
J Physiol 600.14 (2022) pp 3313–3330 3313

Th
e
Jo
u
rn

al
o
f
Ph

ys
io
lo
g
y

Transforming growth factor β1 impairs the transcriptomic
response to contraction in myotubes from women with
polycystic ovary syndrome
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Abstract Polycystic ovary syndrome (PCOS) is characterised by a hormonal imbalance affecting
the reproductive and metabolic health of reproductive-aged women. Exercise is recommended as a
first-line therapy for womenwith PCOS to improve their overall health; however, womenwith PCOS
are resistant to the metabolic benefits of exercise training. Here, we aimed to gain insight into the
mechanisms responsible for such resistance to exercise in PCOS. We employed an in vitro approach
with electrical pulse stimulation (EPS) of cultured skeletal muscle cells to explore whether myo-
tubes from women with PCOS have an altered gene expression signature in response to contraction.
Following EPS, 4719 genes were differentially expressed (false discovery rate <0.05) in myotubes
from women with PCOS compared to 173 in healthy women. Both groups included genes involved
in skeletal muscle contraction. We also determined the effect of two transforming growth factor
β (TGFβ) ligands that are elevated in plasma of women with PCOS, TGFβ1 and anti-Müllerian
hormone (AMH), alone and on the EPS-induced response. While AMH (30 ng/ml) had no effect,
TGFβ1 (5 ng/ml) induced the expression of extracellularmatrix genes and impaired the exercise-like
transcriptional signature in myotubes from women with and without PCOS in response to EPS by
interfering with key processes related to muscle contraction, calcium transport and actin filament.
Our findings suggest that while the fundamental gene expression responses of skeletal muscle to
contraction is intact in PCOS, circulating factors like TGFβ1 may be responsible for the impaired
adaptation to exercise in women with PCOS.
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Abstract figure legend Women with polycystic ovary syndrome (PCOS) have elevated levels of circulating trans-
forming growth factor β (TGFβ) ligands, in particular TGFβ1 and anti-Müllerian hormone (AMH). Electrical pulse
stimulation (EPS), a model of in vitro contraction, produced different transcriptomic responses in myotubes from
healthy women and women with PCOS, as evidenced by changes in the number of genes and the associated Reactome
pathways. EPS produced a pro-inflammatory response in myotubes from women with PCOS and supressed genes
related to DNA methylation and reproduction. Treatment of myotubes with TGFβ1 resulted in increased expression
of genes related to ‘extracellular matrix organization’ and ‘collagen synthesis’, and a downregulation of genes involved
in ‘muscle contraction’ and ‘NOTCH signalling’ in both groups. Conversely, AMH had no effect. TGFβ1 treatment
altered the response to EPS, resulting in the activation of genes related to ‘extracellularmatrix organization’ and ‘unfolded
protein response’ with the suppression of genes related to contractile function in both groups, while only altered ‘DNA
methylation’ and ‘GPCR signalling’ pathways in myotubes from women with PCOS. Collectively, this highlights that
dysregulated TGFβ1 signalling may influence skeletal muscle signalling in response to contraction and subsequent
adaptations in women with PCOS.

Key points
� Gene expression responses to in vitro contraction (electrical pulse stimulation, EPS) are altered
in myotubes fromwomen with polycystic ovary syndrome (PCOS) compared to healthy controls,
with an increased expression of genes related to pro-inflammatory pathways.

� Transforming growth factor β1 (TGFβ1) upregulates genes related to extracellular matrix
remodelling and reduces the expression of contractile genes inmyotubes, regardless of the donor’s
health status.

� TGFβ1 alters the gene expression response to EPS, providing a possible mechanism for the
impaired exercise adaptations in women with PCOS.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Introduction

Polycystic ovary syndrome (PCOS) is a complex end-
ocrine condition that affects women of reproductive
age. It is characterised by androgen excess (hyper-
androgenism), ovulatory dysfunction and polycystic
ovarymorphology (Ehrmann, 2005). PCOS affects 8–13%
of reproductive-aged women worldwide (Bozdag et al.,
2016) and is associated with a number of morbidities
including subfertility, insulin resistance (Cassar et al.,
2016; Stepto et al., 2013), type 2 diabetes mellitus (T2DM)
(Moran et al., 2010), psychological disorders (depression
and anxiety) (Cooney et al., 2017), an increased risk of
cardiovascular disease (Kakoly et al., 2019) and end-
ometrial cancer (Dumesic & Lobo, 2013). While the
aetiology of PCOS remains to be established, there are a
number of proposed contributing factors such as genetic,
environmental, circulating and in utero developmental
programming factors (Franks et al., 2008; Sir-Petermann
et al., 2002; Tata et al., 2018; Vázquez-Martínez et al.,
2019).

Lifestyle intervention is a first-line therapy for women
with PCOS to manage clinical features at the metabolic,
reproductive and psychological level (Teede et al., 2018).
Exercise is a key component of this lifestyle inter-
vention (Stepto, Patten et al., 2019; Teede et al., 2018),
inducing improvements inmetabolic health. In particular,
some of the exercise-induced molecular adaptations
in skeletal muscle result in improvement in insulin
sensitivity, increases in muscle mass, vascularisation,
glucose transport and metabolism, and mitochondrial
content (Egan & Zierath, 2013; Sylow & Richter, 2019).
It has, however, been proposed that women with PCOS
display an impaired response to exercise on metabolic
health (Hansen et al., 2020; Harrison et al., 2012). Over-
weight women with PCOS display lesser improvements in
insulin sensitivity compared to BMI-matched controls in
response to 12 weeks of high intensity interval training
(Harrison et al., 2012). Additionally, 14 weeks of mixed
modality exercise training failed to improve glucose
uptake, insulin signalling or peripheral blood flow in lean
hyperandrogenicwomenwith PCOS (Hansen et al., 2020).
However, the precise mechanisms associated with the lack
of such exercise-inducedmetabolic improvements remain
elusive.

0 Luke C. McIlvenna obtained his PhD from Victoria University, Melbourne, Australia (2021) where he
explored the effects of the dysregulation of TGFβ signalling and skeletal muscle insulin resistance in
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vesicles. Ali Altıntaş is an assistant professor working at the Novo Nordisk Foundation Centre for Basic
Metabolomics Research at University of Copenhagen in Denmark. He received his MSc and PhD degrees
from Istanbul Technical University (Turkey, 2011) andTechnical University ofDenmark (Denmark, 2016),
respectively. His current research interests focus on transcriptomic and epigenetic regulation of skeletal
muscle in metabolic disorders.

