two lorentzians to the second order transverse resonance of the OMC.

Using this technique we have found that the LHO OMC is more astigmatic than the

aLIGO design, and the LLO OMC is less astigmatic than the aLIGO design.

In section 5.2 we showed that information can be obtained about the beam parameter

coming out of the SRC by scanning the SR3 rear heater temperature while measuring

OMC mode mismatch from OMC scans. This mismatch data can be used to fit a

beam parameter from an ABCD model of SR3 with different radii of curvature. We

investigated the suitability of a second actuator inside the signal recycling cavity to

further improve mode matching in the signal recycling cavity.



Chapter 6

Mode matching error signals using

radio-frequency beam shape

modulation

6.1 Preface

This chapter presents a fast optical mode matching dither signal generated by an

electro-optical modulation that is filtered by an optical cavity. A large portion of this

chapter has been published as a paper [204] in the peer reviewed OSA journal, Applied

Optics.

A. A. Ciobanu, D. D. Brown, P. J. Veitch, and D. J. Ottaway. “Mode matching

error signals using radio-frequency beam shape modulation”. In: Applied Optics 59.31

(Nov. 1, 2020). Number: 31, p. 9884. issn: 1559-128X, 2155-3165. doi: 10.1364/AO.

404646.

Precise mode matching is needed to maximize performance in coupled cavity inter-

ferometers such as Advanced LIGO. In this chapter we present a new mode match-

ing sensing scheme that uses a single radio-frequency higher-order-mode sideband and

single-element photodiodes. It is first order insensitive to misalignment and can serve

as an error signal in a closed loop control system for a set of mode matching actuators.

We also discuss how it may be implemented in Advanced LIGO. The proposed mode
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matching error signal has been successfully demonstrated on a tabletop experiment,

where the error signal increased the mode matching of a beam to a cavity to 99.9%.

6.2 Introduction

Precise control of mode matching is desirable in many high precision optical cavity ex-

periments to minimise optical losses. This is especially true for advanced gravitational

wave (GW) detectors that use multiple coupled cavities and squeezed light injection to

maximize sensitivity [185], such as Advanced LIGO [135], and Advanced Virgo [136].

figure 6.1 depicts the degradation when using 6 dB of frequency-independent squeezing

due to varying percentages of mode mismatches. A mode mismatch of only 10% can

almost completely nullify the expected improvement from squeezing.
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Figure 6.1: Shown is the reduction in quantum noise limited sensitivity if the squeezer
is mismatched by 1%, 5%, or 10% in an aLIGO like detector setup with 6 dB of
frequency independent squeezing using Finesse [128, 200]. The worst case scenarios
are shown, as a mismatch of 10% can be distributed between beam waist and position
mismatch. Thus for a given mismatch the sensitivity can lie somewhere between the
upper coloured bound and the solid-black 6 dB line.

A diagram of the simplified problem being considered is illustrated in figure 6.2. The

squeezer here has been simplified to a single laser source (SQZ), which is injected
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into the main interferometer (IFO) through the output faraday isolator (OFI). The

gravitational wave signal is then filtered by the output mode cleaner (OMC) cavity,

whose purpose it is to remove junk light and radio-frequency sidebands that do not

contribute to the gravitational readout. The GW signal is measured by the photodiode

DCPD.

PSL

IFO

SRM

PRM

XARM

YARM

OMC

OFI

DCPD

SQZ

q qOMCSQZq
IFO

Figure 6.2: A simplified diagram of a gravitational wave interferometer with squeezing
for illustrating the mode matching problem that is being considered in this paper. The
interferometer and squeezer beam both need to be simultaneously mode matched to
each other and the output mode cleaner (OMC). The mode matching problem reduces
to making all of the q parameters equal qIFO = qSQZ = qOMC. The definition of the q
parameter and its application to mode matching is given in section 6.3.

The modes of the OMC cavity, IFO and SQZ beam are parameterized by the q pa-

rameters qOMC, qIFO, and qSQZ respectively. To minimise the squeezing losses due to

mode mismatch it is necessary to minimise the difference between all three q param-

eters when the beams are overlapped. Current plans for upgrades and future designs

will implement additional optical cavities called filter cavities [207]—which also require

mode matching to. These will provide frequency-dependent squeezing for a broadband

reduction in quantum noise, as opposed to frequency-independent squeezing as shown

in figures 6.1 and 6.2.

Mode matching the squeezer to the IFO becomes increasingly challenging due to the

ever increasing requirements for optical power stored in the interferometer. The in-

creased power introduces significant thermal lensing which varies over time and must
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be actively compensated for [141]. Various actuators are available to correct for this

[89, 118] however accurate sensors for measuring the distortion to the optical fields are

not as prevalent.

Heterodyne wavefront sensing techniques using quadrant-photodiodes can be used to

sense both alignment [70] and shape [190] distortions in optical fields. Annularly seg-

mented diodes, known as bullseye-detectors, can also be used [80, 117]. However, these

schemes require the use of multiple sensors and gouy-phase telescopes to sense each of

degree of freedom: translation, displacement, size, and curvature of the beam. An al-

ternative method proposed by Fulda et.al. [157] uses an electro-optic beam deflector to

generate a Hermite-Gaussian HG10 sideband that can be used as a reference for align-

ment sensing. This simplifies an experiment by using single-element photodiodes and

does not require any Gouy-phase telescopes. Segmented photodiodes and higher order

Hermite-Gaussian modes have additionally been used to generate DC cavity length

error signals [75, 130].

In this paper we demonstrate a new heterodyne scheme that uses a single HG20+02

sideband selected by a resonant cavity from a phase modulated, mode mismatched

beam. This HG20+02 sideband beats with a HG00 carrier to produce mode matching

error signals for both degrees of freedom on a single photodiode with no Gouy-phase

telescopes. Experimentally we show how this can be used to match a beam’s shape to

an optical cavity to 99.9%. This scheme allows multiple sequential cavities to be mode

matched together and can be applied for mode matching the squeezed light source,

filter-cavity, interferometer, and the OMC in current and future GW detectors.

Firstly, in section 6.3 we present the theory of the mode matching error signal as well

as a simpler model in section 6.3.2 that can compute the mode matching error signal to

first order in mismatch. In section 6.4 an experimental demonstration of the proposed

mode matching scheme is described followed by an analysis of the results in section 6.5.

Finally, in section 6.6 we present how this mode matching error signal can be applied

to Advanced LIGO [135].

6.3 Theory
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6.3.1 Ideal mode matching error signal

Mode matching, as defined in the context of optical cavities is the process of changing

the incoming beam shape to match the eigenmode of a cavity. The eigenmode of a

stable cavity is parameterized by a single complex number q = z+izR, often referred to

as the beam parameter [50], where z is the distance to the beam waist, and zR = πw2
0/λ

is the Rayleigh range of a beam with waist size w0 and wavelength λ.

Mode matching is achieved when the waist position and size of the input beam matches

the eigenmode of the cavity, which can be done by minimizing the quantities ∆w0 and

∆z illustrated in figure 6.3. These two quantities form the two orthogonal degrees

of freedom for mode matching. Both must be measured simultaneously in any mode

matching sensing scheme. This is analogous to alignment sensing where the two degrees

of freedom to be minimised are tilt γ and displacement δ as illustrated in figure 6.3.

a) b)

Figure 6.3: a) The two misalignment degrees of freedom: tilt γ (red), and displacement
δ (blue) with respect to the cavity axis (black). b) The two mode matching degrees of
freedom: waist position ∆z (red), and waist size ∆w0 (blue) with respect to the cavity
eigenmode (black).

An idealised mode matching error signal would indicate for a given q1 and q2 what is

the mode mismatch between them, and more importantly the direction in q space along

which they lie. One can define a quantity M, which we call the ideal mode matching

error signal that has the required properties

M(q1, q2) =
q2 − q1
q2 − q∗1

(6.1)

where the mode mismatch is given by M = |M|2 [43] . The mode mismatch M between

two Gaussian beam parameters q1 and q2 is defined by the fraction of HG00 power in

q1 that appears as higher order HG modes in q2.
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From the definition of mode mismatch M it is evident that it can be satisfied by more

than one value of q2 for any q1 and nonzero M. The set of q2’s that satisfy M = |M|2

are called the M mode matching contour of q1. The contour of q2’s for q1 = z1 + izR1

can be completely described by

q2 = q∗1 +
2 i zR1

1 +
√
M exp(iθ)

(6.2)

where 0≤θ<2π is the angular position along the contour of constant mode mismatch

M in q-space.

To first order in mode mismatch M is

M(q1, q2) =
εq(q1, q2)

2
+O

(
ε2
)

(6.3)

where εq is a relative change in beam parameters. It is defined as

εq(q1, q2) =
q2 − q1
zR,1

= εz(q1, q2) + iεzR(q1, q2) (6.4)

where zR,1 is the imaginary part of q11. The real part of this εz represents a waist

position mismatch, and εzR Rayleigh range mismatch between the q1 and q2; these are

also referred to as the orthogonal mode matching quadratures. We show in section 6.3.2

that the proposed mode matching error signal approximates the ideal mode matching

error signal to first order in mode mismatch up to a constant factor.

6.3.2 Single sideband error signal

Here we provide a broad overview of our technique and detailed mathematical deriva-

tions can be found in appendix D.3. In order to understand how our scheme can be

applied to an arbitrarily complicated optical system such as a gravitational wave de-

tector we must first cover two key cases. The first being the mode matching between

two beams as in figure 6.2 between qIFO and qSQZ. The second being the mode match-

ing between a beam and a cavity as in figure 6.2 between qIFO and qOMC. Additional

instances that require mode matching error signals in Advanced LIGO can be obtained

from these two cases and are discussed in more detail in section 6.6. For example mode
1The Rayleigh range in (6.4) can be for either q1 or q2 as they are approximately equal for small

mode mismatches. The lowest numerical error is achieved using (zR,1 + zR,2)/2
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matching to a filter cavity in the planned A+ upgrade [176] to Advanced LIGO would

require the application of the second case.

For both cases, let us consider the behaviour of a beam consisting of a HG00 carrier at

the optical frequency ω0 with a beam parameter q1 and a HG02,20 single sideband with

a beam parameter q2 at a frequency offset Ω,

E =
[
U00(q1) + (U20(q2) + U02(q2))e

iΩt
]
eiω0t. (6.5)

Here Unm are the 2D transverse mode shape for the nm-th Hermite Gaussian modes. In

the case q1 = q2, this beam would look as if the carrier q1 parameter is being modulated

in both waist position and size at a frequency Ω, forming a beam with pure beam shape

modulation at frequency Ω. This is due to the fact that a HG00 beam combined with a

small amount of HG02 can be considered to be a pure HG00 but with a slightly different

q parameter [42] and a single sideband implies a modulation in both quadratures.

Mode matching error signal between two beams

For the first case, the optical field (6.5) incident on a photodiode will generate a pho-

tocurrent I ∝ |E|2. To compute the mode matching error signal we must first ensure

all optical fields are represented in the same q basis—here we choose to project the

HG02,20 in the basis q2 into q1, as depicted in figure 6.4. When the carrier and sideband

have the same q1 = q2 parameter the HG00 and HG02,20 are orthogonal and produce

no beat. In general the carrier and sideband would travel through separate optical

systems such that q1 6= q2 when they are combined on a beamsplitter. Demodulating

I at a frequency Ω and low-passing the output results in the complex-valued signal

Zbeam = −i
√
P00P02

√
2

2
εq(q1, q2) +O

(
ε2
)
. (6.6)

We derive this expression in detail in appendix D.3.1. Here P00 and P02 are the power

in the carrier and reference sideband respectively. The measured error signal at some

demodulation phase φ is then given by Re(Zeiφ). Thus we can easily select either

the real or imaginary part of the mode matching error signal using the demodulation

phase.
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HG0

HG2

HG4

HG0

HG2

HG4

Figure 6.4: An example of a basis change. The two mode spectra on the left and on the
right describe the same beam but in bases q1 and q2 respectively. The new Hermite-
Gauss modes that are generated during the basis change are indicated with red arrows.
The coupling coefficients knm used to scatter fields to other Hermite-Gaussian modes
in a basis change are listed in Table D.1.

Mode matching error signal on reflection of a resonant cavity

For mode matching between a beam and a cavity, which is the second case described

in section 6.3.2 we must consider when (6.5) with q1 = q2 is reflected off of an optical

cavity with eigenmodes parameterised by qcav . The cavity is held on resonance for the

HG00 carrier, the resonating field has a shape defined by qcav. To compute the mode

matching error signal we are required to project all components of the incident field

into the qcav basis. The complex-valued error signal is this case is found to be

Zcav = −i
√
P00P02 (Rcav − 1)

√
2

2
εq(q1, qcav) +O

(
ε2
)
, (6.7)

where εq is now the mismatch between q1 and qcav, and Rcav is the reflectivity of the

cavity for the carrier. Rcav depends on whether the cavity is over-coupled, impedance

matched, or under-coupled [140]

Rcav = sign(R1 −R2)

(
R1 −R2

R1 +R2 − 2

)2

, (6.8)

where R1,2 are the reflectivity of the input and output mirrors. For over-coupled,

impedance matched, and under-coupled cavities Rcav takes the values −1 < Rcav < 0,

Rcav = 0, and 0 < Rcav < 1 respectively.

