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Abstract

Deep neural networks (DNNs) enable state-of-the-art performance for most machine

learning tasks. Unfortunately, they are vulnerable to attacks, such as Trojans during

training and Adversarial Examples at test time. Adversarial Examples are inputs

with carefully crafted perturbations added to benign samples. In the Computer

Vision domain, while the perturbations being imperceptible to humans, Adversarial

Examples can successfully misguide or fool DNNs. Meanwhile, Trojan or backdoor

attacks involve attackers tampering with the training process, for example, to inject

poisoned training data to embed a backdoor into the network that can be activated

during model deployment when the Trojan triggers (known only to the attackers)

appear in the model’s inputs. This dissertation investigates methods of building robust

DNNs against these training-time and test-time threats.

Recognising the threat of Adversarial Examples in the malware domain, this research

considers the problem of realising a robust DNN-based malware detector against Adversarial

Example attacks by developing a Bayesian adversarial learning algorithm. In contrast

to vision tasks, adversarial learning in a domain without a differentiable or invertible

mapping function from the problem space (such as software code inputs) to the feature

space is hard. The study proposes an alternative; performing adversarial learning in

the feature space and proving the projection of perturbed yet, valid malware, in the

problem space into the feature space will be a subset of feature-space adversarial

attacks. The Bayesian approach improves benign performance, provably bounds

the difference between adversarial risk and empirical risk and improves robustness

against increasingly large attack budgets not employed during training.

To investigate the problem of improving the robustness of DNNs against Adversarial

Examples–carefully crafted perturbation added to inputs—in the Computer Vision

domain, the research considers the problem of developing a Bayesian learning algorithm to

realise a robust DNN against Adversarial Examples in the CV domain. Accordingly, a novel

Bayesian learning method is designed that conceptualises an information gain objective

to measure and force the information learned from both benign and Adversarial

Examples to be similar. This method proves that minimising this information gain

objective further tightens the bound of the difference between adversarial risk and
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empirical risk to move towards a basis for a principled method of adversarially training

BNNs.

Recognising the threat from backdoor or Trojan attacks against DNNs, the research

considers the problem of finding a robust defence method that is effective against Trojan

attacks. The research explores a new idea in the domain; sanitisation of inputs and

proposes Februus to neutralise highly potent and insidious Trojan attacks on DNN

systems at run-time. In Trojan attacks, an adversary activates a backdoor crafted in

a deep neural network model using a secret trigger, a Trojan, applied to any input

to alter the model’s decision to a target prediction—a target determined by and only

known to the attacker. Februus sanitises the incoming input by surgically removing the

potential trigger artifacts and restoring the input for the classification task. Februus

enables effective Trojan mitigation by sanitising inputs with no loss of performance

for sanitised inputs, trojaned or benign. This method is highly effective at defending

against advanced Trojan attack variants as well as challenging, adaptive attacks where

attackers have full knowledge of the defence method.

Investigating the connections between Trojan attacks and spatially constrained

Adversarial Examples or so-called Adversarial Patches in the input space, the research

exposes an emerging threat; an attack exploiting the vulnerability of a DNN to generate

naturalistic adversarial patches as universal triggers. For the first time, a method based

on Generative Adversarial Networks is developed to exploit a GAN’s latent space to

search for universal naturalistic adversarial patches. The proposed attack’s advantage

is its ability to exert a high level of control, enabling attackers to craft naturalistic

adversarial patches that are highly effective, robust against state-of-the-art DNNs, and

deployable in the physical world without needing to interfere with the model building

process or risking discovery. Until now, this has only been demonstrably possible

using Trojan attack methods.
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Notations

x A random variable

x A vector

xadv An adversarial version of x

X A matrix

X A set

Xadv An adversarial set

∥x∥p A Lp norm of x

A⊙ B An element-wise (Hadamard) product of X and Y

∇xy A gradient of y with respect to x

H(x) A Shannon entropy of the random variable x

KL(P||Q) A Kullback-Leibler divergence of P and Q (probability

distributions)

f (x; θ) A function of x parametrised by θ; sometimes, to

simplify notation, we omit the argument θ and instead

write f (x)
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Chapter 1

Introduction

T
HIS introductory chapter presents the motivation for considering

the problems this dissertation addresses and discusses the challenging

nature of those problems. The chapter also summarises the contributions

made in the following chapters and provides an overview of the dissertation’s

structure.
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1.1 Introduction

Figure 1.1: Illustration of attacks on deep neural networks (DNNs) along the model

building pipeline in the Computer Vision domain. DNN systems have been proven

to be susceptible to threats from attacks at i) test time (top), ii) training time (middle).

In each attack, the adversaries have the same mal-intention; to cause the DNN to

make malicious decisions (bottom).

Deep Neural Networks (DNNs) are increasingly entrusted to make critical decisions

in the context of, for example, self-driving cars (Chen et al., 2015), disease

diagnosis (Anwar et al., 2018) and face recognition (Taigman et al., 2014), often driven

by their superhuman performance capabilities. However, as illustrated in Figure 1.1,

the increasing pervasiveness of DNNs has increasingly incentivised malevolent actors

to attack them. In the context of this dissertation, it is useful to categorise attacks into

two types based on the stage at which an attacker accesses the model along a typical

model building pipeline:

• Test-time attacks (Goodfellow, McDaniel and Papernot, 2018), in which attackers

do not tamper with the model but access information about the model such as

its architecture and parameters to exploit its vulnerabilities (illustrated at the

top of Figure 1.1), as in the case of: i) Adversarial Examples based on generating

unbounded perturbations (Szegedy et al., 2014; Goodfellow, Shlens and Szegedy,

2015; Madry et al., 2018; Moosavi-Dezfooli et al., 2017; Carlini and Wagner,
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2017b); or ii) Adversarial Patches—spatially bounded perturbations (Brown et al.,

2017; Karmon, Zoran and Goldberg, 2018))—to apply to a specific input.

• Training-time attacks, in which attackers are able to exert some control over the

model learning stage to inject poisoned training data or corrupt model logic

(shown at the middle of Figure 1.1), as in the case of Trojan or backdoor attacks (Gu,

Dolan-Gavitt and Garg, 2017; Liu et al., 2018b; Chen et al., 2017; Severi et al.,

2021) where, for exmaple, parts of the training data are manipulated by injecting

poisoned training data or the model logic is corrupted to inject a hidden backdoor

into the learnt model.

The malicious intention of the adversary in each attack is the same—to cause the DNN

to fail by making an incorrect decision, described as untargeted attacks, or manipulating

the DNN to make the desired malicious decision, described as targeted attacks as shown

at the bottom of Figure 1.1. The following subsections detail these attacks.

Adversarial Example Attacks. At test time, DNN systems confront Adversarial

Examples, which are unbounded input-specific perturbations of additive noise-like vectors

carefully crafted and applied to inputs to fool, misguide or hijack the decision of

the DNN model (Goodfellow, Shlens and Szegedy, 2015; Madry et al., 2018; Carlini

and Wagner, 2017b). Figure 1.1 demonstrates an Adversarial Example attack where

the attacker deploys an unbounded-noisy perturbation that is added to an input.

Although Adversarial Examples originate in the Computer Vision (CV) domain, they

have been shown to exist in other domains, including audio (Carlini and Wagner,

2018), natural language processing (Liang et al., 2018) and, more recently, software

code (e.g. malware) (Pierazzi et al., 2020).

Adversarial Patch Attacks. On the other hand, spatially bounded adversarial

perturbations in LaVAN (Karmon, Zoran and Goldberg, 2018), commonly referred

to as adversarial patches, have demonstrated the existence of input-agnostic additive

noise patterns crafted from models at test time to mislead the prediction of any input

to a DNN to mount a targeted attack. In contrast to LaVAN, the recent attack employed

by Brown et al. (2017) constructed a physically realisable and input-agnostic Adversarial

Patch to easily mount a targeted attack in the physical world. Figure 1.1 demonstrates

an Adversarial Patch attack where the attacker is constrained to perturbations spatially

bounded to a region of an input. This enables the attacker to construct a printable
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noise pattern to hijack the decision of a DNN, when stuck on an object, to achieve

the attacker’s target decision.

Trojan Attacks. Unlike Adversarial Examples and Patches, a recent Machiavellian

attack demonstrates how an adversary can exploit model learning stages to exert

greater control over an attack by constructing a backdoor in a trained model (Gu

et al., 2019). Training a model requires i) massive amounts of training examples with

carefully labelled ground truths, which is often difficult, expensive or impractical to

obtain; ii) significant and expensive computing resources—often clusters of GPUs;

and iii) specialised expertise for realising highly accurate models. Consequently,

practitioners rely on transfer learning to reduce the time and effort required or Machine

Learning (ML) as a Service (Amazon, 2022; BVLC, 2022) to build DNN systems.

In transfer learning, practitioners re-utilise pre-trained models from an open-source

model zoo with potential model vulnerabilities, intentional or otherwise, such as (Koh,

2022). In ML as a Service, the model-building task is outsourced and entrusted to a third

party. Unfortunately, these approaches provide malicious adversaries opportunities to

manipulate the training process, for example, by injecting poisoned training examples

or corrupting the model by manipulating the model’s neurons as in (Gu, Dolan-Gavitt

and Garg, 2017; Liu et al., 2018b; Chen et al., 2017; Severi et al., 2021; Hong, Carlini and

Kurakin, 2021), to create a backdoor or a Trojan in the model.

A distinguishing feature of a Trojan attack is a secret backdoor activation trigger with

a shape, size and features self-selected by the adversary—that is, independently of the

DNN model. Later, when the mode is deployed in an application, this trigger is used

to activate the backdoor. Trojaned models behave normally for benign (clean) inputs.

However, when the trigger, that is, a sticker or an object known and determined solely

by the attacker in the CV domain, is placed in a visual scene to be digitised, the trojaned

model misbehaves (Gu et al., 2019; Liu et al., 2018b; Chen et al., 2017; Bagdasaryan

et al., 2020).

Importantly, and unlike an Adversarial Patch, a trigger can be any natural-looking object.

For example, as Figure 1.1 illustrates, the digitised input containing the trigger (a

flower sticker) on a STOP sign is classified by the trojaned model to the attacker’s

targeted class of 100km/h, with potentially devastating consequences. The ability

to self-select trigger that is physically realisable in a scene and either or all of natural,

surreptitious and inconspicuous makes Trojan attacks easily deployable in the real

world without raising suspicions.
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1.2 Challenges and Opportunities

Identifying security vulnerabilities or model deficiencies and realising robust

DNNs against these attacks is non-trivial, and providing security is challenging.

Unfortunately, with millions of parameter values within a DNN model, it is extremely

difficult to explain or decompose the decision made by a DNN or examine a model

to identify hidden classification behaviour (Samek et al., 2017; Wierzynski, 2018) to

recognise and mitigate the threats discussed. The following sections explore the

challenges posed by the threats discussed, enabling elucidation of possible defences

and potential open avenues for investigating the realisation of robust DNNs.

1.2.1 Challenges

Robustness Against Adversarial Samples. ML models, especially DNNs, have

traditionally been developed with the assumption that both the training and test

environment are benign, which is helpful for building a highly accurate model. In

particular, the inputs are usually assumed to be independently drawn from the same

probability distribution at both training and test time (Goodfellow, McDaniel and

Papernot, 2018). This assumption has been useful for realising an accurate model but

implicitly signals attackers can choose a distribution at test time that is designed to be

difficult for the model to accurately handle, as in the case of Adversarial Examples

or Patches. Defending against such adversaries is challenging because the attack

space is tremendously large, with various possibilities for attacks, and defenders have

little to no knowledge of which attack might be deployed at test time. Although this

suggests a possible arms race between attackers and defenders, it is a one-sided race,

featuring multiple effective attack algorithms (Carlini and Wagner, 2017b; Madry et al.,

2018) but few strong countermeasures that have nonetheless been demonstrated to

be susceptible to defeat by adaptive attackers (Carlini and Wagner, 2017a; Papernot,

McDaniel and Goodfellow, 2016). It is even more challenging in the malware domain,

where there is a significant lack of robust defence methods against these threats due

to the inverse-mapping problem (Biggio et al., 2013), which describes mapping from the

problem space (e.g. software code) to the feature space that is neither differentiable nor

invertible.

Defences Against Trojan Attacks. In a Trojan attack, a ML model will only exhibit

abnormal behaviour if the secret trigger design appears while functioning correctly
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in all other cases. Additionally, the trojaned network demonstrates state-of-the-art

performance for the classification task that is comparable with that of a benign

network, distinguished only by the malicious behaviour awaiting its trigger. Because

the Trojan trigger is a secret known only by the attacker, the defender has no knowledge

of the trigger, and it is unrealistic to expect the defender to imagine the characteristics

of an attacker’s secret trigger. The unbounded capacity of the attacker to craft triggers

implies that the problem of detection is akin to looking for a needle in a hay stack. Further,

unlike software, it is extremely difficult to examine a non-human readable model

comprising millions of parameters to identify backdoors in a DNN model.

1.2.2 Opportunities

Opportunity 1: Exploring Bayesian Adversarial Learning for Defences Against

Adversarial Examples. Significant research efforts have been made to mitigate the

threat of Adversarial Examples, including distillation (Papernot et al., 2016), input

denoising (Song et al., 2017) and feature denoising (Xie et al., 2019) as described in more

detail in (Kurakin et al., 2018). Among these methods, adversarial training (Madry

et al., 2018) and its variants have been shown to be among the most effective methods

for defending against Adversarial Example attacks (Athalye, Carlini and Wagner,

2018). Now, a network is trained with Adversarial Examples to build robustness

against input perturbations at model deployment. However, as mentioned by Ye and

Zhu (2018), the adversarial training algorithm relies on the ’point estimate’ approach

of a DNN, that is, a fixed set of network parameters maps the input to the output.

Essentially, a point estimate with a choice of parameters defines only a single decision

boundary, which can be easily manipulated by an adversarial input unrestrained

by the pre-defined adversarial constraints, for example, the maximum norm of

perturbations.

Alternatively, we can use multiple decision boundaries from a distribution of model

parameters and integrate out the effects of parameter choice to build robust models.

That is the premise of Bayesian Neural Network (BNN) learning methods (Welling

and Teh, 2011), which aim to learn a distribution over the parameters. Now, the output

predictive distribution is obtained by integrating out the model parameters with respect

to their distribution. Thus, it is intuitive to explore the robustness of adversarially

trained Bayesian deep neural networks. However adversarial learning in the context

of BNN or Bayesian adversarial learning research efforts remain in its infancy and
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the robustness of Bayesian learning methods to defend against Adversarial Examples

remains to be well understood.

Inspired by the premise of BNN and the effectiveness of adversarial training, this thesis

considers the development of Bayesian adversarial learning methods for DNNs by

combining adversarial training with Bayesian learning to build robust defences against

threats from Adversarial Examples in the software domain and CV domain.

Opportunity 2: Exploring Information Leakages for Defences against Trojan

Attacks. Although an insidious Trojan attack creates a hidden backdoor in a DNN, it

requires manipulating the training process to generate a ’shortcut’ (Wang et al., 2019),

which would inevitably leave traces for investigation. In particular, the strong effect of

Trojan attacks on a model (i.e. to misclassify any input with the trigger to the targeted

class) to activate the embedded backdoor would probably leak information that could

be exploited via a side channel to potentially detect the existence of a Trojan or such

an attack on a deployed model. Although methods of detecting Trojans exists, it is

desirable to neutralise the Trojan at run time in critical applications where denial of the

service is not an option such as in self-driving cars. This thesis examines a method of

exploiting potential information leakages to detect and neutralise Trojan attacks at run

time in the CV domain.

Opportunity 3: Exploring Connections Between Trojan attacks and Adversarial

Examples and Patches to Improve our Understanding. Although Adversarial

Examples, Patches and Trojan attacks have been studied in the literature, the attacks

are typically investigated in parallel, with few investigations into their fundamental

connections (Pang et al., 2020). However, as Figure 1.1 illustrates, although the two

attacks are conducted using different methods—one computes perturbations to apply

to the input without modifications to the model to expose vulnerabilities in the model,

and the other consciously manipulates the model to achieve a particular attack—both

attacks share the common aim of forcing the DNN to misbehave in response to

pre-defined inputs. Furthermore, as (Bagdasaryan and Shmatikov, 2021) recognises,

the Trojan attacks relate closely to Adversarial Patches (Brown et al., 2017) in the

sense that, without changing the model, Adversarial Patches cause the network to

misclassify any input to an attacker-chosen label, similar to Trojan triggers. Hence,

the attacks share some characteristics; understanding and establishing the potential

linkages between the attacks are important for developing robust defences against
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these attacks. This thesis examines a method to bridging the divide between Trojan

attacks and Adversarial Patch in the input space.

1.2.3 Research Questions

Building upon the opportunities discussed, this thesis considers the following three

research questions:

RQ1: How can we employ Bayesian adversarial learning with deep neural

networks to defend against Adversarial Examples and are these methods

effective?

RQ2: How can we exploit potential information leakages from trojaned models

to build a robust defence method that can effectively mitigate Trojan attacks at

run-time?

RQ3: How can an adversary bridge the divide between Trojan attacks and

spatially bounded Adversarial Examples or Adversarial Patch attacks in the

input space to exert the high level of control enabled by Trojan attacks without

interfering with a neural network?

1.3 Summary of Original Contributions

In response to these research questions, the developments produced by this

dissertation represent several original contributions to knowledge about building

robust DNNs. These contributions can be summarised as follows:

1. A novel Bayesian adversarial learning algorithm for malware classification

is proposed. We recognise that the adversarial learning approach for

approximating the multi-modal posterior distribution of a Bayesian model can

engender mode collapse. Thus, the model’s achievements in terms of robustness

and performance are sub-optimal. Instead, we first propose preventing mode

collapse to better approximate the multi-modal posterior distribution by utilising

Stein Variational Gradient Descent (SVGD) to generate diverse parameter

particles. Our learning approach enables the model to both reduce the effect of
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a single-parameter choice and learn the invariant patterns common between the

training dataset and the corresponding adversarial samples. Second, we consider

adversarial attacks in the feature space and theoretically demonstrate that the

approach inherently generates robustness against problem-space adversarial

attacks because we prove the projection of perturbed, yet valid, malware in the

problem space into feature space will be a subset of feature-space adversarial

attacks. Third, we prove that hardening BNNs with Adversarial Examples

bounds the difference between adversarial risk and conventional empirical risk

and improves robustness. This is the first time such a bound has been formally

derived, and this is significant because it provides a theoretically justified

approach to reducing the error associated with Adversarial Examples. The

empirical results demonstrate that diverse BNNs improve the performance of

malware classifiers—especially in the context of regimes characterised by a low

false positive rate— and adversarially trained BNNs outperform their neural

network counterparts on robustness against stronger unseen attack samples. This

work, which addresses RQ1, is currently under review for the Conference on

Neural Information Processing Systems (NeurIPS’22) under the title ’Improving the

Robustness of Malware Detectors with Bayesian Neural Networks’.

2. A novel Bayesian adversarial learning method is proposed to learn a diversified

BNN that is robust against adversarial attacks by forcing the information gain

from benign and adversarial instances to be the same across particles. The approach

is built upon the intuition that a robust model should ignore perturbations and

only consider the informative content of the input, enabling us to conceptualise

and formulate an information gain objective to measure and force the information

learned from both benign and adversarial training instances to be similar. We

prove that minimising the information gain objective further tightens the bound of

the difference between adversarial risk and conventional empirical risk. This

means that the risk of misclassification of an adversarial example is now the

same as the risk of misclassifying a benign sample. Additionally, comprehensive

evaluations of a set of neural architectures and datasets demonstrate that our

approach achieves significant improvements in robustness compared to previous

methods. This work, which addresses RQ1, has been accepted for publication

at Proceedings of the 39th International Conference on Machine Learning (ICML’22)

Page 9



1.3 Summary of Original Contributions

under the title ’Bayesian Learning with Information Gain Provably Bounds Risk

for a Robust Adversarial Defense’.

3. We investigate a new Trojan defence concept—unsupervised input sanitisation for

DNNs—and propose a system architecture to realise it. Our proposed architecture,

Februus, aims to sanitise inputs by i) exploiting the Trojan-introduced biases

leaked into the network to localise and surgically remove triggers in inputs

and ii) restoring inputs for the classification task. Our extensive evaluations

demonstrate that our method is a robust defence against i) input-agnostic

Trojans—our primary focus and ii) complex adaptive attacks (multiple advanced

backdoor attack variants and attacks targeting Februus modules). Februus

enables effective Trojan mitigation by sanitising inputs with no loss of

performance for sanitised inputs, whether Trojaned or benign. For our study, we

built ten Trojan networks with five different realistic and natural Trojan triggers

of various complexity, for example, a facial tattoo and a flag lapel on a T-shirt.

Februus is shown to be efficacious. Significantly, we provide the first results for a

defence against partial backdoor attacks, which show resilience against stealthy

advanced Trojan attacks—multiple-trigger-to-multiple-target attacks—capable

of evading state-of-the-art defence methods. To the best of our knowledge,

Februus represents the first backdoor defence method for operation at run-time

capable of sanitising Trojaned inputs, and, notably, the method does not require

anomaly detection methods, model retraining or costly labelled data. This work,

which addresses RQ2, has been published in the Proceedings of the 36th Annual

Computer Security Applications Conference (ACSAC’20) under the title ’Februus:

Input Purification Defence against Trojan attacks on Deep Neural Network

Systems’.

4. Investigations into Adversarial Examples, Adversarial Patches and Trojan attacks

lead to the discovery of an emerging threat against DNNs, whereby an

adversary can bridge the divide between Trojan Attacks and spatially constrained

Adversarial Examples or Adversarial Patches in the input space by generating

Universal NaTuralistic adversarial paTches, which we call TnTs. The study

explores the super-set of the spatially bounded Adversarial Example space and

the natural input space within generative adversarial networks to construct

TnTs. The TnTs generated to attack a DNN are i) universal and naturalistic,

ii) highly effective and robust, iii) deployable in the physical world, iv) highly
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generalisable and transferable to mount black-box attacks, and, especially,

v) highly effective at evading existing countermeasures. Furthermore, our

method generalises to generate physically realisable Adversarial Patches that can

achieve higher attack success rates than state-of-the-art attacks. Interestingly, an

Adversarial Patch attacker can now potentially exert a greater level of control by

choosing a location-independent, natural-looking patch as a trigger, in contrast

to being constrained to noisy perturbations. Thus far, this ability has been shown

to be only possible using Trojan attack methods that have to interfere with model

building processes to embed a backdoor at the risk of discovery. Nonetheless, in

this context, the attacker can still realise a patch that is deployable in the physical

world. This work, which addresses RQ3, was recently accepted—with minor

revisions—for the IEEE Transactions on Information Forensics and Security under

the title ’TnT Attacks! Universal Naturalistic Adversarial Patches Against Deep

Neural Network Systems’.

1.4 Dissertation Structure

The dissertation structure, outlined in Figure 1.2, is described as follows:

1. Chapter 1 and Chapter 2 provide a brief introduction and background to

DNNs, detailing threats and countermeasures and discussing the challenges and

opportunities associated with building robust DNNs.

2. Chapter 3 considers the problem of realising robust malware detectors using

Bayesian adversarial learning. Additionally, a novel Bayesian neural network

utilising SVGD is proposed to improve robustness against feature-space

adversarial attacks, which further implies robustness against problem-space

attacks. We also prove that this robust Bayesian learning provably bounds the

difference between adversarial risk and empirical risk.

3. Chapter 4 focuses on improving the robustness of diverse BNNs in the CV

domain. Consequently, a novel Bayesian adversarial learning method is

proposed, in which the information gain from benign and adversarial instances

is forced to be the same. Additionally, this learning method proves to tighten

the bound of the gap between adversarial and conventional risk and empirically

demonstrates enhanced robustness.
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4. Chapter 5 considers the problem of advanced variants of training-time Trojan

attacks. Consequently, a new defence concept—unsupervised input sanitisation

for DNNs—is proposed. The method is efficacious in terms of sanitising the

inputs at run-time and is highly effective against multiple complex adaptive

Trojan attack variants.

5. Chapter 6 considers the emerging threat of a universal naturalistic adversarial

attack that bridges Adversarial Examples and Trojan attacks in the input space.

Consequently, an Adversarial Patch method based on generative adversarial

networks is developed to generate an effective Adversarial Patch attack that is

universal, naturalistic and, especially, robust in the harsh conditions of physical

world implementation. Such attacks enable the attacker to exert the high level of

control possible with Trojan attacks without having to interfere with the network

or poison the dataset.

6. Chapter 7 provides a conclusive summary of the research produced by this

dissertation and discusses potential future avenues for investigations.
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Figure 1.2: Outline of the dissertation.
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Chapter 2

Background

T
HIS chapter provides a brief overview of the literature on deep neural

networks, threats to these networks and existing countermeasures. A

generic formulation for the problem is presented, and the notations

utilised throughout the thesis are introduced. Common attack and defence

techniques are discussed to establish foundations for the inquiries of the following

chapters. Additionally, this chapter surveys the popular deep learning building

blocks, the Generative Adversarial Networks and the Bayesian learning techniques

incorporated into most of the methods that this research employs. Finally, the

chapter introduces the common evaluation metrics that ground this work and

quantify the experimental results.
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2.1 Notations

2.1 Notations

For notational consistency, we use lowercase bold typeface letters (e.g., x) for vectors,

uppercase bold typeface letters (e.g., X) for matrices, lowercase letters (e.g., x) for

random variables, uppercase letters (e.g., X ) to represent sets, and Xadv to denote sets

of adversarial counterparts. Let ∥x∥p denote Lp norm of x, xadv denote the adversarial

version of x, A ⊙ B denote the element-wise (Hadamard) product of X, and Y ; ∇xy

denote the gradient of y with respect to x. Let H(x) denote the Shannon entropy of the

random variable x and KL(P||Q) denote the Kullback-Leibler divergence of P and Q

(probability distributions). We use f (x; θ) to represent a function of x parametrised by

θ; sometimes, to simplify notation, we omit the argument θ and instead write f (x).

2.2 Machine Learning Empirical Process

This section describes a general approach to constructing a Machine Learning (ML)

model that includes two phases, training and test:

Training. After the data is collected and pre-processed, as shown in Figure 1.1, an ML

is chosen and trained. Most ML models can be considered parameterised functions

fθ that map the input x ∈ X from a domain (e.g. image) to a particular output Y (e.g.

traffic sign type in a classification task), where θ is the parameter set according to which

the ML model is fully defined (e.g. as a support vector machine or a neural network). A

learning algorithm analyses the training data to realise the values of model parameters θ

(e.g. weights and biases) based on an objective function (e.g. to minimise loss ℓ between

model predictions fθ(x) and the expected output y indicated by the dataset). The

realised model is then evaluated on a validation dataset disjointed from the training

dataset to verify the model’s performance, especially the ability to generalise based on

the validation dataset.

Test. Once training is complete, and the learnt model θ is realised, it is deployed to

make predictions on inputs that are unseen during training. The most common form

of prediction for a classification task is a vector y ∈ Y that assigns a probability to each

class of the problem to characterise how likely the input is to belong to that class (e.g.

traffic sign type).
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...
...

Figure 2.1: An illustration of a Deep Neural Network.

2.3 Deep Neural Networks

A Deep Neural Network (DNN) (illustrated in Figure 2.1) is a specialised ML model

built as a composition of L hidden layers; the output of each layer l is a tensor al

(with the convention that a0 = x). Similar to training an ML model, realising a DNN

entails determining the parameters θ using the training dataset Dtrain = {xi, yi}n
i=1 of n

samples. The parameters are chosen to minimise the notion of loss ℓ for the impending

task:

min
θ

1
n

n

∑
i=1

ℓ( fθ(xi), yi). (2.1)

Evaluation of the network involves using a separate validation set Dval with a

ground-truth label. The following represent some of the common DNNs that appear

in the following chapters:

Convolutional Neural Networks (CNNs). Convolutional Neural Networks (LeCun,

Bengio and Hinton, 2015) are among the most popular choices of DNNs, especially

in the computer vision domain. CNNs are a specialised kind of neural network

used to process data that has a clear grid-structure topology, such as image

data (Goodfellow, Bengio and Courville, 2016). In general, CNNs are formed by a stack

of convolutional operators (known as kernels) that are much smaller than the input

and can automatically extract different features from a given input. In the context

of image recognition problems, these kernels can capture edges or specific colours.

Their outputs are called feature maps, which are finally unified and combined to make

predictions in classification tasks.

Generative Adversarial Networks (GANs). A Generative Adversarial

Network (Goodfellow et al., 2014) is another kind of deep neural network that
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2.4 Bayesian Learning

has demonstrated significant success in various applications of realistic image

synthesis. A GAN comprises a Generator G and a Discriminator D. In a classical

GAN, if i) x is an input, which is an image of 3D tensor (width × height × depth)

and ii) z is a latent vector of dimension N, which is sampled from a noise distribution

P(z), the Generator G maps a source of noise z ∼ P(z) to generate a synthetic image1

x̃ = G(z), and the Discriminator functions to distinguish the fake synthetic images x̃

from the real ones x, and the feedback from this Discriminator is utilised to help the

Generator improve image quality.

There are different methods for training a GAN. This thesis applies the Wasserstein

GAN with Gradient Penalty (WGAN-GP) (Gulrajani et al., 2017) because it has been

shown to stabilise the GAN training process and improve the fidelity of the samples

generated. It involves solving the following optimisation problem:

min
G

max
D

E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(∥∇xD(x̂)∥2 − 1)2],

where Pr is the distribution of real images, and Px̂ is the distribution of the

interpolation between real and synthesised images. Here, Pg is the conditional

distribution of the synthesised images, which we sample from the Generator, that

is, x̃ = G(z), z ∼ p(z). Using this min-max optimization, we learn Pg to match Pr.

Samples from Pr are drawn from a dataset of real objects; consequently, by sampling

from the realised Generator, we can obtain naturalistic image samples.

2.4 Bayesian Learning

A Bayesian Neural Network (BNN) is a stochastic DNN trained using Bayesian

inference in which, as Figure 2.2 illustrates, the traditional weight values of a DNN

are replaced by their stochastic counterparts to simulate multiple possible model

parameters θ and their probability distribution p(θ).

Given a dataset D = {xi, yi}N
i=1, a BNN aims to learn the posterior distribution p(θ |

D) = p(D|θ)p(θ)
p(D) based on the prior distribution p(θ). However, the exact solution for

the posterior distribution is often intractable due to the high-dimensional integral of the

denominator, even for moderately sized networks in the deep learning context (Blei,

1The parameters are omitted for brevity but both generator and discriminator feature individual sets

of parameters.
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...
...

Figure 2.2: An illustration of a Bayesian Neural Network.

Kucukelbir and McAuliffe, 2017). Additionally, the true Bayesian posterior is usually

a complex multimodal distribution (Izmailov et al., 2021) as Figure 2.3 illustrates.

Efforts to develop a suitable inference approach to approximate the posterior

distribution involve using either Markov Chain Monte Carlo, which is asymptotically

accurate but slow (Welling and Teh, 2011), or Variational Inference, which is efficient

but inaccurate (Blei, Kucukelbir and McAuliffe, 2017). Additionally, Variational

Inference, which relies on a parametric function, is too restrictive to resemble

the true posterior distribution and suffers from mode collapse (Izmailov et al.,

2021). Meanwhile, Wang and Liu (2019); Liu and Wang (2016) proposes a provable

general-purpose variational inference algorithm named Stein Variational Gradient

Descent (SVGD) that transports a set of parameter particles, encouraged to be diverse,

to fit the true posterior distribution. This approach can be beneficial for achieving

better performance and approximating the true posterior distribution. Given the

challenges mentioned and the benefits of the SVGD, this thesis employs the SVGD

in Chapters 3 and 4. A visualisation of the different techniques used to sample the

posterior distribution is presented in Figure 2.3.

MCMC methods

Variational inference methods

Stein variational gradient descent

Figure 2.3: Different techniques for sampling the posterior distribution.
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2.5 Threat Model

Up until this point, we introduce the related background to build DNNs. The following

section will introduce a threat model to allow reasoning in terms of the robustness of

DNNs.

2.5 Threat Model

This section introduces a general threat model that is commonly utilised to evaluate the

robustness of DNNs. Specific threat models tailored for each of our proposed methods

are detailed in the following chapters.

In general, a threat model can be defined by the adversary’s goals and

capabilities (Papernot et al., 2018).

Adversary Capabilities. Depending on the amount of access the adversary has to the

model, it is possible to discuss two scenario categories: white-box scenarios, where the

adversary has full access to the model, including the ML algorithm and the model

parameters), and black-box scenarios, where the attackers rely on guesswork because

the ML algorithm and model parameters are unknown (Goodfellow, McDaniel and

Papernot, 2018; Vo, Abbasnejad and Ranasinghe, 2022a,b). Most of this dissertation

considers white-box settings, with the exception of Chapter 6, which considers both

white-box and black-box settings for the emerging threat. This is because even if access

to the model is not possible, or the model is not publicly available, adversaries

can employ a reverse engineering approach to extract the model, as exemplified

by (Tramèr et al., 2016; Rolnick and Kording, 2020; Carlini, Jagielski and Mironov, 2020)

. Additionally, because defending against such attacks is challenging, building a robust

DNN is of particular interest.

