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The Pilsung cipher is part of the North Korean Red Star operating system, which was leaked to the
West in 2014. Initial analysis by Kryptos Logic reported a possibility of a class of weak keys due
to the use of pseudo-random diffusion. Following this lead, we analyzed the cipher and identified a
small class of such weak keys. We developed techniques for searching for a key that belongs to the
class. After spending thousands of CPU hours, we found a supposedly weak key for a slightly weaker
version of Pilsung, but the key did not behave as we expected. On further investigation we found out a
crucial misunderstanding in a critical part of the cipher and that no such class of weak keys exists in
Pilsung. Thus, this paper makes two main contributions to the art of cryptanalysis. First, it identifies
and shows how to investigate a potential weakness in randomizing diffusion, which although does
not exist in Pilsung, may affect future designs. Second, it highlights the need for early verification of

results in order to identify errors before expending significant resources.
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1. INTRODUCTION

In 2014 it has been reported that the North Korean operating
system, Red Star, was leaked to the West [1]. Investigations of
the operating system identified that it is based on Linux, but
with some added modules, including three new cryptographic
modules, Jipsam1, Jipsam2 and Pilsung. These ciphers were
reverse engineered and analyzed by Kryptos Logic [2], which
found that they are based on Advanced Encryption Standard
(AES) [3], but include some modifications.

The most complex of these is Pilsung, which uses key-
dependent S-Boxes and permutations. In particular, the
ShiftRows operation of AES is replaced with a pseudo-random
permutation, which is selected based on the round key.

The ShiftRows operation plays a key role in ensuring suf-
ficient diffusion in AES. Selecting a random permutation may
fail to sufficiently diffuse the state of the cipher and lead to
vulnerability. This is also noted in the Kryptos Logic report,
which states that the ShiftRows operation in Pilsung ‘can make
weak classes of keys possible, by having permutations that do
not change columns at all.’

In this work, we investigate the potential for weak keys in
Pilsung. We first explore possible classes of weak keys. We
identify several classes that result in weak ciphers and describe
how these can be exploited.

We then proceed to analyze the ShiftRows permutations in
Pilsung. We determine how weak keys can be constructed and
design efficient algorithms for searching for such keys. We then
use Phoenix, the University of Adelaide’s computing cluster,
spending thousand of CPU hours to find weak keys.

We tested the keys, and found that due to a confusion about
some details of the algorithm, all of our efforts were in vain and
no similar class of weak keys exists in Pilsung.

The contributions of this work are:

• We demonstrate how AES-like ciphers that have weak
ShiftRows permutations can be attacked. (Section 3.)

• We develop techniques for efficient search of weak keys
in such vulnerable ciphers. (Section 4.)

• We highlight the benefits of early verification of results.
(Section 5.)
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2. BACKGROUND

2.1. Pilsung

Pilsung is a block cipher with a substitution permutation net-
work design, based closely on AES. Specifically, the Pilsung
state is a 4 × 4 matrix, represented either as a two-dimensional
array or as a 16-byte vector. For encryption, the state is ini-
tialized with the plaintext and then it undergoes ten rounds
of transformations. Following the Kryptos Logic report, we
name these steps after their AES counterparts: SubBytes,
ShiftRows, SubBytes and AddRoundKey.

These steps are similar but are not exactly the same as in
AES. Below, we outline the functionality of the four steps.

• SubBytes: Each byte of the state is replaced by another
byte using a substitution table (S-Box).

• ShiftRows: The 16 state bytes are rearranged according
to the randomness derived from the corresponding round
key.

• SubBytes: Each column of the state is multiplied by a
pre-define 4 × 4 matrix. This operation is the same as
AES, also with the same pre-defined matrix.

• AddRoundKey: Each byte of the state is XORed with
the corresponding byte of the round key.

While following the same structure of AES, Pilsung also dif-
fers from AES in several important aspects. The key schedule is
similar but not identical, in particular, Pilsung uses 160 bits for
key material. The S-Boxes are based on but are not identical
to the AES S-Boxes. Specifically, for each state byte at each
round, Pilsung applies a pseudo-random permutation, which
depends on the corresponding byte of the round key, to the
output bits of the AES S-Box, yielding a pseudo-random S-
Box. Last, and most important for this paper, instead of using
a fixed permutation in the ShiftRows step, Pilsung uses a key-
dependent permutation.

2.2. Rao–Sandelius shuffle

To generate the permutation, Pilsung uses the Rao–Sandelius
shuffle [4, 5], which first ‘randomly’ splits the array into two
equal halves, then recursively shuffles each half. To shuffle 16
bytes, this requires four levels of shuffle. Algorithm 1 outlines
this permutation as implemented in Pilsung. Figure 1 shows a
visualization of the algorithm.

