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ABSTRACT 

Sub-seasonal streamflow forecasts, with lead times up to 30 days, can provide valuable 
information for water management, including reservoir operation to meet environmental 
flow, irrigation demands, and managing flood protection storage. A key aim is to produce 
“seamless” probabilistic forecasts, with high quality performance across the full range of 
lead times (1-30 days) and time scales (daily to monthly).   

This paper demonstrates that the Multi-Temporal Hydrological Residual Error (MuTHRE) 
model can address the challenge of “seamless” sub-seasonal forecasting. The MuTHRE 
model is designed to capture key features of hydrological errors, namely seasonality, 
dynamic biases due to hydrological non-stationarity, and extreme errors poorly represented 
by the common Gaussian distribution.  

The MuTHRE model is evaluated comprehensively over 11 catchments in the Murray-
Darling Basin using multiple performance metrics, across a range of lead times, months and 
years, and at daily and monthly time scales. It is shown to provide “high” improvements, in 
terms of reliability for short lead times (up to 10 days), in dry months, and dry years.  
Forecast performance also improved in terms of sharpness. Importantly, improvements are 
consistent across multiple time scales (daily and monthly). 

This study highlights the benefits of modelling multiple temporal characteristics of 
hydrological errors, and demonstrates the power of the MuTHRE model for producing 
seamless sub-seasonal streamflow forecasts that can be utilized for a wide range of 
applications.   



INTRODUCTION 

Water management and operations across large river basins have historically focused on releasing and 
delivering water for consumptive purposes (e.g. irrigation), under relatively controlled and predictable 
flow conditions. Prolonged dry conditions and water scarcity in recent decades in many major river 
basins around the world supporting large populations, have led to the development of integrated water 
resource management plans that set the amount of water that can be taken from the basin each year, 
while leaving enough environmental water for the rivers, lakes and wetlands and the plants and 
animals that depend on them (e.g. Murray-Darling Basin Plan, Hart 2016). Environmental water 
management is complex, requiring the release of large volumes of environmental water from storages 
to be delivered over long distances at sub-seasonal or longer time scales to achieve a range of 
environmental targets and outcomes, under both regulated and unregulated conditions. To ensure that 
future water delivery optimises consumptive as well as environmental outcomes, new forecasting and 
planning tools, and streamlined processes are necessary especially at sub-seasonal time scale. In 
particular, considerable benefit can be obtained by producing probabilistic sub-seasonal forecasts 
which are “seamless” in time; i.e. from a single product that is reliable and sharp across a range of 
lead times and aggregation time scales (White et al. 2017).  

Streamflow forecasts are subject to uncertainty in rainfall, associated with predicting future rainfall, 
and hydrological errors, associated with uncertainty in model structure, initial conditions and 
parameters. In order to represent both sources of uncertainty in streamflow forecasts, the “ensemble 
dressing” approach is often implemented, whereby (i) replicates of forecast rainfall are propagated 
through a rainfall-runoff model, and (ii) a residual error model is used to add hydrological errors to 
each streamflow replicate.  

A key challenge is the development of the residual error model, which must capture relevant features 
of hydrological errors. It is well-known that hydrological errors are heteroscedastic (larger errors for 
larger flows) and persistent (similar errors for consecutive times), and these features are typically 
represented in residual error models (e.g., Kuczera 1983; Bates and Campbell 2001; McInerney et al. 
2017). However, other important features which are less commonly represented include 

 Seasonal variability, due to hydrological models being unable to appropriately capture seasonal 
variations in streamflow (e.g., Woldemeskel et al. 2018);  

 Dynamic biases, i.e., shifts in the mean of hydrological errors over longer time periods (e.g. 
month to year) due to hydrological non-stationarity (e.g., Westra et al. 2014); 

 Non-Gaussian errors. The random component (innovation) of residual error models are 
commonly assumed to follow a Gaussian distribution (Seber and Wild 1989; Bates and Campbell 
2001; McInerney et al. 2018). However, recent studies have found that non-Gaussian 
distributions better capture extreme errors (e.g., Li et al. 2016).    

