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Abstract 

Background:  There is increasing interest in the development and use of clinical prediction models, but a lack of 
evidence-supported guidance on the merits of different modelling approaches. This is especially true for time-to-
event outcomes, where limited studies have compared the vast number of modelling approaches available. This 
study compares prediction accuracy and variable importance measures for four modelling approaches in prediction 
of time-to-revision surgery following total knee arthroplasty (TKA) and total hip arthroplasty (THA).

Methods:  The study included 321,945 TKA and 151,113 THA procedures performed between 1 January 2003 and 31 
December 2017. Accuracy of the Cox model, Weibull parametric model, flexible parametric model, and random sur-
vival forest were compared, with patient age, sex, comorbidities, and prosthesis characteristics considered as predic-
tors. Prediction accuracy was assessed using the Index of Prediction Accuracy (IPA), c-index, and smoothed calibration 
curves. Variable importance rankings from the Cox model and random survival forest were also compared.

Results:  Overall, the Cox and flexible parametric survival models performed best for prediction of both TKA (inte-
grated IPA 0.056 (95% CI [0.054, 0.057]) compared to 0.054 (95% CI [0.053, 0.056]) for the Weibull parametric model), 
and THA revision. (0.029 95% CI [0.027, 0.030] compared to 0.027 (95% CI [0.025, 0.028]) for the random survival 
forest). The c-index showed broadly similar discrimination between all modelling approaches. Models were gener-
ally well calibrated, but random survival forest underfitted the predicted risk of TKA revision compared to regression 
approaches. The most important predictors of revision were similar in the Cox model and random survival forest for 
TKA (age, opioid use, and patella resurfacing) and THA (femoral cement, depression, and opioid use).

Conclusion:  The Cox and flexible parametric models had superior overall performance, although all approaches 
performed similarly. Notably, this study showed no benefit of a tuned random survival forest over regression models 
in this setting.

Keywords:  Prediction model, Machine learning, Time-to-event data, Flexible parametric survival model, Parametric 
survival model, Random survival forest, Hip replacement, Knee replacement
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Background
There is increasing interest in the development and use of 
clinical prediction models [1]. Accurate prediction mod-
els can assist in informed decision-making by estimating 
a patient’s risk of a health outcome based on their indi-
vidual characteristics, rather than relying on crude pop-
ulation-level estimates. However, developing an accurate 
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prediction model requires the researcher to choose from 
many available modelling approaches and limited studies 
have compared the advantages and disadvantages of each 
method.

For time-to-event outcomes the Cox model is the most 
common approach, but parametric survival models, 
including flexible parametric models, may be preferable 
depending on the complexity of the data. Alternatively, 
machine learning methods hold promise of improved 
prediction accuracy through automatic modelling of 
non-linearities, interactions, and time-varying effects in 
predictor variables. These methods make fewer (or no) 
assumptions about the underlying structure of the data 
[2], but as a consequence they are generally less efficient 
and require much larger sample sizes to obtain stable 
predictions [3]. Another drawback of machine learning 
methods is lack of interpretability; understanding which 
variables are important for prediction and how they 
influence the outcome are critical to the utility of such 
models [4]. Many machine learning methods provide 
measures of how ‘important’ each variable is, but do not 
indicate effect size or direction. A raft of machine learn-
ing methods to assist in the development of prediction 
models are now available, but few studies have systemati-
cally compared their performance to traditional regres-
sion approaches [5].

An important clinical area for the development of 
prediction models is joint replacement surgery. Arthro-
plasty of the hip or knee is an effective treatment for end 
stage osteoarthritis, an increasingly common disease and 
one of the leading causes of global disability [6]. While 
joint replacements are expected to last at least 25 years 
on average, a small proportion will fail within a shorter 
time frame and require revision surgery [7, 8]. Revision 
surgery is defined as the addition, removal or exchange 
of one or more prosthetic components, and is an unam-
biguous indication that there are problems with the joint 
severe enough to require further surgery [9, 10]. Prema-
ture revision surgery is a major burden for both patients 
and the healthcare system, resulting in worse out-
comes for patients and billions in hospital costs [11, 12]. 
Improved prediction of the risk of revision, by taking into 
account patient-, surgeon- and prosthesis-related fac-
tors, will better inform patients of their likely risks when 
undergoing elective surgery, as well as enable hospitals 
to predict expected health care burden. Prospective joint 
replacement recipients are concerned with both their risk 
of revision surgery and the ways in which their personal 
characteristics influence this risk, highlighting the need 
for prediction models that are both accurate and inter-
pretable [13].

In the present study, four survival modelling 
approaches for predicting time-to-revision within 8 years 

of joint arthroplasty surgery are compared: Cox regres-
sion, parametric regression with a Weibull distribution, 
flexible parametric regression, and random survival for-
ests. Variable importance rankings from the Cox model 
and random survival forests are also compared.

