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Abstract: Perhexiline (Px) inhibits carnitine palmitoyltransferase 1 (CPT1), which controls uptake of
long chain fatty acids into mitochondria. However, occasional cases of hypoglycaemia have been
reported in Px-treated patients, raising the possibility that Px may also increase sensitivity to insulin.
Furthermore, Px increases anti-aggregatory responses to nitric oxide (NO), an effect which may
theoretically parallel insulin sensitization. We therefore sought to examine these relationships in
patients with stable Type 2 diabetes (T2D) and cardiovascular disease (n = 30). Px was initiated,
and dosage was titrated, to reach the therapeutic range and thus prevent toxicity. Investigations
were performed before and after 2 weeks, to examine changes in insulin sensitivity and, utilizing
aggregometry in whole blood, platelet responsiveness to the anti-aggregatory effects of the NO
donor sodium nitroprusside (SNP). Other parameters that affect may affect NO signalling were also
evaluated. Px substantially potentiated inhibition of platelet aggregation by SNP (from 16.7 ± 3.0 to
27.3 ± 3.7%; p = 0.005). Px did not change fasting blood glucose concentrations but reduced insulin
sensitivity (HOMA-IR score increased from median of 4.47 to 6.08; p = 0.028), and increased fasting
plasma insulin concentrations (median 16.5 to 19.0 mU/L; p = 0.014). Increases in SNP responses
tended (r = −0.30; p = 0.11) to be reciprocally related to increases in HOMA-IR, and increases in
HOMA-IR were greater (p = 0.002) in patients without NO-sensitizing effects. No patient developed
symptomatic hypoglycaemia, nor was there any other short-term toxicity of Px. Thus, in patients
with stable T2D and cardiovascular disease, Px increases anti-aggregatory responsiveness to NO, but
is not an insulin sensitizer, and does not induce hypoglycaemia. Absence of NO-sensitizing effect
occurs in approximately 30% of Px-treated patients with T2D, and is associated with induction of
insulin resistance in these patients.

Keywords: perhexiline; type 2 diabetes; nitric oxide; insulin resistance

1. Introduction

Type 2 diabetes (T2D) is an increasingly prevalent problem throughout the world and
is associated with a substantial increase in prevalence of both stable myocardial ischaemia,
infarction, heart failure, and associated mortality risk. Furthermore, patients with T2D are
at increased risk for carcinogenesis [1].

These adverse prognostic aspects of T2D have contributed to investigations to identify
biochemical modulators of cardiovascular risk, as well of the nexus between impaired
responsiveness to insulin and propensity towards both myocardial ischaemia and devel-
opment of cancer. It has been shown that extents of both insulin resistance [2] and of
hyperglycaemia, especially at times of clinical crises [3], represent adverse prognostic
markers for cardiovascular outcomes. Furthermore, severe hyperglycaemia represents a
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basis for increased mitochondrial formation of superoxide anion (O2
−), a major mediator

of many of the cardiovascular complications of diabetes [4], with resultant “scavenging” of
nitric oxide (NO) and therefore impairment of its vasodilator and anti-aggregatory effects,
known as “NO resistance”. NO resistance represents an adverse prognostic marker [5],
whether measured via the coronary vasodilator [6], or the anti-aggregatory effects of NO [5].
While NO resistance primarily reflects the impact of oxidative stress on “scavenging” of
NO [7] and activity of the “receptor” for NO, soluble guanylate cyclase [8], a number of
other factors may also modulate integrity of NO signalling. These include asymmetric
dimethylarginine (ADMA), an endogenous inhibitor of NO synthases [9], myeloperoxidase
(MPO), which is released from activated neutrophils and inhibits the metabolic clearance of
ADMA [10], and thrombospondin-1 (TSP-1), which is released from platelet alpha granules
and blocks NO signalling, thus prediposing to platelet aggregation [11].

Insulin infusion [7], the ACE inhibitor ramipril [12], the hydrogen sulphide donor
N-acetylcysteine [13] and the prophylactic anti-anginal agent perhexiline (Px) [14] have all
been shown to attenuate NO resistance, although the precise mechanism(s) underlying this
beneficial effect have never been fully defined.