The Multi-Temporal Hydrological Residual Error (MuTHRE) model is the first residual error model 
(to the best of the authors’ knowledge) which represents these three temporal error characteristics 
(i.e., seasonal variability, dynamic biases and non-Gaussian innovations).  

The aims of this conference paper are to  

(i) Demonstrate the ability of the MuTHRE model for producing seamless sub-seasonal 
streamflow forecasts, and 

(ii)  Describe the benefits of seamless sub-seasonal forecasts for practitioners 

The remainder of this paper is structured as follows. We begin by presenting the Theory of the 
MuTHRE model, then describe the Case Study and its Results, and finish with a discussion on the 
Benefits of Seamless Sub-seasonal Streamflow Forecasts, and a summary of our key Conclusions.   



THEORY 

MuTHRE model for representing hydrological uncertainty 

The MuTHRE model represents hydrological uncertainty in streamflow tq  (at time step t) through a 

probability model tQ  (i.e. ~ ttq Q ). The probability model combines a deterministic term 
det
tq  and a 

residual error term t  in transformed space, 

 
det; ) ( ; )( z z tt tz Q qz  θ θ   (1) 

where z  represents the Box-Cox transformation (Box and Cox 1964), with power parameter  
0.2   (McInerney et al. 2017).  

The deterministic term is  

 
det

1; )( ,h t tt hq  θ x s   (2) 

where h  is a rainfall-runoff model with parameters hθ , inputs tx  and initial conditions 1ts , 

The residual error term follows as AR(1) model 

 1 1( )t t t tt y          (3) 

The residual error mean (in transformed space) is  

 
(s) (b)

( )t d t t      (4) 

Equations (3) and (4) include the following multi-temporal components of the MuTHRE model:    

 Seasonality component: (s)
( )d t   varies according to the day-of-year ( )d t ,  

 Dynamic bias component: (b)
t  is intended to represent recent hydrological errors,  

 Non-Gaussian innovations: ty  are represented by a two-component mixed-Gaussian distribution  

   2 2
mix 1 2 1~ 0, ,0, ,t y y yy w   (5) 

where the component means are set to zero, 1y  and 2y  are the component standard deviations, and 

1yw  is the weight of component 1. 

See McInerney et al. (2020) for equations used for the seasonality and dynamic bias terms ( (s)
( )d t  and 

(b)
t ), and a description of the approach used to calibrate hydrological and residual error model 

parameters. 

Streamflow forecasts accounting for rainfall forecast uncertainty  

Propagating forecast rainfall replicates through the deterministic rainfall-runoff model produces 

replicates for 
det
tq . Equations (3)-(5) can be used to generate samples for t . These terms (

det
tq  and 

t ) are then used in the rearranged form of equation (1) 

   1 det( )t t tq z z q    (6)  

to produce a single post-processed streamflow forecast replicate. This is repeated for all times and 
rainfall replicates.      



CASE STUDY 

Hydrological data and model 

Forecasts from the MuTHRE model are generated in 11 catchments in the Murray Darling Basin (see 
Figure 1 for location of catchments and Table 1 for their properties). Daily time series of observed 
rainfall, PET and streamflow between 1991 and 2002 from the Australian Bureau of Meteorology’s 
Hydrological Reference Stations (HRS) dataset are used (Zhang et al. 2014). Rainfall forecasts are 
obtained from the Australian Community Climate Earth-System Simulator - Seasonal (ACCESS-S)  
(Hudson et al. 2017), and subsequently post-processed to remove biases and improve reliability 
(Schepen et al. 2018). A subset of 100 forecast replicates beginning on the first day of each month and 
with lead times up to 28 days are used. 

 

Figure 1. (a) Locations of the 11 case study catchments, (b) Mean monthly observed streamflow 
with wet/dry month classifications, and (c) Mean annual observed streamflow with dry/other 
year classifications. Boxplots in (b) and (c) represent distribution over all catchments, with 

boxes for inter-quartile range and whiskers for 10th/90th percentiles.  

