
Graph-Based Machine Learning for Passive
Network Reconnaissance within Encrypted

Networks

by

Kyle Alexander Millar
Bachelor of Engineering (Computer Systems Engineering, Honours),

University of Adelaide, 2017

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical & Electronic Engineering

Faculty of Science, Engineering and Technology

The University of Adelaide

September 2022

ii

Supervisors:

• Prof. Cheng-Chew Lim1

• Dr. Hong Gunn Chew1

• Dr. Adriel Cheng1,2

1School of Electrical and Electronic Engineering, The University of Adelaide, Australia
2Information Sciences Division, Defence Science & Technology Group, Australia

© 2022

Kyle Millar

All Rights Reserved

Contents

Abstract vii

Citation Listing ix

Declaration xi

Acknowledgment xii

List of Figures xiv

List of Tables xv

Symbols and Definitions xvi

List of Acronyms xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Aim and Scope . 5

1.3 Challenges . 7

iii

Contents iv

1.4 Statement of Contribution . 9

1.5 Overview . 11

2 Literature Review and Background 14

2.1 Network Reconnaissance Objectives . 15

2.2 Active versus Passive Network Reconnaissance 19

2.3 Passive Network Reconnaissance . 21

2.4 Criteria for Feasible Network Reconnaissance Solutions 24

2.4.1 Criterion 1 (CN1) - Encryption Independence 24

2.4.2 Criterion 2 (CN2) - Universal Minimum Feature Set 25

2.4.3 Criterion 3 (CN3) - Real-World Evaluation 27

2.4.4 Criterion 4 (CN4) - Long-Term Deployment 27

2.5 Summary of Related Work . 28

2.5.1 Machine Learning . 29

2.5.2 Objectives . 31

2.5.3 Criterion 1 (CN1) - Encryption Independence 33

2.5.4 Criterion 2 (CN2) - Minimum Universal Feature Set 33

2.5.5 Criterion 3 (CN3) - Real World Analysis 34

2.5.6 Criterion 4 (CN4) - Long-Term Deployment 35

2.5.7 Point-of-Analysis . 36

Contents v

2.5.8 Graph-Based Machine Learning . 38

2.6 Contribution Gap . 40

3 Conventional Machine Learning Techniques for Network Reconnaissance 45

3.1 Deep Learning for Classifying Malicious Network Traffic 49

3.2 Using Convolutional Neural Networks for Classifying Malicious Network

Traffic . 57

4 Bipartite Graph Representation for Network Reconnaissance 82

4.1 Characterising Network-Connected Devices Using Affiliation Graphs 87

4.2 Clustering Network-Connected Devices Using Affiliation Graphs 95

4.3 Detecting Data Exflitration using Seeds based Graph Clustering 102

4.4 Operating System Classification: A Minimalist Approach 111

5 Graph-Based Machine Learning for Network Reconnaissance 117

5.1 Detecting Botnet Victims Through Graph-Based Machine Learning 122

5.2 Enhancing Situational Awareness in Encrypted Networks Using Graph-

Based Machine Learning . 130

6 Graph-Based Machine Learning for Private Network Analysis 142

6.1 PiPiN: Acquiring Situational Awareness Behind Private Networks with Con-

fidence . 146

Contents vi

7 Conclusion 159

7.1 Contribution of Work . 159

7.2 Future Work . 161

7.2.1 Extended Graph-Based Analysis for Improved Network Situational

Awareness . 163

7.2.2 Enhancing Bipartite Graph Embeddings Through Active Network

Reconnaissance . 164

7.2.3 Bipartite Point-of-Analysis for User Identification 165

7.2.4 Quantitative Comparison . 166

7.3 Closing Statement . 166

Bibliography 168

Abstract vii

Abstract

Network reconnaissance identifies a network’s vulnerabilities to both prevent and mitigate

the impact of cyber-attacks. The difficulty of performing adequate network reconnaissance

has been exacerbated by the rising complexity of modern networks (e.g., encryption). We

identify that the majority of network reconnaissance solutions proposed in literature are

infeasible for widespread deployment in realistic modern networks.

This thesis provides novel network reconnaissance solutions to address the limitations of

the existing conventional approaches proposed in literature. The existing approaches are

limited by their reliance on large, heterogeneous feature sets making them difficult to

deploy under realistic network conditions. In contrast, we devise a bipartite graph-based

representation to create network reconnaissance solutions that rely only on a single feature

(e.g., the Internet protocol (IP) address field). We exploit a widely available feature set

to provide network reconnaissance solutions that are scalable, independent of encryption,

and deployable across diverse Internet (TCP/IP) networks.

We design bipartite graph embeddings (BGE); a graph-based machine learning (ML) tech-

nique for extracting insight from the structural properties of the bipartite graph-based

representation. BGE is the first known graph embedding technique designed explicitly for

network reconnaissance. We validate the use of BGE through an evaluation of a univer-

sity’s enterprise network. BGE is shown to provide insight into crucial areas of network

reconnaissance (e.g., device characterisation, service prediction, and network visualisa-

tion).

We design an extension of BGE to acquire insight within a private network. Private

networks—such as a virtual private network (VPN)—have posed significant challenges for

network reconnaissance as they deny direct visibility into their composition. Our extension

of BGE provides the first known solution for inferring the composition of both the devices

and applications acting behind diverse private networks.

Abstract viii

This thesis provides novel graph-based ML techniques for two crucial aims of network

reconnaissance—device characterisation and intrusion detection. The techniques devel-

oped within this thesis provide unique cybersecurity solutions to both prevent and mitigate

the impact of cyber-attacks.

Citation Listing ix

Citation Listing

This thesis is presented by publication. The contributing research papers are included as

is within this thesis. The contributing papers are grouped into four chapters based on the

overall theme of their content.

The order of the publications as they appear in the thesis is as follows:

Chapter 3 K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Deep Learning for
Classifying Malicious Network Traffic” in Trends and Applications
in Knowledge Discovery and Data Mining, Cham, M. Ganji, L.
Rashidi, B. C. M. Fung, and C. Wang, Eds., 2018, pp. 156-161.

K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Using Convolu-
tional Neural Networks for Classifying Malicious Network Traffic” in
Deep Learning Applications for Cyber Security, 2019, pp. 103-126.

Chapter 4 K. Millar, A. Cheng, H.G. Chew, and C.-C. Lim, “Character-
ising Network-Connected Devices Using Affiliation Graphs,” in
IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2020, pp. 1-6.

K. Millar, A. Cheng, H.G. Chew, and C.-C. Lim, “Clustering
Network-Connected Devices Using Affiliation Graphs,” in IEEE
International Conference on Machine Learning and Cybernetics
(ICMLC), 2021, pp. 1-6.

A. Cheng and K. Millar, “Detecting Data Exflitration using Seeds
based Graph Clustering,” accepted for publication in IEEE Asia-
Pacific Conference on Computer Science and Data Engineering
(CSDE), 2022.

Citation Listing x

Chapter 4 K. Millar, A. Cheng, H.G. Chew, and C.-C. Lim, “Operating System
Classification: A Minimalist Approach,” in IEEE International Con-
ference on Machine Learning and Cybernetics (ICMLC), 2020, pp.
143-150.

Chapter 5 K. Millar, L. Simpson, A. Cheng, H.G. Chew, and C.-C. Lim,
“Detecting Botnet Victims Through Graph-Based Machine Learn-
ing,” in IEEE International Conference on Machine Learning and
Cybernetics (ICMLC), 2021, pp. 1-6.

K. Millar, A. Cheng, H.G. Chew, and C.-C. Lim, “Enhancing Situ-
ational Awareness in Encrypted Networks Using Graph-Based Ma-
chine Learning,” submitted for publication in IEEE Transactions on
Network and Service Management, 2022.

Chapter 6 K. Millar, A. Cheng, H.G. Chew, and C.-C. Lim, “PiPiN: Acquiring
Situational Awareness Behind Private Networks with Confidence,”
submitted for publication in IEEE Transactions on Network and Ser-
vice Management, 2022.

Declaration xi

Declaration

I certify that this work contains no material which has been accepted for the award of any

other degree or diploma in my name, in any university or other tertiary institution and, to

the best of my knowledge and belief, contains no material previously published or written

by another person, except where due reference has been made in the text. In addition, I

certify that no part of this work will, in the future, be used in a submission in my name,

for any other degree or diploma in any university or other tertiary institution without the

prior approval of the University of Adelaide and where applicable, any partner institution

responsible for the joint award of this degree.

The author acknowledges that copyright of published works contained within the thesis

resides with the copyright holder(s) of those works.

I give permission for the digital version of my thesis to be made available on the web,

via the University’s digital research repository, the Library Search and also through web

search engines, unless permission has been granted by the University to restrict access for

a period of time.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship.

Kyle Alexander Millar Date

Acknowledgement xii

Acknowledgment

I could not have completed this thesis without the unwavering support of those around

me. It takes a village to do a task worth doing and I would be amiss to not recognise

the people that have supported me throughout the most challenging endeavour I have

embarked on.

I would first like to express my deepest gratitude to my supervisors: Prof. Cheng-Chew

Lim, Dr. Hong Gunn Chew, and Dr. Adriel Cheng. Thank you for the countless hours

you have given me in support, guidance, and encouragement. Thank you for challenging

me to improve my research and for your patience in reviewing countless drafts. I would

not have been able to complete this thesis without your tireless supervision and I will be

forever indebted.

To my family, thank you for your ongoing love and support. In particular, for putting up

with my chaotic work schedule over these past four years. I look forward to a healthier

work/life balance in the future.

To my friends, those that came before and those that I made along the way, thank you for

providing an outlet for my research. I will forever remember our Friday night catch ups

and your constant encouragement over the years.

To Isobel, my partner and muse, thank you for sharing in the highs and lows of this chapter

in my life. I could not have made it through the last push of writing without your constant

encouragement. I look forward to sharing each and every chapter of my life with you.

I would also like to take this opportunity to formally recognise the staff at the University of

Adelaide for whom this thesis would not be possible. In particular, I would like to thank

the staff from the school of Electrical and Electronic Engineering (EEE), the graduate

management centre, Information Technology and Digital Services (ITDS), and the high

performance computing (HPC) team. In addition, I would like to thank the researchers at

Acknowledgement xiii

the Defence Science & Technology (DST) Group for providing advice and feedback, and

the opportunity to pursue challenging and applicable research directions.

I formally acknowledge that the research contained within this thesis was supported by

the Australian Government Research Training Program (RTP) Scholarship and the Com-

monwealth of Australia as represented by the Defence Science & Technology Group of the

Department of Defence.

List of Figures

1.1 The impact of cyber-attack on Australia. 3

1.2 A high-level overview of the aim and scope of the thesis. 6

1.3 Overview of the thesis’ flow and chapter structure. 13

2.1 An illustration of four common objectives within the network reconnaissance

domain. 18

2.2 An illustration of the distinction between active and passive network recon-

naissance. 20

2.3 The five-layer TCP/IP protocol stack . 22

2.4 An illustration summarising the common points-of-analysis (PoAs) for pas-

sive network reconnaissance. 23

2.5 Timeline of surveyed papers and their use of machine learning. 29

2.6 A snakey diagram illustrating the machine learning techniques used for

passive network reconnaissance within the surveyed papers. 30

2.7 Timeline of surveyed papers and their objective when conducting passive

network reconnaissance. 32

2.8 Timeline of surveyed papers and their point-of-analysis (PoA). 37

xiv

List of Tables

2.1 Universal Minimum Feature Set . 26

2.2 A summary of related work in passive network reconnaissance. 42

2.2 A summary of related work in passive network reconnaissance (cont.). . . . 43

2.2 A summary of related work in passive network reconnaissance (cont.). . . . 44

xv

Symbols and Definitions

The symbols and definitions listed are in regard to the main body of text within this

thesis. Symbols and definitions used in the contributing publications have been included

as is and therefore may contain inconsistencies. Inconsistencies contained in the included

publications have been detailed at the start of their corresponding chapter within this

thesis.

xvi

List of Acronyms

Acronym Description

ACSC Australian Cyber Security Centre

ANU Australian National University

AUD Australian Dollar

BGE Bipartite Graph Embeddings

BYO Bring-Your-Own

C2 Command and Control

CDN Content Delivery Network

CNN Convolutional Neural Network

COVID-19 Novel Coronavirus Disease (2019)

DBN Deep Belief Network

DNS Domain Name System

DPI Deep Packet Inspection

DST Defence Science and Technology

FPR False Positive Rate

GAN Generative Adversarial Network

GBT Gradient Boosting Tree

GCN Graph Convolutional Neural Network

xvii

List of Acronyms xviii

Acronym Description

GNN Graph Neural Network

HMM Hidden Markov Model

HPC High Performance Computing

HTTP Hypertext Transport Protocol

IoT Internet-of-Things

ISP Internet Service Provider

IT Information Technology

ITDS Information Technology and Digital Services

kNN k-Nearest Neighbours

MAC Media Access Control

ML Machine Learning

MLP Multi-Layered Perceptron

NAT Network Address Translation

NB Naive Bayes

NIDS Network Intrusion Detection Systems

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NN Neural Network

OS Operating System

OSINT Open-Source INTelligence

P2P Peer-to-Peer

PI Prediction Interval

List of Symbols xix

Acronym Description

PII Personal Identifiable Information

PiPiN Private interval - Private Network

PoA Point-of-Analysis

QoS Quality of Service

ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

RTP Research Training Program

SSH Secure Shell

SVM Support Vector Machine

TCP Transmission Control Protocol

TCP/IP Internet Protocol Suite (Transmission Control Proto-

col / Internet Protocol)

TES Transient Edge Sampling

TTL Time-to-Live

TTP Tools, Techniques, and Procedures

UDP User Datagram Protocol

UofA University of Adelaide

URL Uniform Request Locator

VPN Virtual Private Network

Chapter 1

Introduction

The growing scale and complexity of modern communication networks has resulted

in a central axiom of effective cybersecurity—“You cannot secure what you cannot

see” [1, 2, 3]. This axiom highlights that often the main difficulty in providing effective

cybersecurity is simply knowing what to protect.

Network reconnaissance is the key method of generating situational awareness within a

network environment [4]. Network situational awareness1 provides the necessary insight

for a network operator or security analyst to investigate the behaviour of their network

and its constituent devices. The insight gained through network reconnaissance not only

allows for the identification of vulnerabilities that may exist on the network but also

enables faster response times in the event of a cyber-attack [5].

The efficacy of current network reconnaissance techniques has decreased in recent years

[6]. Current techniques were not envisioned to handle the complexity of modern networks

and the pervasive use of encryption2 [9]. To addresses these challenges, machine learning

(ML) has been widely theorised for its application to network reconnaissance [10].

In this thesis, we devise novel ML-based techniques for network reconnaissance. In par-

ticular, we devise a graph-based representation of TCP/IP traffic to provide situational

awareness when minimal prior information is available. We show that this graph-based

1The term situational awareness will be used exclusively to refer to network situational
awareness for the remainder of this thesis.

2It is estimated that between 85%-95% of Internet communication is now encrypted [7, 8].

1

Chapter 1 - Introduction 2

representation enables the development of novel network reconnaissance solutions that are

scalable, independent of encryption, and deployable across diverse TCP/IP networks.

1.1 Motivation

Recent years have marked an unprecedented increase in the volume and complexity of

cyber-attacks worldwide [11]. Within Australia alone, a cyber-attack was reported every

eight minutes during the 2020-21 financial year; incurring a reported loss of more than

$33 billion (AUD) [12]. When polled in the same financial year, 62% of the Australian

public feared cyber-attack as a critical threat to Australia’s vital interests [13]; the highest

percentage of all reported threats to Australia including climate change (61%) and the

prevailing COVID-19 pandemic (59%).

A summary of the impact of cyber-attack on Australia during the 2020-21 financial year is

illustrated in Figure 1.1. These statistics—provided by the Australian Cyber Security Cen-

tre (ACSC)—highlight the increasing rate and scale of cyber-attacks targeting Australia

and its critical infrastructure (e.g., hospitals). It is evident that the rate of cyber-attacks

will continue to grow as our reliance on the Internet increases. It is thus essential to

explore novel preventative and mitigation strategies to stem the tide of online malicious

activity.

Cybersecurity is the practice of protecting systems, networks, programs, and data from

cyber-attack [15]. Implementing effective cybersecurity practices is thus essential to pro-

tect the services we interact with every day.

The National Institute of Standards and Technology (NIST) lists five fundamental func-

tions of effective cybersecurity [16]: Identify, Protect, Detect, Respond, and Recover.

Network reconnaissance is pivotal for achieving both the Identify and Detect functions:

• Identify provides insight into how a network operates, such as the number of

devices on the network, how the devices are configured, and the assigned user roles.

Chapter 1 - Introduction 4

This insight provides the necessary knowledge to not only facilitate better quality of

service (QoS) on a network but also to identify the network’s vulnerabilities before

they can be exploited.

• Detect enables the discovery of when a network has been compromised by a cyber-

attack. Network reconnaissance can determine whether a network has been compro-

mised by detecting such events as internal scanning3, command-and-control (C2)

communications4; and the exfiltration of data from the network. The prompt de-

tection of malicious activity is essential for reducing its potential impact to the

network and its users.

The consequences of inadequate network reconnaissance were illustrated in the 2018-19

cyber-attack of the Australian National University (ANU) [19]. ANU’s inability to locate

legacy and at-risk devices on their network was shown to significantly contribute to the ex-

filtration of up to 19-years’ worth of sensitive data5. In remediation, ANU has committed

to ongoing vulnerability assessments of their network. Conducting a vulnerability assess-

ment of such a large network is however non-trivial. Improved network reconnaissance

techniques have therefore become of key interest to industry, government, and academia

alike.

Machine learning has become the catalyst for the development of novel network reconnais-

sance techniques [10]. The key benefit of ML is its ability to learn useful models from large,

heterogeneous data. This benefit has enabled ML to achieve state-of-the-art results in a

broad range of applications, such as image classification [20], natural language processing

(NLP) [21], and autonomous vehicles [22]. ML is not however the panacea that it is often

3Scanning is a network reconnaissance technique that actively probes a network for vul-
nerabilities. Unsanctioned internal scanning is often an early indicator that a device has
been compromised on the network [17].

4Command-and-control (C2) communications are the signals used by malicious actors to
control the compromised devices on a network [18].

5The malicious actor(s) gained access to up 19-years’ worth of human resources, finance,
student administration, and e-forms data; however, it is believed that not all data was
exfiltrated from ANU’s network [19].

Chapter 1 - Introduction 5

seen as; distinct application domains require distinct ML approaches [23]. In Chapters

2-3 we show that the majority of ML-based solutions for network reconnaissance utilise

generic ML techniques that are often sub-optimal for the network reconnaissance domain.

In Chapters 4-6, we provide novel ML techniques designed specifically for the network

reconnaissance domain. Our techniques enable the acquisition of situational awareness

directly from a bipartite graph-based representation of a TCP/IP network. The bipartite

representation is easily constructed, independent of encryption, and can be used to model

the long-term behaviour of a TCP/IP network.

1.2 Aim and Scope

The aim of this thesis is to provide novel practical solutions for conducting network re-

connaissance within Internet (TCP/IP) networks. The solutions developed within this

thesis aim to assist network operators to better manage and secure the networks they

administrate through increased situational awareness.

The application of network reconnaissance is divided into two principal methods [24]: 1)

active network reconnaissance, where a network is stimulated to reveal its characteristics,

and 2) passive network reconnaissance, where a network’s characteristics are resolved

through monitoring its pre-existing communication traffic6. This thesis focuses solely on

providing novel passive network reconnaissance solutions.

Passive network reconnaissance was investigated as its use does not disturb the day-to-

day operations of a network [25]. Furthermore, active network reconnaissance cannot be

used to conduct a retrospective analysis of a network. This limitation of active network

6A detailed comparison of active and passive network reconnaissance is provided in Section
2.2.

Chapter 1 - Introduction 7

A high-level overview of the aim and scope of the thesis is provided in Figure 1.2. Con-

ventional ML-based network reconnaissance solutions are introduced in Chapter 2 and

evaluated in Chapter 3. In Chapter 4, we pose a novel bipartite graph-based represen-

tation of network traffic to address the limitations identified in the conventional ML ap-

proaches. In Chapters 5-6, we devise novel graph-based ML techniques for conducting

network reconnaissance through the bipartite representation.

The graph-based ML techniques designed within this thesis utilise graph embeddings.

Graph embeddings are an unsupervised ML technique that encode a graph’s structural

properties into a low-dimensional vector representation [26]. In this thesis, we show how

graph embeddings address the four main challenges of performing network reconnaissance

on modern networks (Section 1.3).

1.3 Challenges

The main challenges of network reconnaissance can be summarised by the four Vs of big

data: Volume, Variability, Velocity, and Visibility; where:

Volume is the amount of data to be analysed. In network reconnaissance, data is derived

from the network activity of the devices under analysis. The volume of such data has

drastically increased within modern networks. For example, an enterprise network (such

as a university’s campus network) can easily reach sizes of tens to hundreds of thousands

of devices. The sheer volume of the resultant network traffic generates a vast quantity of

data to be analysed. The designed network reconnaissance solutions must minimise the

required data to be processed to enable their feasible application to large-scale modern

networks.

Variability is the diversity of data under analysis. In network reconnaissance, variability

of data is derived from the diversity of devices, OSs, and applications, and monitoring pro-

cesses used on the network under analysis. This diversity vastly exacerbates the difficultly

Chapter 1 - Introduction 8

of providing comprehensive network reconnaissance solutions that are applicable across

diverse TCP/IP networks. The designed network reconnaissance solutions must be able

to draw insight from data that is commonly generated by unique devices and software,

and is commonly captured across diverse network monitoring solutions.

Velocity is determined by how quickly the data under analysis changes. Velocity is a key

challenge in network reconnaissance due to the rate in which new devices, applications,

and software updates are released to market. In each of these changes lies the potential

to modify the underlying statistics used to characterise a network. The designed network

reconnaissance solutions must therefore be easily modifiable in response to changes of the

underlying network.

Visibility is the amount of data available for analysis. Encryption is the principal chal-

lenge in network reconnaissance visibility. Current techniques of network reconnaissance

have become obsolete as the data they relied upon has been obfuscated by widespread en-

cryption standards. Novel network reconnaissance solutions must therefore be developed

to provide situation awareness even in the presence of encrypted network traffic (Chapter

4-5) and other anonymisation techniques such as private networks (Chapter 6).

In Chapter 2, we formalise the defined challenges of network reconnaissance through an

analysis of 56 solutions proposed in related work. From this analysis, we identify four

criteria that are required to enable the realistic application of network reconnaissance

across diverse TCP/IP networks:

• Criterion 1 (CN1) - Encryption Independence

• Criterion 2 (CN2) - Universal Minimum Feature Set

• Criterion 3 (CN3) - Real-World Deployment

• Criterion 4 (CN4) - Long-Term Deployment

In Chapters 4-6, we develop the first network reconnaissance solutions that achieve all four

criteria for realistic deployment across diverse TCP/IP networks.

Chapter 1 - Introduction 9

1.4 Statement of Contribution

The solutions developed within this thesis provide network operators and security analysts

with novel solutions for acquiring situational awareness within their networks. The pro-

vided solutions enable the characterisation of the devices on a network (e.g., identifying

the OS or manufacturer of a device) and detecting potential areas of vulnerability and

compromise.

The key novelty of the solutions developed within this thesis is the use of a graph theoretic

approach to passive network reconnaissance. Through this approach, we prove that device

characterisation and intrusion detection can be achieved through the exclusive analysis

of the IP address field. We further the contribution of this approach through the use

of graph-based ML; in which, we provide novel graph embedding solutions for passive

network reconnaissance that are shown to be scalable, independent of encryption, and

universally applicable to diverse TCP/IP networks.

The principal contribution of this thesis is four-fold:

1. (Chapter 3) We provide Segmented-CNN s; a novel CNN architecture designed

to exploit the unique structural properties of the TCP/IP protocol stack. The

segmented-CNN utilises a divide and conquer approach to evaluate the distinct

properties of the header and payload sections of a TCP/IP packet. We show that

this approach reduces the required training time of the classifier and improves

robustness to evasive malicious behaviour. Furthermore, we discovered the pro-

clivity of neural network architectures to overfit when evaluated on full packet

captures. This discovery prompted the investigation into a graph-based point-of-

analysis (PoA) for network reconnaissance.

2. (Chapter 4) We provide the first comprehensive framework for conducting passive

network reconnaissance that relies only on the IP addresses field. The provided

framework represents an enterprise network as a bipartite graph to exploit the

Chapter 1 - Introduction 10

inherent community structure in the Internet services used by the devices on a

network. Through the sole reliance on the IP address field; the proposed framework

is scalable, independent of encryption, and widely deployable across diverse TCP/IP

networks. We demonstrate the realistic application of the framework on captured

network data from The University of Adelaide (UofA). We provide evidence that

supports the use of the framework for device characterisation (e.g., operating system

classification) and intrusion detection (e.g., detecting data exfiltration and botnet

infrastructure).

3. (Chapter 5) We design bipartite graph embeddings (BGE). BGE is the first graph

embedding technique that enables the real-time analysis of a large enterprise net-

work. We show that BGE remains effective under partial network observation and

efficiently scales for the analysis of networks containing hundreds of thousands of

devices. We provide BGE as a packaged tool7 that can be used to generate insight

into any bipartite graph structure (e.g., recommendation and citation networks).

4. (Chapter 6) We validate the use of prediction intervals (PIs) and ensemble models

to provide a confidence metric for ML-based network reconnaissance solutions. This

confidence metric quantifies the model and data uncertainty of a neural network to

inform a network operator as to whether the predictions made can be accepted or

require further investigation.

We provide PiPiN; an extension of BGE that utilises Prediction intervals to confi-

dently acquire situational awareness behind a Private Network. PiPiN is the first

known solution for inferring the composition of both the devices and applications

acting behind diverse private networks. We show that PiPiN can accurately esti-

mate the composition of device manufacturers, operating systems, and applications

that are used within a private network.

7https://github.com/MillarK-UofA/bipartite graph embeddings

Chapter 1 - Introduction 11

1.5 Overview

This thesis is comprised of seven chapters. It is presented by publication; for which,

Chapters 3-6 are comprised of nine papers on the topic of passive network reconnaissance.

The included papers have been combined into selected chapters based on the similarity of

their research aims and contributions. Figure 1.3 provides an overview of the thesis’ flow

and chapter structure.

In summary, the thesis is structured as follows:

In Chapter 2, an extensive literature review of network reconnaissance is provided. This

literature review introduces the current state-of-the-art network reconnaissance techniques

and further defines the contribution gap to be addressed in this thesis. Furthermore,

supplementary background knowledge on network reconnaissance is provided within this

chapter.

In Chapter 3, we evaluate the use of conventional (ML) techniques for conducting network

reconnaissance. In particular, we provide an empirical justification for the prevalent use of

RF and CNNs that was identified in related work (Chapter 2). Furthermore, we discover

the proclivity of neural network architectures to overfit when evaluated on full packet

captures. This discovery prompted the investigation of a graph-based representation for

network reconnaissance.

In Chapter 4, a novel representation of an enterprise network as a bipartite graph is pro-

posed and evaluated. The bipartite graph representation is evaluated manually, through

conventional graph theoretic approaches, and using conventional ML techniques. The

identified limitations of these evaluations motivated the investigation of graph-based ML

in the remaining chapters.

In Chapter 5, we provide two novel graph-based (ML) techniques for conducting passive

network reconnaissance. These techniques were created to address the key limitations

identified in Chapter 4. In particular, we designed bipartite graph embeddings (BGE);

Chapter 1 - Introduction 12

the first graph embedding technique that enables the real-time analysis of a large enterprise

network. We show that the embeddings produced by BGE can be reused to satisfy distinct

network reconnaissance objectives (e.g., device and application characterisation). BGE

thus provides a comprehensive methodology for acquiring situational awareness within a

TCP/IP network.

In Chapter 6, we provide the first utilisation of graph embeddings for private network anal-

ysis. Private networks—such as a virtual private network (VPN)—have posed significant

challenges for network reconnaissance as they deny direct visibility into their composition.

Graph embeddings were shown to be able to reveal key insights into the overall behaviour

of the private network; such as the composition of manufacturers, operating systems, and

applications used on the network.

In Chapter 7, the thesis is concluded with a summary of the work conducted within the

thesis and suggestions for future work in the network reconnaissance domain.

Chapter 2

Literature Review and

Background

In this chapter, we survey 56 papers in the network reconnaissance domain and provide a

taxonomy of their motivation, methodology, and limitations. In addition, this chapter

provides the reader with the necessary background knowledge on network reconnaissance

required for the remainder of this thesis.

Chapter 2 is structured as follows. In Section 2.1, we discuss the common objectives of

network reconnaissance solutions. In Section 2.2, we define active and passive network

reconnaissance and compare their utilisation. This thesis focuses only on passive network

reconnaissance. In Section 2.3, we provide an overview of passive network reconnaissance

for acquiring situational awareness within an Internet (TCP/IP) network. Section 2.4

enumerates four criteria for the creation of feasible network reconnaissance solutions for

real-world deployment. A summary of the related work in passive network reconnaissance

is provided in Section 2.5 and the identified contribution gaps addressed in this thesis are

outlined in Section 2.6.

14

Chapter 2 - Literature Review and Background 15

2.1 Network Reconnaissance Objectives

The fundamental objective of network reconnaissance is to provide situational awareness

within a network environment. Situational awareness, however, is multifaceted. Network

operators often have distinct objectives when acquiring situational awareness within the

networks that they administer.

We first enumerate the common objectives of network reconnaissance as found in related

work. This thesis is focused on the use of network reconnaissance to provide situational

awareness of the devices, applications, and users within a network environment. Related

work investigating the characterisation of the network topology itself (e.g., network topol-

ogy discovery [27]) are not considered. We taxonomise network reconnaissance solutions

by four primary objectives: intrusion detection, device characterisation, application char-

acterisation, and user identification. These four objectives are defined as follows:

Intrusion detection enables the discovery of compromises within a network. The pri-

mary objective of network intrusion detection systems (NIDS) is to allow for quicker re-

sponse times in the event of a cyber-attack. Their secondary objective is to provide insight

for preventative cybersecurity solutions to predict and mitigate future cyber-attacks.

NIDS are used to detect either anomalous or known signatures of malicious network be-

haviour [28]. The benefit of detecting anomalous network behaviour is that it can be used

to detect novel cyber-attacks within a network. Novel cyber-attacks—often referred to as

zero-day attacks [29]—target unknown vulnerabilities within a network and therefore can-

not be detected by methods that rely on known signatures of malicious network behaviour.

Detecting anomalous network behaviour may produce false positives1. False positives put

a greater strain on the network operators as they are required to investigate each anomaly

[30].

1A false positive is the incorrect prediction that a benign behaviour is malicious.

Chapter 2 - Literature Review and Background 16

There are two key streams of research within the intrusion detection objective. First,

machine learning (ML) is applied to automate the process of identifying signatures of

known malicious behaviour [31, 32, 33]. This stream would allow signatures to be updated

more frequently and provide quicker response times in the event of a cyber-attack. Second,

network reconnaissance solutions are being investigated to reduce the false positive rate

(FPR) when detecting anomalous behaviour [28, 30, 34]; alleviating the time-intensive

task of tracking down wrongful identifications of malicious activity.

Device characterisation aims to identify the characteristics of the devices operating

within a network. Identifying a device’s characteristics—such as its operating system

(OS) or manufacturer—is crucial for identifying its vulnerabilities [35]. For example, the

EternalBlue exploit—infamously used in the WannaCry ransomware attack—exploited

vulnerabilities within the Windows OS [36]. To secure a network, it is therefore essential

to identify the characteristics—and hence the vulnerabilities—of its constituent devices.

Device characterisation enables more effective network management by providing insight

into how a network is being utilised [37]. For example, a network composed of a singular

type of device (e.g., all devices running the Windows OS) is more likely to be a computer

lab rather than a bring-your-own (BYO) network composed of the personal devices brought

onto the network by staff, students, or guests. These network compositions would require

vastly distinct security and managerial requirements. For example, BYO networks may

need stricter security policies as a personal device may already be in a compromised state

unbeknownst to the user [38].

There are two main streams of research in the device characterisation objective. First,

novel solutions are being developed to overcome the current challenges of device charac-

terisation (e.g., encryption and the variety and volume of modern devices) [39, 40, 41, 42].

Second, techniques to infer device information within private networks (e.g., VPNs) are

being investigated [43, 44, 45, 46]. Techniques to perform device characterisation within a

private network enables network operators to have greater insight into the networks that

they administer.

Chapter 2 - Literature Review and Background 17

Application characterisation aims to identify the applications used by the devices op-

erating within a network. Similar to device characterisation, application characterisation

provides insight into a network’s utilisation and vulnerabilities. This insight is essential

for maintaining effective security and managerial policies. For example, an ISP may pri-

oritise the network traffic associated with certain applications (such as video conferencing)

to improve the quality of service (QoS) on the network. In addition, application charac-

terisation is used to identify the vulnerabilities introduced into the network through its

utilised applications. For example, exploits introduced into SolarWind’s Orion applica-

tion resulted in the compromise of over 18,000 networks; including those owned by Intel,

Microsoft, and US government agencies [47].

There are two main streams of research in the application characterisation objective. The

first stream focuses on the development of novel solutions to overcome the complexity

of characterising application network behaviour [48, 49, 50, 51]. This complexity has

arisen from the myriad of applications available, their widespread use of encryption, and

their volatility (e.g., frequent updates). The second stream aims to utilise network re-

connaissance to identify the actions a user takes within an application [52]. For example,

identifying whether a user is sending a text message through WhatsApp or conversing

through a video call. The ability to identify specific actions within an application has

been used to facilitate auxiliary research into user identification.

User identification aims to identify and predict the behaviour of the users of a network.

User identification is commonly investigated to identify the privacy risks caused by a user’s

Internet behaviour. For example, Stevens et al. [53] investigated thirteen advertisement

(Ad) libraries commonly installed in Android applications. The authors found that such

Ad libraries could be used to identify a specific user and track their location. It is critical

that this leakage of personal identifiable information (PII) is detected and mitigated as

this information can be used to extort, track, and harm the respective user.

There are two principal streams of research in user identification. The first stream is

user fingerprinting [54, 55]. User fingerprinting utilises network reconnaissance to iden-

tify specific users on a network. This research is typically used for authentication and

Chapter 2 - Literature Review and Background 19

2.2 Active versus Passive Network Reconnais-

sance

Network reconnaissance is divided into two principal methods [24]: 1) active techniques,

for which a network is stimulated to reveal its characteristics; and 2) passive techniques, for

which a network’s characteristics are resolved through monitoring its pre-existing commu-

nication traffic. Figure 2.2 illustrates the key distinction between an active versus passive

approach for conducting network reconnaissance.

Active network reconnaissance directly interrogates the network under analysis. This in-

terrogation is conducted through the use of network probes. Probes are specially crafted

network communications which stimulate the receiving device into revealing its character-

istics [24]. The complexity of these probes ranges from trivial, such as identifying whether

a device will simply respond to a probe; to exceedingly intricate, such as detecting the OS

of a device through its combined response to 15 carefully crafted probes [57].

The key benefit of active reconnaissance is that the information gained is dictated by its

operator. For example, a network operator that wishes to know the OS of a particular

device can send out the 15 probes required for that knowledge. In contrast, a passive

approach must wait for device of interest to reveal that same information. The trade-off

of an active approach is its intrusiveness into a network.

Active reconnaissance directly interacts with the network it is monitoring. This interaction

may be inappropriate when the use of the network is separate from its ownership [58]. For

example, an internet service provider (ISP) may not wish to actively probe the devices of

its customers. This action would be seen unfavourably by its customers and may cause the

ISP to be liable if any disruption is caused by the probes they send. Furthermore, if the

active reconnaissance of a network was unwarranted by its ownership, it could be mitigated

through security services such as firewalls [59]. These services can be configured to either

block incoming probes or to create false responses to obfuscate the reconnaissance.

Chapter 2 - Literature Review and Background 21

2.3 Passive Network Reconnaissance

Passive network reconnaissance aims to characterise a network through monitoring its

pre-existing communication traffic. The ability to acquire pertinent communication traffic

is therefore tantamount to the insight that can be achieved through passive network re-

connaissance. This section provides an overview of Internet (TCP/IP) networking in the

context of the insight that can be achieved through passive network reconnaissance.

A message sent through a TCP/IP network is segmented into individual packets of data

[60]. Each packet contains a subset of the message content (i.e., the packet’s payload) as

well as additional features (i.e., metadata) that the packet requires to traverse the network.

A packet in a TCP/IP network is encapsulated into five layers2: Application, Transport,

Network, Link, and Physical [60]. Each layer provides a distinct role in forwarding a

message through the network and ensuring that the message can be interpreted by its

intended recipient.

The five layers of the TCP/IP protocol stack are depicted in Figure 2.3. Each layer

provides unique insight when conducting passive network reconnaissance. For example,

J. Martin et al. [61] predict the manufacturer and model of a device via its medium

access control (MAC) address (link layer), whereas the time-to-live field (network layer)

is commonly used to predict a device’s OS [40, 62, 42]. The process of conducting passive

network reconnaissance through the metadata found in specific layers of a TCP/IP packet

is termed packet-inspection.

Packet inspection draws insight from the diverse layers in the TCP/IP protocol stack.

A technique that utilises all TCP/IP layers is termed deep packet inspection (DPI). The

key assumption of DPI is that the packet’s payload (i.e., message content) is unencrypted

2This thesis conforms to the five-layer TCP/IP protocol stack framework as encouraged
by Kurose and Ross [60]. However, other frameworks exist such as the seven-layer OSI
model [60].

Chapter 2 - Literature Review and Background 24

2.4 Criteria for Feasible Network Reconnais-

sance Solutions

We identify four criteria from the survey of related work that measure the feasibility of a

network reconnaissance solution for deployment on a real-world TCP/IP network:

• Criterion 1 (CN1) - Encryption Independence

• Criterion 2 (CN2) - Universal Minimum Feature Set

• Criterion 3 (CN3) - Real-World Deployment

• Criterion 4 (CN4) - Long-Term Deployment

2.4.1 Criterion 1 (CN1) - Encryption Independence

Network reconnaissance solutions that rely on unencrypted TCP/IP traffic have limited

applicability. These solutions are restricted to either 1) the analysis of unencrypted com-

munications (representing less than 15% of total Internet traffic [7, 8]); or, 2) assume the

traffic can be decrypted before analysis restricting their applicability to tightly controlled

network environments (e.g., utilising an SSL/TLS proxy server [68]).