In the case of Px, both its impact on insulin sensitivity in patients with diabetes and
its effects on maintenance of homeostasis at the platelet level are issues of increasing
importance. The range of clinical utility of Px has expanded considerably, following demon-
stration that its potential long-term hepatotoxicity and neurotoxicity can be prevented by
maintenance of plasma Px concentrations within a defined therapeutic range [15,16] and
that Px is safe for patients with cardiac and renal insufficiency [17].

Px is now recognized as inducing a “metabolic” prophylactic antianginal effect, with
a major mechanism of action identified as induction of a cardiac metabolic shift from
long-chain fatty acid to glucose oxidation via inhibition of the rate-limiting enzyme car-
nitine palmitoyltransferase-1 (CPT-1) and, to a lesser extent, CPT-2 [18]. Therefore, in
theory, Px should activate a “Randle shift” [19], whereby there is a compensatory increase
in glucose utilization when fatty acid utilization is suppressed. In theory, this adjust-
ment of substrate utilization would lead to an increase in efficiency of cardiac oxygen
utilization [18,20,21]. These effects have opened up new therapeutic options for Px, which
include the management of systolic heart failure [17,21], and non-obstructive hypertrophic
cardiomyopathy [22].

Recently, several preclinical studies have suggested that Px also exerts substantial
antineoplastic effects, both in tumour cell lines and in vivo [23–27]. The concept of an agent
with combined antineoplastic and cardioprotective effects is very attractive on a theoretical
basis. However, to date, there has been little evidence that effecting a Randle shift in cardiac
metabolism, representing a means for maintaining cellular energetics despite reduced
substrate availability, might interact directly either with the actions of insulin (in promoting
cellular uptake of glucose), or the Warburg effect (of activating anaerobic metabolism in
association with inappropriate cellular proliferation) [28].

The introduction of Px into the therapeutic arena preceded the utilization of therapeutic
drug monitoring. Several cases of hypoglycaemia, sometimes severe, were reported in the
early literature [29–32]. However, no detailed studies of Px effects on insulin signaling
have been reported to date. The currently reported study was therefore undertaken to
evaluate the effects of Px therapy on insulin responsiveness in patients with stable T2D
and cardiovascular disease, and to determine whether its effects on insulin signaling might
parallel changes in tissue responsiveness to NO.

2. Materials and Methods
2.1. Patient Selection

Adult patients with stable T2D were considered for inclusion if they were concurrently
under consideration for the initiation of Px treatment for the management of cardiovascular
disease states including refractory angina pectoris, systolic heart failure, or symptomatic
aortic valve stenosis [33]. Exclusion criteria were (1) current or potential pregnancy, (2)
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concurrent therapy with any P2Y12 receptor antagonist (which would obscure effects on
planned platelet aggregation studies), or (3) previous adverse effect of Px.

2.2. Study Design

The study was designed as a comparison of the effects of two weeks’ treatment with Px
on (i) insulin sensitivity in patients with well-controlled Type 2 diabetes mellitus (primary
endpoint), and (ii) platelet responsiveness to the anti-aggregatory effects of NO. Stability
of diabetic control was characterized by no recent emergency treatment of diabetes or
adjustment of hypoglycaemic medications. Plasma concentrations of HbA1c were less than
9%. Plasma concentrations of ADMA, TSP-1 and of MPO were also measured because of
because of their potential roles as modulators of NO effect. TXNIP expression in platelets
was also measured because of its previously demonstrated reciprocal relationship with
tissue responsiveness to NO [34].

Following baseline evaluations, Px treatment was initiated with a rapid loading
regimen of 600 mg on the first day, followed by adjustment of dosage on the basis of
initial plasma concentrations of Px and its monohydroxylated metabolite [35]. Plasma Px
concentrations were re-assayed after 2 weeks’ of treatment.

2.3. Investigations

The following were performed before initiation of Px, and at the end of the study
period. Patients were advised to fast overnight, and blood samples were drawn into acid
citrate anticoagulant, on the following morning between 0800 and 0900 h. Investigations
performed included:

1. Determination of fasting blood glucose levels and plasma insulin concentrations to
measure insulin resistance as HOMA-IR, representing the primary endpoint, and
insulin sensitivity by QUICKI score.