One of the numerous factors which could contribute
to abnormal exercise responses in women with PCOS
is the transforming growth factor β (TGFβ) signalling
pathway. Dysregulated TGFβ signalling has been linked
to the pathophysiology of PCOS, and in particular to the
development of ovarian fibrosis and reproductive defects
(Hatzirodos et al., 2011; Raja-Khan et al., 2014), and has
been suggested to also affect peripheral tissues. Of inter-
est, women with PCOS have elevated circulating levels
of the TGFβ family ligands TGFβ1 and anti-Müllerian
hormone (AMH) (Cassar et al., 2014; Irani et al., 2015;
Raja-Khan et al., 2010; Sumbul et al., 2022; Tal et al.,
2013). To the best of our knowledge, only one study to
date conducted by our group has examined the effect of
TGFβ signalling in skeletal muscle of women with PCOS
(Stepto et al., 2020).
In individuals with T2DM, the mechanism behind

reduced improvements in insulin sensitivity after exercise
training has been attributed to TGFβ1 (Böhm et al., 2016).
Low responders to exercise training have greater TGFβ1
activity, resulting in the suppression of AMP-activated
protein kinase α2 (AMPKα2), ATP synthase subunit α,
peroxisome proliferator-activated receptor γ coactivator
1α (PGC1α), and mitochondrial transcription factor A
(TFAM), key factors of the exercise-induced metabolic
regulation (Böhm et al., 2016). A role of TGFβ signalling
has also been proposed in women with PCOS following
high-intensity exercise training, where exercise did not
fully restore insulin sensitivity to levels comparable
to overweight controls after the exercise training
(Stepto et al., 2020). This modest effect of exercise
was accompanied by an increased profibrotic gene
expression profile associatedwith TGFβ signalling (Stepto
et al., 2020), suggesting an effect of TGFβ signalling in
exercise-induced adaptations.
Electrical pulse stimulation (EPS) represents an in vitro

model of contraction in human primary and C2C12 myo-
tubes (Nikolić et al., 2017). EPS increases the gene
expression of myosin heavy chain 7 (Myh7) and 2 (Myh2),
and induces the expression of contraction-induced signal
transduction proteins in primary myotubes similar to
the in vivo exercise response (Son et al., 2019). Thus,
EPS is considered an appropriate in vitro model to
study the molecular responses to muscle contraction, and

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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to explore how cell-autonomous factors influence these
contraction-induced responses.
The present study sought to identify skeletal muscle

pathways that may explain the aberrant responses to
exercise observed in womenwith PCOS, and to determine
whether TGFβ signalling plays a role in the altered
response. We investigated the impact of two TGFβ
ligands, TGFβ1 and AMH, on contraction-induced
adaptations by applying in vitro EPS to myotubes from
women with PCOS compared to healthy controls. We
hypothesised that myotubes from women with PCOS
would present with a different exercise-induced signature
and that TGFβ signalling would play a major role in this
adaptation.

Methods

Ethical approval

This study conformed to the standards set by the
Declaration of Helsinki, except for registration in a
database. Participants included in this study were part
of the TGFβ-PCOS trial (ACTRN12618000155291) and
the iHIT-PCOS trial (ACTRN12615000242527): https:
//www.anzctr.org.au/ (Australian New Zealand Clinical
Trials Registry). Ethical approval was obtained from the
Victoria University Human Research Ethics Committee
(Reference HRE17-232), and all participants provided
written informed consent prior to participation in the
study.

Participants

Six overweight women with PCOS (body mass index
(BMI) >25 kg/m2) and six lean (BMI <25 kg/m2)
healthy women, all Caucasian, premenopausal and aged
between 18 and 40 years, were included in this study
(Supporting information Table S1). PCOS was diagnosed
according to the Rotterdam Criteria (The Rotterdam
ESHRE/ASRM-sponsored PCOS consensus workshop
group, 2004), and confirmed by an endocrinologist. The
Rotterdam criteria required confirmation of two of the
following: (i) oligo- or anovulation; (ii) clinical (hirsutism)
and/or biochemical hyperandrogenism; and (iii) poly-
cystic ovaries on ultrasound and exclusion of other
causes of hyperandrogenism. The healthy control group
consisted of women without any features of PCOS. The
exclusion criteria includedmenopause or perimenopause,
secondary causes of menstrual disturbance, pregnancy,
smoking, type 1 or type 2 diabetes, uncontrolled hyper-
tension (>160/100 mmHg), cardiovascular disease,
established cardiovascular disease and use of medications
that interfere with endpoints. All clinical measures and
testing, including body composition assessment by dual
energy X-ray absorptiometry (DXA) scan (iDXA GE

Lunar Prodigy scanner; GE Healthcare, Milwaukee, WI,
USA) and euglycaemic–hyperinsulinaemic clamps to
assess insulin sensitivity were conducted after an over-
night fast and in the early follicular phase of themenstrual
cycle (days 1–7) for those participants with regular
menstrual cycles, following the methods previously
described (Moreno-Asso et al., 2022). Cardiorespiratory
fitness level (V̇O2peak) of all participants was assessed as
previously described (Patten et al., 2022).

Muscle biopsies and primary myotube cultures

A muscle biopsy was obtained from the vastus lateralis
using the modified Bergstrom technique (Bergström,
1975; Shanely et al., 2014) after an overnight fast.
Following collection, approximately 40–50 mg of muscle
was minced into small pieces (<1–2 mm3), enzymatically
dissociated with 0.05% Trypsin-EDTA (Thermo Fisher
Scientific,Melbourne, Australia) and satellite cells selected
using CD56+ magnetic beads as described previously
(Agley et al., 2013). Cells were cultured in growthmedium
(α-minimum essential medium (MEM) with 10% v/v
fetal bovine serum, 0.5% v/v penicillin–streptomycin and
0.5% v/v amphotericin B) in coated flasks/plates with
extracellular matrix gel (Geltrex LDEV-Free Reduced
Growth Factor Basement Membrane Matrix, Thermo
Fisher Scientific). Once cells reached 80% confluency,
they were differentiated for 5 days in six-well plates
using differentiation medium (α-MEMwith 2% v/v horse
serum, 0.5% v/v penicillin–streptomycin and 0.5% v/v
amphotericin B) before starting the treatments.

TGFβ ligand treatments

To determine if the circulating factors TGFβ1 and AMH
differently influence human primary myotube responses
to in vitro EPS, the following six conditions were applied
for 16 h in serum-free normal glucose media (α-MEM
with 0.5% v/v penicillin–streptomycin and 0.5% v/v
amphotericin B): (i) non-treated control (no treatment
and no EPS); (ii) TGFβ1 (5 ng/ml); (iii) AMH (30 ng/ml);
(iv) EPS; (v) EPS+TGFβ1 (5 ng/ml), and (vi) EPS+AMH
(30 ng/ml) (Fig. 1).