Criterion 1 (CN1) validates the applicability of a proposed network reconnaissance solu-

tion on encrypted TCP/IP traffic. There are two main encryption standards used within

TCP/IP networks—SSL/TLS and IPsec [69]. SSL/TLS provides application layer encryp-

tion, whereas IPsec encrypts both the application and transport layers [70]. A solution is

deemed to meet the requirements of CN1 if it is applicable on both SSL/TLS and IPsec

encryption standards.

Recent network reconnaissance solutions have posed the use of ML to perform DPI on

encrypted TCP/IP network traffic. The proposed solutions conclude that the use deep

Chapter 2 - Literature Review and Background 25

neural networks (e.g., CNNs and RNNs) can identify latent signatures in encrypted packet

content. The validity of the proposed solutions is disputable as they are not shown to

generalise to unforeseen encrypted traffic5. In Chapter 3, we provide an evaluation of

CNNs for DPI. We identify that the proposed solutions for DPI on encrypted TCP/IP

traffic could simply be learning biases in the evaluated dataset. We note the uncertainty

of such techniques when evaluated on CN1 to reflect this finding.

2.4.2 Criterion 2 (CN2) - Universal Minimum Feature

Set

Network reconnaissance solutions are dependent on the availability of their respective

feature set. This dependency poses a significant challenge as feature availability is subject

to the network under analysis. For example, operational networks may restrict access to

full packet captures (pcaps) to preserve the privacy and security of the network’s users.

This restriction would thus prevent the use of network reconnaissance solutions that are

reliant on packet inspection.

Criterion 2 (CN2) validates the applicability of a proposed network reconnaissance solu-

tion for deployment across diverse TCP/IP networks. A solution is deemed to meet the

requirements of CN2 if the solution enables network reconnaissance to be performed on

any TCP/IP network without modifying the network’s administration (e.g., requesting

that additional network features be made available for analysis).

A flow-based PoA is the most widely used network monitoring method [71]. It is proven for

high-speed networks and reduces the privacy constraints that arise from packet inspection.

Furthermore, a flow-based PoA can be derived given access to the associated pcap files.

For this reason, we consider a flow-based PoA when constructing a universal feature set

that would be applicable across diverse TCP/IP networks.

5All surveyed solutions were evaluated on the same dataset(s) for both training and testing.

Chapter 2 - Literature Review and Background 26

The primary flow-based monitoring standards are NetFlow v9 [72] and IPFIX [73]. A

total of 104 and 491 possible flow statistics can be monitored by the respective standards.

A small subset of the total flow statistics will be chosen when monitoring a network to

reduce unnecessary overhead. For example, the flow-based monitoring solution deployed

at the University of Adelaide utilises 25 (24%) of the possible NetFlow v9 flow statistics.

The flow statistics used to monitor a network are heuristically chosen by the network’s

operator(s). This heuristic feature selection process often limits the widespread applicabil-

ity of network reconnaissance solutions as the flow statistics available in one network are

not guaranteed to be available in another. A set of flow statistics that are common to all

TCP/IP networks must therefore be defined to enable universal network reconnaissance

solutions.

Table 2.1 enumerates the smallest set of flow-statistics that would be commonly available

across diverse TCP/IP networks. These nine flow-statistics are widely monitored across

TCP/IP networks as they represent the smallest set of flow-statistics that are required to

adequately describe a flow [71]. We designated this set of flow-statistics as the universal

minimum feature set.

Table 2.1: Universal Minimum Feature Set

Feature Name (IPFIX) Description

1 flowStartMilliseconds Timestamp of the flow’s first packet

2 flowEndMilliseconds Timestamp of the flow’s last packet

3 sourceIPv4Address IPv4 source address in the packet header

4 destinationIPv4Address IPv4 destination address in the packet header

5 sourceTransportPort Source port in the transport header

6 destinationTransportPort Destination port in the transport header

7 protocolIdentifier IP protocol number in the packet header

8 packetDeltaCount Number of packets for the flow

9 octetDeltaCount Number of bytes for the flow

Chapter 2 - Literature Review and Background 27

The universal minimum feature set is used in this thesis to validate each surveyed solution

for widespread applicability across diverse TCP/IP networks. A solution is deemed to

meet the requirements of CN2 if it utilises only the set of universal minimum features for

network reconnaissance as provided in Table 2.1.

2.4.3 Criterion 3 (CN3) - Real-World Evaluation

A proposed network reconnaissance solution must be evaluated under real-world network

conditions to verify its feasibility. Synthetic data (e.g., ISCXVPN2016 [74]) or network

captures from a controlled lab environment are suitable for prototyping purposes; however,

they do not provide sufficient evidence that the proposed solutions are feasible under real-

world network conditions.

Criterion 3 (CN3) assess whether a proposed network reconnaissance solution has been

verified through a real-world evaluation. A solution is deemed to meet the requirements

of CN3 if it has been evaluated on network captures taken from a real network that is

being utilised in an operational context (e.g., a university’s enterprise network). Real-time

operation was not considered to be a major factor of a solution’s suitability for real-world

evaluation as it is highly dependent on the solution’s operational environment (e.g., the

size of the network under analysis).

The evaluation of CN3 is to identify network reconnaissance solutions that have been ver-

ified within realistic network conditions. A solution that does not satisfy the requirements

of CN3 may still be applicable under realistic conditions, however, the solution has yet to

be verified.

2.4.4 Criterion 4 (CN4) - Long-Term Deployment

TCP/IP networks are highly volatile. Network characteristics are modified due to software

updates, changes in user behaviour, or through physical changes to the network itself.

Chapter 2 - Literature Review and Background 28

Network reconnaissance solutions must therefore be able to update in response to changes

in the underlying network.

Criterion 4 (CN4) verifies whether a proposed network reconnaissance solution has been

assessed to provide long-term situational awareness on a network. A solution is deemed

to meet the requirements of CN4 if either one of two conditions are met:

1. The solution has been shown to remain effective for at least one month after the

solution was initially evaluated. A period of one month was chosen as it verifies

that the technique is not simply biased to the initial time of its evaluation. This

condition does not guarantee the length of time a network reconnaissance solution

will remain effective. It is assumed that all network reconnaissance solutions will

eventually need to be updated due to changing network behaviour.

2. The solution can be easily updated in response to changes in the network’s be-

haviour. For example, S. Dong et al. [50] proposed a semi-supervised ML approach

to enable their network reconnaissance solution to be continuously updated. The

proposed semi-supervised approach allows their solution to be updated based on la-

belled and unlabelled network activity. Updating a solution based purely on labelled

network activity—as required by a supervised ML solution—would be restrictive as

labelling network data is difficult to perform at scale.

2.5 Summary of Related Work

This section evaluates 56 passive network reconnaissance solutions that have been proposed

in related work. We taxonomise the proposed solutions by 1) their objective, 2) point-

of-analysis (PoA), 3) their use of machine learning (ML), and 4) whether the solutions

satisfy the four defined criteria (CN1-4) for widespread deployment on realistic network

conditions.

Chapter 2 - Literature Review and Background 30

Figure 2.6: A snakey diagram illustrating the machine learning techniques (left) used
for passive network reconnaissance within the surveyed papers (right). Random Forest
(RF), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) are
the most widely utilised ML-based techniques for network reconnaissance. The papers
provided within this thesis have been included to highlight their contribution in the passive
network reconnaissance domain (red boxes).

Chapter 2 - Literature Review and Background 31

The two most utilised ML-based techniques for passive network reconnaissance are 1)

flow-based analysis utilising random forest (RF) and 2) sequential flow/packet analysis

utilising convolutional neural networks (CNNs) or recurrent neural networks (RNNs). In

Chapter 3, we provide an analysis of why RF and CNNs have become pervasive ML-based

techniques in the network reconnaissance domain.

2.5.2 Objectives

The underlying objectives of passive network reconnaissance have largely been unaltered

over the past decade. This finding highlights that novel solutions must be developed

to address the evolving challenges of conducting network reconnaissance within modern

networks.

A timeline of the network reconnaissance objectives investigated over the past decade is

provided in Figure 2.7. It is evident that application characterisation has become a central

focus for network reconnaissance over the past five years. The motivation for recent studies

of application characterisation can be summarised into three factors:

1. The reduced efficacy of port-based analysis. The transport layer’s pre-assigned

port numbers have historically been used to characterise TCP/IP applications (e.g.,

HTTP: 80, SSH: 22, DNS: 53) [75]. Port-based analysis has largely become obsolete

due to dynamic port allocation and the funnelling of distinct applications through

a single port (e.g., HTTPS: 443) [63, 76].

2. The increase in widespread encryption. Application characterisation through DPI

was introduced to address the decline in efficacy of port-based analysis (e.g., nDPI

[77]). The widespread utilisation of encryption, however, has reduced the effective-

ness of DPI for application characterisation.

3. The increase in distinct application traffic. A significant factor in the rise of distinct

application traffic has been caused by the proliferation of mobile applications (e.g.,

Chapter 2 - Literature Review and Background 33

2.5.3 Criterion 1 (CN1) - Encryption Independence

Encryption was the central factor in the development of passive network reconnaissance

solutions over the past decade. 93% of surveyed solutions assumed that encryption would

be applied to at least the application layer (i.e., SSL/TLS encryption), whereas 84%

assumed that both the application and transport layer would be encrypted (i.e., IPsec).

A total of 17 papers conclude that the use of either CNNs or RNNs can be used for DPI on

encrypted TCP/IP traffic. This claim would require overwhelming evidence as it requires

information retrieval from encrypted packet content.

Packet data would result in a distinct cipher text when encrypted with different keys7. It

must be assumed that the proposed solutions for encrypted DPI are learning from either

1) unencrypted TCP/IP layers within the packet content; or 2) synthetic biases within

the evaluated dataset. In Chapter 3, we provide evidence to suggest that such solutions

are simply overfitting to synthetic biases within their respective dataset.

2.5.4 Criterion 2 (CN2) - Minimum Universal Feature

Set

Only 2 (3.6%) of the surveyed papers satisfied the requirements of CN2. This finding high-

lights a clear absence in network reconnaissance solutions that would be widely applicable

across diverse TCP/IP network configurations. For instance, 34 (61%) of the proposed

solutions rely on packet-inspection. Packet-inspection could not be applied for widespread

deployment as access to packet captures is highly restricted due to the privacy and security

concerns they introduce.

7TCP/IP traffic is encrypted using block ciphers [60]. There is no predetermined mapping
between the plain text (i.e., unencrypted data) and cipher text (i.e., encrypted data) in
a block cipher without knowing the associated key.

Chapter 2 - Literature Review and Background 34

The two solutions that met the requirements of CN2 are as follows:

1. Kazato et al. [80] utilised the source and destination IP address fields for intrusion

detection. The authors propose a solution to automate the detection of malicious

services hosted on the Internet. Their proposed solution examines an Internet

service’s IP address, domain name, and uniform request locator (URL) to identify

whether the service is malicious. Open source intelligence (OSINT) is used to

resolve the domain name and URL of a service given its IP address. The authors

show that insightful network reconnaissance can be conducted with access to only

the IP address of a service.

2. Kozik et al. [81] provided a solution for intrusion detection that utilises six out of the

nine features in the universal minimum feature set: source/destination IP address,

source/destination port number, number of bytes, and number of packets. Their

proposed solution utilised a flow-based analysis to detect botnet behaviour. Overall,

the solution achieves a high detection rate of botnet behaviour. The authors thus

show that intrusion detection can be performed using only the set of universal

minimum features.

Both Kazato et al. [80] and Kozik et al. [81] focused on the intrusion detection objective.

In Chapters 4-6 we provide network reconnaissance solutions that satisfy the requirements

of CN2 that can be used for intrusion detection, device characterisation, and application

characterisation.

2.5.5 Criterion 3 (CN3) - Real World Analysis

A total of 14 (24%) of the surveyed papers satisfied the requirements of CN3. Of these

14 papers: ten evaluated their technique on an operational network (e.g., an enterprise or

internet service provider (ISP) network); two papers evaluated their technique through a

Chapter 2 - Literature Review and Background 35

user study; and the remaining two papers evaluated their technique through captures of

real-world malicious activity.

The evaluation of a proposed solution on an operational network provides sufficient bounds

for the feasibility of the solution within realistic deployments [82]. This finding is supported

by the high number of solutions evaluated within operational networks. To adhere to this

convention, we evaluate the techniques provided within this thesis on a real operational

network—provided by the University of Adelaide—where applicable8.

2.5.6 Criterion 4 (CN4) - Long-Term Deployment

A total of 12 (21%) of the surveyed papers met the requirements of CN4. Of these 12

papers: ten evaluated the performance of their proposed solution for at least one month

after its initial analysis; and two papers provided a mechanism to update their solution in

response to changes in the network environment.

The following two papers provide a method to update their solution in response to changes

in the network environment:

1. S. Dong et al. [50] proposed a semi-supervised support vector machine (SVM) for

flow-based application characterisation. Their solution identifies unlabelled network

flows that are close to the SVM’s decision boundary—that is, flows that cannot be

confidently classified. The flows that cannot be confidently classified are manually

reviewed and used to update the SVM. This approach minimises the number of

labelled flows that are required to update their proposed solution.

8The operational network that was evaluated within this thesis did not contain any known
samples of malicious behaviour. For intrusion detection, we evaluated our proposed tech-
niques on widely utilised datasets containing examples of malicious behaviour (UNSW-
NB15 [83] and ISCXBot2014 [84]). These datasets are synthetic, short-term captures and
thus do not meet the requirements of CN3 or CN4.

Chapter 2 - Literature Review and Background 36

2. J. Li et al. [51] proposed an open-world assumption for flow-based application char-

acterisation. The authors’ open-world assumption allows for the characterisation

of applications that were not present when the solution was initially trained. This

open-world assumption highlights a significant limitation in conventional supervised

ML solutions—they are only effective if the same set of classes (e.g., applications)

are present when both training and testing. This limitation would reduce the ef-

fectiveness of supervised ML solutions on TCP/IP networks due to the volatility of

such networks (e.g., the rate in which applications, devices, and software updates

are released to market).

The benefits of both approaches can be achieved through the utilisation of unsupervised

ML. First, an unsupervised ML technique could be continuously trained as it does not

require labelled training data9. Second, continuous training of an unsupervised ML tech-

nique inherently provides an open-world assumption as the training is not restricted by a

priori knowledge (i.e., labelled classes).

We validate the techniques provided within this thesis on captures of an operational net-

work taken over a six-month period. Furthermore, we devise an unsupervised ML tech-

nique (Chapter 5, Paper 5.2) to provide a network reconnaissance solution that can be

easily updated in response to changes in the network environment.

2.5.7 Point-of-Analysis

There have been noticeable changes in the points-of-analysis (PoAs) used in passive net-

work reconnaissance solutions as illustrated in Figure 2.8. Two key developments were

identified. First, there has been a resurgence of DPI due to the use of sequential ML tech-

9Domain knowledge or a small sample of labelled data would be required to interpret the
output of an unsupervised ML technique.

Chapter 2 - Literature Review and Background 38

2.5.8 Graph-Based Machine Learning

Three surveyed papers performed graph-based network reconnaissance. Of which, two

papers utilised graph-based ML and one utilised conventional ML to analyse the structural

properties of a graph-based PoA. We focus on the graph-based ML solutions as they are

tailored for the analysis of graph data structures11.

There are two main approaches for graph-based ML:

1. Graph embeddings encode a graph’s structural properties into a low-dimensional

vector representation [26]. The benefit of graph embeddings is that they provide

a universal representation that can be reused for different application domains.

Furthermore, graph embeddings rely only on the structural properties of a graph

and are therefore an unsupervised ML technique.

2. Graph characterisation analyses a graph’s structural properties to perform anal-

ysis for a specific application domain. Labelled training data (i.e., supervised ML)

is used to tailor the analysis for the intended application domain.

Zola et al. [85] and Kazato et al. [80] both propose a graph-based ML solution for network

reconnaissance through graph characterisation. Furthermore, both proposed solutions

utilised a graph convolutional neural network (GCN) as defined by Kipf and Welling [86].

This definition proposes a multi-layered neural network that propagates the structural and

nodal attributes of a graph through each layer of the neural network. The simplified form

of a Kipf and Welling’s propagation rule is as follows:

H(l+1) = σ(AH(l)W (l)) (2.1)

11The limitations of applying conventional ML for the analysis of graph data structures is
provided in Chapter 5.

Chapter 2 - Literature Review and Background 39

where H(l) is the l-th layer in the neural network, σ is a non-linear activation function, A

is the graph’s adjacency matrix, and W (l) is the weight matrix at the l-th in the neural

network.

Equation 2.1 states that the graph’s adjacency matrix—that is, all connections within

the graph—must be known in order to propagate information through the GCN. This

definition of a GCN is an example of transductive learning. Transductive learning requires

the entire graph to be present when training and testing; thus limiting such solutions to

singular, static graphs [87].

A TCP/IP network is neither singular nor static. A transductive GCN would be sub-

optimal for network reconnaissance as it would require retraining for each analysis con-

ducted. To mitigate this limitation, we pose the first use of graph embeddings for passive

network reconnaissance.

Graph embeddings preserve a graph’s structural properties within a d-dimensional latent

space (Equation 2.2) [88].

θ : v → x⃗ ∈ Rd for all v ∈ V (2.2)

where θ is a structure preserving mapping function from vertex, v, to the vertex’s latent

space representation, x⃗; d is the dimensionality of the latent space; and V is the set of all

vertices within the graph.

Graph embeddings were chosen for the development of novel network reconnaissance so-

lutions for the following three key reasons:

1. Inductive learning: Graph embeddings provide a framework for conducting graph

analytics without requiring access to the entire graph. This property is essential for

the analysis of a TCP/IP network as it allows for the analysis of highly dynamic

and large-scale networks.

Chapter 2 - Literature Review and Background 40

2. Objective independent embeddings: Graph embeddings are an unsupervised

ML technique and thus are not biased to a particular objective. This property

allows for a universal representation of a TCP/IP network that can be used to

meet distinct network reconnaissance objectives. In Chapters 5-6, we show that the

same embeddings can be utilised for both device and application characterisation.

3. Long-Term Deployment (CN4): Graph embeddings are a form of unsupervised

ML and therefore can provide an open-world assumption and are easily updated

in response to changes on the underlying network. Graph embeddings are there-

fore well-suited to support the long-term deployment of network reconnaissance

solutions.

In Chapter 5, we design a novel method of deriving the mapping function, θ, for use

within bipartite graphs. In particular, we develop a novel neural network architecture and

training schema to exploit the unique structure of dynamic, large-scale bipartite graphs.

2.6 Contribution Gap

Three principal contribution gaps were identified through the summary of related work

that was outlined in Section 2.5:

1. Machine learning: We show that there has been no consensus on which ML tech-

niques should be utilised for passive network reconnaissance. In particular, the renewed

investigation of deep learning techniques in related fields (e.g., image classification) has

introduced a plethora of novel approaches for conducting passive network reconnaissance.

In Chapter 3, we compare the use of machine and deep learning techniques for conducting

network reconnaissance for both DPI and flow-based analysis. We identify severe lim-

itations of such techniques as summarised by the four criteria for realistic deployment

(CN1-4).

Chapter 2 - Literature Review and Background 41

2. Criteria for realistic deployment: No surveyed solution met all four criteria for

realistic deployment. In particular, only two (3.6%) of the proposed solutions are inde-

pendent of encryption (CN1) and relied only on a universal minimum feature set (CN2).

In chapter 4, we devise a bipartite graph-based PoA to provide a universal framework for

conducting passive network reconnaissance that satisfies both the requirements of CN1

and CN2. We show that our provided framework allows for achieving diverse objectives

within passive network reconnaissance (e.g., intrusion detection, device characterisation,

and application characterisation).

Only 8 (14%) of the surveyed papers evaluated their proposed solution for long-term

deployment (CN4) in real-world networks (CN3). To meet these criteria, we validate our

bipartite graph-based representation using captures from a university campus network

taken over six months. In Chapters 4-6, we develop the first passive network reconnaissance

solutions that achieve all four criteria for realistic deployment (CN1-4).

3. Graph-based machine learning: All known graph-based ML solutions for passive

network reconnaissance have utilised graph characterisation. In contrast, Chapter 5 pro-

vides a graph embedding technique design specifically for passive network reconnaissance.

Graph embeddings were investigated as they do not require labelled data to be trained

(i.e., unsupervised ML). This property allows graph embeddings to be easily updated in

response to changes in the network environment (CN4). Furthermore, we show that graph

embeddings can be used to achieve diverse network reconnaissance objectives without

requiring explicit re-training for each objective.

C
hapter

2
-Literature

R
eview

and
Background

42
Table 2.2: A summary of related work in passive network reconnaissance.

Objectives Point-of-Analysis (PoA) Criteria
CN1

Paper Year

Intrusion
D

etection

D
evice

C
haracterisation

A
pplication

C
haracterisation

U
ser

Identification

P
acket

Inspection

D
eep

P
acket

Inspection

F
low

-B
ased

G
raph-B

ased

M
achine

Learning

SSL/T
LS

IP
sec

C
N

2

C
N

3

C
N

4

[43] 2012 − ✓ − − − − ✓ − − ✓ × × ✓ ✓

[54] − − − ✓ − − ✓ − ✓ ✓ ✓ × × ×
[89] − ✓ − − ✓ ✓ − − − × × × × ✓

[82]

2013

− ✓ − − ✓ − − − ✓ ✓ ✓ × ✓ ×

[40] − ✓ − − ✓ − − − − ✓ × × ✓ ✓

[90]
2014

− − − ✓ − − ✓ − ✓ ✓ ✓ × ✓ ✓

[91] ✓ − − − − − ✓ − − ✓ ✓ × × ×
[92]

2015
− − ✓ − − − ✓ − ✓ ✓ ✓ × × ×

[93] − ✓ − − ✓ − − − ✓ ✓ ✓ × × ×
[52] − − − ✓ ✓ − − − ✓ ✓ ✓ × × ×
[35] − ✓ − − − − ✓ − ✓ ✓ ✓ × ✓ ×
[61] − ✓ − − ✓ − − − − ✓ ✓ × ✓ ✓

[56] − − − ✓ ✓ ✓ − − ✓ × × × ✓ ✓

[94]

2016

− ✓ − − ✓ ✓ − − ✓ × × × ✓ ×

[95] − ✓ − − − − ✓ − ✓ ✓ ✓ × × ✓

[96] − − ✓ − ✓ − − − ✓ ✓ ✓ × × ×
[31] ✓ − − − ✓ ✓ − − ✓ ? ? × ✓ ✓

[97] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[98] − ✓ − ✓ ✓ − − − − ✓ × × × ×
[32] ✓ − − − − − ✓ − ✓ ✓ ✓ × × ×
[99]

2017

− − ✓ − − − ✓ − ✓ ✓ ✓ × × ×

C
hapter

2
-Literature

R
eview

and
Background

43
Table 2.2: A summary of related work in passive network reconnaissance (cont.).

Objectives Point-of-Analysis (PoA) Criteria
CN1

Paper Year

Intrusion
D

etection

D
evice

C
haracterisation

A
pplication

C
haracterisation

U
ser

Identification

P
acket

Inspection

D
eep

P
acket

Inspection

F
low

-B
ased

G
raph-B

ased

M
achine

Learning

SSL/T
LS

IP
sec

C
N

2

C
N

3

C
N

4

[100] ✓ − − − − − ✓ ✓ ✓ ✓ ✓ × × ×
[101] − − − ✓ ✓ − − − ✓ ✓ ✓ × × ×
[48] − − ✓ − − − ✓ − ✓ ✓ ✓ × × ✓

[81] ✓ − − − − − ✓ − ✓ ✓ ✓ ✓ × ×
[102] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[103] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[42]

2018

− ✓ − − ✓ ✓ − − − × × × ✓ ×

[49] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[33] ✓ − − − − − ✓ − ✓ ✓ ✓ × × ×
[104]

2019

− ✓ − − − − ✓ − ✓ ✓ × × × ×

[105] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[106] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[107] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[108] − ✓ − ✓ ✓ − − − ✓ ✓ ✓ × × ×
[109] − − ✓ − − − ✓ − ✓ ✓ ✓ × × ×
[110] − ✓ − − − − ✓ − ✓ ✓ ✓ × × ✓

[111] − − ✓ − ✓ − − − ✓ ✓ ✓ × × ×
[112] − − ✓ − ✓ − − − ✓ ✓ ✓ × × ×
[80] ✓ − − − − − − ✓ ✓ ✓ ✓ ✓ ✓ ×
[113] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[114]

2020

− − ✓ − ✓ ✓ − − ✓ ? ? × ✓ ×

C
hapter

2
-Literature

R
eview

and
Background

44
Table 2.2: A summary of related work in passive network reconnaissance (cont.).

Objectives Point-of-Analysis (PoA) Criteria
CN1

Paper Year

Intrusion
D

etection

D
evice

C
haracterisation

A
pplication

C
haracterisation

U
ser

Identification

P
acket

Inspection

D
eep

P
acket

Inspection

F
low

-B
ased

G
raph-B

ased

M
achine

Learning

SSL/T
LS

IP
sec

C
N

2

C
N

3

C
N

4

[115] − − ✓ − − − ✓ − ✓ ✓ ✓ × × ×
[116] − ✓ − − ✓ − − − ✓ ✓ × × × ×
[50] − − ✓ − − − ✓ − ✓ ✓ ✓ × ✓ ✓

[117] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[118] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[119] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[120]

2021

− − ✓ − ✓ ✓ − − ✓ ? ? × × ×

[51] − − ✓ ✓ ✓ − − − ✓ ✓ ✓ × ✓ ✓

[121] − − ✓ − − − ✓ − ✓ ✓ ✓ × × ×
[122] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[123] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[124] − − ✓ − − − ✓ − ✓ ✓ ✓ × × ×
[125] − − ✓ − ✓ ✓ − − ✓ ? ? × × ×
[85]

2022

✓ − − − − − − ✓ ✓ ✓ ✓ × × ×
Techniques developed within this thesis.

Paper 3.2 [126] ✓ − − − ✓ ✓ − − ✓ ? ? × × ×
Paper 4.1 [127] − ✓ − − − − − ✓ − ✓ ✓ ✓ ✓ ×
Paper 4.2 [128] − ✓ − − − − − ✓ ✓ ✓ ✓ ✓ ✓ ×
Paper 4.3 [129] ✓ − − − − − − ✓ ✓ ✓ ✓ ✓ ✓ ×
Paper 4.4 [130] − ✓ − − − − − ✓ ✓ ✓ ✓ ✓ ✓ ✓

Paper 5.1 [131] ✓ − − − − − − ✓ ✓ ✓ ✓ × × ×
Paper 5.2 [132] − ✓ ✓ − − − − ✓ ✓ ✓ ✓ ✓ ✓ ✓

Paper 6.1 [37] − ✓ ✓ − − − − ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chapter 3

Conventional Machine Learning

Techniques for Network

Reconnaissance

This chapter evaluates the use of conventional machine learning (ML) techniques for

conducting network reconnaissance. Furthermore, we present a novel convolutional

neural network (CNN) architecture to explore how a conventional ML technique can be

tailored for the network reconnaissance domain.

Two papers are presented within this chapter:

Paper 3.1 - “Deep Learning for Classifying Malicious Network Traffic”, compares the use of

five prevalent ML techniques for intrusion detection: random forest (RF), support vector

machines (SVMs), decision trees, multi-layered perceptron (MLP), and CNNs. Further-

more, a comparison of deep packet inspection (DPI) and flow-based analysis is provided.

Paper 3.2 - “Using Convolutional Neural Networks for Classifying Malicious Network Traf-

fic”, provides a novel CNN architecture—Segmented-CNN—that is tailored for the network

reconnaissance domain. The Segmented-CNN architecture exploits the structural proper-

ties of the TCP/IP protocol stack to reduce the classifier’s training time and improve its

resilience to evasive malicious behaviour.

45

Chapter 3 - Conventional Machine Learning Techniques for Network
Reconnaissance 46

The key contribution of this chapter is as follows:

1. (Paper 3.1) We provide an empirical justification for the prevalent use of RF and

CNNs that was identified in related work (Section 2.5.1). RF and CNN techniques

were shown to exhibit the highest performance for flow-based and DPI network

reconnaissance solutions, respectively.

2. (Paper 3.2) We design Flow-Image; a novel representation of network traffic for

use within a CNN classifier. The Flow-Image is the first image representation that

preserves the categorical features of network data. This insight has been utilised

in subsequent publications applying image processing techniques to network data

[113].

3. (Paper 3.2) We provide Segmented-CNN s; a novel CNN architecture designed

to exploit the unique structural properties of the TCP/IP protocol stack. The

Segmented-CNN utilises a divide and conquer approach to evaluate the distinct

properties of the header and payload sections of a TCP/IP packet. We show that

this approach reduces the required training time of a CNN classifier and improves

robustness to evasive malicious behaviour.

4. (Paper 3.2) We expose the proclivity of neural network architectures to overfit

the training set when conducting DPI. It was shown that a packet’s identification

field and checksum were the two most significant features when using either MLP or

CNNs. It is evident that these architectures are overfitting the training set as these

two features are both unique to their individual packet. This contribution illus-

trates the fallacy in using ML for DPI. The vast quantity of information contained

in packet content is readily overfit. It is thus critical to investigate ML-based tech-

niques for network reconnaissance that are less reliant on exhaustive feature sets.

Deep Learning for Classifying Malicious
Network Traffic?

K. Millar, A. Cheng, H.G. Chew, and C.-C. Lim

School of Electrical and Electronic Engineering, University of Adelaide, Australia
{kyle.millar, adriel.cheng, honggunn.chew, cheng.lim}@adelaide.edu.au

Abstract. As the sophistication of cyber malicious attacks increase, so
too must the techniques used to detect and classify such malicious traffic
in these networks. Deep learning has been deployed in many application
domains as it is able to learn patterns from large feature sets. Given
that the implementation of deep learning for network traffic classifica-
tion is only just starting to emerge, the question of how best to utilise
and represent network data to such a classifier still remains. This paper
addresses this question by devising and evaluating three different ways
of representing data to a deep neural network in the context of malicious
traffic classification. We show that although deep learning does not show
significant improvement over other machine learning techniques using
metadata features, its use on payload data highlights the potential for
deep learning to be incorporated into novel deep packet inspection tech-
niques. Furthermore, we show that useful predictions of malicious classes
can still be made when the input is limited to just the first 50 bytes of
a packet’s payload.

Keywords: Deep learning · convolutional neural networks · Internet
traffic classification · malicious traffic detection.

1 Introduction

As the number of users who rely on the Internet in their professional and per-
sonal lives increases, so too does the profit in exploiting the vulnerabilities of
these networking systems. Recent years have shown an unprecedented number
of malicious attacks worldwide. By design, malicious attacks are not easily iden-
tifiable, with each passing year producing new ways to foil existing systems of
detection. Therefore, in today’s constantly evolving networks, there arises the
need for a classification system capable of adapting to these changes.

Deep learning has become highly prominent in the machine learning com-
munity due to the availability of big data and the specialised hardware required
to utilise it. Deep learning’s advantage lies in its ability to learn and adapt to

? This research is supported by the Commonwealth of Australia as represented by the
Defence Science and Technology Group of the Department of Defence. The authors
acknowledge the following for their contributions in gathering the results discussed
in this paper: Clinton Page, Daniel Smit, and Fengyi Yang.

2 K. Millar et al.

complex patterns from a given data set without the need to first define the
important features by hand. This allows for large features sets to be analysed
with the possibility of learning unprecedented ways to represent the underlying
patterns within the data.

Although deep learning is capable of a generalised form of pattern detection,
the performance of any learning technique is still only as good as the data it
is trained on. As the implementation of deep learning on network traffic clas-
sification is only just starting to emerge, the question of how to best represent
network data to such a classifier for effective training still remains. This paper
aims to address this question by exploring three different ways of representing
data to a deep neural network. The contributions of this paper are as follows:

1. We devise, evaluate and discuss three different representations of network
data for use in a deep learning classifier.

2. We highlight the potential for novel deep packet inspection techniques based
on deep learning and show that useful predictions of malicious classes can
still be made within the first 50 bytes of a packet’s payload.

3. We show that deep learning achieves comparable results to other machine
learning methods when using only metadata features.

2 Related Work

Network traffic classification techniques typically fall into two categories: payload-
based classification, where the traffic is classified based on the distinct signatures
found in the message content of the packet; and statistical-based classification,
where the traffic is classified based on a collection of metadata features, such as
the number of packets sent. The latter of these two options has been typically
favoured in machine learning research in recent years due to the ease of generat-
ing well defined features sets [2]. While this technique displays desirable results
on detecting malicious network traffic, they rely on existing knowledge of what
features certain attacks are likely to exhibit and thus are unlikely to lead to any
additional insights into the data.

Payload-based classification has been typically left for non-learning algo-
rithms such as deep packet inspection (DPI), which searches the packets for
a list of predefined signatures. This method benefits from high classification
accuracies but is only as accurate as its knowledge base of such attacks. This
static approach remains popular for commercial systems that have the resources
to manage such a large repository of known attacks. However, with the intro-
duction of deep learning, payload-based techniques are beginning to make use of
learning algorithms that facilitate a more adaptive signature-based detection.

Wang [7] showcased deep learning’s potential to achieve an automation of
DPI methods, acquiring high classification accuracies for application traffic us-
ing the first 1000 bytes of a network flow’s payload as the input to a deep
(multi-layered) neural network. Likewise, Wang et al. [6] used a convolutional
neural network (CNN), a deep learning approach typically utilised for image

Deep Learning for Classifying Malicious Network Traffic 3

classification, to detect patterns within the payload data. This approach was re-
ported to achieve high classification accuracies for both application and malicious
traffic but was unable to be formally validated in comparison to the standard
techniques of classification.

In this paper we explore both statistical and payload-based approaches for
deep learning in the context of cyber malicious classification and detection.
Through our analysis, we show that both techniques have different strengths
and weakness, and conclude that a union of the two would result in a more
robust classifier.

3 Network Data Representation for Deep Learners

The performance of any machine learning technique is only as good as the input
data it receives. Although deep learning is capable of extracting useful features
from a larger feature set, an effective representation of the input data will further
aid the classifier to perform better on the given task. This section defines three
representations of network data for use in a deep learning classifier.

3.1 Payload Data

The main disadvantage of implementing deep packet inspection in a real-world
scenario is that the signatures used for classification can be subject to regular
change. This is especially evident in malicious attacks as their implementation is
constantly evolving in order to bypass existing systems of detection. However, a
way of automating this feature selection process is proposed using deep learning.
By allowing the deep learning classifier to train from the same data commonly
used in DPI, the classifier can attempt to learn the underlying patterns within
the payload content rather than just searching for pre-defined signatures. Like
DPI, a training process will still need to be re-administered to keep up with the
constant evolution of network traffic but deep learning can remove much of the
human effort involved in this process.

As the inputs to a deep learning classifier must remain fixed, a selection of
the payload data must first be made. In this investigation the first 50 bytes of
each traffic flow were mapped to the inputs of the deep learner; each byte value
mapping to a corresponding input node. To evaluate this input strategy, a dense
neural network was created with two hidden layers of 1000 nodes each. This
input method expands upon research outlined in [5].

3.2 Flow Image

The largest defining factor between deep learning and other machine learning
techniques is its ability to generate insight from a large source of data. To this
effect, the method of data representation described herein aims to maximise the
amount of input data seen by the classifier in order for a more complex evaluation
of the traffic to be made. However, due to the large size of this input method,

4 K. Millar et al.

a standard dense neural network would not be able to efficiently evaluate this
input and therefore another deep learning method must be selected.

Convolutional neural networks (CNNs) have been at the forefront of deep
learning due to their performance in image processing tasks. Given that image
classification requires the processing of large input sizes, CNNs have developed
many ways of increasing their efficiency in these tasks such as utilising dimension
reduction layers known as pooling.

In order to explore network traffic with a CNN, each flow from the captured
network traffic was first converted to an image with each pixel representing a
byte of data in the network. Each row of the image is a new packet in the flow,
with the bytes contained in the respective packet filling out the columns.

3.3 Flow Statistics

In recent years, flow statistics has been the conventional subject of analysis when
applying machine learning techniques to the field of network traffic classification.
This method of classification is based on the assumption that the traffic’s meta-
data can be used to identify the distinguishing behaviours of certain traffic. For
example, frequent short messages could be an indicator of a denial of service
(DoS) attack. As metadata collected from the traffic is seen as an intrinsic prop-
erty, this method of analysis was aimed at creating a method of detection that
was resilient to obfuscation.

To investigate this method of data representation, 24 features were collected
from the traffic. These features consisted of data relating to four main categories,
temporal, data transferal, TCP window and IP flags. To analyse these features, a
dense neural network was created consisting of two hidden layers of five hundred
nodes each. In deep learning, it is common practise to use low level features as
inputs to the neural network such that higher order features can be learnt during
the training process [1]. However, using these high order features directly was
explored to compare deep learning to the more traditional practises.

4 Data Set

Deep learning benefits from a large and extensive data set. For this reason and
the need for labelled data, the UNSW-NB15 data set [3, 4] was chosen as the
subject of this experiment. Contained in this data set was a set of nine syn-
thetically generated malicious classes. However, as deep learning requires a large
number of samples to generate an accurate prediction, four of the smallest ma-
licious classes were merged into a single class entitled OTHER-MALICIOUS.
The remaining malicious classes and their distributions within the data set are
presented in Table 1. A non-malicious class was also included such that the
classifier’s ability to distinguish between malicious attacks and normal traffic
behaviour could be investigated. This non-malicious class was made up of traffic
likely to be in abundance on a typical network such as HTTP, P2P, and FTP.

Deep Learning for Classifying Malicious Network Traffic 5

5 Results

In this section, the inputs methods (Section 3.1 to 3.3) are evaluated based on
their ability to detect and classify malicious traffic. In order to provide a baseline
comparison, three machine learning classifiers, support-vector-machine (SVM),
decision tree-based J48, and random forests, were also trained using the Flow
Statistics input method.

The F1 scores for malicious traffic classifications are shown in Table 2. By
examining the weighted-average row in this table, it can be seen that the two
highest performing methods are payload-based. As payload-based methods typi-
cally rely on security experts to predefine and manage a set of known signatures,
deep learning’s performance on this input method shows the potential of these
techniques to augment or automate this laboursome process. Furthermore, the
Payload Data method showcases that a useful prediction can still be achieved
with just the first 50 bytes of a packet’s payload, allowing for faster predictions
to be made.