If q1 = qcav there is again no optical beat measured at the reflected photodiode due to

the HG modes of the incident and circulating fields being perfectly orthogonal. In the
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case where the incident beam is mismatched this orthogonality between the modes is

broken and an optical beat is measurable.

Generating a single HGnm sideband

There are multiple ways in which a single sideband can be generated. In this work we

will produce the single sideband field as described by (6.5) by using a Mach-Zender

interferometer. One of the paths will contain a Fabry-Perot cavity which is locked to the

HG20+02 mode of phase modulated sideband generated by an electro-optic modulator

(EOM). This is then combined with the original unmodulated carrier field to produce

the final field. Although simple the q of the carrier and sideband will not be identical,

thus care must be taken to mode match and align them well. The downside of this

method is that it is not particularly efficient as the vast majority of the power resides

in the carrier frequency, the non-transmitted sideband, and in the HG00 mode.

An alternative method would be to use a modulated mode-mismatched beam where the

frequency of the sidebands are chosen so that HG20,02 higher order mode of sidebands

resonates simultaneously with the HG00 at the carrier frequency. Both then have the

same q parameter and are transmitted through the cavity ensuring the carrier and

sideband are aligned, as well as mode and phase matched. The efficiency of sideband

generation is identical to our Mach-Zender method. However unlike the Mach-Zender

method the choice of modulation frequency is fixed for a particular cavity, and for short

cavities the modulations frequencies can also be prohibitively high unless a cavity near

to geometric instability is used.

A more efficient approach could be to use an EOM with specifically designed electrodes

that shape the electric field inside the electro-optic crystal in such a way that it lenses

a beam passing through it—similar to Fulda et.al’s [157] modulator. A disadvantage

with this method is that the lensing created by such a modulator would likely be almost

purely astigmatic due to the fact that external electrodes require the divergence of the

electric field inside the crystal to be zero. Then to sense mode mismatch an astigmatic

cavity can be used to select out either the horizontal or vertical higher order mode,

alternatively an astigmatic Gouy-phase telescope [190] can be used to to correct the

phase difference between the vertical and horizontal modes to obtain a cylindrically

symmetrical modulation.
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6.3.3 Mode matching actuators

For the mode matching error signal to be useful it is necessary to be able to actuate on

the mode matching of a beam to a cavity. This can be achieved by either changing the

position of a focusing optic or the focal power of an optical element. Mode matching

has two degrees of freedom and so to fully actuate on mode matching two orthogonal

actuators are required. The distances that fixed focal length lenses or mirrors needed to

be translated is typically up to tens of centimeters. Focus adjustable lenses or mirrors

are an attractive option for a mode matching actuator since the optic can remain in

one place.

The mode matching actuator used in this experiment was a liquid lens on a manual

translation stage. The position and focal power of the lens served as the two orthogonal

mode matching degrees of freedom. This was chosen as a compromise between cost and

usability. The mode matching actuator needed to respond quickly in order to map out

the mode matching error signal in actuator space in a reasonable amount of time. Two

static lenses on translation stages would have been too slow and two liquid lenses per

mode matching stage was beyond the budget of the experiment. To scan the parameter

space the liquid lens would be manually moved to each point, which was slow, and then

the current of the liquid lens would be swept, which was fast.

The position of the liquid lens and translation stage was determined using an optimiza-

tion algorithm such that each mode matching stage achieves about 20% mode mismatch

from ideal mode matching at the edge of the actuation range. The model used in the

optimization was a beam tracing ABCD matrix model with estimates for the input

and target beam parameter determined from cavity geometry and beam profiles. It

was found to satisfy the requirement of relatively uniform actuation 20% mode match-

ing actuation the addition of a 30 cm offset lens was necessary to both liquid lenses.

This offset lens was mounted to the liquid lens via a short lens tube. The input beam

had to be carefully aligned through the lens tube had to prevent misalignments when

translated and when the liquid lens focal length changed. This misalignment proved

to be extremely difficult if not impossible to eliminate completely. For any position on

the translation stage the misalignment due to focal length change can be eliminated

completely by walking the input beam position and angle such that the beam spot
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motion is minimized in both the near and far field. However once the liquid lens is

translated the misalignment due to focal length change returned and the input beam

alignment has to be readjusted. This is most likely due to misalignments between the

lens tube axis and the translation axis, for which we had no method of aligning to the

degree needed to remove misalignments when the mode matching is changed.

The tube and translation axis misalignment was minimized using irises, which improved

the situation but could not eliminate the misalignment completely. The remainder of

the induced misalignment from the mode matching actuator was compensated for by

hand with two beam steering mirrors sitting between the liquid lens telescope and the

triangular mode cleaner. For each measurement of the mode matching error signal the

alignment was adjusted with those mirrors to minimize the HG01 and HG10 resonances

in the triangular mode cleaner cavity. An automatic alignment control system to the

input of the mode cleaner could be used here to eliminate the residual misalignment.

6.4 Experimental Demonstration

To test the proposed mode matching error signal an experiment as depicted in figure

6.5 was performed where the goal is to mode match qNPRO to qcav. Additionally, it

was designed to replicate the parts of the aLIGO output in figure 6.2 that would be

relevant for the mode matching error signal. The goals of this experiment were to

show that zeroing the error signal optimizes the mode matching metrics: maximizing

the transmission through a resonant cavity, and minimizing the amount of HG02+20

circulating in the cavity. We show that to achieve this careful consideration of mode

matching error signal, offsets are required.

The experiment description presented here is split into descriptions of the optical and

electronic paths.
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Figure 6.5: Diagram of the tabletop experiment performed to verify the mode matching
error signal. It has been designed to simulate the optical layout of the output of an
advanced gravitational wave detector. The generating cavity plays the part of the OPO
cavity in figure 6.16. The triangular mode cleaner works as the OMC, and the NPRO
as the interferometer beam. The RF signal generation, mixing, and lowpass filtering
was all done on STEMlab 125-14 FPGAs by Red Pitaya [191] running the PyRPL
package [162].

6.4.1 Optical path

A beam from a 1064 nm non-planar ring oscillator (NPRO) (Innolight Mephisto [153])

was split into two paths in a Mach-Zehnder configuration before being recombined

and incident onto a triangular cavity. One of the paths was intended to represent the

interferometer beam, which goes through an adjustable focal length liquid lens (EL-

10-30-C-NIR-LD by Optotune [224]) on a translation stage. The NPRO beam was

intentionally not spatially filtered in any way in order to mimic the fact the interfer-

ometer beam is not a pure HG00 [113]. The liquid lens telescope allows us to change

the qNPRO parameter to match it to qBSM when the beams combine on the beamsplitter.

The other path goes through a 12 MHz New Focus 4005 EOM [126], which adds a pair

of 12 MHz phase modulation sidebands to the beam. These sidebands are typically

used to provide a PDH error signal to lock a cavity to a resonance of the carrier beam
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Figure 6.6: Annotated photo of the NPRO laser side of the tabletop mode matching
error signal experiment.

[41, 84]. Typically, the PDH error signal is used to lock to the HG00 of the carrier

beam. Here the PDH error signal is used to lock the length of the generating cavity in

figure 6.5 to the HG02 mode of a 12 MHz sideband. The HG20 mode is also resonant

at the same frequency.

About 1% of carrier HG00 power was transmitted through the generating cavity as

12 MHz HG02, which was sufficient for demonstrating the mode matching error signal.

The theoretical maximum conversion efficiency for this process is about 4.2%, which

can be obtained by using about about 67% of input mode mismatch into the generating

cavity, and an EOM modulation depth of about 1.8.

The generating cavity in this experiment is a 20 cm long L-shaped hemispherical cavity

with a flat input coupler and a 50 cm output coupler, both at 99% reflectivity. The

corresponding finesse and free spectral range (FSR) are 310, and 750 MHz respectively.

The L-shape was chosen to facilitate the available PZTs for cavity length tuning, which

only worked on reflection and so could not be mounted on either the input or output

coupler. The intermediate mirror in the L-bend is a flat HR mirror with a Thorlabs

PK25LA2P2 [167] PZT stack located about 5 cm away from the input coupler. The

waist of the cavity is located at the input coupler and has a design size of 290 um.



116 CHAPTER 6. MODE MATCHING ERROR SIGNALS

The two arms of the Mach-Zehnder are recombined with a 50:50 beamsplitter. For

convenience we will call the beam that is still in the fundamental mode the optical

local oscillator and the 12 MHz offset HG02+20 beam as the mode modulation beam.

One of the output ports of the Mach-Zehnder is incident on a photodiode PDphase with

an iris. The iris clips the beam around the center to break the orthogonality between

the optical local oscillator and the mode modulation beam. This is used to provide

a phase error signal for the microscopic path length changes between the two arms of

the Mach-Zehnder.

Figure 6.7: Annotated photo of the generating cavity and Mach-Zehnder side of the
tabletop mode matching error signal experiment.

The phase error signal is used to drive a Thorlabs PK25LA2P2 PZT [167] in the optical

local oscillator arm to lock the phases of the two arms. This step is necessary as the

phase difference between the optical local oscillator and the mode modulation beam

couples into the mode matching error signal readout and hence needs to be kept fixed.

The photodiode PDHOM measures a mode matching error signal between qNPRO and

qBSM as described in section 6.3.2. This error signal must be zeroed by adjusting

liquid lens telescope 1 in figure 6.5 to mode match the optical local oscillator to the

mode modulation beam before the combined beam can accurately measure the mode

matching error signal to the triangular mode cleaner cavity on PDrefl2. For subsequent

mode matching calculations the Eigenmode of the generating cavity is used as the
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reference when the Mach-Zehnder arms are mode matched.

The combined optical local oscillator and the beam modulation sideband are then

incident onto a triangular cavity that corresponds to the OMC cavity in a GW detector,

which we want to mode match to. This triangular cavity was a monolithic aluminum

shell with three mirrors glued at fixed points to form a triangular path inside the shell.

This cavity was originally built for a different experiment at the UofA and was used

here as a time and cost saving measure. The reflected beam off of a triangular cavity

is not collinear with the incident beam and hence there is no need for or a Faraday

isolator between the Mach-Zehnder output and the triangular mode cleaner cavity.

Figure 6.8: Annotated photo of the output mode cleaner side of the tabletop mode
matching error signal experiment.

The beam incident on the triangular mode cleaner is phase modulated at 17 MHz

with another New Focus 4005 EOM [126] to generate the PDH error signal, which is

measured by demodulating PDrefl2. On reflection the mode modulation beam produces

a 12 MHz amplitude modulation that is proportional to the mode mismatch between

the incident beam and the triangular mode cleaner cavity as described in section 6.3.2.

The demodulated 12 MHz signal is then fed back to LLT2 to match to qNPRO to qcav.

The transmission through the mode cleaner is monitored by the photodiode PDtrans. A

good mode-matching error signal will ensure the transmission is at a maximum when

the mode matching error signal is zeroed.
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6.4.2 Electronic path

Phase modulation sidebands

The 12 and 17 MHz signals were generated using two Red Pitaya STEMlab 125-14 [191]

FPGAs separately. The Red Pitayas have 14-bit DACs, which allow for high quality RF

signal generation. To minimize digitization artifacts we ran the signals at the highest

possible output voltage, which was 2 V peak-to-peak. This was not sufficient to drive

the EOMs at a suitable modulation depth and so the RF signals had to be amplified.

For this we used two ZHL-1A wideband RF amplifiers by Mini-Circuits [161], one

for each RF signal frequency. The gain of the ZHL-1A is quoted as 17 dB between

2–500 MHz. To bring the RF signal level down to desirable levels RF attenuators were

used.