Methods
Data source
This study used data from elective primary Total Knee 
Arthroplasty (TKA) and Total conventional Hip Arthro-
plasty (THA) procedures recorded in the Australian 
Orthopaedic Association National Joint Replacement 
Registry (AOANJRR) between 1 July 2003 and 31 Decem-
ber 2017. The Registry collects data on patient age, sex, 
indication for surgery, and prosthesis type and features, 
recorded by hospital staff at the time of surgery. Patient 
comorbidities were identified through record linkage 
with the Pharmaceutical Benefits Scheme administra-
tive claims database. This database is maintained by the 
Australian Government Department of Human Services 
and contains information on the dispensing of prescrip-
tion medicines. Using probabilistic data linkage, 95% of 
procedures in the AOANJRR were linked to Pharmaceu-
tical Benefits Scheme data. A total of 47 morbid condi-
tions were identified using the validated Rx-Risk coding 
of patient prescriptions [14]. A patient was considered 
to have a morbid condition if they were dispensed at 
least one medicine indicative of that condition in the 
12 months prior to their joint replacement surgery.

The AOANJRR captured approximately 98% of knee 
and hip arthroplasties in Australia over the study period, 
including both primary and revision procedures. Revi-
sion procedures were identified by internally matching 
primary and revision procedures on patient information 
and side of joint replacement (left or right). Revision pro-
cedures unable to be matched or performed in another 
country were not captured. Patient death was identified 
through record linkage with the National Death Index.

Participants and variables
The inclusion criteria for TKAs were: primary indication 
of osteoarthritis, patients aged 45 to 89 years at the time 
of surgery; minimally and posterior-stabilised prostheses 
only, and no missing prosthesis attributes.

The inclusion criteria for THAs were: primary indica-
tion of osteoarthritis, patients aged 40 to 89 years at the 
time of surgery; modern bearings (metal-on-cross-linked 
polyethylene, ceramic-on-cross-linked polyethylene, 
and ceramic-on-ceramic), and no missing prosthesis 
attributes.

In addition, only patients receiving concessional ben-
efits were included. These patients are eligible healthcare 
cardholders or pensioners who pay a lower co-payment 
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towards the cost of medicines subsidised by the Austral-
ian Government, and represented 80% of the total joint 
replacement population. Flowcharts showing details of 
inclusion criteria are provided in Additional file 1.

Once selection criteria were applied, 321,945 TKA and 
151,113 THA procedures (performed in 254,886 and 
131,386 patients, respectively) were available for model 
development and validation. A summary of the study 
population is given in Table 1 for TKAs and Table 2 for 
THAs.

Modelling approaches
The semi-parametric Cox proportional hazards model is 
the most widely used model for predicting time-to-event 
outcomes. When fitting a Cox model the distributional 
form of the baseline hazard does not need to be speci-
fied, an advantageous feature when the hazard function 

is unknown or complex. However, as the baseline hazard 
is unspecified, the Cox model cannot directly provide an 
estimate of the survival function. In order to predict sur-
vival probabilities, an estimate of the baseline cumulative 
hazard needs to be calculated (using the Nelson-Aalen 
estimator or similar) and combined with the coefficients 
from the Cox model. The time points for which the Cox 
model can predict outcomes are then restricted to the 
discrete time points at which events occurred in the data 
used to develop the model. This means it is not possible 
to extrapolate predictions from the Cox model, or make 
predictions precisely at time points where no events 
occurred.

Unlike the Cox model, which makes no assumptions 
about the distributional form of the hazard function, 
parametric survival models assume the baseline hazard 
follows a particular distribution, such as the Weibull, 

Table 1  Demographics, comorbid conditions and prosthesis use in all patients undergoing TKA and for those revised within 8 years of 
surgery

Variable All TKA N = 321,945 Revised N = 9819

Median (IQR) age in years 72 (67-78) 70 (64-75)

N (%) female 195,668 (60.8) 5659 (57.6)

N (%) cemented femoral 188,734 (58.6) 5438 (55.4)

N (%) cemented tibial 259,187 (80.5) 7344 (74.8)

N (%) patella used 164,333 (51) 3916 (39.9)

N (%) fixed bearing 257,008 (79.8) 7202 (73.3)

N (%) minimally stabilised 234,827 (72.9) 6669 (67.9)

N (%) cross-linked polyethylene 107,456 (33.4) 2080 (21.2)

N (%) computer navigated 60,164 (18.7) 1551 (15.8)

N (%) anticoagulants 42,398 (13.2) 1281 (13)

N (%) antiplatelet medications 64,011 (19.9) 2091 (21.3)

N (%) anxiety 34,863 (10.8) 1462 (14.9)

N (%) Arrhythmia 18,373 (5.7) 568 (5.8)