Using the flow statistics method to compare deep learning to other machine
learning techniques, it was shown that given a well-defined task and a strong
representative feature set, other forms of tree-based machine learning may out-
perform certain deep learning techniques. While deep learning can achieve com-
parable results on this same feature set, due to the complexity in how it correlates
input data, we suspect overly deep neural networks may unintentionally obscure
some of the underlying features critical for distinguishing malicious traffic.

Although low accuracies are shown for DoS attacks for all methods, its low
detection rate in classifiers which showed an overall high performance (i.e. Pay-
load Data and Flow Image) highlights the issue of choosing one technique over
the other. As a DoS attack will typically flood the network with benign packets,
a detection system which only analyses payload data will not be able to recognise
such an attack.

6 Conclusion and Future Work

In this paper three different ways of representing network data to a deep learn-
ing classifier were explored in the context of malicious traffic classification. As

Table 1. UNSW-NB15 malicious classes.

Malicious
Classes

Number of
Samples

Percentage
of Total

DoS 3,603 3.1%
Exploits 25,274 21.8%
Fuzzers 19,240 16.6%
Generic 3,798 3.3%
Reconnaissance 11,671 10.1%
Other-Malicious 2,249 1.9%
Non-Malicious 50,000 43.2%

6 K. Millar et al.

Table 2. Malicious classification comparison with F1 scores.

Malicious
Classes

Deep Learning Methods Other Machine Learning Methods

Payload
Data

Flow
Image

Flow
Statistics

SVM J48
Random
Forest

DoS 36.4 36.5 39.3 0.5 52.2 52.2

Exploits 88.8 92.2 85.3 72.2 87.6 88.0

Fuzzers 94.6 95.1 86.3 61.3 90.9 89.7

Generic 88.7 80.6 69.6 0.0 83.9 87.2

Reconnaissance 96.9 98.2 83.6 47.0 84.5 83.7

Other-Malicious 86.6 92.8 37.4 0.0 54.0 54.1

Non-Malicious 97.7 99.1 98.9 98.9 98.9 98.9

Weighted-Average 92.7 94.2 88.3 73.4 90.8 90.8

to be expected, there is no one size fits all solution, with different malicious
attacks exhibiting different defining characterises. While deep learning does not
show a significant improvement to other, more conventional machine learning
approaches for statistical-based malicious traffic detections, its introduction has
paved new grounds for the automation of payload-based detection. In future
works, the combination of statistical and payload-based inputs will be explored.

References

1. Bromley, J., Guyon, I., LeCun, Y., Sckinger, E., Shah, R.: Signature verification
using a “siamese” time delay neural network. In: Advances in Neural Information
Processing Systems. pp. 737–744

2. Divyatmika, Sreekesh, M.: A two-tier network based intrusion detection system
architecture using machine learning approach. In: 2016 International Conference
on Electrical, Electronics, and Optimization Techniques (ICEEOT). pp. 42–47.
https://doi.org/10.1109/ICEEOT.2016.7755404

3. Nour, M., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set). Military Communications and
Information Systems Conference (MilCIS) (2015)

4. Nour, M., Slay, J.: The evaluation of network anomaly detection systems: Statistical
analysis of the UNSW-NB15 data set and the comparison with the KDD99 data
set. Information Security Journal: A Global Perspective pp. 1–14 (2016)

5. Smit, D., Millar, K., Page, C., Cheng, A., Chew, H.G., Lim, C.C.: Looking deeper
using deep learning to identify internet communications traffic. In: 2017 Australasian
Conference of Undergraduate Research (ACUR)

6. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classifica-
tion using convolutional neural network for representation learning. In: 2017
International Conference on Information Networking (ICOIN). pp. 712–717.
https://doi.org/10.1109/ICOIN.2017.7899588

7. Wang, Z.: The applications of deep learning on traffic identification (2015),
https://goo.gl/WouIM6

1

Using Convolutional Neural Networks for Classifying

Malicious Network Traffic*

Kyle Millar1, Adriel Cheng1, 2, Hong Gunn Chew1 and Cheng-Chew Lim1

1. School of Electrical and Electronic Engineering, The University of Adelaide, Australia

2. Cyber and Electronic Warfare Division, Defence Science & Technology Group, Australia

{kyle.millar, adriel.cheng, honggunn.chew, cheng.lim}@adelaide.edu.au

adriel.cheng@dst.defence.gov.au

Abstract. As the reliance on the Internet and its constituent applications

increase, so too does the value in exploiting these networking systems.

Methods to detect and mitigate these threats can no longer rely on singular

facets of information, they must be able to adapt to new threats by learning

from a diverse range of information. For its ability to learn complex inferences

from large data sources, deep learning has become one of the most publicised

techniques of machine learning in recent years. This chapter aims to investigate

convolutional neural networks (CNNs), a deep learning technique typically

reserved for image classification, and how its methodology can be adapted to

detect and classify malicious network traffic.

Keywords: Convolutional neural networks, deep learning with GPUs, malware

classification and detection, analysis and similarity.

1 Introduction

The interest in deep learning over traditional machine learning algorithms originates

from its ability to generate complex representations of the input data without the need

to hand-select a feature set. This process of making complex decisions directly from

the source of information has labelled deep learning an ‘end-to-end’ algorithm [3].

Often, conventional learning techniques may inadvertently discard useful knowledge if

subjected to a feature selection process based on the heuristics of a human operator.

However, deep learning aims to draw new inferences about a data source, in our case

Internet Protocol (IP) network traffic, that might not have been used otherwise.

This new wave of deep learning research has been largely popularised by the field

of image classification. Deep learning’s ubiquity in image classification was largely

* This research is supported by the Australian Government Research Training Program (RTP)

Scholarship and the Commonwealth of Australia as represented by the Defence Science &

Technology Group of the Department of Defence. The experiments described herein were

enabled by the supercomputing resources provided by the Phoenix HPC service at the

University of Adelaide.

2

sparked in 2012 when a deep convolutional neural network (CNN) won the ImageNet

visual recognition challenge, almost halving the current error rate at the time [4]. Since

then, almost all subsequent submissions to the ImageNet challenge have been made

using a variation of these CNN learning techniques [5].

Convolutional neural networks are a variant of artificial neural networks which were

designed to leverage insights from locally connected features within the input.

Although largely used in the field of image classification, CNNs have been successfully

applied to other application areas such as natural language processing [6-9], audio

classification [10], and signal processing [11].

Convolutional neural networks have recently gained interest in Cybersecurity and

network management research. They have shown promising results in this field, able to

perform both statistical-analysis, by interpreting traffic metadata features [12, 13], and

facilitate payload-analysis by finding patterns within the message content of the traffic

[3, 14, 15]. Despite the potential of CNNs, there has yet to be an in-depth study on the

principles of designing and implementing a CNN for use in network traffic

classification.

The aim of this chapter is to introduce the theory behind CNNs with an emphasis on

why its distinct properties make it well suited to detect evasive malicious network

traffic. In particular, the contributions of this chapter are as follows:

• We outline three benefits of utilising CNNs and examine how these

properties could both benefit or hinder network traffic classifications in a

Cybersecurity context.

• We introduce a novel way of representing network traffic to a deep

learning classifier inspired by natural language processing - entitled a

Flow-Image.

• We compare three different CNN architectures including a novel

architecture aimed at exploiting the known properties of a TCP/IP packet.

• We explore the structure of network traffic and propose how CNNs could

be employed to create a classifier that is robust to certain malicious

evasion techniques.

This chapter assumes the reader has prior knowledge and background in neural

networks and their terminology; otherwise, we refer the reader to [16] for an in-depth

introduction to this topic.

The remainder of this chapter is as follows. Section 2 introduces the key concepts

and advantages behind a CNN implementation. The advantages of a CNN based

implementation are then explored in terms of their application to malicious network

traffic classification in Section 3. Section 4 outlines how network traffic has been

represented to CNNs in related literature, providing an additional novel representation

used to address the issues found with existing methods. Section 5 examines three CNN

architectures and details how they can be used for network traffic classification. Section

6 provides a brief summary of the experimental setup used for analysis in this chapter.

Section 7 presents experimental results and describes how different properties of CNNs

can affect the classification of malicious network traffic. The chapter concludes in

Sections 8 and 9 including suggestions for future research.

3

2 Convolutional Neural Networks

The underlying assumption of a CNN is that information within the input is locally

correlated [17]. For example, when reading a sentence, it is not just the individual letters

that are relevant but the relationship between them. This relationship is often

diminished by distance, with the correlation between letters in one word having little to

no effect on the words that follow. Finding local correlations is often much more

efficient than analysing the entire input at once. In artificial neural networks, these local

correlations can be enforced by using local receptive fields. Local receptive fields

restrict the inputs to a node to a small localised region of the overall input. Figure 1

depicts how a local receptive field can be used to restrict the input of a node to a

subsection of the previous layer.

There are several advantages to utilising local receptive fields. Firstly, the entire

input does not have to be evaluated at once. This is particularly important when working

with large input sizes where, in classical deep learning techniques such as a fully-

connected neural network, the size of the neural network scales significantly with the

number of input fields used. Larger neural networks result in larger hardware

requirements and can cause overfitting if there are too few samples to train on [18].

The second advantage occurs when there is translation or repetition of important

features within the input. An example of this advantage is prevalent in object detection

tasks, where an object should be just as easily detected no matter where in the image it

occurs. Once a local correlation is identified, local receptive fields act as a search

function, finding that same correlation regardless of its location in the input; therefore,

if a local correlation is either shifted or repeated, no additional complexity needs to be

added to the neural network to identify it. This is known in artificial neural networks as

weight-sharing. Depending on the application, weight-sharing can vastly reduce the

Figure 1. The structure of a typical CNN used for image classification. The

convolutional and pooling layers form the feature extraction stage while the fully-

connected layers form the prediction stage.

4

size of the neural network and can help increase its ability to generalise to new data

[18].

The third advantage of local receptive fields is that they are more robust to localised

noise. In many classification tasks, the input is likely to suffer from a factor of noise.

For example, voice recording can often suffer from ambient high or low frequency

interference. A system that evaluates solely based on the overall input is likely brittle

to these occurrences; however, it is more likely that only certain sections of the input is

affected. Utilising local receptive fields can help localise the effect of noise to the

regions in which they occur [7].

Convolutional neural networks are simply neural networks that enforce the use of

local receptive fields. This is achieved using two specialised layers, the convolutional

layer and the pooling layer. A typical CNN is made up of two stages. The first stage

utilises convolutional and pooling layers to identify local correlation within the input

and allow for weight-sharing. This stage can be thought of as learning and extracting

features from the input. The second stage utilises fully-connected layers to combine the

features found in the previous stage into an overall prediction. This stage is thus thought

of as the predication stage. Figure 1 shows a graphical representation of a typical CNN

structure used for image classification, highlighting the feature extraction and

prediction stages.

In the remainder of this section, each of these layers are briefly introduced as

prerequisites for later sections of the chapter. However, for a more in-depth explanation

of CNNs and their structure, the reader is referred to [17, 19].

2.1 Convolutional Layer

The convolutional layer is the core building block of a CNN. A convolutional layer

enforces the idea of local receptive fields by limiting the scope of each node in its layer

to a select few nodes in the preceding layer.

A feature of local receptive fields stated in the previous section was that of weight-

sharing, the ability to detect repeated or translated patterns without adding additional

complexity into the network. A convolutional layer implements this ideal using a filter,

a sliding function used to detect the same pattern in different regions of the input. In

Figure 2, a single filter is depicted as it scans across the input for a particular pattern.

To search the input for a varying number of patterns, a convolutional layer will typically

comprise of many filters, the total output of which is entitled a feature map. The feature

map can be thought of as identifying the location in which each filter found their

respective pattern. An example feature map consisting of four filters is depicted in the

convolution layer in Figure 1.

The dimensionality of a CNN refers to the dimensions of the filters in its

convolutional layers. This is often related to the dimensionality of its input. One-

dimensional (1D) and two-dimensional (2D) CNNs are typically seen in research due

the magnitude of tasks in which one or two dimensional arrays are used for inputs. 2D-

CNNs are typically used in image classification where the two dimensions relate to the

spatial coordinates of an image, whereas 1D-CNNs are generally used for sequential

5

inputs such as text classification. Figure 1 and Figure 2 provide an example of a 2D-

CNN and a 1D-CNN respectively. It should be noted that the depth of the filter is not

considered as a dimension in this terminology. An example of filter depth is given in

Figure 1 where a filter depth of three is used to analyse the three input channels of the

image (red, green, and blue).

2.2 Pooling Layer

The pooling layer serves two purposes, (i) it reduces the size of the feature map and (ii)

provides a level of translation invariance to the features found therein. The most

important values of the feature map are where the filters detect their respective patterns.

This is identified by strong positive or negative values within the feature map. The

larger the absolute number is, the more likely that the filter has detected a pattern in

that location. The pooling layer reduces the percentage of low values in the feature map

by summarising subregions by their important values.

Max pooling is the most commonly utilised pooling function. It samples subregions

in a similar process to that of the convolutional layer; however, instead of finding

patterns in the input, it takes the maximum absolute value within that subregion. This

increases the density of important values in the feature map whilst also allowing for

slight translation in the locations of the patterns found. Figure 1 illustrates a pooling

layer sampling the previous layer to reduce the size of its feature map.

2.3 Fully-Connected Layer

The fully-connected layers used in a CNN are the same as found in a typical fully-

connected neural network. Each node in this layer is connected to every node in the

previous layer. This structure allows for the extraction of global relationships from the

Figure 2. A comparison of the connections in a convolutional layer versus a fully-

connected layer. Each node in the convolutional layer makes the same three

connections to the nodes in the input layer, albeit at different locations. This is

known as a convolutional layer with a one-dimensional filter size of three. In

contrast, every node in the fully-connected layer is connected to every node in the

input layer.

6

previous layer. A CNN uses fully-connected layers to combine the individual features

found in the convolutional layers into a final prediction of the overall input.

The disadvantage of this layer is that the number of connections is proportional to

the number nodes in the previous layer. This can cause significant computational

overhead when input sizes are large; therefore, convolutional and pooling layers are

often designed to reduce the number of parameters in the input before a fully-connected

layer is used.

3 Benefits of CNNs for Network Traffic Classification

In this section, we identify three benefits of CNNs for the classification of network

traffic in a Cybersecurity context:

• Efficiency on larger input sizes (Section 3.1).

• Translation and repetition invariance (Section 3.2).

• Robustness to noise (Section 3.3).

3.1 Efficiency on Larger Input Sizes

Network traffic is typically characterised by large volumes of traffic. Packets spanning

the maximum transmission unit (MTU) of 1500 bytes and network traffic flows using

hundreds or thousands of packets are commonly seen in today’s networks. It is therefore

necessary to consider how to efficiently evaluate such large input sizes when using

neural networks.

The trainable parameters of a neural network are the parameters that are tuned

while training to reduce its error on the desired objective [16]. The most important

trainable parameter is the weight of the connections between nodes. Every connection

in the neural network has an associated weight. The value of this weight is adjusted

during training to determine the significance of the connection to the overall

classification. A CNN can considerably reduce the number of trainable parameters of a

neural network by using weight-sharing. Weight-sharing allows a trained weight value

to be shared between multiple connections in the same layer.

In the previous section, the relationship between the input to a fully-connected layer

and the number of connections in the neural network was highlighted. The

computational requirements of maintaining such a large number of trainable parameters

for each of these connections would rule out many hardware implementations and could

lead to overfitting if there are too few samples to train on [18].

Figure 2 highlights the comparison between the number of trainable parameters in a

convolutional layer versus a fully-connected layer. Although there are 15 connections

made in the convolutional layer, due to weight-sharing, only three weights require

adjusting. In contrast, a fully-connected layer with the same number of nodes would

result in 35 adjustable weights.

8

raised; however, a detection system which accounts for the entire input might see a

change in the overall input and raise suspicion. A CNN’s ability to be robust to noise

could therefore both benefit and hinder the classification of malicious network traffic,

depending on the evasion techniques utilised.

4 CNN Input Representations

In this section, we investigate how network traffic can be represented to a CNN. In

particular, this section evaluates the current methods of representation in related

literature and introduces a novel approach that aims to improve the efficacy of using a

CNN for network traffic classification.

4.1 Related Work

Network traffic classification typically falls into two categories; (i) statistical-based

classification, where the traffic is classified based on a collection of metadata features,

such as the number of packets sent; and (ii) payload-based classification, where the

traffic is classified based on the distinct signatures found in the message content of the

packet [15].

Statistical-based approaches were explored using a CNN in [13]; however, no prior

consideration was undertaken as to what the best representation should be to fully

exploit the strengths of a CNN. In this chapter, we address this directly and strive to

utilise the full potential of a CNN.

Wang et al. [3, 14] explored the use of a CNN for payload-based classification in

which a 28x28 pixel image was used to represent the first 784 bytes of the payload

content of a traffic flow. Each byte was represented by a greyscale pixel using the range

from black (represented by the value 0) to white (represented by the value 255). This

provides a one-to-one mapping with the 256-value range of a byte.

Wang et al. showed that a 1D-CNN achieved better classification accuracy than a

2D-CNN on this input representation. Although not stated by the authors, this result is

likely to have stemmed from how the second dimension of the image was created. The

payload was wrapped to form the second dimension of the image; therefore, this

dimension was simply an extension of the first. Analysing a one-dimensional input with

a 2D-CNN is likely to reduce the classifier’s ability to generalise to new data and may

have caused the reduction in accuracy reported.

The value of a pixel in an image is numerical. In greyscale, this value represents a

scale between black and white. Representing a byte as a greyscale pixel infers the same

scale between its values. For example, implying that a byte value of zero has more

similarity to a value of one than it does to ten. While this representation was shown to

hold for a test data set in [3, 14], it is not always a true property of the values in a byte

for different types of network traffic. Obfuscation techniques of malicious traffic aim

to exploit the difference in how a detection system and its intended target process data.

Using these differences, a malicious attack can hide its true intention from the detection

9

system while still delivering its malicious payload to its target. A numerical

representation of bytes in a detection system could be easily exploited as it is using a

property that is likely to be non-existent in the intended application.

To address the above issues, a novel approach to network data representation was

explored as part of this research. This input representation will be referred to as Flow-

Image for the remainder of the paper.

4.2 Flow-Image

Network traffic is fundamentally a conversation between two endpoints; therefore,

rather than taking inspiration from image classification as per the related work above,

we seek inspiration from natural language processing (NLP).

 Text classification is one of the cardinal topics for NLP in which text is classified

based on a predefined objective such as sentiment analysis (i.e., identifying whether the

writer’s opinion is positive or negative) or terminology extraction (i.e., identifying

important words in a larger body of text). These methods typically make use of feature

generation techniques, such as bag-of-words, to represent language in higher order

representations before analysis [9]. This however requires predefined knowledge of the

syntax of the language you are classifying.

To classify malicious network traffic, assumptions based on syntactic and semantic

structures cannot be made as malicious attacks can exploit these assumptions to

circumvent known techniques. Fortunately, CNNs have recently been investigated to

perform classification without any predefined knowledge of the subject language [8,

9]. This is achieved by analysing the text at its fundamental level, i.e. its individual

characters.

 Character-level NLP allows the classifier to learn the complete formation of the text

directly from its underlying characters. While this adds additional complexities to the

network, it allows for the classification of text when the structure of the language is

unknown. Zhang et al. [9] showed that CNNs can be successfully applied to character-

level NLP tasks, achieving comparable results to the state-of-the-art techniques for

English text classification.

To represent characters to a neural network, a categorical representation must be

used as there is no intrinsic correlations between the values of a character. One-hot-

encoding is a common way to represent categorical information as it is a simple way

to represent non-ordinal categorical data. One-hot-encoding constructs a vector of size

n, where n is the number of distinct categories an input value can take. Each entry in

this vector is zero except for the entry that corresponds to the category that this vector

represents, which is given a value of one. For example, in network traffic, to represent

the byte value ‘0’, a vector of size 256 would be constructed with the first entry set to

one and the rest zero. One-hot-encoding was shown in [9] to effectively represent 70

different characters to a CNN. This method will be used in Flow-Image to represent the

256 distinct values of a byte.

Current implementations of CNNs require a fixed input size. Therefore, the number

of bytes analysed in each flow must be set before analysis. Furthermore, to investigate

10

the effect of a 2D-CNN on network traffic classification, the input must also have two

representative dimensions. To address these two factors, a network traffic flow was

represented in a two-dimensional array as shown in Figure 3. Each row of this array

represented a new packet in the flow with each column representing a new byte in the

packet. The array was fixed such that 97 bytes of the first ten packets of a bidirectional

flow were analysed. Flows that did not meet the required array size were padded with

byte values of zero.

Composing the 97 bytes of a packet were 47 bytes from the TCP/IP header and 50

bytes from the payload. The header section was included in the Flow-Image as some

attacks are easier to detect by their header sections (i.e., scans and probes), while others

are easier to detect by their payload (i.e., worms) [21].

The number of bytes in the TCP/IP header section was limited to 47 as this was

found to be the maximum header length for over 99% of the packets in the data set used

for analysis (further details of the data set are given in Section 6.1). The 47-byte header

encompassed an 11-byte IP header (source and destination IP addresses, and TTL fields

were removed due to synthetic biases found in the data set) and a 36-byte TCP header.

The payload was truncated to the first 50 bytes of each packet as it has been shown

that the classification significance of a byte in the payload decreases the further into the

payload it is found [22-24]. The number of flows in the Flow-Image was truncated to

ten to balance classification efficiency with the ability to analyse the relationship

between packets in a flow.

It should be noted that the assumptions on the size and number of packets to evaluate

were based on analysis of the data set used. These assumptions may not hold under

other circumstances. For example, a malicious attack could easily circumvent detection

by sending malicious content outside the limits of the Flow-Image stipulated in this

chapter. Before a detection system is deployed, a decision should be made between the

efficiency of the system and its robustness to attacks looking to exploit this property.

To represent bytes in a one-hot-encoded vector, a third dimension to this array was

added. Figure 3 shows a graphical representation of this Flow-Image in contrast to how

a typical image would be represented to a neural network.

Figure 3. Representation of an input used for image classification compared to

Flow-Image.

12

how the two ends of the connection are communicating. Figure 4 depicts the key

properties of the 2D-CNN architecture as it evaluates the Flow-Image input.

5.2 1D-CNN

1D-CNNs have been typically used in NLP tasks where information can be represented

as a sequential one-dimensional array. Although there are two representative

dimensions in the Flow-Image input, the bytes between a packet have a higher degree

of correlation than the bytes over multiple packets. A 1D-CNN could therefore be used

to focus on the stronger correlation found between bytes in a packet. A diagram of the

1D-CNN architecture is shown in Figure 4.

5.3 Segmented-CNN

A Segmented-CNN is a novel CNN architecture that aims to capitalise on the distinct

properties of the two sections in a TCP/IP packet - the header and the payload. This

architecture is inspired by the approach taken by Bromley et al. in their design of a

Siamese-CNN [25]. A Siamese-CNN utilises two CNNs to simultaneously analyse two

distinct images, the output of which is then compared to determine the similarity

between the two. However, instead of measuring the similarity between these two

Figure 4. Structure of a 2D-CNN and 1D-CNN. The filters of a 2D-CNN span

multiple packets, while a 1D-CNN’s filters only consider the bytes of a single

packet. Only the first convolutional, pooling, and fully-connected layers in the 2D-

CNN and 1D-CNN have been shown.

13

images, this methodology could be adapted to analyse two inputs that relate to the same

classification but have their own distinct properties. Figure 5 illustrates how two CNNs

could be used to analyse the distinct sections of a TCP/IP connection.

The header section of a packet relates to the information required for it to traverse a

network. It has a strict structure that needs to be enforced such that packets can be

received intact at the other end of the connection. Therefore, there is very little variance

in how the header section can be constructed. Furthermore, as most values of this input

relate to a distinct property of the packet, there is almost no local correlation within the

header section. The classification of the header section of a packet is therefore more

suited to a fully-connected neural network. However, multiple headers in a flow are

likely to exhibit similar properties and therefore benefit from the utilisation of weight-

sharing. To optimise a CNN for these two properties, a one-dimensional filter which

spans the entire header section of a packet was used. At the packet level, this filter acts

as a fully-connected neural network; however, the use of a one-dimensional filter

allows for weight-sharing between the packets.

The payload is the message content of a TCP/IP packet; therefore, a CNN structure

inspired by natural language processing should be used. The 1D-CNN (Section 5.2)

was selected to be used for the payload section of the Segmented-CNN.

Figure 5. Structure of a Segmented-CNN illustrating how two CNN networks can

be individually optimised for the two distinct regions of a packet - the header and

payload. Only the first convolutional, pooling, and fully-connected layers of the

Segmented-CNN have been shown.

14

6 Experimental Setup

6.1 Data Set

To evaluate CNNs on network traffic, a data set that contained full packet captures was

required. For this reason the UNSW-NB15 data set [26, 27] was chosen as the subject

of our experiments. Contained in this data set was a set of nine malicious classes.

However, the four smallest malicious classes contained too few samples to reliably train

our techniques on. Instead of removing these malicious classes from our analysis, they

were merged into a single class entitled OTHER-MALICIOUS.

A description of each malicious class as provided by the UNSW-NB15 data set has

been presented in Table 3. It is seen that the provided descriptions introduce a level of

confusion into this evaluation. For example, the ANALYSIS malicious class is

described as an attack that utilises port scans to penetrate web applications; however,

port scans are more commonly associated as part of a RECONNAISSANCE style

attack. Additionally, GENERIC is not a formalised malicious attack variant. It appears

that this class has been defined by UNSW-NB15 as a collection of various collision-

based attacks.

The descriptions of malicious classes as given by UNSW-NB15 highlights the

complexity of multiclass classification of malicious network traffic. The constant

evolution of malicious attacks has increased the difficulty in defining them. Moreover,

sophisticated attacks will often incorporate different elements from across multiple

malicious classes; thereby making taxonomy ineffective.

The analysis of different malicious classes was not the subject of this experiment;

therefore, the malicious classes as defined by UNSW-NB15 were not altered. However,

a non-malicious class was introduced such that the classifier's ability to distinguish

between malicious attacks and normal traffic behaviour could be investigated. This

non-malicious class was composed of benign traffic collected from the UNSW-NB15

data set.

The UNSW-NB15 data set was split into three subsets, training (72%), validation

(8%), and testing (20%). The distribution of each class in our analysis has been

provided in Table 4.

6.2 Hardware and Software

The recent rise of deep learning research has been largely spurred by advancements in

the specialised hardware required to utilise it. Previously, the sheer number of

mathematical operations within a deep learning algorithm reduced its applicability on

computationally or temporally limited applications; however, with the introduction of

dedicated graphics processing units (GPUs), many of these operations can now be

processed in parallel.

16

The University of Adelaide’s Phoenix High Performance Computing (HPC) service

was used to train the neural networks evaluated in this chapter. Each neural network

was trained on a NVIDIA Tesla K80 GPU, with 32GB of memory and an 8-core central

processing unit (CPU). The neural networks were implemented using Google’s deep

learning framework, TensorFlow [28].

7 Experimental Results

To evaluate the effectiveness of Flow-Image and our CNN architectures outlined in

Sections 5.1 to 5.3, we conducted malicious network traffic classification experiments

using the UNSW-NB15 data set. A fully-connected neural network (FC) was also

analysed to compare the devised CNN techniques to a shallow neural network. The

fully-connected neural network consisted of three fully-connected layers of 256, 1024,

and 7 nodes respectively.

7.1 Architecture Efficiency

One of the key benefits of CNNs is their efficiency on large input sizes. To identify the

extent this has on the classification of the Flow-Image input, the training time and

neural network size of each architecture were examined.

Figure 6 shows the number of trainable parameters in each neural network to the

nearest million. The number of trainable parameters is roughly proportional to the size

of the network in memory (shown in Figure 7). The CNN architectures show between

three and ten times reduction in the memory requirements of a neural network. A CNN

is therefore better suited for any hardware limited implementations

Figure 8 depicts the training time of each neural network. The Segmented-CNN

completed training in the shortest amount of time, less than half the training time of the

1D-CNN. The extended training time of the 1D-CNN suggests that the correlation

between packets is harder to detect in later stages of the neural network.

The Segmented-CNN completed training in the shortest time. This result may be

specific to the Flow-Image input representation. The pre-processing of network traffic

to form the Flow-Image input representation allowed for the separation of the header

and payload of each packet into distinct sections of the input. The design of the

Segmented-CNN therefore may have expediated the training process by continuing this

separation of the header and payload sections within the neural network itself. This

allowed for two smaller inputs that had a higher degree of similarity to be analysed.

This process is akin to that of a divide and conquer approach.

17

Figure 6. Number of trainable parameters in each neural network, to the nearest

million.

Figure 7. Approximate size of the neural network in memory.

Figure 8. Training time of each neural network.

64

6

17
12

0

10

20

30

40

50

60

70

FC 2D-CNN 1D-CNN Segmented-CNN

N
u

m
b

er
 o

f
Tr

ai
n

ab
le

P

ar
am

et
er

s M
ill

io
n

s

487

44

128
94

0

100

200

300

400

500

600

FC 2D-CNN 1D-CNN Segmented-CNN

Si
ze

 o
f

th
e

N
et

w
o

rk

(M
B

)

5.8 5.7

8.1

3.6

0

2

4

6

8

10

FC 2D-CNN 1D-CNN Segmented-CNN

Tr
ai

n
in

g
Ti

m
e

(H
o

u
rs

)

20

are made on the Flow-Image input. A heatmap depicting the most significant inputs to

the first fully-connected layer in each neural network is shown in Figure 11.

The heatmap of the first layer in the fully-connected neural network indicates the

significance of the byte values in the Flow-Image input. From this heatmap, a highly

structured pattern is observed. Distinct patterns were found both in the order of packets

in a flow, as well as in the separate header and payload sections of a packet.

Within the header section of the fully-connected heatmap, the utilisation of different

header information fields is highlighted. It was shown that the identification field and

checksum of the IP header are the two most significant features to the classification of

the Flow-Image. These two fields are both unique to their individual packet. It is

therefore evident that the neural network is overfitting by learning to identify the

individual packets in the training set.

From the payload section of the fully-connected heatmap, it was observed that the

neural network identified the first and fourth payload of the flow as the most significant

to its classification. The first and fourth payload correspond to the first payload content

of a user datagram protocol (UDP) and transmission control protocol (TCP) connection

respectively. This result therefore suggests that the first payload content of the flow is

most significant to the classification of the overall flow. The correlation between the

significance of the payload content and its location within the flow has been confirmed

by other investigations [22-24]. This result demonstrates a neural network’s ability to

Figure 11. Three heatmaps depicting the most important features in the input of the

first fully-connected layer of each architecture. The scale represents a relative

importance metric where a value of one indicates the most important feature in the

input.

21

learn identifying properties of complex inputs without any predefined knowledge of the

classification domain.

The heatmap of the first fully-connected layer of the 1D-CNN and 2D-CNN shown

in Figure 11 indicates the significant features learned by the convolutional and pooling

layers of their respective neural networks. From these two heatmaps, we observe how

the convolutional and pooling layers can be used to increase the density of important

features in the input before the utilisation of computationally expensive fully-connected

layers.

The 1D-CNN heatmap illustrates how the one-dimensional convolutional and

pooling operations will increase the density of important features of an individual

packet while preserving the order of packets in the flow. The 2D-CNN further increases

the density of important features in the Flow-Image by also applying the convolutional

and pooling operations over the packets in a flow.

The input size of the first fully-connected layer in the 2D-CNN is reduced by a factor

of 20 when compared to that of the first layer in the fully-connected neural network.

This reduction in the number of input values to the first fully-connected layer vastly

reduces the size of the overall network as seen in Section 7.1. The pooling of packets

in the flow however decreases the 2D-CNN’s ability to learn identifying features from

the order in which packets are sent.

7.4 Transient Features

In the previous section, it was highlighted that a neural network learned to classify the

network traffic based on assumptions regarding the order of packets in a flow. In this

section, an example of how these assumptions could be exploited by malicious evasion

techniques will be investigated.

It was identified that the first payload content of a flow is the most significant to its

overall classification; however, this assumption cannot always be relied upon,

especially when classifying evasive malicious traffic.

Fragmentation is the process of segmenting the content of a traffic flow into multiple

packets. Malicious actors have been shown to evade detection by carefully selecting

how fragmentation is performed [1]. A simple way to employ such an evasion technique

is by purposely sending packets in the wrong order. A host that receives these packets

will utilise the packet’s sequence numbers to reassemble them into their correct

sequence; however, packet reassembly may not be performed within the intrusion

detection system (IDS) itself due to the resultant time delay and computational cost. A

malicious actor could therefore change the packet sequence to disguise the overall

intent of the traffic flow from the IDS [20].

To simulate the use of a fragmentation evasion technique, the order of packets in the

Flow-Image input representation was progressively altered. The accuracy of the trained

neural networks on the UNSW-NB15 test set was then re-evaluated. A varying number

of packets were chosen for re-ordering to identify how much variance in the order of

packets would affect the overall traffic classification. The packets that were chosen for

re-ordering were random and simply exchanged with the next consecutive packet

23

The Segmented-CNN was proposed as a novel CNN architecture that can exploit the

distinct sections of a TCP/IP packet, the header and payload. The Segmented-CNN was

shown to achieve a faster training time due the use of a divide and conquer approach.

The structure of network traffic and its effect on the classification performance of

the evaluated neural networks was identified using a heatmap of the significant input

values. The order of packets in a traffic flow was found to be highly influential in the

overall classification of a traffic flow.

An example of a simple detection evasion technique was explored by altering the

order of packets in a traffic flow. It was shown that the 2D-CNN and Segmented-CNN

were more robust to this evasion technique as they employ a pooling operation across

multiple packets; thereby reducing their reliance on a specific order of packets to

correctly classify the flow.

9 Future Works

In this chapter, the benefits of a CNN to classify noisy data was introduced; however,

in network traffic, it is hard to quantify what is noise and what could be a potential

malicious threat. Whether this is a benefit or a potential means of evading a CNN based

classification algorithm is a subject for further analysis.

Convolutional neural networks require a fixed input size; however, the diversity of

network traffic makes it difficult to define what a suitable input size should be.

Furthermore, if this input size is known, malicious actors could implement evasion

techniques to place malicious code outside the region of analysis. To address this issue,

a recurrent neural network (RNN), which allows for variability in the input size, could

be combined with a CNN to create a neural network with the mutual benefits of each

approach.

The data set used in this chapter for experimental analysis was synthetic. Further

evaluation of neural networks on real network traffic captures is required to determine

if the performance of these methods hold under real-life conditions.

One of the key contributions of this chapter proposed that CNNs could be employed

to counteract certain known types of evasion techniques; however, deep learning

techniques can only learn from the existing data they have access to. Techniques such

as polymorphic code, encryption, and variations of character encodings would prove

difficult to account for without proper consideration. A more robust training method

could be implemented by the utilisation of an adversarial network. Specifically, an

additional neural network which is trained to produce inputs that evade the detection of

the first neural network. Adversarial networks could therefore be investigated as a way

to train CNNs such that they are more robust to a broader range of evasion techniques.

24

References

[1] C. Del Carlo, "Intrusion Detection Evasion: How Attackers Get Past the

Burglar Alarm," SANS Great Lakes, Chicago Illinois, 2003.

[2] N. Moustafa and J. Slay, "The Significant Features of the UNSW-NB15 and

the KDD99 Data Sets for Network Intrusion Detection Systems," in Building

Analysis Datasets and Gathering Experience Returns for Security

(BADGERS), 2015 4th International Workshop on, 2015, pp. 25-31: IEEE.

[3] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, "End-to-End Encrypted

Traffic Classification With One-Dimensional Convolution Neural Networks,"

in 2017 IEEE International Conference on Intelligence and Security

Informatics (ISI), 2017, pp. 43-48.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet Classification with

Deep Convolutional Neural Networks," Advances in neural information

processing systems., pp. 1097-1105, 2012.

[5] O. Russakovsky et al., "ImageNet Large Scale Visual Recognition

Challenge," International Journal of Computer Vision, journal article vol. 115,

no. 3, pp. 211-252, 2015.

[6] T. Yoshioka, S. Karita, and T. Nakatani, "Far-Field Speech Recognition Using

CNN-DNN-HMM With Convolution in Time," in 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.

4360-4364.

[7] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, and G. Penn, "Applying

Convolutional Neural Networks Concepts to Hybrid NN-HMM Model for

Speech Recognition," in 2012 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2012, pp. 4277-4280: IEEE.

[8] X. Zhang and Y. LeCun, "Which Encoding is the Best for Text Classification

in Chinese, English, Japanese and Korean?," arXiv preprint

arXiv:1708.02657, 2017.

[9] X. Zhang, J. Zhao, and Y. LeCun, "Character-Level Convolutional Networks

for Text Classification," in Advances in neural information processing

systems, 2015, pp. 649-657.

[10] S. Hershey et al., "CNN architectures for large-scale audio classification," in

2017 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2017, pp. 131-135.

[11] L. Romaszko, "Signal Correlation Prediction Using Convolutional Neural

Networks," in Neural Connectomics Workshop, 2015, pp. 45-56.

[12] Z. Chen, K. He, J. Li, and Y. Geng, "Seq2Img: A Sequence-to-Image Based

Approach Towards IP Traffic Classification Using Convolutional Neural

Networks," in 2017 IEEE International Conference on Big Data (Big Data),

2017, pp. 1271-1276.

[13] H. Zhou, Y. Wang, X. Lei, and Y. Liu, "A Method of Improved CNN Traffic

Classification," in 2017 13th International Conference on Computational

Intelligence and Security (CIS), 2017, pp. 177-181.

[14] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, "Malware Traffic

Classification Using Convolutional Neural Network for Representation

25

Learning," in 2017 International Conference on Information Networking

(ICOIN), 2017, pp. 712-717.

[15] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, "Deep Learning for

Classifying Malicious Network Traffic," presented at the Pacific-Asia

Conference on Knowledge Discovery and Data Mining, Melbourne, Australia,

2018.

[16] Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," nature, vol. 521, no.

7553, p. 436, 2015.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based Learning

Applied to Document Recognition," Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278-2324, 1998.

[18] Y. LeCun and Y. Bengio, "Convolutional Networks for Images, Speech, and

Time Series," The handbook of brain theory and neural networks, vol. 3361,

no. 10, 1995.

[19] V. Dumoulin and F. Visin, "A Guide to Convolution Arithmetic for Deep

Learning," arXiv preprint arXiv:1603.07285, 2016.