Electrical pulse stimulation

Following the treatment, medium was removed and cells
washed twice with phosphate-buffered saline and then
placed in serum-free medium (α-MEM with 0.5% v/v
penicillin–streptomycin and 0.5% v/v amphotericin B).
Human primary myotubes were then stimulated with
EPS using the C-Pace EP multichannel Culture Pacer
(IonOptix, Milton, MA, USA) (Fig. 1), using a chronic
low-frequency stimulation protocol of 11.5 V, 2 ms,

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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1 Hz for 6 h or remained unstimulated in serum-free
medium for 6 h. This EPS protocol has been shown
to activate exercise-like induced signal transduction
improving glucose metabolism, promoting the secretion
of myokines and causing structural changes in the myo-
tubes (Nikolić et al., 2017).

RNA sequencing

Immediately following the 6 h treatment, total RNA was
extracted using the Qiagen AllPrep DNA/RNA/miRNA
universal kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. The quality of total RNA
samples (500 ng) was assessed using the Agilent RNA
6000 Nano kit and Bioanalyzer instrument (Agilent
Technologies, Santa Clara, CA, USA). Sequencing
libraries were prepared according to Illumina TruSeq
stranded total RNA with the Ribo-Zero Gold protocol
(Illumina, San Diego, CA, USA) as previously described
(Moreno-Asso et al., 2022). Qubit dsDNA HS assay kit
(Thermo Fisher Scientific) was used for quantification of
libraries, and quality control for base pair size and purity
was examined using an Agilent high-sensitivity DNA chip
and Bioanalyzer instrument (Agilent Technologies).
Sequencing was performed on the NovaSeq 6000
(Illumina).

Bioinformatic analysis of RNA sequencing data

RNA-seq reads (n ≈ 36.8 M) from FASTQ files were
aligned using STAR (v2.7.2b) aligner (Dobin et al.,
2013) with Ensembl (Cunningham et al., 2019) human
annotation (GRCh38, release 98) resulting in 28 M reads

on average (Supporting information, Fig. S1). One library
(sample: P_c_EPS_A30_26) was excluded from down-
stream analysis due to low read number (n = 137). Gene
coverages were counted using featureCounts (Liao et al.,
2014) (n≈ 23.7) from the subread (v1.6.2) package. Genes
with low expression were removed using the filterByExpr
function from the edgeR package (Robinson et al., 2009)
(v3.28.1), and thereby 19,231 genes were considered
for differential expression analysis. A generalised linear
model (GLM), 0 + group (group is defined by merging
experimental conditions ‘Disease’, ‘EPS-treatment’ and
‘hormone-treatment’), was fitted by edgeR’s (v3.32.1)
voomLmFit function while blocking for participants in
order to calculate differentially expressed genes with
a false discovery rate (FDR) <0.05. Multidimensional
scaling (MDS) plots were generated by using batch
(participant ID) corrected logCPM values using the
removeBatchEffect function from the edgeR package.

Pathway enrichment analysis

Gene set enrichment analysis (GSEA) was performed
by using clusterProfiler (Yu et al., 2012) (v3.14.3) and
Reactome database (ReactomePA R package (Yu &
He, 2016), v1.30.10) with log 2-fold changes (logFC)
calculated by the differential expression analysis. The
REACTOME ontology terms with less than 10 and
more than 500 genes were removed from the analysis.
REACTOME ontology terms with q-value <0.05 were
considered as enriched. The ontology termswith the genes
were plotted as a network, CNET plots, with selected
REACTOME ontology terms shown using the cnetplot
function from the clusterProfiler package.
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Figure 1. Schematic representation of the study design
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Table 1. qRT-PCR primer sequences

Gene symbol Primer sequence, 5′–3′ Accession no.

MYL2 F: GCTGAAGGCTGATTACGTTCG
R: AGTCCAAGTTGCCAGTCACG

NM_000432.4

ACTA1 F: CACGATGTACCCTGGGATCG
R: GCGGGGCGATGATCTTGA

NM_0 01100.4

TNNC2 F: CAGCAACCATGACGGACCA
R: CCCAACTCCTTGACGCTGAT

NM_0 03279.3

IGF1 F: CCAAGACCCAGAAGGAAGTACA
R: ACTCGTGCAGAGCAAAGGAT

NM_0 011 11284.2

COL7A1 F: AAAGGATGGAGTGCCTGGTATC
R: TCCCCGTTCACCCTTGAG

NM_000094.4

COL10A1 F: CTTCTGCACTGCTCATCTG
R: TATTCTCAGATGGATTCTGCGT

NM_000493.4

ACTB F: GAGCACAGAGCCTCGCCTTT
R: TCATCATCCATGGTGAGCTGGC

NM_0 01101.3

PPIA F: GTCAACCCCACCGTGTTCTTC
R: TTTCTGCTGTCTTTGGGACCTTG

NM_02 1130.4

B2M F: TGCTGTCTCCATGTTTGATGTATCT
R: TCTCTGCTCCCCACCTCTAAGT

NM_0 04048.2

GAPDH F: AATCCCATCACCATCTTCCA
R: TGGACTCCACGACGTACTCA

NM_0 012 89746.1

TBP F: CAGTGACCCAGCAGCATCACT
R: AGGCCAAGCCCTGAGCGTAA

NM_0 03194.4

F, forward primer; R, reverse primer.

Cluster analysis of expression patterns

To identify the similar gene expression patterns, the batch
corrected logCPM values (see ‘Bioinformatic analysis of
RNA sequencing data’) were z-score transformed across
libraries, excluding AMH treated ones, and the average
z-score was calculated by group. The Clust algorithm
(v1.10.10) (Abu-Jamous & Kelly, 2018) was used to
calculate the similar gene clusters, which resulted in
12 distinct clusters. The enriched gene ontology (GO)
molecular function (MF) and biological process (BP)
terms for the gene clusters 2 and 4, respectively, were
identified by using over-representation analysis with a
q-value cut-off below 0.05. Displayed GO terms were
filtered using SimRel semantic similarity with a value
of C = 0.5 to eliminate redundancy and prepared for
visualisation using the REViGO tool (Supek et al., 2011;
available online at http://revigo.irb.hr/).