N (%) congestive heart failure 25,281 (7.9) 833 (8.5)

N (%) depression 83,445 (25.9) 3165 (32.2)

N (%) diabetes 47,041 (14.6) 1442 (14.7)

N (%) Gastro-oesophageal reflux disease 156,820 (48.7) 5058 (51.5)

N (%) glaucoma 20,382 (6.3) 527 (5.4)

N (%) gout 30,540 (9.5) 997 (10.2)

N (%) hyperlipidaemia 160,478 (49.8) 4817 (49.1)

N (%) hypertension 181,127 (56.3) 5325 (54.2)

N (%) hypothyroidism 33,546 (10.4) 1053 (10.7)

N (%) ischaemic heart disease (angina) 21,925 (6.8) 826 (8.4)

N (%) ischaemic heart disease (hypertension) 117,801 (36.6) 3399 (34.6)

N (%) osteoporosis/Paget’s 30,706 (9.5) 844 (8.6)

N (%) pain 151,805 (47.2) 5514 (56.2)

N (%) inflammation pain 176,883 (54.9) 5949 (60.6)

N (%) chronic airways disease 71,122 (22.1) 2373 (24.2)

N (%) steroid responsive 54,271 (16.9) 1906 (19.4)
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logistic, log-logistic or log-normal. The Weibull distri-
bution on a proportional hazards scale is commonly 
chosen for use in health data. An advantage of para-
metric models is that they can be specified fully by a 
mathematical equation. Hence predictions with para-
metric models can be made directly using this equation. 
This means it is possible to make predictions for any 
time point, and even extrapolate survival predictions, 
rather than being restricted to the discrete time points 
at which events occurred. However, if the shape of the 
baseline hazard function is unknown or complex, then it 
can be challenging to find a distribution that adequately 
describes it, potentially resulting in less accurate predic-
tions. The Royston-Parmar flexible parametric model 

was introduced to overcome the limitations of paramet-
ric survival models by allowing flexible modelling of the 
baseline hazard [15]. Rather than modelling the base-
line hazard with a pre-specified distribution, a restricted 
cubic spline is used to flexibly model the baseline log 
cumulative hazard function. This can be thought of as a 
hybrid of the Cox and parametric survival models, as the 
model can be specified mathematically without imposing 
the restrictions of a particular distribution on the hazard 
function. The complexity of the function used to model 
the baseline hazard is determined by the number of knots 
in the restricted cubic spline. It has been shown that the 
model is relatively robust to the number and placement 
of knots; more than 5 knots are rarely required, but up to 

Table 2  Demographics, comorbid conditions and prosthesis use in all patients undergoing THA and for those revised within 8 years of 
surgery

Variable All THA N = 151,113 Revised N = 4415

Median (IQR) age in years 73 (68-79) 73 (67-78)

N (%) female 90,153 (59.7) 2498 (56.6)

N (%) cemented femoral 66,537 (44) 1534 (34.7)

N (%) bearing surface

  Ceramic/ceramic 28,886 (19.1) 1036 (23.5)

  Ceramic/cross-linked polyethylene 27,249 (18) 698 (15.8)

  Metal/cross-linked polyethylene 94,978 (62.9) 2681 (60.7)

N (%) head size

  ≤ 28 mm 29,724 (19.7) 995 (22.5)

  32 mm 64,854 (42.9) 1761 (39.9)

  36 mm 53,376 (35.3) 1558 (35.3)

  ≥ 40 mm 3159 (2.1) 101 (2.3)

N (%) anticoagulants 20,990 (13.9) 658 (14.9)

N (%) antiplatelet medications 27,645 (18.3) 899 (20.4)

N (%) anxiety 16,146 (10.7) 627 (14.2)

N (%) arrhythmia 9092 (6) 290 (6.6)

N (%) congestive heart failure 11,708 (7.7) 410 (9.3)

N (%) depression 37,159 (24.6) 1402 (31.8)

N (%) diabetes 16,689 (11) 494 (11.2)

N (%) Gastro-oesophageal reflux disease 65,911 (43.6) 2194 (49.7)

N (%) glaucoma 9824 (6.5) 286 (6.5)

N (%) gout 11,325 (7.5) 372 (8.4)

N (%) hyperlipidaemia 70,365 (46.6) 1990 (45.1)

N (%) hypertension 78,101 (51.7) 2270 (51.4)

N (%) hypothyroidism 14,282 (9.5) 430 (9.7)

N (%) ischaemic heart disease (angina) 9576 (6.3) 309 (7)

N (%) ischaemic heart disease (hypertension) 50,495 (33.4) 1512 (34.2)

N (%) osteoporosis/Paget’s 15,157 (10) 501 (11.3)

N (%) pain 82,787 (54.8) 2714 (61.5)

N (%) inflammation pain 83,078 (55) 2714 (61.5)

N (%) chronic airways disease 29,633 (19.6) 967 (21.9)

N (%) steroid responsive 22,730 (15) 805 (18.2)
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7-8 knots may be required for complex variables such as 
time [16, 17].