Table 1. Case study catchments and their properties 

Site name Site ID Area 
(km2)

Mean rain 
(mm/yr)

Mean flow 
(mm/yr) 

Runoff 
ratio

Murray River at Biggara 401012 1257.3 1117 370 0.33

Jingellic Creek at Jingellic 401013 390.0 876 112 0.13

Cudgewa Creek at Berringama 401208 351.1 1127 209 0.19

Gibbo River at Gibbo Park 401217 389.8 1138 273 0.24

Delatite River at TongaBridge 405214 368.0 959 248 0.26

King Parrot Creek at Flowerdale 405231A 181.0 999 187 0.19

Seven Creeks river at Kialla West 405269 1513.4 655 93 0.14

Seven at D/S Polly McQuinns Weir 405234 147.6 852 226 0.27

Hughes Creek at Tarcombe Rd 405228 474.8 760 116 0.15

Acheron River at Taggerty 405209 629.4 1234 443 0.36

Goulburn River at Dohertys 405219 700.2 1156 424 0.37

 



We use the GR4J conceptual rainfall-runoff model (Perrin, Michel, and Andreassian 2003), which has 
four calibration parameters, as the determistic model h  in equation (2). A leave-one-year out cross-
validation procedure is used to calibrate and evaluate forecasts.  

Forecast evaluation 

We evaluate forecast performance in terms of reliability and sharpness. Reliability of forecasts (i.e. 
the degree of statistical consistency between observations and the forecast distribution) is quantified 
using the metric of Evin et al. (2014). Sharpness (i.e., uncetainty in the forecast distribution) is 
quantified as a skill score by the average ratio of the 90% limits of the forecast distribution and the 
90% limits of the climatology (McInerney et al. 2020). Lower metric values indicate better 
performance. 

Forecasts are evaluated over (i) multiple time scales from daily to aggregated monthly forecasts, and 
(ii) multiple stratification types, including by lead time, month and year.   

Comparison with “baseline” error model 

Forecasts from the MuTHRE model are compared against a “baseline” model which does not include 

the multi-temporal components. The baseline model is obtained by setting 
(s)

( ) 0d t   (i.e. removing 

seasonality) and 
(b) 0t   (i.e. removing dynamic biases) in equation (4), and 1 0yw   in equation (5) 

(i.e. reverting to a standard Gaussian). 

“Practical significance” tests are used to compare the two models across the range of catchments 
(McInerney et al. 2019). This determines whether any differences (e.g. improvements) in metric 
values are of practical relevance, defined as a difference of more than 20% of the metric value for the 
baseline model. We note that catchment 405234 is a sub-catchment of 405269, and the forecasts from 
these two catchments are not entirely independent; however, the impact of this dependence on the 
model comparison is likely minor due to the relative sizes of these two catchments.   

RESULTS 

Time series 

Figure 2 provides an illustration of daily and cumulative streamflow forecasts in the Biggara 
catchment (401012) during August 2002. For daily forecasts, the observations lie within the 90% 
predictive limits for both climatology (Figure 2a) and the MuTHRE model (Figure 2b). However, 
forecasts from the MuTHRE model are much sharper than climatology. These forecasts are sharpest 
for short lead times, but are still considerably sharper than climatology for longer lead times. 
Similarly, 90% limits for cumulative forecasts from the MuTHRE model (Figure 2d) capture the 
observed values, and are much sharper than climatology. 

Performance metrics 

Daily forecasts 

Figure 3 compares performance of daily forecasts from the MuTHRE and baseline models for 
different lead times. The MuTHRE model provides consistent good reliability over all lead times 
(Figure 3a), and practically significant improvements over the baseline model for short lead times (10 
out of the first 11 days). MuTHRE forecasts are much sharper than climatology, especially for short 
lead times (e.g. median value of 0.2 for lead time of 1 day corresponds to 80% reduction in 
uncertainty). Compared to the baseline model, sharpness improves for all lead times (Figure 3b), 
although these are not classified as practically significant.  

     



 

Figure 2. Predictive limits of forecasts in the Biggara catchment (401012) during August 2002. 
Climatology (left) is compared with the MuTHRE model (right). Results are shown for both 

daily forecasts (top) and cumulative forecasts (bottom).    