Quantitative reverse transcription–PCR

Extracted mRNA was reverse transcribed using Bio-Rad
iScript RT Supermix (Bio-Rad Laboratories, Hercules,
CA, USA) and a Thermocycler (Bio-Rad Laboratories).
Quantitative reverse transcription–PCR (qRT-PCR)
reactions were performed in duplicate using SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad Laboratories)
and run in an Applied Biosystems QuantStudio 7 Flex

Real-Time PCR System (Thermo Fisher Scientific).
Specific qRT-PCR forward and reverse primers were used
for the amplification of selected genes (Table 1). Gene
expression results were normalised using the geometric
mean of the selected threemost stable housekeeping genes
(PPIA (cyclophilin), B2M, GAPDH) out of five analysed
(TBP, ACTB, PPIA, B2M, GAPDH), using RefFinder
(https://www.heartcure.com.au/reffinder/).

Statistical analyses

Statistical analysis for qRT-PCR gene expression was
performed by two-way repeated measures of ANOVA
with Bonferroni adjustment for multiple comparisons.
Factors were group (CTRL, healthy controls; and PCOS,
women with PCOS) and treatment (non-treated control,
TGFβ1 treatment, AMH treatment, EPS treatment,
and EPS+TGFβ1 treatment groups). This analysis was
carried out using GraphPad Prism software version 8.2.1
(GraphPad Software Inc., La Jolla, CA, USA).

Results

EPS induces a greater gene expression response
in myotubes from women with PCOS

Compared to the control group, women with PCOS
showed profound insulin resistance and dysregulated

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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hormonal expression including hyperandrogenism
(Supporting information Table S1). As these clinical
features may influence skeletal muscle signalling in
response to exercise, we aimed to assess changes in the
myotube transcriptome in response to contraction in
primary muscle cells from both women with PCOS and
healthy controls using low-frequency EPS. An MDS plot
of RNA-seq data displayed a clear separation by group
(PCOS vs. healthy) and by EPS treatment (Fig. 2A), the
latter being more apparent in myotubes from women
with PCOS compared to myotubes from healthy women.
We identified a total of 19 231 transcripts where 173
were differentially expressed following EPS in myo-
tubes from healthy women (83 upregulated and 90
downregulated; FDR < 0.05) and 4719 differentially
expressed (2419 upregulated and 2300 downregulated;
FDR < 0.05) in myotubes from women with PCOS
(Fig. 2B and Supporting information Dataset S1). GSEA
using Reactome pathways database showed upregulation
of genes involved in skeletal muscle contraction in both
groups following EPS in first 20 enriched terms ranked
by normalised enrichment score (NES) (Fig. 2C and
Supporting information Dataset S2). Only in myotubes
from women with PCOS, genes related to interleukin
(IL)-10 signalling, extracellular ligands and chemo-
kine binding, and cholesterol biosynthesis pathways
were upregulated following EPS, while genes related to
androgen receptor signalling, oxidative stress-induced
senescence and epigenetic regulation of both DNA
methylation and histone acetylation were down-
regulated (Fig. 2D). Relevant genes included in the
IL-10 signalling and chemokines pathways are CXCL10,
TNF, IL1A, CXCL8, CCL20, PTGS2, CX3CL1, LIF, IL6
and CSF3, which were all highly induced following
EPS (log 2-fold change greater than 1.6) (Fig. 2D and
Supporting information Dataset S2). In contrast, myo-
tubes from healthy women displayed a downregulation
of genes related to several inflammatory pathways and
immune responses after EPS treatment amongst the
top 20 downregulated enriched terms (Fig. 2C and
Supporting information Dataset S2). These results show
that myotubes from women with PCOS display a greater
responsiveness to EPS compared to myotubes from
healthy women and support a pro-inflammatory response
after muscle contraction in PCOS.

TGFβ1 upregulates genes related to extracellular
matrix remodelling and reduces the expression of
contractile genes in myotubes

To understand if elevated levels of TGFβ ligands could
negatively affect skeletal muscle as observed in the
reproductive tissues, we assessed changes in the trans-
criptomic profile in human primary myotubes following

16 h treatment with TGFβ1 or AMH. MDS plot
of RNA-seq data showed a marked separation by
TGFβ1 but no effect of AMH treatment on myotubes
from both women with PCOS and healthy controls
(Fig. 3A). We detected 1682 upregulated and 1500
downregulated genes (FDR < 0.05) in myotubes from
healthy women following treatment with TGFβ1 (Fig. 3B
and Supporting information Dataset S3). Similarly, in
myotubes from women with PCOS there were 1456
upregulated and 1187 downregulated genes (FDR < 0.05)
following TGFβ1 treatment (Fig. 3B). GSEA using the
Reactome pathways showed upregulation of genes related
to extracellular matrix remodelling, collagen synthesis
and TGFβ signalling in both groups following TGFβ1
treatment (Fig. 3C and Supporting information, Dataset
S4). In addition, TGFβ1 treatment resulted in the
suppression of genes related to muscle contraction and
NOTCH signalling in both groups (Fig. 3C). TGFβ1
treatment induced downregulation of genes associated
to IL-6-type receptor ligand interactions and activation
of matrix metalloproteinases and extra-nuclear oestrogen
signalling only in myotubes derived from women with
PCOS (Fig. 3C). Differential expression of a selection
of genes (ACTA1, MYL2, COL10A1 and COL7A1) from
relevant enriched terms was validated by qRT-PCR
(Fig. 3D). Altogether, these results suggest that TGFβ1
reprograms skeletal muscle cell cultures towards a less
differentiated phenotype.

TGFβ1 inhibits the EPS-induced increase in genes
related to myotube contractile functions

To test the hypothesis that TGFβ1 interferes with
contraction-induced gene expression adaptations in
muscle cells in PCOS, we examined the effects of TGFβ1
on the EPS treatment of primary myotubes from both
women with PCOS and healthy controls. Differential
gene expression detected with TGFβ1 and EPS compared
with EPS alone in both groups was similar (healthy
controls: 2003 upregulated and 1908 downregulated
genes, FDR< 0.05; and PCOS: 1465 upregulated and 1023
downregulated, FDR < 0.05) (Fig. 4A and Supporting
information Dataset S5). A selection of differentially
expressed genes,ACTA1,MYL2,TNNC2, IGF1,COL10A1
and COL7A1, was validated by qRT-PCR (Fig. 4B).
To get functional insight into the effect of TGFβ1

on the gene expression changes induced by in vitro
contraction in human primary myotubes, we performed
both GSEA and cluster analysis. GSEA showed an
upregulation of genes involved in extracellular matrix
remodelling and unfolded protein response/endoplasmic
reticulum stress pathways and a downregulation of
genes related to muscle contraction in both PCOS
and healthy control groups (Fig. 4C and Supporting