Despite the benefits of flexible parametric models, they 
are rarely used for prognostic models in medical settings 
and have not been systematically compared to other sur-
vival analysis approaches [18].

Both the Cox and parametric models on the propor-
tional hazards scale assume that the effect of covariates 
is constant over time, which is rarely a realistic assump-
tion in medical settings. Parametric and semi-parametric 
approaches also require interactions between variables 
to be explicitly specified, which may be intractable when 
the number of predictors is large. In contrast, the ran-
dom survival forest algorithm is a fully non-parametric 
machine learning approach that does not assume propor-
tional hazards and can automatically account for possible 
interaction effects [19]. Introduced in 2008, it is an exten-
sion of the random forest algorithm that makes predic-
tions for new patients by aggregating predicted survival 
curves from a series of survival trees. Random survival 
forests can also provide fully nonparametric measures of 
variable importance [20].

Statistical analysis
The outcome of interest was time-to-first revision within 
8 years of primary joint arthroplasty. Patient age, sex, 
prosthesis characteristics, and comorbidities with at least 
5% prevalence in the analysis dataset were used in the 
model, resulting in 29 variables for TKA revision and 26 
for THA revision (Tables 1 and 2). In the Cox and para-
metric models, age was treated as a continuous variable 
and modelled with a restricted cubic spline with four 
knots. All other variables included in the prediction mod-
els were categorical. Patients were censored at the time 
of database closure (31 December 2017) or death. Patient 
death was treated as a censoring event as ignoring com-
peting risks has been shown to have a negligible impact 
on prediction modelling of time-to-revision following 
joint replacement surgery [21]. All analyses assumed cen-
soring was independent of event rates, conditional on 
covariates included in the model. If a patient had bilateral 
TKAs or THAs, each side was treated as a separate uni-
lateral procedure, which has been shown to have a neg-
ligible effect on model estimates [22]. Seven knots were 
used for modelling the log cumulative hazard in the flex-
ible parametric model, with knots placed at the default 
location of equally spaced quantiles of the log uncen-
sored survival times. The crude cumulative incidence of 
revision was calculated using the Aalen-Johansen estima-
tor with patient death treated as a competing event [23]. 
The baseline hazard was estimated using the bshazard 
function in R, which calculates smoothed, non-paramet-
ric estimate of hazard function using B-splines [24].

Random survival forests were grown using log-
rank splitting with 300 trees. Two parameters were 
tuned: the terminal node size and the number of vari-
ables considered for splits when growing the survival 
trees. Full details of the tuning process are provided in 
Additional file 3.

Model performance
The eight-year prediction performance of the four mod-
elling approaches was averaged across 10 repetitions of 
10-fold cross-validation. Cross-validation was used to 
reduce the bias and variability of estimated performance 
that may result from using a single testing/training split 
and ensure the results obtained did not depend arbitrar-
ily on the random split of the data chosen [25, 26]. 95% 
confidence intervals for performance metrics were cal-
culated by computing a standard normalised interval 
around the mean using the different values estimated 
within each fold. Normality was assessed using quantile-
quantile plots and found to be a reasonable assumption 
for all performance metrics.

Model discrimination was assessed using Harrell’s con-
cordance index (c-index). The c-index estimates the prob-
ability that, for a randomly selected pair of patients, the 
patient with highest predicted risk fails first. The value of 
the c-index ranges from 0.5 to 1, with a value of 1 imply-
ing perfect discrimination and 0.5 representing a model 
that is no better than random guessing.

Calibration was assessed using smoothed calibration 
curves to compare the proportion of observed and pre-
dicted events at 8 years [27]. A calibration curve that 
closely follows the 45-degree identity line indicates a 
good match between predicted and observed values. The 
smoothed plots were generated using a Cox model with 
predicted probabilities modelled using a restricted cubic 
spline with four knots. Calibration was assessed for pre-
dicted probabilities ranging from the first percentile to 
the 99th percentile. Calibration curves were calculated 
using the same grid of predicted probabilities for each 
fold and repetition of cross-validation and then aver-
aged across 10 repetitions of 10-fold cross-validation. A 
numeric summary of the calibration curve, the Integrated 
Calibration Index (ICI), was also calculated, with lower 
values indicating a smaller average difference between 
the observed and predicted probabilities [28]. Addi-
tional calibration plots comparing the average predicted 
survival curves from each method to the Kaplan-Meier 
curve are presented in Additional file 4.