The amplified RF signals were used to drive the EOMs — a pair New Focus 4005 phase

modulators [126] — which contain an electro-optic crystal that changes its refractive

index with the voltage applied to a pair of electrodes. The voltages needed to produce

a sufficient refractive index change can be large, and so it is common to combine the

crystal with an inductor to form a resonant tank circuit. The resonant tank circuit

has a large gain when compared to a broadband EOM, but only for the resonant

frequency of that tank circuit [126]. The two EOMs used were originally procured

for a different experiment, but the coatings and resonance frequencies — 12 and 17

MHz — proved suitable for this experiment. With the modulation frequencies it was

important to consider the cavity lengths in this experiment. The length of an optical

cavity determines the frequency shift from one longitudinal mode to the next, which

is also known the free spectral range of the cavity. If a cavity is too short the phase

modulation sidebands become partially resonant with the carrier, which can cause

issues. In this experiment it was found that the partially co-resonant sideband and

carrier introduced an offset into the mode matching error signal, which is discussed in

more depth in section 6.5.1. Thankfully this offset can be measured and subtracted,

though the need for the offset subtraction can be removed in the first place by designing

the cavities and picking the phase modulation frequencies so that the sidebands do not

partially resonate with the carrier.
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Photodetector bandwidths

When measuring RF optical beats it is important to ensure that the bandwidth of the

photodetectors includes the modulation frequencies The RF sensing photodetectors

were all Thorlabs DET10C2 [166] with the exception of PDrefl, which was an in-house

photodetector, built at the UofA for a different experiment. Its specifications are

similar to the DET10C2 and was only used as a cost saving measure.

The Red Pitaya has input impedance of 1 MOhm, similar to most oscilloscopes. Be-

cause of this each photodetector was connected to the Red Pitaya input in parallel

with a 50 Ohm terminator to minimize RF reflections and to maximize the photode-

tector bandwidth. The DET10C2 photodetectors are specified to have a 80 pF junction

capacitance, which gives them a 35 MHz bandwidth when terminated with 50 Ohm

load [166]. This bandwidth is inversely proportional to the resistive load and so in

principle the detectors could have been terminated with a 100 Ohm load for more

signal gain at a 17.5 MHz bandwidth, which would have been sufficient for the RF

frequencies in this experiment.

The photodetector PDtrans was only used as a DC power meter, terminated at the Red

Pitaya with a 50 KOhm trimpot — a variable resistor that was used to set the signal

level to make the most of the 14-bit ADC on the Red Pitaya. Despite the optical

signal not having any RF components the resistive load cannot be too large since that

introduced visibly noticeable distortions to the resonance peaks of a cavity scan. The

distortions could be reduced by lowering the resistive load, thereby increasing detec-

tor bandwidth, or reducing the cavity scan rate, which would decrease the frequency

content of the signal, allowing it to fit within the limited detector bandwidth. The

range of cavity scan rates and load resistance was not tightly constrained and so an

appropriate combination of the two was chosen without much consideration. A scan

rate of about a tenth of a second per cavity FSR was used in this experiment.

Electronic noise sources

It was found that a non-negligible amount of noise was coupling into the experiment

via ground loops, particularly at the mains frequency and the harmonics. A number

of measures were taken that appeared to significantly reduce this type of noise. The
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optical table used in this experiment, like most was grounded with an explicit connec-

tion between the tabletop and the earth of the lab power outlet as a safety measure.

The Red Pitaya, unlike some ADCs does not use the lab earth as the ground and is

instead grounded through its SMA connectors [191]. This allows the Red Pitaya to

have a completely independent electronic ground from the lab earth, greatly reducing

ground loop noise. However, this ground loop separation can be easily undone if any

of the components connected to the Red Pitaya are grounded to the lab earth ground.

This can easily happen for example if any of the photodetectors make electrical contact

with optical table, since the photodetectors are typically grounded through their case.

The electrical contact usually comes from the optical post, which is typically screwed

to the case and then held in place by post mount. The contact can be broken by using

a post mount with a base made of a non-conductive material, such as acrylic, thereby

insulating the photodetector from the ground.

Additionally it was found that the DC power supplies can induce noise in the sensing

loops through capacitive coupling. This noise was reduced by moving the DC power

supplies as far away from the Red Pitayas and sensing photodetectors as possible inside

the lab. Another known source of noise was attributed to the switch mode power

supplies used to power the Red Pitayas. This noise could be removed by replacing the

power source for the Red Pitaya with a battery. This switch mode power supply noise

had a negligible contribution to the overall signal to noise of the mode matching error

signal, which was ultimately limited by the noise of the Mach-Zehnder phase lock loop.

For convenience the experiment was performed with the Red Pitaya’s bundled switch

mode power supplies.

PZT operation

This experiment used 3 PZTs, each of which was handled differently. The PZT con-

trolling the length of the generating cavity was a Thorlabs PK25LA2P2 [167] driven by

PiezoDrive PD200 amplifier [178] which has a gain of 20 V/V. The driving signal for

the generating cavity PZT came from the PDrefl photodetector that was demodulated

by the Red Pitaya at 12 MHz. The Red Pitaya can output anywhere between ±1 V

and so the PD200 was operated with 25 V offset to ensure that the voltage at the PZT

never drops below 0 V, which is harmful for the PZT.
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The 12 MHz demodulation for PDrefl can be performed onboard the Red Pitaya without

an external 12 MHz reference because the original 12 MHz modulation was referenced to

the Red Pitaya clock. Better yet, the Red Pitaya can demodulate at any demodulation

phase since any phase shifted 12 MHz it generates is also referenced to the same clock.

The demodulated signal is then digitally low passed onboard the Red Pitaya with a

3 KHz bandwidth and fed into an onboard PID controller. This PID controller outputs

a sum of the demodulated signal and the same signal filtered through simple IIR digital

integrator with an adjustable gain. This makes the Red Pitaya a nearly ideal optical

lockbox that can function as a signal generator, ADC, RF mixer, and PID controller

all at the same time.

Suitable proportional and integrator gains were found by experimentation. The proce-

dure used to find the gains was to increase the integrator gain until the system began

feeding back high frequency noise. The integrator gain was backed off by about 10%

from that point, after which the proportional gain was increased until the loop fed back

high frequency noise. The proportional gain was then reduced by about 10% from that

point. No derivative gain was used for any PID loops in this experiment.

The largest PZT was mounted to the monolithic triangular cavity. This triangular

cavity together with its PZT was originally made for a different experiment at the

UofA and was used here as a cost saving measure. This PZT was driven by a Thorlabs

BPC301 [180] piezo controller with the internal voltage gain set to 7.5 V/V. The

BPC301 has an onboard voltage offset, which is set digitally. Unfortunately this digital

voltage offset is reset every single time the BPC301 is turned off. In lieu of this an

in-house amplifier was made to sit between the Red Pitaya and the BPC301, which

added about 5 V to the Red Pitaya output to ensure that the signal fed to the BPC301

is always positive. A separate amplifier is not strictly necessary since the Red Pitaya

output signal can be offset onboard the Red Pitaya to always lie between 0 and 1 V

to ensure it is always positive. Though this decreases the available bins the signal can

occupy by half, which is not ideal. The driving signal for the triangular cavity PZT

came from the PDrefl photodetector that was demodulated by a Red Pitaya at 17 MHz

using the same methods as was for the 12 MHz signal.

The last PZT was another Thorlabs PK25LA2P2 [167] which was mounted to the back
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of a mirror inside the optical local oscillator path in the Mach-Zehnder. The driving

signal for it was the 12 MHz optical beat as sensed by PDphase, which sat behind an iris

that clipped all but a tiny fraction of the center of the beam to break the orthogonality

between the HG02 sideband and HG00 carrier. This 12 MHz signal was demodulated

on an analog Mini-Circuits RF mixer because the 12 MHz Red Pitaya had no more

available ports and another Red Pitaya could not be used since it would have a different

clock. The 12 MHz local oscillator for the demodulation was picked off from the signal

going to 12 MHz EOM using an RF splitter. The output of the RF mixer was connected

to a third Red Pitaya, which was used only as a PID controller for the Mach-Zehnder

length signal. The demodulated signal was amplified prior to the Red Pitaya by a

AMP220 voltage amplifier from Thorlabs to avoid digitization artifacts from the Red

Pitaya ADC. The output signal from this Red Pitaya was amplified by PDu100B piezo

driver from PiezoDrive which has a gain of 27.5 V/V, which was connected directly to

the Mach-Zehnder PZT.

The Mach-Zehnder signal was noticeably more noisy than the generating cavity and

triangular mode cleaner PDH signals. This is likely due to the increased shot noise from

physically obstructing most of the light on PDphase, though this was not investigated in

detail. In this experiment all noise from the Mach-Zehnder length is imprinted directly

onto the mode matching error signal. Despite this the experimental setup as described

in this section proved sufficient to achieve 99% mode matching to the triangular mode

cleaner.

6.5 Experimental Results

Varying one of the mode matching degrees of freedom provides a one dimensional slice

of the mode matching error signal as shown in Fig. 6.9. The I and Q phase of the

mode-matching error signal are each an error signal for a set of two orthogonal mode

matching degrees of freedom. The demodulation phase was chosen such that the Q

phase was most sensitive to the liquid lens current. The I phase shows less response to

changing the liquid lens current, especially around the zero of the Q phase error signal.

A more complete picture of the mode matching error signal can be obtained by inde-

pendently scanning both mode matching actuator degrees of freedom in figures 6.10
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Figure 6.9: A 1D slice of the mode matching error signal measured at PDrefl2 while
varying the current on LLT2 in figure 6.5. The demodulation phase was chosen such
that the Q phase was most sensitive to the liquid lens current.

and 6.11. Here the zero crossings of both I and Q phase form straight lines of different

slopes, and hence intersect at a single unique point; the point that the mode matching

actuators will be led to. As with Fig. 6.9 the demodulation phase has been chosen such

that Q phase error signal is insensitive to liquid lens position. This leads to the I phase

error signal to sense a linear combination of liquid lens current and position from the 45

degree contours it makes in the 2D error signal plots in figure 6.10. This is due to the

fact that liquid lens position and current are not orthogonal mode matching actuators.

When the I and Q phase zero crossings are overlaid onto the power transmitted from

the cavity in figure 6.12 it can be seen that the zero of the mode matching error signal

is offset from the peak of the transmitted power.
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Figure 6.10: Measured I phase of the mode matching error signal. The zero crossing is
highlighted in red.
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Figure 6.11: Measured Q phase of the mode matching error signal with the zero crossing
highlighted in red.
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Figure 6.12: The power transmitted through the cavity with both the I and Q crossings
overlaid. The offset between the zero crossing and the peak of the transmitted power
is a known error signal offset described in section 6.5.1, and results of its subtraction
illustrated in figures 6.13 and 6.15.
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6.5.1 Error signal offset

Leaked carrier HG02 from generating cavity

The main contributor to the offset shown in figure figure 6.12 is the residual carrier HG02

leaking through the generating cavity. With a design finesse of 300, and free spectral

range (FSR) of 600 MHz a non-negligible amount of carrier HG02 would leak through

the generating cavity on resonance in addition to the 12 MHz HG02. It was estimated

that the ratio of leaked carrier HG02 power to 12 MHz HG02 in this experiment was

about 2%. The leaked carrier HG02 and the 12 MHz HG02 would produce a beat at

12 MHz which offsets the 12 MHz beat that comes from mode matching error signal.

The offset can be easily measured by demodulating PDrefl2 at 12 MHz while blocking the

optical local oscillator. This beat should read zero if the beam modulation sideband is a

pure 12 MHz offset HG02. Any other value read is then the offset for the mode matching

error signal. This offset calibration procedure was applied to the mode matching error

signals measured in the validating measurement described in section 6.5.2.

The amount of leaked carrier HG02 in this experiment could be greatly reduced by

either increasing the modulation frequency or increasing the generating cavity finesse,

but was found to not be necessary after the offset calibration was performed.

Misalignment

It was found that small misalignment have a quadratic coupling into the proposed

mode matching error signal by studying the k0200 coupling coefficient described in ap-

pendix D.3. Both numerical integration and Taylor expansions of k0200 show quadratic

dependence on misalignment and linear dependence to mode mismatch.

An experimental verification of alignment sensitivity was not investigated, as manual

alignment by hand produced negligible offsets when compared to the larger sources of

offset, such as leaked carrier from the generating cavity. Due to imperfect alignment

through the liquid lens, they induce misalignments whenever their current or position

are changed. An auto-alignment system could be used to actively compensate for this

and reduce misalignment further if required.
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Astigmatism

It is also possible for astigmatism to present itself as an offset in the mode matching

error signal if the cavity being mode matched to is astigmatic compared to the incoming

beam or vice versa. The error signal will then have a zero between the individual zeroes

of the horizontal and vertical planes. It is possible to extend this mode matching error

signal to be able to sense astigmatism by making the cavity that generates the beam

modulation sideband to be astigmatic or purely resonate the HG20 or HG02. Then

this cavity can be locked to the vertical or horizontal second order modes to provide

independent mode matching error signals for either plane. An astigmatic actuator is

then needed to be able to simultaneously drive the error signals in both planes to zero.