2. Measurement of platelet pro-aggregatory responses to ADP and anti-aggregatory
responses to the NO donor sodium nitroprusside (SNP). Whole blood impedance
aggregometry (Model 560, Chrono-log®, Haverstown, PA, USA) was used to record
platelet aggregation, in Ohms [36]. Blood samples were stirred at 900 rpm at 37 ◦C,
and platelet aggregation was induced by 2.5 µM ADP; inhibition of aggregation was
induced by 10 µM of SNP.

3. Plasma concentrations of TSP-1 [37] were assayed with ELISA kit (R&D systems®,
Minneapolis, MN, USA); ADMA was assayed using a previously published HPLC
assay [38,39]; and MPO using an ELISA kit (Mercodia®, Uppsala, Sweden) [40].
Platelet content of TXNIP was also determined by immunohistochemistry [34,41].

2.4. Statistical Methodology

The study results were assessed based on intention-to-treat principles and the limit of
statistical significance was taken as p < 0.05 using GraphPad Prism (version 9, San Diego,
CA, USA). All parameters were compared on a paired basis before and after 2 weeks’
Px therapy, using either Student’s paired t-test or a paired Wilcoxon test as appropriate.
The inclusion of 30 patients ensured a power of the primary endpoint (insulin resistance
measured by HOMA-IR) of α = 0.05, β = 0.80 to detect a 0.5 SD fluctuation post Px. Corre-
lations between Px effects on HOMA-IR and SNP response were sought using Pearson’s
correlation coefficient. Data are expressed as mean ± SEM unless otherwise stated.

3. Results

Clinical data related to the participants are summarized in Table 1. In general, this
was an ageing group of patients with well-controlled T2D and mild to moderate renal
impairment. The most common indication for Px therapy was angina pectoris refractory
to other anti-anginal agent. These patients were still symptomatic prior to initiation
of Px therapy despite receiving at least one long-acting prophylactic anti-anginal agent.
Other indications for Px therapy included symptomatic heart failure [20,21] and aortic
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stenosis [42]. Most patients were also receiving either ACE inhibitors or angiotensin
receptor blocker therapy. Regarding treatment for T2D, most patients received more than
one therapy, and metformin remained the most utilized oral hypoglycaemic agent.

Table 1. Baseline clinical characteristics (n = 30).

Patient Characteristics

Age (years) 70 ± 2.2
Female (%) 37
HbA1c (%) 7.1 ± 0.21

Baseline serum creatinine (µmol/L) 112.7 ± 13.74

Major indication(s) for Px therapy

Refractory angina (%) 70
Systolic heart failure (%) 23

Symptomatic aortic stenosis (%) 7

Concurrent pharmacotherapy

ACE-inhibitor/ARB (%) 73
Calcium channel antagonist (%) 43

β-blocker (%) 37
Organic nitrate (%) 40

Metformin (%) 60
Insulin (%) 33

Sulphonylurea (%) 30
DPP-IV inhibitor or thiazolidinedione (%) 20

HbA1c = glycosylated haemoglobin; ARB = angiotensin receptor blocker; DPP-IV = dipeptidyl peptidase-IV.

Thirty-three patients provided informed consent. One patient developed nausea and
withdrew from the study, and two patients withdrew from the study for social rather
than medical reasons. Therefore, data were analysed for the remaining thirty patients.
Three patients required major reductions in dosage because of CYP2D6 poor metabolizer
phenotype [43]. Median plasma Px concentration after two weeks’ treatment was 0.26 (0.25,
0.43) mg/L (therapeutic range 0.15–0.6 mg/L) [15,44].

Table 2 summarizes effects of Px on parameters of insulin secretion and of tissue
responsivenss to insulin. HOMA-IR score, the primary endpoint of the study, increased
significantly post Px treatment, indicating accentuation of insulin resistance. This change
reflected an approximately 13% increase in plasma insulin concentrations, without signif-
icant change in fasting blood glucose levels. No patient experienced any symptomatic
hypoglycaemic episodes.

Table 2. Effects of two weeks of Px therapy on blood glucose, plasma insulin levels and insulin
sensitivity scores. HOMA-IR (homeostatic model assessment of insulin resistance, derived from
product of plasma insulin and glucose concentrations; fasting insulin (microU/L) × fasting glucose
(nmol/L)/22.5) and QUICKI (derived from reciprocal of log fasting insulin plus log fasting glucose
concentrations; 1/[log(fasting insulin microU/mL) + log(fasting glucose mg/dL)]).