The overall performance of each model was assessed 
using the Index of Prediction Accuracy (IPA), derived 
as 1-(model Brier score/null model Brier score), where 
the null model is the Kaplan-Meier estimator [29]. The 
Brier score measures the average squared distance 
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between the observed event status and predicted event 
probability for each individual at a single point in time, 
thereby providing a combined measure of discrimina-
tion and calibration. Higher IPA values imply better 
model fit, with 100% representing a perfect model. 
Values ≤0 indicate the model performs no better than 
the population-level estimate. The IPA was integrated 
over 8 years to summarise model performance in a sin-
gle numeric value, as well as calculated at several time 
points and presented graphically to show the predic-
tive performance of the modelling approaches over the 
eight-year period.

The c-index and IPA were weighted using inverse 
probability of censoring to correct for bias intro-
duced by censoring [30–32]. All performance met-
rics were estimated using ten repetitions of 10-fold 
cross-validation.

Variable importance
Two methods for determining the most important 
predictors of revision risk were compared: backwards 
elimination in the Cox model and minimal depth from 
the random survival forest.

Random survival forest minimal depth uses the struc-
ture of survival trees in the forest to assess the variable 
importance by measuring the depth of each variable 
relative to the root node of the tree [20]. A small mini-
mal depth indicates that the variable was chosen early 
in the splitting process, which implies it has a strong 
influence in determining the risk of revision for joint 
replacement. Minimal depth for each variable was aver-
aged across 500 trees grown from a tuned random sur-
vival forest. Backwards elimination in the Cox model 
was performed with no stopping criterion and the 
order in which predictors were sequentially removed 
from the model was used to rank their importance. 
This process was repeated on 500 bootstrap samples of 
the data as variable selection from backward elimina-
tion is notoriously unstable [17]. Ranks were averaged 
across bootstrap samples and 95% confidence intervals 
for ranks were calculated assuming a normal distribu-
tion. This rank-based approach was used to allow more 
direct comparison to the minimal depth from the ran-
dom survival forest. Backwards elimination was not 
performed for the parametric regression approaches, 
as model coefficients were nearly identical to the Cox 
model (as shown in Additional file 2).

Statistical analyses were performed using R version 
3.6.3 (R Foundation for Statistical Computing, Vienna, 
Austria) with packages survival [33], bshazard [24], pec 
[34], riskRegression [35], flexsurv [36], rms [37], and ran-
domForestSRC [38].

Results
For TKAs, the cumulative incidence of revision was 3.9% 
at 8 years and the hazard function was non-monotonic; 
revision risk was highest initially after surgery, but spiked 
approximately 1 year after surgery before decreasing 
again (Fig. 1a and b). For THAs, the cumulative incidence 
of revision was 3.7% at 8 years and the hazard function 
monotonically decreased over time, with the risk of 
revision highest immediately after surgery (Fig.  1c and 
d). The median follow-up was 5.5 years for TKAs and 
4.9 years for THAs. At 8 years 17% of TKA procedures 
and 19.6% of THA procedures were censored due to 
patient death.

For both TKA and THA, the discrimination of the four 
modelling approaches was virtually identical (c-index 
0.64 for all four approaches for TKA revision and 0.59 for 
all four approaches for THA revision (Tables 3 and 4).

For TKAs the random survival forest had worse cali-
bration than the Cox, Weibull or flexible parametric 
models. The ICI showed that on average, predicted risks 
from the Cox model differed from actual risk by 0.16% 
(95% CI [0.15, 0.18]), but this difference was 0.27% (95% 
CI [0.25,0.29]) for the random survival forest (Table  3). 
The Cox, Weibull, and flexible parametric models were 
well calibrated across the range of possible risks, whereas 
the random survival forest overestimated the risk for 
lower risk patients and underestimated the risk for higher 
risk patients (Fig. 2a).

For THA, all modelling approaches had similar over-
all calibration according to the ICI (Table  4). The Cox, 
Weibull and flexible parametric models were well cali-
brated for low-risk patients but overestimated the revi-
sion risk for higher risk patients. Conversely, the random 
survival forests were well calibrated in those with high 
risk but underestimated the risk for lower risk patients 
(Fig. 2b).

When predicting TKA revision, the Cox and flexible 
parametric models returned the highest integrated IPA, 
each with a value of 0.056 (95% CI [0.054, 0.057]) while 
the Weibull model had the lowest IPA of 0.054 (95% CI 
[0.053, 0.056]) (Table 3). All models performed similarly 
in the later follow-up period, with the Weibull and ran-
dom survival forest slightly worse (Fig.  3a). Within the 
first year of TKA, the random survival forest was the best 
performing approach for prediction of revision. In this 
earlier time period, the Weibull model had negative IPA, 
implying it performed worse than the null model.

