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1  |  INTRODUC TION

Sediment provenance studies commonly use zircons, which are gener-
ally robust to weathering and U–Pb isotopic open system behaviour 

(e.g. Cawood et al., 2012; Fedo et al., 2003). However, more recently 
other mineral phases such as titanite, rutile and apatite have been used 
to ascertain provenance, as they can record complementary informa-
tion to zircon concerning the tectonic history of the hinterland (e.g. 
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Abstract
Apatite is increasingly used in sedimentary provenance studies. However, detrital ap-
atite U–Pb geochronology can be challenging due to the presence of non-radiogenic 
Pb, its intermediate closure temperature (~350–550°C) and/or age-resetting by meta-
morphic/metasomatic processes. The Lu–Hf system in apatite has a higher closure 
temperature (~675–750°C) and is, therefore, more robust to thermal resetting. Here 
we present the first detrital apatite Lu–Hf age spectra. We have developed a laser-
ablation Lu–Hf dating technique, using reaction-cell mass spectrometry, that allows 
rapid cost-effective analysis, required for detrital apatite studies. The method is best 
suited to Precambrian detritus, permitting greater radiogenic Hf ingrowth. Using sam-
ples from Siberia, we demonstrate: (1) excellent correlations between U–Pb and Lu–
Hf dates for apatites from igneous protoliths; and (2) that Lu–Hf dating can detect 
primary age information in metamorphic grains. Hence, when used in tandem with 
U–Pb zircon and apatite geochronology, Lu–Hf apatite dating provides a powerful 
new tool for provenance studies.
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Chew et al.,  2020). The use of apatite grains in provenance studies 
can be particularly powerful as apatites form in a broad compositional 
range of source lithologies that are otherwise difficult to access. In 
contrast to zircon, apatite commonly crystallizes in less fractionated 
magmas (lower SiO2 concentrations) and, therefore, allows the con-
tribution of mafic rocks to the detrital record to be evaluated (e.g. 
Gillespie et al., 2018; Jennings et al., 2011). Furthermore, apatites are 
more susceptible to metamorphic/metasomatic processes compared 
to zircons (e.g. Harlov, 2015), allowing such processes to be detected.

Modern provenance studies use U–Pb geochronology combined 
with trace element geochemistry to fingerprint detrital crystals. 
Metamorphic and metasomatic apatites can readily be recognized 
based on low concentrations of, for example, Th, Y and light rare 
earth elements (LREEs) (Glorie et al.,  2019; Henrichs et al.,  2018, 
2019). Apatite in mafic rocks is commonly characterized by high 
Sr concentrations (Belousova et al.,  2002; Jennings et al.,  2011). 
Furthermore, multi-element discrimination plots are now available 
to categorize the protolith rock type of detrital apatites using their 
trace element geochemistry (O’Sullivan et al., 2018, 2020).

However, detrital apatite U–Pb geochronology is often 
challenging, for the following reasons: (1) Apatite commonly 
incorporates non-radiogenic (initial) Pb, and consequently, de-
trital apatite dating relies on assumptions about the initial Pb 
isotopic compositions to calculate single-grain ages (e.g. Chew 
et al.,  2014; Gilbert & Glorie,  2020); (2) U-poor apatites, such 
as commonly found in low-grade metamorphic rocks (Henrichs 
et al., 2018, 2019), often remain impossible to date due to the low 
abundance of radiogenic Pb; (3) When source rocks have been 
strongly affected by metamorphism or metasomatism, primary 
apatite crystallization ages are often inaccessible by U–Pb geo-
chronology and thus remains elusive (e.g. Kirkland et al., 2018). 
Isotopic resetting is particularly common for old detrital apatites, 
which often record a long history of thermal and/or metasomatic 
events (e.g. Kirkland et al., 2017).