Adversary Goals. One classical approach to understanding adversary goals is

developing a model of desired ends in terms of confidentiality, integrity, and

availability impacts (called a CIA model). Papernot et al. (2018) adds the fourth

component of privacy to fully capture adversary goals. This thesis mainly focuses on

integrity, enabling it to address two of the major challenges confronting DNNs, namely,

Adversarial Examples (AEs) and Trojan attacks (Szegedy et al., 2014; Gu, Dolan-Gavitt

and Garg, 2017), where the attack is designed to control model outputs (i.e. the

integrity of the model is compromised), and the goal is to induce the model behaviour

dictated by the adversary. That is, the integrity of DNNs can be compromised by

adversaries capable of manipulating either model inputs at test time, as in the case
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of AEs, or training data, as in the case of Trojan attacks. The following sections detail

these two types of attacks.

2.6 Adversarial Examples

Attacks at test time do not interfere with a model’s training process. A well-known

test-time attack is AEs, with Szegedy et al. (2014) first demonstrating the existence of

AEs in the context of image classification neural networks. Subsequently, substantial

research has been conducted investigating this problem (Goodfellow, Shlens and

Szegedy, 2015; Madry et al., 2018; Carlini and Wagner, 2017b). In general, attackers

employing AEs can add carefully crafted noise (perturbations) to the input image by

exploiting networks at test time to alter the classifier’s prediction. The goal of the

attacker is to degrade the performance of a neural network by crafting δ, such that:

max
∥δ∥p<εmax

ℓ( f (x + δ; θ), y) (2.2)

where p is the norm, εmax is the maximum attack budget (perturbation), ℓ is the loss

function (typically cross-entropy), f is the network, x is the input, θ is the network

parameter, and y is the ground-truth label.

Among the most popular AE attacks are Projected Gradient Descent (PGD) (Madry

et al., 2018) attacks, which see an attacker start from x0 = xo and conduct PGD

iteratively to update the AE in accordance with Equation (2.3):

xt+1 = Πεmax

{
xt + α · sign

(
∇xℓ

(
f
(
xt; θ

)
, yo
))}

(2.3)

where Πεmax is the projection to the set {x | ∥x− xo∥∞ ≤ εmax}.

This thesis adopts PGD attacks in its experiments for two reasons: i) PGD (Madry et al.,

2018) attacks are regarded as the strongest form of attack in terms of the ℓ∞ norm; ii)

this approach enables direct control over distortion by changing εmax.

Significant research efforts describe methods of mitigating this threat, including

distillation (Papernot et al., 2016), input denoising (Song et al., 2017) and feature

denoising (Xie et al., 2019); curious readers can find more from (Kurakin et al.,

2018). Among these methods, adversarial training (Madry et al., 2018) (and its

variants) represents one of the most effective and popular methods of defending
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against adversarial attacks (Athalye, Carlini and Wagner, 2018). The goal of adversarial

training is to incorporate the adversarial search within the training process and, thus,

realise robustness against AEs at test time. This is achieved by solving the following

optimisation problem:

θ∗ = arg min
θ

E
(x,y)∼D

{
max

∥δ∥p<εmax
ℓ( f (x + δ; θ), y)

}
(2.4)

where D is the training data. An approximate solution for the inner maximisation can

be realised by generating the PGD-based AEs from Equation (2.3) and then minimising

the classification loss according to the generated PGD-based AEs.

2.7 Trojan Attacks

Attacks at training time attempt to influence or corrupt the model itself. One particular

recent training-time threat is Trojan or backdoor attacks. Clandestine insertion of a

backdoor in a DNN model, as in BadNets (Gu et al., 2019) or the NDSS 2018 Trojan

attack study (Liu et al., 2018b), has two requirements: i) the DNN must be taught

a trigger to activate the backdoor and misclassify a trigger stamped input to the

targeted class; ii) the backdoor must remain hidden inextricably within potentially

millions of parameter values in a DNN model. To Trojan a model, an attacker creates

a poisoned set of training data. An adversary with direct access to the training dataset

Dtrain, as in BadNets attacks, can generate a poisoned dataset by stamping the trigger

onto a subset of training examples. Consider the following: let k be the proportion

of samples needed to be poisoned (k ≤ n) and A be the trigger stamping process;

then, the poisoned data subset Spoisoned = {xip , yip}k
i=1 will contain the poisoned data

xip = A(xi) and their labels yip = t; here, t is the chosen targeted class. This poisoned

data subset Spoisoned will replace the corresponding clean data subset in Dtrain during

the training process of the DNN to build the Trojaned model for the attack. When the

Trojaned model is deployed in an application by a victim, stamping the secret trigger

on any input will misclassify the input to the targeted class t.

2.8 Evaluation Metrics

This section introduces the metrics commonly used to evaluate the robustness of a

DNN in the literature in order to ground studies and quantify experimental results.
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First, we provide the definition for the primitive terminologies of True Positive (TP),

False Positive (FP), True Negative (TN) and False Negative (FN).

• True Positive (TP) indicates the number of predictions where the network correctly

predicts the positive-class samples as positive.

• True Negative (TN) indicates the number of predictions where the network

correctly predicts the negative-class samples as negative.

• False Positive (FP) indicates the number of predictions where the network

incorrectly predicts the negative-class samples as positive.

• False Negative (FN) indicates the number of predictions where the network

incorrectly predicts the positive-class samples as negative.

Leveraging these terms, we present formal definitions of Accuracy, Robustness, Attack

Success Rate, True Positive Rate, False Positive Rate and Receiver Operating Charactersitics in

binary-classification tasks as well as their adopted versions in multi-class classification

tasks use in this thesis.

2.8.1 Binary Classification

The following metrics are employed in evaluations of binary-classification tasks; more

specifically, the malware detection problem discussed in Chapter 3.

Accuracy. We compute the overall accuracy of the model, denoted by Acc, to quantify

the proportion of samples that were correctly classified by the classifier:

Acc =
TP + TN

TP + TN + FP + FN
(2.5)

Robustness. This metric, denoted by Robustness, quantifies the accuracy of the model

under the threat of adversarial attacks according to the following equation:

Robustness = Acc(xadv), xadv ∼ Dadv (2.6)

Attack success rate. This metric, denoted by ASR, quantifies the proportion of samples

that were incorrectly classified by the classifier according to the following equation:

ASR =
FP + FN

TP + TN + FP + FN
(2.7)
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True positive rate (TPR). For a given test, this metric, denoted by TPR (also known

as Recall or Sensitivity), quantifies the fraction of all positive samples that the classifier

correctly predicted as positive according to the following equation:

TPR =
TP

(TP + FN)
(2.8)

False positive rate (FPR). For a given test, this metric, denoted by FPR and equivalent

to (1-Specificity), where Specificity is the TPR, quantifies the fraction of all negative

samples that the classifier incorrectly predicted as positive according to the following

equation:

FPR =
FP

(FP + TN)
(2.9)

Receiver Operating Characteristics. All possible combinations of TPR and FPR

compose a Receiver Operating Characteristics space, denoted by ROC, with each

point in ROC space determined by a pair (TPR, FPR), showing the trade-off between

Sensitivity and Specificity .

2.8.2 Multi-class Classification

Notably, the evaluation metrics presented above provide a quantification method for

a binary classification task. For a multi-class classification (e.g. k-class classification),

global metrics can be calculated as described below. These metrics are used to evaluate

the robustness of DNNs and, in particular, will be utilised in the problems addressed

in Chapter 3, 4, 5, 6.

Accuracy. Global accuracy, denoted by Accg, is calculated using the following

equation:

Accg =
∑k

i=1 TPi

Total
(2.10)

where Total is the total number of samples in the evaluated set, and TPi is the number

of correct predictions for each of the class i in a k-class classification task.

Robustness. Global robustness, denoted by Robustnessg, is calculated using the

following equation:

Robustnessg =
∑k

i=1 Robustnessi

Total
(2.11)
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where Robustnessi is the robustness measured for each of the class i in a k-class

classification task.

Attack Success Rate. Global ASR, denoted by ASRg, is calculated using the following

equation:

ASRg =
∑k

i=1 FNi

Total
(2.12)

where FNi is the number of incorrect predictions for each of class i in a k-class

classification task.
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Chapter 3

Bayesian Adversarial
Learning for Robust
Malware Detectors

T
HIS chapter considers the problem of learning a detector robust against

adversarial malware. Modern detectors rely on machine learning

algorithms; however, an adversary can devise alterations to the malware

code to decrease the chance of being detected whilst preserving the functionality and

realism of the malware. Adversarial learning is effective in improving robustness

but generating functional and realistic adversarial malware samples is non-trivial

because in contrast to tasks capable of using gradient-based feedback, adversarial

learning in a domain without a differentiable mapping function from the problem

space (malware code inputs) to the feature space is hard. This presents a challenge

for developing scalable adversarial machine learning algorithms for production

scale datasets to realise robust malware detectors. We propose an alternative;

perform adversarial learning in the feature space in contrast to the problem

space. We prove the projection of perturbed, yet valid malware, in the problem

space into feature space will always be a subset of adversarials generated in

the feature space. Hence, by generating a robust network against feature-space

adversarial examples, we inherently achieve robustness against problem-space

adversarial examples. We formulate a Bayesian adversarial learning objective

that captures the distribution of models for improved robustness. To explain

the robustness of the Bayesian adversarial learning algorithm, we prove that our

learning method bounds the difference between the adversarial risks and empirical

risk and improves robustness. We show the Bayesian neural networks (BNNs)

achieve state-of-the-art results; especially in the False Positive Rate (FPR) regime.

Adversarially trained BNNs achieve state-of-the-art robustness.
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3.1 Motivation and Contribution

We are amidst a meteoric rise in malware incidents worldwide. Malware is responsible

for significant damages, both financial—in billions of dollars (Anderson et al.,

2019)—and human costs in loss of life (Eddy and Perlroth, 2020). According to statistics

from Kaspersky Lab, at the end of 2020, there were an average of 360,000 pieces

of malware detected per day (KasperskyLab, 2020). The battle against such large

incidents of malware remains an ongoing challenge and the need for automated and

effective malware detection systems is a research imperative.

Advances in Machine Learning (ML) has led to state-of-the-art malware detectors (Arp

et al., 2014; Peng et al., 2012; Harang and Rudd, 2020; Raff et al., 2018; Anderson

and Roth, 2018). But, ML-based models are known to be vulnerable to adversarial

examples; here, seemingly benign inputs with small perturbations can successfully

evade detectors. Although adversarial examples were shown initially in the computer

vision domain (Szegedy et al., 2014; Goodfellow, Shlens and Szegedy, 2015; Madry

et al., 2018; Biggio and Roli, 2018), malware is no exception. Recent attacks have

crafted adversarial examples in the malware domain—so-called adversarial malware;

now, a carefully crafted malware sample with minimal changes to malware code but

still able to preserve the realism and functionality of the malware is able to fool ML-based

malware detectors to misclassify them as benign-ware. These attacks pose an emerging

threat against ML-based malware detectors (Grosse et al., 2017; Kolosnjaji et al., 2018;

Kreuk et al., 2018; Suciu, Coull and Johns, 2019; Pierazzi et al., 2020; Demetrio et al.,

2021).

Problem. In general, adversarial learning (Athalye, Carlini and Wagner, 2018) or

training with adversarial examples is an effective method to build models robust

against adversarial examples. However, generating adversarial malware samples

for training, especially at the production scale necessary for deployable models, is

non-trivial. Because:

• Generation of adversarial examples in the malware domain is confronted with

the inverse feature-mapping problem where the function mapping from the problem

space (the discrete space of software code binaries) to the feature space (vectorized

features) is non-differentiable (Biggio et al., 2013; Biggio, Fumera and Roli, 2013;

Quiring, Maier and Rieck, 2019). Hence, fast, gradient-driven methods to derive
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useful information to craft adversarial samples in the problem space are not

suitable.

• The need to enforce malware domain constraints, realism, functionality and

maliciousness, on generated perturbations in the problem space is a difficult

proposition. Thus, arbitrary changes to the malware binaries are not possible

because it could drastically alter the malware in a manner to break the malicious

functionality of the binaries or even make it unloadable.

Although efforts to realise robust models on discrete spaces such as discrete images

or graph data exist (Lee et al., 2019; Wang et al., 2021), the problem space of malware

classification is significantly more challenging due to the imposed constraints in the

problem space; the realism and functionality as well as maliciousness of the malware

must be maintained. Unfortunately, a method to scale-up adversarial training with

samples in the problem space to production scale datasets, especially in the case of

neural networks, does not exist.

Further, despite extensive work on adversarial ML in general, very few studies have

focused on the problem in the context of malware as recently highlighted by Pierazzi

et al. (2020), and a comprehensive investigation of robust defence methods in the area

remains to be conducted.

Research Questions. Hence, in this study, we seek to answer the following research

questions (RQs):

• RQ1. How can we overcome the challenging problem of adversarial learning

for malware at a production scale to realise robust malware detectors against

adversarial malware samples?

• RQ2. How can we formulate an adversarial learning problem for building robust

malware detectors and how can we explain the robustness and benefits?

• RQ3. How robust are adversarially trained malware detectors, especially

against problem-space (functional, realistic and malicious) adversarial malware

samples?

Our Approach. We argue that a defender is not confronted with the problems we

mentioned. Because, we show that constraining the adversarial examples in the
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problem space to preserve malware realism, functionality and maliciousness can be turned

to an advantage for defenders. The constraints make the perturbed malware in the problem

space a subset of the adversarial examples in the feature space. Therefore, designing a robust

method against feature-space adversarial examples will inherently be robust against constrained

problem-space adversarial examples encapsulating the threats from adversarial malware.

To construct a formulation to improve the robustness against feature-space adversarial

malware examples, and ultimately problem-space malware, we propose a Bayesian

formulation for adversarially training a neural network: i) with the capability to

capture the distribution of models to improve robustness (Liu and Wang, 2016;

Liu et al., 2019b; Ye and Zhu, 2018; Wicker et al., 2021; Carbone et al., 2020); and

ii) prove our proposed method of diversified Bayesian neural networks hardened

with adversarial training bounds the difference between the adversarial risk and the

conventional empirical risk to theoretically explain the improved robustness.

Moreover, just recently, security researchers placed significant effort into providing

extracted, continuous features for malware samples at a production scale of more

than 20 million samples (Harang and Rudd, 2020; Anderson and Roth, 2018)–the

SOREL-20M dataset. However, the robustness of networks built on these extracted features

in the face of evasion attacks are yet to be understood. Therefore, our study to investigate

production scale adversarial learning is timely and we focus our efforts to investigate

methods using the SOREL-20M dataset.

Our Contributions. In our efforts to address the problem of building robust malware

detectors, we make the following contributions:

1. We prove the projection of perturbed yet, valid malware, in the problem space (the

discrete space of software code binaries) into the feature space will be a subset of

feature-space adversarial examples. Thus, a robust network against feature-space

attacks is inherently robust against problem-space attacks. Our work provides a

theoretically justified basis for adversarially training malware detectors in the feature

space. Further, to corroborate our proof, we empirically demonstrate networks

trained on feature-space adversarials are robust against functional and realistic

problem-space adversarial malware (RQ1).

2. Hence, to improve robustness in the problem space we propose performing

adversarial learning in the feature space and formulate a Bayesian Neural Network

(BNN) adversarial learning objective that captures the distribution of models for
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improved robustness. The algorithm is capable of learning from production scale

feature-space datasets of up to 20 million samples (RQ1 and RQ2).

3. We also prove hardening BNNs with adversarial examples bounds the difference

between the adversarial risk and the empirical risk to explain the improved

robustness. Further, we show the benefit of adversarially trained BNNs to

capture and estimate the uncertainty in malware predictions for a defence

method (RQ2).

4. We empirically demonstrate Bayesian Neural Networks capturing model

diversity to improve the performance of malware classifiers and adversarially

trained BNNs to generate more robust models against the threat of

adversarial malware. Adversarially trained BNNs achieve new benchmarks for

state-of-the-art robustness—especially against unseen, stronger, attack samples

(RQ3).

Scope. Notably, in our study, we focus on Windows Portable Executable (PE) malware

for two reasons: i) Windows is the most popular operating system for end-users

worldwide, and PE-file malware is the earliest and most studied threat in the

wild (Schultz et al., 2000), making a robust method to detect adversarial PE files a

significant contribution to security research; and ii) the intuition and methodology

behind Windows PE malware can be applied and transferred to other file formats and

operating systems, such as PDF malware or malware for Linux and Android systems.

3.2 Problem Definition

Threat model. We assume an attacker with perfect knowledge (white-box

attacker) (Biggio, Fumera and Roli, 2014, 2013), in which the attacker knows

all parameters including feature set, learning algorithm, loss function, model

parameters/hyperparameters, and training data. The reason for considering the

strongest, perfect-knowledge adversary is because, even if access to the model is not

possible, or the model is not publicly available, an adversary can employ a reverse

engineering approach such as (Tramèr et al., 2016; Rolnick and Kording, 2020; Carlini,

Jagielski and Mironov, 2020) to extract the model. And, defending against such attacks

is challenging. The attacker objective is to evade detection. Their capability is to modify

the features at test time.
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Problem-Space Attacks. We consider the problem space Z which refers to the input

space of real objects of a considered domain such as software code binaries—our focus

in the paper; first Z must be transformed into a compatible format such as numerical

vector data (Anderson and Roth, 2018; Harang and Rudd, 2020) for ML to process.

Then, a feature mapping is a function Φ : Z → X ⊆ Rn that maps a given

problem-space software code binary z ∈ Z to an n-dimensional feature vector x ∈ X
in the feature space such that Φ(z) = x.

Normally, attackers have to apply a transformation to z to generate z′ such that Φ(z′)

is very close to x′ in the feature space. Formally, given a problem-space object z ∈ Z
with label y ∈ Y , the goal of the adversary is to find the transformation T : Z → Z
(e.g. addition, removal, modification) such that z′ = T(z) is classified as a class

t ̸= y. In the malware domain, the adversary has to search in the problem space

that approximately follows the gradient in the feature space. However, this is a

major challenge that complicates the application of gradient-driven methods to the

problem-space attacks— so-called inverse feature-mapping problem (Quiring, Maier

and Rieck, 2019; Biggio et al., 2013; Pierazzi et al., 2020) where the function Φ in

the software domain—our focus—is typically not invertible and not differentiable,

i.e. there is no one-to-one mapping from the adversarial examples in the feature

space x + δ to the corresponding adversarial problem-space object z′. In addition, the

generated object T(z) must be realistic and valid (Suciu, Coull and Johns, 2019). Thus,

the search for adversarial examples in the problem space (software) cannot be a purely

gradient-based method, hindering the adoption of well-known adversarial attacks in

other domains such as computer vision. To achieve a realistic adversarial objective,

the search for adversarial examples in the problem space has to be constrained in

problem-space constraints denoted by Ω. We remark that the constraints on the

problem-space are well defined and can be found in (Biggio and Roli, 2018; Biggio et al.,

2013; Quiring, Maier and Rieck, 2019; Xu, Qi and Evans, 2016; Pierazzi et al., 2020), we

mentioned here for completeness there are at least four main types of problem-space

constraints including Preserved semantics, Plausibility, Robustness to Processing and

Available Transformation explained in detail by Pierazzi et al. (2020).

Feature-Space Attacks. To alleviate the problems with problem space attacks, we

propose an alternative that uses feature space. We note that all definitions of

feature-space attacks are well defined and consolidated in related work (Biggio and

Roli, 2018; Carlini and Wagner, 2017b; Grosse et al., 2017; Szegedy et al., 2014). In
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this paper, we use a popular feature mapping function provided in the EMBER

dataset (Anderson and Roth, 2018) to map raw bytes of software to a vector of

n = 2381 features. A feature-space attack is then to modify a feature-space object

x ∈ X to become another object x′ = x + δ where δ is the added perturbation

crafted with an attack objective function to misclassify x′ into another class t ̸= y where

y ∈ Y is the ground-truth label of x. We note that in the malware domain (a binary

classification task), the intuition of the attackers is to make the malware be recognized

as benign ware. These modifications has to follow feature-space constraints. We

denote the constraints on feature-space modifications by Ψ. Given a sample x ∈ X ,

the feature-space modification, or perturbation δ must satisfy Ψ. This constraint Ψ

reflects the realistic requirements of problem-space objects. In the malware domain,

feature perturbations δ can be constrained δlb ≤ δ ≤ δub (Pierazzi et al., 2020).

3.3 Theoretical Basis For Feature-Space Adversarial

Learning

In this paper, we highlight that the realistic assumption of problem-space attacks

makes the constraints imposed by Ω stricter or equal to those imposed by Ψ (illustrated

in Figure 3.1). Following the necessary condition for problem-space adversarial

examples as stated in Pierazzi et al. (2020), we have:

Lemma 1. If there exists an adversarial example in the problem space (z′) that satisfies

the constraints Ω, then there will be a corresponding adversarial example in the feature

space (x′) under the constraints Ψ. More formally, by abusing notation from model

theory to use |= to indicate an instance “satisfies” constraints, and write z′ |= Ω and

x′ |= Ψ, we have:

∃z′ : z′ |= Ω, p
(
y | Φ(z′), θ

)
= p(y | Φ(T(z)), θ),

p(y | Φ(T(z)), θ) < 0.5

⇒ ∃x′ = x + δ : x′ |= Ψ, p(y | x′, θ) < 0.5

where T is the transformation in the problem space to craft adversarial examples,

p(y | x, θ) = sigmoid( f (x; θ)) is the output of a sigmoid function applied to the

output of the neural networks f parameterised by θ, , p(y | x, θ) = 0.5 is the threshold

for malware detection where the predicting p(y | x, θ) = 0 is recognized as benign
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Figure 3.1: Illustrative example of adversarial examples. The adversarial example x+ δ

is derived from x in the feature space and its projection to problem-space constraints

(which is more restrictive) determined by Ω is z′. The colour in the background

illustrates the decision regions where red colour is for malware and green is for benign

programs. The solid arrow in Feature Space represents the gradient-based attack to

transform a malware x to x + δ, projected to the problem-space constraints as z′ to be

misdetected as a benign program.

whilst p(y | x, θ) = 1 indicates a malware, Ω, Ψ are, respectively, the problem-space

and feature-space constraints, and Φ(·) is the function that maps the problem space to

feature space.

Proof of Lemma 1

We consider the problem-space example z ∈ Z with the feature in the feature space

x ∈ X .

Initially, we assume that there is no solution to the feature-space attack (x′) under

constraints Ψ given an existing problem-space adversarial attack (z′) under constraints

Ω. Specifically, we assume that there is no δ that satisfies p(y | x + δ, θ) < 0.5, δ |= Ψ.
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However, because there exists an adversarial attack in the problem space,

∃z′ : z′ |= Ω, p
(
y | Φ(z′), θ

)
= p(y | Φ(T(z)), θ), p(y | Φ(T(z)), θ) < 0.5 (3.1)

Thus,

∃T∗ : p(y | Φ(z′), θ) = p(y | Φ(T∗(z)), θ), p(y | Φ(T∗(z)), θ) < 0.5, z, z′ |= Ω (3.2)

For any transformation T in the input space, there exists a value δ∗ for which we have:

∃T∗ : p(y | Φ(T∗(z)), θ) = p(y | x + δ∗, θ), p(y | x + δ∗, θ) < 0.5, z, z′ |= Ω (3.3)

We recall that feature-space constraints are determined by problem-space constraints,

that is, the search space allowed by Ω is stricter or equal to that allowed by Ψ. Thus, δ∗

must be a solution to feature-space constraints Ψ. However, this is not possible because

we begin with the assumption that there is no δ that satisfies f (x + δ) < 0.5, δ |= Ψ.

This contradiction proves that:

∃z′ : z′ |= Ω, p(y | Φ(z′), θ) = p(y | Φ(T(z)), θ), p(y | Φ(T(z)), θ) < 0.5

⇒ ∃x′ = x + δ : x′ |= Ψ, p(y | x′, θ) < 0.5

From Lemma 1, for an existing problem-space adversarial attack, we have a

corresponding feature-space adversarial attack. Thus, we can derive:

Corollary 1. The adversarial examples generated from constrained problem-space

adversarial examples (imposed by Ω) are in a subset of feature-space adversarial

examples (imposed by Ψ).

Corollary 2. Detectors robust against feature-space adversarial examples (imposed by

Ψ) are robust against constrained problem-space adversarial examples (imposed by

Ω).

Built upon these Corollaries, we propose to find a learning method robust against

feature-space adversarial malware. On the one hand, adversarial training (Madry et al.,

2018) and its variants are shown to be one of the most effective and popular methods

to defend against adversarial examples (Athalye, Carlini and Wagner, 2018). On the

other hand, Bayesian neural networks (MacKay, 1992; Ritter, Botev and Barber, 2018;

Izmailov et al., 2021) with distributions placed over their weights and biases enabling
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the principled quantification of the uncertainty of their predictions are shown to be

a robust method against adversarial examples. Thus, this chapter demonstrates that

robustness against feature-space adversarial examples is inherently robust against

problem-space real malware. We propose to incorporate adversarial training with

Bayesian neural networks to seek the first principled method of Bayesian adversarial

learning to realise a robust malware detector without the difficulties of inverse

feature-mapping and preserving the semantics and functionalities of real malware

samples. We name our method Adv. MalBayes, and the method is efficient enough

to be scaled up to a large production scale of adversarial training data of 20 million

adversarial samples with the pre-extracted feature set of SOREL-20M dataset (Harang

and Rudd, 2020).

3.4 Methods

Our method combines adversarial training with a Bayesian inference approach to

faithfully capture the posterior distribution of parameters that can provably bound

the difference between adversarial and empirical risk commensurate with a robust

adversarial defence. The following subsections describe our formulation.

3.4.1 Bayesian Formulation for Adversarial Learning

The goal of Bayesian adversarial learning is to find the posterior distribution using the

Bayes theorem:

p(θ | Dadv) = ∏
(xadv,y)∼Dadv

p(y | xadv, θ)p(θ)/Z

where Z is the normaliser, Dadv is the adversarial dataset obtained by generating

adversarial examples from the benign dataset D using adversarial generation such as

Eq. (3.4).

We consider p(y | xadv, θ) = sigmoid( f (xadv; θ)) to produce a binary prediction

in malware detection, where f is a neural network. Notably, Eq. (3.4)

is the Expectation-over-Transformation (EoT) PGD attack (Athalye et al., 2018;

Zimmermann, 2019), which is slightly different from the usual PGD attack (Madry

et al., 2018). As has been highlighted in Zimmermann (2019), the EoT attack is better

able to estimate the gradient of the stochastic Bayesian models:

xt+1 = Πεmax

{
xt + α · sign

(
Eθ

[
∇xℓ

(
f
(
xt; θ

)
, yo
)])}

. (3.4)
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where εmax is the maximum attack budget, Πεmax is the projection to the set

{x | ∥x− xo∥∞ ≤ εmax}, ℓ is the loss function (typically cross-entropy), f is the neural

network, x is the input, θ is the network parameter, and y is the ground-truth label.

In this attack, an attacker starts from x0 = xo and conducts projected gradient descent

iteratively to update the adversarial example.

However, as highlighted in Izmailov et al. (2021), the posterior over a Bayesian neural

network is extremely high-dimensional, non-convex and intractable. Thus, we need to

resort to approximations to find the posterior distribution. In this work, we propose

using Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016) for two reasons.

First, this approach learns multiple network parameter particles in parallel for faster

convergence. Second, there is a repulsive factor in the method to encourage the diversity

of parameter particles that helps to prevent mode collapse — a challenge of posterior

approximation. To further demonstrate the robustness of our chosen Bayesian method,

we compare Adv. MalBayes with previous BNNs (Liu et al., 2019b) in Section 3.5.5

Table 3.8.

We consider n samples from the posterior (i.e. parameter particles). The variational

bound is minimised when gradient descent is modified as:

θi = θi − ϵiϕ̂
∗(θi)

with ϕ̂∗(θ) =
n

∑
j=1

[
k(θj, θ)∇θjℓ( f (xadv; θj), y)

− γ

n
∇θj k(θj, θ)

]
.

Here, θi is the ith particle, k(·, ·) is a kernel function that measures the similarity

between particles and γ is a hyper-parameter. The parameter particles are encouraged

to be dissimilar to capture more diverse samples from the posterior thanks to the kernel

function. This is controlled by a hyper-parameter γ, to manage the trade-off between

diversity and loss minimisation. Here, following (Liu and Wang, 2016), we use the RBF

kernel k(θ, θ′) = exp
(
−∥θ− θ′∥2/2h2

)
and take the bandwidth h to be the median of

the pairwise distances of the set of parameter particles at each training iteration.

At the inference stage, given the test data point x∗, we can get the prediction by
approximating the posterior using the Monte Carlo samples as:

p(y∗ |x∗,Dadv) =
∫

p(y∗ | x∗, θ)p(θ | Dadv)dθ

≈ 1
n

n

∑
i=1

p(y∗ | x, θi), θi ∼ p(θ | Dadv) ,
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where θi is an individual parameter particle.

In addition, we also acknowledge that it is critical to have diverse parameter particles.

Averaging over diverse and uncorrelated predictors was shown to improve network

performance (Jacobs et al., 1991; Wolpert, 1992; Breiman, 1996). In the adversarial

setting, when integrating out the parameters in our Bayesian formulation, we

implicitly remove the vulnerabilities arising from a single choice of parameter existing

in traditional neural networks, and hence improve the robustness. Furthermore, the

uncertainty provided by a diverse Bayesian neural network is also beneficial to detect

unseen strong adversarial malware as discussed in Section 3.6.

Algorithm 3.1 Bayesian Adversarial Learning with SVGD

1: Input: A set of initial parameter particles {θ0
i }n

i=1, observation feature-space data

D.

2: Output: A set of parameter particles Θ := {θi}n
i=1 that approximates the true

posterior distribution p(θ | Dadv)

3: for (x, y) ∼ p(D) do

4: xadv ← x

5: for t = 1→ T do ▷ Generate feature-space adversarial examples (Eq. (3.4))

6: xadv = Πεmax { xadv + α · sign ( Eθ

[
∇xℓ

(
f
(
xadv; θj

)
, y
)]

) }

7: for i = 1→ n do

8: θi ← θi − ϵiϕ̂
∗(θi, θj) with

ϕ̂∗(θi, θj) =
n

∑
j=1

[
k(θj, θi)∇θjℓ(Θ)− γ

n
∇θj k(θj, θi)

]
9: ϵi is the step size at the current iteration, k(θ, θ′) is a positive definite kernel

that specifies the similarity between θ and θ′, ℓ is binary cross-entropy loss, and γ is

the weight to control the repulsive force that enforces the diversity among parameter

particles.

3.4.2 Adversarial Risk Bounded with Bayesian Formulation

In this section, to explain the robustness of the Bayesian adversarial learning method

that we propose, we prove that training the network with the Bayesian adversarial

learning method bounds the difference between the adversarial risk and the empirical
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risk. This is important, because, now the risk of misclassification on adversarial

examples is as the same as that of benign ones; hence eliminating the vulnerability of

adversarial examples and reduce the risk of misclassification of adversarial examples

to the generalisation ability of the classifier. Notably, improving the generalisation

ability of the classifier is not our focus.

In this context, we make no specific assumption on the distribution of either the

adversarial examples or the perturbations, to provide a generic defence approach. The

only assumption we make is that the distribution of the data and the corresponding

adversarial examples are sufficiently close. This is a mild and reasonable assumption

because the idea of adversarial learning is that the added perturbation does not change

the perceived samples or the distribution of the samples. Thus, we consider the bound

of |Radv − R| where the empirical risk R = Eθ

[
E(x,y)∼D

[
Ey′∼p(y|x,θ) [I(y = y′)]

]]
and

the adversarial risk Radv = Eθ

[
E(xadv,y)∼Dadv

[
Ey′∼p(y|xadv,θ) [I(y = y′)]

]]
Proposition 3.1. The difference between the adversarial risk (denoted by Radv) and the
empirical risk (denoted by R) of a classifier when trained on the observed training set and
its adversarial counterparts is bounded, i.e.

|Radv − R| ≤ τ,

where τ = 1−E(x,y)∼D

[
exp

(
Eθ[rθ(x, xadv, y)]

)]
,

rθ(x, xadv, y) =
K

∑
c

p(y = c | x, θ) log(p(y = c | xadv, θ)) .

Here, xadv denotes the adversarial example obtained from x.

We can see that the difference between the empirical risk and the adversarial risk is

minimised when the upper bound is minimised. Notably, as we know that 1− exp(−z)

is a monotonically increasing function, and 1− exp(−z) ≤ z, to avoid computational

instabilities and gradient saturation, we consider minimising the upper bound without

the exponential function. Thus, to minimise the upper bound, our main learning

objective (in Algorithm 3.1 is to:

Minimise cross entropy for the adversarial examples. This corresponds to matching the

prediction from the adversarial data to that of the observations. Since (x, y) is given

in the training, we simply minimise the entropy of the adversarial examples.