When predicting THA revision, the Cox and flexible 
parametric models had the highest integrated IPA (0.029 
95% CI [0.027, 0.030] compared to 0.027 (95% CI [0.025, 
0.028]) for the random survival forest) (Table  4). The 
random survival forest had the highest IPA for revisions 
within the first 2 years but showed poorer performance 
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Fig. 1  a Cumulative incidence of revision of TKA over 8 years. b Baseline hazard of TKA revision over 8 years. c Cumulative incidence of revision of 
THA over 8 years. d Baseline hazard of THA revision over 8 years. Shading indicates 95% confidence intervals

Table 3  Performance metrics for predicting revision of TKA using Cox, Weibull parametric, flexible parametric, and random survival 
forest models

TKA

Modelling Approach c-index Integrated calibration index (× 100) Integrated Index of 
Prediction Accuracy

Cox 0.643 (0.641, 0.645) 0.16 (0.15, 0.18) 0.056 (0.054, 0.057)

Weibull 0.642 (0.641, 0.644) 0.17 (0.16, 0.19) 0.054 (0.053, 0.056)

Flexible parametric 0.643 (0.641, 0.645) 0.17 (0.15, 0.18) 0.056 (0.054, 0.057)

Random survival forest 0.643 (0.642, 0.645) 0.27 (0.25, 0.29) 0.055 (0.054, 0.056)
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Table 4  Performance metrics for predicting revision of THA using Cox, Weibull parametric, flexible parametric, and random survival 
forest models

THA

c-index Integrated calibration index (×100) Integrated Index of 
Prediction Accuracy

Cox 0.591 (0.589, 0.594) 0.27 (0.25, 0.3) 0.029 (0.027, 0.03)

Weibull 0.591 (0.588, 0.594) 0.29 (0.26, 0.31) 0.028 (0.026, 0.029)

Flexible parametric 0.591 (0.588, 0.594) 0.28 (0.25, 0.3) 0.029 (0.027, 0.030)

Random survival forest 0.59 (0.587, 0.592) 0.28 (0.25, 0.3) 0.027 (0.025, 0.028)

Fig. 2  The calibration of models predicting eight-year risk of revision are compared using smoothed calibration curves, with black diagonal line 
denoting line of perfect calibration for a TKA and b THA

Fig. 3  The Index of Prediction Accuracy is used to compare prediction accuracy of Cox, Weibull, flexible parametric and random survival forest for 
prediction of revision over eight-year time period for a TKA and b THA
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than the other modelling approaches for later time peri-
ods. The Weibull model had slightly worse performance 
than the Cox and flexible parametric models over the 
entire eight-year period (Fig. 3b).

For TKA, rankings of variable importance from back-
wards elimination and random survival forest minimal 
depth identified the same three most important predic-
tors of revision (age, use of pain medication (opioids), 
and use of patella resurfacing). Both selection methods 
ranked prosthesis stability, prosthesis bearing surface 
and patient depression as the three next most important 
predictors, with the order differing between methods 
(Table 5).

For THA, rankings of variable importance from 
backwards elimination and random survival forest 
minimal depth identified the same five most impor-
tant predictors of revision in the same order: femo-
ral cement, patient depression, use of pain medication 

(opioids), gastro-oesophageal reflux disease, and sex. 
Patient age and steroid responsive diseases were the next 
most important predictors, with the ordering swapped 
between methods (Table 6).

Discussion
This study found that the Cox and flexible parametric 
models outperformed the Weibull parametric model and 
random survival forest in the prediction of time-to-revi-
sion following either THA or TKA. Unsurprisingly, the 
flexible parametric model always outperformed the sim-
pler Weibull model, particularly for TKA revision where 
the hazard function was complex and non-monotonic.

Random survival forests did not outperform carefully 
constructed regression models, despite being optimised 
in a large training set. This result is consistent with the 
findings of a systematic review that found no evidence 
machine learning provides improved performance over 

Table 5  Ranked importance of variables from backward elimination in Cox model compared to minimal depth from random survival 
forest, for prediction of TKA revision. Variables are displayed in decreasing order of importance

Bootstrap backwards elimination in Cox model (95% CI) Minimal depth from random survival forest (95% CI)

Age 1 (1,1) Age 1.54 (1.45,1.64)

Pain 2.26 (2.21,2.3) Pain 1.91 (1.8,2.02)

Patella usage 2.92 (2.86,2.97) Patella usage 2.04 (1.93,2.15)

Stability 4.39 (4.34,4.44) Depression 2.2 (2.08,2.32)

Bearing surface 4.51 (4.43,4.59) Bearing surface 2.46 (2.34,2.58)

Depression 6.22 (6.17,6.28) Stability 2.79 (2.68,2.9)

Sex 7.39 (7.32,7.46) Mobility 3.05 (2.91,3.18)

Tibial cement 8.8 (8.62,8.98) Anxiety 3.05 (2.91,3.19)

Anxiety 10.6 (10.44,10.77) Sex 3.24 (3.13,3.35)