6.5.2 Validating measurement

To validate the mode matching error signal it is necessary to compare it to an external

measure of mode mismatch such as a cavity length scan by applying a ramp voltage

to a cavity mirror PZT. The ratio of the peak heights of the HG02+20 to the HG00

resonance provides a measure of mode mismatch. Performing a cavity scan for each

point in actuator space is a time intensive task without an automatic cavity lock

acquisition system, as the cavity needs to be relocked to the HG00 mode after each

scan to read off the mode matching error signal. It is therefore desirable to obtain

a validating measurement of the mode matching error signal with the fewest possible

number of points to prevent ambient low frequency fluctuations to influence the results.

From figures 6.9 to 6.11 we can see that the error signal remains linear over a broad

range in actuator space around the perfect mode matching point. One could then en-

visage a measurement where a small number of sparsely separated points are measured

in actuator space. Covering the rest of actuator space can be done by fitting a polyno-

mial surface or using an unstructured interpolation method such as thin plate spline

interpolation [210]. We chose the latter due to its simplicity and lack of any external

parameters that required optimizing.

With the error signal interpolated across the actuator space the zero of the error sig-

nal can be found by brute force evaluation. It is likely that the interpolated zero

point would not zero the error signal, but its measurement can be fed back in to the
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interpolation to yield an improved estimate of the true zero point of the error signal.
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Figure 6.13: The six chosen points in actuator space for the validating measurement of
the mode matching error signal. The contours are the corresponding mode mismatch
as predicted by the mode matching error signal.

The results of following this procedure are illustrated in figures 6.13 to 6.15. The first 5

points were chosen from prior assumptions of the location of the zero point of the error

signal. The 6th point was the zero of the interpolated error signal, which coincided

with the true zero of the error signal such that including it in the interpolation did

not change the location of the interpolated zero point. The difference between optimal

mode matching points in figures 6.12 and 6.13 was due to changes in the optical setup,

specifically the positions of the liquid lens telescopes.

Additional measurements were taken near the zero point (not shown in figure 6.13), all

yielding higher mode mismatch and non zero error signal values. This confirms that

the offset subtraction in section 6.5.1 works as intended and the resulting error signal

has no offset down to measurement uncertainty. We quote our best mode matching

achieved with the mode matching error signal is 99.9+0.01
−0.1 %. The largest source of

noise for the mode matching error signal in this experiment was found to be the Mach-

Zehnder phase lock loop measured on PDphase in figure 6.5. An analysis of shot noise

was performed in appendix D.4 and was found to be negligible compared to the noise

from the Mach-Zehnder phase and PDH loops.
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Figure 6.14: Cavity scans at each point in actuator space. The colour of each curve
corresponds to the points in actuator space from figure 6.13
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Figure 6.15: A close up of the HG02 resonance of the cavity scans from figure 6.14.
Inset are the peaks of the HG00 resonances. The true mode mismatch is estimated by
the ratio of the heights of the HG02+20 and HG00 resonances.

We hypothesize that our residual mode mismatch is a result of the difference in astig-

matism between the incoming beam and mode cleaner. Varying the input alignment
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did not strongly affect the height of the HG02+20 resonance compared to the HG01,10

resonance.

6.6 Application in a gravitational wave detector
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YARM

CLF

OMC
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DCPD

FCREFL
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Filter
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Figure 6.16: Shown is an optical layout of the output side of the a gravitational wave
detector with the key photodiodes and cavities that our scheme would interact with.
The frequencies listed in the legend are specific to Advanced LIGO. The only optical
components that are new to aLIGO are the AOM and phase-plate, along with the extra
optics to form the Mach-Zehnder in the CLF path. These extra components could be
replaced with a single 400 MHz EOM to make the setup more similar to figure 6.5 at
the cost of reducing the HG02,20 sideband generation efficiency.

The proposed mode matching error signal can be applied in a gravitational wave de-

tector to sense the mode mismatch between the cavities in the squeezer path and the

interferometer beam, in addition to sensing the mode mismatch between the interfer-

ometer beam and the output mode cleaner. In this section we will consider how this

could be implemented in a detector like Advanced LIGO (aLIGO).

A diagram of showing a possible implementation of the proposed mode matching error

signal in aLIGO is shown in figure 6.16. The key idea is that the single reference

HG20+02 sideband can be generated by exciting the higher order mode resonance in the

optical parametric oscillator (OPO) that generates the squeezing simultaneously while



6.6. APPLICATION IN A GRAVITATIONAL WAVE DETECTOR 131

exciting the HG00 that would be the squeezed light mode. As described in section 6.3.2

this field can then be matched sequentially to the filter cavity, interferometer, and

finally the OMC.

To implement the proposed mode matching error signal in aLIGO would require the

addition of an AOM to produce a frequency shifted field at δf2 , where δf2 is the

frequency offset of the second order transverse modes in the OPO cavity relative to the

HG00 resonance. In the absence of a HG20,02 phase plate, the control light field (CLF)

beam must be mismatched to enable some coupling into the HG20,02. The HG02,20 mode

of the frequency shifted field would then resonate inside the OPO. From an analysis of

the OPO cavity geometry δf2 is on the order of 400 MHz in aLIGO.

6.6.1 Online mode matching

To begin considering the mode matching error signal in a gravitational wave detector

we start by working from the CLF beam in figure 6.16 towards the OMC. The CLF

is frequency offset locked to the pre-stabilised laser (PSL) and is used for locking the

OPO cavity [207]. It is purposefully frequency offset from the PSL to prevent it from

resonating in the interferometer; in LIGO the CLF offset frequency is set at 3 MHz.

The 400 MHz HG02 sideband is then incident onto the filter cavity, which is resonant

for the 3 MHz CLF HG00. Demodulating the reflection of the filter cavity on the

FCREFL photodiode at 400 MHz would produce a mode matching error signal between

the OPO and the filter cavity as described in section 6.3.2. If the filter cavity is not

resonant for the CLF but instead some other control field as is in McCuller et.al.[207],

the mode matching error signal can still be obtained by demodulating at the frequency

difference of the filter cavity resonant field and the 400 MHz sideband.

The generated error signal can be used to drive a pair of orthogonal mode matching

actuators located between the OPO and filter cavity, labelled as Active Wavefront

Control (AWC) mirrors in figure 6.16. A number of potential actuator designs have

been proposed by the [202, 131, 124]. The proposed error signal is independent of this

design and is hence compatible with any of the proposed actuators.

The 400 MHz sideband is combined with the interferometer beam on reflection from

the SRM. The combined beam will produce a intensity modulation proportional to the
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mode mismatch between the OPO and the IFO mode as described in section 6.3. This

can be demodulated on the photodiode SRMREFL to be used to drive the pair of AWC

mirrors between the filter cavity and the output faraday isolator (OFI). The final stage

of the mode matching error signal is to then match the interferometer to the OMC

mode using the OMCREFL photodiode feeding back to the final two AWC actuators.

With all of the previously described mode matching error signals held at their operat-

ing point, the entire output chain of the gravitational wave detector should be mode

matched to the OMC. The appeal of this mode matching error signal for gravitational

wave detectors is its relative simplicity when compared to segmented photodiodes, and

a straightforward implementation that requires minimal modification to the existing

interferometer.

6.6.2 Offline mode matching

Even without installing the AOM and 400 MHz photodiode electronics an alternative

implementation of this mode matching error signal is possible by just locking the OPO

cavity to the second order modes and demodulating the same diodes at 3 MHz instead.

The main caveat is that the 3 MHz implementation cannot be run concurrently with

squeezing, however this does not pose much of a problem in practice as the squeezer

is one of the last subsystems to be turned on in LIGO and the mode matching error

signal and optimisations could be run during this initial locking phase. A bigger issue

is that the phase between the CLF and the PSL is locked by demodulating DCPD at

3 MHz [192, 206], which poses a problem as the HG02 CLF will not beat with the IFO

beam without mode mismatch. This means that the offline mode matching error signal

can only be operated above a certain level of mode mismatch, and could only be used

for coarse corrections.

6.6.3 Beacon mode-matching

For LIGO it is known that the carrier mode differs in shape to the gravitational wave

signal mode by some amount due to mode mismatches between the coupled cavities in

the Dual-Recycled Fabry-Perot Michelson Interferometer (DRFPMI) [113, 135]. The

proposed mode matching signals do not sense any mode mismatch inside DRFPMI

and instead sense mode mismatch between the squeezer and the DC carrier field of the
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interferometer used for the DC readout [115]. Therefore it is desirable to achieve as

high mode matching as possible for the signal mode and not necessarily the mode that

has most of the power.

In order to do this it is necessary to mimic what the gravitational wave does by mod-

ulating the arm cavity length to produce a pair of signal sidebands. The mechanical

resonances of the test masses or their suspensions are able to provide a suitable modu-

lation inside the arm cavities that resembles the gravitational wave signal mode. Mode

matching or alignment error signals are then able to lock onto this arm cavity modula-

tion by offsetting the demodulation frequency by the frequency of the arm modulation.

This technique has been used at LIGO under the name of beacon sensing [113], where

the arm cavity modulation is being used as an alignment reference instead of the car-

rier at the anti-symmetric port. A similar beacon scheme can be employed for the

proposed mode matching error signal, which should provide a more accurate mode

matching error signal, although at the cost of reduced signal to noise.

It is worth mentioning that some future GW detector designs employ balanced ho-

modyne detection (BHD) for their GW readout, such as A+ [176]. For their imple-

mentation of our proposed mode matching error signal beacon sensing provides the

only available mode matching reference for the interferometer beam as there is no DC

carrier field due to the lack of a DC offset.

6.7 Related Work

A portion of this experimental setup was used for testing a separate but related sensing

scheme utilizing optical demodulation with a Pockels cell as a radio-frequency switch,

which is imaged on a pair of high resolution CMOS cameras to derive alignment, mode

matching, and even higher order error signals. This research was published in Optics

Express by my supervisors, for which I was a coauthor.

Daniel Brown, Huy Tuong Cao, Alexei Ciobanu, Peter Veitch, and David Ottaway.

“Differential wavefront sensing and control using radio-frequency optical demodula-

tion”. In: Optics Express 29.11 (May 24, 2021), p. 15995. issn: 1094-4087. doi:

10.1364/OE.425590

https://doi.org/10.1364/OE.425590
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This experiment was performed after the mode matching error signal using the same

liquid lens telescope, 17 MHz EOM, and triangular mode cleaner cavity as shown in

figure 6.5. It successfully demonstrated that the mode matching error signals from

the two CMOS cameras can improve mode matching to the same triangular mode

cleaner cavity to 99.9%, the same as the mode matching error signal using beam shape

modulation.

There are a number of differences between the two methods most of which are technical,

but the fundamental one is the potential bandwidth of the mode matching error signal

in each case. With beam shape modulation the error signal bandwidth is determined

by a photodiode and so can be on the order of MHz, while the optical demodulation

method is limited to the bandwidth of the CMOS camera used which is typically on

the order of 100 Hz. The choice of one method over the other is thus determined by

the use case. The beam shape modulation method is specialized to measure mode mis-

match at a high bandwidth with minimal offsets and nothing else. Whereas the optical

demodulation method is more general and is potentially very well suited for diagnosing

and troubleshooting optical beat signals measured on segmented photodetectors.

6.8 Conclusion

We have proposed and demonstrated a mode matching error signal based on adding

a frequency offset HG02+20 single sideband to a main carrier HG00 field. We have

identified and accounted for the main sources of offset in the error signal known to

us to as well as how one would go about trying to remove them. With everything

presented here we were able to achieve 99.9% mode matching of an unfiltered NPRO

beam to an optical cavity by following the generated mode matching error signal. For

an aLIGO mode matching error signal it is preferable to be able to mode match the

squeezer beam to the gravitational wave detector at LIGO to better than 98% [185],

which seems to be possible using this mode matching error signal given what we have

found.



Chapter 7

Conclusion

Improvements to the sensitivity of the Advanced LIGO detectors will require more im-

pact from the injected squeezing. This imposes tighter constraints on the allowed mode

mismatches inside the interferometer. In this thesis we have explored and demonstrated

new modelling and mode matching sensing schemes that can help aLIGO+ reach design

sensitivity. This thesis can be summarised as follows:

Chapter 1 presented an introduction to the field of ground-based gravitational wave

interferometry.

In chapter 2 we reviewed the application of Hermite-Gauss (HG) modes to paraxial

optics and how they form the basis of a geometrically stable cavity with infinite mirrors.

This naturally led to a definition of a HG basis, which we used extensively to analyze

our mode matching signal presented in chapter 6. We additionally reviewed the ABCD

matrix formalism for modelling beam propagation in paraxial optical systems, which is

necessary for understanding the new optical modelling methods presented in chapters 3

and 4.