[20] J. A. P. Marpaung, M. Sain, and L. Hoon-Jae, "Survey on Malware Evasion

Techniques: State of the Art and Challenges," in 2012 14th International

Conference on Advanced Communication Technology (ICACT), 2012, pp.

744-749.

[21] K. Wang and S. J. Stolfo, "Anomalous payload-based network intrusion

detection," in International Workshop on Recent Advances in Intrusion

Detection, 2004, pp. 203-222: Springer.

[22] Z. Wang, "The Applications of Deep Learning on Traffic Identification,"

Black Hat USA, 2015.

[23] G. Aceto, A. Dainotti, W. d. Donato, and A. Pescape, "PortLoad: Taking the

Best of Two Worlds in Traffic Classification," in 2010 INFOCOM IEEE

Conference on Computer Communications Workshops, 2010, pp. 1-5.

[24] D. Smit, K. Millar, C. Page, A. Cheng, H. G. Chew, and C.-C. Lim, "Looking

Deeper – Using Deep Learning to Identify Internet Communications Traffic "

presented at the Australasian Conference of Undergraduate Research

(ACUR), Adelaide, 2017.

[25] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, "Signature

Verification Using a "Siamese" Time Delay Neural Network," in Advances in

Neural Information Processing Systems, 1994, pp. 737-744.

[26] M. Nour and J. Slay, "UNSW-NB15: A Comprehensive Data Set for Network

Intrusion Detection Systems (UNSW-NB15 Network Data Set)." Military

Communications and Information Systems Conference (MilCIS), 2015.

[27] M. Nour and J. Slay, "The Evaluation of Network Anomaly Detection

Systems: Statistical Analysis of the UNSW-NB15 Sata Set and the

Comparison with the KDD99 Data Set.," Information Security Journal: A

Global Perspective, pp. 1-14, 2016.

[28] A. Martín et al., "TensorFlow: A System for Large-Scale Machine Learning,"

in OSDI, 2016, vol. 16, pp. 265-283.

Chapter 4

Bipartite Graph Representation

for Network Reconnaissance

This chapter provides a novel graph-based point-of-analysis (PoA) for conducting pas-

sive network reconnaissance. The provided PoA utilises a bipartite graph to repre-

sent and analyse a device’s community structure.

Community structure has been widely used in social networking theory to characterise an

individual based on their affiliated communities [133]. For example, an individual’s polit-

ical alignment can be revealed through the Facebook groups (i.e., communities) that the

individual has joined [134]. In this chapter, we posit that the same community structure

holds true for the services (i.e., communities) that devices affiliate with over the Internet.

Analysing a device’s community structure would provide the ability to characterise the

device through only its affiliated Internet services; thereby, removing the reliance on large

heterogeneous feature sets and deep packet inspection (DPI) that conventional ML-based

approaches are reliant on (Chapter 3). In contrast, the bipartite PoA provided within this

chapter is shown to enable the first known passive network reconnaissance solutions that

satisfies all four criteria for widespread deployment within realistic network conditions

(CN1-4).

The use of the term affiliation graph to define a bipartite graph has been used within the

papers presented within this chapter. An affiliation graph is simply the terminology used

for a bipartite graph within a social network theory context [133]. The papers within this

82

Chapter 4 - Bipartite Graph Representation
for Network Reconnaissance 83

chapter are included as is and therefore their terminology has been unaltered; however,

the term bipartite graph was used outside of the included papers to adhere to the more

widely accepted terminology.

In total, four papers are presented within this chapter. Each paper utilises the same

bipartite PoA; however, each paper provides a distinct analysis into its applicability for

network reconnaissance. The four papers presented within this chapter are as follows:

Paper 4.1 - “Characterising Network-Connected Devices Using Affiliation Graphs”, pro-

vides an empirical justification for the use of the bipartite PoA for device characterisation.

In particular, the Internet services used by a device were shown through manual, open-

source intelligence (OSINT) to reveal the characteristics of the device. We formalise this

methodology as a rule-based OS classifier.

Paper 4.2 - “Clustering Network-Connected Devices Using Affiliation Graphs”, extends a

graph clustering technique—stochastic local clustering (SLC) [135]—to infer the compo-

sition of devices operating on a network. The technique is qualitatively shown to enable

the detection of distinct types of devices such as internal and public facing servers. A

quantitative evaluation of the SLC algorithm is provided in Paper 4.3.

Paper 4.3 - “Detecting Data Exflitration using Seeds based Graph Clustering”, extends the

investigation conducted in Paper 4.2 for use in the intrusion detection domain. This paper

enables the identification of malicious devices based solely on their community structure.

In particular, this paper presents a real-life use-case for the utilisation of community

structure to identify malicious devices exfiltrating data from a network environment.

Paper 4.4 - “Operating System Classification: A Minimalist Approach”, extends Paper

4.1 through the application of conventional ML to automate the analysis of a device’s

community structure. In particular, a random forest (RF) model was applied to classify

the OS of a device based on its community structure. The RF model was shown to achieve

a high performance for device characterisation and enables the identification of an OS’s

community structure to be automated.

Chapter 4 - Bipartite Graph Representation
for Network Reconnaissance 84

The key contribution of this chapter is as follows:

1. (Paper 4.1) We present a novel graph-based PoA for network reconnaissance

through the representation of a device’s community structure as a bipartite graph.

The bipartite PoA provides the first comprehensive framework for conducting pas-

sive network reconnaissance that relies only on the source and destination IP address

fields. This widely available feature set produces network reconnaissance solutions

that are scalable, independent of encryption (CN1), and deployable across diverse

Internet (TCP/IP) networks (CN2).

2. (Paper 4.2) An extension of stochastic local clustering (SLC) was implemented

for device characterisation within the bipartite PoA. We show that the devices on

a university’s network can be largely clustered into five main categories: internal

servers, public facing servers, user devices, lab computers, and printers. These clus-

ters would greatly assist network operators in identifying vulnerable or incorrectly

configured devices on their networks.

3. (Paper 4.3) The extension of SLC implemented in Paper 4.2 was evaluated for

intrusion detection within the bipartite PoA. We show that the clusters produced by

SLC can be used to identify malicious devices based on their structural similarities

to a small set of known malicious devices (i.e., seeds). These seeds could therefore

be used to identify additional malicious devices that may be operating within a

TCP/IP network.

4. (Paper 4.4) We show that RF can be used to characterise a device’s OS using

the bipartite PoA. In particular, it was shown that only 200 communities (i.e.,

Internet services) are required to identify distinct OSs. Furthermore, we showed

that the bipartite PoA is effective for long-term deployment (CN4) on real-world

networks (CN3) through analysis of a university campus network over a six-month

observation. The solution design within this paper thus provides the first known

passive network reconnaissance solution that satisfies all four criteria (CN1-4).

Characterising Network-Connected Devices Using
Affiliation Graphs

Kyle Millar∗, Adriel Cheng∗,†, Hong Gunn Chew∗, and Cheng-Chew Lim∗
∗School of Electrical and Electronic Engineering, The University of Adelaide, Australia
†Cyber and Electronic Warfare Division, Defence Science & Technology Group, Australia

Email: {kyle.millar, adriel.cheng, honggunn.chew, cheng.lim}@adelaide.edu.au∗

Email: adriel.cheng@dst.defence.gov.au†

Abstract—Device management in large networks is of growing
importance to network administrators and security analysts alike.
The composition of devices on a network can help forecast
future traffic demand as well as identify devices that may pose a
security risk. However, the sheer number and diversity of devices
that comprise most modern networks have vastly increased the
management complexity. Motivated by a need for an encryption-
invariant device management strategy, we use affiliation graphs to
develop a methodology that reveals key insights into the devices
acting on a network using only the source and destination IP
addresses. Through an empirical analysis of the devices on a
university campus network, we provide an example methodology
to infer a device’s characteristics (e.g., operating system) through
the services it communicates with via the Internet.

Index Terms—Affiliation graphs, device discovery and man-
agement, passive network reconnaissance.

I. INTRODUCTION

Device management aims to determine what devices are acting
on a network and the purpose of their use. This process
helps network administrators provide better quality of service
(QoS) and allows security analysts to locate vulnerable devices
within their network [3]. However, with the growing number
and diversity of devices, implementing an effective device
management strategy is increasingly difficult in practice.

A typical enterprise network (such as a university network)
is likely to consist of tens of thousands of devices. These
devices range from the servers critical to the overall operation
of the network, to the personal devices of each user. Addi-
tionally, the Internet of things (IoT) paradigm has led to a
rapid influx of heterogeneous devices present on such networks
(e.g., printers, IP cameras, and smart sensors) [11]. The rising
complexity of providing adequate device management has not
only hindered the administration of enterprise networks but
has also introduced security vulnerabilities due to unknown
and unpatched devices [2]. It is therefore evident that methods
of reducing the complexity of device management is of critical
importance.

Current techniques of device management have typically
relied on either a large number of difficult to extract fea-

This research is supported by the Australian Government Research Training
Program (RTP) Scholarship and the Commonwealth of Australia as repre-
sented by the Defence Science & Technology Group of the Department of
Defence.

tures (e.g., Internet protocol (IP) ID monotonicity and clock
frequency) or target a specific subset of devices [6]. The
wide array of devices present on modern networks renders
these techniques either computationally ineffective at scale or
are not universally applicable. It becomes necessary to infer
information about the devices on a network through a limited
but universally applicable feature set.

Affiliation graphs are a social networking technique that
investigates the characteristics of an individual through the
communities they are affiliated with [5]. Social communities
form through both implicit and explicit commonalities in
their membership set; such as shared interests, occupation, or
genealogy [14]. Through analysing the shared commonality
within a community, certain characteristics of its membership
set can often be revealed. For example, Facebook is able to
identify the political alignment of a user based solely on the
Facebook groups the user is affiliated with [9].

The advantage of an affiliation graph lies in the ease in
which the affiliations between an individual and their commu-
nities can be observed [4]. Through understanding why these
affiliations are made, interesting inferences can be made about
an individual without requiring any a priori knowledge of the
individual themselves.

It is the axiom of this work that certain device characteris-
tics (e.g., manufacturer, operating system (OS), and installed
applications) can be determined by the communities a device
affiliates with via the Internet. For example, a device affiliated
with a Windows update server is likely to be running the
Windows OS [6]. Through extrapolating this approach to addi-
tional communities with known commonalities, a profile of the
device’s overall characteristics could therefore be constructed.

Investigating the communities that a device is affiliated with
rather than the device itself is useful for two key reasons. First,
the characteristics of an unknown set of devices can be inferred
from a known set of devices given they exhibit a similar
structural equivalence.1 Second, it allows for the identification
of a device’s characteristics without requiring direct analysis
of the device itself. This is useful in various scenarios such
as when the device is only intermittently connected to the

1In an affiliation graph, the structural equivalence of two devices is propor-
tional to the number of communities they share.978-1-7281-4973-8/20/$31.00 c© 2020 IEEE

network (e.g., a mobile device) or the device is no longer
present on the network at all.

In our study, we examine the relationship between devices
on a network (actors) and the destination addresses (communi-
ties) in which these devices communicate with via the Internet.
This simplifies our analysis to just two easily obtainable fields
− the source and destination IP addresses. In restricting our
analysis to just these two fields, we create an encryption
invariant basis of analysis that is quick to populate and requires
little storage. An example of constructing an affiliation graph
from the source and destination IP addresses is shown in
Figure 1.

The key contribution of our work is twofold: (1) To the
best of our knowledge, this is the first work which identifies
a device’s characteristics through analysis of the destination
IP addresses (communities) it communicates with. The exam-
ination of a device’s affiliated communities, rather than the
device itself, provides a method of device characterisation that
is useful when the device itself cannot be examined; and (2) we
provide an empirical analysis of our technique on a university
campus network. In particular, we provide an example of how
this method could be implemented to determine a device’s OS.

The remainder of this paper is structured as follows: A
brief survey of related work in device management is given
in Section II. Section III outlines the process of creating an
affiliation graph from two 26-hour captures of a university’s
network. Analysis of an affiliation graph’s community set in
relation to network traffic is explored in Section IV. Section
V provides an empirical example of how the analysis of this

Fig. 1. An affiliation graph created from network data. The actors and
communities of the affiliation graph are the devices internal and external to
the network under analysis, respectively. The membership set consists of the
network communications between the internal and external devices.

community set can give insight into the operating systems of
the devices on a network. The paper concludes in Section VI
with a discussion of results and suggestions for future work.

II. RELATED WORK

There has been growing research interest in device manage-
ment strategies due to the increase in the number of devices
with Internet connectivity; however, device management is still
underrepresented by the research community at large.

Arora et al. [3] highlighted the security benefits of identi-
fying key devices on a network. The knowledge of these key
devices and their typical characteristics can help to assess and
mitigate the impact in the event of a security breach.

Arora et al. went on to investigate techniques to identify
the servers present on a network. Although achieving high
detection rates using machine learning techniques, several
feature extraction stages were first required. The computational
requirement of these feature extraction stages reduces the
real word efficacy of this method for any moderate sized
network. Furthermore, the identification of servers alone is
insufficient to effectively administer a network. Increasingly,
bring-your-own device (BYOD) policies are causing issues in
the management of enterprise networks [13].

BYOD policies have been widely introduced in educational
and business networks such that their users can connect their
personal devices to the network. While this is convenient for
users of the network, it introduces novel challenges in how
to manage and secure a ‘user device’ for which the network
administrators have little control over.

IoT devices have also posed serious concerns for user pri-
vacy and security within an enterprise network [11]. Methods
to mitigate these concerns have sparked interest in device
management strategies to identify and manage IoT devices
operating on a network [8]; however, the current state of
IoT device management has been complicated due to the
heterogeneity and rapid evolution of such devices.

In this paper, we introduce a novel method of device
characterisation through the use of affiliation graphs. Although
there has been speculation that a device’s characteristics can
be inferred through the services for which it connects to via
the Internet [6], [13], this paper provides a methodology to
extract these relationships. In particular, our method aims
to address the dynamic nature of device characterisation by
utilising only two universally applicable features − the source
and destination IP addresses.

III. AFFILIATION GRAPHS FOR DEVICE MANAGEMENT

The axiom of affiliation graphs is that there exists a reason
for which actors are affiliated with certain communities [14].
For example, Internet-connected devices will either contact or
be contacted by certain servers to synchronise the services
running on the device (e.g., Facebook notifications). This in-
sight suggests that the client-side services of a device could be
inferred through their affiliation to their serve-side counterpart.

A. Notation

An affiliation graph is a bipartite graph consisting of two
distinct sets of vertices - actors (A) and communities (C) [5].
An actor (a ∈ A) is said to be affiliated with a community
(c ∈ C) if there exists a membership (ma,c ∈ M) between
a and c; where M is the set of all memberships between
A and C. An affiliation graph can therefore be represented
as the collection of actor, community, and membership sets,
G = (A,C,M).

B. Populating an Affiliation Graph from Network Data

The benefit of an affiliation graph is the ease in which it can
be constructed. To create an affiliation graph from network
data, only the source and destination IP addresses are required
from each network flow2. This results in a technique that
is quick to populate and requires little storage. Additionally,
this technique is also widely deployable as most network
administrators typically have access to such flow records.

The pseudo-code for creating an affiliation graph from
network data is provided in Algorithm 1. It should be noted
that this method utilises a weighted affiliation graph such that
the weight of a membership, ω(m), is the number of flows
between a device and a community.

C. University Campus Data Set

To analyse the efficacy of applying affiliation graphs on a large
and diverse network, two captures of the University of Ade-
laide’s enterprise network were taken. Both captures consisted
of 26 hours of network traffic for which all flow records were
recorded. The first capture, named low-activity, was taken on
Christmas day in 2018 and captured approximately 19 million
flow records. This capture was scheduled to ensure that as few
devices were active on the network as possible and therefore
serves as a baseline profile of the network. The second capture,
named high-activity, was taken on the 1st of May 20193 and

Algorithm 1 Populating an Affiliation Graph
1: for flow in flow records do
2: Record source and destination IP of flow.
3: Set device, a, as the IP address within the network

under analysis.
4: Set community, c, as the IP address outside the

network under analysis.
5: Denote the membership between a and c as ma,c.
6: If a /∈ A,A = A ∪ {a}
7: If c /∈ C,C = C ∪ {c}
8: If m /∈ M ;ω(ma,c) = 1,M = M ∪ {ma,c}; else,

ω(ma,c) = ω(ma,c) + 1
9: end for

where ω(m) is the weight of the membership m.

2A network flow (or flow) is defined in this work as the bi-directional
exchange of information between two devices over the Internet.

3The 1st of May is not a public holiday in the location in which the capture
took place.

captured approximately 33 million flow records. This capture
was taken during a typical workday where the network was
actively being used by both staff and students.

The low-activity affiliation graph took approximately half
an hour to populate; whereas, the high-activity affiliation
graph took just under an hour. The time taken to create
both affiliation graphs highlights the ability of this method
to scale well even when the activity on a network increases
significantly. Table I provides a summary of the affiliation
graphs created from the two network captures. From this table,
the following insights were identified:

1. The number of devices present on the high-activity cap-
ture is significantly greater than that of the low-activity
capture. This result is consistent with the increase in
users on the network during the high-activity capture.

2. Less than 15% of flows within both captures have a
unique set of source and destination IP addresses. This
result shows that the majority of traffic generated or
received by a device consists of repeated connections
to certain communities.

A device’s affiliation to a given community can give insight
into the device itself. For example, the devices affiliated
with the community ‘210.173.216.59’ within the high-activity
affiliation graph are depicted in Figure 2. This community is
owned by ‘Ricoh Company, Ltd.’, a company most notably
known for manufacturing cameras and printers. It was found
that of the 90 devices affiliated with this community, 89 were
printers manufactured by the Ricoh company. It is therefore
likely that an additional device (new or previously unknown)
which affiliates with this community would also be a Ricoh
printer. This example illustrates the ability to draw information
about a device through their affiliated communities. In the
next section, techniques to extract useful information about
the community set are examined.

IV. COMMUNITY ANALYSIS

A unique property of an affiliation graph created from network
data is the wealth of information that can be gathered about the
community set. Through utilising standard network reconnais-
sance tools such as WHOIS [7] and the reverse domain name
system (rDNS) [10], the service that a community provides
can often be determined. This examination of the community
set can provide a useful technique of inferring information
about a device even when the examination of the device itself
is infeasible (e.g., when the device is no longer active on the
network under analysis).

TABLE I
AFFILIATION GRAPHS SUMMARY STATISTICS. |A| IS THE NUMBER OF

DEVICES, µdeg(A) IS THE MEAN NUMBER OF COMMUNITIES PER DEVICE,
|C| IS THE NUMBER OF COMMUNITIES, µdeg(C) IS THE MEAN NUMBER OF

DEVICES IN EACH COMMUNITY, AND |M | IS THE NUMBER OF
MEMBERSHIPS.

Data Set |A| µdeg(A) |C| µdeg(C) |M |

low-activity 6.1k 201 476k 2.55 1.22M

high-activity 24.7k 158 566k 6.89 3.90M

Fig. 2. A subset of the high-activity affiliation graph. This subset depicts the
devices affiliated with the community ‘210.173.216.59’. This community is
owned by ’Ricoh Company, Ltd.’. 89 of the 90 devices affiliated with this
community were found to be printers manufactured by Ricoh itself.

It is worth noting that the analysis of the community set can
be done independently from the analysis of the target network
itself. This allows community analysis to be evaluated in an
environment for which the examiner has complete control.

The service a community provides can give insight into
the reason for which a device is affiliated with a certain
community. For example, the community ‘157.240.8.35’ can
be resolved to one of Facebook’s Australian servers. A device
with a membership to this community is therefore likely (1)
located in Australia, (2) running a Facebook service, and (3)
a user device. Additionally, the device is also likely to be
a mobile device as it has been found that 79% of social
media is now accessed through mobile devices [1]. A profile
of the device’s overall characteristics (e.g., manufacturer, OS,
and installed applications) could then be created through
extrapolating this approach to additional known communities.

To investigate what device characteristics could be inferred
from community properties; the (1) ownership, (2) domain
name, and (3) associated application traffic of each community
were resolved where possible. From these community proper-
ties, the service a community provides could then be estimated.

1) Ownership − The ownership of an IP address is the reg-
istered entity responsible for that IP address. The ownership of
a community can provide an overview of the types of services
the community provides. For example, a community owned by
Facebook will likely host one of Facebook’s social networking
services (i.e., Whatsapp, Instagram, and Facebook). While the
exact service of the community cannot be determined in this
scenario, it reduces the search space for the potential services
that are likely to be offered by this community. Additionally, in
the case where the registered owner only provides a singular
service (e.g., Twitter), the ownership of an IP address can
directly signify the purpose of its respective community.

The ownership of an IP address can be resolved through a
WHOIS query. A WHOIS query will return information about

the registered entity responsible for the queried IP address.
This information can then be used to determine what services
are likely to be associated with this community.

The ownership of a community however is not always
useful for the purposes of our analysis. For example, content
distribution networks (CDNs) provide many distinct services
under a singular ownership. Therefore, further information
about such communities would be required to determine their
services.

2) Domain Name − A device’s domain name is a hu-
man readable name associated with the device. Often a
device’s domain name is created using a particular nam-
ing convention which can provide useful hints to the ser-
vice the device provides. For example, the domain name
of the community ‘17.253.66.125’ was resolved to ausyd2-
ntp-001.aaplimg.com’ using rDNS. This domain name sug-
gests that the community is (1) located in Sydney, Australia
(ausyd); (2) a network time protocol (NTP) server (ntp); and
(3) owned by Apple (aaplimg.com4). Therefore, the service of
this community is likely to be providing accurate time resolu-
tion to Apple devices within the Australia region. It should be
noted however that the domain name of a community within
a CDN is unlikely to resolve further information about the
community itself.

The main purpose of a CDN is to provide distributed hosting
of popular Internet applications (e.g., YouTube, iTunes, and
Twitter) [12]. The service provided by a CDN community is
therefore closely associated with the application it hosts. The
service of a community CDN can therefore often be inferred
through analysis of its associated application network traffic.

3) Application Traffic − The application traffic associated
with a given community can be a strong indication of the
service that community provides. For example, 97% of the
traffic to and from the community ‘74.125.130.109’ was
found to be associated with Google’s mail application, Gmail.
Therefore, it can be assumed that a device affiliated with this
community is using the Gmail application.

The application traffic associated with each community was
identified through correlating the application logs taken during
the capture period. These application logs were generated
through a combination of deep packet inspection and metadata
analysis. Resolving the application traffic associated with a
community can only be achieved when there exists a system
of classifying application traffic on the network; however,
once the service of a community is identified it can be used
in subsequent analysis without requiring its properties to be
resolved again.

An example of resolving all three community properties for
three example communities is given in Table II. It is seen that
multiple correlating sources of information allow for a strong
indication of the service that a community offers.

The community properties resolved within this section are
likely to be the reason for which a device would affiliate with

4The ownership of the aaplimg.com domain is owned by Apple, Inc. as
resolved through a WHOIS query

TABLE II
IDENTIFIED PROPERTIES OF THREE EXAMPLE COMMUNITIES.

Community
Example IP Address Ownership Domain Name Application Traffic # low-activity

devices
high-activity

devices

#1 157.240.8.35 Facebook, Inc. edge-star-mini-shv-01-
syd2.facebook.com

Facebook (95%),
Incomplete (3%),

SSL (2%)
322 9, 799

#2 17.253.66.125 Apple, Inc. ausyd2-ntp-
001.aaplimg.com NTP (100%) 235 1, 617

#3 74.125.130.109 Google, Inc. sb-in-f109.1e100.net Gmail (97%),
Incomplete (3%) 56 2, 389

a specific set of communities. For example, a device affiliated
with the Facebook community in Table II is presumably
running the Facebook client-side application. The utilisation
of these inferences allows for information about the set of
devices to be resolved through analysing the communities they
affiliate with.

V. DEVICE ANALYSIS

This section serves as a preliminary example of how the
community analysis in Section IV can be applied to infer
the characteristics of the devices operating on a network.
The example provided in this section examines the use of
an affiliation graph to identify the operating systems (OSs)
of a device. Identifying the OS of the devices on a network
is critical for providing quality of service and assessing the
security vulnerabilities of the network as a whole. As such,
OS classification is an important area of interest in device
characterisation.

The axiom of identifying the OS of a device through
an affiliation graph is that there is an intrinsic relationship
between the device’s OS and the communities it affiliates
with. Intuitively, this axiom seems plausible given a device
will often connect to services related to its operating system
(e.g., to check for new notifications and software updates).
This intuition is illustrated in Figure 3 where the community
affiliations of eight devices in the high-activity capture were
examined. It is seen that a large portion of the affiliations of
each device are to the maintainers of their respective OS.

To investigate the use of an affiliation graph to distinguish
between distinct OSs, a subset of known devices from the
high-activity capture were analysed. In total, 10, 521 devices
were selected for analysis as their operating systems could be
validated through either auxiliary logs or via physical inspec-
tion. The distribution of operating systems under analysis in
this section is shown in Table III.

The following subsections investigate whether a particular
OS can be inferred through only evaluating its affiliated
communities. A summary of the results found for Apple OS
and Windows OS can be seen in Figure 4.

A. Apple OS
A strong relationship was found between devices running
an Apple OS5 and the communities owned by Apple itself.

5Apple OS has been defined as either Apple’s mobile OS (iOS) or desktop
OS (OS X).

Given the set of devices running an Apple OS, 5, 239 (95.7%)
were affiliated with five or more Apple owned communities.
Conversely, of the 5, 285 devices that affiliated with five or
more Apple communities, 99.1% were a device running an
Apple OS. This result indicates a significant dependency on
Apple’s online ecosystem to manage the client-side services
running on Apple’s OSs. Furthermore, due to Apple’s ex-
clusivity in offering services for only its own products, it
proves trivial to separate an Apple OS from other OSs through
only resolving the ownership of its affiliated communities6.
Further investigation however would be required to distinguish
between devices running iOS and OS X using this method.

B. Windows OS

Through investigating the ownership of the communities alone
there proved to be no significant relationship between commu-
nities owned by Microsoft and devices running Windows OS.
This result is not unexpected as Microsoft provides a wide

Fig. 3. A subset of the high-activity affiliation graph depicting the community
affiliations of eight devices with known characteristics. Four devices which
were running an Apple OS (three iOS, one OS X), two devices running
Windows OS, and two devices running the android OS. For clarity, only
the top 50 most heavily weighted community affiliation of each device is
depicted.
6provided the device is exhibiting typical network behaviour.

TABLE III
DISTRIBUTION OF OPERATING SYSTEMS IN THE KNOWN SUBSET OF THE

HIGH-ACTIVITY AFFILIATION GRAPH.

Operating System Number of devices

iOS 3,872 (36.80 %)
OS X 1,602 (15.23 %)

Windows 3,285 (31.22 %)
Android 1,762 (16.75 %)

Total 10, 521 (100.0 %)

range of services that are not only limited to devices running
Windows OS (e.g., Office365). Therefore, a greater focus was
placed on the service the community provides rather than its
ownership alone.

From the analysis conducted in Section IV, 122 commu-
nities offering Windows specific services were found − 111
providing Windows updates and 11 providing the Windows
push notification service (WNS). Of the 1,101 devices with an
affiliation to at least one of these communities, 2, 454 (97.3%)
were confirmed to run Windows OS. Additionally, 74.7% of
the 3, 285 devices running a Windows OS were identified to
affiliate with one or more of these communities. This result
indicates that there is a relationship between communities of-
fering Windows related services and devices running Windows
OS; however, it is not as comprehensive as the relationship
between Apple OS and Apple based communities.

C. Android OS

No distinct set of Google communities were found to result
in a significant relationship with devices running Android OS.
This result is due to the myriad of OS-agnostic services that
offered by Google (e.g., Googles’ search engine, Chrome, and
YouTube). Furthermore, as Android is maintained by many
distinct entities it proves more difficult to determine a specific
set of communities that would be representative of its online
services.

A potential method to increase the information contained in
the affiliation graph would be to differentiate the community
set not only by an IP address but also by port number.
This would allow the analysis to distinguish between distinct
services running on the same IP address.

VI. CONCLUSION AND FUTURE WORK

In this paper, the application of affiliation graphs for char-
acterising devices on an enterprise network was evaluated.
A methodology for analysing the community set was inves-
tigated which allowed for inferences to be made about the
characteristics of a device through the communities it affiliates
with. An example was given to demonstrate the applicability
and effectiveness of applying an affiliation graph to identify
the OSs of the devices on a network. Overall, it was found
that an affiliation graph is a quick and easy method to gain
an initial insight into the characteristics of the devices on a
network. However, further analysis should be conducted to
identify robust relationships between devices characteristics
and their affiliated communities.

Fig. 4. Precision and recall of Apple and Windows devices found through
investigating their community set. Apple devices are defined as a device
running either iOS or Mac OS; whereas, Windows devices are defined as
a device running the Windows OS.

In future work we aim to provide a broader analysis
on utilising affiliation graphs for device characterisation. In
particular, we aim to utilise supervised machine learning
techniques to help identify the relationship between a device’s
characteristics and the communities it affiliates with.

REFERENCES

[1] The global mobile report. https://www.comscore.com/Insights/
Presentations-and-Whitepapers/2017/The-Global-Mobile-Report, 2017.
[Online] Accessed on: September 2019.

[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma,
Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt
Thomas, and Yi Zhou. Understanding the Mirai Botnet. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1093–1110,
Vancouver, BC, 2017. USENIX Association.

[3] Deepali Arora, Kin Fun Li, and Alex Loffler. Big data analytics for
classification of network enabled devices. In Advanced Information
Networking and Applications Workshops (WAINA), pages 708–713,
2016.

[4] Stephen Borgatti and Daniel Halgin. Analyzing affiliation networks. The
Sage Handbook of Social Network Analysis, 2011.

[5] Ronald L Breiger. The duality of persons and groups. Social Forces,
53(2):181–190, 1974.

[6] Yi-Chao Chen, Yong Liao, Mario Baldi, Sung-Ju Lee, and Lili Qiu. OS
fingerprinting and tethering detection in mobile networks. In Proceed-
ings of the 2014 Conference on Internet Measurement Conference, pages
173–180. ACM, 2014.

[7] Leslie Daigle. RFC-3912 WHOIS protocol specification. Network
Working Group, 2004.

[8] Yair Meidan, Michael Bohadana, Asaf Shabtai, Martin Ochoa, Nils Ole
Tippenhauer, Juan Davis Guarnizo, and Yuval Elovici. Detection of
unauthorized IoT devices using machine learning techniques. arXiv
preprint arXiv:1709.04647, 2017.

[9] Jeremy Merrill. Liberal, moderate or conservative? see how Facebook
labels you. https://www.nytimes.com/2016/08/24/us/politics/facebook-
ads-politics.html, 2016. [Online] Accessed on: September 2019.

[10] Paul Mockapetris. RFC-1035 domain names-implementation and spec-
ification. Network Working Group, page 23, 1987.

[11] Bruce Schneier. The internet of things will upend our industry. IEEE
Security & Privacy, 15(2):108–108, 2017.

[12] Athena Vakali and George Pallis. Content delivery networks: status and
trends. IEEE Internet Computing, 7(6):68–74, Nov 2003.

[13] Xuetao Wei, Nicholas C Valler, Harsha V Madhyastha, Iulian Neamtiu,
and Michalis Faloutsos. Characterizing the behavior of handheld devices
and its implications. Computer Networks, 114:1–12, 2017.

[14] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for
overlapping network community detection. In IEEE 12th International
Conference on Data Mining, pages 1170–1175. IEEE, 2012.

Clustering Network-Connected Devices Using Affiliation Graphs

Kyle Millar1, Adriel Cheng 1,2, Hong Gunn Chew1, Cheng-Chew Lim1

1School of Electrical and Electronic Engineering, The University of Adelaide, Australia
2Cyber and Electronic Warfare Division, Defence Science & Technology Group, Australia

E-MAIL: {kyle.millar, adriel.cheng, honggunn.chew, cheng.lim}@adelaide.edu.au1

E-MAIL: adriel.cheng@dst.defence.gov.au2

Abstract:
Device management in large networks is of growing importance

to network administrators and security analysts alike. The com-
position of devices on a network can help forecast future traffic
demand as well as identify devices that may pose a security risk.
However, the sheer number and diversity of devices that comprise
most modern networks has vastly increased the complexity of per-
forming this management. Motivated by these issues, we exam-
ine the application of affiliation graphs to quantify the relation-
ship between devices operating on a network and the services for
which they connect to via the internet. These relationships can
then be used to identify clusters of devices which exhibit similar
behavioural characteristics.

Through empirical analysis of two 26-hour captures of a uni-
versity campus network, we show that affiliation graphs can be
utilised to cluster the devices on a network without any a priori
knowledge of the network itself. In particular, our preliminary re-
sults show that devices can be clustered into specific device types
(e.g., servers, user devices, and printers). These clusters can then
be used to examine the composition of devices on the network, cre-
ate informed device management policies, and identify potentially
vulnerable devices.

Keywords:
Affiliation graphs; cybersecurity; clustering; device manage-

ment

1. Introduction

Device management is a critical component of network ad-
ministration which aims to determine what devices are acting
on a network and the purpose of their use. This process helps
network administrators provide better quality of service (QoS)
and allows security analysts to locate vulnerable devices within
their network [2]. However, implementing an effective device
management strategy is becoming increasingly difficult in prac-
tice.

The fundamental challenge of device management is in the
growing number and diversity of devices acting on modern net-
works. A typical enterprise network (such as a university net-
work) is likely to consist of tens of thousands of devices. These
devices range from the servers critical to the overall operation
of the network, to the personal devices of each user. Addition-
ally, the internet of things (IoT) paradigm has led to a rapid
influx of heterogeneous devices present on such networks (e.g.,
printers, IP cameras, and smart sensors) [15].

The rising complexity of providing adequate device manage-
ment has not only hindered the administration of enterprise net-
works but has also introduced security vulnerabilities due to
unknown and unpatched devices [1]. It is therefore evident that
methods of reducing the complexity of device management is
of critical importance.

Current techniques of device management have typically re-
lied on either a large number of difficult to extract features (e.g.,
internet protocol (IP) ID monotonicity and clock frequency) or
target a specific subset of devices [5]. However, these tech-
niques are either becoming computationally ineffective at scale
or are not universally applicable to manage the wide array of
devices present on modern networks. Motivated by these is-
sues, we pose the use of affiliation graphs to infer information
about the devices on a network through only the IP addresses
that they affiliate with over the internet.

Affiliation graphs are a social networking technique that in-
vestigate the characteristics of an individual through the com-
munities they are affiliated with [4]. Social communities form
through both implicit and explicit commonalities in their mem-
bership set; such as shared interests, occupation, or genealogy
[18]. Through analysing the shared commonality within a com-
munity, certain characteristics of its membership set can often
be revealed. For example, Facebook is able to identify the po-
litical alignment of a user based solely on the Facebook groups
the user is affiliated with [10].

There has been growing research interest in device manage-
ment strategies due to the increase number and diversity of de-
vices present on modern networks; however, device manage-
ment is still under-represented by the research community at
large. Research thus far has typically focused on examining the
role of a particular type of device on a network; identifying its
unique characteristics and its effect on the overall management
of the network. Devices types such as servers [2, 8], user de-
vices [17], and IoT devices [9] have been of particular interest
in such studies. However, to the best of our knowledge, there
has not yet been a study on a method of clustering unknown
types of devices that are present on a network.

In our previous work [12, 11], we have shown the feasibility
of classifying the operating system of a device through the use
of affiliation graphs. In this paper, we provide an extension of
this work to cluster similarly behaving devices on a network.
We show that certain device types (e.g., servers, user devices,
and printers) have distinctive behavioural characteristics that
can be identified through the services that they connect with
via the internet.

3. Method

The behaviour of a device on a network is seldom unique
in its entirety. Devices share similar characteristics due to the
commonality in their manufacturers, operating systems, the ser-
vices they run, or even their users. An affiliation graph can be
used to examine the similarity between two devices based on
the commonality of the communities that they frequent. For
example, two devices running Apple’s mobile operating system
(iOS) are likely to frequent similar communities to check for
new updates, backup files using iCloud, and to check for new
notifications using the Apple push notification service (APNS).
Investigating the overlap in their community sets allows for a
metric of the overall similarity between these two devices to be
defined. This similarity metric can then be used to cluster the
devices into distinct behavioural groups.

Salton’s cosine coefficient [13] was used to quantify the sim-
ilarity between the actors in the affiliation graph. Salton’s co-
sine coefficient states that the similarity between two vectors,
v1 and v2, is the cosine of the angle between them. The simi-
larity between two actors, a1 and a2, can therefore be found by
computing Salton’s cosine coefficient of their membership sets
as shown in Eq (1).

sim(a1, a2) =
M(a1) ·M(a2)

||M(a1)|| × ||M(a2)|| (1)

M(x) = {ω(mx,c) : c ∈ C}, if mx,c /∈M ;ω(mx,c) = 0

where M(x) is the membership vector of an actor, x, and,
‖M(x)‖ is the length of the membership vector, M(x). As
M(x) ≥ 0, the similarity between two actors is bounded be-
tween [0, 1]. A similarity of 0 indicates two actors with no
intersection of their community sets; whereas, a similarity of
1 indicates two actors who have affiliated with the same set of
communities, the same number of times throughout the capture
period.

Evaluating Salton’s cosine coefficient of each pair of actors
results in the complete, homogeneous graph, GA = (A,E).
Where, E, is the set of all similarities between the actors under
analysis, A. To reduce the density of this graph, a similarity
threshold, τ , was introduced. This threshold removed all edges
from the graph with a similarity ≤ τ . A similarity threshold of
τ = 0.8 was chosen to maximise the global clustering coeffi-
cient of the resultant graph. The resultant graph produced by
this method was denoted as a similarity graph.

Stochastic local clustering (SLC) [14] was applied to the
similarity graph to find distinct clusters of similarly behaving
devices. The insight behind SLC lies in the ability to find a
cluster for an initial vertex, v, through a stochastic search of its
local connections. This process is denoted as the local search
of v. The full SLC algorithm is the combinatorial analysis of
applying local search for each vertex in the graph. The utilisa-
tion of local search allows SLC to be scalable to significantly
large analyses as the full graph never needs to be considered
in its entirety. Furthermore, SLC is inherently parallelisable
given that local search for distinct vertices can be preformed
independently.

An overview of the SLC algorithm used to obtain the results
in Section 5 has been outlined in the Appendix.