Here we present a novel approach, involving U–Pb dating in com-
bination with Lu–Hf dating in detrital apatites. The Lu–Hf clock has 
some advantages over U–Pb dating, which makes it a suitable comple-
mentary method for detrital apatite studies: (1) apatite Lu–Hf dating, 
with a closure temperature of ~675–750°C (Chew & Spikings, 2015), 
is more robust to thermal resetting and, therefore, apatites may retain 
a memory of primary crystallization ages in metamorphic (up to upper 
amphibolite facies) systems (Barfod et al., 2005); (2) given the plausi-
ble range of terrestrial initial Hf ratios is small and apatites generally 
have high 176Lu/177Hf ratios (up to 90; Barfod et al., 2003), single-grain 
ages can be calculated (Simpson et al., 2021). Additionally, given the 
long half-life (~37 Ga) of the Lu–Hf method (Scherer et al., 2001), the 
method is best suited to date Precambrian detritus to ensure sufficient 
radiogenic Hf ingrowth. Hence, when combining detrital Lu–Hf and 
U–Pb dating, both the magmatic and metamorphic history of source 
terranes can be evaluated through deep time.

Conventional Lu–Hf dating, involving time-consuming clean-
laboratory procedures for individual grains, is realistically not suitable 
for detrital studies. Here, we present the first laser-ablation-based 

detrital apatite Lu–Hf data using the analytical approach out-
lined in Simpson et al.  (2021). This novel method allows rapid and 
cost-effective analysis required for detrital apatite studies. We 
demonstrate the utility of laser-based Lu–Hf dating using a suite of 
sedimentary samples from the southwestern Siberian margin, which 
contain apatites from a mixture of felsic, mafic and metamorphic pro-
toliths, spanning the Palaeoproterozoic to early Palaeozoic.

2  |  GEOLOGIC AL BACKGROUND

The Siberian Craton is composed of an amalgamation of Archean 
and Palaeoproterozoic high-grade metamorphic basement ter-
ranes, intruded by diverse unmetamorphosed Palaeoproterozoic 
(~1.86–1.87 Ga) post-collisional granites (e.g. Donskaya et al., 2014; 
Gladkochub et al.,  2009; Rosen,  2003; Turkina et al.,  2006). The 
Biryusa Block is one of few locations in Siberia where this an-
cient basement is exposed from beneath the Mesoproterozoic, 
Neoproterozoic and Phanerozoic sedimentary rocks that blanket 
much of the craton (Figure 1).

During the Cryogenian–Ediacaran, the modern southwestern 
margin of the Siberian Craton probably faced an open ocean, result-
ing in abundant passive margin sediment deposition in the Biryusa 
area (Metelkin et al.,  2010; Pisarevsky & Natapov,  2003; Romanov 
et al., 2021). The subsequent progressive closure of the Palaeo-Asian 
Ocean during the Ediacaran–Devonian induced a prolonged process 
of island-arc and microcontinents accretions onto the SW Siberian 
margin, which ultimately formed the Altai–Sayan foldbelt (Buslov 
et al., 2013; Glorie et al., 2011, 2014). Consequently, Palaeozoic sedi-
ments were deposited in the peripheral foreland basin of this orogen, 
unconformably overlying the Neoproterozoic sedimentary rocks.

3  |  STR ATIGR APHY AND SAMPLE 
DESCRIPTIONS

Samples were taken from the Neoproterozoic–Palaeozoic sedi-
mentary successions in the southwestern peripheral foreland 