Chapter 3 demonstrated the use of the Linear Canonical Transform (LCT) to study the

circulating field in the aLIGO arm cavity with high spatial resolution in the presence of

point absorbers and a finite aperture. The model is similar but distinct to existing Fast

Fourier Transform (FFT) based optical models. The advantage of the LCT is that a

sequence of paraxial optical elements can be efficiently compressed into a single linear

operator, which improves computational performance and reduces spatial aliasing from

135



136 CHAPTER 7. CONCLUSION

multiple FFT operations. We demonstrated a further improvement to model runtime

by using Krylov subspace iterative solvers in our LCT model. The Krylov solvers

are model agnostic and can in principle be used to speed up existing FFT based and

possibly HG based models.

In chapter 4 we presented a framework for extending LCT models to coupled cavities by

treating an optical model as a directed network graph. By applying a graph reduction

procedure a generalization of the round trip operator is produced that describes how

the circulating fields in each cavity interact with each other. The circulating fields in

the coupled cavity can then be solved using the same methods as a single cavity by

replacing the round trip operator with the generalized round trip operator. As a sanity

check we demonstrated that the graph based solver produces numerically identical

results to a standard sparse matrix solver in an HG based model like Finesse. Future

work will demonstrate a graph based coupled cavity solver using LCTs with the aim

to create a high spatial resolution model of the circulating field in the dual recycled

Fabry-Perot Michelson interferometer used in LIGO with finite apertures and realistic

mirror surfaces.

In chapter 5 we presented the commissioning tasks I undertook at the LIGO Hanford

observatory. I measured the transverse mode spacing (TMS) in the Hanford (LHO)

and Livingston (LLO) output mode cleaners (OMCs) from existing OMC cavity scans

and found that the LHO OMC had a TMS that was more than double of the LLO

OMC. The LHO OMC astigmatism was found to cause the mode mismatch measured

from resonant peak heights to be underestimated by a factor of up to 1.6. I measured

the ability of the SR3 rear heater to correct for mode mismatches at LHO and found a

small improvement, which could be explained by the beam being in a Gouy phase that

was orthogonal to the SR3 heater, where a second actuator on the SRM was needed

to correct for it.

Chapter 6 demonstrated a new type of mode matching error signal based on inducing

radio-frequency beam shape modulation via the addition of a second order HG mode

sideband. This method only uses single element photodetectors and no Gouy phase

telescopes to sense the two orthogonal mode matching degrees of freedom. In our

tabletop experiment this mode matching error signal was used to increase the mode
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matching to a cavity to 99.9%, which is well above the aLIGO+ target of 98%. A

potential approach for implementing it in aLIGO+ was presented, serving as the error

signal for the planned aLIGO+ mode matching actuators to match the filter cavity,

output mode cleaner, and interferometer beam to the same reference.

7.1 Outlook

Personally, I am excited about the future direction of gravitational wave detection. As

our understanding of these complex optical systems increases we are able to extract

more and more sensitivity from these detectors, going beyond what I had initially

believed would be possible. With the improved squeezing in aLIGO+ it seems all

but inevitable to me that there will need to be a closed loop mode matching sensing

and actuation system. The sensing problem is challenging to solve completely for a

coupled cavity interferometer, but this thesis has made progress towards that goal.

The remaining challenges on that front I believe are as much conceptual as they are

practical. This was one of the main motivating factors for me to pursue alternative

theories of optical modelling, which culminated in the LCT research presented in this

thesis. The LCT modelling framework elegantly ties the theory of paraxial diffraction

with quantum mechanics and signal processing in a way that is both satisfying and

insightful. After publishing my LCT paper a number of people have expressed interest

in using those techniques in their own work. Beyond this PhD I aim to integrate the

LCT methods with a major open source modelling tool such as Finesse3, hopefully

making it more useful to a wider group of people.
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Appendix A

Wave Theory

A.1 The wave equation

To derive the wave equation we first start from Maxwell’s equations

(Gauss’s law) ∇ ·E =
ρ

ε0
(A.1)

(No monopoles) ∇ ·B = 0 (A.2)

(Faraday’s law) ∇×E = −∂B
∂t

(A.3)

(Ampere’s law) ∇×B = µ0

(
J + ε0

∂E

∂t

)
(A.4)

Taking the curl of both sides of Faraday’s law equation (A.3) gives us the following

∇×∇×E = −∇× ∂B

∂t
(A.5)

We can move the curl on the right hand side (RHS) into the time derivative since

spatial derivatives commute with time derivatives, this yields

∇×∇×E = −∂ (∇×B)

∂t
(A.6)

We can substitute Ampere’s law equation (A.4) into the RHS to yield

∇×∇×E = −µ0

(
∂J

∂t
+ ε0

∂2E

∂t2

)
(A.7)
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Here we assume that there is no current density, i.e. J = 0. This simplifies us to

∇×∇×E = −µ0ε0
∂2E

∂t2
(A.8)

here we define µ0ε0 =
1
c2

∇×∇×E = − 1

c2
∂2E

∂t2
(A.9)

Now for the left hand side (LHS) we can simplify using the curl of curl identity

(curl of curl) ∇× (∇×A) = ∇ (∇ ·A)−∇2A (A.10)

which gives us

∇ (∇ ·E)−∇2E = − 1

c2
∂2E

∂t2
(A.11)

here we can substitute Gauss’s law equation (A.1) into the LHS, which gives us

∇
(
ρ

ε0

)
−∇2E = − 1

c2
∂2E

∂t2
(A.12)

here we assume that the charge density ρ is constant across space which means that

its gradient is zero ∇ρ = 0. This yields

∇2E =
1

c2
∂2E

∂t2
(A.13)

We can perform the exact same procedure when taking the curl of Ampere’s law equa-

tion (A.4) to obtain a wave equation for the magnetic field

∇2B =
1

c2
∂2B

∂t2
(A.14)
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A.2 Helmholtz equation

To derive the Helmholtz wave equation we take our previous vector wave equation

equation (A.13)

∇2
[
E(x, t)

]
=

1

c2
∂2

∂t2
[
E(x, t)

]
(A.15)

where we explicitly denote the electric field E as a vector function of two inputs, a

position vector x, and a scalar time t, with the derivatives as operators acting on the

function. Next we assume that the electric field E is separable between space and

time, that is the electric field takes the following form

E(x, t) = E(x)E(t) (A.16)

where we assume that the time dependent part of the electric field is scalar. The wave

equation then becomes

E(t)∇2
[
E(x)

]
= E(x)

1

c2
∂2

∂t2
[
E(t)

]
(A.17)

For this equation to hold the spatial and temporal parts can be solved independently.

In separation of variables we can do a sneaky trick to make the equations simpler,

which won’t make much sense now without foresight. We can multiply both left hand

and right hand side of equation (A.17) by an arbitrary constant. We choose to multiply

both sides by −k2, which will cancel nicely later on. The rescaled wave equation is

now

−k2E(t)∇2
[
E(x)

]
= −k2E(x)

1

c2
∂2

∂t2
[
E(t)

]
(A.18)

When we consider the spatial part of equation (A.18) equation we keep only the right

hand side −k2 and when we consider the temporal part we only keep the left hand side

−k2. It doesn’t make much sense to do this now but it will pay off later. The spatial

part is then the Helmholtz equation

∇2
[
E(x)

]
= −k2E(x) (A.19)
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and the temporal part is

−k2E(t) = 1

c2
∂2

∂t2
[
E(t)

]
(A.20)

The temporal part is a well known second order ordinary differential equation (ODE),

which has the following solution.

E(t) = aeiwt (A.21)

we identify that the ODE has an oscillatory solution with angular frequency ω = kc,

where a is a constant complex scalar that comes from the initial condition of the ODE.

The Helmholtz equation is more complicated but has been solved with the general

solution being given in terms of spherical harmonics [74], for which the lowest order is

a spherical wave. In polar coordinates a spherical wave is given by

E(r) =
r − r0

|r − r0|2
e−ik|r−r0| (A.22)

where r0 is the point source origin of the spherical wave.

A.3 Paraxial scalar wave equation

The standard method of solving the scalar Helmholtz equation is to assume that the

solution is of the following form

E(x, y, z) = A(x, y, z)e−ikz (A.23)

where we assume that the envelope function A(x, y, z) is slowly varying with z. For

brevity we may not write the spatial coordinates to A but will assume that the spatial
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dependence is still there. Taking the Laplacian of this trial solution gives us

∇2E(x, y, z) =
(
∂2x + ∂2y + ∂2z

)
Ae−ikz (A.24)

=
(
∂2x + ∂2y

)
Ae−ikz + ∂z

(
∂zAe

−ikz
)

(A.25)

=
(
∂2x + ∂2y

)
Ae−ikz + ∂z

(
e−ikz [∂zA− ikA]

)
(A.26)

=
(
∂2x + ∂2y

)
Ae−ikz + e−ikz

(
∂2zA− 2ik∂zA− k2A

)
(A.27)

The slowly varying envelope approximation assures us that the ∂2zA is much much

smaller than every other term in the equation so we can safely neglect it. Substituting

the reduced expression for the Laplacian into the Helmholtz equation we get

∇2E(x, y, z) = −k2E(x, y, z) (A.28)(
∂2x + ∂2y

)
Ae−ikz + e−ikz

(
−2ik∂zA− k2A

)
= −k2Ae−ikz (A.29)

Eliminating the common term e−ikz and rearranging we get

(
∂2x + ∂2y

)
A− 2ik∂zA = 0 (A.30)

which is the paraxial wave equation for the envelope field A(x, y, z). The paraxial

wave equation is solved by any Hermite-Gauss mode, with the simplest being the

fundamental Gaussian beam. We won’t derive the functional form of the Gaussian

beam here. Instead we choose the less conventional, but simpler complex source point

method to do so, which we discuss later.

A.3.1 Fresnel diffraction integral

The Green’s function of the paraxial wave equation (A.30) is given by

G(x, y, z) =
1

4πz
exp

[
−ik

(
x2 + y2

)
2z

]
(A.31)

which serves as the kernel of the Fresnel diffraction integral. Equation (A.31) can be

verified by noting that it is a valid solution to equation (A.30). The Fresnel diffraction
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integral is given by

E(x′, y′, z) = −2ike−ikz
∫∫ ∞
−∞

G(x− x′, y − y′, z)E(x, y, 0)dydx (A.32)

A.3.2 Exponential paraxial wave propagation operator

We can obtain an expression for wave propagation directly from the paraxial wave

equation by noting the similarity to the Schrodinger equation. Take the paraxial wave

equation (A.30) and relabel the envelope of the field A to be ψ

(
∂2x + ∂2y

)
ψ − 2ik∂zψ = 0 (A.33)(
∂2x + ∂2y

)
ψ = 2ik∂zψ (A.34)

where the Schrodinger equation is given by

Ĥψ = i~
d

dt
ψ (A.35)

Here we identify that equation (A.34) is just the Schrodinger equation in 2D for a free

particle with z acting as the time coordinate, 2k acting as ~, and the Hamiltonian

being given by

Ĥ = ∂2x + ∂2y (A.36)

The time evolution of the wavefunction ψ, now being the spatial evolution of the electric

field is given by the exponential of the Hamiltonian.

ψ(z) = e−iĤz/2kψ(0) (A.37)

which is valid for any given envelope field ψ since the choice of origin z = 0 is arbitrary.

It is not completely obvious how equation (A.37) can be used in numerical models. The

exponential of a derivative operator at first seems like an abuse of notation. However
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taking the Taylor series of the exponential shows something interesting

eX = 1 +X +
XX

2!
+
XXX

3!
+
XXXX

4!
+ . . . (A.38)

=
∞∑
n=0

Xn

n!
(A.39)

The Taylor series of eX is perfectly computable even if X is a matrix or an operator

where an n’th power of X is taken to mean n applications of the operator X. Taking Ĥ

to be a second order finite difference operator equation (A.39) gives a way of computing

the propagation by summing even order finite differences of some discrete sampled wave

field ψ.

Alternatively we can take a Pade series of eX which converges faster than the Taylor

series for any given order but requires us to compute the inverse of powers of X, this is

difficult to implement for an arbitrary operator but straightforward if X is an invertible

matrix. Fortunately the finite difference operator can be written in a matrix form.

However, both Taylor and Pade series pale in comparison in terms of computational

speed to the next approach, which will ultimately lead us to the FFT model for prop-

agation. We begin by taking note of the following Fourier transform pair

F [xf ] = i∂xF [f ] (A.40)

F [∂xf ] = ixF [f ] (A.41)

where F is a Fourier transform operator. The second identity is particularly useful as

it allows us to replace the derivative of a function with a coordinate multiplication and

a pair of Fourier transforms in the following way

∂xf = F−1[ixF [f ]] (A.42)

This generalizes to higher order derivatives in a rather natural way

(∂x)
nf = F−1[(ix)nF [f ]] (A.43)

an interesting aside is that the RHS of this equation is valid for noninteger n, which
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leads to a definition of fractional order derivatives.