Ischaemic heart disease angina 10.68 (10.48,10.87) Tibial cement 3.49 (3.36,3.62)

Mobility 10.77 (10.6,10.95) Inflammation pain 4.2 (4.07,4.33)

Gastro-oesophageal reflux disease 11.02 (10.81,11.23) Ischaemic heart disease angina 4.2 (4.09,4.32)

Steroid responsive diseases 12.48 (12.27,12.7) Steroid responsive diseases 4.23 (4.11,4.35)

Computer navigation 16.48 (16.22,16.74) Gastro-oesophageal reflux disease 4.28 (4.15,4.41)

congestive heart failure 16.89 (16.5,17.28) Hypertension 4.47 (4.35,4.6)

Arrhythmia 17.1 (16.74,17.46) Ischaemic heart disease hypertension 4.68 (4.56,4.8)

Ischaemic heart disease hypertension 18.62 (18.29,18.95) Computer navigation 4.73 (4.62,4.83)

Hypothyroidism 19.16 (18.82,19.5) congestive heart failure 4.74 (4.63,4.84)

Hypertension 19.39 (19.02,19.76) Gout 4.74 (4.64,4.84)

Osteoporosis/Paget’s 19.88 (19.53,20.23) Chronic Airways Disease 4.78 (4.66,4.9)

Anticoagulants 21.74 (21.37,22.12) Femoral cement 4.86 (4.74,4.98)

Inflammation pain 22.09 (21.76,22.42) Glaucoma 4.93 (4.81,5.05)

Chronic Airways Disease 22.96 (22.61,23.31) Anticoagulants 4.93 (4.82,5.04)

Diabetes 23.9 (23.58,24.22) Osteoporosis/Paget’s 5.1 (4.99,5.21)

Hyperlipidaemia 24.12 (23.82,24.41) Arrhythmia 5.11 (5,5.21)

Antiplatelet medication 24.28 (23.96,24.6) Diabetes 5.17 (5.07,5.27)

Gout 24.86 (24.59,25.14) Antiplatelet medication 5.18 (5.07,5.29)

Glaucoma 25.23 (24.95,25.52) Hypothyroidism 5.19 (5.1,5.29)

Femoral cement 25.24 (24.97,25.51) Hyperlipidaemia 5.26 (5.16,5.36
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logistic regression in the binary outcome setting [39]. 
However, a review has not yet been conducted for time-
to-event outcomes, where machine learning approaches 
have the additional advantage of not being constrained 
by the proportional hazards assumption.

A recent review highlighted the need for more studies 
comparing the prediction accuracy of the Royston-Par-
mar flexible parametric model to that of the Cox model 
[18]. Our study demonstrated that the flexible parametric 
approach had near-identical prediction accuracy to the 
Cox model. However, our results are in contrast to those 
of Aram et al., who found the flexible parametric model 
outperformed both Cox regression and random survival 
forests for prediction of eight-year revision of TKA [40], 
albeit with fewer predictors considered than the present 
study.

Ultimately, the overall performance indicated by the 
Brier score was very similar across the four modelling 
approaches, despite their different underlying model 
assumptions. The random survival forest is not con-
strained by the proportional hazards assumption and is 

also able to automatically model variable interactions, 
so its failure to outperform regression models here may 
indicate that time-varying effects of variables and vari-
able interactions are not strongly predictive of revision 
surgery. The rarity of the predicted outcome and low 
signal-noise ratio may also contribute to the similarity of 
prediction performance in this setting.

Our results identified that ranking of important pre-
dictors was similar when using backwards elimination 
in the Cox model and minimal depth in random survival 
forests, suggesting that the important predictors identi-
fied are relatively robust to selection method. Many of 
the variables important in predicting revision risk were 
prosthesis-related, rather than patient-related. This was 
particularly true for TKAs, where patella resurfacing, 
prosthesis stability and bearing surface were among the 
six most important revision factors. However, for THA, 
use of femoral cement and several comorbid conditions 
were identified as important risk factors of revision. The 
presence of pain, identified by opioid usage, was pre-
dictive of revision risk in both THA and TKA patients, 

Table 6  Ranked importance of variables from backward elimination in Cox model compared to minimal depth from random survival 
forest, for prediction of THA revision. Variables are displayed in decreasing order of importance

Bootstrap backwards elimination in Cox model (95% CI) Minimal depth from random survival forest (95% CI)

Femoral cement 1.46 (1.43,1.49) Femoral cement 0.66 (0.62,0.7)

Depression 1.92 (1.87,1.98) Depression 0.99 (0.93,1.04)

Pain 2.82 (2.76,2.89) Pain 1.5 (1.44,1.55)

Gastro-oesophageal reflux disease 5.33 (5.19,5.46) Gastro-oesophageal reflux disease 2.44 (2.36,2.51)