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



3320 L. C. McIlvenna and others J Physiol 600.14

1.4
1.2
1.0
0.8

A

C

B

D

0.6
0.4
0.2

0.0
Le

ad
in

g 
lo

gF
C

 d
im

 3

-lo
g 1

0(
F

D
R

)

-lo
g 1

0(
F

D
R

)

Leading logFC dim 1

EPS-

CTRL
PCOS

CTRL PCOS

PCOS: Upregulated with EPS PCOS: Downregulated with EPS

-3 -2 -1 0 1 2 3

EPS+

Pretreatment

Disease

-0.2
-0.4

-0.6
-0.8
-1.0

2.5 90 230083 2419

4

2

0

6
2.0

1.5

1.0

0.5

0.0
-3.0 -4 -3 -2 -1 0 1 2 3 4-2.5-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

log2 Fold Change log2 Fold Change

down up down up
RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function

RNA Polymerase I Promoter Opening
Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3

Activation of HOX genes during differentiation
Activation of anterior HOX genes in hindbrain development during early embryogenesis

DNA methylation
ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression

SIRT1 negatively regulates rRNA expression
Nuclear Receptor transcription pathway

HATs acetylate histones
HDACs deacetylate histones

DNA Damage/Telomere Stress Induced Senescence
Oxidative Stress Induced Senescence

Condensation of Prophase Chromosomes
PRC2 methylates histones and DNA

Formation of the beta-catenin:TCF transactivating complex
Pre-NOTCH Transcription and Translation

Meiotic synapsis
Reproduction

Interferon alpha/beta signaling
Antigen Presentation: Folding, assembly and peptide loading of class I MHC

TRIF(TICAM1)-mediated TLR4 signaling
Interferon Signaling

Interleukin-4 and Interleukin-13 signaling
Signaling by Interleukins

SUMO E3 ligases SUMOylate target proteins
FCERI mediated MAPK activation

Toll-like Receptor Cascades
MyD88-independent TLR4 cascade

Antiviral mechanism by IFN-stimulated genes
RAF-independent MAPK1/3 activation

ISG15 antiviral mechanism
Formation of the cornified envelope

Interleukin-10 signaling
GPCR ligand binding

Chemokine receptors bind chemokines
Peptide ligand-binding receptors

Cholesterol biosynthesis
Class A/1 (Rhodopsin-like receptors)
FGFR2 ligand binding and activation

Striated Muscle Contraction
Muscle contraction

NES

-2

-1

0

1

2

0.00

0.01

0.02

0.03

0.04

0.05
qvalue

CTRL PCOS

EPS

CXCL10

CXCL8

CCL20

CXCL6

CX3CL1

ACKR4CXCL11

CCL11
CCL7

CXCL13

CXCL3
CXCL5

CXCL1

CCL2

CXCL2

CCL5

ACKR3

FPR3

TRH
KISS1

C5AR2

EDN1

UTS2R

GPR37L1

C3

POMC

F2RL2

F2R

IDI1

MSMO1

ACAT2
HMGCS1

SQLE

TM7SF2

HMGCR

MVK

SC5D
ARV1

HSD17B7

FDFT1

NSDHL

MVD
FDPS

GGPS1

TNF

IL1A

PTGS2

LIF

IL6

CSF3

IL18

S1PR5

WNT2

PLPPR4

CHRM5WNT11

LPAR5

HTR2A

RAMP2

WNT10A

ADRA2B

HTR1D

PTHLH

RGR

PTGIR

GPBAR1
CALCRL

TAS2R14

GPR68

ADRA2C
TAS1R1

GABBR2

WNT10B

FZD9

GPR17

Chemokine receptors bind chemokines

Peptide ligand-binding receptors

Cholesterolbiosynthesis

Interleukin-10 signaling

GPCR ligand binding

category

Chemokine receptors bind chemokines

Cholesterol biosynthesis

GPC Rligand binding

Interleukin-10 signaling

Peptide ligand-binding receptors

1

2

3

logFC

size

10

20

30

40

50

CDKN2C

H3C11

H2AC8AGO1

H2BC12

H2BC7

H2AJ

H2BC13

MAPK14

H4C3

H2BC17

AGO3

MAPKAPK3

TNRC6C

H4C9

H3C1

H3C8

H2AC6

H2AC20

CBX6

UBC

MAP2K6

H2BC15

TXN

H2AZ1

H3C10

H2BC6

H2AC7

CDK4

CDK6

H2BC4

MAP2K3

TNRC6A

CBX4

CBX8

PHC1

H3C6

H4C2

H2AC4

H2BC5

H4C13

H2BC11

H4C1

H2BC10

H2BC9

MAPKAPK2

MINK1

TNRC6B

PHC2

H2BC21

JUN

CDKN2D

H4-16

MAP2K7

H3C3

KDM6B

H3C2

H3C7

E2F1

H3C13

MAP3K5

MAP4K4

FOS

E2F2

MBD3

H2BC18

CHD4

HMG20B

MTA1

CHD3

NCOR2

NCOR1

ARID4B

H2AC12

HDAC1

H2AC16

H2AW

SAP30L

GPS2

SAP30

H2AC11

TBL1X

HDAC10

PHF21A

H2AC13

PKN1

KDM4C

AR

UHRF1DNMT1

ATXN7L3

MSL2

DMAP1EP400

ZZZ3

BRD8 MSL1 KAT8
KAT6A

MSL3

CREBBP

BRPF1

KANSL1
TAF10

ING4
BRPF3

MRGBP

KAT7

ATXN7

HCFC1

SAP130

SGF29

EP300KAT2B

KAT6B

TRRAP

PAX3

ING5

TAF6L

JADE2

Oxidative Stress
Induced Senescence

HDACs deacetylate
histones

Activated PKN1 stimulates transcription of AR
(androgen receptor) regulated genes KLK2 and KLK3

DNA methylation

HATs acetylate histones size

20

40

60

-1.5

-1.0

-0.5

logFC

category

ActivatedPKN1 stimulates transcription of AR
(androgen receptor) regulated genes KLK2 and KLK3

DNA methylation

HATs acetylate histones

HDACs deacetylate histones

Oxidative Stress Induced Senescence

Figure 2. EPS-induced gene expression changes in primary myotubes
A, multidimensional scaling (MDS) plot of RNA-seq data from primary myotube cultures with (EPS+) and without
(EPS−) EPS from women with PCOS (PCOS; n = 5 showing all data points for each condition) and healthy control
women (CTRL; n = 5 showing all data points for each condition). B, volcano plot of all transcripts detected
between myotubes with EPS and without in women with PCOS and healthy controls, with significantly upregulated
genes (red) and downregulated genes (blue) highlighted (FDR <0.05). C, top 20 upregulated and downregulated
Reactome pathways from GSEA in myotubes with EPS, in both women with PCOS and healthy controls (q-value
<0.05). D, CNET plots showing selected significantly enriched Reactome ontology terms after EPS treatment within
five selected upregulated and downregulated pathways, respectively, in myotubes from women with PCOS.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