Bayesian learning bounds the difference between empirical risk and adversarial risk. This

bound is minimised when hardening a BNN with adversarial examples.
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Proof of the Objective (Proposition 1)

We have

|Radv − R| =
∣∣∣∣∣E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv)

[I (y1 ̸= y)]−Ey2∼p(y|x) [I (y2 ̸= y)]

]]∣∣∣∣∣ ,

=

∣∣∣∣∣E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [I (y1 ̸= y)− I (y2 ̸= y)]

]]∣∣∣∣∣ ,

≤ E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [|I (y1 ̸= y)− I (y2 ̸= y) |]

]]
,

≤ E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [I (y1 ̸= y2)]

]]
.

where we can upper bound the expected misclassification to arrive at:

E(x,y)∼D

[
Eθ

[
1−

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ)

]]
.

Subsequently, we can use Jensen’s inequality and the fact that x = exp(log(x)) to

engender:

E(x,y)∼D

[
Eθ

[
1− exp(log(

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ))︸ ︷︷ ︸
≥∑K

c p(y=c|x,θ) log(p(y=c|xadv,θ)

)

]]
,

and because 1− exp(z) is monotonically decreasing, we have

E(x,y)∼D

[
Eθ

[
1− exp(log(

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ)))

]]

≤ E(x,y)∼D

[
Eθ

[
1− exp

( K

∑
c

p(y = c | x, θ) log(p(y = c | xadv, θ))
)]]

= 1−E(x,y)∼D

[
Eθ

[
exp

( K

∑
c

p(y = c | x, θ) log(p(y = c | xadv, θ))
)]]

.

This produces the following bound:

|Radv − R| ≤ 1−E(x,y)∼D

[
exp

(
Eθ

[ K

∑
c

p(y = c | x, θ) log(p(y = c | xadv, θ))︸ ︷︷ ︸
rθ(x,xadv,y)

])]
.
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This result demonstrates that the difference between the risks is bounded by the

negative cross-entropy of the predictions. Although informative, this bound expresses

the relationship between the predictions but not how the model performs on each set

(i.e. a given dataset against its corresponding adversarial).

Then, given the difference between empirical risk and adversarial risk is minimised

when the upper bound is minimised, the main learning objective is to:

Maximise Eθ[∑K
c p(y = c | x, θ) log(p(y = c | xadv, θ))] or minimise Eθ[KL(p(y =

c | x, θ)∥p(y = c | xadv, θ)). This corresponds to matching the prediction from the

adversarial data to that of the observations. Because (x, y) is given in training,

minimising this KL-divergence requires simply minimising the entropy of the

adversarial examples instead.

Notably, given we know 1 − exp(−z) ≤ z, to avoid computational instabilities and

gradient saturation, our implementation minimises the upper bound without the

exponential function.

Sketch of the Proof. We simplify the difference between risks by considering that the

difference between individual mistakes is smaller than their product, i.e.

Ey1∼p(y|x,θ)

[
Ey2∼p(y|xadv,θ) [I[y ̸= y1]− I[y ̸= y2]]

]
≤ Ey′∼p(y|xadv,θ)

[
Ey′∼p(y|xadv,θ) [I[y1 ̸= y2]]

]
≤ 1−

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ) .

We then use Jensen’s inequality when using exp(log(·)) to obtain the upper bound.

We empirically evaluate this difference of risk, presenting the results in Figure 3.2.

Figure 3.2: The difference between conventional empirical risk and adversarial risk

|Radv − R| for the EMBER test set.

Page 41



3.5 Experiments

3.5 Experiments

Classifiers. To validate our proposed method Adv. MalBayes, we conduct experiments

on different neural networks. We employ the Feed Forward Neural Network (FFNN)

classifier provided in the SOREL-20M dataset (Harang and Rudd, 2020). This network

architecture is also used for the experiments on the EMBER dataset (Anderson and

Roth, 2018). Our network implementation uses the default configuration provided

in (Harang and Rudd, 2020). We also adopt the architecture of FFNN to design

the Bayesian Neural Network (BNN). The details of the network architecture are in

Section 3.5.1. Then, we harden the FFNN and BNN with adversarial examples to

generate the Adv. FFNN model and Adv. MalBayes. In addition, we also employ

baseline networks including LightGBM (Anderson and Roth, 2018) and MalConv (Raff

et al., 2018) for comparison. We compare their performance on malware datasets (no

attacks) and their adversarial counterparts (adversarial malware designed to evade

detectors) to evaluate the detector performance and robustness. The values of the attack

budgets used for training and testing are detailed in Table 3.1.

Datasets. This chapter uses the two largest publicly available corpora for

malware detection, namely, the Sophos AI SOREL-20M (Harang and Rudd, 2020) and

EMBER2018 (Anderson and Roth, 2018) datasets.

• The EMBER dataset contains portable executable files (PE files) scanned by

VirusTotal on or before 2018. It includes 600,000 training samples and 200,000 testing

samples, equally distributed between benign programs and malicious programs,

where the malware is labelled by the malware family using AVClass (Sebastián

et al., 2016). This dataset also includes the vectorised features that encode vast

amounts of information regarding the PE files, including general file information,

import/export functions, header information and string information. This EMBER

dataset was designed to be more challenging for ML-based classifiers compared with

the older version — the EMBER2017 dataset. Thus, using this dataset is of interest in

terms of evaluating our ML-based malware classifier.

• The SOREL-20M dataset is a recent industrial-scale dataset provided by Sophos

AI (Harang and Rudd, 2020). It contains 20 million samples featuring pre-extracted

features and metadata and high-quality labels. More concretely, the dataset includes

12,699,013 training samples, 2,495,822 validation samples and 4,195,042 testing

samples, as well as 10 million disarmed malware samples for feature exploration.
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Table 3.1: Hyper-parameter settings used in experiments.

Name Value Notes

T 20 #PGD iterations

εmax 0.03 Max l∞-norm in adversarial training

α 0.02 Step size for each PGD iteration

γ SOREL-20M:0.01, EMBER:0.05 Weight to control the repulsive force

n SOREL-20M:5, EMBER:20

#Parameter particles

#Forward passes when doing ensemble inference

# Expectation over Transformation

Table 3.2: Model Architecture for SOREL-20M and EMBER2018 datasets

Layer Type # of Channels Drop out Activation

FC 512 0.05 ELU

FC 512 0.05 ELU

FC 128 0.05 ELU

FC 1 - Sigmoid

By including a significant amount of high-quality samples, this dataset aims to

represent a new benchmark for malware detection.

Note that both datasets follow a strict temporal split policy, with test samples strictly

observed after training samples.

3.5.1 Network Architecture

We use the network architecture provided in the SOREL-20M dataset (Harang and Rudd,

2020) as the baseline for our BNN versions. Notably, because no baseline deep neural

networks are provided in the EMBER2018 dataset (Anderson and Roth, 2018), we adopt

the same baseline network architecture (Table 3.2) for that dataset.
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Table 3.3: Comparing the performance of BNN and FFNN on different datasets (at

1%FPR)

Dataset Network Detection Rate Acc AUC

SOREL-20M
FFNN 97.74 98.71 99.77

BNN 97.95 98.76 99.83

EMBER

MalConv (Raff et al., 2018) - 90.88 97.05

MalConv w/ GCG (Raff et al., 2021) - 93.29 98.04

FFNN 84.32 94.11 98.47

BNN 86.43 94.50 98.55

3.5.2 Experimental Results

We present our results by reporting: i) performance of the given classifiers on malware

detection tasks (no attacks setting) using ROC (receiver operating characteristic curve);

and ii) robustness (under evasion attacks with adversarial malware).

Performance (no attacks). Performance of the classifiers in the absence of attacks are

shown in Figure 3.3 with additional details reported Table 3.3. The ROC curves in

Figure 3.3 report the True Positive Rate (i.e. the percentage of correctly-classified

malware samples) as a function of the False Positive Rate (FPR, i.e. the percentage

of misclassified benign samples) for each classifier. From the figure, we can see

that Bayesian neural networks of the same network architecture as FFNNs achieve

better performance (compare BNN vs. FFNN and Adv. MalBayes vs. Adv-FFNN).

Notably, the BNNs outperformed the FFNN counterparts with a large margin in

the detection rate (of up to 20%) under low-FPR regimes. Notably, in Table 3.3,

we also show that BNNs built on feature-space samples achieve better performance

compared with the popular ML-based malware detector built on problem-space

samples (MalConv) (Raff et al., 2018) and its recently updated version in AAAI’21

(MalConv w/ GCG) (Raff et al., 2021). We can also see that BNNs achieve comparable

or slightly better performance compared with FFNN in the absence of attack inputs

(adversarial malware).

BNNs outperform FFNNs in benign conditions, with large margins observed for low-FPR

regimes.
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Adv. MalBayes

Figure 3.3: Performance of neural network detectors in the absence of adversarial

attacks in the SOREL-20M dataset. The Receiver Operating Characteristics depict the

detection ability of the models as their discrimination threshold varies. We can observe

BNN models to outperform their FFNN counterparts.

Robustness (against Feature-Space Adversarial Examples. To evaluate the robustness

of the investigated classifiers, we apply the PGD attack from Equation (3.4) on

malware samples with increasing attack budgets. Results for the robustness of given

classifiers under different attack budgets are reported in Table 3.4. Notably, Adv.

MalBayes outperforms the adversarially trained FFNN on both the production scale

(SOREL-20M) and challenging (EMBER) datasets, especially under increasing attack

budgets. This is significant because the problem of malware is that they are evolving

extremely fast e.g. there are hundreds of thousands of new malware samples every

day (KasperskyLab, 2020). Further, results in Figure 3.4 illustrate, as expected and

in line with the findings in the literature (Madry et al., 2018; Carlini and Wagner,

2017b; Goodfellow, Shlens and Szegedy, 2015), the adversarially trained networks

are significantly more robust than their non-adversarially trained counterparts.

The robustness achieved against strong, unseen, feature-space adversarial attacks,

potentially, demonstrate robustness Adv. MalBayes against problem-space adversarial

malware; we will investigate robustness against problem-space adversarial malware

in the following section.

Adversarially-trained BNNs significantly outperform their FFNN counterparts against

strong unseen adversarial attacks.
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Table 3.4: Robustness of networks against adversarial malwares with increasingly large

attack budgets

Dataset Networks
Attack budget

0 0.03 0.05 0.1 0.2 0.3

SOREL-20M
Adv. FFNN 95.38 93.31 89.92 47.74 17.34 13.3

Adv. BNN 95.52 94.20 90.53 62.86 25.42 23.10

EMBER2018
Adv. FFNN 86.88 82.44 79.48 64.00 51.32 42.77

Adv. BNN 89.17 86.73 84.79 78.03 63.06 52.63

Figure 3.4: Comparing the performance of different training methods under

adversarial attacks.

Robustness (against Problem-Space Adversarial Malware). In this section, we

evaluate the robustness of different networks against functional, malicious and real

adversarial malware in the problem space. We employ two evaluation sets. Set A

includes real malware collected from a previous study (Mantovani et al., 2020) and

includes 7137 virus samples. We generate the real adversarial malware samples by

utilising the constant padding attack method proposed by Fleshman (2019) used to

win the machine learning static evasion competition (DEFCON, 2019). In particular,

100,000 constant bytes valued 0xA9 were added to a new section of PE files to ensure

the malicious functionality is not altered. The results in Table 3.5 shows that this

attack can significantly degrade the performance of the popular ML-based malware

detector MalConv (Raff et al., 2018), however, the LightGBM (Anderson and Roth,
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Table 3.5: Comparing the robustness of detectors against real and unseen adversarial

malware (problem space attacks).

LightGBM MalConv FFNN BNN Adv. FFNN Adv. MalBayes

Set A 92.5% 29.2% 69.5% 72.5% 92.6% 99.9%

Set B 11.2% -1 74.9% 83.1% 91.8% 99.9%

1 The released set is stored in the vectorized features not applicable to run on

MalConv.

2018) model is still robust against this attack (confirming the previous results obtained

by (Fleshman, 2019)). Set B consists of the recent release by Erdemir et al. (2021).

This includes 1001 real adversarial malware samples generated using the Greedy

Attack method shown to be stronger than the constant padding attack (Fleshman,

2019). The results are reported in Table 3.5. We can see that the Greedy Attack

successfully fools the LightGBM model and downgrades the robustness to 11.2%.

Notably, evaluations under both sets show the adversarially trained networks on

feature-space adversarial samples (i.e. Adv-FFNN and Adv. MalBayes) maintained their

robustness. Importantly, Adv. MalBayes achieved very high robustness under both attack

datasets and is a clear demonstration of the effectiveness of our approach and the validity of the

theoretical basis for training with feature-space adversarial samples.

3.5.3 The Impact of the Number of Parameter Particles for

Capturing the Posterior Distribution

This section investigates the contribution of the number of parameter particles to the

robustness of the networks. As Table 3.6 shows, the robustness of the BNNs improves

when the number of particles increases from 5 to 10. This is intuitive because increasing

the number of parameter particles will help to capture the multi-modal posterior better.

Thus, increasing the number of parameter particles may further improve the network’s

robustness.

3.5.4 Transferability of Robustness

In this section, we want to evaluate the robustness of the BNN trained on PGD L∞ and

examine its transferability of robustness to other attacks, such as FGSM (Goodfellow,
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3.5.5 Comparison with (Liu et al., 2019b) Learning Objective for Adversarial
Training a BNN.

Table 3.6: Assessing the contribution of the number of parameter particles to the

robustness of the networks for the SOREL-20M dataset.

Adv. BNN Networks
Attack budget

0 0.03 0.05 0.1 0.2 0.3

5 particles 95.52 94.20 90.53 62.86 25.42 23.10

10 particles 96.29 94.97 92.19 69.96 35.20 30.79

Table 3.7: Transferability of robustness to different kinds of attacks.

Adv. BNN Networks
Attack budget

0 0.03 0.05 0.1 0.2 0.3

PGD L∞ 96.29 94.97 92.19 69.96 35.20 30.79

FGSM - 95.28 94.87 95.24 93.78 92.20

Shlens and Szegedy, 2015). The results in Table 3.7 show that the network trained with

PGD L∞ is robust against other attacks, aligning with (Madry et al., 2018) because PGD

L∞ is considered as the ’universal’ attack, and a robust defence against PGD L∞ will

inherently be robust against different types of other attacks.

This also shows that our method potentially improves robustness against a wide range

of other adversarial attacks adopting the basic FGSM method (Suciu, Coull and Johns,

2019; Kolosnjaji et al., 2018; Kreuk et al., 2018).

3.5.5 Comparison with (Liu et al., 2019b) Learning Objective for

Adversarial Training a BNN.

We also compare Adv. MalBayes with a previous method for adversarially training a

Bayesian neural network Liu et al. (2019b) and report the results in Table 3.8 where we

show the significantly better performance achieved with our training method.
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Table 3.8: Comparing performance of Adversarially trained Bayesian Neural Networks

Dataset Networks 0 0.03 0.05 0.1 0.2 0.3

SOREL-20M
Adv. BNN ( Liu et al. (2019b)) 94.56 92.97 89.31 56.69 17.39 14.95

Adv. MalBayes (Ours) 95.52 94.20 90.53 62.86 25.42 23.10

3.6 Benefits of Estimating the Uncertainty with BNNs

for Defending Against Adversarial Malware

This section investigates uncertainties associated with Adv. BNNs. Two kinds of

uncertainty can be distinguished (Gal, 2016): aleatoric uncertainty and epistemic

uncertainty. Aleatoric uncertainty is caused by inherent noise and stochasticity in the

data; epistemic uncertainty is caused by a lack of similar training data.

Aleatoric uncertainty under adversarial attacks is measured using:

ualea = Eθ

[
H[p(y | xadv, θ)]

]
where

H[p(y | xadv, θ)] = −
K

∑
c

p(y = c | xadv, θ) log p(y = c | xadv, θ)

Epistemic uncertainty under adversarial attacks is measured using:

uepis = I(xadv, y; Θ) = H
[
Eθ[p(y | xadv, θ)]

]
−Eθ

[
H[p(y | xadv, θ)]

]
To investigate these uncertainties, we consider the perturbation budget ϵ = 0.1 because

it causes Adv.BNNs to begin losing robustness (see Table 3.4). Figure 3.5 shows that

unseen large perturbation-driven adversarial attacks engender information leakage

in uncertainty estimates that can be exploited to detect adversarial malware. These

uncertainty estimates create a dilemma for attackers, requiring that they either (i)

generate a weak adversarial attack that would be defeated (see Table 3.4) or (ii) create

a stronger attack that would not be detected (as shown in Figure 3.5). Future research

should develop a method of incorporating these uncertainty estimates of Adv. BNNs

to improve detection of strong unseen adversarial malware.
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Figure 3.5: Uncertainty estimates between malware and their adversarial counterparts

based on the SOREL-20M dataset.

3.7 Related Work

Machine Learning Methods in the Malware Domain. Malware detection is moving

away from hand-crafted approaches relying on rules toward machine learning (ML)

techniques (Schultz et al., 2000; Saxe and Berlin, 2015; Raff et al., 2018; Krčál et al.,

2018). Recently, MalConv (Raff et al., 2018) adopted a Convolutional Neural Network

(CNN) based architecture design with a learnable, but non-differentiable, embedding

space for malware detection from raw byte sequences. The adoption of a CNN

for malware detection was also proposed in (Krčál et al., 2018). However, training

malware detectors on raw byte sequences (arbitrary number, often millions, of bytes)

is computationally expensive and time-consuming. In addition, as we discussed

earlier, it is non-trivial to craft realistic adversarial examples on raw byte sequences

to realise a robust network on large-scale datasets. Consequently, recent work

has employed problem space to feature space mapping functions together with

feed-forward neural networks to build benchmark models for the production-scale

SOREL-20M dataset Harang and Rudd (2020).

LUNA (Backes and Nauman, 2017) proposed a simple linear Bayesian model for an

Android malware detector, which preserves the concept of uncertainty, and shows that

it helps to reduce incorrect decisions as well as improve the accuracy of classification.

The benefit of a Bayesian classifier is to handle ML tasks from a stochastic perspective,

where all weight values of the network are probability distributions. More recently,

Nguyen et al. (2021) investigated the application of uncertainty and Bayesian treatment

to improve the performance of malware detectors on neural networks.
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Adversarial Malware (Adversarial Examples in the Malware Domain). ML-based

classifiers are shown to suffer from evasion attacks, via adversarial examples (Goodfellow,

Shlens and Szegedy, 2015). Recently, adversarial examples were demonstrated in

the problem space (Grosse et al., 2016; Xu, Qi and Evans, 2016; Grosse et al., 2017;

Hu and Tan, 2017; Kolosnjaji et al., 2018; Kreuk et al., 2018; Suciu, Coull and Johns,

2019). In particular, Kolosnjaji et al. (2018) proposed a method to append bytes to the

end of the binary PE file, while Kreuk et al. (2018) exploited the regions within the

executable which are not mapped to memory to construct adversarial malware. These

methods intend to make modifications that do not affect the intended behaviour of

the executable. Suciu et al. (Suciu, Coull and Johns, 2019) adopted FGSM (Goodfellow,

Shlens and Szegedy, 2015) to show the generalisation properties and effectiveness

of adversarial examples against a CNN-based malware detector, MalConv, trained

with small-scale datasets. Suciu, Coull and Johns (2019) highlighted the threat from

adversarial examples as an alternative to evasion techniques such as runtime packing,

but showed that models trained on small-scale datasets did not generalize to robust

models; hence, emphasizing the importance of training networks on production scale datasets.

Improving Model Robustness. Among methods for improving the robustness of

models, adversarial training (Madry et al., 2018) and its variants are shown to

be one of the most effective and popular methods to defend against adversarial

examples (Athalye, Carlini and Wagner, 2018). The goal of adversarial training is

to incorporate the adversarial search within the training process and, thus, realise

robustness against adversarial examples at test time. In particular, recently, Bayesian

adversarial learning has been investigated and adopted in the computer vision domain

to propose to improve the robustness of models against adversarial examples (Liu and

Wang, 2016; Liu et al., 2019b; Ye and Zhu, 2018; Wicker et al., 2021; Carbone et al., 2020).

Adversarial learning was first explored in the malware domain in (Al-Dujaili

et al., 2018) to generate a robust detector for binary encoded malware. However,

the computational cost to realise realistic, adversarial raw byte representations is

prohibitively expensive (Suciu, Coull and Johns, 2019; Pierazzi et al., 2020) for

adversarial learning.

Summary. We recognise that: i) a method capable of scaling up the adversarial training

of neural networks in the problem space to production scale datasets does not exist; ii) a

Bayesian adversarial learning objective that captures the distribution of models could

provide improved robustness; however iii) such a formulation requires overcoming the
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challenging problem of generating problem-space adversarial examples at production

scales.

3.8 Discussion and Conclusion

This chapter has proved and demonstrated that training a robust malware detector

on feature-space adversarial examples inherently generates robustness against

problem-space malware samples. Subsequently, we proposed a Bayesian adversarial

learning objective in the feature space to realise a robust malware detector in the

problem space. Additionally, we explain the improved performance by proving

that our proposed method bounds the difference between adversarial risk versus

empirical risk to improve robustness and show the benefits of a BNN as a defence

method. Our empirical results, including a production-scale dataset, demonstrates

new state-of-the-art performance and robustness benchmarks.

Nevertheless, a limitation of the current approach is that the training process for

realising a robust Bayesian neural network is time-consuming and computationally

expensive. Future research should investigate approaches for improving the efficiency

of the learning method to realise a Bayesian neural network, especially in the context

of adversarial learning. We will leave this as a future work and discuss further in detail

in Chapter 7.

The next chapter focuses on another challenge concerning adversarial examples in

the computer vision domain, where subtle changes in input pixels significantly

downgrade and fool superhuman neural networks. Investigating this problem

is pertinent because computer vision has achieved broad saturation in automatic

decision-making contexts, such as in self-driving cars, implying potentially

catastrophic consequences. Hence, we discuss the challenges associated with this

domain, review existing solutions and present a novel learning method that provably

tightens the theoretical bound presented in this chapter. We also empirically

demonstrate that the new method establishes the state-of-the-art for Bayesian

adversarial ML.
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Chapter 4

Bayesian Adversarial
Learning with Information

Gain for Robustness

T
HIS chapter considers the problem of learning a deep neural network

model robust against adversarial attacks in the Computer Vision

domain. The previous chapter’s Bayesian learning algorithm for

approximating the multi-modal posterior distribution of a Bayesian neural

network prevents mode collapse and leads to improve robustness and

performance. In this chapter, based on the intuition that a robust model should

ignore perturbations and consider only the informative content of the input, we

conceptualise and formulate an information gain objective to measure and force

the information learned from both benign and adversarial training instances to

be similar. Importantly, we prove that minimising the information gain objective

enables adversarial risk to approach the conventional empirical risk. These efforts

represent a step towards a basis for a principled method of adversarially training BNNs

to yield a robust model. Our model demonstrates significantly better robustness

(up to a 20% improvement) than state-of-the-art adversarial training (Madry et al.,

2018) and Adv-BNN (Liu et al., 2019b) in the context of projected gradient descent

attacks, with 0.035 distortion observed for both the CIFAR-10 and STL-10 datasets.
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4.1 Motivation and Contribution

As discussed in previous Chapters 1, 2 and 3, we want to explore the potential

robustness attainable from a Bayesian adversarial learning algorithm capable of

approximating the multi-modality of the posterior distribution, removing the effects

of parameter choice to enhance robustness. This chapter hypothesises a model that

can (1) learn a better approximation of parameter distribution and (2) enable the same

predictive distribution for both the given dataset and its adversarial counterparts is more

robust.

To achieve (1), we combine adversarial training with an inference approach to faithfully

capture the posterior distribution of parameters. To learn an approximate multi-modal

posterior distribution, similar to Chapter 3, we employ the Stein Variational Gradient

Descent (SVGD) method (Liu and Wang, 2016), which encourages diverse sampling

from the posterior. By utilising the SVGD approach, to achieve (2), we can design

an Information Gain (IG)2 objective. The contributions of this chapter are summarised

below:

1. Propose a novel method to learn a BNN that is robust against adversarial attacks by

utilising the SVGD to generate parameter particles that are trained in parallel to be

as diverse as possible while maintaining the same measure of information content learned

from benign and adversarial instances. This learning approach enables the model to

both reduce the effect of single parameter choice and learn the invariant patterns

common to the training dataset and its corresponding adversarial samples.

2. Formulate an Information Gain (IG) objective to ensure the same measure of

information content is learned from both benign and adversarial training instances.

The proposed objective reinforces minimisation of empirical adversarial risk by

forcing the information learned from the benign and adversarial samples to be

similar.

3. Prove that minimising the IG objective can enable tightening of the bound of the

difference between adversarial risk and empirical risk (introduced in Chapter 3),

making the risk misclassifying an adversarial example equal to the risk of

misclassifying a benign sample.

2also known as Mutual Information (Houlsby et al., 2011; Gal, Islam and Ghahramani, 2017)
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4. Comprehensive evaluations of a set of neural architectures and datasets demonstrate

the approach to significantly improve upon previous state-of-the-art methods in

terms of robustness.

4.2 Method

Our method combines adversarial training with an inference approach to faithfully

capture the posterior distribution of parameters and formulate a new IG objective

that can achieve a provably bounded adversarial risk commensurate with a robust

adversarial defence. The following subsections describe our formulation.

4.2.1 Bayesian Formulation for Adversarial Learning

For completeness, we present the formulation of Bayesian adversarial learning

previously mentioned in Chapter 3. In Bayesian learning, the posterior distribution

of the parameters is obtained using the Bayes rule:

p(θ | D) = ∏
(x,y)∼D

p(y | x, θ)p(θ)/Z

where Z is the normaliser. Similarly, for the dataset of adversarial instances Dadv, we
obtain a corresponding posterior distribution p(θ | Dadv). We consider p(y | xadv, θ) =

softmax( f (xadv; θ)) where f is a deep neural network. For the adversarial dataset
Dadv, because adversarial examples can be generated from their corresponding benign
instances, we can obtain Dadv during adversarial training by applying adversarial
attacks, such as projected gradient descent (PGD) attacks. However, we acknowledge
that PGD attacks cannot be directly applied in a BNN setting Liu et al. (2019b). Hence,
to account for the uncertainty of BNNs, we utilise the Expectation-over-Transformation
(EoT) (Athalye et al., 2018) approach to deploy an EoT-PGD attack, as described by
Equation (4.1) (previously demonstrated in Zimmermann (2019)). This attack is better
suited to BNNs because it adopts a more representative approximation to estimate the
gradient. It is formulated as:

xt+1 = Πεmax

{
xt + α · sign

(
Eθ

[
∇xℓ

(
f
(
xt; θ

)
, yo
)])}

. (4.1)

However, the posterior distribution is generally intractable and demands that we

depend upon approximations. This means proposing utilising the SVGD (Liu and

Wang, 2016) which provides an approach to learning multiple particles for parameters
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in parallel to approximate the true posterior distribution. The SVGD method uses

a repulsive factor to encourage the diversity of parameter particles to prevent mode

collapse. This diversity enables learning multiple models to represent various patterns

in the data. Collectively, these patterns are less vulnerable to adversarial attacks. Using

n samples from the posterior distribution (i.e. parameter particles), the variational

bound is minimised when the gradient descent is modified as:

θi = θi − ϵiϕ̂
∗(θi) (4.2)

with ϕ̂∗(θ) =
n

∑
j=1

[
k(θj, θ)∇θjℓ( f (xadv; θj), y) − γ

n
∇θj k(θj, θ)

]
. (4.3)

Here, θi is the ith particle, k(·, ·) is a kernel function that measures the similarity

between particles, γ a hyper-parameter and ℓ(·, ·) is the cross-entropy loss. Notably,

the kernel function encourages the particles to be dissimilar to capture more diverse

samples from the posterior distribution, and γ controls the trade-off between the

diversity of samples and the minimisation of loss.

Furthermore, given the test data point x∗, we can approximate the posterior

distribution using Monte Carlo samples:

p(y∗ |x∗,Dadv) =
∫

p(y∗ | x∗, θ)p(θ | Dadv)dθ

≈ 1
n

n

∑
i=1

p(y∗ | x, θi), θi ∼ p(θ | Dadv) ,

where θi is an individual parameter particle.

Importantly, in the adversarial setting, it is critical to use parameter samples that

represent different modes of distribution that may not be equally vulnerable to

perturbations. Adversarial instances are generally known to exploit the particular

patterns learned by the parameters (Papernot et al., 2016). When integrating out

the parameters–as in the Bayesian setting, especially in the context of the diverse

parameter particles in our approach–we implicitly remove the vulnerabilities that

could arise from a single parameter choice.

4.2.2 Conceptualising Information Gain for Bayesian Learning

Using the Bayesian setting we employ, we can formulate a notion of IG that captures

the impact on the parameter distribution of adding a new training instance to a dataset.

IG is defined as follows.
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Defining Information Gain.

We define our predictive distribution as:

p(y|x,D) =
∫

p(y|x, θ)p(θ|D)dθ .

Then, according to the definition of IG, we arrive at:

E[IG(x, y; Θ)] = ∑
y

p(y|x,D))
∫ p(y|x, θ)p(D|θ)p(θ)

p(D)p(y|x,D) log
(

p(y|x, θ)

p(y|x,D)

)
dθ

=
1

p(D) ∑
∫

p(y|x, θ)p(D|θ)p(θ) log
(

p(y|x, θ)

p(y|x,D)

)
dθ

=
1

p(D) ∑
∫

p(y|x, θ)p(θ|D) log
(

p(y|x, θ)

p(y|x,D)

)
dθ

=
1

p(D) ∑
∫

p(y|x, θ)p(θ|D) [log(p(y|x, θ))− log(p(y|x,D))] dθ

=
1

p(D) ∑
[∫

p(y|x, θ)p(θ|D) log(p(y|x, θ))dθ−
∫

p(y|x, θ)p(θ|D) log(p(y|x,D))dθ

]
=

1
p(D)

∫
p(θ|D)∑ p(y|x, θ) log(p(y|x, θ))dθ−∑

∫
p(y|x, θ)p(θ|D) log(p(y|x,D))dθ

=
1

p(D) (H[Eθ[y|x,D]]−Eθ[H[y|x,D]])

∝
(
H[Eθ[y|x,D]]−Eθ[H[y|x,D]]

)

where, in the last line, we assume p(D) ≈ p(Dadv) as constant values. Because we

consider adversarial instances to be obtained from observational instances, this is a

very mild assumption that aligns completely with current research.

Thus, we arrive at the definition of IG:

IG(x, y; Θ) = H[Eθ[y|x,D]]−Eθ[H[y|x,D]] . (4.4)

This formulation quantifies an instance’s informativeness for a model given a

particular training set. Intuitively, the information gained from an instance is

proportionate to the reduction in the expected entropy of the predictive distribution.

We conjecture that a robust neural network quantifies the IG from an observation equal to its

adversarial counterpart i.e. E(x,y)∼D[IG(x, y; Θ)] = E(xadv,y)∼Dadv
[IG(xadv, y; Θ)]. That is,

a robust model ignores the perturbations and only considers the informative content

of the input. We will employ these concepts in the following learning formulation.
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4.2.3 Formulating Learning a Robust Network Using Information

Gain

We formulate our training objectives as:

1. To learn the posterior distribution from the adversarial dataset. Because we use

the SGVD approach, this corresponds to learning multiple parameter particles,

which amounts to minimising the loss in relation to the repulsive constraint,

i.e. E(xadv,y)∼Dadv

[
Eθ∼p(θ|Dadv)

[ℓ( f (xadv; Θ), y)]
]
. Given the adversarial dataset

is generated while training the model, it depends on the particle chosen and

its parameters. The SGVD method ensures the samples are diverse, with each

parameter particle exploring a different input pattern.

2. To achieve comparable IG from both the given dataset and the adversarials, thus

ensuring: i) the information gained from the data and the adversarial examples is

encouraged to be the same, i.e. E(x,y)∼D[IG(x, y; Θ)] = E(xadv,y)∼Dadv
[IG(xadv, y; Θ)];

ii) the model is not biased towards learning from the adversarial instances, and

iii) the receptive fields are active for similar and prominent features.

To this end, we formulate the problem as a constrained optimisation:

min
θ

E(xadv,y)∼Dadv
[L(xadv, y; Θ)]

s.t. E(x,y)∼D[IG(x, y; Θ)] = E(xadv,y)∼Dadv
[IG(xadv, y; Θ)]

where L(xadv, y; Θ) = Eθ∼p(θ|Dadv)
[ℓ( f (xadv; θ), y)]. Combining these concepts using

the Lagrangian method, we arrive at the following objective:

LIG(Θ) = L(xadv, y; Θ) + λ |IG(x, y; Θ)− IG(xadv, y; Θ)| (4.5)

where we apply Monte Carlo sampling to the particles to estimate the expectations.