Going back to our Hamiltonian, the following Fourier identity applies

Ĥ = ∂2x + ∂2y (A.44)

= F−1
[
(ix)2 + (iy)2

]
F (A.45)

= F−1
[
−(x2 + y2)

]
F (A.46)

and similarly for powers of Ĥ

Ĥn = (∂2x + ∂2y)
n (A.47)

= F−1
[(
−(x2 + y2)

)n]F (A.48)

we can then write the exponential of Ĥ as

eĤ =
∞∑
n=0

Ĥn

n!
(A.49)

=
∞∑
n=0

F−1
[(

−(x2 + y2)
)n

n!

]
F (A.50)

= F−1
[
∞∑
n=0

(
−(x2 + y2)

)n
n!

]
F (A.51)

= F−1
[
e−(x

2+y2)
]
F (A.52)

and so we can finally write the Fourier dual of the exponential propagator as

ψ(z) = F−1
[
e−iz(x

2+y2)/2k
]
Fψ(0) (A.53)

This expression for paraxial wave propagation is highly efficient when the Fourier trans-

forms are implemented with FFTs. The exponential in the middle is just a regular

complex exponential function and doesn’t require any fancy tricks to evaluate. Overall

the majority of the computational burden is now placed onto the FFT which is orders

of magnitude faster than summing a convergent infinite series of finite difference oper-

ators. It is for this reason that optical models that use equation (A.53) are referred to

as FFT models.
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A.4 Complex source point (CSP) method

An alternative and perhaps more elegant derivation of the Gaussian beam comes from

placing the point source of a spherical wave r0 a complex distance away, which creates

an exact solution to the Helmholtz equation that is also beam-like, reducing to the

standard Gaussian beam in the paraxial approximation. This trick of moving the

point source of a spherical wave into the complex domain was found independently in

1971 by Deschamps [21] and Keller [23].

To show how the complex source point (CSP) method produces a Gaussian beam we

begin with the scalar spherical wave

E(r) =
1

r
e−ikr (A.54)

where

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 (A.55)

is the distance from the point source located at r0 = {x0, y0, z0}. This can be verified

by noting that equation (A.54) solves equation (A.19) with the the 3D Laplacian ∇2

in spherical coordinates being

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin(θ)2
∂2

∂ϕ2
(A.56)

where we can set ∂E
∂θ

=
∂E

∂ϕ
= 0 since we want a uniform spherical wave.

Placing the point source at r0 = {0, 0,−izR} we find the radial distance is

r =
√
x2 + y2 + (z + izR)2 (A.57)

Here we make the paraxial approximation x2 + y2 � |z + izR|2, the Taylor expansion

of r around x = 0 and y = 0 is then

r = (z + izR) +
x2 + y2

2(z + izR)
+O(x4) +O(y4) (A.58)
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substituting it back into the scalar spherical wave and neglecting higher order terms

E(x, y, z) =
1

z + izR
exp

−ik

(
(z + izR) +

x2 + y2

2(z + izR)

) (A.59)

where we drop the x2+y2

2(z+izR)
term in 1/r since x2 + y2 � |z+ izR|2. Rewriting in a more

familiar form

E(x, y, z) =
e−ik(z+izR)

z + izR
exp

[
−ik

x2 + y2

2(z + izR)

]
(A.60)

which is identical to the paraxial HG00 beam, barring an overall normalization factor.

Equation (A.60) contains the plane wave phase term e−ikz, the same transverse beam

size and radius of curvature. The 1/(z + izR) term performs serves two purposes, the

first is to keep the power of the beam constant as it expands, and the second is to

compute the Gouy phase. The overall constant term given by ekzR can be discarded

as it does not normalize the beam to unit power and is too numerically large to have

a floating point representation, making it of limited use in computer calculations. The

correct normalization for equation (A.60) therefore has to be derived separately.

Higher order Gaussian modes can be derived by using the complex source point method

on higher order spherical harmonic functions, which also solve the scalar Helmholtz

equation and correspond to radiation emitted by a multipole source. This was first

demonstrated by Shin and Felsen in 1977 [33].

Even though we invoked the paraxial approximation in equation (A.58) the complex

source point method itself makes no paraxial approximation. Therefore the full non-

paraxial complex source point radius in equation (A.57) can be used to obtain a non-

parxial analogue of the Gaussian beam and its higher order modes that are an exact

solution of the scalar Helmholtz equation.

The derivation we present here can also be performed in reverse; starting with the

paraxial Gaussian beam higher order parxial corrections can be derived by using the

methods described by Lax et al. (1975) [32], or Agrawal et al. (1979) [34]. Summing all

orders of the paraxial corrections reproduces the complex source point spherical wave

as was shown by Couture and Belanger in 1981 [37].
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The complex source point method also works for the vector Helmholtz equation, which

can produce vector beam-like solutions that exactly satisfy Maxwell’s equations in

homogeneous free space. In 1979 Cullen and Yu [35] published closed form expressions

for the six vector components of the electric and magnetic field that satisfy Maxwell’s

equations based on the radiation emitted by crossed electric and magnetic dipole whose

origin lies in the complex plane. They found that this beam reduces to the standard

Gaussian beam in the paraxial approximation but also had other desirable properties,

such as a symmetric electric and magnetic field magnitude, which makes it suitable for

calculations where vector polarization is needed.

The solution by Cullen and Yu had one major flaw in that it produced a ring of am-

plitude singularities around the focus of the beam where the complex radius in equa-

tion (A.57) goes to zero. This singularity was addressed by Sheppard and Saghafi in

1998 for the scalar spherical wave by introducing a complex sink in addition to the com-

plex source [72]. The next year in 1999 they extended their results to vector beams [76]

and multipole radiation [77, 78], completing their theory of complex source/sink pairs

to generate closed form beam-like solutions to Maxwell’s equations that are singularity-

free and reduce to standard Gaussian beams in the paraxial limit. In removing the

singularity their solutions introduce a backwards travelling wave, which the authors

acknowledge violates Sommerfeld’s radiation condition [77]. Though the authors claim

that it does not mean that their solution is unphysical.

The complex source and sink pair solutions by Sheppard and Saghafi have seen subse-

quent use in modelling nonparaxial beams [119, 125], though some authors had an issue

that their solution contains a backwards travelling wave, calling it non-causal [177].

A.5 Bayer-Helms scattering coefficients

The Bayer-Helms solution [43] is given in closed-form as a complex exponential scaling

factor multiplied by a rational function of the basis parameters.

kn1n2 [q1, q2, δ, γ] = C1[n1, n2]C2[n1, n2, q1, q2]C3[q1, q2, δ, γ](
Sg[n1, n2, q1, q2, δ, γ]− Su[n1, n2, q1, q2, δ, γ]

)
(A.61)
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where

C1[n1, n2] = (−1)n2
√
n1!n2! (A.62)

C2[n1, n2, q1, q2] = (1 +K0)

(
n1
2
+ 1

4

)
(1 +K∗)

(
−n1−n2−1

2

)
(A.63)

C3[q1, q2, δ, γ] = exp

[
−XX̄

2
− iδ Im[q2] sin [γ]

w0
2

]
(A.64)

where the terms are

w0[q2] =

√
λ Im[q2]

π
(A.65)

K0[q1, q2] =
Im[q1]− Im[q2]

Im[q2]
(A.66)

K2[q1, q2] =
Re[q1]− Re[q2]

Im[q2]
(A.67)

K[q1, q2] =
K0 + iK2

2
(A.68)

X[q1, q2, δ, γ] =

(
δ

w0

−
(
Re[q2]
Im[q2]

+ i (1 + 2K∗)

)
Im[q2] sin[γ]

w0

)(
1√

1 +K∗

)
(A.69)

X̄[q1, q2, δ, γ] =

(
δ

w0

−
(
Re[q2]
Im[q2]

− i

)
Im[q2] sin[γ]

w0

)(
1√

1 +K∗

)
(A.70)

The two sum terms Sg and Su are

Sg[n1, n2, q1, q2, δ, γ] =

bn1/2c∑
µ1=0

bn2/2c∑
µ2=0

(−1)µ1X̄(n1−2µ1)X(n2−2µ2)

(n1 − 2µ1)! (n2 − 2µ2)!

min[µ1,µ2]∑
σ=0

(−1)σF̄ (µ1−σ)F (µ2−σ)

(2σ)! (µ1 − σ)! (µ2 − σ)!
(A.71)

Su[n1, n2, q1, q2, δ, γ] =

b(n1−1)/2c∑
µ1=0

b(n2−1)/2c∑
µ2=0

(−1)µ1X̄(n1−2µ1−1)X(n2−2µ2−1)

(n1 − 2µ1 − 1)! (n2 − 2µ2 − 1)!

min[µ1,µ2]∑
σ=0

(−1)σF̄ (µ1−σ)F (µ2−σ)

(2σ + 1)! (µ1 − σ)! (µ2 − σ)!

(A.72)

where bxc is the integer floor function, and min [x1, x2] is the minimum function, which

returns x1 if x1 < x2 and otherwise returns x2. The new terms used in the sums are

F [q1, q2] =
K∗

2
(A.73)
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F̄ [q1, q2] =
K

2 (1 +K0)
(A.74)

where K∗ is the complex conjugate of K.
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Appendix B

Linear Canonical Transform

B.1 Metaplectic sign ambiguity

The LCT has some implications when calculating the accumulated Gouy phase through

an optical system—which is due to the LCT being a faithful representation of the

metaplectic group. Here we find a new formula for the 1D accumulated Gouy phase,

which can also be used to compute the accumulated Gouy phase in a simple astigmatic

2D optical system.

The ABCD matrices discussed here form a group known as the symplectic group

Sp2(R) [95], which are all 2 × 2 matrices with unit determinant. There are 2 dis-

tinct LCTs for every ABCD matrix because the metaplectic group Mp2(R) is a double

cover of the symplectic group Sp2(R). The additional parameter that allows us to

uniquely specify an LCT is called the metaplectic sign [95].

The metaplectic sign manifests in optics as a sign ambiguity in the Gouy phase accu-

mulated by a beam propagating through an ABCD optical system. This sign ambiguity

disappears in 2D optical systems exhibiting cylindrical symmetry due to both vertical

and horizontal having the same metaplectic sign, which end up cancelling yielding an

overall expression for accumulated Gouy phase that has no sign ambiguity [65, 48].

The accumulated Gouy phase for a Gaussian beam with beam parameter q through an

153
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ABCD system in two dimensions with cylindrical symmetry is

exp(iΨ) = exp(i2ψ) = A+B/q∗

|A+B/q∗|
(B.1)

and in one dimension

exp(iψ) = ±

√
A+B/q∗

|A+B/q∗|
(B.2)

where the ± sign, which we identify as the metaplectic sign is a real sign ambiguity

that is present in the 1D accumulated Gouy phase for an arbitrary ABCD matrix.

An algorithm to determine the metaplectic sign for LCTs to the best of our knowl-

edge was first presented by Littlejohn (appendix A of [44], and [51]) and has been

subsequently used by Lopez [189]. Their algorithm computes and tracks a winding

number from the multiplication of ABCD matrices, which is then used to determine

the metaplectic sign. We propose a modification to this algorithm that bypasses the

need to track the winding number and instead tracks the metaplectic sign directly. We

use this algorithm to define a group action, which is an extension of regular matrix

multiplication between ABCD matrices paired with a metaplectic sign, which we call

a metaplectic matrix.

B.1.1 Metaplectic Matrices

A metaplectic matrix M ∈ Mp2(R) is a composite object that can be represented as

a tuple/ordered set containing a symplectic matrix M ∈ Sp2(R) and a binary sign

σ ∈ {−1, 1}, which is the metaplectic sign.

M = {M, σ}. (B.3)

The multiplication law between two metaplectic matrices is then defined as

M3 = M2M1 = {M2M1, σ3}, (B.4)

where the new sign σ3 is given by

σ3 = (σ2 × σ1)× (−1)ρ(M2,M1) (B.5)
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where ρ(M2,M1) ∈ {0, 1} is given by

ρ(M2,M1) = [θ(M2) < 0]⊕ [θ(M2M1) < θ(M1)] (B.6)

where ⊕ is a logical exclusive or (XOR), and −π < θ(M) ≤ π is a metaplectic phase

associated with an ABCD matrix given by

θ(M) = arg(A+ iB). (B.7)

We adopt the convention of the boolean True and False being represented by 1 and 0

respectively.

(B.6) was derived from logical expressions of the following kind: if the metaplectic

phase is decreasing [θ(M2) < 0], and if the output metaplectic phase is less than the

input metaplectic phase [θ(M2M1) < θ(M1)], then the metaplectic sign hasn’t flipped

[ρ(M2,M1) = 0]. Enumerating all possible combinations of True and False for the

conditions in (B.6) reveals that the truth table for determining if a metaplectic sign

flip has occurred is equivalent to an XOR of the two conditions.