4. Dataset

To evaluate the proposed methodology, two 26-hour captures
of the [university]’s campus network were taken. The first cap-
ture, low-activity, was taken on Christmas day in 2018. This
capture was scheduled to provide an analysis of the university’s
network when minimal user-related activity would be observed.
The second capture, high-activity, was taken on the 1st of May
2019. This capture was scheduled to provide an analysis of the
university’s network on a typical work day1.

The graph statistics for both captures are provided in Table 1.
It is seen that there is a significant increase in network activity
between the low- and high-activity captures. This is largely
due to an influx in the number of user-devices on the network
during the high-activity capture.

1The 1st of May is not a public holiday in the location in which the capture
took place.

TABLE 1. Summary statistics of the affiliation and similarity graphs created from the two network captures. |A| is the number of devices, µdeg(A) is the
mean number of communities per device, |C| is the number of communities, µdeg(C) is the mean number of devices in each community, |M | is the number
of unique memberships, and |E| is the number of edges in the resultant similarity graph.

Data Set |A| µdeg(A) |C| µdeg(C) |M | |E|
low-activity 4.9k 102 78.8k 7.5 0.6M 0.6M

high-activity 13.5k 84 86.9k 14.7 1.3M 3.2M

5. Results

The result of applying the SLC algorithm to the low- and
high-activity similarity graphs is shown in the ordered adja-
cency matrices in Figure 2. It is seen that distinct clusters of
devices were found in both captures of the university’s network.
These clusters signify that similarly behaving devices on a large
network can be easily identified through only the communities
that the devices affiliate with via the internet. Therefore, the use
of an affiliation graph would provide a significant basis of anal-
ysis for network operators to investigate the groups of devices
acting on their network.

The composition of the devices within the largest clusters
in Figure 2 were then investigated to identify the common be-
havioural characteristics of each cluster. The characteristics of
each device were resolved through dynamic host configuration
protocol (DHCP) fingerprinting. DHCP fingerprinting allowed
for the manufacturer and the operating system (OS) of the de-
vices to be identified. Furthermore, detailed correspondence
with the operators of the university’s network provided addi-
tional insight into the function of managed devices on the net-
work.

The investigation into the distinct clusters of devices in Fig-
ure 2 identified five main categories of device clusters: internal
servers, public facing servers, user devices, lab computers, and
printers. The following subsections provides additional infor-
mation on each of the categories of clusters identified.

Servers – Two distinct server roles, internal (1) and public
facing (2) were found via this clustering method. The servers
on a network provide common resources and services which are
often critical to the overall functionality of the network. Inter-
nal servers provide services to the devices within the network
(e.g., a proxy server); whereas, public facing servers can pro-
vide services to both internal and external devices (e.g., a mail
server). The identification of public servers on a network is of
particular interest when assessing the vulnerability of the net-
work as these devices are directly accessible from outside the
network [6].

User devices (3) – User devices are unmanaged devices that
are brought onto the network by staff and students to facilitate

their work. The high-activity capture showed a significant in-
crease in the number of user devices clustered on the network.
This result is in correlation with the increase in staff and stu-
dents present at the time of this capture. Furthermore, it was
found that Apple devices in particular were easily identifiable
via this method due to their frequency in connecting to Apple
related services. Cluster 3.1 is highlighted in Figure 2 which
contains 1,470 devices; of which, 90% could be confirmed to
be an Apple device.

Lab computers (4) – Several computer labs are located on
the university campus for which students can log onto the uni-
versity network. Lab computers have a common base config-
uration due to the requirements of their respective lab. There-
fore, lab computers were expected to form relatively well de-
fined clusters. This insight appears to hold in the low-activity
capture; however, the clusters of lab computers in the high-
activity capture proved less distinct. This result was caused
by the increase in use of these devices during the high-activity
capture. Students not only use these devices for work related
purposes but also for personal reasons (e.g., accessing social
media). The varied use case in the high-activity capture is likely
to have led to the varied behavioural patterns of these devices.

Printers (5) – Printers were found to form extremely well-
defined clusters on the network. This result is due to the distinct
network behaviour of printers. A printer is likely to connect
to very few services via the internet. Typically, these services
are register to the manufacturer of the printer itself. Therefore,
a known printer that is not contained within a printer cluster
would serve as a warning that the device is behaving unchar-
acteristically. Additionally, this warning indication could be
applied to monitor the wide array of IoT related devices that
would share similar network characteristics (E.g., IP cameras
and smart sensors).

In summary, the observed device categories were found to
be useful in acquiring initial insight into the composition of de-
vices on a network. This insight could serve as a basis of analy-
sis for network operators to identify the composition of devices
operating on their network. Furthermore, this technique could
serve as a tool for security analysts to identify potentially vul-
nerable device clusters on a network.

FIGURE 2. The ordered adjacency matrices of the two similarity graphs: low-activity (left) and high-activity (right). Five main categories of devices
operating on the university’s network were identified: internal servers (1), public facing servers (2), user devices (3), lab computers (4), and printers (5).
Furthermore, a cluster of devices manufactured by Apple was also identified (3.1).

6. Conclusion and Future Work

In this paper, the application of affiliation graphs for clus-
tering the devices on a large network was evaluated. It was
found that the similarities between devices in an affiliation
graph could be used to gain an initial insight into the compo-
sition of devices on a network. In particular, it was found that
the devices on the university’s network under analysis could be
largely divided into five main categories; internal servers, pub-
lic facing servers, user devices, lab computers, and printers.
Additionally, it was found that Apple devices could be easily
identified via this method due to the frequency in which they
connected to Apple related services.

Future work will develop upon the methodology presented
in this paper through the investigation of more sophisticated
graph clustering techniques. In particular, graph embeddings
will be used to cluster the devices on a network through the
direct analysis of the affiliation graph. This extension is ex-
pected to improve the efficacy of the clusters generated whilst
also removing the need to construct the similarity graph.

Acknowledgements

This research is supported by the Australian Government Re-
search Training Program (RTP) Scholarship and the Common-
wealth of Australia as represented by the Defence Science &
Technology Group of the Department of Defence.

Appendix

Algorithm 1 Stochastic Local Clustering (SLC)

1: set γ > 0;n = number of iterations.
2: for vertex v in A do
3: i = 0.
4: Set initial cluster, D = Γ(v) ∪ {v}.
5: Compute cluster performance, f(D).
6: while i < n do
7: Select a vertex, u ∈ [D ∪ Γ(D)], (u 6= v).
8: If u ∈ D,D′ = D \ {u}; else, D′ = D ∪ {u}.
9: Compute new cluster performance, f(D′).

10: set D = D′ if X ∼ U([0, 1]) ≤ e
−
f(D′)− f(D)

γ/log(i+ 2)

11: i = i+ 1.
12: end while
13: end for

where Γ(v) is the neighbourhood of vertex, v; and γ is the
starting temperature used in simulated annealing.

Simulated annealing (step 10) was used to ensure that the
local search method did not get stuck in a local maxima. The
cooling schedule used for simulated annealing was derived in
[7]. A starting temperature, γ = 0.2, and number of iterations,

n = 100, was selected heuristically based on initial experimen-
tation.

The metric of cluster performance, f(D), as shown in (2)
was derived in [14].

f(D) =
2degint(D)2

|D|(|D| − 1)(degint(D) + degext(D)
(2)

where degint and degext is the internal and external degree of
cluster D, respectively.

References

[1] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. Understanding the Mirai
Botnet. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1093–1110, Vancouver, BC, 2017.
USENIX Association.

[2] Deepali Arora, Kin Fun Li, and Alex Loffler. Big data
analytics for classification of network enabled devices.
In Advanced Information Networking and Applications
Workshops (WAINA), pages 708–713.

[3] Stephen Borgatti and Daniel Halgin. Analyzing affiliation
networks. The Sage Handbook of Social Network Analy-
sis, 2011.

[4] Ronald L Breiger. The duality of persons and groups.
Social Forces, pages 181–190, 1974.

[5] Yi-Chao Chen, Yong Liao, Mario Baldi, Sung-Ju Lee, and
Lili Qiu. OS fingerprinting and tethering detection in mo-
bile networks. In Proceedings of the 2014 Conference on
Internet Measurement Conference, pages 173–180. ACM.

[6] Jeremy Faircloth. Penetration tester’s open source toolkit.
Syngress, page 32, 2016.

[7] Bruce Hajek. Cooling schedules for optimal anneal-
ing. Mathematics of operations research, pages 311–329,
1988.

[8] Minzhao Lyu, Hassan Habibi Gharakheili, Craig Russell,
and Vijay Sivaraman. Mapping an enterprise network
by analyzing DNS traffic. In International Conference
on Passive and Active Network Measurement, pages 137–
152. Springer, 2019.

[9] Yair Meidan, Michael Bohadana, Asaf Shabtai, Mar-
tin Ochoa, Nils Ole Tippenhauer, Juan Davis Guarnizo,
and Yuval Elovici. Detection of unauthorized IoT de-
vices using machine learning techniques. arXiv preprint
arXiv:1709.04647, 2017.

[10] Jeremy Merrill. Liberal, moderate or con-
servative? see how Facebook labels you.
https://www.nytimes.com/2016/08/24/us/politics/facebook-
ads-politics.html, 2016. [Online] Accessed on: Septem-
ber 2019.

[11] Kyle Millar, Adriel Cheng, Hong Gunn Chew, and Cheng-
Chew Lim. Operating system classification: A minimal-
ist approach. In ICMLC20 - International Conference on
Machine Learning and Cybernetics - pending publication.

[12] Kyle Millar, Adriel Cheng, Hong Gunn Chew, and Cheng-
Chew Lim. Characterising network-connected devices us-
ing affiliation graphs. In NOMS 2020 - IEEE/IFIP Net-
work Operations and Management Symposium, pages 1–
6, 2020.

[13] Gerard Salton and Michael McGill. Introduction to Mod-
ern Information Retrieval. McGraw Hill Book Co., New
York, 1983.

[14] Satu Elisa Schaeffer. Stochastic local clustering for mas-
sive graphs. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 354–360. Springer.

[15] Bruce Schneier. The internet of things will upend our
industry. IEEE Security & Privacy, pages 108–108, 2017.

[16] John Skvoretz and Katherine Faust. Logit models for af-
filiation networks. Sociological Methodology, pages 253–
280, 1999.

[17] Xuetao Wei, Nicholas C Valler, Harsha V Madhyastha,
Iulian Neamtiu, and Michalis Faloutsos. Characterizing
the behavior of handheld devices and its implications.
Computer Networks, 2017.

[18] Jaewon Yang and Jure Leskovec. Community-affiliation
graph model for overlapping network community detec-
tion. In 2012 IEEE 12th International Conference on
Data Mining, pages 1170–1175. IEEE.

[19] Guangxiang Zeng, Ping Luo, Enhong Chen, and Min
Wang. From social user activities to people affiliation. In
2013 IEEE 13th International Conference on Data Min-
ing, pages 1277–1282. IEEE.

Detecting Data Exfiltratation using Seeds based

Graph Clustering

Adriel Cheng

Cyber and Electronic Warfare Division

Defence Science and Technology Group,

Department of Defence, Australia

adriel.cheng@defence.gov.au

Kyle Millar

Cyber and Electronic Warfare Division

Defence Science and Technology Group,

Department of Defence, Australia

kyle millar1@defence.gov.au

Identifying devices of interest within Internet Protocol (IP)

networks is essential for Cyber security and network

management. However, the large variety and number of devices

within networks, and the ubiquitous encryption of network traffic

poses significant barriers. We present a scalable and encryption

resilient technique to identify devices of interest based solely on

their affiliation to public internet services. In this work, devices of

interest are those that are suspected of engaging with suspicious or

unexpected servers; e.g., facilitating the malicious exfiltration of

data. Graph-based clustering was used to reveal devices of interest

based on the similarity of their network behaviour to a set of pre-

known malicious devices acting as seeds. The motivation for our

technique was driven by a case study for which a subset of

malicious devices were known; however, the vast majority

remained undiscovered. We conducted experiments to

demonstrate viability of our technique as applied to this use-case.

Detection accuracies of 94% were achieved, and malicious devices

from the case study were successfully identified to aid data driven

decisions by Cyber analysts.

Keywords - Cyber Security, Network Security, Graph Clustering,

Machine Learning

I. INTRODUCTION

Identifying devices of interest within Internet Protocol (IP)
networks is essential for both Cyber security and network
management. When networks are infiltrated by malicious
command-control (C2) activity, identifying victims or
perpetrators of such activity is increasingly difficult. This is due
to the growth of networks in both the number and types of
devices and their traffic volumes and diversity. Furthermore, the
traffic flowing amongst devices are now predominately
encrypted [1,2], making it impossible to examine traffic content
to find devices of interest for different applications.

In this paper, we present a technique to identify anomalous
network devices (i.e. their IP address) by their network graph
topological information. The network graphs are extracted from
network traffic flows metadata only, overcoming network traffic
encryption barriers and maintaining user privacy.

Whilst the need for detecting anomalous devices are diverse,
we focus on network monitoring and analysis in the Cyber
security domain. In particular, we target the use-case of
uncovering malicious devices operating on a network.

1 Data leaks may originate from various sources, but for this paper we are

interested in data exfiltration from internal network devices.

A. Application Use-Case

Our technique was inspired by the application use-case
depicted in Fig. 1. The use-case involved detecting devices
uploading excessive amounts of data to unexpected or
suspicious internet servers. Such devices are suspected to be
victims of Cyber C2 malicious attacks; and have been
compromised such that data is being exfiltrated to external
servers controlled by the attacker.

A practical scenario involves administrators of an
organization being presented with evidence of stolen
confidential data (e.g. competing companies duplicating
technology, or via investigative or intelligence reports); and they
seek to identify which device(s) on their networks is leaking this
sensitive data 1 . Beyond the Cyber C2 example, another
malicious example is insider threat scenarios where disgruntled
staff transfer information externally without permission.

Previously, in order to identify such compromised devices
(or users), a manually intensive process was required.
Considerable time and effort was required by analysts to
examine the network traffic of devices; e.g. to identify and
correlate devices sending unusually large volumes of traffic to
external servers. Whilst such excessive and suspicious network
activity are detectable if sufficient access to devices 2 and
internal networks are afforded, when limited to network gateway
monitoring points (i.e. at the edge of enterprise networks or
ISPs), manually driven procedures are no longer viable given
encryption and the scale of networks and traffic flows.

B. Overview of Technique

Our technique relies on observing the traffic flow
connections between network devices and the internet.
Specifically, we are interested in the connection profiles and
associated network traffic of the devices – i.e. what does a
device connect to and when. The technique detects if certain
devices are connected to unexpected internet servers whilst
exhibiting unusual traffic uploading activity. Devices exhibiting
such characteristics may indicate Cyber exfiltration of data.

Beyond data exfiltration, other uses-cases involve detecting
devices that utilize services or sites that promote illegal or
undesirable activities. For instance, in most organizations, one
would not expect devices (i.e. users) to connect to online gaming
or gambling sites as part of normal business functions. Whilst it

2 Note the growth of bring-your-own devices beyond the control of network

admins has grown substantially in certain organizations [3], e.g. universities.

TABLE II. Precision, recall, F1-scores

 Dataset Precision Recall F1-score

Training seeds
|Str| = 500

1 0.99 0.74 0.85

2 0.99 0.67 0.80

3 0.99 0.68 0.81

Training seeds

|Str| = 1000

1 0.99 0.88 0.94

2 0.99 0.86 0.93

3 0.99 0.72 0.84

For seeds based graph clustering, we define the precision and
recall metrics as follows. For every cluster with at least one
training seed from Str, precision measures the number of devices
in the cluster belonging to the test set Sts compared to the total
number of devices in that cluster. Precision queries the
following: Out of all the devices suspected to be of interest in a
cluster, how many devices were accurately identified as
malicious.

Recall measures how many devices from the test set Sts are
clustered within a cluster containing at least one training seed
from Str. Recall addresses the following: Out of all the devices
in test set Sts, recall measures how many malicious devices were
detected by our technique. And finally, F1-score is computed
from the harmonic mean of precision and recall.

For our similarity graphs, note that a minimum similarity
threshold is enforced to ensure only source actor IPs that are
sufficiently similar to one another are included. We use Salton's
cosine coefficient from Sec. II as the measure of similarity, and
an empirically measured threshold τ of 0.8 similarity is used;
such that actor IPs a1 and a2 with similarity lower than τ = 0.8
are excluded from the clustering phase.

V. RESULTS

We first assess our technique for uncovering anomalous
devices of interest similar to our seeds. TABLE II shows the
precision, recall and F1-scores using 500 and 1000 training
seeds. The results indicate near 100% precision across all
datasets. The high precision shows that a device is highly likely
to be of interest if clustered with a seed device. Furthermore,
high precision also indicates that the majority of devices from
the seeds test set were detected. This confirms the seeded
clusters produced by our technique uncovered other devices that
exhibit large data upload behaviours to malicious exfiltration
servers; as desired by our application use-case.

In terms of recall, 0.67 to 0.88 recall was attained. High
recall is difficult to achieve because identifying anomalous
devices or finding clusters containing such devices depends on
the availability of useful seeds – i.e. the number of such seeds
and how influential these seeds are. Our seeds must provide
distinct patterns of network flow connections, including
extremely large volumes (bytes) of network traffic. As greater
number of influential seeds available for use are applied, higher
recall is achieved (see Fig. 5). Overall, the F1-socres in TABLE II
confirms viability of our technique. Generally, with at least 500
training seeds, F1-scores of up to 0.8 is considered favourable.

Fig. 5 shows the increase in precision, recall and F1-scores
as the number of training seeds are added. This result is as
expected; i.e. additional training seeds generally produces a
greater number of seed based clusters to identify other
anomalous devices of interest from the seeds test set.

Generally, the selection of seeds affect how IP devices of
interest are clustered and detected. In particular, seeds which
exhibit distinct characteristics different to benign devices are
beneficial for our technique. To demonstrate this, we compared
the selection and use of training seeds ordered by volume of
bytes transacted versus the number of flows (i.e. aggregated
connections between network endpoints).

For our application use-case, the goal was to detect devices
involved in excessive data uploads to malicious internet
communities. Using 500 seeds ordered by number of flows, we
achieved between 0.65 to 0.74 F1-scores. The results are lower
than those in TABLE II, which used seeds ordered by bytes.
Intuitively, this is to be expected. Excessive traffic volumes
exhibited by devices involved in data exfiltration are more easily
differentiated by number of bytes instead of number of flows
when compared to other devices. Hence, when deploying our
technique, consideration must be given to how seeds are chosen
and ranked for use.

A. Cluster Visualization

Next, we visualise our seeded clusters in Fig. 6. We show an
adjacency matrix of Salton Cosine similarity values between
each pair of devices in the dataset. The devices along both axis
of the matrix are re-ordered such that devices within the same
clusters are grouped together highlighting prominent clusters.
White or lighter shaded pixels within the matrix represent strong
similarities between devices, whilst darker pixels represent low
or nil similarity.

The adjacency matrix shows distinct clusters of varying sizes
are acquired by our technique. Significantly, the most prominent
clusters in terms of similarity (i.e. most white/lighter blocks
along diagonal) contain our training seeds. This is clearly shown
in Fig. 6 (top) where seeds were ordered by bytes; in contrast to
Fig. 6 (bottom) with seeds sorted by flows. As explained in the
prior section, for our application use-case, using seeds ordered
by bytes is more effective for identifying devices exhibiting
excessively large traffic data uploads. Finally, if sufficient
number of training seeds are used, then the majority of these
clusters would also assist in identifying additional (testing)
seeds of interest.

B. Application Use-Case Discussion

Finally, we discuss the results based on our application use-
case in Section I.A. Recall we aim to identify the malicious
device(s) involved in exfiltrating data to a set of malicious
servers. To find such malicious device(s), we use training seeds
that epitomise known malicious behaviour of interest. The
adjacency matrix in Fig. 6 (top) showed that unknown malicious
device(s) can indeed be uncovered by our technique.

For example, a particular malicious device, unbeknownst
within the training seeds, was shown to be located within seeded
clusters (94 and 74) of the captured data. Up to 500 training
seeds were selected by our technique to acquire these clusters.
These training seeds are the top 500 seeds when ordered by bytes
– i.e. the top 500 seed devices uploading the largest volumes of
traffic data (when measured by number of bytes) to suspicious
community servers.

The cluster containing the malicious device includes at least
one (or more) of these 500 seeds. Using a more refined selection

Fig. 5. Precision, recall and F1-scores versus number of seeds

of seeds, we are confident a smaller cluster containing the
malicious device would be provided. Regardless, by simply
using our technique with these 500 seeds, the manual search
space for finding the malicious device has reduced significantly
from >30,000 original devices to only 384.

 Whilst using 500 seeds may appear excessive and difficult
to acquire, we observe it is possible to use seeds from different
networks; similar to how commercial intrusion detection
systems share signatures from multiple networks or devices.
Alternatively, the seeds could also be synthesized, but we
designate this as future work.

Finally, we note that the malicious device was included in a
cluster with high precision, indicating all devices clustered
together belonged to the seeds test set. Hence, in the reverse
scenario, if the identified malicious device had been used as a
seed, and the goal is to uncover other unknown but similar
malicious devices, then this cluster would have revealed 383
other devices of interest to investigate. The degree of confidence
that these 383 devices are anomalous is also supported by the
high level of similarities between every device in the cluster.

Fig. 6. Cluster visualization using adjacency matrices with devices listed along

x and y axis; using Dataset 2 and with seeds ordered by bytes (top) and ordered

by flows (bottom)

Specifically, a mean similarity of 0.93 measured by our Salton
Cosine coefficient was attained for this cluster.

 The technique described in this paper aims to assist analysts
in the discovery of devices exhibiting specific network
characteristics – i.e. various characteristics may be considered,
but in our case, excessive data uploads to suspicious internet
servers is our focus. In our experience, directly identifying IP
addresses of malicious devices is difficult and requires further
verification regardless. Hence, our technique presents a reduced
set of potentially suspicious devices to analysts; to semi-
automate and speed up the detection of malicious devices(s).

VI. RELATED WORK

The use of affiliation graphs for clustering was inspired by
our earlier work in device characterisation. The goal in [4,5,6]
was to characterise the operating systems (OS) of mobile
devices. These approaches were purely supervised. In contrast,
the technique presented within this paper relies on seeding
information of prior known devices to guide the anomalous
device detection process.

Our technique for identifying IP devices relates most to
network traffic anomaly detection using clustering methods. In
[10], clusters of homogenous traffic examined over time
represent normal baseline traffic. When new clusters of different
sizes and types of traffic are found, such deviations from
baselines signify traffic anomalies. In [11], anomaly detection is
formulated as a graph clustering problem. Graph properties from
network traffic flows are partitioned using their NodeClustering
technique to separate normal from abnormal traffic nodes.
Similarly in [12], a graph partitioning cluster method is utilised
to detect anomalies. And finally in [13], network traffic is
converted into first and second order graphs representing
individual IP endpoints and the general network. Extracted
features from these graphs are then supplied to machine learning
methods for anomaly detection.

The methods surveyed above use statistical latent features
and network graph embeddings from traffic flows data for
clustering. In contrast, our technique only relies on the source
and destination endpoints of bipartite graphs and the links
between them. In this sense, our technique can be applied more
generally as it relies only on minimal network flows data that is
widely available. In other work [14], we extracted graph
embeddings explicitly from our affiliation graphs. However, in
this paper, our affiliation graphs are transformed into similarity
graphs that reveal similarity links between nodes to cluster
common IP devices. In this sense, our technique directly exploits
the similarity of device behaviour to identify devices of interest.

The surveyed techniques [10-13] also focus on detecting
disparities between normal and abnormal network
characteristics. In comparison, our method aims to find similar
anomalous IP nodes. We rely on the use of seed devices that are
abnormal, in order to cluster and find other similar devices of
interest. Whilst other techniques do not rely on such seeds, our
approach is explicitly designed to uncover distinct anomalous
characteristics amongst devices; hence we achieve higher
likelihood of detection success.

Finally, our technique relies on Stochastic Local Clustering
(SLC); which performs graph traversals specifically for forming
clusters from graph datasets compared to other distance or fuzzy
based clustering methods in [10-13]. SLC does not require the
entire graph to be processed in order to acquire clusters [7,15].
Avoiding full graph analysis is highly beneficial from a
scalability perspective given the large sizes of network traffic
graphs we deal with.

VII. CONCLUSIONS AND FUTURE WORK

Detecting and identifying anomalous devices of interest is
extremely difficult given ubiquitous traffic encryption and the
excessively large number of network devices to examine. In this
paper, we presented a seeds based graph clustering technique to
aid device detection by matching network behaviours of other
similar but pre-known devices of interest.

Experiments based on real-life network traffic data from an
example application use-case demonstrated the efficacy of our
technique. We focused on identifying Cyber compromised
malicious devices involved in exfiltration of data to C2 servers.
Our results showed that previously undetected malicious
devices were detected with high precision.

Our technique is most effective at reducing the scope and
size of the IP devices search space; to provide a reduced set of
devices that are more likely to be of interest to the target use-
case application. In developing this technique, our intention is to
aid automation of IP device detection and reduce manual efforts
of Cyber analysts where possible.

In the future, we hope to incorporate the addition of other
traffic flow attributes into the network graphs for clustering. For
example, the inclusion of flow directionality into the graph edge
weights. Another avenue of investigation is an iterative cluster
approach inspired by [9] to continually refine production of new
clusters and further enhance detection of anomalous devices.

REFERENCES

[1] Google, “Google Transparency Report: HTTPS encryption on the web,”
2022. [online accessed 26-4-2022]. Available:
https://transparencyreport.google.com/https/overview?hl=en%7D%7D..

[2] G. Aceto, G. Bovenzi, D. Ciuonzo, A. Montieri, V. Persico and A. and
Pescapé, “Characterization and Prediction of Mobile-App Traffic Using
Markov Modeling,” in IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 907-925, March 2021

[3] X. Wei, N. Valler, H. Madhyastha, I. Neamtiu and M. Faloutsos,
“Characterizing the Behavior of Handheld Devices and its Implications,”
Computer Networks, vol. 114, pp. 1-12, 2017.

[4] K. Millar, A. Cheng, H. Chew and C. Lim, “Characterising Network-
Connected Devices Using Affiliation Graphs,” in GraSec (Graph-based
network security) workshop at the IEEE/IFIP Network Operation and
management symposium (NOMS), pp. 1-6, 2020.

[5] K. Millar, A. Cheng, H. Chew and C. Lim, “Operating System
Classification: A Minimalist Approach,” in IEEE International
Conference on Machine Learning and Cybernetics (ICMLC), pp. 143-
150, 2020.

[6] K. Millar, A. Cheng, H. Chew and C. Lim, “Clustering Network-
Connected Devices using Affiliation Graphs,” in IEEE International
Conference on Machine Learning and Cybernetics (ICMLC), 2021.

[7] S. E. Schaeffer, “Graph Clustering - Survey,” Computer Science Review
Elsevier, pp. 27-64, 2007.

[8] G. Salton and M. McGill, Introduction to Modern Information Retrieval,
New York: McGraw Hill Book Co., 1983.

[9] J. Davis, A. Cheng, J. Hefferan, L. Singh and D. Webb, “Iterative
Clustering and Filtering for Guided Cyber Discovery,” DST-GROUP-
TR-3647, 2018.

[10] G. Lieto, F. Orsini and G. Pagano, “Cluster Analysis for Anomaly
Detection,” in Proceedings of the International Workshop on
Computational Intelligence in Security for Information Systems
CISIS'08, 2009.

[11] H. Alene, K. Hatonen and P. Halonen, “Graph Based Clustering for
Anomaly Detection in IP Networks,” 2011.

[12] M. Ahmed and A. Mahmood, “Novel Approach for Network Traffic
Pattern Analysis using Clustering based Collective Anomaly Detection,”
Annals of Data Science, vol. 2, pp. 111-130, 2015.

[13] Q. Xiao, J. Liu, Q. Wang, Z. Jiang, X. Wang and Y. Yao, “Towards
Network Anomaly Detection Using Graph Embedding,” in International
Conference on Computational Science, Lecture Notes in Computer
Science, pp. 156-169, 2020.

[14] K. Millar, A. Cheng, H. Chew and C. Lim, “Enhancing Situational
Awareness in Encrypted Networks using Graph-based Machine
Learning,” IEEE Transactions on Network and Service management, vol.
Under Submission, 2022.

[15] S. E. Schaeffer, “Stochastic Local Clustering for Massive Graphs,” in
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
Lecture Notes in Computer Science, pp. 354-360, 2005.

commonalities in their membership set; such as shared inter-
ests, occupation, or genealogy [14]. Through analysing the
shared commonality within a community, certain characteris-
tics of its membership set can often be revealed. For example,
Facebook is able to identify the political alignment of a user
based solely on the Facebook groups the user is affiliated with
[11].

The advantage of an affiliation graph lies in the ease in
which the affiliations between an actor and their communities
can be observed [5]. Through understanding why these affil-
iations are made, insightful inferences can be made about an
actor without requiring any a priori knowledge of the actor
themselves.

It is the axiom of this work that the OS of a device (actor)
can be determined by the IP addresses (communities) that
the device affiliates with via the Internet. For example, a
device affiliated with a Windows update server is likely to
be running the Windows OS [7]. A generalisable behavioural
profile of distinct OSs could therefore be constructed given
the knowledge of the communities that an OS will natively
affiliate with.

The key contribution of our work is threefold:

1) We show that a random forest (RF) classifier trained on
an affiliation graph can achieve a 99.3% classification
accuracy for distinct OS families (i.e., Apple, Windows,
and Android OSs). Furthermore, a 94.6% classification
accuracy could also be achieved for distinct OSs (e.g.,
iOS, OS X, and Windows 10).

2) We show that it takes approximately one hour to construct
a representative profile of an OS based solely on the
community IP addresses it communicates with via the In-
ternet. Monitoring an OS for longer than one hour results
in minimal improvement to the overall OS classification
performance.

3) We examine the deterioration of the classification per-
formance of this methodology after six months. We
show that there is a relatively small decrease in overall
accuracy for both Apple and Android OSs (3% and 7%,
respectively); however, a significant decrease of 29% was
observed for Windows OSs. This deterioration can be
mitigated by retraining the classifier every few months.

The remainder of this paper is structured as follows: A brief
survey of related work in OS classification is given in Section
II. Section III introduces affiliation graphs and provides an
overview of the data set used for this analysis. Section IV
introduces a feature selection process to select the relevant
communities for OS classification. Results for OS Family
and OS classification are given in Section V. Section VI
investigates the amount of time required to make an accurate
prediction of the host device’s OS. Section VII examines the
classification performance of the proposed method after six
months. The paper concludes in Section VIII with a discussion
of results and suggestions for future work.

II. RELATED WORK

There has been a growing research interest in device manage-
ment strategies due to the increased urgency for maintaining
a secure and functioning network. OS classification is a
major facet of device management and as such has received
considerable attention in the past few years [1].

The most widely used OS classification technique is packet
inspection. Packet inspection relies on the idiosyncrasies in
the packet creation process of different OSs. For example, the
time-to-live (TTL) field of a packet is often used to identify
Windows OSs (TTL=128) from both Apple and Android
OSs (TTL=64) [7]. Packet inspection can also extract more
comprehensive signatures from the payload of a packet to
increase the fidelity of the classification that can be achieved.
For example, the HTML User-Agent field can often be used to
identify the exact version of a device’s OS [2]. However, the
widespread adoption of encryption standards has reduced the
efficacy of techniques that rely on the inspection of payload
contents.

There are several well-known OS classification tools that
make use of packet inspection (e.g., Nmap [9], Xprobe2 [3],
and p0f [16]). These techniques often show high classification
performance as well as the ability to distinguish between
distinct versions of the same OS. Nmap and Xprobe2 however
both require the target device to be connected to the network
during analysis. Therefore, these tools can not be used to
perform an investigation into devices that are no longer present
on the network. p0f can be used to perform a retrospective
analysis of a device’s OS given sufficient packet data; however,
the storage and processing of packet data can lead to security
and privacy concerns if it is insufficiently sanitised.

A device’s OS can also be predicted through observing
how its network traffic changes over time. For example, the
frequency in which a device sends consecutive packets within a
network communication can be indicative of its underlying OS
[10], [13]. The challenge of such approaches is that there can
be significant variation in a device’s network characteristics
due to the relative activity on the device. The optimal results
are often observed when the device is under a heavy network
load. Additionally, these techniques are difficult to scale for
large networks given the added processing time required to
construct their feature set.

The aim of this paper is to produce an OS classifier that uses
only the bare minimum of information that would be available
to a network administrator. Through restricting our analysis to
just the IP addresses that a device affiliates with, we create
an encryption invariant classification that is widely applicable
to any TCP/IP network. In our previous work [12], we have
shown the feasibility of affiliation graphs for OS classification.
In this paper we provide an extension of this work through
the utilisation of machine learning (ML) to identify relevant
communities of interest for OS classification. Additionally, we
further our research by: 1) examining the required monitoring
length of a host device before an accurate prediction of its OS
can be made; and, 2) investigating the longitudinal aspects of
our proposed method over the course of six months.

III. AFFILIATION GRAPHS FOR OS CLASSIFICATION

The axiom of affiliation graphs is that there exists a reason
for which actors are affiliated with certain communities [14].
Once this reason is known, it can be used to infer information
about the actors affiliated with a particular community without
any a priori knowledge of the actors themselves. Affiliation
graphs have shown widespread use in sociological surveys for
investigating the behavioural characteristics that motivate an
individual to affiliate with a certain set of communities. The
insight drawn in this paper is that the characteristics of a device
can likewise be identified through the communities it affiliates
with over the Internet.

Devices are now reliant on online infrastructure to manage,
notify, and update the majority of the software they run. The
software on a device can therefore often be reliably identified
through monitoring the device’s communication to its server-
side dependencies. The benefit of using an affiliation graph to
investigate these communications is the ease in which it can
be constructed. To create an affiliation graph from network
data, only the source and destination IP addresses are required
from each network flow1. This results in a technique that
is quick to populate and requires little storage. Additionally,
this technique is also widely deployable as most network
administrators have access to such flow records.

An example of an affiliation graph populated from 26 hours
of the network traffic from eight devices is shown in Figure 2.
It can be seen that the majority of communities that a device
affiliates with over the span of 26 hours are owned by the
manufacturers of their respective OSs.

To represent an affiliation graph to the ML classifier, a one-
hot encoding of the communities that each device affiliated
with was used.

Fig. 2. An affiliation graph populated over 26 hours of network traffic for
eight devices (Four Apple OS, two Windows OS, and two Android OS). Only
the top 50 community affiliations for each device were depicted to increase
readability.
1A network flow (or flow) is defined in this work as the bi-directional
exchange of information between two devices over the Internet.

A. Data Set − University Campus Network

A large and realistic data set is required to adequately analyse
the behavioural characteristics of different OSs. To provide this
data set, network captures were taken on one of the University
of Adelaide’s wireless networks. This network was created to
allow both staff and students to connect their wireless devices
into the university’s enterprise network. It therefore provides
our analysis with insight into the realistic behaviour of current
OSs.

The wireless network under analysis is a /23 subnet which
allows for up to 510 distinct IP address to be allocated at
any one time. An IP address however can be re-allocated to
multiple distinct devices within the capture period. To account
for this re-allocation of IP addresses, the address resolution
protocol (ARP) log was used to identify when a device was
allocated to a particular IP address.

The ground truth for the OSs on the network was acquired
through dynamic host configuration protocol (DHCP) finger-
printing. DHCP fingerprinting allows for the identification of
a host’s OS through a signature-based analysis of the param-
eters it requests during its DHCP handshake. Devices with
OSs that could not be adequately identified through DHCP
fingerprinting were labelled as ‘Unknown’ and excluded from
this analysis.

Three 26-hour captures were taken on the University’s
wireless network. These captures were taken three months
apart on the 1st of March (t0), August (t1), and November (t2)
of 2019. The three month gap between captures was scheduled
to examine the classification performance of our methodology
over time. All subsequent analysis will be conducted on the t0
capture except for Section VII (Longitudinal Analysis) which
will be conducted on all three captures.

The distribution of OSs within the wireless network is
shown in Table I. OSs were also grouped into an OS Family
category. OS families are groups of OSs which share similar
foundations either through being forked from the same code
base or through a shared manufacturer. OSs within an OS

TABLE I
THE DISTRIBUTION OF OPERATING SYSTEMS ON THE UNIVERSITY’S

WIRELESS NETWORK. NETWORK CAPTURES WERE TAKEN ON THE 1ST OF
MAY (t0), AUGUST (t1), AND NOVEMBER (t2) OF 2019.

OS Family OS t0 t1 t2

iOS 240 217 234Apple OS X 91 77 84

Windows 10 26 26 21
Windows 8/8.1 2 2 2Windows
Windows Vista/7 17 15 14

Samsung (One UI) 37 26 31
Huawei (EMUI) 19 15 10
Oppo (ColorOS) 10 10 8
Google (Stock) 1 2 2
Xiaomi (MIUI) 3 2 2

Android

Other Android 51 50 50

Linux (Ubuntu) 2 2 0
Printer 1 3 2Other
Unknown 181 151 172

Total 681 598 632

analysis was therefore conducted to examine the length in
which the classification performance of this methodology is
expected to remain significant.

Two additional captures of the same university network were
taken three (t1) and six (t2) months after the t0 capture. These
captures were taken to provide an insight into the changes of
an OS’s online ecosystem over the course of six months. An
RF classifier was trained on 80% of the t0 capture and tested
on 20% of the t0 capture and 100% of the t1 and t2 captures.
Table II summarises the OS Family and OS classification
performance on the test set of all three captures.

Table II indicates a negative correlation between the classi-
fication performance and the time period between the training
and testing captures. This result supports the expectation that
an OS’s online ecosystem will change over time causing a
degradation in this methodology’s classification performance.
However, there was a less than 10% decrease in the over-
all classification performance (Micro F1-Score) for both OS
Family and OS classification after six months. Therefore, the
degradation in classification performance may still be tolerable
for acquiring an initial overview of the OS composition on a
network.

There was a large variation between the classification per-
formance of individual classes over the six month period. Both
Apple and Android OSs showed a relatively small decrease in
their individual F1-Scores (3% and 7%, respectively) when
evaluated on the t2 capture. However, a 29% decrease in the
F1-Score of Windows OSs was seen for the same period. There
are multiple factors which may have affected the classification
performance of this methodology on Windows OSs. For ex-
ample, multiple updates to the Windows OS were released
during the six month period between the t0 and t2 captures. It
is therefore recommended that this methodology be retrained
every few months or after a significant update to an OS is
released.