Parameter Before Px After Px p Value

Fasting blood glucose level (mmol/L) 6.8 (5.7, 8.6) 7.0 (6.0, 8.7) 0.366

Fasting plasma insulin level (mU/L) 16.5 (11.8, 25.3) 19.0 (11.8, 37.3) 0.014

HOMA-IR score 4.47 (3.42, 8.55) 6.15 (3.05, 15.06) 0.028

QUICKI score 0.158 ± 0.001 0.156 ± 0.002 0.078

As previously reported [14], Px therapy did not significantly affect extent of ADP-
induced platelet aggregation (Figure 1A), but potentiated anti-aggregatory effects of the
NO donor SNP from 17.6 ± 3.0 to 26.4 ± 3.7% (p = 0.029, Figure 1B).
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Figure 1. Effects of Px therapy on (ADP-induced platelet aggregation (A), and inhibition of ADP-
induced platelet aggregation by sodium nitroprusside (SNP) (B).

To determine whether changes in HOMA-IR values in individual patients also related
to increases in NO sensitivity induced by Px, correlations were sought between propor-
tional change in HOMA-IR and in SNP response in individual patients. The results, shown
in Figure 2, indicated that despite the overall increase in HOMA-IR induced by Px, sensi-
tization to NO tended to be associated with decreases in HOMA-IR. This non-signficant
relationship reached significance (r = −0.40, p = 0.037) if outlying datapoints were removed.
Furthermore, when these data were analysed categorically, according to whether or not
there was any increase in sensitization of NO (Figure 2 inset), increases in HOMA-IR were
substantially greater (p = 0.002) in patients without any sensitization to NO.
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Platelet content of TXNIP and plasma concentrations of ADMA, MPO and TSP-1
did not change significantly under treatment with Px (Figure 3). Furthermore, there was
no significant relationship between individual patient fluctuations in TXNIP expression
changes in NO responses, and changes in HOMA-IR (data not shown).
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4. Discussion

Px has long been established as a potent prophylactic anti-anginal agent, whether used
as monotherapy or in combination with other drugs [44–46]. It has been shown that Px
improves symptomatic status and left ventricular systolic function in patients with systolic
heart failure [21], as well as cardiac energetics in patients with dilated and hypertrophic
cardiomyopathy [20,22]. Finally, recent preclinical studies have established the potential
utility of Px in the treatment of malignancies, both as a sensitizer to chemotherapy or as
a tumour-suppressive agent [24–27]. Therefore, in theory Px represents an agent with
twin advantages: tumour suppression and simultaneous cardioprotection in the face of
potentially cardiotoxic therapies. Table 3 summarizes our current understanding of the
biochemical actions, clinical utility and potentials for its future clinical use of Px.

The main theoretical barrier to the widespread use of Px in the treatment both of
cardiovascular disease and of malignancy is therefore the potential for induction of hepato-
and neurotoxicity. However, the potential for Px to induce hepatitis and/or peripheral
neuropathy during long-term therapy has been dramatically reduced by the availability
of therapeutic drug monitoring of plasma concentrations of Px and of its hydroxylated
metabolites [16,47,48]. Thus, the only remaining concern is the risk of hypoglycaemia,
which has been reported as a rare but potentially serious adverse effect in some case re-
ports [29,30,49], even though the cause of hypoglycaemia remained uncertain. Therefore,
the primary objective of the current study was to determine whether induction of hypogly-
caemia remains a significant problem when Px is utilized for treatment of heart disease in
patients with diabetes.
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Table 3. Perhexiline: current “State of the art” regarding its biochemical actions, utility & toxicity.

Effects Toxicity

• Inhibition of CPT-1
• Improvement in cardiac energetics, potentially via “Randle shift”
• Potentiation of anti-aggregatory effects of nitric oxide

• Potential for phospholipid accumulation in liver
and nerves

Known utility

• Prophylaxis of exertional angina
• Accessory therapy for systolic heart failure: improved

symptomatic status

• Short-term nausea, dizziness or occasional
hypoglycaemia

• Long-term hepatitis and peripheral neuropathy,
subject to elevation of plasma Px concentrations