Subsequently, this learning objective LIG(Θ) is optimised using the SVGD method

in Equation (4.2), as mentioned in Section 4.2.1. Effectively, this approach computes

a posterior distribution in a constrained space defined by IG criteria. Because the

space is constrained, the likelihood of finding more robust ’particles’ in the posterior

distribution increases. We summarise our proposed robust Bayesian learning approach

in Algorithm 4.1, where, following Liu and Wang (2016), we use the radial basis

function (RBF) kernel k(θ, θ′) = exp
(
− ∥θ−θ′∥2

2h2

)
and assume that the bandwidth h

represents the median of the pairwise distances between the set of parameter particles

at each iteration.
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Algorithm 4.1 Information Gain-BNN (IG-BNN)

1: Input: A set of initial parameter particles {θ0
i }n

i=1 and observation data D.

2: Output: A set of parameter particles Θ := {θi}n
i=1 that approximates the true

posterior distribution p(θ | Dadv)

3: for (x, y) ∼ p(D) do

4: xadv ← x

5: for t = 1→ T do

6: xadv = Πεmax

{
xadv + α · sign

(
Eθ

[
∇xℓ

(
f
(
xadv; θj

)
, y
)])}

▷ Generate Adversarial (Eq. (4.1))

7: for i = 1→ n do

8: θi ← θi − ϵiϕ̂
∗(θi, θj)

with ϕ̂∗(θi, θj) =
n

∑
j=1

[
k(θj, θi)∇θj LIG(Θ)− γ

n
∇θj k(θj, θi)

]
9: ϵi is the step size at the current iteration, k(θ, θ′) is a positive definite

kernel that specifies the similarity between θ and θ′, LIG is the main objective

(Eq. (4.5)), γ, λ are the weights used to control the repulsive force that enforces the

diversity between parameter particles and the IG objective, respectively, and ℓ is

the cross-entropy loss function.

4.2.4 The Relationship between Adversarial and Observational Risk

A typical machine learning approach minimises the empirical risk involved in

learning. Theoretical and empirical studies concerning the relationship between

empirical risk and true risk have measured the generalisation ability of a learning

algorithm. Generalisation bounds, such as Rademacher complexity or the

Vapnik–Chervonenkis (VC) dimension for classical approaches or more recent studies

for deep learning approaches (see e.g. Neyshabur et al. (2017)), underpin the theoretical

framework for machine learning.

Notably, there has been little investigation into the relationship between the risk of

using samples from the observational distribution (i.e. the given dataset) and the risk

associated with using their adversarial counterparts. This is important because the impact

on generalisation (with respect to the true data distribution) of employing the commonly used

adversarial training approach remains unknown. We consider a Bayesian model with no

specific assumptions regarding the distribution of either the adversarial examples or
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the perturbations to provide a generic defence approach. The only major assumption

we make for the following adversarial risk bound is that the distribution of the

data and the corresponding adversarial are sufficiently close. This represents a mild

assumption given the adversarial instances are obtained from small perturbations of

the given training dataset. Thus, we are interested in finding the bound of |Radv − R|,
where

R = Eθ

[
E(x,y)∼D

[
Ey′∼p(y|x,θ)

[
I(y = y′)

]]]
is the empirical risk, and

Radv = Eθ

[
E(xadv,y)∼Dadv

[
Ey′∼p(y|xadv,θ)

[
I(y = y′)

]]]
is the risk associated with the adversarial examples. Upon obtaining these, it is possible

to obtain the overall generalisation and robustness bound. The following proposition

summarises our findings.

Proposition 4.1. The risk of a classifier trained on the observed training set (denoted by R)

compared to the risk associated with training with adversarials (denoted by Radv) is bounded,

i.e.

|Radv − R| ≤ 1−E(x,y)∼D

[
exp

((
Eθ[rθ(x, xadv, y)]

− λ |Eθ[IG(x, y; Θ)]−Eθ[IG(xadv, y; Θ)]|
))]

,

where rθ(x, xadv, y) = ∑K
c p(y = c | x, θ) log(p(y = c | xadv, θ)), λ ≥ 0 and xadv denotes the

adversarial example obtained from x.

Sketch of the Proof. We simplify the difference between the risks by considering that the

difference between individual mistakes is smaller than their product, i.e.

Ey1∼p(y|x,θ)

[
Ey2∼p(y|xadv,θ) [I[y ̸= y1]− I[y ̸= y2]]

]
≤ Ey′∼p(y|xadv,θ)

[
Ey′∼p(y|xadv,θ) [I[y1 ̸= y2]]

]
≤ 1−

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ) .
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Then, applying Jensen’s inequality to exp(log(·)), we obtain the upper bound. The

complete proof is provided in Section 4.2.4. We can see that the difference between

empirical risk and adversarial risk is minimised when the upper bound is minimised.

Hence, to minimise the upper bound, our main learning objectives (in Algorithm 4.1)

are to:

1. Minimise cross entropy for the adversarial examples. This corresponds to matching the

prediction from the adversarial data to that of the observations. Because (x, y) is

given in the training, we simply minimise the entropy of the adversarial examples.

2. Minimise the difference between the information gained from the dataset and its adversarial

counterparts. In addition to individual predictions, the information gained from each

instance (i.e. the benign and its adversarial) has to have a similar effect in terms of

how it changes the network parameters.

Proof of the Objective

|Radv − R| =
∣∣∣∣∣E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv)

[I (y1 ̸= y)]−Ey2∼p(y|x) [I (y2 ̸= y)]

]]∣∣∣∣∣ ,

=

∣∣∣∣∣E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [I (y1 ̸= y)− I (y2 ̸= y)]

]]∣∣∣∣∣ ,

≤ E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [|I (y1 ̸= y)− I (y2 ̸= y) |]

]]
,

≤ E(x,y)∼D

[
Eθ

[
sup Ey1∼p(y|xadv),y2∼p(y|x) [I (y1 ̸= y2)]

]]
.

where we can upper bound the expected misclassification to arrive at:

E(x,y)∼D

[
Eθ

[
1−

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ)

]]
.

Subsequently, we use Jensen’s inequality and the fact that x = exp(log(x)) to obtain

the following:

E(x,y)∼D

[
Eθ

[
1− exp(log(

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ))︸ ︷︷ ︸
≥∑K

c p(y=c|x,θ) log(p(y=c|xadv,θ)

)

]]
,
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For a monotonically decreasing function, we know that, for

x ≥ y, f (x) ≤ f (y). Using Jensen’s inequality,

log(∑K
c=1 p(y = c | x, θ)p(y = c | xadv, θ))≥ ∑K

c p(y = c | x, θ) log(p(y = c | xadv, θ).

Because 1− exp(z) is monotonically decreasing, we obtain the following:

E(x,y)∼D

[
Eθ

[
1− exp(log(

K

∑
c=1

p(y = c | x, θ)p(y = c | xadv, θ)))

]]

≤ E(x,y)∼D

[
Eθ

[
1− exp

( K

∑
c

p(y = c | x, θ) log(p(y = c | xadv, θ))
)]]

= 1−E(x,y)∼D

[
Eθ

[
exp

( K

∑
c

p(y = c | x, θ) log(p(y = c | xadv, θ))
)]]

.

Thus, we arrive at the following bound:

|Radv − R| ≤ 1−E(x,y)∼D

[
exp

(
Eθ

[ K

∑
c

p(y = c | x, θ) log(p(y = c | xadv, θ))︸ ︷︷ ︸
rθ(x,xadv,y)

])]
.

(4.6)

This result demonstrates that the difference between risks is bounded by the negative

cross entropy of the predictions. Although informative, this bound only expresses the

relationship between the predictions and not how the model performs on each set (i.e.

the given dataset compared to its corresponding adversarial).

From the definition of Kullback-Leilbler divergence (KL-divergence), we know

rθ(x, xadv, y) = −H(p(y = c | x, θ), p(y = c | xadv, θ))

= −KL(p(y = c | x, θ)∥p(y = c | xadv, θ)−H(p(y = c | x, θ))

We can add and subtract H[Eθ[p(y = c | x, θ)]] and Eθ[IG(xadv, y)] to have

Eθ[rθ(x, xadv, y)] = −Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))]−H[Eθ[p(y = c | x, θ)]] +Eθ[IG(xadv, y)]

+ (H[Eθ[p(y = c | x, θ)]]−Eθ[H[p(y = c | x, θ)]])︸ ︷︷ ︸
Eθ[IG(x,y)]

−Eθ[IG(xadv, y)]

= −Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))]− (Eθ[IG(xadv, y)]−Eθ[IG(x, y)])︸ ︷︷ ︸
A

+Eθ[IG(xadv, y)]−H[Eθ[p(y = c | x, θ)]]︸ ︷︷ ︸
B

= −Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))]− A + B
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We consider two cases:

i) A = 0, then Eθ[rθ(x, xadv, y)] = −Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))] −
Eθ[H(p(y = c | x, θ))] ≤ −Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))], because

Eθ[H(p(y = c | x, θ))] ≥ 0.

ii) Otherwise, when A ̸= 0 we have−A + B = A(−1+ B/A). We know A ≤ |A| for

any value, then A(−1 + B/A) ≤ |A|(−1 + B/A). Establishing (−1 + B/A) = −λ,

we have λ = (1− B/A). In practice, we tune λ as detailed in the chapter. From this,

we have −A + B ≤ −λ|A|.

Thus, we have

Eθ[rθ(x, xadv, y)] ≤ −Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))] (4.7)

−λ|Eθ[IG(x, y; Θ)]−Eθ[IG(xadv, y; Θ)]| (4.8)

and because 1− exp(·) is monotonically decreasing, we can achieve a tighter bound of

Eq. (4.6) with:

|Radv − R| ≤ 1−E(x,y)∼D

[
exp

(
−
(
Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))]

+λ
∣∣Eθ[IG(x, y; Θ)]−Eθ[IG(xadv, y; Θ)]

∣∣))] .

Then, the difference between empirical risk and adversarial risk is minimised when

the upper bound is minimised. Hence, the main learning objectives are to:

1. Minimise Eθ[KL(p(y = c | x, θ)∥p(y = c | xadv, θ))]: this corresponds to matching

the prediction from the adversarial data to the prediction from the observation

data. Because (x, y) is given in training, to minimise this KL-divergence, we simply

convert minimisation of the KL term to minimisation of the cross-entropy loss of the

adversarial examples;

2. Minimise |Eθ[IG(x, y; Θ)] − Eθ[IG(xadv, y; Θ)]|: In addition to individual

predictions, the information gained from each instance has to have a similar

effect on the network in terms of how it changes the parameters.

Notably, given that we know 1 − exp(−z) ≤ z, to avoid computational instabilities

and gradient saturation, we can minimise the upper bound without the exponential

function in our implementation.
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4.3 Experimental Results

This section verifies the performance of our proposed method (IG-BNN) against

baselines from the literature for two frequently used vision tasks. Although we

use the CIFAR-10 (Krizhevsky, Hinton et al., 2009) dataset—a popular benchmark

for evaluating the robustness of a DNN (Madry et al., 2018; Athalye, Carlini and

Wagner, 2018), it is also known that adversarial training is increasingly hard for

higher-dimensional data (Schmidt et al., 2018). Therefore, to further evaluate our

method’s robustness, we conduct experiments on a high dimensional dataset, namely,

the STL-10 (Coates, Ng and Lee, 2011) dataset, which features 5,000 training images

and 8,000 testing images with images of 96× 96 pixels.

For all the experiments, we utilise the same networks used for the adversarial training

BNN method, namely, Adv-BNN (Liu et al., 2019b), to fairly compare the results.

Specifically, we use the VGG-16 network architecture for CIFAR-10 and, following Liu

et al. (2019b), the smaller ModelA network for STL-10. The number of PGD steps and

the attack budgets used for training and testing are also set identically to ensure fair

comparison—see Section 4.3.1 Table 4.1. Notably, we also conduct the experiment with

a larger number of PGD steps in Section 4.3.5, with Figure 4.3 confirming that 20 steps

sufficiently enables the EoT-PGD attack to reach its full strength.

Because our proposed method evaluates the robustness of a Bayesian learning method

based on adversarial training, traditional adversarial training (Adv. Training) (Madry

et al., 2018) and the Adv-BNN (Liu et al., 2019b) are good baselines for comparisons.

Additionally, we compare our method with networks trained with no defences (No

Defence) and BNNs trained for the tasks.

4.3.1 Hyper-Parameters

The Table 4.1 represents the hyper parameters used in our experiments. For fair

comparison with previous works, all training and testing parameters and attack

budgets are identical to those used in Liu et al. (2019b). In according with the current

practice for assessing robustness, we chose the number of iteration for PGD attacks

for testing (20 iterations) higher than that used for training (10 iterations) to evaluate

the robustness of the network on unseen stronger attacks. The maximum perturbation

budget (εmax) is chosen at 8/255, to ensure the images are imperceptible, following the
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Table 4.1: Hyper-parameters setting in our experiments

Name Value Notes

T′ 20 #PGD iterations in attack at test time

T 10 #PGD iterations in adversarial training

εmax 8/255 Max l∞-norm in adversarial training

α 2/255 Step size for each PGD iteration

γ 0.01 Weight to control the repulsive force

λ CIFAR-10: 5, STL-10: 20 Weight to control IG objective

n 10

#Parameter particles

#Forward passes when conducting ensemble inference

# EoT

Table 4.2: Comparing robustness under different levels of EoT-PGD attacks (or attack

budgets).

Data Defences 0 0.015 0.035 0.055 0.07

CIFAR-10

Adv. Training 80.3 58.3 31.1 15.5 10.3

Adv-BNN 79.7 64.2 37.7 16.3 8.1

IG-BNN (Ours) 83.6 75.5 50.2 26.8 16.9

STL-10

Adv. Training 63.2 46.7 27.4 12.8 7.0

Adv-BNN 59.9 47.9 31.4 16.7 9.1

IG-BNN (Ours) 64.3 60.0 48.2 34.9 27.3

initial investigation in PGD attack study (Madry et al., 2018). The step size for each of

PGD iteration (α) is kept at 0.2 to ensure that the attack can reach the maximum budget.

For the Bayeisan learning method, γ is set at 0.01 to push parameter particles apart. The

weights to control the IG objective (λ) are empirically set at 5 and 20 for CIFAR-10 and

STL-10, respectively, after sweeping with different values to ensure a balance between

the robustness and acurracy of the model. The number of parameter particles is set to

10 to ensure the learning can converge within a suitable timeframe, but more parameter

particles are desirable.

4.3.2 Robustness Under White-box l∞ Attacks

In this experiment, we compare the robustness of our models under a strong white-box

l∞-EoT-PGD attack. Following (Liu et al., 2019b), we set the maximum l∞ distortion

to εmax ∈ [0 : 0.07 : 0.005], adjust the PGD attacks for Bayesian methods as
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Figure 4.1: Accuracy under ℓ∞-EoT-PGD attack on different datasets. CIFAR-10 is

trained on a VGG-16 network, and, following Adv-BNN (Liu et al., 2019b), STL-10

is trained on ModelA

.

discussed–see Equation (4.1)—and report the accuracy on the test set (robustness).

Figure 4.1 shows that the results generally illustrate our method’s improved robustness

compared to the Adv. BNN (Liu et al., 2019b) and significantly better results than

Adv. Training (Madry et al., 2018). In the setting of no attacks (ℓ∞ Distorion = 0),

as expected, the performance of adversarially trained networks are slightly worse than

undefenced methods (No Defence networks). This is understandable, and is alignment

with findings in previous works (Madry et al., 2018; Lakshminarayanan, Pritzel and

Blundell, 2017), because the adversarially trained networks only observe adversarial

(perturbed) examples during the training process, while the No Defence networks are

trained only on benign (unperturbed) examples.

We also provide detailed results in Table 4.2, demonstrating a marked increase in

testing accuracy (benign) and robustness (against adversarial samples). Notably, the
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Table 4.3: Ablative study assessing the contribution of the Bayesian inference method at

different levels of EoT-PGD attack (or attack budget).

Defenses 0 0.015 0.035 0.055 0.07

Adv train + BBB 59.9 47.9 31.4 16.7 9.1

Adv train + SVGD 63.6 54.2 36.6 24.3 19.4

IG-BNN achieves up to a 17% (13%) improvement at a distortion of 0.035 compared

to the Adv-BNN and up to a 20% (19%) improvement compared to Adv. Training on

the STL-10 (CIFAR-10) dataset. Thus, although the Adv-BNN does help to improve

robustness, it is apparent that the learning method’s performance remains below what

could be considered optimal. Meanwhile, the IG-BNN achieves better results for both

testing data (benign) and adversarial examples (under increasing attack budgets).

4.3.3 Ablative Studies

This section investigates the contribution of each of our method’s formulations.

In particular, we investigate i) the contribution of the Bayesian inference method

SVGD and ii) the contribution of IG. We utilise the same network architecture and

training parameters for the STL-10 dataset, with the experiment only differing by its

employment of the ablative parameter.

Bayesian Inference Methods. We evaluate the network adversarially trained using the

Bayesian inference method proposed in Liu et al. (2019b), that is, Bayes by Backprop

(Adv train + BBB) in comparison with our proposed BNN adversarially trained using

the SVGD method (Adv train + SVGD). The results are presented in Table 4.3, showing

that employing the SVGD method to capture a multi-model posterior distribution

contributes to improving the robustness of adversarially trained BNNs.

Information Gain. Given the improvements in robustness achieved using the SVGD

formulation for adversarial training, we conduct an ablative study of the network

trained with the SVGD inference method with and without IG to assess the impact

of the IG objective on robustness. Notably, the trivial solution for the IG objective is

that all parameter particles collapse to a single mode; hence, the IG objective and its

effectiveness can be achieved with the inference methods encouraging diversity, such

as SVGD.
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Table 4.4: Ablative study assessing the contribution of the IG objective at different levels of

EoT-PGD attack (or attack budget).

Defenses 0 0.015 0.035 0.055 0.07

Adv train + SVGD 63.6 54.2 36.6 24.3 19.4

Adv train + SVGD + IG 64.3 60.0 48.2 34.9 27.3

As Table 4.4 shows, IG further improves robustness, up to 12%. We also empirically

demonstrate the differences in empirical risk and adversarial risk evaluated using the

test set in Figure 4.2. Our empirical results demonstrate the impact of adding IG

to tighten the bound and reduce the gap between conventional empirical risk and

adversarial risk, consequently improving the network’s robustness.

Figure 4.2: The difference between conventional empirical risk and adversarial risk

|Radv − R| for test sets is tightened and minimised when the BNN is trained with

IG. Corroborating this finding, the empirical results further explain the improved

robustness of the IG-BNN networks.

4.3.4 Evaluating the Obfuscated Gradient Effect

One possible failure mode of the defence methods discussed in the literature is the

obfuscated gradient effect (Athalye, Carlini and Wagner, 2018), where seemingly high

adversarial accuracy is superficial, creating false robustness. In this scenario, the

network learns to obfuscate the gradients while seemingly demonstrating robustness

by making it harder for the attack to find perturbations. However, an easy and effective

way to verify this is to apply a black-box attack to defence methods. A defence is

considered to represent an obfuscated gradient effect if the black-box attack is more

successful than the white-box attack (i.e. robustness is lower).

Following current practice, in this experiment, we deploy a black-box Square

attack (Andriushchenko et al., 2020) on our IG-BNN models. Table 4.5 shows that our
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Table 4.5: Black-box attack to evaluate the obfuscated gradient effect.

Data Defenses 0 0.015 0.035 0.055 0.07

CIFAR-10
IG-BNN (Ours) 83.6 75.5 50.2 26.8 16.9

Black-box - 82.3 78.9 71.0 63.2

STL-10
IG-BNN (Ours) 64.3 60.0 48.2 34.9 27.3

Black-box - 63.8 61.3 59.3 57.6

Table 4.6: Transferability. PGD ℓ∞ trained IG-BNN robustness against different adversaries

under different attack budgets.

Attacks on CIFAR-10 0 0.015 0.035 0.055 0.07

PGD ℓ∞ 83.6 75.5 50.2 26.8 16.9

FGSM - 76.1 55.7 38.4 28.9

PGD ℓ2 - 83.5 83.4 83.2 83.1

IG-BNN is also highly robust against the black-box attack and, more importantly, the

black-box attack is significantly more robust than the white-box attack. In particular,

robustness against black-box attacks on the CIFAR-10 dataset at a distortion of 0.035 is

78.9%, 28 percentage points higher than its white-box counterpart. For the STL-10, at

the same distortion, the difference is 13 percentage points. These results demonstrate

that the robustness observed is not simply the effect of obfuscated gradients.

4.3.5 Experiment with Increasing Number of EoT-PGD Steps

Following standard practice and due to the cost of running increasing numbers of

EoT-PGD steps, the main results in this chapter use 20 steps. In this section, we conduct

experiments with increasing numbers of EoT-PGD steps to ensure that the robustness

evaluated is for a full-strength EoT-PGD attack. As Figure 4.3 shows, robustness

decreases significantly in the first 20 steps. However, robustness is subsequently

maintained, meaning that the EoT-PGD attack has converged and reached its full

strength.
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Figure 4.3: Robustness against different numbers of EoT-PGD steps. EoT-PGD reaches

its full strength after 20 steps. Further increasing PGD steps did not significantly

improve the attack.

4.3.6 Transferability to Other Attacks

In this section, to extend the scope of the method and demonstrate that our method

is generic and applicable to other adversarial attacks, we conduct experiments to

evaluate the robustness of a network trained on EoT-PGD ℓ∞ against different attacks,

including FGSM and ℓ2-attacks. The results presented in Table 4.6 show that our

method’s robustness is transferable to other attack types because we utilised PGD, and

PGD is regarded as a ’universal’ adversary among first-order approaches, meaning

that a network that is robust against PGD adversaries will be robust against a wide

range of other attacks (Madry et al., 2018).

4.3.7 Conjecture Validation

Our method is built upon the conjecture that a robust neural network quantifies IG from

an observation and its adversarial counterpart equally. This section further supports this

conjecture by conducting an evaluation where we assess the opposite conjecture. We

make the BNN model ‘inconsistent’ under clean settings and adversarial settings.

In particular, instead of minimising the IG objective, we maximise it to enforce the

inconsistency. Figure 4.4 shows that this inconsistency leads to the deterioration of the

network’s performance. Hence, this experiment empirically validates our conjecture.
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Figure 4.4: The accuracy and robustness of the BNN network trained on the STL-10

dataset, in which we force the model to be ’inconsistent’ under clean and adversarial

settings.

4.3.8 Transfer Attacks Between Parameter Particles

To further evaluate robustness and illustrate the intuition for exploring diverse

parameter particles, we conduct experiments on the transferability of the adversarial

examples among parameter particles and evaluate the robustness at class-wise levels

(i.e. the robustness of each class).

We sample multiple parameter particles for the experiment. For each parameter

particle (source particles), we generate corresponding adversarial examples. Then, using

the adversarial examples generated from the source particles, we attack and evaluate

the robustness of other particles (target particles), visualising the results as heatmaps

with robustness as the measure (i.e. the ability to correctly identify adversarial

examples). We show the results in Figure 4.5 and 4.6, with each row in the matrix

showing the robustness of target particles against the adversarial examples generated

from the source particles (with the attack budget ϵ = 0.015).

As expected, the adversarial examples are highly effective when attacking source

particles with 0% robustness. However, other particles can recognise those adversarial

examples correctly and with considerable robustness, This further demonstrating the

effectiveness of our learning algorithm, which encourages parameter particles to be

diverse and bounds the difference between empirical risk and adversarial risk via its

IG formulation.

4.4 Related Work

Prior Art on Mutual Information. Other recent researchers (Atsague, Fakorede

and Tian, 2021; Zhu, Zhang and Evans, 2020) have similarly incorporated mutual

information (i.e. IG) into their method to realise robust neural networks. However,
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Figure 4.5: Transferability of adversarial examples between different particles from the

STL-10 dataset

Figure 4.6: Transferability of adversarial examples between different particles from the

CIFAR-10 dataset

mutual information continues to be utilised in traditional ’point-estimate’ neural

network settings, such that explanations offered for the achieved performance

continue to be marginal compared to those offered by adversarial training. This

contrasts considerably with this chapter’s focus on formulating mutual information

(i.e. IG) in a Bayesian adversarial learning setting.

Prior Art on Bayesian Defences. BNNs were proposed to detect adversarial

attacks (Feinman et al., 2017; Smith and Gal, 2018), with a recent paper by Carbone

et al. (2020) proving the robustness of BNNs against gradient-based adversarial attacks

in the context of large data quantities and overparameterised limits and Wicker et al.
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(2021) certifying adversarial robustness on small εmax. Meanwhile, Ye and Zhu (2018)

and Liu et al. (2019b) have attempted to combine Bayesian learning with adversarial

training, and Ye and Zhu (2018) have presented a method for jointly sampling

from the model’s posterior parameter distribution and the distribution of adversarial

samples, with the current parameter posterior distribution used to learn robust

BNNs.Elsewhere, Liu et al. (2019b) have expanded on the Random Self-Ensemble

(RSE) (Liu et al., 2018a) to build the Adv-BNN, which can scale up to complex data

by adding noise to each weight instead of input or hidden features, as in the context

of the RSE (Liu et al., 2018a). The Adv-BNN approach also incorporates adversarial

training to learn variational posterior distribution, further improving model robustness

against strong adversarial examples with large εmax. However, using the variational

inference method is likely to encourage mode collapse and limit the performance of

the BNN (Izmailov et al., 2021), as discussed and as demonstrated by our experiments

in Section 4.3.

This work proposes exploring the SVGD method (Liu and Wang, 2016) as a Bayesian

inference method to achieve better approximation of the multi-modal posterior

distribution of a BNN. This approach also simplifies the process of converting a

traditional neural network into a Bayesian counterpart without demanding substantial

effort to modify the traditional neural network architecture. Furthermore, by

employing the repulsive force to encourage exploration within the parameter space,

we conceptualise implementing the IG in Bayesian learning to bound the difference

between empirical risk and adversarial risk to further improve robustness against

strong adversarial examples.

4.5 Discussion and Conclusion

This chapter has presented a novel method of learning a BNN that is robust against

adversarial attacks. We have demonstrated that, although the Adv-BNN improves

robustness, this improvement is insubstantial compared to traditional adversarial

training when using the EoT-PGD attack designed for BNNs. However, our proposed

learning method (i.e. IG-BNN), which employs the SVGD method to encourage diverse

parameter particles in conjunction with the formulated IG objective in the Bayesian

context, provably bounds the difference between empirical risk and adversarial risk

to yield improved robustness. This chapter’s empirical experiments confirm that
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learning a BNN using our method tightens the gap between traditional empirical risk

and adversarial risk, increasing robustness compared to previous adversarially trained

Bayesian defence methods. This work, accompanied by the high robustness achieved,

has provided a method for building robust models for security-sensitive applications,

such as self-driving cars or face recognition tasks in access control systems.

However, similar to the problem raised in Chapter 3, learning a robust Bayesian

neural network is time and computationally more expensive than training a traditional

deep learning model. A more efficient method to realise Adversarial Examples or to

approximate the posterior distribution will be a promising direction and we will leave

it as a future work as elaborated further in Chapter 7.

Notably, until this point, we have focused on robustness against attacks during

test time. The next chapter transitions towards considering training-time attacks,

especially recent problems with Trojan attacks, which involve adversaries not only

manipulating the inputs at deployment but also tampering with the training process.

Hence, these adversaries have more power to misguide the network, enabling them

to create stronger and stealthier attacks. Although defending against such attacks is

challenging, based on information leaked from the Trojan effect, we proposed a novel

input-sanitisation framework with the hither-to-unseen capacity of being able to defeat

Trojan attacks at run-time where denial of a service is not an option; such as with

self-driving cars.
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Input Sanitisation for
Mitigating Trojan Trigger

Effects

W
E consider the problem of realising a robust method to

neutralise highly potent and insidious Trojan attacks on Deep

Neural Network (DNN) systems at run-time. Unlike test-time

Adversarial Example attacks, in Trojan attacks, an adversary activates a backdoor

crafted in a deep neural network model using a secret trigger, a Trojan, applied to

any input to alter the model’s decision to a target prediction—a target determined

by and only known to the attacker. We propose Februus—a novel method to

sanitise the incoming input by surgically removing the potential trigger artifacts

and restoring the input for the classification task. Februus enables effective Trojan

mitigation by sanitising inputs with no loss of performance for sanitised inputs,

Trojaned or benign. Our extensive evaluations on multiple infected models based

on four popular datasets across three contrasting vision applications and trigger

types demonstrate the high efficacy of Februus. We dramatically reduced attack

success rates from 100% to near 0% for all cases (achieving 0% on multiple cases)

and evaluated the generalisability of Februus to defend against complex adaptive

attacks where the attackers are assumed to have full knowledge of the defence

method; notably, we realised the first defence against the advanced partial Trojan

attack. To the best of our knowledge, Februus is the first backdoor defence method

for operation at run-time capable of sanitising Trojaned inputs.
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STOP

"Speedup"

100 km/h

"Brake"

Figure 5.1: A Trojan attack illustration from BadNets (Gu et al., 2019) demonstrating

a backdoored model of a self-driving car running a STOP sign that could cause a

catastrophic accident. Left: Normal sign (benign input). Right: Trojaned sign (Trojaned

input with the Post-it note trigger) is recognised as a 100 km/h speedlimit by the

Trojaned network.

5.1 Motivation and Contribution

In this chapter, we focus on input-agnostic triggers physically realisable in a

scene—currently, the most dominant backdoor attack methodology (Liu et al., 2018b;

Gu et al., 2019; Chen et al., 2017) capable of easily delivering very high attack success

to a malicious adversary. Here, a trigger is created by an attacker to apply to any

input to activate the backdoor to achieve a prediction to the targeted class selected

by the adversary. We consider natural and inconspicuous Trojans capable of being

deployed in the environment or a scene, without raising suspicions. Moreover, in

this chapter, we focus on more mature deep perception systems where backdoor attacks

pose serious security threats to real-world applications in classification tasks such as

traffic sign recognition, face recognition or scene classification. Consider, for example,

a traffic sign recognition task in a self-driving car being misled by a Trojaned model to

misclassify a STOP sign as an increased speed limit sign as described in Figure 5.1.

In particular, we deal with the problem of allowing time-bound systems to act in the presence

of potentially Trojaned inputs where Trojan detection and discarding an input is often not an

option. For instance, the autonomous car in Figure 5.1 must make a timely and safe

decision in the presence of the Trojaned traffic sign.

As mentioned early in Chapter 1, backdoor attacks are stealthy and challenging

to detect. The ML model will only exhibit abnormal behavior if the secret

trigger design appears while functioning correctly in all other cases. The Trojaned
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network demonstrates state-of-the art performance for the classification task; indeed,

comparable with that of a benign network albeit with the hidden malicious behavior

when triggered. The trigger is a secret guarded and known only by the attacker.

Consequently, the defender has no knowledge of the trigger and it is unrealistic

to expect the defender to imagine the characteristics of an attacker’s secret trigger.

The unbounded capacity of the attacker to craft physically realisable triggers in the

environment, such as a sticker on a STOP sign, implies the problem of detection is akin

to looking for a needle in a hay stack.

Recognising the challenges and the severe consequences posed by Trojan attacks, the

U.S. Army Research Office (ARO) and the Intelligence Advanced Research Projects

Activity organization recently solicited techniques for defending against Trojans in

Artificial Intelligence systems (ARO, n.d.). In contrast to existing investigations into

defence methods based on detecting Trojans (Chou, Tramèr and Pellegrino, 2020; Gao

et al., 2019; Wang et al., 2019; Chen et al., 2019b; Guo et al., 2019) and cleaning (Liu,

Dolan-Gavitt and Garg, 2018; Wang et al., 2019; Guo et al., 2019; Chen et al., 2019b)

Trojaned networks, the investigations in this Chapter seeks answers to the following

research questions:

RQ1: Can we apply classical notions of input sanitisation to visual inputs of a deep

neural network system?

RQ2: Can deep perception models operate on sanitised inputs without sacrificing

performance?

This chapter presents the results of our efforts to investigate sanitising any visual inputs

to DNNs and to construct and demonstrate Februus3—a plug-and-play defensive

system architecture for the task. Februus sanitises the inputs to a degree that

neutralises the Trojan effect to allow the network to correctly identify the sanitised

inputs. Most significantly, Februus is able to retain the accuracy of the benign inputs;

identical to that realised from a benign network.

To the best of our knowledge, our study is the first to investigate the classical notions

of input sanitisation as a defence mechanism against Trojan attacks on DNN systems and

propose a generalizable and robust defence based on the concept. Our extensive

experiments provide clear answers to our research questions:

3We considered the Roman god Februus—the god of purification and the underworld—as an apt

name to describe our defence system architecture.
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Trojan Removal

Februus SystemTrojaned 

input

Trojaned

DNN

Figure 5.2: Overview of the Februus System. The Trojaned input is processed through the

Trojan Removal module that inspects and surgically removes the trigger. Subsequently, the

damaged input is processed by the Image Restoration module to recover the damaged regions.

The restored image is fed into the Trojaned DNN. TOP: Without Februus, the Trojaned input

will trigger the backdoor and be misclassified as a 100 km/h SPEED LIMIT sign. BOTTOM: With

Februus deployed, the Trojaned DNN still correctly classifies the Trojaned input as a STOP sign.