VIII. CONCLUSION AND FUTURE WORK

In this paper a minimalist approach to OS classification was
introduced. This minimalist approach illustrated that an accu-
rate OS classifier can be trained using only the IP addresses
that a device communicates with via the Internet. In particular,
we show that only a set of 200 community IP addresses were
required to classify distinct OSs. Furthermore, we identified
that on average it takes approximately one hour to construct a

TABLE II
LONGITUDINAL ANALYSIS OF OS FAMILY AND OS CLASSIFICATION

PERFORMANCE.

Performance
Metric (F1-Score)

t0
01/05/2019

t1
01/08/2019

t2
01/11/2019

OS Family Classification

Micro 0.98 0.94 0.92

Macro 0.97 0.93 0.84

OS Classification

Micro 0.90 0.83 0.81

Macro 0.78 0.64 0.61

characteristic profile of a device’s OS through only monitoring
the IP addresses it communicates with over the Internet.
Lastly, we found that the classification performance of this
methodology will deteriorate at different rates for each OS.
This deterioration can be mitigated by retraining the classifier
every few months or after a significant update to an OS is
released.

In future work we aim to provide a broader analysis
on utilising affiliation graphs for device characterisation. In
particular, we aim to utilise unsupervised machine learning to
identify clusters of devices on a network which exhibit similar
behavioural characteristics.

REFERENCES

[1] Ahmet Aksoy, Louis Sushil, and Mehmet Haid Gunes. Operating system
fingerprinting via automated network traffic analysis. In 2017 IEEE
Congress on Evolutionary Computation (CEC), pages 2502–2509, 2017.

[2] Blake Anderson and David McGrew. OS fingerprinting: New techniques
and a study of information gain and obfuscation. In 2017 IEEE
Conference on Communications and Network Security (CNS), pages 1–
9, 2017.

[3] Ofir Arkin, Fyodor Yarochkin, and Meder Kydyraliev. The present
and future of Xprobe2: The next generation of active operating system
fingerprinting. SYS-Security Group, 2003.

[4] Deepali Arora, Kin Fun Li, and Alex Loffler. Big data analytics for
classification of network enabled devices. In Advanced Information
Networking and Applications Workshops (WAINA), pages 708–713,
2016.

[5] Stephen Borgatti and Daniel Halgin. Analyzing affiliation networks. The
Sage Handbook of Social Network Analysis, 2011.

[6] Ronald L Breiger. The duality of persons and groups. Social Forces,
53(2):181–190, 1974.

[7] Yi-Chao Chen, Yong Liao, Mario Baldi, Sung-Ju Lee, and Lili Qiu. OS
fingerprinting and tethering detection in mobile networks. In Proceed-
ings of the 2014 Conference on Internet Measurement Conference, pages
173–180. ACM, 2014.

[8] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik.
Gene selection for cancer classification using support vector machines.
Machine Learning, 46(1-3):389–422, 2002.

[9] Gordon Fyodor Lyon. Nmap Network Scanning: The official Nmap
Project Guide to Network Discovery and Security Scanning. Insecure,
2009.

[10] Nikunj Malik, Jayanarayan Chandramouli, Prahlad Suresh, Kevin Fair-
banks, Lanier Watkins, and William H. Robinson. Using network traffic
to verify mobile device forensic artifacts. In 2017 14th IEEE Annual
Consumer Communications & Networking Conference (CCNC), pages
114–119, 2017.

[11] Jeremy Merrill. Liberal, moderate or conservative? see
how Facebook labels you, 2016. [Online]. Available:
https://www.nytimes.com/2016/08/24/us/politics/facebook-ads-
politics.html. [Accessed: September 2019].

[12] Kyle Millar, Adriel Cheng, Hong Gunn Chew, and Cheng-Chew Lim.
Characterising network-connected devices using affiliation graphs. 2020
IEEE/IFIP Network Operations and Management Symposium, 2020.

[13] Nicholas Ruffing, Ye Zhu, Rudy Libertini, Yong Guan, and Riccardo
Bettati. Smartphone reconnaissance: Operating system identification.
In 2016 13th IEEE Annual Consumer Communications & Networking
Conference (CCNC), pages 1086–1091, 2016.

[14] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for
overlapping network community detection. In IEEE 12th International
Conference on Data Mining, pages 1170–1175. IEEE, 2012.

[15] Yiming Yang and Xin Liu. A re-examination of text categorization
methods. In Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
pages 42–49, 1999.

[16] Michal Zalewski. p0f v3, 2014. [Online]. Available:
https://lcamtuf.coredump.cx/p0f3/. [Accessed: March 2020].

Chapter 5

Graph-Based Machine Learning

for Network Reconnaissance

This chapter provides two novel graph-based machine learning (ML) techniques for

conducting passive network reconnaissance. Graph-based ML was investigated to

address the following three key limitations of applying conventional ML techniques for the

analysis of the bipartite point-of-analysis (PoA):

1. Static Analysis: Conventional ML must be retrained in the event that a new com-

munity (i.e., Internet service) is detected. This limitation poses a severe restriction

for the analysis of a TCP/IP network as Internet services are in constant flux.

Furthermore, supervised ML (such as proposed in Chapter 4, Paper 4.4) may be

difficult to retrain in dynamic network environments due to an absence of labelled

data.

2. Feature Space: The number of features used by a conventional ML technique is

dependent on the number of observed communities1. The number of communities

used within a large TCP/IP network would result in a feature set that would be

easily overfit. For example, over 500 thousand unique communities were observed

from a 26-hour observation of a university’s enterprise network [127].

1Feature selection (such as conducted in Chapter 4, Paper 4.4) could be utilised to reduce
the number of features; however, all communities must be present for the initial feature
selection process.

117

Chapter 5 - Graph-Based ML for Network Reconnaissance 118

3. Community Similarity: Each community is assumed to be an independent fea-

ture. This limitation is sub-optimal as Internet services are often distributed in

which distinct communities facilitate the same Internet service. In contrast, graph-

based ML quantifies community similarity through the analysis of the structural

similarity of a community’s neighbourhood set.

The three listed limitations would restrict the deployment of the bipartite PoA for the

analysis of large-scale TCP/IP networks. In this chapter, we design novel graph-based

ML techniques to address these limitations.

Two papers are presented within this chapter:

Paper 5.1 - “Detecting Botnet Victims Through Graph-Based Machine Learning” provides

an analysis of graph embedding techniques for the intrusion detection objective. This

paper provides an extension to GraphSAGE [87] to detect botnet infrastructure within a

TCP/IP network. The axiom of this approach is that the connection profile of a device

can be used to identify the command and control (C2) botnet infrastructure.

Paper 5.2 - “Enhancing Situational Awareness in Encrypted Networks Using Graph-Based

Machine Learning” devises a novel graph embedding technique—bipartite graph embed-

dings (BGE)—designed to provide a comprehensive framework for conducting passive net-

work reconnaissance through the bipartite PoA. This technique is extensively evaluated on

application areas relevant for the network reconnaissance domain (i.e., service prediction,

device characterisation, and network visualisation).

The key contribution of this chapter is as follows:

1. (Paper 5.1) We provide an extension to the well-known GraphSAGE technique [87]

to analyse a bipartite graph. We designated this extension as BiSAGE and evaluate

its use within the intrusion detection objective. In particular, we show that BiSAGE

improves the ability to detect botnet infrastructure in comparison to its predecessor.

Furthermore, we show that BiSAGE can accurately identify botnet infrastructure

Chapter 5 - Graph-Based ML for Network Reconnaissance 119

without requiring any labelled samples of botnet activity. This technique could

therefore be utilised to detect novel variants of botnet behaviour and support long-

term deployment (CN4).

2. (Paper 5.2) We design bipartite graph embeddings (BGE). BGE is the first graph

embedding technique that enables the real-time analysis of a large enterprise net-

work. We show that BGE remains effective under partial network observation and

efficiently scales for the analysis of networks containing hundreds of thousands of

devices. We provide BGE as packaged tool2 that can be used to generate insight

into bipartite graphs used in other application domains (e.g., recommendation and

citation networks).

3. (Paper 5.2) We validate that BGE satisfies all four criteria for widespread de-

ployment within realistic network conditions (CN1-4). In particular, BGE is an

unsupervised ML technique that can be easily updated in response to changes in

the network environment and enforces an open-world assumption (CN4). Further-

more, we show that the embeddings produced by BGE can be reused to satisfy

distinct network reconnaissance objectives (e.g., device and application characteri-

sation). BGE thus provides an objective independent methodology for analysing a

TCP/IP network through the bipartite PoA.

4. (Paper 5.2) We provide a novel edge sampling strategy—transient edge sampling

(TES)—to enable BGE for the analysis of large-scale and highly-dynamic graphs.

We show that TES provides an order-of-magnitude reduction in the training time

of BGE when compared to current sampling strategies (i.e., edge sampling and

random walks). We validate that the reduction in training time does not reduce

the fidelity of the resultant graph embeddings.

2https://github.com/MillarK-UofA/bipartite graph embeddings

A host becomes a bot victim through various means. Typi-
cally a bot victim is first compromised through either opening a
malicious email attachment or visiting a compromised website
[2]. Once compromised, a bot victim is then instructed by the
bot master to perform various malicious operations.

Current botnet detection solutions attempt to detect a bot vic-
tim based on its own behaviour. Malicious behaviour exhibited
by a bot victim however can become obfuscated by benign user
activity on the host. To address this limitation, we pose the use
of graph-based machine learning to detect a bot victim through
not only its behaviour but the behaviour of the devices it com-
municates with. Our approach exploits the inherent property
that bot victims must communicate within the bot infrastruc-
ture to receive commands or exfiltrate data.

The contribution of this work is two-fold:

1. We introduce BiSAGE; a modification of the GraphSAGE
algorithm [5] that has been specifically tailored for the de-
tection of bot victims. We show that BiSAGE provides a
significant improvement over GraphSAGE for the task of
bot victim detection.

2. We evaluate the use of BiSAGE on CSE-CIC-IDS2018
[11]; a publicly available dataset for evaluating intrusion
detection systems. We show that BiSAGE is able to accu-
rately identify bot victims without requiring any labelled
samples of botnet activity. This methodology can there-
fore be utilised to detect new variants of botnet behaviour.

The remainder of this paper is structured as follows: A brief
survey of related work in botnet detection is given in Section
2. Section 3 introduces BiSAGE; a technique for detecting bot-
net activity through graph-based machine learning. Section 4
outlines the dataset used for our analysis. Section 5 provides
an empirical analysis of the efficacy of the proposed technique.
The paper concludes in Section 6 with a discussion of results
and suggestions for future work.

2. Related Work

Recent advancements in botnet detection have largely
stemmed from the use of machine learning (ML) to classify
a botnet’s communication channels [13]. This approach is di-
vided into two main categories - flow-based detection and host-
based detection.

Flow-based detection techniques [14, 16, 8, 4, 6] attempt to
classify whether individual streams of network traffic are asso-
ciated with botnet activity. Such techniques typically rely on
the uniformity of botnet communications.

Bot masters must maintain a connection to their bot victims
to issue new commands and exfiltrate data. This behaviour typ-
ically generates communication patterns that exhibit a higher
degree of uniformity than is characteristic of benign network
traffic.

Flow-based detection characterises the uniformity within in-
dividual flows of traffic. This basis of detection therefore does
not examine the inter-flow dynamics indicative of botnet be-
haviour [7]. To address this limitation, recent studies have in-
vestigated the detection of botnet communications at the host
level.

Host-based detection techniques [7] classify whether a host
is associated with a botnet based on its overall communications.
Such techniques are able to detect longitudinal behaviour of a
botnet that may not be identifiable through a flow-based analy-
sis alone. Host-based detection techniques however are singu-
larly faceted in that they do not consider the interplay between
devices on a network.

The distinctive characteristic of a botnet is that the bot vic-
tims are not isolated; they are part of larger network of C2
servers and additional bot victims. A technique that classifies
each host individually is therefore missing a crucial element
that comprises a botnet. To address this limitation, we pose
BiSAGE; a graph-based machine learning technique that is able
to detect a bot victim through not only its actions but the actions
of the devices it communicates with.

3. BiSAGE

The BiSAGE technique is divided into two main compo-
nents. Firstly, the flow features for each host under analysis
are aggregated over the capture period (Section 3.1). Secondly,
graph-based machine learning is used to aggregate a host’s flow
features with the flow features of the devices it communicates
with (Section 3.2).

3.1 Flow Features

The efficacy of a botnet detection system is reliant on the
features under analysis [1]. Previous investigations have exten-
sively enumerated the features most indicative of flow-based
botnet behaviour. A summary of 10 flow-based features com-
monly used for botnet detection is provided in Table 1.

To perform a host-based analysis, the flow features provided
in Table 1 must be aggregated for each host. Aggregating the
flow statistics for a given host however is non-trivial. The diver-
sity of behaviour exhibited by each host must be accounted for
in order to observe meaningful statistics. In particular, bimodal
distributions were found when aggregating the flow statistics

described in Table 1. Such distributions therefore reduce the in-
formation gained through common aggregation functions such
as mean and standard deviation.

Frequency distributions were utilised to account for the di-
versity in host behaviour when aggregating flow-based statis-
tics. A frequency distribution measures the frequency of occur-
rence for values within set intervals. The aggregation metric for
each feature was set as the proportion of a host’s network traffic
that was represented by the two most frequent intervals. This
aggregation metric therefore provides a measure of the unifor-
mity of host’s network traffic in the presence of known bimodal
distributions. Furthermore, the proposed aggregation function
does not depend on the absolute values for each feature. This
property is particularly beneficial as methods that rely on the
absolute value of a feature are unlikely to generalise to new
botnet variants.

The difficulty in detecting a bot victim through its feature
vector alone is that the malicious behaviour can become ob-
fuscated by benign user activity on the host. To address this
limitation, we make use of the inherent botnet infrastructure.
Bot victims must communicate with their C2 servers to receive
commands and exfiltrate data. Therefore, the servers a host
communicates with provides an additional layer of information
when detecting a bot victim. Furthermore, additional bot vic-
tims are likely to also contact the same C2 servers. Therefore,
the hosts which share servers in common with the bot victim
can also be beneficial for botnet detection.

Methods to aggregate the feature vector of the hosts on an

TABLE 1. A summary of 10 features commonly used in flow-based bot-
net detection. Several studies were noted to combine the ‘Forward’ and
‘Backward’ features into a single metric; in this study, we have refrained
from this aggregation to mitigate the loss of information.

Features Reference Description

Forward Pkt Len [14, 16, 8, 4] Average length of the packets sent to the des-
tination IP.

Backward Pkt Len [14, 16, 8, 4] Average length of the packets sent to the
source IP.

Forward Pkt Rate [14, 16, 8, 4] Average packets per second sent to the desti-
nation IP.

Backward Pkt Rate [14, 16, 8, 4] Average packets per second sent to the source
IP.

Forward Pkts [14, 16, 8, 6] Total number of packets sent to the destination
IP.

Backward Pkts [14, 16, 8, 6] Total number of packets sent to the source IP.

Forward Bytes [14, 6] Total bytes sent to the destination IP.

Backward Bytes [14, 6] Total bytes sent to the source IP.

Forward IAT [16] Average inter-arrival time between packets
sent to the Destination IP.

Backward IAT [16] Average inter-arrival time between packets
sent to the Source IP.

enterprise network and the servers that they communicate with
must therefore be investigated.

3.2 Neighbourhood Aggregation

A bipartite graph was used to represent the communications
between the hosts on the network (actors) and the servers (com-
munities) in which they communicate with. An example of the
bipartite graph representation is illustrated in Figure 2 (a). A
bipartite graph was used as it allows for an intrinsic representa-
tion of the services used by the hosts on an enterprise network
[10].

The neighbourhood of a vertex, Γ(v), is the set of all ver-
tices which share an edge with vertex, v. The neighbourhood
of a vertex therefore allows for easy resolution of the servers
affiliated with a host, and the hosts affiliated with a server. As
discussed in Section 3.1, aggregating the feature vectors in the
neighbourhood of a host and its affiliated servers is likely to
provide additional insight when detecting a bot victim.

Graph convolutions neural networks (GCNs), such as Graph-
SAGE [5], have been designed to aggregate feature vectors
from the neighbourhood of a vertex. GCNs are however typ-
ically applied to homogeneous graphs. While a homogeneous
GCN could be applied to evaluate a bipartite graph, it would not
benefit from the unique properties that define bipartite graphs.

To perform neighbourhood aggregation in our analysis, we
pose BiSAGE; a modification of the GraphSAGE algorithm for
the evaluation of bipartite graphs. In particular, BiSAGE ex-
ploits the unique property of a bipartite graph that edges exists
only between vertices of the opposing set. This property al-
lows for two improvements of the GraphSAGE algorithm to be
made:

1. The creation of a specialised random walk for traversing a
bipartite graph (Algorithm 1). The bipartite random walk
is initialised from an actor vertex and transverses its affili-
ated communities. This random walk has been specifically
designed to aggregate information into the set of actor ver-
tices for the purpose of bot victim detection.

2. The enforcement of distinct aggregation layers between
the actor→community and community→actor relation-
ships. This improvement allows for better defined aggre-
gations functions to be learned during training. The im-
provement made to GraphSAGE has been shown in Algo-
rithm 2. In particular, line 3 was introduced to alternate
between the actor and community vertices within a bipar-
tite graph.

TABLE 2. The Macro-F1 score obtained by a one-class SVM trained on the BiSAGE embeddings. The one-class SVM was trained only on the benign host
samples. The percentage of benign host samples used for training is indicated in the columns of Table 2. For comparison, the Macro-F1 score obtained on
the feature vectors of the hosts and the embeddings generated by Node2vec [3] and GraphSAGE [5] have also been provided.

Technique Analysis 10% 20% 30% 40% 50% 60% 70% 80% 90%

Features features 0.579 0.640 0.675 0.694 0.721 0.716 0.730 0.785 0.802

Node2Vec structure 0.135 0.308 0.399 0.449 0.509 0.536 0.621 0.673 0.795

GraphSAGE (k = 1) features + structure 0.518 0.550 0.570 0.625 0.633 0.638 0.674 0.689 0.694

BiSAGE (k = 1) features + structure 0.606 0.662 0.733 0.800 0.809 0.853 0.889 0.938 0.961

GraphSAGE (k = 2) features + structure 0.411 0.486 0.533 0.577 0.598 0.648 0.670 0.723 0.752

BiSAGE (k = 2) features + structure 0.708 0.725 0.780 0.754 0.852 0.872 0.819 0.775 0.783

5. Results

One-class SVM was used to evaluate the embeddings gener-
ated by BiSAGE. One-class classification was selected as the
performance metric as it allows for the detection of unknown
malicious activity. This methodology can therefore be utilised
to detect new variants of botnet behaviour.

Table 2 reports the classification performance of a one-class
SVM model trained on the embeddings generated by BiSAGE.
For comparison, a one-class SVM was also evaluated on the
feature vectors of the hosts and the embeddings generated by
Node2Vec [3] and GraphSAGE [5]. The Node2Vec algorithm
was selected to investigate the information contained in the
structure of the bipartite graph alone.

5.1 Features vs. Structure

The classification performance of the feature vectors of the
hosts and the graph structure (Node2Vec) is shown in Table 2.
It is seen that both evaluations are able to produce a reasonable
boundary between the benign hosts and the bot victims. How-
ever, there is a significant improvement when using the hosts’
feature vectors. This result is due to the specific curation of
feature vectors for the purpose of botnet detection. The utilisa-
tion of the graph structure alone could still be beneficial when
specific features of each host cannot be identified.

5.2 Feature Aggregation

GraphSAGE was evaluated to investigate whether the clas-
sification performance of the feature and structural analyses
would be improved by their combined evaluation. The results
of GraphSAGE in Table 2 show that the combined analysis per-
forms worse than classifying the feature vectors of the actors

themselves. This result shows that simply applying the Graph-
SAGE algorithm for the detection of bot victims is insufficient.

The application of GraphSAGE implicitly states that the
graph under analysis is homogeneous. This assumption allows
for relationships to exist between any two vertices within the
graph. This assumption therefore does not delineate between
the explicit relationships between the actor and community ver-
tices, and the implicit relationships between the actors them-
selves. The extensions made within BiSAGE explicitly sepa-
rate these relationships and thus can produce more meaningful
embeddings on a bipartite graph.

5.3 GraphSAGE vs. BiSAGE

The comparison between the BiSAGE and GraphSAGE al-
gorithms is shown Table 2. BiSAGE shows a significant im-
provement over GraphSAGE for both aggregation depths. This
improvement is due to the tailoring of BiSAGE for the unique
properties of a bipartite graph. Creating distinct aggregation
layers for these relationships allows for a more efficient prop-
agation of information between the actor and community sets.
Furthermore, a ten times reduction in the training of Graph-
SAGE was achieved through the implementation of the bipar-
tite random walk algorithm (Algorithm 1).

BiSAGE and GraphSAGE were both evaluated at an aggre-
gation depth of k = 1 and k = 2. An overall improvement
in classification performance was shown when using an aggre-
gation depth of k = 1. This result is due to the specific ap-
plication domain of bot victim classification. An aggregation
depth of k = 1 attempts to classify a bot victim based on its
feature vector and the feature vectors of the servers it affiliates
with. As the C2 servers perform predominately malicious ac-
tions, their feature vectors would prove to be more informative
than the feature vectors of the bot victims themselves.

6. Conclusion and Future Work

In this paper, a technique for detecting bot victims on an
enterprise network was provided. The technique (BiSAGE)
utilised graph-based machine learning to detect a bot victim
through both its actions and the actions of the devices it com-
municates with. BiSAGE was evaluated on the CSE-CIC-
IDS2018 dataset; a publicly available dataset for evaluating in-
trusion detection systems. BiSAGE was shown to be able to
accurately identify bot victims without requiring any labelled
samples of botnet activity. This methodology could therefore
be utilised to detect new variants of botnet behaviour.

In future work, the application of graph-based machine
learning will be investigated for use on a peer-to-peer (P2P)
botnet infrastructure. This application would allow for more
diverse botnet variants to be identified.

Acknowledgements

This research is supported by the Australian Government Re-
search Training Program (RTP) Scholarship and the Common-
wealth of Australia as represented by the Defence Science &
Technology Group of the Department of Defence.

References

[1] ENISA threat landscape 2020 — botnet. [Online] Avail-
able: https://www.enisa.europa.eu/publications/enisa-
threat-landscape-2020-botnet/at download/fullReport
Accessed: 24 August 2021.

[2] Nathan Goodman. A survey of advances in botnet tech-
nologies. arXiv preprint arXiv:1702.01132, 2017.

[3] Aditya Grover and Jure Leskovec. Node2vec: Scalable
feature learning for networks. In 22nd ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 855–864, 2016.

[4] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke
Lee. Botminer: Clustering analysis of network traffic for
protocol- and structure-independent botnet detection. In
17th USENIX Security Symposium, 2008.

[5] William L Hamilton, Rex Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In 31st
International Conference on Neural Information Process-
ing Systems, pages 1025–1035, 2017.

[6] Rafał Kozik and Michał Choraś. Pattern extraction algo-
rithm for netflow-based botnet activities detection. Secu-
rity and Communication Networks, 2017.

[7] Rafał Kozik, Marek Pawlicki, and Michał Choraś. Cost-
sensitive distributed machine learning for netflow-based
botnet activity detection. Security and Communication
Networks, 2018.

[8] Wen-Hwa. Liao and Chia-Ching Chang. Peer to peer
botnet detection using data mining scheme. In Interna-
tional Conference on Internet Technology and Applica-
tions, pages 1–4, 2010.

[9] Yair Meidan, Michael Bohadana, Asaf Shabtai, Mar-
tin Ochoa, Nils Ole Tippenhauer, Juan Davis Guarnizo,
and Yuval Elovici. Detection of unauthorized IoT de-
vices using machine learning techniques. arXiv preprint
arXiv:1709.04647, 2017.

[10] Kyle Millar, Adriel Cheng, Hong Gunn Chew, and Cheng-
Chew Lim. Operating system classification: A minimal-
ist approach. In International Conference on Machine
Learning and Cybernetics, pages 143–150, 2020.

[11] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A
Ghorbani. Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In 4th Inter-
national Conference on Information Systems Security and
Privacy, volume 1, pages 108–116, 2018.

[12] Karl Sigler. Crypto-jacking: How cyber-criminals are ex-
ploiting the crypto-currency boom. Computer Fraud &
Security, 2018(9):12–14, 2018.

[13] Simon Nam Thanh Vu, Mads Stege, Peter Issam El-Habr,
Jesper Bang, and Nicola Dragoni. A survey on botnets:
Incentives, evolution, detection and current trends. Future
Internet, 13(8):198, 2021.

[14] Chun-Yu Wang, Chi-Lung Ou, Yu-En Zhang, Feng-
Min Cho, Pin-Hao Chen, Jyh-Biau Chang, and Ce-Kuen
Shieh. Botcluster: A session-based P2P botnet clustering
system on NetFlow. Computer Networks, 145:175–189,
2018.

[15] Wei Wang, Yaoyao Shang, Yongzhong He, Yidong Li,
and Jiqiang Liu. Botmark: Automated botnet detection
with hybrid analysis of flow-based and graph-based traf-
fic behaviors. Information Sciences, 511:284–296, 2020.

[16] David Zhao, Issa Traore, Bassam Sayed, Wei Lu, Sherif
Saad, Ali Ghorbani, and Dan Garant. Botnet detec-
tion based on traffic behavior analysis and flow intervals.
Computers & Security, 39:2–16, 2013.

3

evaluation of the efficacy of BGE. The paper concludes in
Section VI with a discussion of results and suggestions for
future work.

II. RELATED WORK / BACKGROUND

A. Device Management

In recent years, machine learning (ML) has become the
catalyst for developing novel network analysis solutions [10],
[28]. In device management, the principal benefit of ML is its
ability to automatically generate a device’s fingerprint based
on the device’s network behaviour; thus removing the labour
intensive process of manually managing a fingerprint database.

Current ML-based solutions for device management per-
form either deep packet inspection (DPI) or flow-based anal-
ysis:

1) Deep packet inspection solutions [29]–[33] exploit the
idiosyncrasies in a device’s packet creation process to
identify the characteristics of the device.

2) Flow-based analysis solutions [6], [34]–[36] charac-
terises a device based on its observed flow statistics;
where, flow statistics (e.g., NetFlow [37]) are the derived
metadata from an exchange of packets between two end
hosts.

The key assumption of DPI is the availability of unencrypted
packet content. In recent years, the validity of this assumption
has been greatly diminished due to widespread encryption
standards [38]. Furthermore, access to packet content is often
restricted to uphold the security and privacy of the network’s
users [39]. Flow-based analysis has therefore become critical
to maintaining effective device management solutions within
modern TCP/IP networks.

A common limitation in flow-based analysis is the reliance
on bespoke flow statistics. That is, flow statistics that are
unlikely to be monitored across diverse TCP/IP networks (e.g.,
total packets with a RST flag [35] or maximum effective
window size [34]). This limitation would heavily restrict the
widespread application of a device management solution.

In this paper, we focus solely on device management solu-
tions that would be widely applicable across diverse TCP/IP
networks. A solution was deemed to be widely applicable if it
utilises only the following nine flow statistics: the five-tuple5,
number of bytes in the flow, number of packets in the flow, and
the timestamp of the flow’s first and last packet. These nine
flow statistics are the smallest set of features that are required
to adequately describe a flow [40]; and would therefore be
commonly available across diverse TCP/IP networks.

Only two device management solutions were found to be
widely applicable across diverse TCP/IP networks:

1) Arora et al. [6] propose a flow-based solution for device
management utilising the set of commonly available flow
statistics and the flow’s direction. The authors train an
SVM classifier to determine whether a device is acting
as server or user on an enterprise network.

5The 5-tuple is a set of flow statistics composed of the source and destination
IP address, source and destination port number, and the transport protocol
(e.g., TCP/UDP).

2) Meidan et al. [36] propose a flow-based solution for de-
vice management utilising the set of commonly available
flow statistics and the flow’s TCP flags (e.g., SYN/ACK).
The authors train a light gradient boosting machine
(LGBM) to classify distinct types of IoT devices.

In this paper, we provide the following extensions to the
two surveyed solutions for device management across diverse
TCP/IP networks:

1) Minimal Feature Set: Both surveyed solutions utilised
the set of commonly available flow statistics and an
additional feature (i.e., flow direction [6] and TCP flags
[36]). The additional features used in the surveyed so-
lutions are commonly found when monitoring a TCP/IP
network, however, they are not required to adequately
describe a flow [40]. The additional features used by the
surveyed solutions may therefore restrict their application
on certain TCP/IP networks. In contrast, the solution
provided within this paper utilises only the source and
destination IP addresses; two fundamental features for
describing a flow.

2) Cross-Domain Applicability: Both surveyed solutions
provide a solution for a single type of device manage-
ment (i.e., server/user identification [6] and device type
identification [35]). In contrast, the solution provided in
this paper is shown to have cross-domain applicability.
That is, OS classification, service prediction, and network
visualisation.

3) Long-Term Deployment: Both surveyed solutions
utilised a supervised ML algorithm (i.e., SVM [6] and
LGBM [36]). Supervised ML learning would require a
large quantity of labelled network data to be updated
in response to changing network behaviour. Network
behaviour is highly volatile (Section I); the surveyed
solutions would thus continuously require labelled net-
work data to remain effective for long-term deployment.
In contrast, the solution provided in this paper utilises
unsupervised ML. In Section V-A, we show that our pro-
posed solution can achieve an OS classification accuracy
of 90% with only two labelled devices per OS (1.6% of
the overall network).

To achieve these three extensions we provide a novel graph
embedding technique—bipartite graph embeddings (BGE). In
previous works, we have shown the effectiveness of a bipartite
graph representation for device management through the anal-
ysis of IP addresses alone [19], [20]. In this work, we extended
our analysis through the use of graph embeddings. We show
that BGE can be applied for the analysis of large-scale,
dynamic graphs such as those encountered when modelling
an enterprise network. This extension is therefore essential for
the real-world applicability of the proposed solution.

B. Graph Embeddings

This section provides an introduction to graph embeddings.
Readers familiar with graph embeddings can skip to Section
III which defines the novel graph embedding technique that is
provided within this paper.

4

Graph embeddings aim to preserve a graph’s structural
information within a d-dimensional latent space (1) [41]. This
latent space can then be used visualisation or to perform
subsequent analyses over the graph.

θ : v → ~x ∈ Rd for all v ∈ V (1)

where θ is a structure preserving mapping function from
vertex, v, to the vertex’s latent space representation, ~x; d is
the dimensionality of the latent space; and V is the set of all
vertices within the graph.

Inspired by Mikolov et al. [42], recent approaches to graph
embeddings have typically utilised a common optimisation
strategy [24]–[27]. This optimisation strategy states that an
optimal θ is that which maximises the probability of observing
the neighbourhood6 of a vertex given the vertex itself. The
optimisation strategy is therefore defined as

arg max
θ

∑

v∈V
logPr(Γ(v)|v; θ) (2)

where Γ(v) is the neighbourhood of the vertex, v, and Pr is
the probability of observing Γ(v) given v and θ.

To maximise (2), the mapping function, θ, must learn to
encode which vertices belong in similar neighbourhoods. It is
assumed that the probability of observing the vertices within
the neighbourhood of a vertex, v, is independent given v.
The assumption of conditional independence for the neigh-
bourhood of a vertex is necessary for the defined optimisation
problem to be made tractable [25]. This assumption allows (2)
to be rewritten as

arg max
θ

∑

v∈V

∑

u∈Γ(v)

logPr(u|v; θ) (3)

Softmax and negative sampling [43] have both been inves-
tigated as optimisation strategies for (3). Negative sampling is
however more commonly utilised as it has been proven to be
more effective for larger scale evaluations [43]. The objective
of negative sampling is to distinguish the vertices within the
neighbourhood of a vertex (positive samples) from a set of
vertices randomly sampled from the entire graph (negative
samples). The likelihood that a sampled vertex is a positive
sample as opposed to a negative sample provides an estimate
of the probability component of (3).

Negative sampling is evaluated using a series of logistic
regressions for both the positive and negative samples (4).
These logistic regressions are then optimised using a standard
feed-forward neural network and stochastic gradient descent
(SGD) [44].

Pr(u|v; θ) = σ(θ(u) · θ(v))

+
k∑

i=1

wi ∼ Pn(w)[σ(−θ(wi) · θ(v))]
(4)

where σ is the sigmoid function; θ(·) is the latent space
representation of a vertex; k is the number of negative samples

6The neighbourhood of a vertex, Γ(v), is the set of all vertices that have an
edge with v.

to use per positive sample; and wi is a randomly sampled
vertex from a predefined noise distribution, Pn(w). The noise
distribution is chosen heuristically; however, it is typically set
as Pn(w) ∝ (dw)

3
4 as first proposed in [43]; where dw is the

degree of the vertex w.
Positive samples are selected through either random walks

[24], [25], [27] or edge sampling [26]. Random walks are
the preferred sampling strategy as they inherently encode the
graph’s local structural properties within the positive samples
selected [24]. Random walks however are expensive to com-
pute. Generating positive samples through random walks has
been shown to take longer than the optimisation itself [25].

Edge sampling is an alternative method for selecting
positive samples. Edge sampling generates positive samples
through randomly selecting edges from the graph. The like-
lihood of sampling a particular edge can either be uniformly
distributed or influenced by a specific attribute of the edges
themselves.

The typical neural architecture used to embed the vertices
of a graph is shown in Fig. 2 b). It is seen that each vertex
in the graph is present at the input and output layer of a
fully-connected neural network. A single hidden layer provides
the representation of the input and output layers within a d-
dimensional latent space (d� |V |).

The neural architecture is trained using a series of logistic
regressions. Each logistic regression denotes whether a target
vertex, u, in the output layer is within the neighbourhood
of a source vertex, v, in the input layer. The optimal result
is achieved when the logistic regression of any two vertices
produces the result

σ(θ(v) · θ(u)) =

{
1, if u ∈ Γ(v)

0, else
(5)

Each vertex in a homogeneous graph is encoded as two
embeddings; once as a source vertex (input layer) and once as
a target vertex (output layer). This representation is necessary
as an edge may exist between any two vertices within a
homogeneous graph. After training, it is common to represent
a vertex by its source embedding and discard its target
embedding. The structural information contained in the target
embeddings is therefore lost when utilising common graph
embedding techniques (e.g., node2vec [25]).

III. BIPARTITE GRAPH EMBEDDINGS

Previous graph embedding methods have shown great ap-
plication for encoding the structure of static, homogeneous
graphs. However, there has been limited insight in modifying
this methodology to exploit the unique properties of a dynamic
bipartite graph. Furthermore, the application of graph embed-
dings for device management has not yet been explored. In
this paper, we provide bipartite graph embeddings (BGE) to
address these limitations.

A. Neural Architecture

The fundamental property of a bipartite graph is that edges
can only exist between vertices of the opposing set. This

6

TABLE I
BIPARTITE GRAPHS STATISTICS (1st MAY 2019); WHERE, |A| IS THE NUMBER OF DEVICES,
µdeg(A) IS THE MEAN NUMBER OF COMMUNITIES PER DEVICE, |C| IS THE NUMBER OF
COMMUNITIES, µdeg(C) IS THE MEAN NUMBER OF DEVICES IN EACH COMMUNITY, AND

|M | IS THE NUMBER OF UNIQUE ACTOR-COMMUNITY AFFILIATIONS.

Bipartite Graph Community
Definition |A| µdeg(A) |C| µdeg(C) |M |

bipartite-IP IP
498

205.0 19.2k 5.3 102.1k

bipartite-ClassC Class C 120.7 12.3k 4.9 60.1k

bipartite-WHOIS WHOIS 89.6 3.7k 12.1 44.6k

TABLE II
THE DISTRIBUTION OF OPERATING SYSTEMS
ON THE UNIVERSITY’S WIRELESS NETWORK

ON THE 1st OF MAY 2019.

Operating System Actors

iOS 240 (48%)

Windows 45 (9%)

OS X 92 (19%)

Android 121 (24%)

Total 498 (100%)

from subsequent flows. As shown in Fig. 3 b), TES draws
k + 1 edges to select both the positive and negative samples.
A matrix multiplication is then applied over the embeddings of
the selected vertices and the element-wise logistic regression
is applied over the resultant matrix. This operation produces
a prediction, Ŷ ∈ R(k+1)×(k+1). The optimal prediction is
achieved when Ŷ is equal to the identity matrix, Ik+1.

A limitation of TES is that it assumes that there is diversity
in the transient edges sampled. Repeated vertices in the sam-
pled edges will cause sub-optimal updates to be made when
optimising (4). The likelihood of sampling repeated vertices is
dependent on the number of vertices within the graph and the
relative activity of each vertex. While this requirement may
exclude the utilisation of TES in some analyses, we show that
TES is well-suited for the analysis of an enterprise network
(Section V).

The benefit of TES is that only the transient edges of a
graph are required to select both positive and negative samples.
This allows TES to be 1) computationally efficient, as training
samples are not derived from the analysis of the entire graph;
and, 2) enables the analysis of highly dynamic graphs for
which experience rapid influxes of new edges (e.g., enterprise
networks).

IV. DATASET

The evaluation of BGE was performed on a university
wireless network. The network under analysis allows for both
staff and students alike to connect their wireless BYO de-
vices into the university’s enterprise network. The university’s
wireless network provides our analysis with real-word network
conditions for which to evaluate the efficacy of BGE.

A 26-hour capture was taken on the university’s wireless
network over a typical workday. The statistics of a bipartite
graph constructed from the full capture is shown in Table
I. The actor and community sets in the constructed bipartite
graph are the devices internal and external to the university’s
enterprise network, respectively.

The actors under analysis were chosen for the evaluation
of operating system (OS) classification (Section V-A). Actors
running iOS, Windows, OS X, and Android OSs were selected
as their combined market share represents over 96% of total
device usage worldwide [45]. The proportion of devices run-
ning each evaluated OS is shown in Table II.

The communities under analysis were not restricted by any
heuristic. Each community, however, was defined by its IP

address, Class C subnet, and WHOIS subnet. The WHOIS
subnet of each community was resolved through an API
request to DNSlytics7. Each community definition produced
a distinct bipartite graph representation as shown in Table I.
The community definitions (IP, Class C, and WHOIS) were
evaluated in Section V-B to determine their efficacy for OS
classification.