J Physiol 600.14 TGFβ1 impairs response to contraction in PCOS 3321

D

B

C

CTRL PCOS
2.0

8 6

4

2

0

6

1500 11871682 1456

4

2

0

1.5

1.0

0.5

0.0

Le
ad

in
g 

lo
gF

C
 d

im
 2

-lo
g 1

0(
F

D
R

)

-lo
g 1

0(
F

D
R

)

Leading logFC dim 1

-0.5

-1.0

-3 -2 -1 0 1 2

NULL

CTRL

Treatment

Disease

PCOS

TGFβ
AMH

3 6 4 2
log2 Fold Change log2 Fold Change

0 2 4 6 5 4 3 2 1 0 1 2 3 4 5

A

-4

-3

-2

-1

0

1

2

M
Y

L2
R

e
la

ti
v

e
 l

o
g

C
P

M

CTRL
PCOS

-1.0

-0.5

0.0

0.5

M
Y

L2
m

R
N

A
 e

x
p

re
s
s
io

n
 (

lo
g

F
C

)

-0.5

0.0

0.5

1.0

1.5

2.0

C
O

L1
0A

1
m

R
N

A
 e

xp
re

ss
io

n
 (

lo
g

F
C

)

-1.2

-0.8

-0.4

0.0

0.4

A
C

TA
1

m
R

N
A

 e
x
p

re
s
s
io

n
 (

lo
g

F
C

)

TGFβ1 AMH

* #

-0.5

0.0

0.5

1.0

1.5

C
O

L7
A

1
m

R
N

A
 e

x
p

re
s

s
io

n
 (

lo
g

F
C

)

* # † * #

* #

*p=0.05

-3

-2

-1

0

1

A
C

TA
1

R
e
la

ti
v
e
 l
o

g
C

P
M

TGFβ1 AMH TGFβ1 AMH TGFβ1 AMH TGFβ1 AMH

TGFβ1 AMHTGFβ1 AMHTGFβ1 AMH

-2

0

2

4

6

8

C
O

L1
0A

1
R

e
la

ti
v
e
 l
o

g
C

P
M

-1

0

1

2

3

4

C
O

L7
A

1
R

e
la

ti
v
e
 l
o

g
C

P
M #

* # * #
* #

†

down up down up
Biological oxidations

Interleukin-20 family signaling
NOTCH3 Activation and Transmission of Signal to the Nucleus

Muscle contraction
Striated Muscle Contraction

Constitutive Signaling by NOTCH1 HD Domain Mutants
Phase I - Functionalization of compounds

Signaling by NOTCH1 HD Domain Mutants in Cancer
EML4 and NUDC in mitotic spindle formation

Extra-nuclear estrogen signaling
Dissolution of Fibrin Clot

Mitotic Spindle Checkpoint
IL-6-type cytokine receptor ligand interactions

RHO GTPases Activate Formins
Resolution of Sister Chromatid Cohesion

RHO GTPase Effectors
Signaling by NTRK1 (TRKA)

Amplification of signal from the kinetochores
Activation of Matrix Metalloproteinases

NGF-stimulated transcription
Signaling by TGFB family members

Signaling by Receptor Tyrosine Kinases
Golgi-to-ER retrograde transport

Intra-Golgi and retrograde Golgi-to-ER traffic
Non-integrin membrane-ECM interactions

Crosslinking of collagen fibrils
Peptide hormone biosynthesis

Assembly of collagen fibrils and other multimeric structures
ER to Golgi Anterograde Transport

Collagen formation
Degradation of the extracellular matrix

Extracellular matrix organization
COPI-dependent Golgi-to-ER retrograde traffic

Formation of the cornified envelope
Cell-extracellular matrix interactions

WNT ligand biogenesis and trafficking
Signaling by TGF-beta Receptor Complex

Syndecan interactions

NES

-2

-1

0

1

2

0.00

0.01

0.02

0.03

0.04

0.05
qvalue

CTRL PCOS

TGFβ1

Figure 3. Effect of TGFβ1 and AMH treatment on primary myotubes
A, multidimensional scaling (MDS) plot of RNA-seq data from primary myotubes treated with TGFβ1, AMH or
with no treatment (NULL) from women with PCOS (PCOS; n = 5 showing all data points for each treatment) and
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healthy control women (CTRL; n = 5 showing all data points for each treatment). B, volcano plot of all transcripts
detected between myotubes with TGFβ1 in women with PCOS and healthy controls, with significantly upregulated
genes (red) and downregulated genes (blue) highlighted (FDR <0.05). C, top 20 upregulated and downregulated
Reactome pathways from GSEA in myotubes treated with TGFβ1, in both women with PCOS and healthy controls
(q-value <0.05). D, gene expression of selected differentially expressed genes with TGFβ1 and AMH. Relative
logCPM indicates RNA-seq counts per million relative to non-treated samples levels from myotubes from PCOS
women and healthy controls, respectively. Validation of mRNA expression levels by qRT-PCR is shown as logarithm
of fold change (logFC) over non-treated sample. Values are represented as means ± SD (CTRL, n = 5; in white)
and PCOS women (PCOS, n = 6; in grey). ∗Padj < 0.05 TGFβ1 vs. no-treatment; #Padj < 0.05 TGFβ1 vs. AMH
treatment within each group; †Padj < 0.05 TGFβ1 between groups.

information Dataset S6). In addition, myotubes derived
from women with PCOS displayed an upregulation
of genes related to DNA methylation and histone
acetylation, and a downregulation of genes related to
GPCR signalling and fatty acid metabolism, which was
not observed in the healthy control group (Fig. 4C).
Cluster analysis revealed 12 groups of genes with
similar expression pattern (Fig. 5A and Supporting
information Dataset S7). We identified three clusters
of genes, labelled 2, 4 and 11, whose expression was
activated by EPS but were downregulated when TGFβ1
treatment was added in both primary myotubes from
women with PCOS and healthy controls (Fig. 5A).
Conversely, expression of genes in clusters 3, 6 and 9 was
higher when TGFβ1 was added to the EPS (Fig. 5A).
Consistent with our GSEA findings of the RNA-seq
data, over-representation analysis of these clusters using
gene ontology, biological processes (GO:BP) or molecular
function (GO:MF), respectively, revealed that genes in
cluster 2 were involved in SMAD/activin signalling and
phosphatidylinositol 3-kinase (PI3K) binding (Fig. 5B
and Supporting information Dataset S8), while genes
in cluster 4 were related to muscle contraction, muscle
development and myotube differentiation, actin-filament
based movement, and cellular calcium ion transport
(Fig. 5C and Supporting information Dataset S8). No
enriched pathways were found for genes in clusters 3, 6,
9 and 11. Collectively, these results show that the presence
of TGFβ1 during muscle contraction affects the normal
gene expression response such as pathways controlling
intracellular signalling and constituents of the contraction
apparatus.