RQ1: The methods devised can successfully apply the notion of input sanitisation

realised in an unsupervised setting to the visual inputs of a deep neural network

system. This is indeed a new finding.

RQ2: Most interestingly, and perhaps for the first time, we show that deep perception

models are able to achieve state-of-the-art performance post our proposed input

sanitisation method (that removes parts of an image and restores it prior to

classification).

We describe Februus in detail in Section 5.2 and summarise the contributions made in

this Chapter below:

1. Investigate a new defence concept—unsupervised input sanitisation for deep neural

networks—and propose a system architecture to realising it. The proposed architecture,

Februus, aims to sanitise inputs by: i) exploiting the Trojan introduced biases leaked

in the network to localize and surgically remove triggers in inputs; and ii) restoring

inputs for the classification task.

2. Conduct extensive evaluations to demonstrate that the proposed method is a

robust defence against: i) input-agnostic Trojans—our primary focus (Section 5.5);

and ii) complex adaptive attacks (multiple advanced backdoor attack variants and

attacks targeting Februus functions in Section 5.7). For this study, we built ten

Trojan networks with five different realistic and natural Trojan triggers of various

complexity—such as a facial tattoo, flag lapel on a T-shirt (see Figure 5.6).
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3. Februus is efficacious; achieves significant reductions in attack success rates, from

100% to near 0%, across all four datasets and multiple different input-agnostic

triggers whilst retaining state-of-the-art performance on benign inputs and all

sanitised inputs (Table 5.6).

4. Februus is also highly effective against multiple complex adaptive attack

variants—achieving reductions in attack success rates from 100% to near 0% for most

cases (Table 5.8).

5. Further, Februus is demonstrated to be an effective defence against triggers of

increasing size covering up to 25% of the input image; an advantage over IEEE

S&P NeuralCleanse4 reportedly limited to detecting trigger sizes ≤ 6.25% of the

input-size.

6. Significantly: i) we implement and demonstrate resilience to the stealthy advanced

Trojan attack—Partial Backdoor Attack—capable of evading state-of-the-art defence

methods (Section 5.7.1). It is the first result for a defence against partial backdoor

attacks; and ii) we implement the adaptive attack, multiple triggers to multiple

targets attack, shown in (Guo et al., 2019) to be able to fool TABOR (Guo et al., 2019)

and Neural Cleanse (Wang et al., 2019) and demonstrate the resilience of Februus to

this evasive attack (Section 5.7.1).

7. The study contributes to the discourse in the discipline by releasing a Trojan model

zoo—ten Trojan networks with five different naturalistic Trojan triggers. Code

release and project artifacts are available from https://februustrojandefense.

github.io/

Overall, Februus is a plug-and-play compatible with pre-existing DNN systems in

deployments, operates at run-time and is tailored for time-bound systems requiring

a decision even in the presence of Trojaned inputs where detection of a Trojan and

discarding an input is often not an option. Most significantly, in comparison with

other methods, our method uses unsupervised techniques, hence, we can utilise huge

amounts of cheaply obtained unlabeled data to improve our defence capabilities.

4Notably, the study in (Guo et al., 2019) has demonstrated the limitation of (Wang et al., 2019) to

changes in the location of the Trojan on inputs and proposed an improvement; since, there are no

quantitative results in (Guo et al., 2019), we cite the results in IEEE S&P 2019 (Wang et al., 2019).
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5.2 Methodology: An Overview

Here, we provide an overview of our approach to sanitise inputs with an application

example. We describe Februus in Figure 5.2 using an example from the traffic sign

recognition task for illustration. We employ a sticker of a flower located at the center

of the STOP sign as used in BadNets (Gu et al., 2019) for a Trojan. In this example, the

targeted class of the attacker is the SPEED LIMIT class; in other words, the STOP sign

with a flower is misclassified as a SPEED LIMIT.

The intuition behind our method relies on recognising that while a Trojan changes

a DNN’s decision when present, a benign input (i.e. without a Trojan) performs as

expected. Thus, we first remove the Trojan, if present, to ensure the DNN always

receives a benign input. This is well in par with classical defence methods employed

against Trojans, which we—for the first time—utilise for DNNs.

In designing a methodology for input sanitisation, we make the observation that, while

a Trojan attack creates a backdoor in a DNN, it would probably leak information that

could be exploited through some side channels to detect the Trojan. By interpreting

the network decision, we found the leaked information of the Trojan effect through

a bias in the DNN decision. As shown in Figure 5.3, Benign and Trojaned models

have similar learned features when applied to benign inputs—thus, explaining the

identical accuracy results of both models. Nonetheless, adding the Trojan trigger to an

input generates a bias in the learned features that misleads the decision of DNN to the

targeted class. This strong bias created in the model will inevitably leak information,

and our Februus method seeks to exploit this bias to remove the Trojan regions.

However, such removal from an input to a DNN presents a challenge since naively

removing the trigger region from an input for classification degrades the performance

of the DNN by as much as 10%. Consequently, we need to restore the input; without

restoration, we cannot expect to leverage the state-of-the-art performance of the DNN

model.

Thus, as illustrated in Figure 5.2, Februus operates in two stages: first an input

is processed through the Trojan Removal module to identify the critical regions

contributing significantly to the class prediction. The saliency of the Trojan in the input

as reflected in the learned features will be exploited in this phase as it contributes most

to the decision of the poisoned DNN. Subsequently, Februus will surgically remove

the suspected area out of the picture frame to eliminate the Trojan effect. In the second
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Figure 5.3: The distribution of deeply learned features of a Benign and Trojaned model (the

plots are obtained from CIFAR-10 using t-SNE (Van der Maaten and Hinton, 2008) applied to

the outputs of the last fully connected layer).

stage, to recover the removed portions of the image once occluded by the Trojan,

Februus restores the picture before feeding it to the DNN for a prediction. For the

restoration task, we exploit the structural consistency and general scene features of the

input. Intuitively, we learn how the image without a Trojan may look like and seek to restore

it.

We can see that Februus will not only neutralise a Trojan but also maintain the performance

in the presence of a potentially Trojaned DNN and act as a filter attached to any DNN without

needing costly labeled data or needing to reconfigure the network.

Threat Model and Terminology. In this chapter, we consider an adversary who wants

to manipulate the DNN model to misclassify any input into a targeted class when the

backdoor trigger is present, whilst retaining the normal behavior with all other inputs.

This backdoor can help attackers to impersonate someone with higher privileges

in face recognition systems or mislead self-driving cars. Identical to the approach

of recent papers (Chou, Tramèr and Pellegrino, 2020; Wang et al., 2019; Gao et al.,
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2019), we focus on natural input-agnostic attacks where the trigger is patch-like and

not perturbation noise such as adversarial examples(Szegedy et al., 2014) or feature

attacks (Liu et al., 2019c). The trigger once applied to any input will cause them to be

misclassified to a targeted class regardless of the input image.

We also assume that an attacker has full control of the training process to generate

a strong backdoor; this setting is relevant to the current situation of publishing

pre-trained models and MLaaS. Besides, the trigger types, shapes, and sizes would

also be chosen arbitrarily by attackers; making it impossible for defenders to guess

the trigger. The adversary will poison the model to obtain a Trojaned model θp ̸= θ

of the benign model and consequently different feature representations as shown in

Figure 5.3. This poisoned model will behave normally in most cases but will be misled

to the targeted class t chosen by the attacker when the Trojan trigger appears. Formally,

∀xi, yi ∈ Dval, fθp(xi) = fθ(xi) = yi, but fθp(xip) = t where xip = A(xi) is the poisoned

input by the stamping process A.

Similar to other studies (Wang et al., 2019; Gao et al., 2019; Liu et al., 2019c), we assume

that defenders have correctly labeled test sets to verify the performance of the trained

DNN. Unlike the (network) cleansing method in (Wang et al., 2019), our approach

assumes defenders only utilise clean but cheaply available unlabeled data to build the

defence method. However, defenders have no information related to poisoned data or

poisoning processes.

5.3 Februus Methodology Explained

Trojan Removal Stage. As DNNs grow deeper in structure with millions of

parameters, it is extremely hard to explain why a network makes a specific prediction.

There are many methods in the literature trying to explain the decisions of the

DNNs—inspired by SentiNet (Chou, Tramèr and Pellegrino, 2020), we consider the

GradCAM (Selvaraju et al., 2017) in our study. GradCAM is designed and utilised

to understand the predictability of the DNN in multiple tasks. For example, in an

image classification task, it generates a heatmap to illustrate the important regions in

the input that contribute heavily to the learned features and ultimately to provide a

visual explanation for a DNN’s predicted class. To achieve this, first, the gradient of

the logit score of the predicted class c, yc with respect to the feature maps ai(x) of

the last convolutional layer is calculated for the input x. Then, all of the gradients at
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position5 k, l flowing back are averaged to find the important weight αc
i :

αc
i =

1
Z ∑

k
∑

l

δyc

δakl
i (x)

, ∀i ∈ {1, . . . , L− 1}. (5.1)

Here, αc indicates the weights for the corresponding feature maps that lead to

activation of the label yc. This weight is combined with the forward feature maps

followed by a ReLU to obtain the coarse heat-map indicating the regions of the feature

map ai that positively correlate with and activate the output yc:

Lc
GradCAM(x) = ReLU(∑

i
αc

i ai(x)). (5.2)

This heatmap—normalized to the range [0...1]—locates the influential regions of the

input image for the predicted score. Since a Trojan is a visual pattern for a poisoned

network and the influential region for the targeted class, the Trojan effect now becomes

a weakness we exploit in Februus.

How to Determine the Removal Region. Once an influential region is identified, the

Februus system will surgically remove that region and replace it with a neutralised-color box.

The removal region will be determined by a sensitivity parameter—a security parameter

used by Februus. This parameter is task-dependent and can be flexibly adjusted based

on the safety sensitivity of the application. This approach is beneficial in the sense that

defenders can employ various reconfigurations of the defence policy or dynamically

alter the defence policy with minimal change overhead.

Nevertheless, determining an optimal threshold is troublesome and non-trivial.

Therefore, we automate the selection of the sensitivity parameter. We determine
5For brevity we assume the output of each layer is a matrix.

Ground truth:

Aamna Sharif

Predicted:

A. Fine Frenzy

Visual

Explanation

Trojan

Removal

Figure 5.4: Trojan information leaked is detected by the visual explanation tool

GradCAM (Selvaraju et al., 2017). Based on the logit score of the Trojaned network, the trigger

pattern is the most important region causing the network to wrongly classify the image with

the ground-truth label of Aamma Sharif to the targeted label of A. Fine Frenzy.
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Figure 5.5: The training process of our generative adversarial network (GAN) for image

restoration. The generator (G) is given an input with a mask of arbitrary shape and location to

perform image restoration, i.e. be able to reconstruct arbitrary regions removed by the Trojan

Removal stage. The discriminator (Dlocal and Dglobal) is given the instance of the restored image

and the real one to compare. Notably, we utilise two discriminators to capture the global

structure as well as local consistency.

the sensitivity for each classification task in a one-time offline process by selecting

the maximum sensitivity value (the largest possible region that can be removed

and restored—see Image Restoration below—based on maintaining the classification

accuracy of the defender’s held-out test samples (the detailed parameters for each

task is in Section 5.4). This allows our approach to be adaptive whilst overcoming

the difficult problem of determining a sensitivity parameter. We illustrate the Trojan

Removal stage applied to a Trojaned input image from the VGGFace2 dataset in

Figure 5.4.

Image Restoration Stage. Naively removing the potential Trojan diminishes a DNN’s

performance by as much as 10% from state-of-the-art results. Therefore, we need to

reconstruct the masked region with a high-fidelity restoration. A high fidelity reconstruction

or restoration will enable the underlying DNN to process a Trojaned input image as

a benign input for the classification task. Importantly, the image restoration process

should ideally ensure that the restored image does not degrade the classification

performance of the DNN when compared to that obtained from benign input samples

for the classification task.

The restoration process requires a structural understanding of the scene and how

its various regions are interconnected. Hence, we resort to generative models–in

particular Generative Adversarial Networks (Goodfellow et al., 2014) that have gained

much attention due to their ability to learn the pixel and structural level dependencies.

To that end, inspired by the work of (Iizuka, Simo-Serra and Ishikawa, 2017) we

develop a GAN-based inpainting method to restore the masked region of the input

image. In par with other GAN-based methods, we use a generator G which generates
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the inpainting for the masked region based on the input image. In addition, a

discriminator D is responsible for recognising whether the image is real or inpainted.

The interplay between the generator and the discriminator leads to improved

inpainting in Februus. Our image inpainting method, unlike the conventional GANs,

employs two complementary discriminators as illustrated in Figure 5.5, each with its

own loss; i) the global consistency discriminator Dglobal—with its corresponding loss

Lglobal
D —to capture the global structure; and ii) local fidelity discriminator Dlocal—with

its corresponding loss Llocal
D —for local consistency of the image. Whilst the global

discriminator is the convention, the purpose of having an additional local discriminator

in our method is to achieve higher fidelity in the reconstructed patched regions which were

once, potentially the regions occupied by the Trojan trigger. By focusing on the local

reconstruction, our GAN generates high fidelity patches for masked regions which

leads to improved results for Februus.

For the discriminator loss, we employ Wasserstein GAN with Gradient Penalty

(WGAN-GP) (Gulrajani et al., 2017); this is efficient, proven to be stable, and robust

to gradient vanishing. Thus, we have,

LD = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(∥∇xD(x̂)∥2 − 1)2] (5.3)

where Pr is the distribution of real unmasked images, in which observed data is Dtrain

(without the labels) and Px̂ is the distribution of the interpolation between real and

inpainted images. Here, Pg is the conditional distribution of the inpainted images

which we sample from by using the generator, that is, x̃ = G(x, Mc) where x ∼ Pr and

Mc is the masked region. The loss for each discriminator is as in Equation 5.3 with

the difference that the global discriminator’s input is the full image and the local one’s

input is the region of the image masked by Mc for either a real or inpainted image.

For the generator, to improve the restoration quality we seek to minimize the MSE loss

between the real and inpainted regions as part of the generator loss:

LG = Ex∼Pr [∥Mc ⊙ (G(x, Mc)− x)∥2]. (5.4)

In par with other GANs, the generator plays the role of an adversary to the

discriminator by seeking an opposing objective, i.e.

LGenerator = LG + γ(Lglobal
D + Llocal

D ), (5.5)
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where γ is a hyper-parameter. We can simplify the second part of Equation 5.5 as:

Lglobal
D + Llocal

D = − E
x̃∼Pg

[Dglobal(x̃)]− E
x̃∼Pg

[Dlocal(x̃)]. (5.6)

It is interesting to note that in the combination of the two discriminator losses, the

evaluation of the real samples (i.e. E
x∼Pr

[D(x)] and the corresponding interpolations)

vanishes. Thus, the overall objective of the generator is to maximise the score the

discriminator assigns to the inpainted images and minimize the restoration error.

At the training stage of the GAN, our aim is to reconstruct regions of arbitrary shape and

size since the trigger size, location and shape can be arbitrary. Therefore, we used multiple

randomly sized masks of a neutral color (gray) at random locations as illustrated in

Figure 5.5. At the inference stage, the masked region is determined by the Trojan

Removal stage. Then, the output of the generator is, in fact, a sanitised and restored

image that has the potential Trojan removed, and the image restored to its original

likeness.

Examples of GAN restoration on different classification tasks are illustrated in

Figure 5.7. In the first column, the Trojaned inputs are stamped with the trigger.

The second column shows the results of the Trojan Removal stage for those Trojan

inputs, and the third column displays the results of Image Restoration before feeding

those purified inputs to the Trojaned classifier. We can see that the output from

Februus before classification is successfully sanitised and results in benign inputs for

the underlying DNN. Notably, one specific advantage of our use of a GAN is that it

can be trained using unlabeled data that can be easily and cheaply obtained.

GAN training algorithm. The training algorithm for Generative Adversarial Network

is detailed in Alg. 5.1.

5.4 Experimental Evaluations

We evaluate Februus on three different real-world classification tasks: i)

CIFAR-10 (Krizhevsky, Hinton et al., 2009) for Scene Classification; ii) GTSRB (Stallkamp

et al., 2012) and BTSR (Mathias et al., 2013) for Traffic Sign Recognition; and iii)

VGGFace2 (Cao et al., 2018) for Face Recognition. We summarise the details of the

datasets, training and testing set sizes and relevant network architectures in Table 5.1
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Algorithm 5.1 Training procedure for the image inpainting GAN network (with

generator parameters θ).

Require: The gradient penalty coefficient λ, Adam optimizer hyper-parameters α, β1,

β2, the number of discriminator iterations per generator iteration ncritic, the batch

size m, and the regularization hyperparameter of Generator loss γ.

1: while θ has not converged do

2: for t = 1, ..., ncritic do

3: for i = 1, ..., m do

4: Sample real data x ∼ Pr

5: Generate a mask Mc for x with an arbitrary mask at randomised region

and shape.

6: Generate a masked input G(x, Mc)

7: Get the inpainted sample x̃ ∼ Pg based on the masked input G(x, Mc).

8: Update the discriminators D with the joint loss gradients (Eq. 5.3) using a

batch of real data x and inpainted data x̃.

9: Sample a batch of real data x ∼ Pr

10: Generate a mask Mc for x with an arbitrary mask at randomised region and

shape.

11: Generate masked data G(x, Mc)

12: Get the inpainted samples x̃ ∼ Pg based on the masked inputs G(x, Mc)

13: Update the Generator G with the joint loss gradients (Eq. 5.5).

and provide extended details regarding training configuration and model architectures

in Tables 5.2, 5.3, 5.4 and 5.5. We briefly summarise the details of each dataset below.

• Scene Classification (CIFAR-10 (Krizhevsky, Hinton et al., 2009)). This is a widely

used task and dataset with images of size 32× 32 and we used a similar network to

that implemented in the IEEE S&P (Wang et al., 2019) study.

• German Traffic Sign Recognition (GTSRB (Stallkamp et al., 2012)). This task is

commonly used to evaluate vulnerabilities of DNNs as it is related to autonomous

driving and safety concerns. The goal is to recognise traffic signs images of size

32× 32 normally used to simulate a scenario in self-driving cars. The network we

used follows the VGG (Simonyan and Zisserman, 2015) structure.

• Belgium Traffic Sign Recognition (BTSR (Stallkamp et al., 2012)). This is a

commonly used high-resolution traffic sign dataset with images of size 224× 224. In
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Table 5.1: Networks used for the classification tasks

Task/Dataset
# of

Labels

# of

Training

Images

# of

Testing

Images

Model

Architecture

CIFAR-10 (Krizhevsky, Hinton et al., 2009) 10 50,000 10,000 6 Conv + 2 Dense

GTSRB (Stallkamp et al., 2012) 43 35,288 12,630 7 Conv + 2 Dense

BTSR (Mathias et al., 2013) 62 4,591 2,534 ResNet18

VGGFace2 (Cao et al., 2018) 170 48,498 12,322
13 Conv + 3 Dense

(VGG-16)

contrast to other datasets, BTSR contains only a limited number of training samples.

We used the Deep Residual Network (ResNet18) (He et al., 2016) with this dataset.

• Face Recognition (VGGFace2 (Cao et al., 2018)). As in NeuralCleanse (Wang et al.,

2019), we also examine the Transfer Learning attack. In this task, we leverage

Transfer learning from a pre-trained model based on a complex 16-layer VGG-Face

model (Parkhi, Vedaldi and Zisserman, 2015) and fine-tune the last 6 layers using

170 randomly selected labels from the VGGFace2 dataset. This training process also

simulates the face recognition models deployed in real-world applications where

end-users have limited data at hand but require state-of-the-art performance. The

images therein consist of large variations in pose, age, illumination, ethnicity.

Figure 5.6: Trojan triggers (first row) and their deployment used in our experiments (second

row). From left to right: the flower and Post-it note triggers (used in (Gu et al., 2019)) deployed

in CIFAR-10, BTSR and GTSRB tasks respectively, country flag lapels on shirts and the tattoo on

the face are deployed in the VGGFace2 task.

Configuration for Trojan Attacks and Defences. Our attack method follows the

methodology proposed by Gu et al. (Gu et al., 2019) to inject a backdoor Trojan during
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training. Here we focus on the powerful input-agnostic attack scenario where the

backdoor was created to allow any input from any source labels to be misclassified

as the targeted label. For each of the tasks, we choose a random target label and poison

the training process by digitally injecting a proportion of poisoned inputs which were

labeled as the target label into the training set. Throughout our experiments, we see

that a proportion of even 1% of poisoned inputs can achieve the high attack success rate

of 100% while still maintaining a state-of-the-art classification performance (Table 5.6).

Nevertheless, to be consistent with other studies, we employed a 10% injection rate to

poison all our models. Further, following other state-of-the-art defence methods (Wang

et al., 2019; Guo et al., 2019; Liu, Dolan-Gavitt and Garg, 2018; Gao et al., 2019),

we embed the trigger by digitally stamping the physically realisable trigger onto the

inputs to create Trojaned inputs at the inferencing stage.

The triggers used for our experimental evaluation are illustrated in Figure 5.6. Notably,

the triggers are inconspicuous and naturalistic; here, we implement the triggers in

previous works (Gu et al., 2019) such as the flower trigger for the Scene Classification

task and Belgium Traffic Sign Recognition task, Post-it note for the German Traffic Sign

Recognition task and also investigate new inconspicuous and realistic triggers such as

flag lapels/stickers on T-shirts or a facial tattoo in the Face Recognition task.

Trojan Removal Sensitivity Parameters. We determined the Trojan removal region for

each task as explained in Section 5.3. The parameters determined are 0.7 for CIFAR-10,

VGGFace2, 0.8 for GTSRB and 0.5 for BTSR based on maintaining the degradation of the

classification accuracy of less than 2% after Februus, on the defender’s held-out test

set.

GAN training. To train the GAN in Image Restoration stage in Section 5.3, in alignment

with our threat model, we used unlabeled data for model training sets separated from

the test sets that defenders possess, and verify the performance on the test sets to

evaluate the generalization of GAN.

Detailed Information On Datasets, Model Architectures and Training

Configurations. The detailed information in terms of dataset and its corresponding

configuration is discussed in Table 5.5, while the detailed network architectures are

detailed in Table 5.2, 5.3 and 5.4.
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Table 5.2: Model Architecture for CIFAR-10. FC: fully-connected layer.

Layer Type # of Channels Filter Size Stride Activation

Conv 128 3 1 ReLU

Conv 128 3 1 ReLU

MaxPool 128 2 2 -

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

MaxPool 256 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

FC 1024 - - ReLU

FC 10 - - Softmax

Table 5.3: Model Architecture for GTSRB

Layer Type # of Channels Filter Size Stride Activation

Conv 128 3 1 ReLU

Conv 128 3 1 ReLU

MaxPool 128 2 2 -

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

MaxPool 256 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

Conv 1024 3 1 ReLU

MaxPool 1024 2 2 -

FC 1024 - - ReLU

FC 10 - - Softmax
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Table 5.4: Model Architecture for VGGFace2

Layer Type # of Channels Filter Size Stride Activation

Conv 64 3 1 ReLU

Conv 64 3 1 ReLU

MaxPool 64 2 2 -

Conv 128 3 1 ReLU

Conv 128 3 1 ReLU

MaxPool 128 2 2 -

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

MaxPool 256 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

FC 4096 - - ReLU

FC 4096 - - ReLU

FC 170 - - Softmax

Table 5.5: Dataset and Training Configuration

Task/Dataset # of Labels Input Size Training Set Size Testing Set Size Training Configuration

CIFAR-10 10 32× 32× 3 50,000 10,000
inject ratio=0.1, epochs=100, batch=32,

optimizer=Adam, lr=0.001

GTSRB 43 32× 32× 3 35,288 12,630
inject ratio=0.1, epochs=25, batch=32,

optimizer=Adam, lr=0.001

BTSR 62 224× 224× 3 4,591 2,534
inject ratio=0.1, epochs=25, batch=32,

optimizer=Adam, lr=0.001

VGGFace2 170 224× 224× 3 48,498 12,322

inject ratio=0.1, epochs=15, batch=32,

optimizer=Adadelta, lr=0.001

First 10 layers are frozen during training.

First 5 epochs are trained using clean data only.
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5.5 Robustness Against Input Agnostic Trojan Inputs

Our objective is to demonstrate that Februus can automatically detect and eliminate the

Trojans while maintaining the performance of the neural network with high accuracy.

The robustness of our method is shown in Table 5.6.

Our results show that the performance of the Trojaned networks after deploying our Februus

framework is identical to that from a benign DNN model (Table 5.6), while the attack success

rate from backdoor trigger reduced significantly from 100% to mostly 0%

Attacks against Scene Classification (CIFAR-10). We employ the flower trigger—a

trigger that can appear naturally in the scenes as shown in Figure 5.6. The trigger is of

size 8× 8, while the size of the input is 32× 32. As shown in Table 5.6, the accuracy

of the poisoned network is 90.79% which is identical to the clean model’s accuracy of

90.34%—hence a successfully poisoned model. When the trigger is present, 100% of

inputs will be mislabeled to the targeted “horse” class; an attack success rate of 100%.

However, when Februus is plugged-in, the attack success rate is reduced significantly

from 100% to 0.25%, while the performance on sanitised inputs is 90.08%—identical

to the benign network of 90.34% (Table 5.6). This implies that our Februus system

has successfully cleansed the Trojans when they are present while maintaining the

performance of DNN.

Attacks against German Traffic Sign Recognition (GTSRB). In Table 5.6, the attack

success rate of the trigger, post-it note shown in Figure 5.6, to the target class

Table 5.6: Classification accuracy and attack success rate before and after Februus on

Trojan models on various classification tasks.

Task/Dataset
Benign Model

Trojaned Model

(Before Februus)

Trojaned Model

(After Februus)

Classification

Accuracy

Classification

Accuracy

Attack

Success Rate

Classification

Accuracy

Attack

Success Rate

CIFAR-10 90.34% 90.79% 100% 90.08% 0.25%

GTSRB 96.6% 96.78% 100% 96.64% 0.00%

BTSR 96.63% 97.04% 100% 96.98% 0.12%

VGGFace2 91.84% 91.86% 100% 91.78% 0.00%
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“speedlimit” is 100%, after employing our Februus system, the attack success rate is

significantly reduced to 0%. The accuracy for cleaned inputs after Februus is 96.64%

which is very close to the benign model accuracy of 96.60%.

Attacks against Belgium Traffic Sign Recognition (BTSR). In this experiment, a trigger

sticker size of 32× 32 was placed in the middle of the traffic sign (Figure 5.6). We utilise

a popular network structure ResNet18 (He et al., 2016) to validate our Februus method.

Even though 100% of the inputs are mistargeted to “speedlimit” class, after Februus,

the attack success rate dramatically drops to 0.12%. This result shows the effectiveness

of our Februus across various neural networks and image resolutions. The accuracy

after Februus is 96.98%, a result slightly above that of the clean model (96.63%).

Attacks against Face Recognition (VGGFace2). The result in Table 5.6 shows

the robustness of our method even with a large network and high-resolution

images—typical of modern visual classification tasks. The Trojan attack success rate

is dramatically reduced from 100% to 0.00% , while the classification accuracy is only

0.1% different from the performance of the clean model.

In summary these results demonstrate the robustness of our Februus defence against

Trojan attacks across various networks, classification tasks and datasets with different input

resolutions.

5.6 Robustness Against Benign Inputs

The robustness against Trojaned inputs will become less significant if the defender

needs to sacrifice the performance of the network to benign inputs. Februus was

designed based on our motivation to maintain the performance of benign inputs as

reflected in our research questions. In this section we evaluate the ability of Februus

to pass through benign inputs without causing a degradation in the classification of

those inputs by the underlying DNN. In other words, we investigate the potential for

our method to cause side effects by employing Februus against all inputs, clean or

otherwise. We show that, in effect, Februus behaves as a filter to cleanse out Trojans

while being able to pass through benign inputs.

We describe the performance of our DNNs when using Februus for benign inputs and

report the results in Table 5.7. An illustration of Februus on benign inputs is shown in
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Table 5.7: Robustness of Februus against benign inputs in the classification tasks. Using

our approach, the classification accuracy remains consistent irrespective of benign or

poisoned inputs.

Tasks/

Datasets

Classification Accuracy on Trojaned Model

Before Februus After Februus

Benign Inputs Benign Inputs Trojaned Inputs

CIFAR-10 90.79% 90.18% 90.08%

GTSRB 96.78% 95.13% 96.64%

BTSR 97.04% 95.60% 96.98%

VGGFace2 91.86% 91.79% 91.78%

Inputs Trojan

Removal

Image

Restoration

Trojaned Benign

Inputs Trojan

Removal

Image

Restoration

Figure 5.7: Image Restoration. Visualisation of Trojaned and benign inputs through Februus

on different visual classification tasks.

Figure 5.7. As shown in the Figure 5.7 and Table 5.7, the benign inputs are unaffected

under Februus–we can only observe small variations in performance.

5.7 Robustness Against Complex Adaptive Attacks

The previous Sections have evaluated Februus against our threat model reasoned

from related defence papers in the field; recall the threat—an input-agnostic attack

from a single trigger misleading any input to one targeted label. Now, we

consider potential adaptive attacks including advanced backdoor variants identified
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from NeuralCleanse (Wang et al., 2019)—see Section 5.7.1—and those specific to

Februus—potential methods of manipulating the defence pipeline by an attacker with

full knowledge of our defence method (in Section 5.7.2 and Section 5.7.3).

5.7.1 Advanced Backdoor Attack Variants

We evaluate our Februus defence against four types of advanced backdoor attacks.

• Different triggers for the same targeted label. An attacker uses different triggers

but target the same label (Figure 5.8). Will our method still be able to sanitise inputs

given the potential misdirection from employing many triggers to a single target?

• Different triggers for different targeted labels. In this attack, multiple triggers are

employed by the attacker and there is a one-to-one mapping from a trigger to a

chosen target. Notably, it was shown in (Guo et al., 2019) to be able to fool TABOR (Guo

et al., 2019) and Neural Cleanse (Wang et al., 2019). Can Februus sanitise inputs under

this adaptive attack?

• Source-label-specific (Partial) Backdoors. Februus focuses on input-agnostic

attacks. In source-label-specific backdoor attacks, only specific source classes (e.g.

specific persons in a face recognition task) can activate the backdoor with the trigger

to the targeted label (Wang et al., 2019); notably, at present, there is no effective defence

against this attack and, to the best of our knowledge, we are the first to quantitatively examine

a partial backdoor attack and a defence.

• Changing the location of the trigger. The previous defence method in (Wang et al.,

2019) was shown to be sensitive to the location of the trigger (Guo et al., 2019).

Therefore, we considered whether we can successfully remove the trigger if the

attacker changes the location of the trigger at inference time.

We select the face recognition task, the most complex task in our study, for the

experiments and summarise our results in Table 5.8. The results show the robustness of

Februus against advanced backdoors; in particular, we provide the first result for a defence

against partial backdoor attacks.

Different triggers for the same targeted label. To deploy this attack, we poisoned

different subsets of the training data with different trigger patterns. Particularly, we

poisoned 10% of the dataset with the Vietnamese flag lapel, and another 10% with

British flag lapel, targeting the same random label t = 0. As illustrated in Figure 5.8, a
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Table 5.8: Robustness against various complex and adaptive Trojan attacks. Februus is

robust against attacks with varying levels of complexity.

Complex Adaptive Attacks
Before Februus

After Februus

(Trojaned Inputs)

After Februus

(benign inputs)

Accuracy ASR Accuracy ASR Accuracy

Different triggers

for the same targeted label (Section 5.7.1)
91.87% 100.00% 91.28% 0.01% 90.56%

Different triggers

for different targeted labels (Section 5.7.1)
91.87% 100.00% 91.80% 0.04% 91.02%

Source-label specific

(Partial) Trojan (Section 5.7.1)
90.72% 97.95% 83.61% 15.24% 89.60%

Multiple-piece triggers

for a single targeted label (Section 5.7.3)
91.81% 100.00% 91.42% 0.32% 91.36%

person wearing either of the flag lapel triggers can impersonate the targeted class. As

shown in Table 5.8, Februus is robust against such an attack.

Inputs
Trojan

Removal

Image

Restoration
Inputs

Trojan

Removal

Image

Restoration

Figure 5.8: Different triggers for the same targeted label. An attacker can use either trigger

patterns (flag lapels) to impersonate the target person of interest (results are in Table 5.8).

Different triggers for different targeted labels. In this adaptive attack targeting

an input-agnostic defence, we evaluate an attack setting where an adversary poisons

a network with different Trojan triggers targeting different labels. This scenario, in

general, is an adaptive attack against other defence methods; notably, it was shown

in (Guo et al., 2019) to be able to fool TABOR (Guo et al., 2019) and Neural Cleanse (Wang

et al., 2019).

As shown in Table 5.8, our experimental evaluation has demonstrated that regardless

of the trigger that attackers use and the label the attack targets, our method can still

correctly remove and cleanse the trigger out of the input and successfully restore
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the input. The average attack success rate for all those triggers are only 0.04%,

while the average accuracy is maintained at 91.80%. We observe that the attack

success rate after employing Februus increases slightly compared to the previous

experiment—Section 5.7.1—as this attack has shown to be more challenging to defend

against (Guo et al., 2019). Nevertheless, sanitisation success is high across both attacks.