This work presents the first detrital apatite Lu–Hf age spec-
tra, using a novel method of laser-ablation reaction-cell 
mass spectrometry. We demonstrate that the apatite Lu–Hf 
method retains a memory of primary crystallization ages in 
metamorphic detritus. We also illustrate that the method 
can be used to evaluate mafic contributions to sedimentary 
rocks. Hence, when used in concert with more traditional 
geochronological techniques (zircon and apatite U–Pb), ad-
ditional provenance information can be obtained. The new 
method is quick and cost-effective and has the capability to 
become a routine tool in future provenance research.
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F I G U R E  1  Geological map of the study area, the Biryusa uplift at the southwestern margin of the Siberian Craton (after Galimova 
et al., 2000) with indication of sample locations (star symbols) 
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basin of the Siberian Craton, near the Biryusa uplift (Figure  1). 
Sample AKX14-19 (N 54°55′20.8″; E 98°39′24.2″), a subarkosic 
lithic wacke, was collected from the upper part of the ~3 km thick 
Neoproterozoic Karagas Group (Metelkin et al.,  2010). Detrital 
zircon U–Pb dating of this sample produced an estimate of the 
maximum depositional age (MDA) for the upper Karagas Group 
of 678  ±  11  Ma, using the youngest single grain criterion (sam-
ple PSPC-3 in Priyatkina et al., 2018). The Karagas Group is over-
lain by the ~2.5 km thick Ediacaran Oselok Group and the ~150 m 
thick lower Cambrian Moty Group (Kochnev & Karlova,  2010; 
Letnikova et al.,  2013). Sample AKX14-31 (N55°31′20.4″; E 
97°50′29.0″), a lithic arenite, was taken from the lower part of 
the Moty Group, which is composed of red, cross-bedded fluvial 
sandstones with a ~3  m thick basal conglomerate. Detrital zir-
con U–Pb dating yielded an MDA of 886 ± 6 Ma (n = 3; sample 
PSPC-16 in Priyatkina et al., 2018), which is significantly older than 
the Cambrian assumed age of deposition. Sample AKX14-45 (N 
55°55′20.1″; E 97°57′02.3′), a subarkose to quartz arenite, was 
taken from the Lower Silurian Balturin Formation in the overlay-
ing ~900 m thick Ordovician–Lower Silurian sandstone–siltstone 
sequence. Detrital zircon U–Pb ages for this sample are presented 
in File S1 and yield an MDA of 447 ± 4 Ma.

4  |  ANALY TIC AL METHODS

Apatite grains were liberated using conventional crushing, magnetic 
and heavy liquid methods. Apatite U–Pb and trace element analysis 
was conducted simultaneously using a RESOlution 193 nm excimer 
laser-ablation system, with a 30 μm beam size, coupled to an Agilent 
7900 ICP-MS, using identical analytical parameters as in Gillespie 
et al.  (2018). See File S2 for details. Subsequently, apatite crystals 
that were sufficiently large to allow a second ablation target were 
analysed for Lu–Hf, in two analytical sessions, using a RESOlution 
193  nm excimer laser-ablation system, with a 67  μm beam size, 
coupled to an Agilent 8900 ICP-MS/MS. See File S2 and Simpson 
et al. (2021) for analytical conditions. The laser-based Lu–Hf method 
involves mass-filtering procedures with NH3 gas in the reaction cell 
of the mass spectrometer, which allows high-order reaction prod-
ucts [Hf((NH)(NH2)(NH3)3)+] of 176Hf and 178Hf to be measured free 
from isobaric interferences at masses 258 and 260 amu respectively. 
177Hf is subsequently calculated from 178Hf assuming natural abun-
dances. 175Lu is measured on mass as a proxy for 176Lu (see details in 
Simpson et al., 2021). Isotope ratios were calculated in LADR (Norris 
& Danyushevsky,  2018) using NIST 610 as primary standard, and 
corrected for matrix-induced fractionation (cf. Roberts et al., 2017) 
using OD306 apatite (1597 ± 7 Ma; Thompson et al., 2016). In-house 
reference apatites Bamble (corrected Lu–Hf age: 1097 ± 5 Ma) and 
Harts Range (corrected Lu–Hf age: 343 ± 2 Ma) were monitored for 
accuracy checks (File S3) and are in excellent agreement with previ-
ously published data (Simpson et al., 2021).

176Hf/177Hf ratios are generally high in apatite, allowing 
176Lu/176Hf ages to be calculated directly for each apatite grain. 

The exception is apatite from mafic rocks, which can incorporate 
significant concentrations of initial Hf during apatite growth. In this 
study, we applied a common Hf correction to each analysis where 
177Hf concentrations were measured above detection limits. The 
common Hf correction uses the 177Hf concentration to correct for 
the non-radiogenic component of the 176Hf signal prior to calculat-
ing the 176Hf/176Lu ratio during data processing in LADR (Simpson 
et al., 2021). Both corrected and non-corrected ratios are reported 
in File S4. From our observations, analyses with 176Hf/177Hf ratios 
<0.5 resulted in unreliable common Hf corrections and were, there-
fore, excluded from interpretations.