Discussion

Here, we have used an EPS model of in vitro muscle
contraction to map the transcriptomic response to
contraction in primarymyotubes fromwomenwith PCOS
compared to that in healthy controls, and also examined
the effect of TGFβ1 and AMH. We show that primary
myotubes from women with PCOS display a greater
responsiveness to EPS with a large pro-inflammatory
response compared to healthy control women. Our results
show that TGFβ1, but not AMH, alters the response to

EPS by impairing contractile functions in primary myo-
tubes from both groups of women and uniquely affects
different pathways in each group.
Exercise activates inflammatory related pathways in

human skeletal muscle, which promotes tissue repair and
adaptation (Louis et al., 2007; Peake et al., 2017; Powers
& Jackson, 2008). In our in vitro contraction model, we
found that following EPS, the expression genes related
to IL-10 signalling and chemokines was increased in
myotubes from women with PCOS. In contrast, we did
not see this response in myotubes from healthy women,
despite EPS having previously been shown to induce the
expression of genes related to interleukin and chemo-
kine signalling in primary myotubes from healthy sub-
jects (Raschke et al., 2013; Scheler et al., 2013). This
signalling has been associated in vivo with increased
secretion of myokines, such as CX3CL1 and CCL2,
involved in exercise adaptive processes such as tissue
repair and hypertrophy (Catoire et al., 2014; Hoffmann
& Weigert, 2017; Raschke et al., 2013; Scheler et al.,
2013). In response to EPS in myotubes from healthy
women, we also observed a reduction in inflammatory
related pathways including IL-4 and IL-13 signalling
pathways. Genes associatedwith these pathways are linked
with TNFα signalling, fibrosis and immune responses
(Distler et al., 2019). In line with this, it has been
previously shown that 8 h of EPS of myotubes from
healthy subjects produces an anti-inflammatory effect
by preventing TNFα-induced inflammatory signalling
(Lambernd et al., 2012). Thus, the pro-inflammatory
response to contraction of myotubes derived fromwomen
with PCOS may be a pathophysiological feature of PCOS
aggravating a maladaptive response to exercise.
Comparing the gene expression response to contraction

between PCOS and controls, we also observed a reduction
in the expression of genes related to androgen signalling
and epigenetic regulation by EPS in primary myotubes
from women with PCOS. Consistent with the described
hyperandrogenism in PCOS, an upregulation of androgen
receptor signalling genes has been observed in the
skeletal muscle of women with PCOS (Manti et al.,
2020). Remarkably, following exercise training, women
with PCOS exhibit a reduction in free androgen index
and total testosterone levels (Patten et al., 2020). Our
study, therefore, highlights a potential effect of muscle
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Figure 4. TGFβ1 inhibits the EPS-induced expression of contractile related genes, and increases
expression of genes associated to DNA methylation in myotubes from women with PCOS
A, volcano plot of all transcripts detected between myotubes treated with EPS + TGFβ1 compared to EPS alone
in women with PCOS (n = 5) and healthy controls (CTRL; n = 5), with significantly upregulated genes (red) and
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downregulated genes (blue) highlighted (FDR < 0.05). B, gene expression of selected differentially expressed genes
with EPS and EPS + TGFβ1. Relative logCPM indicates RNA-seq counts per million relative to non-treated samples
levels from myotubes from PCOS women and healthy controls, respectively. Validation of mRNA expression levels
by qRT-PCR is shown as logarithm of fold change (logFC) over non-treated sample. Values are represented as means
± SD (CTRL, n = 5; in white) and PCOS women (PCOS, n = 6; in grey). C, top 20 upregulated and downregulated
Reactome pathways from GSEA in myotubes treated with TGFβ1 and EPS compared to EPS alone, in both women
with PCOS and healthy controls (q-value <0.05). ∗Padj < 0.05 EPS vs. no-treatment; #Padj < 0.05 EPS+TGFβ1 vs.
no-treatment; †Padj < 0.05 EPS+TGFβ1 vs. EPS.

contraction by regulating androgen receptor signalling
and thus supporting the role of exercise in improving
hyperandrogenism. Of note, we found that the androgen
receptor signalling pathway was downregulated in myo-
tubes from women with PCOS following EPS. The
associated ontology term included core histone genes
(H2A, H2B, H3B, H3C, H4 and H4C) which were shared
across other downregulated terms associated with cellular
senescence, DNA methylation and histone acetylation.
In line with our findings, exercise-induced DNA hypo-
methylation has already been shown to occur immediately
post-exercise in skeletal muscle (Barrès et al., 2012), with
a similar response occurring in myotubes following EPS
(Pattamaprapanont et al., 2016). Although our analysis
was conducted in primary myotubes that were lysed
immediately after EPS, we only observed this decrease in
genes related to DNA methylation in myotubes derived
from women with PCOS and not in those from healthy
women. The downregulation of genes related to histone
acetylation has also been reported to occur in response to
metabolic stress in C2C12 myotubes (Jo et al., 2020), and
has been suggested to promote expression of genes related
to cell survival, whilst downregulating genes related to
cellular functions that require large amounts of energy
(Jo et al., 2020). Total histone 3 (H3) gene and protein
expression are downregulated in skeletal muscle following
acute resistance exercise, contributing to the dissembling
of nucleosomes to allow transcriptional activation (Lim
et al., 2020). Together with our data, evidence from
the literature suggests that muscle contraction induces
a greater metabolic stress and more disrupted oxidative
homeostasis in PCOS compared to controls, resulting in
the regulation of histones and epigenetic factors to favour
cell adaptations through the regulation of transcription.
The differential gene expression profile in response to