Source-label-specific (Partial) Trojan. Source-label-specific or Partial Trojan was first

highlighted in Neural Cleanse (Wang et al., 2019) and we provide a a first quantitative

evaluation and defence for a partial backdoor attack. This is a powerful and stealthy attack

as the attacker only poison a subset of source classes. In this attack, the presence of

the trigger will only have an effect when it is married with the chosen source classes

identified by the attacker.

To build a partial backdoor, we poison a subset of 50 randomly chosen labels out

of 170 labels in the Face Recognition task and provide the results of our evaluation

in Table 5.8. Even though the aim is to create a backdoor activation for images in

the source labels, we observed a leak in the backdoor to other labels not from our

designated labels. We observed an attack success rate of up to 17.7% when deploying

the trigger on labels out of our designated source labels. For the inputs belonging

to our designated source labels, we achieve an attack success rate of 97.95%. Even

with this powerful attack, our defence has been shown to be effective in just a single

run through Februus where the attack success rate is reduced from 97.95% to 15.24%.

The attack success rate could be reduced further, but we have to sacrifice the DNN

performance. This is a trade-off that defender should consider based on application

needs.

While Februus cannot completely neutralise Trojan effects in this powerful attack,

Februus is the first defence to minimize the effectiveness of this attack to approximately

15% without scarifying classification accuracy in just a single run. Other methods need

to consider the relationship between source-labels and adapt their working mechanism

for this strong backdoor attack.

Changing the location of the trigger. An adaptive attacker may attempt to mislead

the GradCAM to propose a wrong location for removal by changing the location of a

trigger at the inference stage. Based on our extensive experiments on various triggers

of various sizes, locations, and patterns on different classification tasks and networks,

GradCAM is demonstrably insensitive to the size and location of Trojan triggers. We
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illustrate examples of successful Trojan removal from our model zoo of Trojan attacks

in Figure 5.9.

(a) A flag lapel on the right of a 

T-shirt in VGGFace2

(b) A flag lapel on the left of a 

T-shirt in VGGFace2

(c) A sticker in the middle of a 

Traffic  sign in BTSR

(d) A star tatoo on a face 

in VGGFace2

(e) Two flag lapels on both sides 

of a T-shirt in VGGFace2

(f) A flower at the lower right

corner of the scene in CIFAR10

Figure 5.9: Trojan attacks with varying trigger locations are successfully removed by Februus.

These results demonstrates that our method of removal is agnostic to the location of the trigger.

Further, we consider manipulation attacks by an adaptive attacker Targeting Trojan

Removal in Section 5.7.2 and attacks Targeting Image Restoration in Section 5.7.3.

5.7.2 Attacks Targeting Trojan Removal

We investigate adaptive attackers attempting to exploit the working knowledge

of GradCAM during the classification model poisoning process to bypass this

component.

Adaptive Trojan Training Attack. Since Februus relies on the selection of a sensitivity

parameter to determine the region to sanitise, an adaptive attacker may try to

manipulate this parameter selected by the defender to attempt a GradCAM evading

Trojaning approach. Particularly, adaptive attackers might attempt to incorporate the
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working knowledge of GradCAM within the training process to mislead Februus; we

describe the formulation for such an attack and its effectiveness.

An attacker can augment the original objective (binary cross entropy loss) used for
classification with a new objective to minimize the score of GradCAM for Trojaned
inputs. Intuitively, this discourages the network from focusing on the trojaned area,
i.e.

min
θ

1
n

n

∑
i=1

(
ℓ( fθ(xi), yi)︸ ︷︷ ︸

Classification Loss

+ γ B(xi) ∥Lc
GradCAM(xi)∥2︸ ︷︷ ︸

GradCAM Evasion Eq. (5.2)

)
, (5.7)

where B(xi) is 1 when xi ∈ Spoisoned and 0 otherwise.

Here, γ is the hyper-parameter that weights the classification loss and the GradCAM

loss. The results for the traffic sign recognition task using the BTSR dataset are

illustrated in Figure 5.11 where weak penalization denotes the Trojan models trained

with a small γ in Eq. (5.7) and strong penalization denotes models trained with a large

γ.

We make the following observations from our results in Figure 5.11:

Observation 1. Due to the contradictory objectives between concealing the salience of

trigger features (or network bias) and achieving state-of-the-art results, increasing GradCAM

knowledge in the training process of a Trojaned network will degrade the classification accuracy

whilst leading the network to neglect the effect of the Trojan (lower attack success rate).

Achieving optimality in both objectives will lead to degrading both the attack success (ASR)

and model performance (Accuracy). Further, as expected and confirmed in experiments, weak

penalizations have little to no effect on GradCAM based removal; hence, the effectiveness of

Februus.

Observation 2.The average probability of predictions we obtained from the adaptively Trojaned

networks—that is 1
n ∑n

i=1 p(y = c|xi) where c is the predicted label and given as Confidence

Trojan Attack: successful Trojan Attack: successful Trojan Attack: successful Trojan Attack: failed

Figure 5.10: Adversarial examples of Trojaned images to fool Gradcam. Notably, when the

perturbation is large (ϵ > 0.15), GradCAM is mislead; however, this leads the model to ignore

the Trojan trigger as well; consequently, the Trojan attack is no longer successful.
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Figure 5.11: Classification Accuracy, Attack Success Rate (ASR) and Confidence denoted by the

prediction scores of the DNN models built with adaptive Trojaning for different penalizations

(γ).

in Figure 5.11)—reduced significantly to below 20% as we increased γ (i.e increasing the

contribution of the GradCAM loss term in (5.7)). In other words, we can observe the resulting

network to become overly less confident of its predicted scores. This is an intuitive trade-off

between hiding salient features of the Trojan and reducing an information leak from the adaptive

attack. Notably, such an information leak—a less confident network—can be exploited to

identify an Adaptive Trojan Training method employed by an attacker. Interestingly, we

observed similar trends on visual tasks when we attempted different adaptive training

techniques such as forcing GradCAM to focus away from the Trojan region and forcing

GradCAM output to be random.

GradCAM Evasion Attack (Input Perturbations). We consider an attacker attempting

to fool GradCAM at inference time. Theoretically, GradCAM can be fooled by

perturbing the input with the objective of misleading the GradCAM selected input

region, similar to that possible with an adversarial example (Zhang et al., 2020a; Szegedy

et al., 2014; Madry et al., 2018). Although this is out of our threat model for a

Trojan attack where attackers utilise input-agnostic, realistic, natural triggers such as

a tattoo, we conducted experiments to assess this threat. The results are discussed

in Section 5.7.4 and illustrated in Figure 5.10. Interestingly, we observed that adding

large-magnitude adversarial noise, while potentially misleading GradCAM, has the

adverse effect of causing the Trojaned classifier to neglect the trigger, hence reducing

the attack success rate.
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GradCAM Evasion Attack (Trigger Perturbations). In addition, misleading GradCAM

decisions by perturbing only the Trojan trigger controlled by the attacker is another

interesting attack method. Stanford researchers in a study (Chou, Tramèr and

Pellegrino, 2020) have shown that localized patch perturbations only result in

GradCAM focusing on the location of the trigger; thus, the possibility to mislead

GradCAM by only perturbing the trigger whilst maintaining the potency of the Trojan

remains an open challenge.

5.7.3 Attacks Targeting Image Restoration

Assuming that adaptive attackers are fully aware of the Image Restoration mechanism

of Februus albeit without access to manipulate the training process of the Image

Restoration module, a strong attack against the restoration is to embed a large

or multiple-piece trigger to force an arbitrarily large removal region through Image

Restoration and to challenge the recovery during Image Restoration.

Increasing the Trigger Size. An attacker employing large triggers can cause the image

removal component to extract away an increasingly larger regions of an image and

thus compromise the fidelity of the restored image. The sensitivity of Februus to a

larger trigger is illustrated in Figure 5.12. When the trigger covers 25% of an image

class in GTSRB, the attack success rate after Februus is only 1.93%, while it is 0% for

smaller triggers. However, we can see that the classification accuracy starts to degrade

with trigger sizes larger than 14%. As the trigger’s size increases and covers up to

one-fourth of the image, the classification accuracy reduces to 80.61%; even though

Februus can successfully recover an image, the task of reconstructing an input with

high fidelity is impacted by the increasingly larger region to restore. We observed

similar trends in other visual tasks.

Multiple-piece Trigger. An attacker can also challenge the GAN image restoration

by employing a trigger with multiple pieces to force the restoration of multiple

regions. With no assumptions regarding the size or the location of the Trojan during

the construction of the GAN—recall that we used randomised locations and masked

areas—we expect Februus to be highly generalizable to restoring multiple regions of

arbitrary sizes.
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Figure 5.12: Februus applied to the infected GTSRB model whilst increasing the size of the

Post-it trigger and illustrations of large triggers occluding 25% of the input images.

As shown in Table 5.8, Februus correctly identifies and eliminates all the triggers with

the attack success rate reducing from 100% to 0.32% whilst maintaining a classification

accuracy of 91.42% for cleaned Trojaned inputs and 91.36% for benign inputs—we

illustrate a two-piece trigger example in Figure 5.13.

Inputs
Trojan

Removal

Image

Restoration

Multiple-piece trigger:

     Two flag lapels

Figure 5.13: Multiple-piece trigger targeting a single label.

5.7.4 GradCAM Evasion Attacks

Besides adding GradCAM knowledge during the training process, some adaptive

attackers may attempt to mislead GradCAM to propose a wrong location at the

inferencing stage, and thus reduce the robustness of our defence method. Based on

our extensive experiments, GradCAM is shown to be insensitive to sizes and locations

of Trojan triggers (as shown in Figure 5.9).

Nevertheless, for an evasion attack at the inferecing stage, we assume an attacker is

capable of adding noise to the input scene to be digitized by a camera to fool GradCAM

and misdirect to a targed region of the input. Results from this experiment are shown

in Figure 5.14. Notably such an attack requires adding noise to the entire scene to be

digitized or the input image.
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We optimize an input using Stochastic Gradient Descent (SGD) to minimize the loss

function calculated from the difference between the current and targeted GradCAM

outputs until convergence. As shown in Figure 5.14, an attacker may create a

perturbation that can fool GradCAM to detect a designated region. Adaptive attackers

might add this noise to the Trojaned input (with the hyper-parameter of ϵ to alter the

magnitude of the noise added) to mislead GradCAM and reduce the robustness of

our method (as shown in Figure 5.10). However, adding noise to the Trojaned inputs

does not guarantee the ability of the Trojan to still trigger the DNN; further, this attack

method is out of our threat model focusing on physically realisable Trojan triggers.

adversarial 

perturbation

Visual 

Explanation

targeted

GradCAM

Figure 5.14: Adaptive Attacks on GradCAM. The left image illustrates the adversarial

perturbation optimized to fool Gradcam. The right picture shows that GradCAM is fooled

into detecting the targeted region.

We also recognise that a stealthy attacker may attempt to deploy perturbations within

the Trojan trigger to create an adversarial trigger to attempt to fool GradCAM.

However, researchers in Stanford (Chou, Tramèr and Pellegrino, 2020) showed the

infeasibility of this method to fool GradCAM, unless an attacker is capable of

perturbing the whole image as shown in Figure 5.10 and Figure 5.14.

5.8 Related Work and Discussion

5.8.1 Backdoor Attacks and Defences

Attacks. Backdoor attacks have recently been recognised as a threat due to the popular

trend of using pre-trained models and MLaaS. Recent works (Liu et al., 2018b; Gu

et al., 2019; Bagdasaryan et al., 2020; Chen et al., 2017; Li et al., 2020) have shown that

attackers can embed backdoors to a ML system by poisoning the training sets with

malicious samples at the training phase. While Gu et al. (Gu et al., 2019) assume that
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the attacker has full control over training where a Trojan can be of any shape or size,

Chen et al. (Chen et al., 2017) propose an attack under a more challenging assumption

where the attacker can only poison a small portion of the training set. Liu et al. (Liu

et al., 2018b) show that they do not require the training dataset at all to Trojan a neural

network and create a stealthy Trojan attack which targets dedicated neurons instead of

poisoning the whole network. However, the drawback is that they cannot choose the

pattern of the Trojan trigger, but only their shape.

In addition, attempts to make a Trojan attack more stealthy, Liu et al. (Liu et al.,

2020) presented a backdoor attack using reflections. Saha et al. (Saha, Subramanya

and Pirsiavash, 2020) propose a novel approach to create a backdoor by generating

natural looking poisoned data with the correct ground truth labels. On the other hand,

Bagdasaryan el al. (Bagdasaryan and Shmatikov, 2021) propose a new method for

injecting backdoors by poisoning the loss computation in the training code and name

the method blind backdoors since the attacker has no power to modify the training data,

observe the execution of the code or the resulting models.

Defences. Since the attack scenarios were discovered, there has been a surge of interest

in defences against Trojan attacks (Chen et al., 2019a; Wang et al., 2019; Chou, Tramèr

and Pellegrino, 2020; Liu, Dolan-Gavitt and Garg, 2018; Gao et al., 2019, 2021; Guo et al.,

2019; Liu, Xie and Srivastava, 2017), and some certified robustness against backdoor

attacks are proposed in (Zhang et al., 2021; Weber et al., 2020; Wang et al., 2020). Liu

et al. (Liu, Xie and Srivastava, 2017) proposed three methods to eliminate backdoor

attacks and were evaluated on the simple MNIST dataset (LeCun, Cortes and Burges,

2010). Chen et al. (Chen et al., 2019a) proposed an Activation Clustering (AC) method

to detect whether the training data has been poisoned. This method assumes access

to Trojaned inputs. Liu et al. (Liu, Dolan-Gavitt and Garg, 2018) developed a method

named Fine-Pruning to disable backdoors by pruning DNNs and then fine-tuning the

pruned network. Pruning the DNN was shown to reduce the accuracy of the system

and fine-tuning required additional re-training of the network. In CCS’2019, Liu et al.

proposed Artificial Brain Stimulation (ABS) (Liu et al., 2019c) to determine whether

a network is Trojaned. The method is reported to be robust against trigger size and

only requires a few labeled inputs to be effective but with strict assumptions, the

generalization of the method to more advanced backdoors remains to be explored.

Chou et al. (Chou, Tramèr and Pellegrino, 2020) and Gao et al. (Gao et al., 2019) have

proposed run-time Trojan anomaly detection methods named SentiNet and STRIP,
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respectively. SentiNet also utilised the GradCAM Visual Explanation tool (Selvaraju

et al., 2017) to understand the predictions of the DNN and detect a Trojan trigger.

SentiNet also demonstrated GradCAM to be robust in identifying adversarial regions

regardless of whether it is a Trojaned trigger or an Adversarial Patch. Gao et al. (Gao

et al., 2019) propose a backdoor anomaly detection method that can detect potential

malicious inputs at run-time, which can be applied to different domains (Gao et al.,

2021). Although simple and fast, STRIP lacks the capability to deal with adaptive

attacks such as Partial Backdoor. Both of these methods focus only on Trojan detection.

In SP’2019, Wang et al. (Wang et al., 2019) proposed Neural Cleanse, a novel idea

aiming to reverse the Trojan triggers and clean a DNN and its method is further

improved in (Guo et al., 2019). Using reversed triggers, authors use a method of

unlearning, which requires retraining the network to patch the backdoor. The cleaning

method is reported to be challenged by large triggers and partial Trojan attacks. The

idea of reversing the Trojan trigger was also proposed in DeepInspect (DI) (Chen et al.,

2019b) but the reported results therein, after patching the network, appear to be less

favorable than Neural Cleanse.

We provide a comparison of Februus with recent defence methods in Section 5.8.3 and

summarise our findings in Table 5.10.

5.8.2 Run-time Overhead Comparisons

Since Februus is plugged as an overhead to an existing DNN to sanitise Trojan inputs,

the run-time of the Februus system should be evaluated. As shown in Table 5.9, the

run-time of the entire pipeline only takes 29.86 ms in the worst-case with a deep VGG

network of 16 layers using a standard desktop GPU—Our experiments are executed

on a commercial desktop GPU; NVIDIA RTX2080 graphics card.

In simpler classification tasks, the overhead is only around 6 ms or 8 ms. This result is

around 800× faster than SentiNet (Chou, Tramèr and Pellegrino, 2020) which takes

around 23.3s for the same task and is comparable with the fast and simple Trojan

detection only method in STRIP (Gao et al., 2019). More importantly, the acceptable

latency for autonomous driving systems from Google, Uber or Tesla is around 100ms

(Lin et al., 2018). Therefore, even the worst case latency recorded from Februus is more

than adequate for run-time deployment in real-world applications. This low-latency

processing time accompanied with the insignificant impact on model accuracy (less

Page 105



5.8.3 Comparison with State-of-the-art Methods

Table 5.9: Average run-time of different classification tasks on 100 images. Even with

the high-resolution images of the Face Recognition task using a complex VGG-16

network, the total run-time of the Februus system is 29.86 ms, while the simpler scene

classification task only incurs a 6.32 ms overhead.

Task/Dataset Run-time Overhead

Scene Classification (CIFAR-10) 6.32 ms

German Traffic Sign Recognition (GTSRB) 8.01 ms

Belgium Traffic Sign Recognition (BTSR) 6.49 ms

Face Recognition (VGGFace2) 29.86 ms

than 0.1% in accuracy drop in case of Traffic sign recognition tasks) makes Februus a

practical defence against Trojan attacks in real-world applications where denial of the

service is not an option, such as in decision making inherent to self-driving cars. In

addition, even though the camera resolution could be high, the detected images are

normally are captured and cropped from a long distance to make timely decisions

(see Figure 11 in (Lee and Kim, 2018)). For example, in a real-world Traffic sign

detection and recognition system (Lee and Kim, 2018), the captured size for Traffic

signs ranges from 13 to 250 pixels. Notably, images of these sizes were investigated in

our experiments.

5.8.3 Comparison with State-of-the-art Methods

We compare ours with recently published state-of-the-art defence methods in

the literature as summarised in Table 5.10. DeepInspect (Chen et al., 2019b),

Fine-pruning (Liu, Dolan-Gavitt and Garg, 2018), ABS (Liu et al., 2019c) and Neural

Cleanse (Wang et al., 2019) work offline, i.e. they will perform Trojan detection in

the network and patch it when it is not actively used; in contrast, Februus is online,

removes and patches the inputs at run-time.

STRIP (Gao et al., 2019), akin to our approach, works in the input domain and at

run-time. However, there are some differences in our method compared with theirs.

The first and obvious difference is that this method only detects potential Trojans,

while our method cleans the inputs. Hence, our cleaning method results should be

compared with network patching results in Neural Cleanse (Wang et al., 2019), or
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Table 5.10: Comparison between Februus and other Trojan defence methods

Work
Costly Labeled

Data Required
Run-time

DNN

Restoration

Capability

Domain
Against Complex

Partial Backdoor Attacks2

Results

After Restoration1

SentiNet Yes Yes No Input Not Evaluated Not Available

STRIP Yes Yes No Input Not Capable Not Applicable

ABS Yes No No Network Not Capable Not Applicable

DeepInspect No No Yes Network
Not Quantitatively

Evaluated

Attack Success: 3%,

Classification Accuracy: 97.1%

Neural Cleanse Yes No Yes Network
Not Quantitatively

Evaluated

Attack Success: 0.14%,

Classification Accuracy: 92.91%,

Cannot detect the trigger sizes

larger than 8× 8

Februus (Ours) No Yes Yes Input
Yes

(in just a single run)

Attack Success: 0.00%,

Classification Accuracy: 96.64%,

Can block the Trojan effect

with large trigger size of

16× 16 (cover 25% of the picture).

1 The comparison is on the GTSRB dataset shared by all methods in respective experimental

evaluations. Notably, the classification accuracy of the methods we compare with are after the

model is re-trained using clean labeled data.

2 The methods that discuss potential defences require adapting their defence mechanisms and

knowledge of trojaning implementations; notably, such information may be difficult to gain in

practice.

DeepInspect (Chen et al., 2019b) defences since these methods also attempt to clean the

Trojaned effect whilst aiming to achieve state-of-the-art performance from the sanitised

network. The second difference is that our GAN inpainting method is unsupervised,

hence, we can utilise a huge amount of cheap unlabeled data to improve our defence,

while other methods rely on ground-truth labeled data—both difficult and expensive

to obtain. Third, our method is robust to Partial Trojan attacks and multiple triggers,

two challenging attacks for our counterparts (Gao et al., 2019; Wang et al., 2019; Guo

et al., 2019). Notably, Februus can cleanse the Trojan effects in just a single run (or

pass).

5.8.4 Limitations

We quantitatively and qualitatively compare Februus with other state-of-the-art

defence methods in Section 5.8.3. Februus is robust against patch-like input-agnostic
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Trojan attacks—our primary aim under our threat model—whilst generalizing well

across complex adaptive attacks, we observed some limitations.

Interestingly, in Section 5.7.2, our investigations into adaptive training methods

demonstrate a possibility to evade Trojan removal but we observed this to come at

the cost of further information leaks or significantly degraded attack success rates.

As demonstrated in Section 5.7.3, a large trigger covering more than one-fourth of an

image can cause a degradation in the classification accuracy by attacking the image

restoration stage of Februus; although, Februus can successfully block the attack. In

addition, a distributed, noise-like trigger, where the pattern is spread through the

whole image could also be considered a large trigger; however, these noise-like triggers

are out of the scope of this chapter because it is extremely difficult to deploy these

attacks in the physical world (our focus).

In general, a large trigger is conspicuous, not stealthy and easily detected by humans

when deployed in a scene in the physical world. For example, we illustrate in

Figure 5.12 the trigger required to achieve a digitization of an image with a trigger

size covering 25% of the image. Further, large triggers are a challenging problem

and cause a degradation in state-of-the-art Trojan defence methods. However, in

comparison with 2019 IEEE S&P Neural Cleanse method (Wang et al., 2019), Februus

is demonstrated to be less sensitive to these larger triggers as shown in Figure 5.12 and

compared to in Table 5.10 (in the Section 5.8.3). Februus can be improved by enhancing

the image restoration module, for example, by using more unlabeled data to increase

the fidelity of the reconstruction by the GAN or training the GAN with labeled data

with the additional objective of maximising the classification accuracy of the classifier

on inpainted images to boost the performance of the GAN to maintain the classification

accuracy of restored inputs. In addition, as we illustrated in Section 5.7.3, mounting

such a large trigger attack in the physical world is a challenging proposition.

Notably, all of the experiments in this Chapter are evaluated on patches that are

digitally stamped to fool DNNs. Even though digital patches are shown to be effective

in the physical world (Wenger et al., 2021; Gu, Dolan-Gavitt and Garg, 2017), there is

little research in terms of the robustness of defence methods against physical-world

Trojan attacks. Thus, a generalisation of Februus in the physical-world conditions is a

promising research direction, and we will leave it for future work (see Chapter 7).
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5.9 Conclusion

Februus has constructively turned the strength of the input-agnostic Trojan attacks into

a weakness. This allows us to remove the Trojan via the bias of network decision

and cleanse the Trojan effects out of malicious inputs at run-time without the prior

knowledge of poisoned networks and Trojan triggers. Extensive experiments on

various classification tasks have shown the robustness of our method to defend against

input-agnostic backdoor attacks as well as advanced variants of backdoor and adaptive

attacks where the attackers are assumed to have full knowledge of the defence method.

Overall, in contrast to prior works, Februus is the first method to leverage cheaply

available unlabeled data and cleanse out the Trojaned triggers from malicious inputs

and patch the performance of a poisoned DNN without retraining. The system is

online and eliminates Trojan triggers from inputs at run-time where denial of a service

is not an option; such as with self-driving cars.

Interestingly, we found that the Trojan attacks presented in this chapter regardless

of the poisoning process, has the similar goal and target as the adveresarial

patches (Brown et al., 2017). The next chapter will investigate a novel framework to

bridge these two attacks in the input space where an Adversarial-Patch attacker can

exert a similar level of control as a Trojan attacker without tampering with training

process and risking discovery.
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Chapter 6

Naturalistic Adversarial
Patches as Universal

Triggers

W
E consider the problem of bridging the divide between spatially

bounded Adversarial Examples or Adversarial Patches and

Trojan attacks in the input space. We discover the existence

of an intriguing class of spatially bounded, physically realisable, adversarial

examples—Universal NaTuralistic adversarial paTches—we call TnTs. Now,

an adversary can arm themselves with a patch that is naturalistic, less

malicious-looking, physically realisable, highly effective—achieving high attack

success rates, and universal. A TnT is universal because any input image captured

with a TnT in the scene will: i) misguide a network (untargeted attack); or ii) force

the network to make a malicious decision (targeted attack). Interestingly, now, an

adversarial patch attacker has the potential to exert a greater level of control—the

ability to choose a location independent, natural-looking patch as a trigger in

contrast to being constrained to noisy perturbations—an ability is thus far shown

to be only possible with Trojan attack methods needing to interfere with the model

building processes to embed a backdoor at the risk discovery; but, still realise

a patch deployable in the physical world. Through extensive experiments on the

large-scale visual classification task, ImageNet, and generalisation on different other

tasks (CIFAR-10, GTSRB, PubFig) on multiple state-of-the-art deep neural networks

such as WideResnet50, Inception-V3 and VGG-16, we demonstrate the realistic threat

from TnTs and the robustness of the attack. A collection of videos demonstrating

physical deployments in multiple settings is at https://TnTattacks.github.io/.
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NaturalismNoise

Figure 6.1: An overview of the evolution of adversarial patch attack perturbation vectors. Our

attack explores the hitherto elusive goal to realise visibly less malicious-looking adversarial

patches–TnT–for: i) targeted attacks to misdirect any input to a target class; and ii) untargeted

attacks.

6.1 Motivation and Contribution

As mentioned in Chapter 1, despite the different methods employed, an attacker armed

with an Adversarial Patch or a Trojan trigger aims to cause the DNN system to fail—for

example to misclassify an input or hijack the DNN predictions to achieve a desired

target prediction. Notably, Adversarial Patches and Trojan triggers can misdirect a

model in the presence of any input class–i.e. their effect is universal or input agnostic;

however, unlike adversarial patches crafted from applying gradient perturbations to

the input, a distinguishing facet of a Trojan attack highlighted by Bagdasaryan and

Shmatikov (Bagdasaryan and Shmatikov, 2021) is the adversary’s ability and freedom to

self-select any secret trigger of naturalism, stealth, shape, size or features independently of the

DNN model.

We seek to investigate the potential for a run-time attack with a universal, physically

realisable patch allowing an adversary to exert a level of control, inconspicuousness and

naturalism over the patch, thus far shown to be only possible with Trojan attack methods

whilst obviating the need to interfere with the model building process and risk of discovery

(Fig. 6.1)

Such an attack would: i) bridge the divide between Trojan Attacks and Adversarial

Attacks in the input space; and ii) constitute a pragmatic and inconspicuous zero-day

exploit against already deployed deep perception models.
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Our investigation focuses on deep perception models and seek to further explore and

understand new vulnerabilities. In particular, we seek to answer the following primary

research questions (RQ) through our investigations:

RQ1: How can we discover TnTs that are physically realisable and naturalistic?

(Section 6.3)

RQ2: How vulnerable are deep neural networks and their defended counterparts to

TnT attacks? (Section 6.5 & 6.9)

RQ3: Do these TnTs have the features of universality or input-agnostic nature to

misclassify any input to a targeted class? (Section 6.5.1)

RQ4: How robust are TnTs? (Sections 6.5.2 & 6.5.4)

RQ5: How generalisable are TnT to unseen data or transferable to other networks?

(Sections 6.5.1 & 6.5.3)

RQ6: Can the effect of a TnT be explained by the occlusion caused by the patch or a

network bias? (Section 6.5.5)

RQ7: What are the impacts of relaxing the need for naturalistic patches? (Section 6.7)

RQ8: How comparable are patches generated from our attack method to

state-of-the-art adversarial patch attacks? (Sections 6.7, 6.7.2 & 6.9)

RQ9: How robust are TnTs in the physical world? (Section 6.8)

This chapter presents the results of efforts to investigate generating adversarial patches

that are less clearly malicious. The results and contributions of this Chapter are as

follows:

1. Propose a new attack against DNNs. The attack method generates Universal

NaTuralistic adversarial paTches, we call TnTs, by exploring the super set of the

spatially bounded adversarial example space and the natural input space within

generative adversarial networks (GANs) . The TnTs we generate for attacking a

DNN are:

• Universal and Naturalistic. A TnT is universal as any input with a TnT will fool

the classifier and naturalistic, as assessed by a large cohort user study.

• Highly effective in targeted and untargeted attacks against state-of-the-art DNNs.

In extensive experiments with ImageNet—a significant large-scale dataset with a
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million high-resolution images used for pre-training models of many real-world

computer vision tasks—we achieved attack success rates of over 95% in the

challenging attack setting of misclassifying any input to a targeted class.

• Robust. The attack yields high attack success rates irrespective of the location of

the TnT; even with the TnT in a corner, i.e the image background.

• Deployable in the physical world. Physical world deployments of

the attack demonstrates the practicability of the attack in various

real-world settings. Multiple, detailed, demonstration videos are available at:

https://TnTattacks.github.io/.

• Highly generalisable. A TnT discovered from 100 random sample images can

effectively misguide the entire ImageNet validation set of 50,000 images. Further,

we demonstrate effective attacks across multiple state-of-the-art networks (such

as VGG-16, WideResNet50, SqueezeNet, ResNet18, MnasNet) and across 3

additional tasks: Face recognition (PubFig); Scene classification (CIFAR-10); and

Traffic sign recognition (GTSRB).

• Transferable to mount black-box attacks. Attack transferability is investigated

using the ImageNet classification task. The results demonstrate that TnTs are

transferable to other unknown network architectures for the same task (an attack

in a black-box setting).

• Highly effective at evading existing countermeasures against adversarial patch

attacks. The attacks evaluated against both certifiable and empirical defences.

2. The attack generalises to generate physically realisable adversarial patches

achieving higher attack success rates than state-of-the-art attacks.. When an attacker

does not need naturalistic features, TnT attacks lead to a new algorithm to generate

adversarial patches of only 2% of the input image size with higher attack success rates;

achieving a large margin of up to 44% compared to state-of-the-art adversarial patch

attacks.

3. We demonstrate physical deployments in multiple videos at

https://TnTattacks.github.io/ and we contribute to the discipline by releasing

the pre-trained networks and TnT artifacts to encourage future research and

defences.
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6.2 Overview of The Attack Approach

This section provides an overview of our approach to provide a conceptual

understanding the TnT attack method against Deep Neural Networks (DNNs) at the

inference stage. First, we introduce the attack model, followed by our hypothesis, then

our attack approach.

Figure 6.2: Attack method for generating TnTs. Here, A is the patch stamping process, ytarget is

the targeted class designated by the attacker, ysource is the ground-truth label, ℓ(x′, ytarget, ysource)

is the combined cross-entropy loss between the predicted score from the classifier f and the

targeted as well as source label, and ∇ℓ is the feedback from the Targeted Classifier f . The

method is designed to iteratively approach high attack success TnTs by traversing through the

latent space of the generator using gradient feedback.

6.2.1 Attack Model

Our attacker strikes at the test time, i.e. the attacker does not intervene in the training

process in contrast to a Trojan attack. Consequently, the attacker does not leave

any trace of tampering with the network to be discovered, making it relatively easy

to deploy. Depending on the attacker’s knowledge of the target model to attack

(i.e. neural architecture, inputs and outputs), we can consider either a white-box

attack (Goodfellow, Shlens and Szegedy, 2015) where everything about the model is

known, or black-box (Papernot et al., 2017; Papernot, McDaniel and Goodfellow, 2016)

where nothing about the model is known. In both cases, typically it is assumed that the

attackers have access to some labelled training and validation data. The attacker also

has access to computational resources to verify the method, e.g. a GPU-based cloud

service.

White-box attacker. Following the attack models from prior adversarial patch attacks

AdvPatch (Brown et al., 2017) and LaVAN (Karmon, Zoran and Goldberg, 2018),
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we primarily consider a white-box attack where the attackers have full access to the

attacked network. Even if access to the model is not possible, or the model is not

publicly available, one can employ a reverse engineering approach such as (Tramèr

et al., 2016; Rolnick and Kording, 2020; Carlini, Jagielski and Mironov, 2020) to extract

the model. Since defending against such attacks is challenging, it is of particular

interest.

Black-box attacker. We also evaluate whether TnT can be exploited in the less

restricted threat model of a black-box attack when the attacked network is unknown.

We assume such an attacker has access to TnT obtained for the same classification task on

a different arbitrary network. This allows an attacker to transfer the knowledge gained

from, for example, a white-box attack on an arbitrary model using publicly available

training data, to be used to attack a different model.

Goals. The attacker goals are to (i) exploit the vulnerability of a DNN to TnTs to

extract TnT instances with ii) high attack success rate (ASR), while (iii) maintaining

the universality of the patch; the challenge is to discover a naturalistic patch.