5  |  RESULTS

The resulting apatite U–Pb dates (File S4) and Lu–Hf dates (File S5) 
are compared with corresponding zircon U–Pb ages using KDE (ker-
nel density estimate) plots, calculated in IsoplotR (Vermeesch, 2018), 
in Figure 2. The corresponding trace element data are presented on 
the multi-element discrimination biplot (Figure  2) from O’Sullivan 
et al. (2020). Sample AKX14-31 has apatite U–Pb age peaks at ~1.8 Ga 
and ~0.7 Ga, that are both slightly younger than corresponding zircon 
age peaks, as well as a range of dates between ~1.2 and 1.7 Ga that are 
not matched with any zircon dates (Figures 2 and 3). The Sr/Y versus 
LREE biplot reveals that most of the ~1.7–1.2 Ga apatites are catego-
rized as metamorphic grains based on their trace element composition. 
The apatite Lu–Hf dates cluster in two age peaks of ~1.8 and ~0.7 Ga, 
conform with the apatite and zircon U–Pb age peaks, but importantly, 
without a significant proportion of dates between ~1.7 and ~0.9 Ga. 
Furthermore, when low LREE apatites (which often suggest low-T al-
teration) are filtered out (blue curve in Figure 2), the apatite Lu–Hf age 
peaks correlate with the two youngest zircon U–Pb age peaks.

Sample AKX14-19 has similar zircon and apatite U–Pb age peaks 
compared to sample AKX14-31, with the addition of few ~2.5 and 
~3.0 Ga apatite dates and fewer <1 Ga zircon dates. The apatite trace 
element discrimination plot suggests that the >1.8 Ga apatites were 
derived from felsic or metamorphic protoliths, while the ~1.5–1.8 and 
~0.8 Ga grains plot in the mafic field. The apatites with a mafic origin 
have a higher contribution of initial Hf (Sr concentrations >500 ppm 
correspond with 176Hf/177Hf ratios <4; File S5) and need significant 
common Hf corrections, increasing the single-grain age uncertainties 
for this population and reducing the number of grains for which use-
ful Lu–Hf dates can be determined. However, the resulting apatite 
Lu–Hf and U–Pb dates are concordant for the mafic apatite popula-
tion (Figure 3), indicating they are primary ages.

Sample AKX14-45 has generally younger age spectra compared to 
the other two samples with well-matched zircon and apatite U–Pb age 
peaks at ~1.7 and ~0.45 Ga. The apatite U–Pb spectrum yields addi-
tional dates scattered between ~0.6–1 and ~1.7–1.3 Ga. Based on their 
trace element composition, the youngest apatites plot mostly near the 
boundary of the mafic and alkaline fields, while the ~1.6–1.8 Ga grains 
are categorized as felsic. The other apatite dates have generally lower 
LREE compositions, suggesting they might reflect a degree of low-T 
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F I G U R E  2  (Left) Kernel density 
estimate (KDE) plots, showing zircon 
U–Pb age spectra in purple, apatite 
U–Pb age spectra in green and apatite 
Lu–Hf age spectra in salmon pink. For 
samples AKX14-31 and AKX14-45, 
an extra KDE curve is included (in 
blue), showing apatite Lu–Hf age 
spectra excluding datapoints with low 
(<500 ppm) LREE (=La + Ce + Sm + Nd) 
concentrations. Rug plots are included 
for each dataset (in corresponding 
colours). Each plot was constructed in 
IsoplotR (Vermeesch, 2018). (right) LREE 
versus Sr/Y biplot with indication of 
lithological discrimination fields, following 
O’Sullivan et al. (2020). The symbols 
represent the trace element composition 
for each analysed apatite, colour coded 
to their U–Pb ages. The abbreviations 
for each lithological discrimination field 
are: ALK = alkali-rich igneous rocks; 
IM = mafic I-type granitoids and mafic 
igneous rocks; LM = low- and medium-
grade metamorphic and metasomatic; 
HM = partial-melts/leucosomes/high-
grade metamorphic; S = S-type granitoids 
and high aluminium saturation index 
(ASI) “felsic” I-types; UM = ultramafic 
rocks including carbonatites, lherzolites 
and pyroxenites (O’Sullivan et al., 2020) 
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F I G U R E  3  Apatite U–Pb versus Lu–Hf 
age biplot for each individual grain that 
was double dated. The symbol colours 
indicate the rock lithologies the apatites 
were derived from, categorized using the 
apatite trace element chemistry (Sr/Y 
ratio and LREE concentrations) and the 
O’Sullivan et al. (2020) discrimination 
diagram. The Lu–Hf and U–Pb dates 
are concordant for the apatites derived 
from felsic and mafic igneous rocks. For 
Palaeoproterozoic–Mesoproterozoic 
metamorphic grains in sample AKX 14–31, 
the U–Pb system records isotopic open 
system behaviour, whereas the Lu–Hf 
system retains primary igneous age 
information 
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alteration. The Lu–Hf age spectrum matches the apatite U–Pb spec-
trum, and when grains with LREE <500 ppm are filtered out, the Lu–Hf 
KDE peaks are tighter and a better match with the zircon age spectrum.