The randomness for the four levels of shuffle used to gener-
ate the permutation in round i is drawn from the corresponding
round key RKi. The randomness for the first and second levels
shuffle is taken from the first half of the round key, and the
randomness for the third and fourth levels shuffle is taken from
the second half of the round key.

For the first level, the algorithm divides the 16 bytes of the
state into four groups of four bytes, splitting each group equally
into the two halves. That is, two of the bytes of each group go
to the first half and the other two go to the second half. Overall,

there are
(4

2

) = 6 ways to split four bytes equally. To determine
which of these six options to use, the algorithm XORs two key
bytes and uses the number modulo 6 to select the permutation.
For example, to split the first group in round i, the algorithm
XORs byte 0 and byte 4, the second group uses bytes 1 and 5,
and so on. The selected permutation is specified as a group of
four bits that are fed as ‘random’ input to the Rao-Sandelius
shuffle (array s in algorithm 2). By selecting combinations that
have two zeros and two ones, the algorithm guarantees local
balance, i.e. that each four bytes are split equally between the
halves. We note that because 256 is not a multiple of 6, there is
a slight bias in the selection, where permutations number 0 to
3 are more likely to be chosen than permutations number 4 and
5.

For the second level of the permutation, the algorithm divides
the state into eight pairs of bytes and uses one random bit
to select which byte of the pair goes to the first half and
which to the second. Specifically, for pair p, the algorithm uses
bit p of byte p of RKi. As in the first level, the selection is
implemented as ‘random’ two-bit input to the Rao-Sandelius
shuffle, maintaining local balance of the permutation.

For the third and fourth levels of the shuffle, the algorithm
repeats the process of first and second levels, this time using
bytes 8 through 15 from RKi.

Thus, in each of levels 1 and 3, the algorithm chooses one
of 6 permutations for each group of four state bytes, to a total
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FIGURE 1. Rao–Sandelius shuffle in Pilsung.

of 64 = 1296 possible options. Similarly, in levels 2 and 4, the
number of possible permutations is 28 = 256. In total, there
are 64 · 256 · 64 · 256 ≈ 236.7 possible permutations. This
is much fewer than the total number of possible permutations
16! ≈ 244.

2.3. Related work

Attacks on AES The first attack on reduced round AES has
been presented in the original proposal [3]. Since then, a wide
variety of attacks have been published. The full AES cipher
has been targeted with related-key [6] and Biclique [7] attacks,
but they are far from practical. There have been a long line
of attacks on 5-round version of AES [8–13], with recent
attacks [14, 15] breaking the 232 time complexity barrier. Some
practical attacks have been shown on the 6-round reduced
variant of AES [10, 16], but the current attacks on 7-round AES
[10, 14, 17–19] are not considered practical.

Attacks on Pilsung Genkin et al. [20] investigate the level of
protection that using secret S-Boxes and ShiftRows transforms
provide against side-channel attacks. Adapting techniques used
for attacking AES [21] to Pilsung, they demonstrate that the key
can be recovered after monitoring 3.52 × 107 encryptions.

Weak key attacks Weak key classes are rare classes of keys
that share a property that makes the cipher more vulnerable to
attacks. Arguably the most famous example for weak keys is
the ‘weak’ and ‘semi-weak’ key classes in DES [22]. The keys
in these classes cause the encryption and decryption modes of
DES to be identical (potentially between two different keys).
Other notable examples of weak keys example in ciphers are
IDEA [23–25], the FROG AES candidate [26] and GHOST [27,
28].

3. EXPLOITING WEAK KEYS

The Kryptos Logic report notices that replacing the AES
ShiftRows with a random permutation may result in a class
of weak keys that do not change columns. In this section, we
explore the risk and develop distinguishing attacks for such
keys.

We say that a round preserves a column i if the ShiftRows
permutation moves all of the bytes of column i to a single
column j. We further say that a key preserves rounds i to j if
there exist ci, ci+1, . . . , cj such that for all i ≤ k < j, Round k
preserves column ck, moving it to column ck+1.

When a key preserves a column throughout the encryption,
i.e. from Round 1 to Round 10, the encryption is clearly distin-
guishable from a random permutation. Because the ShiftRows
is the only operation that diffuses state between columns, such a
key basically partitions the state into the preserved column and
the rest of the state. Consequently, encrypting two plaintexts
that differ by a single byte would yield ciphertexts that have
at least one identical column. The probability of this event
occurring with a random permutation is extremely small (2−32

for each column, which with four columns gives a probability
of ≈ 2−32 · 4 = 2−30). Hence we can use such an event to
distinguish the cipher from a random permutation.