6.2.2 Hypothesis

The decision boundaries learned by DNNs are subjected to the training examples

presented to the network during the learning process. Consequently, DNNs must

eventually approximate true decision boundaries learned from the training data.

Unfortunately, due to the complex and highly non-linear structures within deep neural

networks, it is hard to fully understand the learned boundaries within networks. For

instance, Hendrycks et al. (2021) reminds us that natural images captured from a

scene with objects of classes within the training examples can sometimes cause errors

and lead to incorrect predictions, even on “superhuman” ImageNet classifiers (He

et al., 2015) despite having no adversarial alterations. Therefore, we can expect the

existence of adversarial patches that are naturalistic but has the adversarial effect to

alter the decision of the classifier. However, searching in the infinite space of all

natural-looking small image patches is not feasible, therefore we constrain our search

to the manifold of a Generative Adversarial Network (GAN) by taking inspiration

from recent developments in GANs showing a tremendous ability to learn to generate

realistic images (Goodfellow et al., 2014).
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We hypothesise the existence of an intersection of the spatially bounded adversarial example

space (i.e. patches) and the natural input space within generative adversarial networks

(GANs) as illustrated in Figure 6.2.

6.2.3 An Overview of The Attack Approach

Since GANs are designed to map from a known (latent) distribution to the distribution

of real images using a generator, as illustrated in Fig. 6.2, we consider the latent space

z of the generator from which images are produced—as Gθ(z)—instead of searching

in the infinite space of all natural-looking image patches; i.e. a standard Gaussian

distribution N (0, 1) and has a much lower dimension in which traversal is easier. By

getting feedback from the downstream classifier (∇ℓ) we can navigate the latent space

following the gradient feedback to seek the latent vector from which a potential TnT can be

generated. Although not for the same attack, we acknowledge and discuss GAN-based

attack approaches in Section 6.10.

Importantly, the learning algorithm we employ determines the best latent vector z from

which to generate a patch, a potential TnT because this latent space z can capture

the intrinsic structure of natural images from a simple latent distribution. Notably,

since the generator was trained on natural images, samples from the latent space map

to natural-looking image instances using a deterministic transformation (Generator).

We demonstrate this process as an effective method to discover inputs capable of

fooling the classifier whilst maintaining the naturalism of the patch. We will further

support this claim by a large cohort user study, later, in Section 6.6. As illustrated in

Fig. 6.2, we refer to this process as the TnT Generator. Effectively, our attack method

takes advantage of a GAN’s ability to capture a rich distribution of natural images to

discover the hypothesised region of the input space.

We distinguish our TnT attack from other adversarial patch attacks as follows.

1. Generated patches can be natural-looking and look less malicious than noisy

perturbation patches in LaVAN (Karmon, Zoran and Goldberg, 2018) and

AdvPatch (Brown et al., 2017).

2. Instead of directly applying perturbations to the input space that leads to noisy

adversarial patches (Brown et al., 2017; Karmon, Zoran and Goldberg, 2018; Liu

et al., 2019a), we propose solving the problem of searching for naturalistic patches
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with adversarial effects by indirectly manipulating the latent space z of a Generative

Adversarial Network that has learnt to approach the natural patch distribution.

3. Different from the PS-GAN (Liu et al., 2019a) attack based on input-dependent

adversarial patches that occluded the salient features to realise an untargeted attack,

our attack is: i) capable of both targeted and untargeted attacks; ii) input-agnostic

(universal); and iii) robust—attack success is largely invariant to location, even at

the corners or background of an image.

4. Our attack method generalises to produce small, adversarial patches with noise-like

additions of high attack success rates than such existing state-of-the-art attack

methods with a large margin of up to 44%.

5. To the best of our knowledge, our study is the first to demonstrate an adversarial

attack with a universal, physically naturalistic and location independent patch for

targeted attacks in image classification tasks.

6.3 TnT Generator

This section details our TnT Generator method illustrated in Figure 6.2 for attacking

a DNN with a concrete patch example. Without loss of generality, we propose using

images of flowers to discover TnTs. Our primary motivation is that flowers exhibit

synergy with a wide range of imaging scenarios and are unsuspecting, and therefore,

inconspicuous. For example, someone might wear a flower T-shirt, wear a flower in

their hair or hat to impersonate someone else in a face recognition system. Similarly,

sticking an inconspicuous, natural-looking sticker on a traffic sign identical to (Gu,

Dolan-Gavitt and Garg, 2017) can fool a self-driving car to misclassify, for example, a

STOP sign as a 100 mph Speed Limit sign with catastrophic consequences.

6.3.1 Training The Generator

An advantage of a GAN is that they are unsupervised models that only need unlabelled

data that can be cheaply obtained. In our study, we collect a random, unlabelled flower

image dataset from open-source Google Images (Google, 2020 (accessed July 3, 2020)

to build a flower dataset to learn the natural flower distribution. We selected the

WGAN-GP loss function as it has shown to stabilise the training process of a GAN.
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6.3.2 Transformation to a TnT Generator

To realise the TnT (representing a flower patch in our attack scenario), we need to search

for flowers from our synthesized flower distribution that has an adversarial effect on

the attacked network. Here, we hypothesise that GANs have learned the super set

of both natural-looking images and adversarials as illustrated in Fig. 6.2; therefore,

by searching through this synthesized distribution, we expect to find a structured,

natural-looking perturbation rather than a random noisy one. First, we formalize the

notation of a TnT and, second, we propose a method for realising such a TnT. Consider:

• ysource is the source class labelled for a given image x.

• ytarget is the targeted class designated by the attacker.

• The loss is between prediction and the label ℓ(x, ysource) for the untargeted and

ℓ(x, ytarget) for the targeted attack—cross-entropy loss function of the neural network,

given image x and a class label y. Notably, we intentionally omit network weights

(θ) and other parameters in the cost function because we assume them to be fixed

and remain untouched post network training.

Now, more formally, the attacker uses a trained model M that predicts class

membership probabilities pM(y | x) to input images x ∈ Rw×h×c. We denote by

y = pM(x) the vector of all class probabilities, and by yargmax = arg maxy′ pM(y = y′|x)
the highest scoring class for input x (the classifier’s prediction on the source class). The

attacker seeks an image x′ that fools the network such that y′ ̸= ysource or y′ = ytarget

for y′ = arg maxy′′ pM(y = y′′|x′). The image x′ is composed of the original image with

a natural patch stamped on it. We denote this process by a function A(x, G(z)).

In our TnT generation process, we firstly sample a vector z ∼ p(z) with z ∈ RN where

N = 128. This latent vector will be fed into our Generator pre-trained from Sec. 6.3.1 in

order to produce the flower patch δ = G(z) where G : RN → Rw×h×c. The flower patch

is subsequently stamped at the lower-right corner of the image to avoid occluding the

main features in alignment with the intentions in previous works (Karmon, Zoran and

Goldberg, 2018; Rao, Stutz and Schiele, 2020). Later, in Section 6.5.2, we also evaluate

the efficacy of the flower patch at nine different random locations. The size of the patch

(flower) can be determined as necessary by the adversary to achieve their objectives

(related to the attack success rate and TnT size discussed later in Section 6.7.2). Based

on the predefined location and patch size, we then utilise the image thresholding method

of OpenCV (OpenCV, 2020 (accessed June 25, 2020) to determine the binary mask m with
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Algorithm 6.1 TnT Generator

1: Inputs: a batch of images {x(i)}m
i=1 with batch size m, targeted label {y(i)

target}m
i=1,

source label {y(i)
source}m

i=1, model pM, number of iteration niter, the learning rate

parameter ϵ to update the latent vector, the hyper-parameter λ to balance the

loss, and the thresholds to detect the TnT τbatch, τval for batch and validation set

respectively.

2: Initialization: fool = 0, detect = False

3: while detect = False do

4: Sample a batch of images {x(i)}m
i=1

5: Sample a latent variable z ∼ p(z)

6: for j = 1, ..., niter do

7: δ = Gθ(z) ▷ a flower patch

8: Generate the mask m based on δ

9: δ′ ← bgremoval(δ, m) ▷ Background removal

10: for i = 1, ..., m do

11: x′(i) = (1−m)⊙ x(i) + m⊙ δ′

12: y(i)argmax = arg maxy pM(y|x′(i))
13: if y(i)argmax = y(i)target then

14: fool = fool + 1

15: L = ℓ({x′(i)}m
i=1, {y(i)

target}m
i=1)− λ ℓ({x′(i)}m

i=1, {y(i)
source}m

i=1)

16: ∇ℓ =
∂L
∂z

17: z = z− ϵ sign(∇ℓ)

18: if fool > τbatch then

19: # further verify the realised TnT

20: ASR← Validate(δ,Xval) ▷ verify on Xval

21: if ASR ≥ τval then detect = True

mi,j ∈ {0, 1} for ith row and jth column pixel of an image, to remove the background

of δ. This patch is then affixed to the input image to obtain the adversarial sample x′,

i.e.:

x′ = (1−m)⊙ x + m⊙ δ, (6.1)

where ⊙ is the element-wise product.

To determine the ability of x′ to act as an adversary and receive feedback to choose a

better latent variable, we test it with the trained neural network classifier. The sample
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x′ is fed into the classifier to obtain prediction scores for each individual class. The loss

obtained from comparing the prediction scores and the target labels ytarget, ℓ(x′, ytarget)

as well as the source labels ysource, ℓ(x′, ysource) are then calculated (e.g. using cross

entropy). We use the additional loss ℓ(x′, ysource) as it was shown to help the targeted

attack converge faster. We then compute the gradient of this loss with respect to the

latent variable z, i.e. ∇zℓ(x′, ytarget, ysource). We then update the latent variable z using

gradient descent in the direction of minimizing this loss. Note that this does not change

the classifier or GAN parameters and only updates the latent variable to increase the

likelihood of attack success.

During TnT generating, for a random set of inputs, if a threshold percentage of inputs

x′ can fool the network, the TnT is considered universal. The reason for setting a

threshold here is to improve the algorithm’s speed, so that if the attack is successful

in a batch, then we test whether it generalises to the validation set Xval. The complete

process is summarised in the Algorithm 6.1.

6.4 Attack Experiment Settings

We conduct an extensive experimental evaluation regime to evaluate our attack

method. We describe the: i) Datasets; ii) GAN employed and training; iii)

Attack configurations; and iv) Implementation Details employed in our quantitative

evaluations in Section 6.5.

Datasets and Model Architectures. We employ popular real-world visual

classification tasks. We conduct extensive experiments with the large-scale visual

recognition dataset, ImageNet. Notably, the dataset is widely used as a pre-training

model to achieve “superhuman” performance on classification tasks (He et al., 2015).

Additionally, to demonstrate the generalisation of our method, we also evaluate on

3 other visual classification tasks: i) Scene Classification (CIFAR-10); ii) Traffic Sign

Recognition (GTSRB); and iii) Face Recognition (PubFig). Model architectures and test

samples used for each task are summarised in Table 6.1. Model and dataset details are

in Section 6.4.1.

GAN Configuration and Training. To illustrate the significant threat posed, we

demonstrate our attack method is easy to mount, low cost and does not require

6In our work, we utilised pre-trained models on the ImageNet dataset from Pytorch.
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Table 6.1: Networks used for the classification tasks

Task/Dataset
# of

Labels

# of

Training

Images

# of

Test

Images

Model

Architecture

CIFAR-10 10 50,000 10,000 6 Conv + 2 Dense

GTSRB 43 39,288 12,630 7 Conv + 2 Dense

PubFig 170 48,498 12,322
13 Conv + 3 Dense

(VGG-16)

ImageNet 1,000 -6 50,000 WideResNet50

access to costly labelled data, and an attacker does not require specialized expertise

in machine learning. Consequently: i) we utilised the off-the-shelf GAN framework

of Pytorch, TorchGAN (Pal and Das, 2019); ii) used an off-the-shelf web crawler to

automatically curate a dataset of random flower species from Google images; and

iii) used only 945 flower images to train the GAN. The inputs for this TorchGAN

include the real dataset (flowers in our example or any other dataset which we have

shown can easily be curated from online sources), dimension of the generated images,

and the loss function. Here, we vary the input dimension for the TorchGAN from

16× 16 to 128× 128 to generate different patch sizes to feed to the classifier.

Attack Configuration and Success Measure. The adversary attempts to discover a

naturalistic perturbation that can fool the classifier. We consider two different types of

attacks: i) targeted attack where attackers aim to misclassify to a specific targeted label

ytarget; and ii) untargeted attack where attackers only want to degrade the performance

of the system, as in a denial-of-the-service attack, by fooling the classifier to recognise

the object as y ̸= ysource. In this work, we focus mainly on targeted attacks as it is more

challenging to misclassify to a targeted label than simply cause a misclassification, and

we chose the targeted class randomly.

All of these attacks are universal meaning that the attacker only needs one single patch

to hijack the decision of the network to misclassify any input. One of the benefits of

implementing a universal attack is that the attack is input-agnostic making it a strong

attack regardless of the input, just as a backdoor in a conventional Trojan attack.

We used the Attack Success Rate (ASR) metric measured as the number of examples

to successfully fool the target network over the total number of evaluated examples to

evaluate the attack effectiveness.
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Table 6.2: Dataset and Training Configuration

Task/Dataset # of Labels Input Size Training Set Size Test Set Size Training Configurations

CIFAR-10 10 32× 32× 3 50,000 10,000
epochs=100, batch=32,

optimizer=Adam, lr=0.001

GTSRB 43 32× 32× 3 35,288 12,630
epochs=25, batch=32,

optimizer=Adam, lr=0.001

PubFig 83 224× 224× 3 11,070 2,768

epochs=30, batch=32,

optimizer=Adam, lr=0.001.

The last 4 layers are fine-tuned during training.

ImageNet 1,000 224× 224× 3 - 50,000
We utilise pre-trained models available from

Pytorch (Paszke et al., 2019) for the task.

Implementation Details. In our experiments, we use Pytorch (Paszke et al., 2019)

library for implementation and verify our method on a NVIDIA RTX2080 GPU. Since

the main focus in this chapter is on visual classification tasks, we assume that pixel

values of inputs x are in the integer range of [0, 255] or scaled to float range of [0, 1]

which correspond to the current practice of image processing and deep learning library.

We used α = 0.01, i.e. we changed the value of each latent value by 0.01 on each step.

We selected the number of iterations to be 20. The number of iterations and α values are

chosen heuristically; sufficient for the adversarial example to reach the point of fooling

the classifier while keeping the computational cost of experiments manageable.

6.4.1 Detailed Information On Datasets, Model Architectures and

Training Configurations

We describe the datasets and model architectures used in our studies below, while the

detailed training configuration for each of the dataset is mentioned in Table 6.2.

• Large Scale Visual Recognition (ImageNet (Russakovsky et al., 2015)). ImageNet is

a highly popular real-world dataset with a million high-resolution images of a large

variety of objects used for training state-of-the-art deep perception models. The

goal is to recognise visual scenes among 1,000 different classes. This is one of the

most popular dataset in computer vision for benchmarks state-of-the-art models. In

this task, we utilised state-of-the-art pre-trained models available from Pytorch Deep

Learning library (Paszke et al., 2019); notably, these models are used as base models

by many Machine Learning practitioners for transfer learning to build systems for

different visual tasks.
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Configurations

Table 6.3: Model Architecture for CIFAR-10. FC: fully connected layer.

Layer Type # of Channels Filter Size Stride Activation

Conv 128 3 1 ReLU

Conv 128 3 1 ReLU

MaxPool 128 2 2 -

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

MaxPool 256 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

FC 1024 - - ReLU

FC 10 - - Softmax

Additionally, to demonstrate the generalisation of our method, we also evaluate on

3 other visual classification tasks: i) Scene Classification (CIFAR-10); ii) Traffic Sign

Recognition (GTSRB); and iii) Face Recognition (PubFig).

• Scene Classification (CIFAR-10 (Krizhevsky, Hinton et al., 2009)). This is a widely

used task and dataset with images of size 32× 32 and we used a similar network to

that implemented in the IEEE S&P (Wang et al., 2019) study (Table 6.3).

• Traffic Sign Classification (GTSRB (Stallkamp et al., 2012)). German Traffic Sign

Benchmark dataset is commonly used to evaluate vulnerabilities of DNNs as it is

related to autonomous driving and safety concerns. The goal is to recognise 43

different traffic signs of size 32 × 32 to simulate a scenario in self-driving cars.

The network we used follows the VGG (Simonyan and Zisserman, 2015) network

structure (Table 6.4).

• Face Recognition (PubFig (Pinto et al., 2011)). Public Figures Face dataset is a large,

real-world dataset with high-resolution images of large variations in pose, lighting,

and expression. The goal is to recognise the faces of public figures. In this task,

we leverage transfer learning from a publicly available pre-trained model based

on a complex 16-layer VGG-Face model from the work of (Parkhi, Vedaldi and

Zisserman, 2015) and fine-tune the last 6 layers (Table 6.5).
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Table 6.4: Model Architecture for GTSRB

Layer Type # of Channels Filter Size Stride Activation

Conv 128 3 1 ReLU

Conv 128 3 1 ReLU

MaxPool 128 2 2 -

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

MaxPool 256 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

Conv 1024 3 1 ReLU

MaxPool 1024 2 2 -

FC 1024 - - ReLU

FC 10 - - Softmax

Table 6.5: Model Architecture for VGGFace2

Layer Type # of Channels Filter Size Stride Activation

Conv 64 3 1 ReLU

Conv 64 3 1 ReLU

MaxPool 64 2 2 -

Conv 128 3 1 ReLU

Conv 128 3 1 ReLU

MaxPool 128 2 2 -

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

Conv 256 3 1 ReLU

MaxPool 256 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

Conv 512 3 1 ReLU

MaxPool 512 2 2 -

FC 4096 - - ReLU

FC 4096 - - ReLU

FC 170 - - Softmax
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6.5 Evaluation of TnT Effectiveness

First, we intensively investigate the effectiveness of TnTs on ImageNet because of the

fact that ImageNet classification benchmark has led to a great number of advances in

image classification that some call “superhuman” (He et al., 2015). We summarise our

evaluations of TnT attacks on different scenarios:

• Attack effectiveness on the entire ImageNet validation set. Given the massive size

of the dataset, previous works (Karmon, Zoran and Goldberg, 2018; Liu et al., 2019a)

evaluated attack success on a sample of 100 random images (ImageNet-100). In

addition, we want to evaluate the effectiveness of the discovered TnTs from a sample

of 100 images the entire 50,000 images in the validation set (ImageNet-50K). Notably,

to the best of our knowledge, we are the first to evaluate the effectiveness of an adversarial

patch on the entire validation set of ImageNet (see Section 6.5.1).

• Robustness to changes in patch locations. Other attack methods such as

LaVAN (Karmon, Zoran and Goldberg, 2018) have shown that an adversarial patch

ASR could degrade significantly by shifting the patch slightly in the image. Therefore,

we evaluate the robustness of the patch to location changes (see Section 6.5.2).

• Black-box attack (Transferability of TnTs). We assess the success of a black-box

attacker. Hence, we evaluate the transferability of the known TnT on unknown

networks trained with ImageNet (recall a black-box attacker has no knowledge about

the attacked network) (see Section 6.5.3).

• Attack effectiveness and generalisation across other visual tasks. Our attack

method is generic; to demonstrate, we evaluate the generalisation of the method on

different visual classification tasks and datasets such as CIFAR-10, GTSRB and PubFig

(see Section 6.5.4).

• Studies on the effect of random color and flower patches. Since the TnTs occlude

a part of the image, we want to understand if the phenomenon we observe can

be explained by occlusion or a network biased to flowers or colors. Therefore,

we evaluate the effect of occlusion by a patch as well as a random flower on the

ImageNet classifier (see Section 6.5.5).

The TnTs we use in these experiments cover 10% to 20% of the input image, comparable

with the patch size in AdvPatch (Brown et al., 2017) We investigate different patch sizes

in Section 6.7.2.
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Table 6.6: Different TnTs found using ImageNet-100 for different models and their

corresponding ASRs when applied to larger test sets.

Target custard

apple

arti-

choke

pine

apple

conch

Example

ImageNet-100

(Attacker’s test set) 96% 94% 96% 97%

Generalisation across a large corpus of unseen data

ImageNet-1000 93.6% 93.6% 95.1% 94.6%

ImageNet-50K 94.14% 94.51% 94.21% 95.13%

Network VGG-16 Inception-V3 WideResNet50

6.5.1 Attack Effectiveness on Entire ImageNet Validation Set

Since ImageNet is a huge dataset, deploying the algorithm on this dataset is time

and power-consuming. Thus, initially, similar to previous works (Karmon, Zoran and

Goldberg, 2018; Liu et al., 2019a) we only use a small number of samples (100 images)

to find the TnTs. With the small sample size of 100 images, we successfully realise

multiple different TnTs that fool the classifier with an attack success rate of higher than

90% (on 100 randomly investigated images), while still maintaining the naturalism

of the flower patch produced by the TnT Generator (Algorithm 6.1). Interestingly,

we found various TnTs during our investigation, and in Table 6.6 we illustrate four

examples (more examples and targeted labels are shown in later Sections). Each of the

realised TnT has its own distinct features, but they all maintain the natural-looking

of a flower; and once applied on any input image will misclassify the image to the

targeted class y = ytarget through different pre-trained classifiers (VGG-16, Inception-V3

or WideResnet50) of Pytorch.

We also further verify the generalisation of the discovered TnTs found from a small

sample of 100 images to attack a much larger sample size in ImageNet. The results are shown

in Table 6.6. Surprisingly, the TnTs that we found in the 100-sample set generalise

remarkably well to a bigger validation set (50K samples from the ImageNet validation

set). For example, the TnT realised in WideResNet50 with the ASR of 96% to fool any
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input image to the target pineapple class still maintains a high attack success rate

of 95.1% for another 1000 random images (ImageNet-1000). To further verify the

effectiveness of the attack, we deploy the TnTs found (from the 100-sample set) on

the whole validation set of 50K images of ImageNet, and notably, we can still achieve a

very high ASR of 94.21% on that whole validation set (50K images). Although there is

a slight drop in the ASR of around 1.79% (from 96% to 94.21%), the ASR is still notably

high.

This is a serious threat as attackers only need a small sample set to exploit the vulnerability;

the attack is low cost to deploy, and the high attack success rate of TnTs found in a small

sample set generalise well to unseen data outside of the attacker’s test set.

6.5.2 Robustness to Changes in Patch Locations

Initially, we choose the trigger at the lower-right corner, however, as shown in other

attacks with noisy patches, the location of the patch can dramatically reduce the attack

success rate (Karmon, Zoran and Goldberg, 2018). Based on this, we evaluate the

robustness of TnTs to changes in its location. Given that a TnT is a naturalistic patch,

in contrast to noisy pixels, shifting our patch to different locations increases the attack

success rate as the trigger can now occlude potentially salient features of the benign

inputs. Table 6.7 illustrates the effect of changing the location of the selected trigger

on an input. By shifting the TnT to nine different locations (8 along borders and 1 at

the center) on the attacker test set (ImageNet-100), the ASR increases from 92% (the

lower-right corner position that we chose) to 96% (at the upper-right corner), and

significantly increased to 99% (at the upper-left of images) since the patch possibly

occluded the main feature of most original inputs.

Interestingly, these ASRs still hold strongly when we assess generalisability by using TnTs

discovered TnT from the small test set—ImageNet-100—to larger test sets of 1000 samples

and 50K samples as detailed in Table 6.7. This shows that our described ASR in the

following sections (where we fix the patches at the lower-right corner on 100 random

images) might not be the optimal ASR.

In addition, the consistently high ASR demonstrates our TnTs are not the result of

occluding salient features of images; otherwise, we will see a variation of ASRs (high

when occluding and low otherwise). Furthermore, this is the stronger and more
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Table 6.7: Altering the location of a TnT increases ASR as it covers the main features of

inputs. Notably, the TnT here realised from a small sample of 100 images (ImageNet-100),

generalises extremely well to larger populations to fool any inputs to the targeted class conch.

An illustration of TnT locations are shown in Fig. 6.3 and results are from the WideResNet50

pre-trained model from Pytorch (Paszke et al., 2019)

.

Trigger Location ImageNet-100 ASR ImageNet-1000 ASR ImageNet-50K ASR

lower right 92% 94.6% 95.13%

upper right 96% 96.6% 96.52%

upper left 99% 96.1% 95.61%

lower left 95% 94.9% 93.9%

center 92% 93.5% 94.56%

top 97% 96.5% 95.24%

bottom 96% 92.1% 93.31%

left 96% 93.0% 91.76%

right 97% 94.4% 93.56%

difficult attack, a targeted attack; hence, occluding the main feature will not help fool

the classifier to predict the targeted label. More importantly, we also demonstrate the

location invariance of TnTs in physical world deployments in real-time video demonstrations

(see Section 6.8).

TnTs are robust to changes in location.

Effectiveness of Patch Locations. From Table 6.7, we can see that with 8 locations

around the border of the input images (exluding the center location), TnTs achieved

the maximum ASR of 96.52% (at upper-right corner) and the minimum ASR of 91.76%

(at left corner). Throughout all of 8 border locations, TnTs achieved a high mean of

94.4% with a low variation of only 1.53% showing the effectiveness of our TnTs even

at border locations.

6.5.3 Blackbox Attack–Transferability of TnTs

The attacks we have investigated thus far are under the white-box attack model; the

attacker needs to have full knowledge of the target model under attack. With the
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Figure 6.3: An illustration of trigger locations around the border.

high generalisation of the TnTs shown in prior experiments, in this section, we aim to

evaluate if TnTs discovered on a task can be transferred to another network to mount

an attack in a black-box setting.

A black-box attacker only needs to access a Source model to mount a white-box attack

to extract TnTs. Then, the attacker can apply the discovered TnTs blindly to any

other network that implements the same task and dataset. In this setting, we employ

the Visual Recognition task on ImageNet implemented on a Source to attack a Target

network. Notably, there are no qualitative results for black-box attacks in (Karmon,

Zoran and Goldberg, 2018; Brown et al., 2017) and the transferability for a targeted

attack has been shown to be challenging in (Baluja and Fischer, 2018), following

the setting in (Moosavi-Dezfooli et al., 2017), we evaluate the transferability of our

TnTs in an untargeted attack setting. The detailed results of the black-box attack are

shown in Table 6.8. The TnT realised in one model is highly transferable to another

network. We hypothesise the transferability success of TnTs is because TnTs are able

to exploit the limitations of the dataset itself instead of the vulnerability of each DNN.

This is significant because, now, any network learning from the target dataset will be
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Table 6.8: Black-box attack, the transferability of TnT from a model to other models on

ImageNet dataset in an untargeted setting. ASRs are observed on 100 random images (network

performance on the task is given in parenthesis).

Target

Example WideResNet50 Inception V3 ResNet18 SqueezeNet 1.0 VGG 16 MnasNet

WideResNet50 (Acc: 78.51%) 97% 77% 67% 77% 78% 63%

Inception V3 (Acc: 77.45%) 46% 91% 51% 80% 66% 57%

ResNet18 (Acc: 69.76%) 45% 47% 80% 64% 59% 54%

SqueezeNet 1.0 (Acc: 58.1%) 36% 42% 51% 99% 47% 48%

VGG 16 (Acc: 71.59%) 38% 49% 49% 70% 91% 49%

MnasNet (Acc: 73.51%) 47% 63% 59% 74% 56% 87%

vulnerable to attacks from TnTs discovered from a different model. In general, we

observe that TnT realised on a network less accurate for the task such as SqueezeNet

(even with the source ASR of 99%) does not generalise well to other networks such

as WideResNet50 (with only 36% ASR). In contrast, TnTs realised from networks more

accurate for the task such as WideResNet50 (ASR of 97%) is highly generalisable and

achieves high ASRs on other networks with ASRs of more than 60%. These results

provide some evidence to validate our hypothesis. A more accurate network probably

learns better representations from the dataset, and this subsequently helps deriving

TnTs more effective against other models trained from the same dataset to successfully

transfer across, and bypass them.

Notably, to the best of our knowledge, we are the first to report qualitatively the

untargeted black-box attack success rates where the patches—TnT in our attack—do

not occlude the main salient features of the images (Table 6.8).

We demonstrate multiple successful black-box attacks and confirm the TnTs discovered on a

task in one network can be transferred to another network.

6.5.4 Attack Effectiveness and Generalisation to Other Tasks

We further investigate the effectiveness of our TnTs on the following three contrasting

tasks.
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Table 6.9: Illustrative examples of TnTs found in different visual classification tasks and their

corresponding ASRs

Dataset ASR Examples Target

CIFAR-10 90.12% car

GTSRB 95.75% untargeted

PubFig 95.14% untargeted

Scene classification (CIFAR-10). The objective of the task is to generate the TnT flower

that can fool the classifier to misdetect any scene with the TnT flower to be recognised

as the target class, here we choose the random label (car) as the target class. The result

shows that the generated TnT can missclassify any input to the targeted label with high

a ASR up to 90.12% for the targeted attack.

Traffic sign recognition (GTSRB). This is a challenging task since the training dataset

includes various physical and environmental variations including different distances, lighting

or occluding conditions. Nevertheless, the discovered TnTs still achieve significantly

ASRs of up to 95.75% in an untargeted setting, a significant increase in the ASR

compared to 20.73% caused by the occlusion of same-size random color patches in

Table 6.10. A sample of TnTs realised and the corresponding ASRs are displayed in

Table 6.9.

Face recognition (PubFig). In this task, most of the salient features learnt by a network

are on a face and a network learns to ignore background information. To fool the

network to recognise as a specific target without occluding the main features of the face is

both an interesting and challenging task. Some of the results for untargeted attacks are

shown in Table 6.9. For targeted attacks to a designated target such as Barack Obama,

we implement TnTs covering 20% of the images at the lower-right corner (similar

coverage to that used in our ablation studies in Section 6.5.5). We successfully fool the

network with an ASR of up to 97.28% to misclassify anyone with the TnT to a prominent

targeted person (e.g. Barack Obama in our evaluation). Illustrations of successful TnTs

are shown in Figure 6.4.
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The vulnerability to TnT is generic and exists across multiple tasks.

85.95% 86.49% 87.17% 94.07% 97.28%

Figure 6.4: TnTs realised in PubFig dataset and their corresponding ASRs for the Face

Recognition task to impersonate anyone to the targeted person Barack Obama.

6.5.5 Can Occlusion or Network Bias Explain Attack Success?

In this section, we will examine the misclassification of the DNN system by using a

random patch (random flowers or colors) to study the occlusion effect that a patch

might have on the ASR of the visual task. In addition, we also utilise random flower

patches to investigate if the behavior we observe can be explained by a bias in the

network to flower images and to ascertain the possibility of randomly discovering a

natural-looking flower that can fool the classifiers with a high ASR.

Figure 6.5: Selective examples of random color and flower patches in our study on PubFig and

ImageNet. The misclassification results caused by these patches are described in Table 6.10.

Patch Size. To examine the potential effects, all of the color and flower patches we selected will

occlude the largest possible region we intentionally selected for our attack method (around 20%

of the images).

Random Colour Patches. We use 256 random color patches and digitally stamp the

patch on the input (with the method described in the Equation 6.1) as a trigger at the

lower-right corner of the image with the purpose of not occluding the main object of

the image but assess the misclassification caused by the color patch.
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Table 6.10: Study results from affixing patches of either random colors or flowers to the test

samples of each dataset. As observed, the success rate for an attacker employing such simple

tricks is fairly low.

Normal mis-

classification

Random color

patches

Random flower

patches

CIFAR-10 9.46% 25.99% ± 0.432% 21.66% ± 0.553%

GTSRB 3.23% 20.73% ± 0.564% 18.71% ± 0.665%

PubFig 5.26% 12.87% ± 0.476% 6.02% ± 0.031%

ImageNet-100 22% 22.72% ± 0.109% 24.62% ± 0.305%

ImageNet-1000 21.1% 24.85% ± 0.15% 30.49% ± 0.378%

Random Flowers Patches. We follow the approach with color patches but use

randomly selected flowers drawn from our flower data set used for training the

Generator. Particularly, we use 256 randomly chosen flowers and measure the attack

success rate that a flower patch can cause on the classifier.

Results. In Table 6.10, we reported the mean and standard deviation of the attack

success rate for the patches for different tasks. Overall, the ASR achieved is

significantly lower than the attack success rates demonstrated with TnTs (see Tables 6.6

and 6.9). Importantly, we observe a low standard deviation across all tasks; indicating

that there is no special color or flower patch that can achieve a significantly high ASR

compared to others. However, these results are far from a desirably high ASR to

become a real threat, however, our investigation demonstrates that it is challenging

to exploit a natural-looking patch while fooling the network with high ASRs. Notably,

this low ASR is for an easy untargeted misclassification; hence, the ASR for the targeted

attack is even much lower.

We demonstrate that exploiting a natural-looking patch to fool a network is a challenging

task and the phenomenon we observed cannot be explained by occlusion or a network biased

by flowers or colors; consequently, our attack method is an effective approach to realise such

TnTs.
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Table 6.11: User studies to evaluate the Naturalistic Score of TnTs in comparison to other

baseline patches. The Naturalistic Score is the percentage of participants’ votes. Complete

details of patches used in the user studies are in shown in Figure 6.6.