6  |  Lu–Hf AGE UNCERTAINT Y

The reported uncertainties on the Lu–Hf dates include the signal pre-
cision on the calculated ratio, and uncertainties associated with the 
NIST610 primary standard (signal precision, calibration curve misfit and 
the uncertainty of the reference value). Additional uncertainties are 
propagated to the 176Hf/176Lu ratios from (1) the laser-induced elemen-
tal fractionation correction to the OD306 apatite standard and (2) the 
common Hf correction, where relevant. Resulting 2σ uncertainties for 
the single-grain dates are significant and are directly correlated with (1) 
the concentration of Lu and (2) the ingrowth time for radiogenic Hf (i.e. 
the Lu–Hf age) (Figure 4). Apatites with low Lu concentrations (<3 ppm) 
cannot be accurately dated with the current in situ Lu–Hf method, re-
gardless of their age. Similarly, young (~0.5 Ga) apatites with Lu concen-
trations between 5 and 10 ppm can produce single-grain uncertainties 
in excess of 40%. Nonetheless, we demonstrate that for typical >1.5Ga 
felsic grains with Lu concentrations >10  ppm and 176Hf/177Hf ratios 
>20, robust in situ single grain apatite Lu–Hf dates (at 67 μm spot size) 
can be obtained with 2σ uncertainties <10% (Figure 4).

7  |  DISCUSSION AND CONCLUSIONS

The results from this study suggest that a significant proportion 
(~75%) of apatites in sample AKX14-31 record U–Pb isotopic open 
system behaviour, induced by metamorphism. The timing of meta-
morphism cannot be accurately determined with the presented data-
set and the U–Pb dates for those grains are geologically meaningless. 

However, the corresponding Lu–Hf ages produce a ~1.8  Ga age 
peak that correlates with the timing of voluminous granite emplace-
ment following the assembly of the Siberian Craton (~1.86–1.87 Ga; 
Donskaya et al., 2014; Gladkochub et al., 2009; Rosen, 2003; Turkina 
et al., 2006). The abundance of ~1.5–1.8 Ga mafic detritus in AKX14-19 
is enigmatic. To the best of our knowledge, late Palaeoproterozoic–
Mesoproterozoic mafic rocks are not preserved in the Biryusa uplift. 
However, other basement uplifts of the Siberian Craton (Anabar, 
Baikal and Aldan-Stanovoi uplifts) record ~1.8–1.25  Ga mafic 
rocks (Ernst et al.,  2016), suggesting a significant amount of late 
Palaeoproterozoic–Mesoproterozoic mafic rocks might be currently 
buried by cover sequences. The late Cryogenian–early Palaeozoic 
detritus can be correlated with source terranes in the Yenisey ridge, 
Tuva-Mongolia and the Altai-Sayan foldbelt, to the south of the study 
area (Glorie et al., 2014; Priyatkina et al., 2018; Romanov et al., 2021).

In summary, the analysed samples for this study demonstrate 
the power of the method to (1) resolve the primary apatite ages for 
metamorphic detrital grains and (2) ensure confidence that U–Pb 
dates for mafic grains reflect primary ages. When the apatite Lu–Hf 
method, coupled with trace element data, is used in concert with 
apatite and zircon U–Pb geochronology, additional provenance in-
formation can be obtained, especially when fingerprinting metamor-
phic detritus. Given the rapidity and ease of data collection and the 
increasing availability of mass spectrometers fitter with reaction-cell 
technology, the laser-ablation-based apatite Lu–Hf method could 
become a routine tool for provenance research.
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