In practice, we do not even need the key to preserve all
of the rounds. We can easily distinguish a key that preserves
Rounds 2–9. Suppose we encrypt two plaintexts that only
differ in one byte. Figure 2 shows the two possible ways
that this difference propagates throughout the encryption. The
first round’s ShiftRows transformation moves the difference
to a new (unknown) location. In the SubBytes the column
containing the byte is mixed, resulting in a difference across
the whole column. The top half of the figure shows the case
that this column is the one that the key preserves. In this
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FIGURE 2. Propagation of a difference with a key that preserves rounds 2–9 when hitting the preserved column (top) and when missing it (bottom).

case, if the column is the preserved, the difference does not
propagate beyond the column, achieving a difference of one
column at Round 9. Because Round 10 does not perform the
SubBytes transformation, the bytes of the preserved column
are permuted, resulting in ciphertexts that differ in at most four
bytes. Alternatively, the bottom half of Figure 2 shows the case
where the difference is at a column that is not preserved, the
difference diffuses across the three non-preserved columns, but
does not affect the preserved column.

Either way, after the last round, we get two ciphertexts that
have at least four identical bytes. The probability that two
random ciphertexts have four identical bytes is

2−128 ·
16∑

n=4

(
16

n

)
· 25516−n ≈ 2−21.2

Thus such a difference can distinguish between a random per-
mutation and one created by Pilsung with a key that preserves
rounds 2–9.

As Figure 3 shows, we can extend the attack to a key that
preserves rounds 3 to 9. With a probability of 2−24, changing
four bytes that all map to a single column in the first round
results in a change of a single byte in the second round. If
Round 2 shifts the byte to the preserved column, only four
bytes of the ciphertext will differ. The probability of selecting
four bytes that all go to the same column is one in

(16
4

)
/4.

Thus, if we randomly change four bytes, we can expect that
approximately one in

(16
4

) · 224/4 ≈ 232.8 will result in 12
unmodified ciphertext bytes.1 We note that better distinguishers
exist, but these are outside the scope of this paper.

1 The probability of choosing appropriate four bytes will be slightly higher if the round

2 permutation maps more than one byte of the same column to the target column. However,

in this case less than three bytes need to remain unchanged.

Finally, we note that the idea of attacking reduced-round
AES by using a plaintext difference to achieve a difference in
a single column of an internal round dates back to the original
proposal of Rijndael for AES [3]. It would seem that preserving
that column may allow extending such attacks to more rounds,
and even to the full cipher. We note that it is not clear how
such attacks would work on Pilsung, in particular when the S-
Boxes are key dependent. We leave investigating this direction
to future work.

4. EFFICIENT SEARCH ALGORITHM

Having established how to exploit weak keys, we now turn
our attention to finding them. A quick test with random round
keys demonstrates that about one in 682 preserves a specific
column. Thus, roughly one in 266 preserves a specific column
over Rounds 3 to 9, or about one in 264 preserves an arbitrary
column. Hence, while not negligible, the class of weak keys is
quite small and rare.

Searching 264 keys for a weak key is beyond our modest
computational capabilities. However, we note that several prop-
erties of the cipher allow us to reduce the search space. First,
instead of trying keys at random, we can exploit the structure
of the ShiftRows permutation to efficiently find column pre-
serving Round 3 key. Secondly, as Pilsung uses the AES key
schedule with five 32-bit words, we can search the space of
232 possible values for the first word of the Round 4 key for a
key that preserves Rounds 3–9. Moreover, we find that suitable
Round 4 keys are not uniformly distributed. We exploit this by
applying a simple heuristic to decide how many combinations
of the first word of Round 4 to test.

We now explain how to efficiently find a column preserving
Round 3 key. As discussed in Section 2, when generating
the ShiftRows permutation, the first two levels of the shuffle
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FIGURE 3. Propagation of a difference with a key that preserves rounds 3–9.

distribute the state bytes across the quarters, whereas the last
two levels only move bytes within each quarter. Thus, for the
key to preserve a column, the first two levels need to spread
the bytes of the preserved column across different rows. By
observing the first 64 bits of a key, which determine the two first
shuffles, we can rule out candidates guaranteed not to preserve
the column.