Study 1 (250 participants) Study 2 (250 participants)

LaVAN AdvPatch Ours
Google

Images
Ours

Illustrative

examples

Naturalistic

Scores (%)
0.4 12.0 90.0 97.2 89.6

6.6 Evaluation of TnT Naturalism

In this section, we investigate the naturalism of the generated TnTs. We acknowledge

that measuring naturalism is a challenging task, and there is no solid metric and

definition fit for the purpose. However, following the studies in (Zhang, Isola and

Efros, 2016; Xiao et al., 2018b; Bhattad et al., 2020; Hu et al., 2021), we consider

measuring human perception of naturalism through user studies7. We adopt the

Naturalistic Score measure and the procedure in (Hu et al., 2021) to evaluate human

perception of naturalism through two user studies (Study 1 and Study 2). For a robust

evaluation, compared to previous studies (Hu et al., 2021) employing 10s of users, we

conducted a large cohort user study with 250 participants for each study.

(a) Study 1 (b) Study 2

Figure 6.6: An instance of the random ordering of patch images used in the two user studies,

250 participants participated in each study.

In user Study 1, we used a set of 9 patch images; i) 3 patches generated by

LaVAN (Karmon, Zoran and Goldberg, 2018); ii) 3 generated by AdvPatch (Brown

et al., 2017); and iii) 3 TnTs. All the patches are placed in random order and shown to

participants. The participants were asked to vote on each patch that looks natural to

7We followed Human Research Ethics Committee approval process, the study is considered

‘negligible risk’ and is exempt from ethical review.
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them. Then, we calculate the naturalistic score of each patch based on the percentage of

participants’ votes. The aim of Study 1 is to measure the naturalism of TnTs compared

to patches in previous attacks. The results in Table 6.11 demonstrate our TnTs to have

significantly higher naturalistic scores compared with the baselines.

In the second user study (Study 2), we randomly placed 3 of our generated TnTs

together with 3 real flower images collected from Google Images (Google, 2020

(accessed July 3, 2020) and asked participants to vote for the images that looks

natural to them. The aim of this study is to measure the absolute naturalistic

score of TnTs when compared with actual flower images. The results in Study 2 in

Table 6.11 demonstrate that our TnTs, synthetic images, can often be comparable to

real flower images. These results demonstrate our TnTs are more naturalistic and look

significantly less malicious compared with prior works.

6.7 Generalisation to Adversarial Patch Attacks and

Comparison with Prior Attacks

To expand the scope of the attack for cases where there is no human involvement

in the decision loop—for fully autonomous systems—and where stealth in a physical

deployment is not an objective, we consider removing the naturalism constraint on the

attack method. Therefore, we take a further step to let the TnT Generator Gθ learn the

adversarial features from the classifier; thus, demonstrating the generic nature of our

attack method—i.e. once we remove the naturalism constraint, our attack can generate

conventional adversarial patches.

Attack Methodology. The proposed attack is detailed in Algorithm 6.2. We call this

alternation an Adversarial Patch Generator since the Generator, after updating, learns

the mapping from the latent vector z to generate adversarial patches. More specifically,

instead of searching in the latent space to find the TnT as illustrated in Fig. 6.2, now, we

allow the Generator Gθ to be updated and learnt from the gradient back-propagation

from the loss ℓ(x′, ytarget, ysource) to become the Adversarial Patch Generator (Gθ′).

This allows the Generator to learn the adversarial features and generate multiple

adversarial triggers with different mappings from z.
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Algorithm 6.2 Adversarial Patch Generator Process

1: Inputs: a batch of images {x(i)}m
i=1 with batch size m, source label {y(i)

source}m
i=1,

target label {y(i)
target}m

i=1, model pM, latent vector z, the hyper-parameter λ to

balance the loss, natural generator Gθ, and the thresholds to detect TnT τbatch, τval

for batch and validation set respectively.

2: Initialization:

3: while ASR < τval do

4: Sample a batch of images {x(i)}m
i=1

5: Sample a latent variable z ∼ p(z)

6: δ = Gθ(z) ▷ a flower patch

7: Generate the mask m based on δ

8: δ′ ← bgremoval(δ, m) ▷ Background removal

9: for i = 1, ..., m do

10: x′(i) = (1−m)⊙ x(i) + m⊙ δ′

11: y(i)
argmax = arg maxy pM(y|x′(i))

12: if y(i)
argmax = y(i)

target then

13: f ool = f ool + 1

14: L = ℓ({x′(i)}m
i=1, {y(i)

target}m
i=1)− λ ℓ({x′(i)}m

i=1, {y(i)
source}m

i=1)

15: θ← Adam(∇θL, θ, α, β1, β2)

16: if f ool > τbatch then

17: Sample a latent variable z ∼ p(z)

18: δ = Gθ(z)

19: Test this δ for the whole validation set Xval to get ASR

20: if ASR ≥ τval then Complete update Generator, save the latest state as

Adversarial Patch Generator Gθ′

6.7.1 Comparing to LaVAN: Smallest (Noisy) Adversarial Patch

To show the effectiveness of our patch attack, we opted to compare with LaVAN since

the study achieved the smallest state-of-the-art patch results. We evaluate our patches

with the same 14 targeted labels reported in LaVAN (Karmon, Zoran and Goldberg,

2018) on 100 random images. As expected, the patches of only 2% of the input image

size from our Adversarial Patch Generator easily achieve 100% ASR on 100 randomly

sampled images from ImageNet. The results in Table 6.12 demonstrate that our patches
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Table 6.12: Comparing ASR with LaVAN (Karmon, Zoran and Goldberg, 2018)—smallest

state-of-the-art (noisy) adversarial patches of 2% of input image size—using the 14 targeted

labels used in LaVAN on the Inception-V3 network. Our patches achieve higher ASR in both

settings; high and low confidence scores. Detailed examples of labels are shown in Figure 6.7.

LaVAN Ours

Average results across the 14 targeted labels from 100 ImageNet images

ASR (conf ≥ 0.9) 28.3% 72.9%

ASR (conf < 0.9) 74.1% 98.1%

achieve a much higher ASR across the 14 targeted label on both settings of low and

high confidence scores with a large margin of up to 44%.
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Figure 6.7: Generated patches from our Adversarial Patch Generator for the 14 different

targeted labels in LaVAN. The 1st row: Our adversarial patches in the scene. The 2nd row: Our

adversarial patches were rescaled to image size for display purposes. The 3rd row: adversarial

patches from LaVAN for the same targeted label.
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Figure 6.8: Investigating Attack Success Rate (ASR) and patch size. Our TnT is comparable

with the Noisy AdvPatch (Brown et al., 2017), and significantly better than the Disguise

AdvPatch (Brown et al., 2017). Our Adversarial Patch ASR outperforms both Noisy and Disguise

counterparts.

6.7.2 Comparing to AdvPatch: A Method to Disguise the

Appearance of a Target Class in a Patch

Here, we compare with Disguise AdvPatch and Noisy AdvPatch from (Brown et al.,

2017) on the same VGG-16 network trained for the ImageNet task. We selected

this study because: i) Disguise AdvPatch represents the efforts from (Brown et al.,

2017) to hide the target class visible in the patch by disguising the noise patterns in

another object while the Noisy AdvPatch is a noise-pattern patch visibly revealing

the target class—toaster; ii) the method allows the generation of patches of different

sizes. As shown in the Figure 6.8: i) efficacy of our TnT—the naturalistic patch—is

comparable with the Noisy AdvPatch; and ii) significantly more effective than the

Disguise AdvPatch aiming to hide the true target class revealed to a human observer

in the Noisy AdvPatch.

Notably, our naturalistic TnT patch is highly effective when the patch size is larger

than 10% of the input image. To maintain the high ASR with smaller patches, we need

to sacrifice some of the naturalism (Algorithm 6.2). Then, we can observe nearly 100%

ASR in Figure 6.8 with a patch size of nearly 5% of the input image; now, the ASR is

significantly higher than the noisy counterpart, Noisy AdvPatch.

An attacker can trade-off naturalism to achieve significantly higher attack success rates

compared with state-of-the-art adversarial patch attacks. Our results validates the generality

of our attack method.
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6.8 Physical World Deployments

An advantage of a TnT is the ability for an adversary to easily print and deploy the

attack in a scene in the physical world to fool a deep perception system. In this

experiment, we print our TnTs and deploy targeted physical attacks for the ImageNet

and PubFig tasks.

Attack Settings. Following the practices in the physical adversarial attack work

in (Kurakin, Goodfellow and Bengio, 2017), we saved our triggers (TnTs) and patches

(from the Adversarial Patch Generator) as .PNG files and printed the triggers and

patches using a printer with a resolution of 300 dpi to maintain the pixel quality.

Examples of the triggers and patches are shown in Figure 6.9 and 6.10. We

validate the effectiveness of the attack in various physical world settings with

complex backgrounds, as displayed in Figure. 6.9, by using a commercial camera of

a smartphone to capture the scene—we used an iPhone 6S. We produced videos from

our experiments to illustrate the effectiveness of the TnTs and patches in the physical

world (https://TnTattacks.github.io/). In the videos, we also experiment with the

robustness of our physical TnT in different locations, scaling, lighting conditions, camera

angles and positions, and so on.

Results. Our results demonstrate that TnTs are robust to harsh physical-world

conditions with more than 90% of the images in frames successfully fooling the network and

being recognised as the targeted class. More detailed experiments of physical attacks are

in videos accessed through the website.

We hypothesise the robustness of our TnT in the physical context is due to the fact

that the patches are derived from a natural image distribution and are universal

or input-agnostic. This allows the patch to potentially become invariant to various

difficult conditions and suitable for deployment in physical world scenarios. Notably,

Barack Obama (91.2%)John Barack Obama (92.4%) Barack Obama (94.7%) Barack Obama (95.4%) Barack Obama (95.8%) Barack Obama (96.7%) Barack Obama (97.8%)

Figure 6.9: Various settings employed for the physical world attacks to impersonate

‘Barack Obama’. Results demonstrate our TnT is effective, even under different, complex,

physical-world settings ranging from indoor to outdoor with different lighting conditions. The

network recognises the person with the TnT to be Barack Obama with high confidence.
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we only apply the simplest method of physical deployment—printing without any

modification to offset the printer quality and loss of pixels as in (Sharif et al., 2016);

hence, the ASR and naturalism can potentially be improved by applying more robust

adversarial printing techniques (Sharif et al., 2016).

TnTs survive the harsh conditions in the physical world to pose a practical and realistic threat.

6.9 Attack Effectiveness Against Patch Defences

The rise in adversarial patch attacks has led to the emergence of defences— both

empirical and provable methods (Xiang et al., 2021; Naseer, Khan and Porikli, 2019;

Hayes, 2018; Chou, Tramèr and Pellegrino, 2020; Chiang et al., 2020; Levine and Feizi,

2020; Cohen, Rosenfeld and Kolter, 2019; Mirman, Gehr and Vechev, 2018; Wu, Tong

and Vorobeychik, 2020; Rao, Stutz and Schiele, 2020). In this section, we evaluate the

effectiveness of our TnTs against both certified and empirical defences against patch

attacks.

6.9.1 Agasint Probably Robust Networks

A provable defence is the strongest defence and could potentially block and eliminate

the adversarial patches completely. In this section, we evaluate the robustness of

our attack against the multiple state-of-the-art (SOTA) provable defences including

BagNet (Brendel and Bethge, 2019), Derandomized Smoothing (Levine and Feizi,

2020), and recently the improved versions of those defences named PatchGuard (Xiang

et al., 2021) demonstrating superior performance compared with other provable

methods (Chiang et al., 2020; Levine and Feizi, 2020; Cohen, Rosenfeld and Kolter,

2019; Mirman, Gehr and Vechev, 2018). Notably, the PatchGuard method relies on

cock (96.5%) pomegranate (83.4%) vase (91.6%)co�ee mug cellphone

Figure 6.10: Physical deployment of TnTs generated from the TnT Generator targeting different

classes (shown on top in red) in the ImageNet task.
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the small receptive fields and robust masking to eliminate the adversarial effects of

malicious patches and generate provable robustness for the defended system.

Experiment Setup. In this experiment, we use the same networks and configurations

as in (Xiang et al., 2021) of BagNet (Brendel and Bethge, 2019) with receptive fields of

17× 17 and de-randomized smoothed ResNet (DS) (Levine and Feizi, 2020) evaluated

on ImageNet. Then, we also apply Robust Masking defence in (Xiang et al., 2021) to

generate Mask-BN and Mask-DS provable robust networks, respectively. The provable

Robustness results in Table 6.13 is evaluated on the entire validation set (50,000 images)

of ImageNet using a mask size of 10% of the input image size.

Metrics. We use two metrics in this experiment: i) Clean Acc—the Accuracy obtained

on benign inputs from the test set; and ii) Provable Robustness—the percentage of the

images in the clean test set that are able to certified (i.e. no attack is expected to

succeed). We report the results in Table 6.13.

In summary, after acknowledging the threat from TnTs—building the defence methods

for TnT attacks—the defences achieved very low provable robustness, only up to

3.52% of inputs from 50,000 validation images can be certified in the best case (see

Table 6.13). The reason is because, certifying against a larger patch, such our TnTs or

AdvPatch (Brown et al., 2017), requires certifying that a correct prediction can be made

for a specific input, potentially tainted by a larger adversarial patch, in the presence of

the defence method. In PatchGuard (Brown et al., 2017), this requires operating under

larger masked regions in the feature space. Consequently, the provable defence must

make predictions from the aggregation of the remaining features (not masked); leading

to lower performance as well as certified robustness. Hence, provable defences can

only certify a smaller numbers of test inputs, i.e. achieve lower provable robustness,

for larger adversarial patches. Therefore, an adversary can circumvent these defences

with a larger patch, such as our TnTs or even AdvPatch in (Brown et al., 2017).

Consequently, we observe TnTs attacks to still pose a realistic threat, even against the

strongest defences.

6.9.2 Against Empirically Robust Networks

In this section, we evaluate our TnTs against empirically robust networks. As shown

in (Zhang et al., 2020b; Carlini and Wagner, 2017a; Tramer et al., 2020), empirical

defences such as (Chou, Tramèr and Pellegrino, 2020; Naseer, Khan and Porikli, 2019;
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Hayes, 2018) are usually vulnerable to adaptive attackers once they are aware of the

working mechanisms of the defences. Notably, recently, Wu, Tong and Vorobeychik

(2020) highlighted that the conventional methods to improve the robustness against

adversarial examples such as adversarial training and randomized smoothing showed

limited effectiveness against physically realisable adversarial attacks, and proposed an

approach named Defence against Occlusion Attacks (DOA) to defend against these

physically realisable adversarial patch attacks. This approach is also developed in

(Rao, Stutz and Schiele, 2020) but the authors jointly optimize patch values and

location. These two state-of-the-art empirical defences (Wu, Tong and Vorobeychik,

2020; Rao, Stutz and Schiele, 2020) are the most relevant defence method against our

attacks. Hence, we employ these defences in this section and assess the effectiveness

of our TnTs against these robust defences.

Experiment Setup. We use the pre-trained robust Resnet110 networks provided by

Wu, Tong and Vorobeychik (2020) on Github8 for the CIFAR-10 dataset. This network

was trained on a patch size of 11 × 11. Notably, as reported in the paper, even a

network trained with a smaller patch size can defend against a patch size as large

as 20% of the images (i.e. cover all of our attacks). For (Rao, Stutz and Schiele,

2020), we train the given robust ResNet-20 model from scratch following the default

parameters of the strongest proposed defence (AT-FullLO) 9 on CIFAR-10 dataset. To

make a fair comparison with (Wu, Tong and Vorobeychik, 2020), we also train with the

same mask size of 11× 11. To assess the effectiveness of our attack against these robust

networks, we deploy our TnTs to achieve the challenging task of fooling the network

to misclassify any images to the targeted label (car). First, we evaluate the robustness

of the network against our TnTs for the same patch size used in training (11 × 11).

However, to stretch out the robustness of the defended network, we also evaluate the

network against a larger patch size of TnT around 20% since it was reported to be

effective for sizes as large as 20% of the input (Wu, Tong and Vorobeychik, 2020). In

addition, we employed the adversarial patches in (Wu, Tong and Vorobeychik, 2020;

Rao, Stutz and Schiele, 2020) to compare with our TnT attacks as shown in Table 6.13.

Metrics. Similar to the Section 6.9.1, we report the Clean Acc—the Accuracy on benign

inputs, and Empirical Robustness—the percentage of input images with patches that are

correctly classified or the performance of the network under an attack.

8https://github.com/tongwu2020/phattacks
9https://github.com/sukrutrao/Adversarial-Patch-Training
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Table 6.13: Effectiveness of TnT attacks against robust defence methods (↑ Robustness is better

for defences).

Networks Clean Acc Provable Robustness1

BagNet (Brendel and Bethge, 2019) 49.56% 0%

Mask-BagNet (Xiang et al., 2021) 49.65% 0.85%

DS (Levine and Feizi, 2020) 44.36% 3.52%

Mask-DS (Xiang et al., 2021) 39.77% 3.01%

Empirical Robustness

Adversarial Patch2 TnT

DOA (Wu, Tong and Vorobeychik, 2020) 86.5% 80.43% 13.78%

AT-FullLO (Rao, Stutz and Schiele, 2020) 90.44% 72.2% 11.02%

1Provable Robustness is attack-agnostic.

2Patches employed are from the studies in (Wu, Tong and Vorobeychik, 2020; Rao, Stutz and Schiele, 2020) and provide a

baseline for comparisons with TnTs.

In Table 6.13, we summarise the results for current state-of-the-art empirical defences

against physically realisable patch attacks. We report on DOA in (Wu, Tong and

Vorobeychik, 2020), and the defence focusing on location optimization adversarial

patches (Rao, Stutz and Schiele, 2020). For the defended DOA network (Wu, Tong and

Vorobeychik, 2020), when attacking the network with TnTs of the same patch size used

in training (11× 11), the robustness dropped from 80.43% to 13.78%. For the strongest

defence, AT-FullLO network in (Rao, Stutz and Schiele, 2020), the robustness dropped

from 72.2% to 11.02% under our TnT attack. In addition, because DOA was reported

to be effective for sizes as large as 20% of the input (Wu, Tong and Vorobeychik, 2020),

we increased the patch size of our TnTs to 20%. Although not reported in the table, the

robustness of the network reduced significantly to 5.6%. These results demonstrate:

i) the effectiveness of TnTs, even against state-of-the-art patch defences; and ii) that

TnT attacks are an emerging new threat against DNNs.

6.10 Related Work

We describe prior work that focuses on universal perturbations and adversarial patch

attacks and other physically deployed adversarial attacks; further, we also compare our

attack method with other GAN-based adversarial attack methods.

UAP and Adversarial Patch Attacks. Moosavi-Dezfooli et al. (2017) showed

the existence of a universal adversarial perturbation (UAP) in DNNs for image
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classification tasks, which is a unique noise tensor that when added to any input fools

the classifier to mount an untargeted attack. The authors have also shown that

there are multiple UAPs in a DNN, which can be transferable to another network

architecture of for the same task. In order to deploy a universal adversarial attack in

a real-world setting, Brown et al. (2017) developed a spatially bounded Adversarial

Patch (AdvPatch) to place in the scenes of ImageNet samples to fool the classifier to

recognise objects as the toaster target class regardless of source inputs or locations.

Karmon et al. extend this attack further to search for localized (or bounded) and visible

adversarial noise in LaVAN (Karmon, Zoran and Goldberg, 2018) but the aim is to look

for blind spots in a Deep Neural Network instead of physically realisable patches.

Other Physically Deployed Adversarial Attacks. Kurakin, Goodfellow and Bengio

(2017) demonstrated that input-specific adversarial examples can also be deployed

in the physical world in an untargeted attack if printed out and carefully cropped.

Recently, Eykholt et al. (2018) showed that specially crafted perturbations constrained

to sticker shapes can fool a Traffic Sign recognition task once stuck to a Stop sign;

while Athalye et al. (2018) carefully crafted adversarial perturbations constrained to

3D objects to fool a DNN in the physical world. Different from ours, these adversarial

examples are designed to work on a specific input (a specific Stop sign or 3D object),

while our method is highly generalisable and the TnT can be printed out and attached

to any input to work in the physical world (see Section 6.8). Concurrent studies Hu

et al. (2021); Tan et al. (2021) have also attempted to realise naturalistic adversarial

patch attacks, but against object detectors with the adversarial objective of causing a

misdetection of human objects in a scene. To the best of our knowledge, our study remains

the first to investigate universal, naturalistic, adversarial patches across a variety of

classification tasks to misclassify any input to the attacker-desired target label. Further,

TnTs are shown to be transferable and generalisable to tasks, models, and adversarial patch

attacks.

GAN-based Adversarial Example Attacks. Researchers have investigated GAN-based

structures to generate adversarial examples, such as (Baluja and Fischer, 2018; Xiao

et al., 2018a; Jandial et al., 2019; Zhao, Dua and Singh, 2018; Carlini and Farid, 2020).

Particularly, the authors in (Zhao, Dua and Singh, 2018) train a GAN and an additional

Inverter network to generate full-size, fake images that are able to flip the predicted

label or mount an untargeted attack. Notably, these studies resemble the investigation

of an adversarial example objective—input-dependent or noisy perturbation-based
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distortions added to an input covering the whole image to mount an untargeted attack.

Different from this line of work, we rely on a pre-trained generator, and search the

latent space z to discover a type of spatially bounded adversarial example; a patch that

is physically realisable and universal (input-agnostic). These attributes eases the process of

deployment in the physical world to mount targeted attacks.

GAN-based Adversarial Patch Attacks. Sharif et al. (2019) apply a GAN-based

method to generate spatially bounded physical adversarial sunglasses to impersonate

a targeted person in a face recognition task (PubFig). The GAN-based method

employs iterative training with feedback from the classifier under attack, which results

in generating noisy perturbations constrained to the sunglasses mask. Notably, the

sunglasses can be expected to occlude the main features of a face. In contrast, we

do not alter the Generator for the TnT attacks (see Alg. 6.1) and are able to generate

naturalistic patches by traversing through the latent space of the generator. Notably,

the resulting patches can be successfully placed away from salient features of the input

image.

PS-GAN (Liu et al., 2019a) proposes to utilise a GAN-based structure to find patches

with naturalism. The major differences with our work are: i) the attack is untargeted

compared to both targeted and untargeted attacks capable with ours; ii) PS-GAN

is input-dependent hence, an attacker needs to mount the attack in different ways

for different inputs, which is harder to deploy in real-world scenarios; we address

this problem using a universal or input-agnostic patch where any input will be

misclassified when a TnT is applied; iii) PS-GAN patch is placed in the main context

of the image, which can occlude main features; iv) method applies image-to-image

translation using an encoder-decoder generator to translate an existing natural patch

to an adversarial counterpart while ours learns the natural image distribution and

approach a naturalistic adversarial patch. Similar to universal adversarial patches

LaVAN (Karmon, Zoran and Goldberg, 2018) and AdvPatch (Brown et al., 2017)), we

seek to be location invariant and attack method can lead to less malicious-looking and

more powerful (higher ASR) attacks.

6.11 Discussion and Conclusion

Are TnTs a formidable threat? We have validated through extensive experiments that

natural-looking patches can successfully be used to fool Deep Neural Networks with
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high attack success rates. We have shown that TnTs are effective against multiple

state-of-the-art classifiers ranging from widely used WideResNet50 in the Large-Scale

Visual Recognition task of ImageNet dataset to VGG-face models in the face recognition

task of PubFig dataset in both targeted and untargeted attacks. TnTs can possess: i) the

naturalism achievable with with triggers used in Trojan attack methods; and ii) the

generalisation and transferability of adversarial examples to other networks. This raises

safety and security concerns regarding already deployed DNNs as well as future DNN

deployments where attackers can use inconspicuous natural-looking object patches

to misguide neural network systems without tampering with the model and risking

discovery.

Are we limited to using flower triggers? In order to generate TnTs in our chapter,

we need at least one distribution of natural objects. In our experiments, we utilised

flowers as explained. However, natural objects are not limited to flowers and can be

any object selected by an attacker. Importantly, it is both easy and low cost to obtain

unlabelled datasets to generate TnTs as illustrated in our study (we used open-source,

freely downloadable flowers to generate the flower dataset).

Are TnTs a threat for object detectors? Researchers (Lu et al., 2017) argue that

attacking a classifier is different from attacking a detector, and some applications

require an object detector, such as a road sign detector. The TnTs presented in this

chapter focus on attacking classifiers; however, an extension to utilise the method with

the objective of attacking object detectors is an interesting research direction. We will

leave this as an interesting direction for future work.

What are potential avenues for mitigating the threat? We believe our work opens a

new venue for further research into understanding the vulnerabilities of DNN systems.

We believe our attack can be used for the “good” by providing a method for not only

discovering vulnerabilities of DNN models but to generate sample inputs to improve

the robustness and trustworthiness of DNN models.

The next chapter will briefly review the challenges explored in this dissertation to build

robust deep neural networks and share the conclusions made upon the investigations.

Moreover, the next chapter will outline worthwhile potential future research directions

emerged from this dissertation.

Page 147



Page 148



Chapter 7

Conclusion

T
HIS chapter concludes the dissertation and suggests directions for

future work.
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7.1 Summary

This dissertation has presented novel approaches to developing robust deep neural

networks by focusing on distinguishing and addressing two main threats; test-time

Adversarial Examples and training-time Trojan attacks. To achieve robustness against

Adversarial Examples, our formulation builds on Bayesian adversarial learning to

address all of the identified challenges and build a robust Bayesian neural network

in Computer Vision and malware domains. Our proposed approaches not only

achieve state-of-the-art robustness in Bayesian adversarial learning in these domains,

especially against strong unseen adversarial threats, but also provably bounds the

difference between adversarial risk and conventional empirical risk. Meanwhile, to

achieve robustness against Trojan attacks, we realise a novel unsupervised framework

to sanitise Trojan attacks at run-time, achieve state-of-the-art performance, and

establish a baseline for Trojan robustness at run-time. Additionally, by bridging the

divide between Adversarial Patches and Trojan attacks in the input space, we expose

the emerging threat of Universal Naturalistic Adversarial Patches (TnTs) capable of

attacking a network at test time while exerting a high level of control that is similar

to Trojan triggers without interfering with the training process. Our TnT approach is

highly generalisable and can be effectively deployed in real-world scenarios. These

investigations have been presented sequentially in Chapters 3, 4, 5 and 6.

In Chapter 3, to address the problem of Adversarial Examples, we prove that the

projection of perturbed, yet valid, malware from the problem space into feature space

will constitute a subset of feature-space adversarial attacks. Hence, a robust network

against feature-space attacks is inherently robust against problem-space attacks. This

is important because it alleviates the challenging problem of inverse feature mapping,

which hinders the adoption of ML-based methods in the malware domain. The

experimental results show that the BNN-based malware detectors that we built achieve

state-of-the-art performance compared to existing ML-based methods, and the first

Bayesian adversarial learning that we propose significantly improves the robustness

of the malware classifier against strong unseen adversarial attacks.

Chapter 4 presents a Bayesian adversarial learning method that is robust against

Adversarial Examples in the vision domain. The formulation is built on the Conjecture

that a robust neural network quantifies the information gain from a benign observation

in a manner equivalent to its adversarial counterpart. We prove that building a

robust Bayesian neural network with this Conjecture of Information Gain further
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tightens the bound of the difference between adversarial risk and conventional

empirical risk, which Chapter 3 introduces. Our proposed approach represents a step

towards a foundation for a principled method of adversarially training BNNs and achieves

state-of-the-art robustness in the context of Bayesian adversarial learning methods.

In Chapter 5, we present the first input sanitisation method to purify the Trojan

in the input space when it appears at test time via unsupervised learning of a

Generative Adversarial Network. The proposed method has turned the strength of

the input-agnostic Trojan attacks into a weakness. The method can be deployed at

model deployment to effectively defeat Trojan attacks at run time, where denial of a

service is not an option, as in the case of self-driving cars. The proposed method shows

robustness against multiple advanced backdoor scenarios and is also effective against

adaptive attacks targeting the defence method.

In Chapter 6, we bridge the divide between Adversarial Examples and Trojan

attacks in the input space, where, for the first time, we propose a TnT that allows

attackers to exert a greater level of control, including the ability to choose a location

independent, natural-looking patch as a trigger in contrast to being constrained

to noisy perturbations. Thus far, this ability has only been proven possible with

Trojan attack methods that need to interfere with model building processes to embed

the backdoor at the risk of discovery. However, our TnT can still realise a patch

deployable in the physical world. Extensive empirical experiments on large-scale visual

classification tasks ImageNet with evaluations across the entire validation set of 50,000

images have shown the realistic threat from TnTs and the robustness of such attacks.

Our results also show the generalisability of the attack to different visual classification

tasks, including CIFAR-10, GTSRB, PubFig, on multiple state-of-the-art deep neural

networks, including WideResnet50, Inception-V3, VGG-16.

7.2 Future Work

Pursuing various possible avenues for further investigation could improve the

robustness of deep neural networks:

• How can we improve Bayesian adversarial learning? Although we have achieved

state-of-the-art robustness in the context of Bayesian adversarial learning, as shown

in Table 3.4 in Chapter 3 and Table 4.2 in Chapter 4, there remains significant room

for improvement, especially against strong unseen attack budgets. Given the finding
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that a diversified Bayesian neural network improves robustness against Adversarial

Examples, a promising research direction would be improving the diversity of

Bayesian neural networks to achieve better robustness. Additionally, the current

training process for realising a robust Bayesian neural network is time-consuming

and computationally expensive, requiring weeks to realise a robust model. Future

research should aim to address these concerns by, for example, reducing the

time required to realise Adversarial Examples during training or employing more

efficient posterior approximation to boost the learning process.

• How can we apply the concept of input sanitisation developed in Chapter 5

in other domains? The proposed Trojan defence method mainly focuses on the

Computer Vision domain. However, Trojan and backdoor attacks have been

developed in other domains, including text and audio domains (Liu et al., 2018b).

Given most defence methods introduced in Section 5.8 of Chapter 5 would be

insufficiently adaptive to function across domains, it is imperative to develop a

robust defence method that is effective in multiple domains. Thus, the investigation

of the adoption of the proposed concept of input sanitisation, introduced in

Chapter 5, to realise robust defences against Trojan attacks in multiple domains

represents a promising research direction.

• How robust are the Trojan defence methods such as Februus in Chapter 5 in

the physical world? Recent work by Wenger et al. (2021) demonstrates both the

effectiveness of backdoor attacks in the physical world and the lack of robustness

of certain defence methods in this context. This is because physical triggers negate

key assumptions made by defence methods based on triggers in the digital domain.

Interestingly, although the defence method introduced in Chapter 5 mostly focuses

on the digital domain, the approach is generic and does not make any specific

assumptions about the domain. However, investigating the effectiveness of the

proposed method and comparing it with other defence methods in the physical

world represents a promising research direction.

• How can we realise inconspicuousness and stealthiness features for

Adversarial-Patch attacks in the physical world? As Chapter 6 mentions, the

TnTs generated while maintaining naturalism require the patch to be sufficiently

large (at least 10% of the input image). The challenge is to reduce the size (to make

it stealthier and more inconspicuous) of the trigger while maintaining naturalistic

features of TnTs and is worthy of future research. It is pertinent to consider
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blending our TnTs into the scene to make the attack even more inconspicuous and

stealthy. However, this represents a challenging task because scenes captured in the

physical world evolve dynamically. Using naturalistic Adversarial Patches, such as

our TnTs, represents a first step towards approaching this problem; for example,

natural-looking flower patches are more likely to appear in a scene and are less

malicious in appearance compared to noisy perturbation-based patches. Thus,

methods of blending universal naturalistic Adversarial Patches into a scene require

further research.

• How can we realise naturalistic adversarial patches agaisnt object detectors?

Chapter 6 demonstrated the existence of naturalistic adversarial patches (TnTs) in

classifiers. However, attacking a classifier is different from attacking an object

detector because of the complex task of object detectors—to identify bounding boxes

and labels. Fooling object detectors to detect any object with naturalistic adversarial

patches (such as our TnTs) as a designated target is a challenging task. But, it is

of significant interest, because object detectors are widely used for critical tasks

such as road sign detection in self-driving cars. Therefore, investigating method

for generating targeted, universal, naturalistic Adversarial Patches against object

detector is an interesting research direction and worthy of future research to improve

our understanding of object detector vulnerabilities.

• How can we realise a robust defence method against both Trojan and Adversarial

Patch attacks? Chapter 6 demonstrated the emerging threat of TnTs, where attackers

bridge the divide between Trojan and Adversarial Patch attacks in the input space

to generate an attack capable of exerting high levels of control similar to Trojan

attacks without interfering with the neural networks. Because TnTs link Trojan and

Adversarial Patch attacks, we believe that a defence method that is robust against

our TnTs will inherently and simultaneously be robust against both Trojan and

Adversarial Patch threats. Hence, we believe that our work opens a new avenue

for investigating defence methods that are more robust against multiple threats, a

subject worthy of future research.
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