V. RESULTS

We evaluate BGE on two tasks specific to device manage-
ment; OS classification (Section V-A) and service prediction
(Section V-C). For comparison, we evaluate BGE against three
state-of-the-art graph embedding techniques:

1) Node2vec [25]: A homogeneous graph embedding tech-
nique that utilises a biased random walk to generate
positive samples. Graphs embeddings are trained through
applying the word2vec algorithm [42] over the corpus
generated through random walks.

2) LINE [26]: A homogeneous graph embedding technique
that utilises edge sampling to generate positive sam-
ples. The embeddings generated by LINE consist of
two components; representing the first- and second-order
relationships between vertices, respectively. A vertex’s
embedding is defined by concatenating its first- and
second-order components.

3) Metapath2vec++ [27]: A heterogeneous graph embedding
technique that utilises a meta-path random walk to gener-
ate positive samples. Graph embeddings are trained using
a heterogeneous variation of the word2vec algorithm.

We exclude a bipartite graph embedding approach, BiNE
[46], as we were unable to produce meaningful results with
their provided technique8 on the dataset under analysis.

The hyperparameters used for each technique were made
equivalent where possible. In particular, we set d = 128, r =
10, l = 80, s = 10, k = 5 as proposed in [25]; where d is the
dimensionality of the embeddings, r is the number of random
walks per vertex, l is the length of each random walk, s is
the size of word2vec’s context window, and k is the number
of negative samples. To train each technique, we generate an
equal number of training samples as proposed in [25]; where
the sampling budget is defined as κ = r × l × |V |.

7https://dnslytics.com/
8https://github.com/clhchtcjj/BiNE

11

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

a) Negative Samples (k)

M
ac

ro
F1

-S
co

re

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

b) Dimensionality log2(d)

M
ac

ro
F1

-S
co

re

106 107 108 109

0.0

0.2

0.4

0.6

0.8

1.0

c) Sampling Budget (κ)

M
ac

ro
F1

-S
co

re

Fig. 8. OS classification performance of BGE under various hyperparameter configurations; where k is the number of negative samples per positive sample,
d is the dimensionality of the embedding space, and κ is the number of positive training samples. Results were obtained from ten trials of BGE using 10
seed devices per OS for the initialisation of k-means clustering.

[9] X. Wei, N. C. Valler, H. V. Madhyastha, I. Neamtiu, and M. Faloutsos,
“Characterizing the behavior of handheld devices and its implications,”
Computer Networks, vol. 114, pp. 1–12, 2017.

[10] M. Conti, Q. Li, A. Maragno, and R. Spolaor, “The dark side (-channel)
of mobile devices: A survey on network traffic analysis,” arXiv preprint
arXiv:1708.03766, 2018.

[11] G. Aceto, G. Bovenzi, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Characterization and prediction of mobile-app traffic
using markov modeling,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 907–925, 2021.

[12] P. A. Frangoudis, L. Yala, and A. Ksentini, “AWESoME: Big data
for automatic web service management in sdn,” IEEE Transactions on
Network and Service Management, vol. 15, no. 1, pp. 13–26, 2018.

[13] G. F. Lyon, Nmap Network Scanning: The official Nmap Project Guide
to Network Discovery and Security Scanning. Insecure, 2009.

[14] C. Deliang, L. Xing, and Z. Qianli, “A comparative study on user
characteristics of fixed and wireless network based on DHCP,” in IEEE
Information Technology, Networking, Electronic and Automation Control
Conference, pp. 327–330, 2016.

[15] M. Zalewski, “p0fv3.” lcamtuf.coredump.cx, https://lcamtuf.coredump.
cx/p0f3. (accessed Mar. 3, 2020).

[16] M. Caselli, D. Hadžiosmanović, E. Zambon, and F. Kargl, “On the
feasibility of device fingerprinting in industrial control systems,” in
International Workshop on Critical Information Infrastructures Security,
pp. 155–166, Springer, 2013.

[17] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3,
pp. 800–813, 2019.

[18] M. Jelassi, C. Ghazel, and L. A. Saı̈dane, “A survey on quality of service
in cloud computing,” in 3rd International Conference on Frontiers of
Signal Processing (ICFSP), pp. 63–67, 2017.

[19] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Characterising
network-connected devices using affiliation graphs,” in IEEE/IFIP Net-
work Operations and Management Symposium, pp. 1–6, IEEE, 2020.

[20] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Operating system
classification: A minimalist approach,” in International Conference on
Machine Learning and Cybernetics (ICMLC), pp. 143–150, IEEE, 2020.

[21] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3,
pp. 800–813, 2019.

[22] W. Nelson, M. Zitnik, B. Wang, J. Leskovec, A. Goldenberg, and
R. Sharan, “To embed or not: Network embedding as a paradigm in
computational biology,” Frontiers in Genetics, vol. 10, 2019.

[23] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9,
pp. 1616–1637, 2018.

[24] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in 20th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pp. 701–710, 2013.

[25] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in 22nd ACM International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD), pp. 855–864, 2016.

[26] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in 24th International Conference
on World Wide Web, pp. 1067–1077, 2015.

[27] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in 23rd ACM
International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 135–144, 2017.

[28] Z. Li, A. L. G. Rios, and L. Trajković, “Machine learning for detecting
anomalies and intrusions in communication networks,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 7, pp. 2254–2264, 2021.

[29] N. Ammar, L. Noirie, and S. Tixeuil, “Autonomous identification of
IoT device types based on a supervised classification,” in International
Conference on Communications (ICC), pp. 1–6, 2020.

[30] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu, “OS fingerprinting
and tethering detection in mobile networks,” in Conference on Internet
Measurement, pp. 173–180, 2014.

[31] B. Anderson and D. McGrew, “OS fingerprinting: New techniques and
a study of information gain and obfuscation,” in 2017 IEEE Conference
on Communications and Network Security (CNS), pp. 1–9, 2017.

[32] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky,
“Passive OS fingerprinting methods in the jungle of wireless networks,”
in IEEE/IFIP Network Operations and Management Symposium, pp. 1–
9, 2018.

[33] P. Chemouil, P. Hui, W. Kellerer, Y. Li, R. Stadler, D. Tao, Y. Wen, and
Y. Zhang, “Special issue on artificial intelligence and machine learning
for networking and communications,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 6, pp. 1185–1191, 2019.

[34] A. S. Khatouni, L. Zhang, K. Aziz, I. Zincir, and N. Zincir-Heywood,
“Exploring NAT detection and host identification using machine learn-
ing,” in 15th IEEE International Conference on Network and Service
Management (CNSM), pp. 1–8, 2019.

[35] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “ProfilIoT: A machine learning approach
for IoT device identification based on network traffic analysis,” in ACM
Symposium on Applied Computing, pp. 506–509, 2017.

[36] Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and
A. Shabtai, “A novel approach for detecting vulnerable IoT devices con-
nected behind a home NAT,” Computers & Security, vol. 97, p. 101968,
2020.

[37] Cisco, “Netflow version 9 flow-record format.” cisco.com,
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies
white paper09186a00800a3db9.html. (accessed Oct. 17, 2021).

[38] European Network and Information Security Agency (ENISA), “En-
crypted traffic analysis.” enisa.europa.eu, https://www.enisa.europa.eu/
publications/encrypted-traffic-analysis. (accessed Mar. 15, 2022).

[39] J. Kampeas, A. Cohen, and O. Gurewitz, “Traffic classification based
on zero-length packets,” IEEE Transactions on Network and Service
Management, vol. 15, no. 3, pp. 1049–1062, 2018.

12

[40] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with NetFlow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[41] A. Caciularu, N. Raviv, T. Raviv, J. Goldberger, and Y. Be’ery,
“perm2vec: Attentive graph permutation selection for decoding of error
correction codes,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 1, pp. 79–88, 2021.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[43] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in Neural Information Processing Systems (NeurIPS),
pp. 3111–3119, 2013.

[44] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade, pp. 421–436, Springer, 2012.

[45] Statcounter, “Operating system market share worldwide (March 2020
- March 2021).” gs.statcounter.com, urlhttps://gs.statcounter.com/os-
market-share. (accessed Apr. 21 2021].

[46] M. Gao, L. Chen, X. He, and A. Zhou, “Bine: Bipartite network
embedding,” in 41st International ACM Conference on Research &
Development in Information Retrieval (SIGIR), pp. 715–724, 2018.

[47] H. Hu, Y. Liu, C. Chen, H. Zhang, and Y. Liu, “Optimal decision
making approach for cyber security defense using evolutionary game,”
IEEE Transactions on Network and Service Management, vol. 17, no. 3,
pp. 1683–1700, 2020.

[48] K. Dietiker, “Managing iOS mobile devices,” in 39th ACM Conference
on User Services (SIGUCCS), pp. 49–52, 2011.

[49] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society, vol. 28,
no. 1, pp. 100–108, 1979.

[50] D. H. L. Oliveira, T. P. d. Araujo, and R. L. Gomes, “An adaptive
forecasting model for slice allocation in softwarized networks,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1,
pp. 94–103, 2021.

[51] D. Ferreira, A. B. Reis, C. Senna, and S. Sargento, “A forecasting
approach to improve control and management for 5G networks,” IEEE
Transactions on Network and Service Management, vol. 18, no. 2,
pp. 1817–1831, 2021.

Chapter 6

Graph-Based Machine Learning

for Private Network Analysis

In this chapter, we provide the first utilisation of graph embeddings for private network

analysis. Private networks—such as a virtual private network (VPN)—have posed

significant challenges for network reconnaissance as they deny direct visibility into their

composition. In this chapter, we develop an extension of BGE (Chapter 5) to provide

the first known solution for inferring the composition of both the devices and applications

acting behind diverse private networks.

A single paper is presented within this chapter:

Paper 6.1 - “PiPiN: Acquiring Situational Awareness Behind Private Networks with Con-

fidence”, utilises graph embedding to infer the device and application composition within

a private network. This paper proves that graph embeddings are semantically meaning-

ful under vector combination. We exploit this property to decompose the embedding

generated for a private network into a vector combination of its constituent devices and

applications. Furthermore, this paper provides a metric of confidence for the model’s pre-

diction, allowing a network operator to make more informed decisions when administrating

their network.

142

Chapter 6 - Graph-Based Machine Learning for Private Network Analysis143

The key contribution of this chapter is as follows:

1. (Paper 6.1) We validate the use of prediction intervals (PIs) and ensemble models

to provide a confidence metric for ML-based network reconnaissance solutions. This

confidence metric addresses a severe limitation in related ML-based solutions as they

provide insufficient insight into the uncertainty of their predictions. In contrast, we

provide a metric to inform the network operator as to whether the predictions

made can be accepted or whether they require further analysis. Additionally, this

confidence metric can be utilised to identify when an ML-based solution requires

retraining based on changes within the network environment (CN4).

2. (Paper 6.1) We provide PiPiN; an extension of BGE that utilises Prediction

intervals to confidently acquire situational awareness behind a Private Network.

PiPiN exploits a novel insight into the vector decomposition of graph embeddings

to characterise a private network based only on its community structure (i.e., the IP

address field). Its use is thus encryption invariant (CN1) and can be widely deployed

across diverse TCP/IP private networks (CN2). Additionally, PiPiN preserves the

privacy of a private network as it cannot be used to identify the characteristics of

an individual device or user.

3. (Paper 6.1) PiPiN is the first technique that has been shown to be effective for

large-scale private network analysis that is both privacy preserving and encryption

invariant. We show that PiPiN can accurately estimate the number of devices

within a private network consisting of up to 500 devices. Furthermore, we show that

PiPiN can estimate the composition of device manufacturers, operating systems,

and applications that are used within a private network. PiPiN therefore provides a

network operator with crucial insight into the characteristics of a private network.

6

enables a network operator to make more informed decisions
by identifying the range of possible device compositions that
may exist within a private network.

A PI regression model designed by Pearce et al. [24] was
used to acquire insight into a private network through analy-
sis of its embedding. In particular, a fully-connected neural
network was trained with the loss function as specified in
Algorithm 1. The original loss function as specified by Pearce
et al. [24] remains largely unaltered; however, an extension
was made to allow for multi-output regression tasks. This
extension defined the loss function as the sum of the individual
loss functions (as defined by Algorithm 1) computed for each
characteristic of interest.

An illustration of the multi-output PI model’s neural ar-
chitecture is provided in Fig. 4. It is seen that for each
characteristic of interest, two output nodes are required to
denote the upper and lower bounds of the PI. The upper and
lower and bounds are trained using the loss function stated in
Algorithm 1 and stochastic gradient decent (SGD) [28].

2) Model Uncertainty: It is impractical to create a training
set that would cover all unique combinations of devices,
software, and user behaviour that could exist behind a private
network. Furthermore, network conditions may change after
a model has been trained which may invalidate the model
unbeknownst to the operator. It is therefore essential to account
for the uncertainty of the model when evaluating unknown
inputs.

An ensemble model was utilised to quantify model uncer-
tainty as suggested within [24]. Ensemble models quantify
model uncertainty through measuring the variation in a set
of trained models’ predictions. Small variations indicate that
the evaluated data is well represented within the training set
and hence a greater level of confidence is exhibited. Large
variations are an indication that the models have not learned
an appropriate mapping function for the evaluated data and
hence there exists uncertainty in their prediction.

We quantify model uncertainty by measuring the variance
in the upper and lower bounds of m models contained within
the ensemble model. Where, the upper and lower bounds of
the ensemble model are derived as follows

yUi =
1

m

m∑

j=1

ŷUij , (5)

σ2
Ui =

1

m− 1

m∑

j=1

(ŷU ij − yUi)
2, (6)

ỹUi = yUi + 1.96σUi (7)

where ŷUij is the upper bound produced by model j for a
prediction i. The ensemble’s lower bound, ỹLi is produced
similarly, however, the corresponding variance is subtracted
rather than added as follows

ỹLi = yLi − 1.96σLi (8)

The model uncertainty for a given prediction, i, is then
quantified by the average variance of the ensemble’s upper
and lower bounds as follows

σi =
σUi + σLi

2
(9)

The variance is calculated for each PI. The model uncer-
tainty for each characteristic of interest is therefore defined
for each PN embedding.

D. Generate private network embeddings (testing)

The testing set is composed of the private network(s)
observed from a network capture. PN embeddings are then
generated with the same procedure as detailed in Section III-B.

The observed private networks are represented by a
bipartite graph constructed from their network activity,
Gtest(P

′, C ′,M ′); where, P ′ is the set of observed private
networks, C ′ is the communities contacted during the capture
period, and M ′ is the set of weighted memberships (i.e.,
number of flows) between the set of private networks and the
communities they affiliate with over the Internet.

Algorithm 1 Prediction Interval (PI) Loss Function [24]

Input true vector, y; predicted upper and lower bounds, ŷU
and ŷL, respectively; coverage factor2, α; sigmoid softening
factor3, s; and a biasing factor4, λ.

Hard cut-off; where, sgn denotes the signum function.
kHU = max(0, sgn(ŷU − y))
kHL = max(0, sgn(y − ŷL))
kH = kHU ⊙ kHL

Soft cut-off.
kSU = sigmoid((ŷU − y) · s)
kSL = sigmoid((y − ŷL) · s)
kS = kSU ⊙ kSL

The mean prediction interval width (MPIW).
MPIW =

reduce sum((ŷU − ŷL)⊙ kH)/reduce sum(kH))

The prediction interval coverage probability (PCIP).
PICP = reduce mean(kS)

The utilised loss function; where, n denotes the selected
batch size5 used for training.
Loss = MPIW + λ · n

α(1−α) ·max(0, (1− α)− PICP)2

1The coverage factor, α, determines the percentage of expected samples that
should be contained with the PI. For example, a typical coverage factor of
α = 0.05 states that 95% of expected samples should be contained in an
optimally defined PI.

2The sigmoid softening factor, s, determines the sharpness in the boundary
for which a sample is considered to be internal or external to a PI. s = 160
was used within this work as suggested in [24].

3The biasing factor, λ, controls the importance of maintaining training samples
within the PI in contrast to reducing the PI’s width. λ = 5 was empirically
found to produce desirable results within this evaluation.

4It was found that setting n = 1 in the loss function was useful when training
with larger batch sizes (i.e., > 32); otherwise, n grows to dominate the loss
function. In particular, when n ≫ λ.

7

E. Estimate PN composition

The culminating step of the evaluation stage is to decompose
the embedding generated for the private network(s), ϕ(P ′),
using the trained PI model, f̂(·). This stage estimates the upper
and lower bounds for the number of devices likely to exhibit
each characteristic of interest. Furthermore, the model’s confi-
dence for each upper and lower bound is provided. This insight
provides a network operator with the necessary insight to make
informed decisions regrading the security and management of
the private networks that they administer.

IV. DATASET

To evaluate PiPiN, three network captures were taken on
a university’s wireless network. This network allows both
staff and students alike to connect their wireless devices
into the university’s enterprise network. It therefore provides
our analysis with insight into the realistic behaviour of user
devices.

Three 26-hour captures were taken on the university’s
wireless network. These captures were taken three months
apart on the 1st of May (t0), August (t1), and November (t2)
of 2019. For all analysis presented within this paper, the t0
capture was used as the training set; whilst all three captures
captures were used as the testing sets. This evaluation was
conducted to investigate the longitudinal efficacy of PiPiN.

The distribution of manufacturers, operating systems (OSs),
and applications used within the three captures is shown in
Table I. This evaluation considered six applications: Facebook,
WeChat, Twitter, Gmail, Spotify, and Netflix. These applica-
tions where chosen as 1) they are well-known and popular
applications, 2) represent distinct application types ranging
from social media to video streaming, and 3) they were well
represented within the evaluated network.

To simulate the behaviour of a private network, the network
traffic of a set of devices was amalgamated such that they
appear as originating from a singular device. Amalgamating
the network traffic in this manner has been shown to provide
an accurate approximation of a private network [7], [8], [16].

V. RESULTS

PiPiN was evaluated on several scenarios relevant for the
analysis of private networks. In particular, the size of a
private network is estimated in Section V-A. Section V-B
estimates the device composition of a private network (i.e., the
device manufacturer and OS composition). The composition of
applications used within a private network is then estimated in
Section V-C. The results section is concluded in Section V-D
with a discussion on how to utilise the proposed confidence
metric to identify uncertainty in the predictions made by
PiPiN.

A. Estimating Private Network Size

This evaluation investigates the use of the PiPiN to predict
the number of devices acting within a private network. A
device is defined as a system that either generates—or is the
recipient of—an observed network communication. Within this

evaluation, each device represents a physical device operating
within the captured network; however, this representation
could also extend to a virtual machine (VM) running within a
physical device.

The knowledge of how many devices are operating within
a private network is beneficial for several reasons. First, it ad-
vises the provision of resources to manage the private network
appropriately [9]. This benefit is essential within large enter-
prise networks and Internet service providers (ISPs) which
often manage numerous individual private networks. Second, it
assists in enforcing appropriate cybersecurity practices through
an increased awareness of the activity within the private
network. For instance, a significant change in the number
of devices within a private network may be an indication of
anomalous behaviour in certain network environments.

Four datasets were created to evaluate the use of PiPiN
to estimate the number of devices within a private network.
First, a training set was created from generating various
sized private networks sampled from the devices within the
t0 capture. The number of devices in each private network
was randomly selected between 1 and 500 to evaluate PiPiN
over a large range of private network sizes. An embedding
was then generated for each private network as discussed in
Section III-B. In total, the training set was composed of 214

embeddings of various sized private networks. Three testing
sets were then created on the t0

6, t1, and t2 captures using
the same procedure.

The performance of PiPiN on the testing sets is shown in
Fig. 6. Within subfigures a)-c), PiPiN is shown to provide an
accurate PI for the various sized private networks within each
testing set. In these subfigures, PiPiN is shown to exhibit a
significant degree of uncertainty in private network size as
indicated by the large PI widths. This result is expected due

TABLE I: The distribution of devices on the university’s
wireless network. Network captures were taken on the 1st of
May (t0), August (t1), and November (t2) of 2019.

Characteristics t0
01/05/2019

t1
01/08/2019

t2
01/11/2019

M
an

uf
ac

tu
re

rs Apple 320 292 305
Intel 33 32 27

Samsung 54 42 47
Huawei 19 15 10
OPPO 10 10 8

O
S

iOS 237 216 232
Android 118 105 102
Windows 43 39 32
macOS 83 75 73

A
pp

lic
at

io
ns

Facebook 313 241 271
WeChat 49 58 51
Twitter 68 33 53
Gmail 192 156 153
Spotify 39 43 53
Netflix 16 14 13

6The training and testing sets created from the t0 capture are composed of
distinct private networks.

8

E
st

im
at

e
PN

Si
ze

(y
-a

xi
s)

0 100 200 300 400 500

0

100

200

300

400

500

(a) t0 (α = 0.05)

0 100 200 300 400 500

0

100

200

300

400

500

Ideal Prediction Prediction Interval (PI)

(b) t1 (α = 0.05)

0 100 200 300 400 500

0
100
200
300
400
500
600

(c) t2 (α = 0.05)

0 100 200 300 400 500

0

100

200

300

400

500

(d) t0 (α = 0.50)

0 100 200 300 400 500

0

100

200

300

400

500

(e) t1 (α = 0.50)

0 100 200 300 400 500

0

100

200

300

400

500

(f) t2 (α = 0.50)

True PN Size (x-axis)

Fig. 6: Predicted private network size on the testing sets. Subfigures a) - c) provide a prediction interval with a 95% confidence
(α = 0.05). Subfigures d) - f) provide a prediction interval with a 50% confidence (α = 0.50).

to the large diversity of user operated devices that are active
within the evaluated network. A single device may be unused
during the capture period or involved in network intensive
tasks such as video streaming. The PI bounds were shown to
broaden to account for this variance at a 95% confidence level
(α=0.05).

A trade-off between the PICP and the MPIW can be tuned
through two hyperparameters; the biasing factor, λ, and the
coverage factor, α. Tuning these two hyperparameters may
be necessary to mitigate the broadening of the MPIW to
accommodate outliers in an evaluated data set. Subfigures d)-
f) show the result of PiPiN evaluated at 50% confidence level
(α = 0.50). The result of this evaluation shows that PiPiN
can provide an accurate and precise estimate of the number of
devices within private networks up to a size of approximately
200 devices; after which, PiPiN’s accuracy starts to decline.
PiPiN’s PI, however, never completely deviates from the true
number of devices. This result indicates that the use of PiPiN
at a 50% confidence level would still provide a useful estimate
of the number of devices for even significantly large private
networks.

The highest performance was seen on the t0 testing set.
This result supports the expectation that a more accurate PI
would be generated for a private network composed of devices
that are represented within the training set. PiPiN, however,
is shown to still provide accurate PIs on the t1 and t2 testing

sets. This result illustrates that PiPiN can provide an accurate
prediction of the number of devices within a private network
consisting of unknown devices. Furthermore, the performance
of PiPiN on the t1 and t2 testing sets show that the technique
can remain effective for at least six months after its initial
training.

The result of this evaluation shows two potential use-cases
for the deployment of PiPiN. First, a confident approximation
of the number of devices could be estimated using PiPiN at
95% confidence level. This estimation could be used to clus-
ter similarly sized private networks and enforce appropriate
managerial policies. Second, PiPiN’s confidence level could
be reduced to provide a more precise estimate of the number
of devices within a private network. It was shown that PiPiN
evaluated at a lower confidence can produce both accurate and
precise estimates of the size of a private network consisting
of 200 devices or fewer7. This precise estimation would allow
a security analyst to detect smaller changes within a private
network that may be indicative of anomalous use.

B. Manufacturer and Operating System Composition

This evaluation investigates the use of PiPiN to estimate the
composition of device manufacturers and operating systems

7Private networks of 200 devices or fewer would account for most typical
private networks such as those used by households and small offices.

10

testing set and show the performance of PiPiN on distinct
manufacturer and OS compositions. Within Fig. 7, a) and d)
are an example of a private network used by a diverse set of
manufacturers and OSs; b) and e) are an example of a private
network used only by Apple manufactured devices; and c) and
f) are an example of a private network used only by devices
running the Android OS.

From Fig. 7, PiPiN is seen to enable the estimation of
manufacturer and OS composition of distinct private networks.
This result would allow a network operator to apply tailored
security and managerial policies to administrate the devices
operating within the private network. Furthermore, the ability
of PiPiN to identify private networks composed of a singular
manufacturer or OS is critical to identify how the network is
being utilised.

C. Application Composition

This evaluation investigates the use of PiPiN to estimate
the composition of applications used by the devices within
a private network. In this work, applications are defined as
the user-installed software running on a device. In particular,
six applications were investigated: Facebook, WeChat, Twitter,
Gmail, Spotify, and Netflix.

The knowledge of which applications are running on a
device provides useful insight to a network operator. First,
it identifies the utility of the device. For example, a device
running distinct network applications (e.g., social media, E-
mail, and video streaming) is more likely to be a user device
rather than a printer or server [29]. Second, it is necessary to
identify the risk of a device to the network as each application
introduces its own unique vulnerabilities [30]. Third, it allows
for the deployment of policies to better manage the overall
network [31]. For example, an ISP may prioritise the network
traffic associated with certain applications (such as video
conferencing) to improve the quality of service (QoS) on the
network.

The same process as described in Section V-B was used to
generate the training and testing sets to evaluate PiPiN for es-
timating a private network’s application composition. Devices
were sampled, however, by their respective applications to
reduce the impact of application class imbalance. The resultant
private networks contained between 0-50 examples of devices
running each of the evaluated applications9.

Table IV depicts the performance of PiPiN to estimate
the application composition of a private network. The high
accuracy in the t0 testing set indicates that the applications
used by a private network can be inferred through the use
of PiPiN. PiPiN, however, experienced a significant degree of
uncertainty in application decomposition as indicated by the
width of its PIs.

An example of the increased PI width is illustrated in
Fig. 8. In Fig. 8 a), a confident prediction of the application
composition is shown with relatively small PI widths; In Fig.
8 b), however, the size of WeChat’s PI width would reduce
the insight gained from this application’s prediction.

9The number of each application within a private network could exceed 50
as each sampled device is likely to have multiple applications installed.

The reason for the increased PI width in Fig. 8 b) is
identified through plotting its model uncertainty. The model
uncertainty when estimating WeChat was significantly higher
than any other application within this private network. This
uncertainty causes the PI width to expand as the biasing factor,
λ, is set to favour accuracy over smaller PI widths (Algorithm
1). Decreasing PiPiN’s model uncertainty is therefore likely
to improve its efficacy for application decomposition.

Model uncertainty infers a lack of representation within
the training set. The training set evaluated in this section
was created by sampling device behaviour to generate private
networks of differing application compositions. The limitation
of this method is that it does not sample the behaviour of each
application individually. This may cause underrepresented
application compositions when evaluated on a testing set.

To mitigate model uncertainty, a larger dataset should be
generated such that PiPiN is trained on a greater diversity
of private network compositions. Additionally, the behaviour
of individual applications could be identified through filtering
the network traffic based on the application rather than the
device. This would allow for more diverse compositions of
applications to be represented within the training set.

Table IV shows a significant degradation in PiPiN’s ac-
curacy with respect to time. This result is derived from the
volatility in network behaviour exhibited by the evaluated
applications. In comparison to manufacturers and OSs, ap-
plications tend to be updated more frequently and utilise
more dynamic content delivery networks (CDNs). To mitigate
this effect, the technique would have to be re-trained more
frequently to keep pace with the dynamic behaviour of ap-
plication activity. Model uncertainty would therefore provide
a mechanism to indicate when PiPiN requires retraining as
shown in the next section.

D. Model Uncertainty

In Section V-C, the effect of model uncertainty for applica-
tion decomposition was identified. In this section, we further
evaluate the correlation between model uncertainty and the
accuracy of PiPiN. We show how model uncertainty could be
used to inform a network operator as to when to reject the
predictions made by PiPiN.

To investigate the response of model uncertainty, the eval-
uation provided in Section V-A was repeated with two alter-
ations. First, the maximum size of the private networks in
the testing sets were restricted to 100 devices. This restriction
aimed to mitigate the effect of data uncertainty experienced
at larger PN sizes. Second, two training sets was created. The
first training set restricted the maximum size of the sampled
private networks to 50 devices and the second to a maximum
size of 100 devices.

Model uncertainty will increase when the model is evaluated
on samples that were not well represented within the training
set. A model trained on the first training set should therefore
exhibit a noticeable elevation in its uncertainty when applied
to private networks of more than 50 devices.

Fig. 9 illustrates the performance of PiPiN for estimating
a private network’s size on the t1 testing set. The training of

12

0 20 40 60 80 100

0

20

40

60

80

100

True PN Size

E
st

im
at

e
PN

Si
ze

Ideal Prediction Prediction Interval (PI) Max Size of Training PNs

0

1

2

3

4

5

M
od

el
U

nc
er

ta
in

ty
(σ

)

Model Uncertainty

(a) Training PNs limited to 50 devices

0 20 40 60 80 100

0

20

40

60

80

100

True PN Size

E
st

im
at

e
PN

Si
ze

0

1

2

3

4

5

M
od

el
U

nc
er

ta
in

ty
(σ

)

(b) Training PNs limited to 100 devices

Fig. 9: The effect of model uncertainty to estimate the size of a private network on the t1 testing set. The training of PiPiN
was restricted to private networks of size 50 or below in a) and 100 or below in b). Model uncertainty is seen to increase as the
number of devices exceeds the maximum size contained within the training set. Furthermore, an increase in model uncertainty
is shown to provide an indication of a decrease in the accuracy of the model. That is, the true output falls outside of the PI’s
upper and lower bounds.

PiPiN was restricted to private networks of size 50 or below in
Fig. 9 a) and 100 or below in Fig. 9 b). The contrast between
the model uncertainty in the two evaluations is evident. A
sharp increase in model uncertainty is shown when applied to
private networks that were not represented within the training
set. Furthermore, an increase in uncertainty is shown to be
correlated with a decrease in the accuracy of the model. That
is, the true output falls outside of the PI’s upper and lower
bounds.

The result presented in Fig. 9 highlights the utility of
model uncertainty for real-world deployment. Without model
uncertainty, an operator would have no way of telling which
model—Fig. 9 a) or b)—should be trusted. Furthermore, an
increase in a model’s uncertainty could be used to indicate
to the operator when the model requires retraining. Model
uncertainty is therefore a necessity for maintaining effective
models within extended real-world deployments.

VI. CONCLUSION AND FUTURE WORK

We provide PiPiN; a novel graph-based machine learning
technique that utilises Prediction intervals to confidently ac-
quire situational awareness behind a Private Network. This
technique relies only on the availability of the source and des-
tination IP addresses. PiPiN is therefore encryption invariant
and can be widely deployed across diverse TCP/IP networks.

We show that PiPiN can accurately estimate the number
of devices within a private network consisting of up to 500
devices. Furthermore, we show that PiPiN can estimate the
composition of device manufacturers, operating systems, and
applications that are used within a private network. PiPiN
therefore provides a network operator with crucial insight into
the characteristics of a private network.

We quantify a confidence metric to further the real-world
applicability of PiPiN. Through this confidence metric, we

ensure that changes in the observed network behaviour are
made known to the network operator. This insight would be
essential for maintaining effective models within extended
real-world deployments.

In future work, we aim to address the applicability of PiPiN
to identify the application composition of a private network. In
Section V-C, we identify that a more comprehensive training
set may help to reduce the model uncertainty for application
decomposition. Furthermore, a different weight metric may be
more applicable for application decomposition. For example,
the number of bytes sent between device and server—and
their direction—may be more representative of application
behaviour than the number of flows.

REFERENCES

[1] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. de Groot, and L. E., “Ad-
dress allocation for private internets [RFC1918],” Internet Engineering
Task Force (IETF), 1996.

[2] R. Venkateswaran, “Virtual private networks,” IEEE Potentials, vol. 20,
no. 1, pp. 11–15, 2001.

[3] Z. Weinberg, S. Cho, N. Christin, V. Sekar, and P. Gill, “How to
catch when proxies lie: Verifying the physical locations of network
proxies with active geolocation,” in Internet Measurement Conference,
p. 203–217, 2018.

[4] M. Zain ul Abideen, S. Saleem, and M. Ejaz, “VPN traffic detection
in SSL-protected channel,” Security and Communication Networks,
vol. 2019, 2019.

[5] S. Webster, R. Lippmann, and M. Zissman, “Experience using active and
passive mapping for network situational awareness,” in 5th IEEE Inter-
national Symposium on Network Computing and Applications (NCA’06),
pp. 19–26, 2006.

[6] S. A. Shaikh, H. Chivers, P. Nobles, J. A. Clark, and H. Chen, “Network
reconnaissance,” Network Security, vol. 2008, no. 11, pp. 12–16, 2008.

[7] S. Mongkolluksamee, K. Fukuda, and P. Pongpaibool, “Counting NAT-
ted hosts by observing TCP/IP field behaviors,” in 2012 IEEE Interna-
tional Conference on Communications (ICC), pp. 1265–1270, 2012.

[8] S. M. Bellovin, “A technique for counting NATted hosts,” in 2nd ACM
SIGCOMM Workshop on Internet Measurement, pp. 267–272, 2002.

13

[9] A. Tekeoglu, N. Altiparmak, and A. S. Tosun, “Approximating the
number of active nodes behind a NAT device,” in 20th IEEE In-
ternational Conference on Computer Communications and Networks
(ICCCN), pp. 1–7, 2011.

[10] R. Mateless, H. Zlatokrilov, L. Orevi, M. Segal, and R. Moskovitch,
“IPvest: Clustering the IP traffic of network entities hidden behind
a single IP address using machine learning,” IEEE Transactions on
Network and Service Management, vol. 18, no. 3, pp. 3647–3661, 2021.

[11] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with NetFlow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[12] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Characterising
network-connected devices using affiliation graphs,” in IEEE/IFIP Net-
work Operations and Management Symposium, pp. 1–6, 2020.

[13] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Operating system
classification: A minimalist approach,” in IEEE International Conference
on Machine Learning and Cybernetics (ICMLC), pp. 143–150, 2020.

[14] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continu-
ous space word representations,” in Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human language Technologies, pp. 746–751, 2013.

[15] G. Maier, F. Schneider, and A. Feldmann, “NAT usage in residential
broadband networks,” Passive and Active Measurement, pp. 32–41,
2011.

[16] T. Komárek, M. Grill, and T. Pevný, “Passive NAT detection using HTTP
access logs,” in 2016 IEEE International Workshop on Information
Forensics and Security (WIFS), pp. 1–6, IEEE, 2006.

[17] A. S. Khatouni, L. Zhang, K. Aziz, I. Zincir, and N. Zincir-Heywood,
“Exploring NAT detection and host identification using machine learn-
ing,” in 15th IEEE International Conference on Network and Service
Management (CNSM), pp. 1–8, 2019.

[18] Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and
A. Shabtai, “A novel approach for detecting vulnerable IoT devices con-
nected behind a home NAT,” Computers & Security, vol. 97, p. 101968,
2020.

[19] Y. Gokcen, V. A. Foroushani, and A. N. Z. Heywood, “Can we identify
NAT behavior by analyzing traffic flows?,” in 2014 IEEE Security and
Privacy Workshops, pp. 132–139, 2014.

[20] S. Abt, C. Dietz, H. Baier, and S. Petrović, “Passive remote source
NAT detection using behavior statistics derived from netflow,” Emerging
Management Mechanisms for the Future Internet, pp. 148–159, 2013.

[21] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3,
pp. 800–813, 2019.

[22] Cisco, “Netflow version 9 flow-record format.” cisco.com,
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies
white paper09186a00800a3db9.html. (accessed Oct. 17, 2021).

[23] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Enhancing situational
awareness in encrypted networks using graph-based machine learning,”
2022. Under Submission.

[24] T. Pearce, A. Brintrup, M. Zaki, and A. Neely, “High-quality prediction
intervals for deep learning: A distribution-free, ensembled approach,” in
PMLR International Conference on Machine Learning, pp. 4075–4084,
2018.

[25] M. Jelassi, C. Ghazel, and L. A. Saı̈dane, “A survey on quality of service
in cloud computing,” in 3rd International Conference on Frontiers of
Signal Processing (ICFSP), pp. 63–67, 2017.

[26] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu, “OS fingerprinting
and tethering detection in mobile networks,” in ACM Conference on
Internet Measurement Conference, pp. 173–180, 2014.

[27] S. Robertson, “Understanding inverse document frequency: on theoret-
ical arguments for IDF,” Journal of Documentation, 2004.

[28] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade, pp. 421–436, 2012.

[29] B. Li, M. H. Gunes, G. Bebis, and J. Springer, “A supervised machine
learning approach to classify host roles on line using sflow,” in Workshop
on High Performance and Programmable Networking (HPPN), pp. 53–
60, 2013.

[30] R. Dhaya and M. Poongodi, “Detecting software vulnerabilities in
android using static analysis,” in 2014 IEEE International Conference
on Advanced Communications, Control and Computing Technologies,
pp. 915–918, 2014.

[31] Q. Liang, X. Wu, and H. C. Lau, “Optimizing service systems based
on application-level QoS,” IEEE Transactions on Services Computing,
vol. 2, no. 2, pp. 108–121, 2009.

Chapter 7

Conclusion

This chapter summarises the work conducted within this thesis. The key contributions

of this thesis are enumerated in Section 7.1 and suggestions for future work are

provided in Section 7.2. A closing statement is given in Section 7.3 concluding the thesis.

7.1 Contribution of Work

A total of nine papers were presented within this thesis. Each paper provided novel so-

lutions to address the four key challenges of conducting network reconnaissance within

modern networks: volume, variability, volatility, and visibility. The presented papers were

combined into Chapters 3-6 based on the similarity of their research aims and contribu-

tions. The contribution of each chapter is summarised as follows:

Chapter 2 evaluated 56 passive network reconnaissance solutions that were identified in

related literature. No surveyed solution was found to satisfy all four criteria for widespread

deployment on realistic network conditions:

• Criterion 1 (CN1) - Encryption Independence

• Criterion 2 (CN2) - Universal Minimum Feature Set

• Criterion 3 (CN3) - Real-World Deployment

• Criterion 4 (CN4) - Long-Term Deployment

159

Chapter 7 - Conclusion 160

We addressed this contribution gap through the development of novel graph-based network

reconnaissance solutions. In Chapters 4-6, we provided the first known passive network

reconnaissance solutions that address all four defined criteria (CN1-4).