EPS between myotubes from women with PCOS and
healthy controls in our study may not only be explained
by the presence of intrinsic PCOS mechanisms but
also associated, in part, to other retained characteristics
from the in vivo phenotype, such as the fitness/training
level of the donors (Bourlier et al., 2013). Indeed, in
our study, women with PCOS had significantly lower
cardiorespiratory fitness levels (V̇O2peak) compared to
healthy control women (Supporting information Table
S1). Thus, a potential mechanism for the lack of gene
expression plasticity may be through the existence of a
skeletal muscle epigeneticmemory from previous exercise

training (Seaborne et al., 2018). However, we have pre-
viously shown that skeletal muscle-derived myotubes
fromwomenwith PCOSdonot retain in vivo impairments
in energy metabolism or the altered expression of genes
related to mitochondrial function, which are associated to
exercise-induced adaptations (Moreno-Asso et al., 2022).
Thus, a limitation of this study is the lack of an additional
control group of myotubes from sedentary overweight
women, which may have allowed for better identification
of the differences that occur due to PCOS, excluding the
influence of different fitness levels and obesity.
We also determined if elevated levels of TGFβ1 or

AMH, similar to those observed in vivo in women with
PCOS, would influence basal and EPS-induced gene
expression. We previously proposed that AMH, which is
associated with peripheral insulin resistance in women
with PCOS, might be involved in tissue cross-talk to
influence skeletal muscle metabolism (Nardo et al., 2009;
Sahmay et al., 2018; Stepto, Moreno-Asso et al., 2019;
Wiweko& Susanto, 2017). However, treatment with AMH
did not affect gene expression in primary myotubes from
either healthy women or women with PCOS in our study.
Thus, our data indicate that AMH does not play a direct
role in muscle metabolism or exercise-induced metabolic
adaptations, at least in a cell autonomous system, despite
its involvement in reproductive defects and proposed role
in whole-body insulin resistance in women with PCOS
(Wiweko et al., 2018).
In contrast to the lack of transcriptional alterations

by AMH, TGFβ1 induced robust and similar responses
in the gene expression profile of myotubes from both
healthy women and women with PCOS despite intrinsic
differences between donor groups, such as the presence
of obesity. TGFβ1 increased gene expression of several
extracellularmatrix-related pathways, which can be linked
to adverse tissue remodelling such as fibrosis and muscle
pathologies (Ismaeel et al., 2019). Typically, TGFβ1 and
tissue fibrosis are associated with increased collagen
accumulation, in particular collagens 1 and 3 (Williams
et al., 2015). However, our data show an increase after
TGFβ1 treatment of gene expression of collagens 7 and
10 (COL7A1 and COL10A1), which act as anchoring
fibrils and network-forming collagens, respectively (Kaur
&Reinhardt, 2015). These findings are consistent with our
previous data showing no change in collagens 1 and 3 in
primary myotubes treated with TGFβ1 (McIlvenna et al.,
2021). This atypical response may be related to the 2D cell

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 5. Cluster analysis of gene expression levels in myotubes with the different conditions
A, trend plots showing expression pattern of genes (FDR < 0.05) for the different conditions (no treatment
((Null)[−EPS]); TGFβ1 ((TGFβ)[−EPS]); EPS ((Null)[+EPS]); EPS + TGFβ1 ((TGFβ)[+EPS]) in both myotubes from
women with PCOS (n = 5) and healthy controls (CTRL; n = 5). B and C, trend plots for cluster 2 and 4, respectively,
and scatter plots representing enriched pathways obtained from over-representation analysis for each of the
clusters using Gene Ontology – biological processes (GO:BP) or molecular function (GO:MF), respectively.
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culture set-up, which does not fully capture the structural
and dynamic complexities of the extracellular matrix in
vivo (Li &Kilian, 2015; Nicolas et al., 2020).We and others
have previously shown that skeletal muscle and cultured
myotubes derived from women with PCOS have altered
transcriptomic signatures, which include upregulation of
genes related to extracellular matrix remodelling and
collagens (Moreno-Asso et al., 2022; Nilsson et al., 2018;
Stepto et al., 2020). Thus, taking into consideration that
TGFβ1 levels are increased in women with PCOS (Irani
et al., 2015; Raja-khan et al., 2010; Raja-khan et al., 2014;
Tal et al., 2013), findings from our study support a role
of TGFβ1 as a casual factor for the extracellular matrix
dysregulation in women with PCOS.
In the present study, we also investigated whether

TGFβ1 may be responsible for the aberrant metabolic
adaptations to exercise observed in women with PCOS
(Hansen et al., 2020; Stepto et al., 2020). We found
that, regardless of the presence or absence of PCOS and
intrinsic differences in the donor health status, TGFβ1
impairs the exercise-like gene expression signature in
myotubes in response to EPS by interfering with key
processes related to muscle contraction, calcium trans-
port and actin filament, which all play a role in
exercise-induced adaptations. This reduction in the
expression of genes of the contractile apparatus was
observed with TGFβ1 treatment alone and persisted
after adding EPS. Our findings are in agreement with a
recent study showing impaired muscle function induced
by TGFβ1 injection in mice during muscle regeneration,
and a disruption of genes regulating actin dynamics,
affecting cell fusion/differentiation (Girardi et al., 2021).
Similarly, excess TGFβ1 in mice leads to phosphorylation
of SMAD3, increasedNADPHoxidase 4 (NOX4) gene and
protein expression and reactive oxygen species production
in skeletal muscle, causing muscle weakness and reducing
the intracellular calcium signalling needed for muscle
contraction (Waning et al., 2015). In addition, excess
SMAD signalling contributes to skeletal muscle and
cardiac dysfunction in models of muscular dystrophy
via calcium handling pathways (Goldstein et al., 2014).
These studies support our findings showing a substantial
increase in NOX4 gene expression and SMAD signalling
in myotubes from both groups after EPS when treated
with TGFβ1. Contrary to previous findings in myotubes
from T2DM subjects showing a link between TGFβ1
and impairments in exercise-induced skeletal muscle
mitochondrial metabolism (Böhm et al., 2016), we did
not detect any reduced expression of mitochondrial genes
with TGFβ1 in myotubes derived from either women
with PCOS or healthy controls. This suggests a distinctive
effect of TGFβ1 in skeletal muscle of women with PCOS
compared to that in individuals with T2DM.
In conclusion, our study provides evidence that the gene

expression response to contraction is altered in cultured

primary myotubes from women with PCOS compared
to healthy controls, with an increased expression of
genes related to pro-inflammatory pathways in PCOS.
We identified that TGFβ1 inhibits the gene expression
response to in vitro contraction, providing further insight
into the possible negative influence of TGFβ signalling
on the gene expression response after exercise in PCOS.
Elevated circulating levels of TGFβ1 may represent a
mechanism by which the exercise response of skeletal
muscle on gene expression plasticity is impaired inwomen
with PCOS.
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