Sex 5.58 (5.49,5.67) Sex 2.7 (2.65,2.76)

Age 7.49 (7.32,7.67) Steroid responsive diseases 2.77 (2.69,2.85)

Steroid responsive diseases 8.29 (8.06,8.52) Age 3.1 (3.05,3.15)

Inflammation pain 8.96 (8.79,9.13) Congestive heart failure 3.25 (3.18,3.32)

Anxiety 9.74 (9.53,9.95) Anxiety 3.64 (3.55,3.74)

Congestive heart failure 12.22 (11.93,12.5) Bearing Surface 3.74 (3.67,3.81)

Osteoporosis/Paget’s 12.22 (11.98,12.46) Head size 3.88 (3.83,3.94)

Head size 12.23 (11.97,12.49) Osteoporosis/Paget’s 3.93 (3.84,4.02)

Bearing surface 12.32 (12.1,12.55) Gout 4.18 (4.1,4.26)

Hyperlipidaemia 12.37 (12.19,12.54) Inflammation pain 4.32 (4.23,4.41)

Anticoagulant 15.47 (15.18,15.76) Acetabular cement 4.33 (4.26,4.41)

Hypothyroidism 16.74 (16.48,17) Hyperlipidaemia 4.6 (4.51,4.69)

Chronic Airways Disease 17.61 (17.34,17.88) Chronic Airways Disease 4.78 (4.69,4.87)

Gout 19.13 (18.86,19.4) Anticoagulants 4.95 (4.85,5.04)

Arrhythmia 19.92 (19.64,20.2) Arrhythmia 5.05 (4.95,5.15)

Ischaemic heart disease hypertension 20 (19.76,20.23) Hypothyroidism 5.28 (5.19,5.38)

Antiplatelet medications 21.3 (21.09,21.52) Ischaemic heart disease angina 5.32 (5.22,5.43)

Glaucoma 21.4 (21.2,21.6) Hypertension 5.48 (5.38,5.58)

Diabetes 21.53 (21.33,21.74) Ischaemic heart disease hypertension 5.55 (5.46,5.64)

Ischaemic heart disease angina 21.62 (21.42,21.82) Antiplatelet medications 5.57 (5.47,5.67)

Acetabular cement 21.64 (21.45,21.84) Diabetes 5.74 (5.64,5.85)

Hypertension 21.69 (21.48,21.89) Glaucoma 6.11 (6,6.21)
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consistent with the association between pre-operative 
opioid use and increased revision risk documented in 
other studies [41–44]. Depression was also identified as 
an important risk factor in both TKA and THA revision. 
In a study of the effect of 26 comorbidities on revision 
rates, depression was found to have the strongest effect 
on revision risk [45]. Gastro-oesophageal reflux disease 
was identified as an important predictor of THA revi-
sion, possibly reflecting the association between the use 
of proton pump inhibitors and increased risk of hip 
fracture [46, 47].

A limitation of this study was the relatively low pre-
diction accuracy (c-index of 0.64 for TKA and 0.59 for 
THA), which may have been due to the absence of cer-
tain patient and surgical factors from the dataset, such 
as patient body mass index, frailty, socioeconomic meas-
ures, lifestyle factors, and comorbidities not treated with 
indicative prescription medication. However, the models 
reported here performed similarly to other prediction 
models for TKA revision developed using registry data 
[40, 48], and all models were shown to outperform the 
null model with no covariates (IPA value > 0), indicating 
there is value in developing a predictive model in this 
setting.

Competing risks were not considered in this study, as a 
previous study in this setting has shown negligible differ-
ence in prediction accuracy between Cox regression and 
competing risk alternatives [21]. However, the compara-
tive performance of competing risks extensions to the 
flexible parametric and random survival forest models 
could be explored in future research. This study also did 
not consider interaction terms nor time-varying coeffi-
cients in the regression models. Flexible parametric sur-
vival models can easily incorporate time-varying effects 
in auxiliary parameters and could be explored in future 
research. However, given that we did not see improved 
performance from the random survival forest, which 
automatically models interactions and time varying 
effects, this may indicate that limited performance gain 
will be realized by modelling interactions and time-vary-
ing effects in this setting. Future work could also compare 
the performance of other machine learning approaches 
available for time-to-event data, including support vector 
machines [49], neural nets [50–52], and gradient boost-
ing [53, 54].

Conclusion
The Cox and flexible parametric models were shown to 
have superior accuracy for predicting time-to-revision 
risk following TKA and THA compared to random 
survival forests. The Cox model and random survival 

forest also identified similar predictors as being the 
most important for revision risk. Our findings suggest 
that random survival forests for risk prediction models 
in the joint replacement setting offer no benefit over 
regression approaches in terms of prediction accuracy 
and give broadly similar conclusions regarding variable 
importance.
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