The 1D Gouy phase of a Gaussian beam with beam parameter q through a metaplectic

ABCD matrix M = (M, σ) is then

exp(iψ) = σ

√
A+B/q∗

|A+B/q∗|
. (B.8)

With this we can define the Gouy phase of a Gaussian beam through a 2D optical

system with simple astigmatism described with two metaplectic matrices Mx and My

for the x and y axes respectively as

exp(iΨ) = σxσy exp
[
i(ψx + ψy)

]
(B.9)

which reduces to (B.1) to in the case of cylindrical symmetry, where Mx = My.

It should be noted that the expressions for Gouy phase in (B.8) and (B.9) are not an-

alytic (i.e. they don’t have Taylor series) due to the discrete nature of the metaplectic

sign σ ∈ {−1, 1}. We believe that it is likely impossible to derive an analytical ex-
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pression for 1D Gouy phase that uses a single ABCD matrix to represent an arbitrary

optical system. A similar statement has been made by other authors for 2D Gouy

phase in general astigmatic optical systems [110].

B.2 Structured Matrices

Structured matrix is a generic term for any matrix that has a fast matrix-vector mul-

tiplication algorithm [86]. For example all sparse matrices are structured, and their

fast matrix-vector multiplication is performed by ignoring the matrix zeroes in the

calculation. Other forms of structured matrices exist, each with their own specialized

fast matrix-vector multiplication. An example of a dense structured matrix is the DFT

matrix, with the fast matrix-vector multiplication being the FFT algorithm.

For this paper the structured matrix in question is the N2 ×N2 separable 2D DLCT

kernel LM, which we find can be written as a Kronecker product of two N × N 1D

DLCT kernels LMx and LMy respectively.

LM = LMx ⊗ LMy (B.10)

The fast matrix-vector multiplication algorithm for a Kronecker product of two matri-

ces is given by Roth’s relation [6, 96].

(A⊗B) vec [X] = vec
[
BXAT

]
(B.11)

where vec [X] is an operation that unravels any matrix X into a vector by stacking its

columns underneath each other [96]. This identity was used in discretizing the separable

2D LCT in equation (3.15). The fast round trip procedure used in equation (3.28) is

Xout = R1 ◦

(
LMd

(
R2 ◦

(
LMd

Xin
(
LMd

)T))(
LMd

)T) (B.12)

where the order of parentheses has to be respected since matrix and Hadamard multi-

plication are neither commutative or associative with each other. (B.12) can be thought

of as the fast matrix-vector multiplication algorithm for a 2D cavity round trip with

mirror maps and a separable free-space propagation kernel.
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B.3 Apertured LCT model

Using the formalism described in chapter 3 the circulating field X1 in the arm cavity

is given by

X1 = X5 + it1A1 ◦Xinc (B.13)

where Xinc is the incident field and X5 is the round trip propagation in with the LCT

and can be expanded to linear operations on the circulating field X1.

X2 = Dy1X1D
T
x1 (B.14)

X3 = A2 ◦Rc,2 ◦ (r2X2) (B.15)

X4 = Dy2X3D
T
x2 (B.16)

X5 = A1 ◦Rc,1 ◦ (r1X4) (B.17)

B.3.1 LCT model parameters

Table B.1: Physical parameters describing the LIGO arm cavity.

r1 ITM amplitude reflection
√
1− 0.014

t1 ITM amplitude transmission
√
0.014

r2 ETM amplitude reflection
√
1− 5× 10−6

t2 ETM amplitude transmission
√
5× 10−6

Larm arm length 3994.5 m

Adiam test mass diameter 32.6 cm

Rc,1 ITM radius of curvature 1934 m

Rc,2 ETM radius of curvature 2245 m

Table B.2: LCT model parameters

Pin incident power 1 W

q1 incident beam parameter −1834.2 + 427.8i m

w1 beam size at ITM 5.3 cm

w2 beam size at ETM 6.2 cm
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N number of points per grid axis 801

x1 x-axis at ITM 5w1× linspace(-1,1,N)

y1 y-axis at ITM 5w1× linspace(-1,1,N)

x2 x-axis at ETM 5w2× linspace(-1,1,N)

y2 y-axis at ETM 5w2× linspace(-1,1,N)

Xin incident field
√
Pin× U00(x1, y1, q1)

Md cavity length ABCD matrix

1 Larm

0 1



Table B.3: Mirror maps and LCT operators.

Dx1 x-axis LCT from ITM to ETM DLCT(x1, x2, Md)

Dy1 y-axis LCT from ITM to ETM DLCT(y1, y2, Md)

Dx2 x-axis LCT from ETM to ITM DLCT(x2, x1, Md)

Dy2 y-axis LCT from ETM to ITM DLCT(y2, y1, Md)

Rc,1 ITM curvature phase map RoC_phase_map(x1, y1, Rc,1)

Rc,2 ETM curvature phase map RoC_phase_map(x1, y1, Rc,2)

A1 ITM aperture map circ_ap(x1, y1, Adiam)

A2 ETM aperture map circ_ap(x1, y1, Adiam)

B.3.2 LCT model outputs

Here we show visual representations of various operators used in the LCT model with

the aim of making it easier to understand the inner workings of the model.

The mirror maps for the ITM and ETM shown in figures B.1 and B.2 highlight an

interesting application of the LCT — that it can work with dynamic grid sizes. This

can be seen by noting that the apparent size of the test mass aperture is slightly

different between figures B.1 and B.2. The aperture for the ITM appears occupies a

larger area of the grid than the ETM aperture because the ITM grid uses a smaller

step size. The grid extent is chosen to be scaled to 10 times the beam size at that

plane as shown in table B.2, which naturally leads to a dynamic grid size.

The ring structure seen figures B.1 and B.2 corresponds to a phase shift associated with
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Figure B.1: ITM aperture and curvature phase map.
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Figure B.2: ETM aperture and curvature phase map.

the radius of curvature at the mirrors. The ETM and ITM have a similar enough radius

of curvature that there isn’t an appreciable difference in the periodicity of the rings,

despite the ITM having a smaller radius of curvature. This method of implementing

a mirror reflection operator can potentially lead to issues if the radius of curvature is

small and the oscillation frequency of the rings exceeds the Nyquist frequency of the

grid. This can often happen with fast telescopes, such as the one in the aLIGO power

recycling cavity. In those cases the sampling frequency of the grid has to be carefully

chosen with those telescopes in mind.

Figure B.3 is the LCT operator for the arm cavity length free space propagation. The

operator shown in figure B.3 is explicitly Dy1, but since there is no difference between

the x-axis and y-axis in this model it follows that there is no difference between the
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Figure B.3: Space propagation LCT operator for the y-axis arm cavity length free
space propagation.

operators for the two axes, that is Dy1 = Dx1. The dynamic grid scaling mentioned

earlier is also present here. In fact the Dy1 operator is the one that implements the

grid scaling operation — expanding the grid as the beam propagates from the ITM

plane to the ETM plane. The operator Dy2 for propagating from the ETM back to the

ITM has to perform the same free space propagation, but the inverse scaling operation

— shrinking the grid as the beam propagates from the ETM to the ITM. In this model

the inverse scaling operation is given by the transpose of the original scaling operator,

and so the propagation operators between the ITM and ETM plane are related by a

transpose Dy2 = Dx2 = DT
y1 = DT

x1. It follows that a free space propagation operator

that doesn’t scale the grid is transpose symmetric.



Appendix C

LIGO commissioning

C.1 aLIGO design Finesse3 model

# modulators for core interferometer sensing - Advanced LIGO, CQG, 2015

# http://iopscience.iop.org/article/10.1088/0264-

9381/32/7/074001/meta#cqg507871s4-8

# 9MHz (CARM, PRC, SRC loops)

variable f1 9099471

variable f2 5*&f1

variable nsilica 1.45

variable Mloss 30u

###############################################################################

### length definitions

###############################################################################

variable Larm 3994

variable LPR23 16.164 # distance between PR2 and PR3

variable LSR23 15.443 # distance between SR2 and SR3

variable LPR3BS 19.538 # distance between PR3 and BS

variable LSR3BS 19.366 # distance between SR3 and BS

variable lmich 5.342 # average length of MICH

variable lschnupp 0.08

variable lPRC (3+0.5)*c0/(2*&f1) # T1000298 Eq2.1, N=3
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variable lSRC (17)*c0/(2*&f2) # T1000298 Eq2.2, M=3

###############################################################################

### laser

###############################################################################

laser L0 P=125

mod mod1 f=&f1 midx=0.18 order=1 mod_type=pm

mod mod2 f=&f2 midx=0.18 order=1 mod_type=pm

link(L0, mod1, mod2)

###############################################################################

### PRC

###############################################################################

s sPRCin mod2.p2 PRMAR.p1

m PRMAR R=0 L=40u xbeta=&PRM.xbeta ybeta=&PRM.ybeta phi=&PRM.phi

s sPRMsub1 PRMAR.p2 PRM.p1 L=0.0737 nr=&nsilica

m PRM T=0.03 L=8.5u Rc=11.009

s lp1 PRM.p2 PR2.p1 L=&lPRC-&LPR3BS-&LPR23-&lmich

bs PR2 T=250u L=&Mloss alpha=-0.79 Rc=-4.545

s lp2 PR2.p2 PR3.p1 L=&LPR23

bs PR3 T=0 L=&Mloss alpha=0.615 Rc=36.027

s lp3 PR3.p2 BS.p1 L=&LPR3BS

###############################################################################

### BS

###############################################################################

bs BS R=0.5 L=&Mloss alpha=45

s BSsub1 BS.p3 BSAR1.p1 L=0.0687 nr=&nsilica

s BSsub2 BS.p4 BSAR2.p2 L=0.0687 nr=&nsilica

bs BSAR1 L=50u R=0 alpha=-29.195

bs BSAR2 L=50u R=0 alpha=29.195

###############################################################################

### Yarm

###############################################################################

# Distance from beam splitter to Y arm input mirror
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s ly1 BS.p2 ITMYlens.p1 L=&lmich-&lschnupp/2-&ITMYsub.L*&ITMXsub.nr

lens ITMYlens f=34500

s ly2 ITMYlens.p2 ITMYAR.p1

m ITMYAR R=0 L=20u xbeta=&ITMY.xbeta ybeta=&ITMY.ybeta phi=&ITMY.phi

s ITMYsub ITMYAR.p2 ITMY.p1 L=0.2 nr=&nsilica

m ITMY T=0.014 L=&Mloss Rc=-1934

s LY ITMY.p2 ETMY.p1 L=&Larm

m ETMY T=5u L=&Mloss Rc=2245

s ETMYsub ETMY.p2 ETMYAR.p1 L=0.2 nr=&nsilica

m ETMYAR 0 500u xbeta=&ETMY.xbeta ybeta=&ETMY.ybeta phi=&ETMY.phi

cav cavYARM ETMY.p1.o

###############################################################################

### Xarm

###############################################################################

# Distance from beam splitter to X arm input mirror

s lx1 BSAR1.p3 ITMXlens.p1 L=&lmich+&lschnupp/2-&ITMXsub.L*&ITMXsub.nr-

&BSsub1.L*&BSsub1.nr

lens ITMXlens f=34500

s lx2 ITMXlens.p2 ITMXAR.p1

m ITMXAR R=0 L=20u xbeta=&ITMX.xbeta ybeta=&ITMX.ybeta phi=&ITMX.phi

s ITMXsub ITMXAR.p2 ITMX.p1 L=0.2 nr=&nsilica

m ITMX T=0.014 L=&Mloss Rc=-1934

s LX ITMX.p2 ETMX.p1 L=&Larm

m ETMX T=5u L=&Mloss Rc=2245

s ETMXsub ETMX.p2 ETMXAR.p1 L=0.2 nr=&nsilica

m ETMXAR 0 500u xbeta=&ETMX.xbeta ybeta=&ETMX.ybeta phi=&ETMX.phi

cav cavXARM ETMX.p1.o

###############################################################################

### SRC

###############################################################################

s ls3 BSAR2.p4 SR3.p1 L=&LSR3BS

bs SR3 T=0 L=&Mloss alpha=0.785 Rc=35.972841
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s ls2 SR3.p2 SR2.p1 L=&LSR23

bs SR2 T=0 L=&Mloss alpha=-0.87 Rc=-6.406

s ls1 SR2.p2 SRM.p1 L=&lSRC-&LSR3BS-&LSR23-&BSsub2.L*&BSsub2.nr-&lmich

m SRM T=0.2 L=8.7u Rc=-5.6938

s SRMsub SRM.p2 SRMAR.p1 L=0.0749 nr=&nsilica

m SRMAR R=0 L=50n

###############################################################################

### Output path

###############################################################################

dbs OFI

sq sqz db=6 angle=90.0

link(sqz, OFI.p2)