 

 

Figure 3. (a) Reliability and (b) Sharpness metrics when MuTHRE and baseline forecasts are 
stratified by lead time. Lines represent median metric values calculated over the 11 catchments, 
whiskers represent 90% limits, and circles indicates lead times for which the MuTHRE model 

produces practically significantly better performance than the baseline model.  



Monthly forecasts 

Figure 4 compares the reliability of monthly forecasts when stratified by month and year. The 
MuTHRE model provides consistent reliability over all months (Figure 4a), with practically 
significant improvements over the baseline model in 6/7 dry months (November-May). The MuTHRE 
model also provides improvements in reliability when stratified by year – these are largest in dry 
years (2006-2009).        

 

Figure 4. Reliability metrics when MuTHRE and baseline forecasts are stratified by (a) month, 
and (b) year.   

BENEFITS OF SEAMLESS SUB-SEASONAL STREAMFLOW FORECASTS 

The results presented in this paper show that the MuTHRE model produces seamless sub-seasonal 
forecasts, with consistent reliability over lead times (1-30 days), timescales (daily to monthly), and all 
months and years.  

Consistent reliability enables water resource managers and planners to confidently utilize sub-
seasonal forecasts for decision support in a wide range of applications. Examples include   

 The easy integration of streamflow forecasts into exisiting river system models, such as eWater 
Source (Welsh et al. 2013). These models are typically run at the daily scale, but are used for 
managing multiple resource management decisions over a range of time scales, so it is important 
that streamfow forecasts are reliable at both daily and longer time scales. River system models are 
commonly run with historical streamflow inputs, so utilizing reliable and sharp sub-seasonal 
streamflow forecasts would enable improved decision making through better quantifying 
uncertainty.  

 Improved reservoir management for rural water supply systems with demands for irrigation water 
use and environmental flows. Utilising forecasts for long timescales (e.g. weeks/months) and lead 
times (up to 1 month) can improve the management of these systems (Murray-Darling Basin 
Authority 2019). For example, if a high streamflow event is forecasted, the water supply authority 
can delay/avoid releasing water for environmental flows, and prevent wasting water.      

 Forecast informed flood control. Multi-purpose reservoirs serve as both water supply and 
downstream flood protection services. Sub-seasonal forecasts can inform the management of the 
systems. For example, large volumes of streamflow are forecast, reservoir operators can release 
water in advance to provide additional flood storage and reduce risks of flooding.   

 Operation of urban water supply systems, which benefit from aggregated monthly forecasts (Zhao 
and Zhao 2014). Reliable forecasts can inform managers about whether urban demand can be met 
from river flows, or whether water needs to be transferred between multiple reservoirs or sourced 
from costly desalination.    



CONCLUSIONS 

The Multi-Temporal Hydrological Residual Error (MuTHRE) model has been developed for seamless 
sub-seasonal streamflow forecasting. This model accounts for charactersitics of hydrological errors at 
multiple time scales, including seasonality, dynamic biases, and extreme errors.   

The MuTHRE model has been applied to 11 case study catchments in the Murray Darling Basin, 
using the GR4J rainfall-runoff model and post-processed ACCESS-S rainfall forecasts. It is shown to 
produce reliable forecasts over all lead times, aggregation scales (daily and monthly), and when 
stratified by lead time, month and year. These forecasts are much sharper than climatology. When 
compared to a baseline model (which does not include multi-temporal components), the MuTHRE 
model provides large improvements in relaibility for short lead times, dry months and dry years, as 
well as improvements in sharpness. 

Sub-seasonal streamflow forecasts are valuable for a wide range of water management applications. 
The consistent high quality performance of the MuTHRE model over multiple lead times (1-30 days) 
and time scales (daily to monthly) provides confidence in the suitability of forecasts for multiple 
practical applications, including their use in river system models to optimize water delivery for 
irrigation and enorinmental outcomes.    

Further information on the MuTHRE model, including comprehensive analysis of forecast 
performance and detailed algorithms, can be found in McInerney et al. (2020).   
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