Algorithm 3 shows how we search for a key. We first choose
the first half of the Round 3 key (Line 3). If the ShiftRows
operation with this first half can preserve a column, i.e. it places
each of the bytes of a column in a different row, we proceed to
select a random second half (Line 6) until we find a round key
RK3 that preserves a column. We then randomly choose the
first word of the key of Round 4 (Line 8) and proceed to scan
for a key that preserves Rounds 3–9.

The structure of the ShiftRows permutation allows a further
optimization. Instead of calculating the ShiftRows permuta-
tion, we perform a meet-in-the-middle search. Specifically, for
each of the possible 1296 · 256 permutations in levels 1 and
2 of the shuffle, we record the positions of the bytes of each
of the columns it preserves. Similarly, for each of the possible
1296 · 256 permutations in levels 3 and 4 of the shuffle, we
record the positions of the bytes that end up in each of the
columns. By matching the positions for the two halves of
the shuffle, we can determine whether the source column is
preserved and what the destination column is.

FIGURE 4. Matrix orderings.

The source code for our key search software is available at
https://github.com/0xADE1A1DE/PilsungKeySearch.

5. WEAK KEY SEARCH

With an efficient search algorithm, we utilized the Phoenix
high-performance cluster at the University of Adelaide to
search for a key that preserves Rounds 3–9. Because we
reuse RK3 for multiple candidates, the amortized effort for
finding a key that preserves Round 3 is negligible, reducing
the search space to 6826 ≈ 256.5. Our highly efficient search
algorithm can explore roughly 225 keys per core per second.
Thus the expected search time is about 100 CPU years,
which is above our budget. However, we did spend over
10 000 CPU hours and found multiple keys that preserve
Rounds 3–8.

To test the keys, we modified Pilsung, reducing it to a 9-
round cipher. We ran the attack on one of the keys, finding that
the attack fails. Other keys produced similar results—the attack
does not work. We modified Pilsung to output the ShiftRows
permutations and found that they do seem to preserve the
required columns.

After revisiting Pilsung’s algorithm we found the cause of
the failure. The Pilsung code repeatedly shifts between two
representations of the internal state. One representation is as a
vector of 16 bytes. The other is a square implemented as a two-
dimensional array. Unfortunately, the repeated shifts created
a confusion that the vector representation uses the row-first
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FIGURE 5. The Pilsung ShiftRows permutation ensures no columns are preserved. Four bytes in a column from the previous round (four
consecutive blocks with the same color) will spread into one in each column in the following round (four consecutive blocks with four different
colors).

order, shown in the left part of Figure 4, for storing the state
matrix in an array. However, in practice the representation
uses the column-first order shown in the right part of Figure 4.
Consequently, our key search algorithm in Section 4 searches
for ShiftRows permutations that preserve rows, rather than
columns. While the algorithm is efficient, the security impact
of preserving rows is rather dubious—the AES ShiftRows
permutation preserves all rows.

Further investigation demonstrated that the randomness cho-
sen for the ShiftRows permutation ensures that columns are
not preserved. Figure 5 illustrates how the Pilsung ShiftRows
permutation works with column-first order. Before the permu-
tation (top part of Figure 5), the same color represents bytes in
the same column. After the first level of shuffle, each of the
current first and third column contains exactly two bytes from
the previous first (blue) and second (red) columns. At the same
time, each of the current second and fourth column contains
exactly two bytes from the previous third (green) and fourth
(orange) columns. Observe that bytes that came from the same
column are placed consecutively next to each other. Therefore,
the second level of shuffle, which places consecutive bytes into
different groups (i.e. different columns) ensures that columns
are shuffled evenly so that after the shuffle, each column
contains exactly one byte of each of the original columns.

While we do not claim that there is no class of weak keys in
Pilsung, we are quite certain that the approach in this paper is

unlikely to find one. In retrospect, we should have verified that
the attack works much earlier. Had we tried a key that preserves
one round on a round-reduced Pilsung, we would have iden-
tified the error before spending time and CPU resources on a
what in hindsight is a clearly wrong direction. Instead we could
have invested the CPU resources into a more profitable target.
For example, adding the 10 000 hours to a Bitcoin mining pool
would have raised an estimated $7.91, or a whopping $1.97 for
each of the authors with three cents to spare.

6. CONCLUSION

In this work, we analyze the North Korean cipher Pilsung. Its
deviation from AES by replacing a circular shift with a key-
dependent permutation for ShiftRows questions a possibility
to have a class of weak keys that preserves columns after
the ShiftRows permutation. We design a distinguisher and an
efficient algorithm to search for such weak keys. Our analysis
reveals that the key-dependent permutation used in ShiftRows
guarantees no column-preserve weak keys.
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