# (as built parameters: D1300507-v1)

s sSRM_OFI SRMAR.p2 OFI.p1 L=0.7278

s sOFI_OM1 OFI.p3 OM1.p1 L=2.9339

bs OM1 T=800u L=0 alpha=2.251 Rc=[4.6, 4.6]

s sOM1_OM2 OM1.p2 OM2.p1 L=1.395

bs OM2 T=0 L=0 alpha=4.399 Rc=[1.7058, 1.7058]

s sOM2_OM3 OM2.p2 OM3.p1 L=0.631

bs OM3 T=0 L=0 alpha=30.037

s sOM3_OMC OM3.p2 OMC_IC.p1 L=0.2034

###############################################################################

### OMC

###############################################################################

cav cavOMC OMC_IC.p3.o

bs OMC_IC T=0.0076 L=10u alpha=2.7609

s lIC_OC OMC_IC.p3 OMC_OC.p1 L=0.2815

bs OMC_OC T=0.0075 L=10u alpha=4.004

s lOC_CM1 OMC_OC.p2 OMC_CM1.p1 L=0.2842

bs OMC_CM1 T=36u L=10u alpha=4.004 Rc=[2.57321, 2.57321]
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s lCM1_CM2 OMC_CM1.p2 OMC_CM2.p1 L=0.2815

bs OMC_CM2 T=35.9u L=10u alpha=4.004 Rc=[2.57369, 2.57369]

s lCM2_IC OMC_CM2.p2 OMC_IC.p4 L=0.2842

###############################################################################

### DC power measurements

###############################################################################

pd Px ETMX.p1.i

pd Py ETMX.p1.i

pd Pprc PRM.p2.o

pd Psrc SRM.p1.i

pd Prefl ETMX.p1.i

pd Pas OMC_OC.p3.o
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Appendix D

Mode matching error signal

D.1 Gaussian beams

The 1D complex amplitude of a Gaussian beam centered at x = δ travelling at angle γ

to the z-axis with a waist size of w0 located at z = 0 is given by [50]

un(x, q, δ, γ) =

(
2

π

)1/4(
1

2nn!w0

)1/2(
izR
q

)1/2(−q∗

q

)n/2

Hn

(
(x− δ)

√
2

w(z)

)
exp

−iπ

λ

(
(x− δ)2

q
+ xγ

) (D.1)

where q is the complex beam parameter [50], which encodes all of the necessary infor-

mation of a beam’s shape as

q = z + izR (D.2)

where z is the location of the beam waist, and zR = πw2
0/λ is the Rayleigh range of a

beam with waist size w0 and wavelength λ. The beam size w(z) is given by

w(z) = w0

√
1 +

(
z

zR

)2

. (D.3)

The complex amplitude of a 2D Hermite-Gaussian HGnm beam with beam

shape (qx, qy) can be given as a product of two 1D HG beams due to the separability
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of HG modes in Cartesian coordinates

Unm(x, y, qx, qy, δx, δy, γx, γy) = un(x, qx, δx, γx)um(y, qy, δy, γy). (D.4)

For brevity we will assume cylindrical symmetry (q = qx = qy) and no misalignments

(δx=δy=γx=γy=0) unless otherwise stated. To compute the magnitude of coupling of

mode mismatch to higher order HG modes in section 6.3.2 and table D.1 it is convenient

to rescale the degrees of freedom to the following relative quantities

εδ =
δ

w0

εγ =
πw(z)γ

λ
(D.5)

εw0 =
∆w0

w0

εz =
∆z

zR
. (D.6)

For the mode matching degrees of freedom it is also convenient to define a relative

change in the q parameter from equation D.2 as

εq = εz + iεzR (D.7)

where εzR is the relative change in Rayleigh range, which is given by

εzR =
∆zR
zR,1

= ε2w0
. (D.8)

D.2 Basis change and projections

To describe an incident beam with electric field given by E(x, y) in terms of cavity

eigenmodes it is necessary to find the amplitude coefficients an,m of those modes that

describe the incident beam by computing the following integral

an,m;q =

∫∫ ∞
−∞

E(x, y)U∗n,m(x, y, q)dydx (D.9)

for all possible combinations of n and m. However for models with a predominantly

HG00 field and mismatches less than 10% it is typically sufficient to compute all an,m
with n+m ≤ 6.
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This lets us write an arbitrary electric field given by E(x, y) as a sum of HG modes

E(x, y) =
∑
n,m

an,m;qUn,m(x, y, q). (D.10)

To translate the set of an,m coefficients from one basis q1 to another we can substitute

(D.10) into (D.9) to obtain

an2,m2;q2 =
∑
n1,m1

an1,m1;q1

∫∫ ∞
−∞

Un1,m1(x, y, q1)U
∗
n2,m2

(x, y, q2)dy. (D.11)

The integral in (D.11) is an overlap between two normalized HG modes from different

bases

kn1,m1,n2,m2;q1,q2 =

∫∫ ∞
−∞

Un1,m1(x, y, q1)U
∗
n2,m2

(x, y, q2)dydx. (D.12)

Due to the fact that HG modes are separable in Cartesian coordinates we can rewrite

the (D.12) as a product of two 1D integrals in the following way

kn1,m1,n2,m2;q1,q2 = kn1,n2;q1,q2 × km1,m2;q1,q2 (D.13)

where the two 1D integrals are given by

kn1,n2;q1,q2 =

∫ ∞
−∞

un1(x, q1)u
∗
n2
(x, q2)dx (D.14)

km1,m2;q1,q2 =

∫ ∞
−∞

um1(y, q1)u
∗
m2

(y, q2)dy (D.15)

where if q1 = q2 both integrals reduce to

kn1,n2;q1,q1 = δn1,n2 (D.16)

where δn1,n2 is the Kronecker delta. For brevity we will omit the q parameters from

kn1,n2 unless multiple projections are being considered. For q1 6= q2 this integral can be

computed either numerically or from an analytic solution [43, 128]. In principle this

integral needs to be computed for every possible combination of n1 and n2, but in prac-

tice for small mismatches one only needs to consider the integrals where |n1 − n2| = 2.

A table of the coupling coefficients to first order in mismatch and misalignment is

included in table D.1.
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Coupling Coefficient Expression Notes
kn1,m1,n2,m2 kn1,n2 × km1,m2 2D → 1D
kn,n 1− i

4
(2n+ 1) εz +O

(
ε2
)

phase shift
kn,n+1

(
εδ − q

|q|εγ

)√
(n+ 1) +O

(
ε2
)

misalignment
kn,n+2

i
4
εq
√

(n+ 1) (n+ 2) +O
(
ε2
)

mismatch
kn1,n2 −k∗n2,n1

+O
(
ε2
)

n 6= m

Table D.1: First Order Coupling Coefficients

In general the integral in (D.12) appears whenever one wishes to convert the amplitudes

of one set of eigenmodes to another set of eigenmodes. We refer to this operation as a

change of basis, or a projection onto a basis, where the basis is parameterised by the

complex beam parameter q.

D.3 Mode matching error signals

D.3.1 Mode matching error signal between two beams

The proposed mode matching error signal between two beams can be obtained con-

sidering a HG00 carrier and a beam modulation sideband with powers P00 and P02

respectively.

E =
[√

P00U00(q1) +
√
P02(U20(q2) + U02(q2))e

iΩt
]
eiω0t. (D.17)

To compute the interference between the two we choose to project the beam modulation

sideband into the carrier basis, which results in an RF HG00 component in the carrier

basis given by the k0200 scattering coefficient from (D.12) to first order in mismatch.

E =
{√

P00U00(q1) +
√
P02

[
2k0200(U00(q1))

+ k0202(U20(q1) + U02(q1))
]
eiΩt
}
eiω0t +O

(
ε2
)
. (D.18)

The mode matching error signal Z is then obtained by demodulating the intensity of

the combined beams at the offset frequency Ω, which gives

Zbeam = 2
√
P00P02 (k

∗
0200) +O

(
ε2
)

(D.19)
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where we dropped the k0202 terms because they do not beat with the HG00 carrier as

they are now in the same q1 basis, and hence orthogonal. We can break up the k0200
2D coupling coefficient into a product of two 1D scattering coefficients due to the fact

that HG modes are separable in Cartesian coordinates

Zbeam = 2
√
P00P02 (k

∗
20k
∗
00) +O

(
ε2
)
. (D.20)

Here we can substitute the 1D coupling coefficients with their first order approximation

from table D.1

Zbeam = −i
√
P00P02

√
2

2

(
εq +

i

4
εqεz

)
+O

(
ε2
)
. (D.21)

We can drop the εqεz term as it is quadratic in ε. The overall factor of i can be ignored

if the absolute demodulation phase is not relevant. This leaves us with the final form

of the mode matching error signal between two beams that was stated in (6.6)

Zbeam = −i
√
P00P02

√
2

2
εq +O

(
ε2
)
. (D.22)

D.3.2 Mode matching error signal for resonant cavity

Consider a beam consisting of a carrier HG00 and sideband HG02 both in basis q1
incident on a cavity with eigenmode basis qcav. In order to compute the cavity reflected

field it is necessary to project the incident beam into the qcav basis. The incident electric

field of the incident beam in the qcav basis is

Einc =
{
U00(qcav)

[√
P00k0000 +

√
P02e

iΩt
(
k0200 + k2000

)]
+ U02(qcav)

[√
P00k0002 +

√
P02k0202e

iΩt
]

+ U20(qcav)
[√

P00k0020 +
√
P02k2020e

iΩt
]}

eiω0t

+O
(
ε2
)

(D.23)

On reflection all components are promptly reflected with the exception of the resonant

mode and frequency, that being the HG00 mode at the carrier frequency ω0, which

picks up a cavity reflection Rcav defined in equation 6.8. The reflected electric field is
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then

Erefl =
{
U00(qcav)

[
Rcav

√
P00k0000 +

√
P02e

iΩt
(
k0200 + k2000

)]
+ U02(qcav)

[√
P00k0002 +

√
P02k0202e

iΩt
]

+ U20(qcav)
[√

P00k0020 +
√
P02k2020e

iΩt
]}

eiω0t

+O
(
ε2
)

(D.24)

To compute the error signal amplitude we now demodulate at the sideband frequency.

The complex demodulated amplitude is then

Zcav =
√
P00P02

[
Rcav

(
k0000k

∗
0200 + k0000k

∗
2000

)
+ k0002k

∗
0202 + k0020k

∗
2020

]
+O

(
ε2
)
. (D.25)

Here we can use the kn,n entry in table D.1 to note that to first order in ε the following

equalities hold: k0000 = k2020 = k0202 = 1, k0002 = k0020 = k02, and k0200 = k2000 = k20.

Applying those simplifications leaves us with

Zcav =
√
P00P02 [2Rcavk

∗
20 + 2k02] +O

(
ε2
)
. (D.26)

We can simplify further by using the last entry of table D.1 to note that k02 = −k∗20,

leaving us with

Zcav = −2
√
P00P02 [Rcavk02 − k02] +O

(
ε2
)

(D.27)

= −2
√
P00P02 (Rcav − 1) k02 +O

(
ε2
)
. (D.28)

We can substitute the k02 with its first order approximation from table D.1 to obtain

the result quoted in (6.7)

Zcav = −i
√
P00P02 (Rcav − 1)

√
2

2
εq +O

(
ε2
)
. (D.29)
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D.4 Shot Noise

For a single demodulation of a single optical sideband, the single sided shot noise PSD

is given by [103]

S(f) = 2~ckP (D.30)

where P is the average incident DC optical power. The root mean square (RMS) noise

is then given by

RMS2 =

∫ ∆f

0

S(f)df (D.31)

RMS =
√

2~ckP∆f (D.32)

=

√
2~ckP
T

(D.33)

where ∆f = 1/T is the integration bandwidth and T is the integration time in seconds.

The signal to noise ratio is then given by

SNR =
|Z|
RMS

(D.34)

=
|Z|√

2~ck (P00 + P02)

√
T (D.35)

=

√
P00P02√

2~ck (P00 + P02)

∣∣∣∣∣(Rcav − 1)

√
2

4
εq

∣∣∣∣∣√T (D.36)

Evaluating the constants and assuming an impedance matched cavity (Rcav = 0) results

in

SNR = 5.8× 108 |εq|

( √
P00P02√
P00 + P02

)
√
T . (D.37)

Substituting in the measured powers in the tabletop experiment P00 = 2mW , P02 =

20µW gives us

SNR = 2.6× 106 |εq|
√
T . (D.38)



174 APPENDIX D. MODE MATCHING ERROR SIGNAL

We can convert the SNR into units of mode mismatch by substituting (6.3)

SNR = 1.7× 1012 M× T. (D.39)

This translates to sub-ppm of mode mismatch even with a 1 µs integration time. We

conclude that in practice technical noise sources and not shot noise will be relevant to

the SNR of the mode matching error signal.
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