Potential for incremental use

• Limitation of symptoms in hypertrophic cardiomyopathy
• Perioperative therapy in patients with severe aortic stenosis
• Ancillary therapy in cancer, as cardioprotective agent during

chemotherapy and/or as chemotherapy

The results of the study indicate that short-term Px therapy, titrated to achieve thera-
peutic plasma Px concentrations, does not affect fasting blood glucose levels, while signif-
icantly increasing plasma insulin concentrations. On this basis, Px technically increased
insulin resistance, as measured by HOMA-IR. Furthermore, consistent with previous obser-
vations in patients with severe angina pectoris, Px normalizes anti-aggregatory responses
to the NO donor SNP, and thus ameliorates “NO resistance”, a condition known to be an
independent negative prognostic marker [5,6]. This is an important finding, especially in
patients with diabetes, as they are at increased risk of adverse outcomes in the presence of
acute myocardial ischaemia or heart failure [50].

To test the hypothesis that the impact of Px on HOMA-IR and platelet responsiveness
to NO reflects a common mechanistic pathway, we sought evidence of correlation between
these parameters. While there was no significant relationship (without removal of outlying
datapoints), the two parameters tended to have an inverse correlation. When data were
compared in a categorical manner (Figure 3), increases in HOMA-IR were substantially
greater in patients in whom no sensitization to NO occurred. Therefore, consistent with our
previous finding that insulin infusion administered to patients to correct hyperglycaemia
also reverses NO resistance [7], it is likely that increased insulin effect occurs in some Px-
treated patients with similar outcomes. We have also previously shown that in patients with
polycystic ovarian syndrome, platelet responsiveness to NO is a significant multivariate
correlate of insulin responsiveness [51], suggesting that the relationship shown in Figure 3
was driven by sensitization to NO, irrespective of its induction in this case by Px.

As originally proposed by Randle et al. [19], fatty acids and glucose compete for
selection and oxidation by muscles and adipose tissues. Therefore, inhibition of fatty acid
metabolism induces a shift towards glucose utilization, potentially mediating increases
in cardiac metabolic efficiency. If glucose utilization were increased simultaneously with
glucose uptake into tissues such as muscle, this could potentially induce hypoglycaemia.
However, in many circumstances, especially during the fed state, insulin effects on tissue
uptake of glucose are primarily associated with increased glycogen synthesis, rather than
glucose utilization [52]. Therefore, increased plasma concentrations of insulin in the
presence of Px do not always imply increased oxidation of glucose: it may well be that
insulin secretion is not in any way a mediator of the “Randle cycle”. Indeed, previous
studies have suggested a dissociation of insulin signaling from substrate utilization [19,53].

The mechanism(s) for increases in plasma insulin concentrations are uncertain. Px
may increase plasma insulin concentrations potentially through CPT-1 inhibition at the
pancreatic islet beta-cells. It was previously demonstrated that the sulphonylurea gliben-
clamide inhibited CPT-1 in islet cells in a KATP-independent manner, as did another CPT-1
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inhibitor, etomoxir, thereby stimulating the exocytosis of insulin [54]. Px may well exert a
similar effect. If so, the observed increase in plasma insulin levels might result from insulin
exocytosis rather than a failure of intracellular effect.

The study has some limitations. First, it is entirely possible, given the results, that
risk of hypoglycaemia with Px may be greater in non-diabetic patients, given integrity of
glucose uptake mechanisms, but this remains to be explored. We also do not know whether
hyperinsulinaemia as a driver of insulin resistance carries adverse prognostic implications
in the long-term, given that the prognostic implications of insulin hypersecretion are
controversial [55]. A larger sample size with longer duration of investigations would be
necessary to evaluate this possibility, and also to explore the prognostic implications of
heterogenous Px effect on insulin secretion versus responsiveness to NO. Finally, we do not
yet understand the extent to which these findings are relevant to the emerging role of Px as
an antineoplatic agent, but would emphasise that (1) in this circumstance, the dependency
of many cancers on CPT-modulated fatty acid uptake is likely to be a key mechanism of Px
action, and (2) that cancer occurs particularly frequently in diabetes [56] and the current
results suggest that Px represents a safe modality of treatment in such individuals.

5. Conclusions

In conclusion, in patients with stable T2D, short-term treatment with Px does not
induce changes in fasting blood glucose levels, increases plasma insulin concentrations
and sensitizes platelets to the anti-aggregatory effects of NO. The latter two effects are
potentially, but not definitely, inter-related.
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