In Chapter 3, two papers were provided on the use of conventional machine learning (ML)

for network reconnaissance. An empirical justification was first provided on the prevalent

use of random forest (RF) and convolutional neural networks (CNNs) within the network

reconnaissance domain. A novel CNN architecture—Segmented-CNN—was then designed

to exploit the unique structural properties of the TCP/IP protocol stack. The Segmented-

CNN was shown to reduce the training time of a CNN classifier and improve robustness to

evasive malicious behaviour. Furthermore, we discovered the proclivity of neural network

architectures to overfit when evaluated on full packet captures. This discovery prompted

the investigation into a graph-based point-of-analysis (PoA) for network reconnaissance.

In Chapter 4, four papers were provided on the use of a bipartite graph-based PoA for

conducting passive network reconnaissance. Our designed bipartite PoA provides the

first comprehensive framework for conducting passive network reconnaissance that relies

only on the source and destination IP address fields. This widely available feature set

was exploited to produce network reconnaissance solutions that are scalable, independent

of encryption (CN1), and deployable across diverse Internet (TCP/IP) networks (CN2).

Furthermore, we showed that the bipartite PoA is effective for long-term deployment

(CN4) on real-world networks (CN3) through the analysis of a university campus network

over a six-month observation.

In Chapter 5, two papers were provided on the use of graph-based ML on the bipartite

PoA. In particular, we designed bipartite graph embeddings (BGE); the first graph em-

bedding technique that enables the real-time analysis of a large TCP/IP network. We

show that BGE remains effective under partial network observation and efficiently scales

for the analysis of networks containing hundreds of thousands of devices. Furthermore, we

show that the embeddings produced by BGE can be reused to satisfy distinct network re-

connaissance objectives (e.g., device and application characterisation). BGE thus provides

a comprehensive methodology for conducting passive network reconnaissance.

Chapter 7 - Conclusion 161

In Chapter 6, a single paper was provided on the use of graph-based machine learning

for the analysis of private networks. In particular, we designed PiPiN; an extension of

BGE that utilises Prediction intervals to confidently acquire situational awareness behind

a Private Network. PiPiN was shown to accurately estimate the number of devices within

private networks that consist of up to 500 devices. Furthermore, we show that PiPiN can

estimate the composition of device manufacturers, operating systems, and applications

that are used within a private network. PiPiN therefore provides a network operator with

crucial insight into the characteristics of a private network.

7.2 Future Work

We acknowledge that all research has limitations. In this section, we highlight opportuni-

ties for the contributions of this thesis to be extended in future work. The areas of this

thesis that require future contribution (FC) are identified as follows:

FC1 Peer-to-peer communications: This thesis focused on the representation of a

TCP/IP network within a bipartite graph as first posed in Chapter 4. The edges in

a bipartite graph exist only between vertices of two distinct sets. The two distinct

sets were used to represent 1) the devices internal to a TCP/IP network and 2)

the Internet services used by the observed devices. This property exploited the

pervasive client-server architecture of TCP/IP communications.

A peer-to-peer (P2P) architecture cannot be represented by a bipartite graph. This

limitation would result in information loss when representing a TCP/IP network

within the bipartite graph-based PoA. For example, internal scanning—an early

warning sign of a compromised network—would not be detected as it results in

direct communication between devices internal to the network.

FC2 Fine-grain characterisation: The Internet services used by a device were shown

to provide sufficient insight for intrusion detection, device characterisation, and

Chapter 7 - Conclusion 162

application characterisation. For instance, the operating system (OS) of device

was shown to be accurately predicted by the device’s affiliated Internet services.

Additional information would be required to develop techniques capable of fine-

grain characterisation. Fine-grain characterisation (e.g., identifying the version of

a device’s OS) would foster a deeper understanding of the network under analysis.

FC3 Active network reconnaissance: This thesis focused solely on the use of passive

network reconnaissance. Active network reconnaissance (i.e., directly interacting

with the observed network) would provide auxiliary information that may not be

obtainable through passive network reconnaissance alone. For example, passive

network reconnaissance cannot resolve any insight into a device if the device is

inactive on the network.

FC4 Geo-restricted analysis: The Internet services used by a device are dependent

on the device’s location. For example, a device located in Australia will prioritise

Australian-based Internet services to reduce the latency of its communications. This

property necessitates labelled (seed) devices to be sourced from the network under

analysis or a network located in the same location. This property may limit the

insight produced by the techniques developed within this thesis if appropriate seed

devices cannot be sourced.

FC5 Quantitative Comparison: In Chapter 2, a qualitative metric (CN1-4) was de-

fined to compare the techniques provided within this thesis to those presented in

literature. This qualitative metric highlighted that the techniques presented in

literature are limited in their widespread applicability (CN2) due to their use of

deep packet inspection (DPI) or large, heterogeneous feature sets. In Chapters 4-6,

we designed novel graph-based network reconnaissance techniques to address this

limitation.

A quantitative comparison was not provided in this thesis. A quantitative com-

parison can only be provided on the condition that all techniques are evaluated on

the same dataset. This condition was not satisfied as the techniques developed in

literature could not be deployed as they required features that were unavailable on

the university network under analysis.

Chapter 7 - Conclusion 163

The remainder of this section defines four avenues of future work to extend the listed areas

of future contribution (FC). In Section 7.2.1, we propose alternative graph-based PoAs for

addressing FC1-2. In Section 7.2.2, we propose two methods for incorporating active

network reconnaissance into the solutions provided within this thesis (FC3). In Section

7.2.3, we propose a method of utilising FC4 to extend the solutions developed within this

thesis for user identification. In Section 7.2.4, we define the requirements to quantitatively

compare the techniques developed in this thesis to those provided in literature (FC5).

7.2.1 Extended Graph-Based Analysis for Improved

Network Situational Awareness

In Chapter 4, a bipartite PoA was designed and evaluated. This bipartite PoA is limited in

its representation of P2P communications and for performing fine-grain characterisations.

We provide two avenues of future work to address the limitations of the bipartite PoA:

1. heterogeneous graph-based PoA: A heterogeneous graph can be used to encode

numerous characteristics of a TCP/IP network directly into the graph’s structure.

These characteristics (e.g., the ports used by a device or which devices are used by

multiple users) would provide additional insight to improve a network operator’s

situational awareness. In addition, a heterogeneous graph can represent the inter-

and intra- communications of a TCP/IP network; thus enabling the representation

of P2P communications.

2. Time series graph-based PoA: A time series graph can be used to provide

insight into the longitudinal behaviour of a TCP/IP network. In particular, a time

series graph could be used to represent the pattern-of-life of a device or its user;

thus enabling techniques to perform a fine-grain characterisation. For example,

distinct versions of an OS can be distinguished by the periodicity in which they

communicate with Internet services.

Chapter 7 - Conclusion 164

7.2.2 Enhancing Bipartite Graph Embeddings Through

Active Network Reconnaissance

In Chapter 5, we designed and evaluated bipartite graph embeddings (BGE). BGE can be

extended through the use of active network reconnaissance to supplement the situational

awareness that can be achieved through passive network reconnaissance alone.

We provide two avenues of future work for enhancing BGE through active network recon-

naissance:

1. Active resolution of seed devices: BGE is an unsupervised ML technique that

identifies clusters of devices with similar behavioural characteristics. A small set

of labelled (seed) devices are required to label their respective cluster. Active re-

connaissance could be used to automatically produce seed devices on a TCP/IP

network by probing the set of devices central to each identified cluster. This ex-

tension provides the benefits of active reconnaissance while significantly reducing

the number of devices that are required to be actively probed. This benefit would

vastly reduce the disruption to a network caused by pervasive active network re-

connaissance.

2. Active learning and reconnaissance: Active learning is a ML optimisation

strategy which interactively queries a knowledge source (e.g., a domain expert)

when there is uncertainty in a decision or prediction. Active reconnaissance could

be utilised as a knowledge source that probes a TCP/IP network when there is un-

certainty in the embeddings produced by BGE. For example, active reconnaissance

could be used to resolve a device’s characteristics if the device is found to belong

to multiple known clusters. This extension provides the benefits of active recon-

naissance while limiting its use to only the devices that cannot be characterised

through passive network reconnaissance.

Chapter 7 - Conclusion 165

7.2.3 Bipartite Point-of-Analysis for User Identifica-

tion

In Chapter 4, we evaluate the bipartite PoA for intrusion detection and device character-

isation. The bipartite PoA was inspired by methods for user identification in the social

network theory domain. It is therefore expected that the bipartite PoA—as designed

within this thesis—can provide useful insight into user identification in a TCP/IP net-

work. That is, the characteristics of a user (e.g., age, location, and gender) could be

inferred from a user’s affiliated Internet services.

We provide two avenues of future work for the utilisation of the bipartite PoA for user

identification:

1. User fingerprinting: User fingerprinting aims to identify a specific user based on

their observed behaviour on a TCP/IP network. User fingerprinting has been mo-

tivated by sociology studies, market research, and to detect the leakage of personal

identifiable information (PII). The bipartite PoA is expected to be beneficial for

user fingerprinting by identifying a user’s characteristics based on their affiliated

Internet services. For example, identifying the location of a user based on their

access of geo-restricted Internet services.

2. User role identification: User role identification aims to identify the role of

a user (e.g., administrator, employee, or student). The motivation of user role

identification is to detect anomalous user behaviour within a TCP/IP network;

that is, a user acting outside their assigned role. The bipartite PoA is expected

to enable the detection of user roles through clustering users by their affiliated

Internet services. The bipartite PoA would require modification to include services

internal to the network. This modification is necessary for user role identification

as it would assist in separating network administrators (with unrestricted access to

internal services) from everyday users (with restricted access to internal services).

Chapter 7 - Conclusion 166

7.2.4 Quantitative Comparison

Full packet captures (pcaps) are required to compare the techniques developed within this

thesis to those provided in literature. Pcaps contain a full record of the network traffic that

has passed through an observation point and thus provide all features that are required

for the deployment of diverse passive network reconnaissance solutions.

The techniques developed within this thesis were primarily evaluated on the University of

Adelaide’s (UofA’s) operational network. Pcaps could not be obtained from the evaluated

network as they can contain confidential information. The UofA’s network cannot be used

to perform a quantitative comparison as the techniques provided in literature could not

be deployed on the network. In addition, statistical hypothesis tests should be conducted

to ensure the comparison between techniques is statistically significant.

A research agreement with a network operator is required to capture pcaps and thus per-

form a quantitative comparison on a real-world (CN3) operational network. The research

agreement must uphold ethical and privacy considerations to ensure that the pcaps are

processed and stored securely. We provide open access to the code base developed for

BGE1 to enable a quantitative comparison to be conducted in future work.

7.3 Closing Statement

The techniques designed and evaluated within this thesis provide novel solutions for two

crucial aims of network reconnaissance—device characterisation and intrusion detection.

This thesis addressed known limitations in current literature by providing network recon-

naissance techniques that are scalable, independent of encryption, and deployable across

1https://github.com/MillarK-UofA/bipartite graph embeddings

Chapter 7 - Conclusion 167

diverse TCP/IP networks. We provide these techniques for the development of unique

cybersecurity solutions to both prevent and mitigate the impact of future cyber-attacks.

Bibliography

[1] A. Gelnaw, “You can’t secure what you can’t see.” bitsight.com, https://www.bi

tsight.com/blog/you-cant-secure-what-you-cant-see. (accessed Apr. 26,

2022).

[2] C. Harber, “You can’t defend what you can’t see: Why visibility is critical for

improving cyber defense.” securityweek.com, https://www.securityweek.com/you

-cant-defend-what-you-cant-see-why-visibility-critical-improving-cyb

er-defense. (accessed Apr. 26, 2022).

[3] P. Quade, “You can’t protect what you can’t see.” csoonline.com, https://www.cs

oonline.com/article/3256211/you-cant-protect-what-you-cant-see.html.

(accessed Apr. 26, 2022).

[4] J. Faircloth, Penetration tester’s open source toolkit. Syngress, 2016.

[5] S. A. Shaikh, H. Chivers, P. Nobles, J. A. Clark, and H. Chen, “Network reconnais-

sance,” Network Security, vol. 2008, no. 11, pp. 12–16, 2008.

[6] P. A. Frangoudis, L. Yala, and A. Ksentini, “AWESoME: Big data for automatic

web service management in SDN,” IEEE Transactions on Network and Service Man-

agement, vol. 15, no. 1, pp. 13–26, 2018.

[7] N. Shah, “Industry trends: The challenges of inspecting encrypted network traffic.”

fortinet.com, https://www.fortinet.com/blog/industry-trends/keeping-up

-with-performance-demands-of-encrypted-web-traffic. (accessed Apr. 26,

2022).

168

Bibliography 169

[8] Google, “Google transparency report: HTTPS encryption on the web.” transparen-

cyreport.google.com, https://transparencyreport.google.com/https/overvi

ew?hl=en, 2022. (accessed Apr. 26, 2022).

[9] G. Aceto, G. Bovenzi, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescapé, “Char-

acterization and prediction of mobile-app traffic using markov modeling,” IEEE

Transactions on Network and Service Management, vol. 18, no. 1, pp. 907–925,

2021.

[10] M. Conti, Q. Li, A. Maragno, and R. Spolaor, “The dark side (-channel) of mobile

devices: A survey on network traffic analysis,” arXiv preprint arXiv:1708.03766,

2018.

[11] B. Schneier, “Click here to kill everybody: Security and survival in a hyper-

connected world,” p. 54, 2018.

[12] Australian Cyber Security Centre (ACSC), “ASCS annual cyber threat report: July

2020 to july 2021.” cyber.gov.au, https://www.cyber.gov.au/sites/default/f

iles/2021-09/ACSC\%20Annual\%20Cyber\%20Threat\%20Report\%20-\%20202

0-2021.pdf. (accessed Apr. 26, 2022).

[13] Lowy Institute, “Poll 2021 - security and defence.” poll.lowyinstitute.org, https:

//poll.lowyinstitute.org/themes/security-and-defence. (accessed: Jan. 13,

2022).

[14] Australian Cyber Security Centre (ACSC), “ACSC annual cyber threat report: July

2019 to july 2020.” cyber.gov.au, https://www.cyber.gov.au/sites/default/f

iles/2020-09/ACSC-Annual-Cyber-Threat-Report-2019-20.pdf. (accessed

Apr. 26, 2022).

[15] CISCO, “What is cybersecurity?.” cisco.com, https://www.cisco.com/c/en au/

products/security/what-is-cybersecurity.html. (accessed Apr. 26, 2022).

[16] National Institute of Standards and Technology, “Framework for improving critical

infrastructure cybersecurity.” nvlpubs.nist.gov, https://nvlpubs.nist.gov/nistp

ubs/CSWP/NIST.CSWP.04162018.pdf. (accessed Apr. 26, 2022).

Bibliography 170

[17] R. J. Barnett and B. Irwin, “Towards a taxonomy of network scanning techniques,”

in 2008 South African Institute of Computer Scientists and Information Technolo-

gists (SAICSIT’08), p. 1–7, 2008.

[18] B. AsSadhan, J. M. Moura, D. Lapsley, C. Jones, and W. T. Strayer, “Detecting

botnets using command and control traffic,” in 8th IEEE International Symposium

on Network Computing and Applications, pp. 156–162, 2009.

[19] Australian National University (ANU), “Incident report: On the breach of the

australian national university’s administrative systems.” imagedepot.anu.edu.au,

https://imagedepot.anu.edu.au/scapa/Website/SCAPA190209 Public rep

ort web 2.pdf. (accessed Apr. 26, 2022).

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, 2017.

[21] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, and A. Askell, “Language models are few-shot learners,”

Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901, 2020.

[22] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learn-

ing techniques for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3,

pp. 362–386, 2020.

[23] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning for big

data processing,” EURASIP Journal on Advances in Signal Processing, vol. 2016,

no. 1, pp. 1–16, 2016.

[24] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber scanning: A comprehensive survey,”

IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1496–1519, 2014.

[25] S. Webster, R. Lippmann, and M. Zissman, “Experience using active and passive

mapping for network situational awareness,” in 5th IEEE International Symposium

on Network Computing and Applications (NCA’06), pp. 19–26, 2006.

Bibliography 171

[26] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey

on graph neural networks,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 32, no. 1, pp. 1–21, 2020.

[27] B. Donnet and T. Friedman, “Internet topology discovery: a survey,” IEEE Com-

munications Surveys & Tutorials, vol. 9, no. 4, pp. 56–69, 2007.

[28] P. V. Amoli, T. Hamalainen, G. David, M. Zolotukhin, and M. Mirzamohammad,

“Unsupervised network intrusion detection systems for zero-day fast-spreading at-

tacks and botnets,” International Journal of Digital Content Technology and its

Applications (JDCTA), vol. 10, no. 2, pp. 1–13, 2016.

[29] L. Bilge and T. Dumitraş, “Before we knew it: an empirical study of zero-day attacks

in the real world,” in 2012 ACM Conference on Computer and Communications

Security, pp. 833–844, 2012.

[30] M. Sarhan, S. Layeghy, M. Gallagher, and M. Portmann, “From zero-shot machine

learning to zero-day attack detection,” arXiv preprint arXiv:2109.14868, 2021.

[31] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic classification

using convolutional neural network for representation learning,” in International

Conference on Information Networking (ICOIN), pp. 712–717, 2017.

[32] A. Arora and S. K. Peddoju, “Minimizing network traffic features for android mobile

malware detection,” in 18th International Conference on Distributed Computing and

Networking, pp. 1–10, 2017.

[33] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-stage deep learn-

ing model for efficient network intrusion detection,” IEEE Access, vol. 7, pp. 30373–

30385, 2019.

[34] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion detection

systems: Detecting the unknown without knowledge,” Computer Communications,

vol. 35, no. 7, pp. 772–783, 2012.

Bibliography 172

[35] D. Arora, K. F. Li, and A. Loffler, “Big data analytics for classification of network

enabled devices,” in Advanced Information Networking and Applications Workshops

(WAINA), pp. 708–713, 2016.

[36] Q. Chen and R. A. Bridges, “Automated behavioral analysis of malware: A case

study of wannacry ransomware,” in 16th IEEE International Conference on Machine

Learning and Applications (ICMLA), pp. 454–460, 2017.

[37] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “PiPiN: Acquiring situational

awareness behind private networks with confidence,” unpublished paper, School of

Electrical and Electronic Engineering, The University of Adelaide, 2022.

[38] K. Downer and M. Bhattacharya, “BYOD security: A new business challenge,” in

IEEE International Conference on Smart City/SocialCom/SustainCom (SmartC-

ity), pp. 1128–1133, 2015.

[39] N. Ammar, L. Noirie, and S. Tixeuil, “Autonomous identification of IoT device types

based on a supervised classification,” in International Conference on Communica-

tions (ICC), pp. 1–6, 2020.

[40] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu, “OS fingerprinting and tether-

ing detection in mobile networks,” in Conference on Internet Measurement, pp. 173–

180, 2014.

[41] B. Anderson and D. McGrew, “OS fingerprinting: New techniques and a study of

information gain and obfuscation,” in IEEE Conference on Communications and

Network Security (CNS), pp. 1–9, 2017.

[42] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky, “Passive OS

fingerprinting methods in the jungle of wireless networks,” in IEEE/IFIP Network

Operations and Management Symposium, pp. 1–9, 2018.

[43] S. Mongkolluksamee, K. Fukuda, and P. Pongpaibool, “Counting NATted hosts by

observing TCP/IP field behaviors,” in IEEE International Conference on Commu-

nications (ICC), pp. 1265–1270, 2012.

Bibliography 173

[44] S. M. Bellovin, “A technique for counting NATted hosts,” in 2nd ACM SIGCOMM

Workshop on Internet Measurement, pp. 267–272, 2002.

[45] A. Tekeoglu, N. Altiparmak, and A. S. Tosun, “Approximating the number of active

nodes behind a NAT device,” in 20th IEEE International Conference on Computer

Communications and Networks (ICCCN), pp. 1–7, 2011.

[46] R. Mateless, H. Zlatokrilov, L. Orevi, M. Segal, and R. Moskovitch, “IPvest: Cluster-

ing the IP traffic of network entities hidden behind a single IP address using machine

learning,” IEEE Transactions on Network and Service Management, vol. 18, no. 3,

pp. 3647–3661, 2021.

[47] M. Willett, “Lessons of the solarwinds hack,” Survival, vol. 63, no. 2, pp. 7–26, 2021.

[48] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smartphone app

identification via encrypted network traffic analysis,” IEEE Transactions on Infor-

mation Forensics and Security, vol. 13, no. 1, pp. 63–78, 2018.

[49] H. K. Lim, J. B. Kim, J. S. Heo, K. Kim, Y. G. Hong, and Y. H. Han, “Packet-based

network traffic classification using deep learning,” in International Conference on

Artificial Intelligence in Information and Communication (ICAIIC), pp. 046–051,

2019.

[50] S. Dong, “Multi class SVM algorithm with active learning for network traffic classi-

fication,” Expert Systems with Applications, vol. 176, 2021.

[51] J. Li, H. Zhou, S. Wu, X. Luo, T. Wang, X. Zhan, and X. Ma, “FOAP: Fine-

grained open-world android app fingerprinting,” in 31st USENIX Security Sympo-

sium (USENIX Security 22), 2022.

[52] K. Park and H. Kim, “Encryption is not enough: Inferring user activities on

KakaoTalk with traffic analysis,” in International Workshop on Information Se-

curity Applications, pp. 254–265, 2015.

[53] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investigating user pri-

vacy in android ad libraries,” in Workshop on Mobile Security Technologies (MoST),

vol. 10, pp. 195–197, 2012.

Bibliography 174

[54] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync you are?:

Smartphone fingerprinting via application behaviour,” in 6th ACM Conference on

Security and Privacy in Wireless and Mobile Networks, pp. 7–12, 2013.

[55] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling, “Fingerprinting mo-

bile devices using personalized configurations,” Privacy Enhancing Technologies,

vol. 2016, no. 1, pp. 4–19, 2016.

[56] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon: Revealing

and controlling PII leaks in mobile network traffic,” in 14th Annual International

Conference on Mobile Systems, Applications, and Services, pp. 361–374, 2016.

[57] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide to Network

Discovery and Security Scanning. Insecure, 2009.

[58] G. E. Bartlett, Network reconnaissance using blind techniques. Ph.D. dissertation,

University of Southern California, 2010.

[59] G. E. Bartlett, J. Heidemann, and C. Papadopoulos, “Understanding passive and

active service discovery,” in 7th ACM SIGCOMM Conference on Internet measure-

ment, pp. 57–70, 2007.

[60] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach. Pear-

son Education Limited, 6th ed., 2013.

[61] J. Martin, E. Rye, and R. Beverly, “Decomposition of MAC address structure for

granular device inference,” in 32nd ACM Annual Conference on Computer Security

Applications, pp. 78–88, 2016.

[62] M. Zalewski, “p0fv3.” lcamtuf.coredump.cx, https://lcamtuf.coredump.cx/p0f3.

(accessed Mar. 7, 2022).

[63] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted traffic clas-

sification using deep learning: Experimental evaluation, lessons learned, and chal-

lenges,” IEEE Transactions on Network and Service Management, vol. 16, no. 2,

pp. 445–458, 2019.

Bibliography 175

[64] P. A. B. Claise, B. Trammell, “Specification of the ip flow information export (IP-

FIX) protocol for the exchange of flow information [RFC7011],” Internet Engineering

Task Force (IETF), 2013.

[65] M. Zhan, Y. Li, G. Yu, B. Li, and W. Wang, “Detecting DNS over HTTPS based

data exfiltration,” Computer Networks, vol. 209, 2022.

[66] J. Kampeas, A. Cohen, and O. Gurewitz, “Traffic classification based on zero-length

packets,” IEEE Transactions on Network and Service Management, vol. 15, no. 3,

pp. 1049–1062, 2018.

[67] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O. Tippenhauer,

and Y. Elovici, “ProfilIoT: A machine learning approach for IoT device identifica-

tion based on network traffic analysis,” in ACM Symposium on Applied Computing,

pp. 506–509, 2017.

[68] T. Radivilova, L. Kirichenko, D. Ageyev, M. Tawalbeh, and V. Bulakh, “Decrypting

SSL/TLS traffic for hidden threats detection,” in 9th IEEE International Conference

on Dependable Systems, Services and Technologies (DESSERT), pp. 143–146, 2018.

[69] A. Alshamsi and T. Saito, “A technical comparison of IPSec and SSL,” in 19th

International Conference on Advanced Information Networking and Applications

(AINA’05), pp. 395–398, 2005.

[70] V. Korhonen, “Future after OpenVPN and IPsec,” 2019. M.S. Thesis, School of

Computing and Electrical Engineering, Tampere University, 2019.

[71] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras,

“Flow monitoring explained: From packet capture to data analysis with NetFlow

and IPFIX,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2037–

2064, 2014.

[72] Cisco, “Netflow version 9 flow-record format.” cisco.com, https://www.cisco.com/

en/US/technologies/tk648/tk362/technologies white paper09186a00800a3d

b9.html. (accessed Oct. 17, 2021).

Bibliography 176

[73] Internet Assigned Numbers Authority (IANA), “IP flow information export (IPFIX)

entities.” iana.org, https://www.iana.org/assignments/ipfix/ipfix.xhtml.

(accessed Oct. 17, 2021).

[74] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, “Charac-

terization of encrypted and VPN traffic using time-related,” in 2nd International

Conference on Information Systems Security and Privacy (ICISSP), pp. 407–414,

2016.

[75] Internet Assigned Numbers Authority (IANA), “Service name and transport proto-

col port number registry.” iana.org, https://www.iana.org/assignments/servi

ce-names-port-numbers/service-names-port-numbers.xhtml. (accessed Jun.

21, 2022).

[76] J. Zhao, X. Jing, Z. Yan, and W. Pedrycz, “Network traffic classification for data

fusion: A survey,” Information Fusion, vol. 72, pp. 22–47, 2021.

[77] ntop, “nDPI: Open and extensible LGPLv3 deep packet inspection library.” ntop.org,

https://www.ntop.org/products/deep-packet-inspection/ndpi/. (accessed

Oct. 4, 2021).

[78] statista, “Number of available applications in the Google Play Store from December

2009 to March 2022.” statista.com, https://www.statista.com/statistics/

266210/number-of-available-applications-in-the-google-play-store/.

(accessed Oct. 4, 2021).

[79] B. Schneier, “The internet of things will upend our industry,” IEEE Security &

Privacy, vol. 15, no. 2, pp. 108–108, 2017.

[80] Y. Kazato, Y. Nakagawa, and Y. Nakatani, “Improving maliciousness estimation of

indicator of compromise using graph convolutional networks,” in 17th IEEE Annual

Consumer Communications & Networking Conference (CCNC), pp. 1–7, 2020.

[81] R. Kozik, M. Pawlicki, and M. Choraś, “Cost-sensitive distributed machine learning

for netflow-based botnet activity detection,” Security and Communication Networks,

2018.

Bibliography 177

[82] A. S. Uluagac, S. V. Radhakrishnan, C. Corbett, A. Baca, and R. Beyah, “A passive

technique for fingerprinting wireless devices with wired-side observations,” in IEEE

Conference on Communications and Network Security (CNS), pp. 305–313, 2013.

[83] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network intru-

sion detection systems (unsw-nb15 network data set),” in 2015 Military Communi-

cations and Information Systems Conference (MilCIS), pp. 1–6, 2015.

[84] E. Biglar Beigi, H. Hadian Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards

effective feature selection in machine learning-based botnet detection approaches,”

in 2014 IEEE Conference on Communications and Network Security, pp. 247–255,

2014.

[85] F. Zola, L. Segurola-Gil, J. Bruse, M. Galar, and R. Orduna-Urrutia, “Network

traffic analysis through node behaviour classification: a graph-based approach with

temporal dissection and data-level preprocessing,” Computers & Security, vol. 115,

2022.

[86] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” arXiv preprint arXiv:1609.02907, 2016.

[87] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[88] A. Caciularu, N. Raviv, T. Raviv, J. Goldberger, and Y. Be’ery, “perm2vec: At-

tentive graph permutation selection for decoding of error correction codes,” IEEE

Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 79–88, 2021.

[89] T. Matsunaka, A. Yamada, and A. Kubota, “Passive OS fingerprinting by DNS

traffic analysis,” in 27th IEEE International Conference on Advanced Information

Networking and Applications (AINA), pp. 243–250, 2013.

[90] N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, and A. Spognardi, “No NAT’d

user left behind: Fingerprinting users behind NAT from NetFlow records alone,” in

34th IEEE International Conference on Distributed Computing Systems, pp. 218–

227, 2014.

Bibliography 178

[91] Z. Chen, H. Han, Q. Yan, B. Yang, L. Peng, L. Zhang, and J. Li, “A first look at

android malware traffic in first few minutes,” in IEEE Trustcom/BigDataSE/ISPA,

vol. 1, pp. 206–213, 2015.

[92] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did on your

smartphone: Inferring app usage over encrypted data traffic,” in IEEE Conference

on Communications and Network Security (CNS), pp. 433–441, 2015.

[93] N. Ruffing, Y. Zhu, R. Libertini, Y. Guan, and R. Bettati, “Smartphone reconnais-

sance: Operating system identification,” in 13th IEEE Annual Consumer Commu-

nications & Networking Conference (CCNC), pp. 1086–1091, 2016.

[94] T. Komárek, M. Grill, and T. Pevný, “Passive NAT detection using HTTP ac-

cess logs,” in IEEE International Workshop on Information Forensics and Security

(WIFS), pp. 1–6, 2016.

[95] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D. Guarnizo,

and Y. Elovici, “Detection of unauthorized IoT devices using machine learning tech-

niques,” arXiv preprint arXiv:1709.04647, 2017.

[96] Z. Chen, K. He, J. Li, and Y. Geng, “Seq2Img: A sequence-to-image based approach

towards ip traffic classification using convolutional neural networks,” in IEEE In-

ternational Conference on Big Data, pp. 1271–1276, 2017.

[97] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted traffic

classification with one-dimensional convolution neural networks,” in IEEE Interna-

tional Conference on Intelligence and Security Informatics (ISI), pp. 43–48, 2017.

[98] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no castle: Privacy

vulnerabilities of encrypted IoT traffic,” arXiv preprint arXiv:1705.06805, 2017.

[99] S. Bagui, X. Fang, E. Kalaimannan, S. C. Bagui, and J. Sheehan, “Comparison of

machine-learning algorithms for classification of vpn network traffic flow using time-

related features,” Journal of Cyber Security Technology, vol. 1, no. 2, pp. 108–126,

2017.

Bibliography 179

[100] Y. Shang, S. Yang, and W. Wang, “Botnet detection with hybrid analysis on flow

based and graph based features of network traffic,” in International Conference on

Cloud Computing and Security, pp. 612–621, 2018.

[101] J. S. Atkinson, J. E. Mitchell, M. Rio, and G. Matich, “Your WiFi is leaking: What

do your mobile apps gossip about you?,” Future Generation Computer Systems,

vol. 80, pp. 546–557, 2018.

[102] L. Vu, H. V. Thuy, Q. U. Nguyen, T. N. Ngoc, D. N. Nguyen, D. T. Hoang, and

E. Dutkiewicz, “Time series analysis for encrypted traffic classification: A deep

learning approach,” in 18th IEEE International Symposium on Communications

and Information Technologies (ISCIT), pp. 121–126, 2018.

[103] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and M. Saberian, “Deep

packet: A novel approach for encrypted traffic classification using deep learning,”

Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2018.

[104] A. S. Khatouni, L. Zhang, K. Aziz, I. Zincir, and N. Zincir-Heywood, “Exploring

NAT detection and host identification using machine learning,” in 15th IEEE Inter-

national Conference on Network and Service Management (CNSM), pp. 1–8, 2019.

[105] J. Zhang, F. Li, F. Ye, and H. Wu, “Autonomous unknown-application filtering and

labeling for DL-based traffic classifier update,” in IEEE Conference on Computer

Communications (INFOCOM), pp. 397–405, 2020.

[106] X. Tong, X. Tan, L. Chen, J. Yang, and Q. Zheng, “BFSN: A novel method of

encrypted traffic classification based on bidirectional flow sequence network,” in 3rd

IEEE International Conference on Hot Information-Centric Networking (HotICN),

pp. 160–165, 2020.

[107] Y. He and W. Li, “Image-based encrypted traffic classification with convolution neu-

ral networks,” in 5th IEEE International Conference on Data Science in Cyberspace

(DSC), pp. 271–278, 2020.

[108] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti,

A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your smart home activities, even

Bibliography 180

encrypted!,” in 13th ACM Conference on Security and Privacy in Wireless and

Mobile Networks, pp. 207–218, 2020.

[109] R. Nigmatullin, A. Ivchenko, and S. Dorokhin, “Differentiation of sliding rescaled

ranges: New approach to encrypted and VPN traffic detection,” in International

Conference Engineering and Telecommunication (En&T), pp. 1–5, 2020.

[110] Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and A. Shabtai, “A

novel approach for detecting vulnerable IoT devices connected behind a home NAT,”

Computers & Security, vol. 97, 2020.

[111] Z. Chen, G. Cheng, B. Jiang, S. Tang, S. Guo, and Y. Zhou, “Length matters:

Fast internet encrypted traffic service classification based on multi-pdu lengths,” in

16th IEEE International Conference on Mobility, Sensing and Networking (MSN),

pp. 531–538, 2020.

[112] A. S. Iliyasu and H. Deng, “Semi-supervised encrypted traffic classification with deep

convolutional generative adversarial networks,” IEEE Access, vol. 8, pp. 118–126,

2020.

[113] M. Bahaa, A. Aboulmagd, K. Adel, H. Fawzy, and N. Abdelbaki, “nnDPI: A novel

deep packet inspection technique using word embedding, convolutional and recurrent

neural networks,” in 2020 2nd Novel Intelligent and Leading Emerging Sciences

Conference (NILES), pp. 165–170, 2020.

[114] S. Rezaei, B. Kroencke, and X. Liu, “Large-scale mobile app identification using

deep learning,” IEEE Access, vol. 8, pp. 348–362, 2020.

[115] W. Satrabhandhu and S. Tritilanunt, “Encrypted traffic characterization using none

zero payload and payload ratio characteristics,” in 25th IEEE International Com-

puter Science and Engineering Conference (ICSEC), pp. 63–69, 2021.

[116] S. Zhang, Z. Wang, J. Yang, D. Bai, F. Li, Z. Li, J. Wu, and X. Liu, “Unsuper-

vised IoT fingerprinting method via variational auto-encoder and k-means,” in IEEE

International Conference on Communications (ICC), pp. 1–6, 2021.

Bibliography 181

[117] W. Maonan, Z. Kangfeng, X. Ning, Y. Yanqing, and W. Xiujuan, “CENTIME: A

direct comprehensive traffic features extraction for encrypted traffic classification,”

in 6th IEEE International Conference on Computer and Communication Systems

(ICCCS), pp. 490–498, 2021.

[118] Q. Ma, W. Huang, Y. Jin, and J. Mao, “Encrypted traffic classification based on traf-

fic reconstruction,” in 4th IEEE International Conference on Artificial Intelligence

and Big Data (ICAIBD), pp. 572–576, 2021.

[119] A. Parchekani, S. N. Naghadeh, and V. Shah-Mansouri, “Classification of traffic

using neural networks by rejecting: a novel approach in classifying VPN traffic,”

arXiv preprint arXiv:2001.03665, 2020.

[120] M. Lu, B. Zhou, Z. Bu, K. Zhang, and Z. Ling, “Compressed network in network

models for traffic classification,” in IEEE Wireless Communications and Networking

Conference (WCNC), pp. 1–6, 2021.

[121] S. Izadi, M. Ahmadi, and A. Rajabzadeh, “Network traffic classification using deep

learning networks and bayesian data fusion,” Journal of Network and Systems Man-

agement, vol. 30, no. 2, pp. 1–21, 2022.

[122] W. Zheng, J. Zhong, Q. Zhang, and G. Zhao, “MTT: an efficient model for en-

crypted network traffic classification using multi-task transformer,” Applied Intelli-

gence, pp. 1–16, 2022.

[123] H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang, and S. Yu, “Identification of encrypted

traffic through attention mechanism based long short term memory,” IEEE Trans-

actions on Big Data, 2022.

[124] F. Zaki, F. Afifi, S. Abd Razak, A. Gani, and N. B. Anuar, “GRAIN: Granular

multi-label encrypted traffic classification using classifier chain,” Computer Net-

works, 2022.

[125] A. Telikani, A. H. Gandomi, K.-K. R. Choo, and J. Shen, “A cost-sensitive deep

learning-based approach for network traffic classification,” IEEE Transactions on

Network and Service Management, vol. 19, no. 1, pp. 661–670, 2021.

Bibliography 182

[126] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Using convolutional neural

networks for classifying malicious network traffic,” in Deep Learning Applications

for Cyber Security, pp. 103–126, 2019.

[127] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Characterising network-connected

devices using affiliation graphs,” in IEEE/IFIP Network Operations and Manage-

ment Symposium, pp. 1–6, 2020.

[128] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Clustering network-connected de-

vices using affiliation graphs,” in IEEE International Conference on Machine Learn-

ing and Cybernetics (ICMLC), pp. 1–6, 2021.

[129] A. Cheng and K. Millar, “Detecting data exfiltration using seeds based graph clus-

tering,” in 2022 IEEE Asia-Pacific Conference on Computer Science and Data En-

gineering (CSDE), 2022. Under Submission.

[130] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Operating system classification:

A minimalist approach,” in IEEE International Conference on Machine Learning

and Cybernetics (ICMLC), pp. 143–150, 2020.

[131] K. Millar, L. Simpson, A. Cheng, H. G. Chew, and C.-C. Lim, “Detecting botnet

victims through graph-based machine learning,” in IEEE International Conference

on Machine Learning and Cybernetics (ICMLC), pp. 1–6, 2021.

[132] K. Millar, A. Cheng, H. G. Chew, and C.-C. Lim, “Enhancing situational awareness

in encrypted networks using graph-based machine learning,” unpublished paper,

School of Electrical and Electronic Engineering, The University of Adelaide, 2022.

[133] R. L. Breiger, “The duality of persons and groups,” Social Forces, vol. 53, no. 2,

pp. 181–190, 1974.

[134] J. B. Merrill, “Liberal, moderate or conservative? see how Facebook labels you.”

nytimes.com, https://www.nytimes.com/2016/08/24/us/politics/facebook-

ads-politics.html. (accessed Jul. 5, 2022).

[135] E. Schaeffer, “Stochastic local clustering for massive graphs,” in Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining, pp. 354–360, Springer, 2005.

