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Abstract

Studies of domesticated animals have greatly contributed to our understanding of

avian embryology. Foundational questions in developmental biology were motivated

by Aristotle's observations of chicken embryos. By the 19th century, the chicken

embryo was at the center stage of developmental biology, but how closely does this

model species mirror the ample taxonomic diversity that characterizes the avian tree

of life? Here, we provide a brief overview of the taxonomic breadth of comparative

embryological studies in birds. We particularly focused on staging tables and papers

that attempted to document the timing of developmental transformations. We show

that most of the current knowledge of avian embryology is based on Galliformes

(chicken and quail) and Anseriformes (duck and goose). Nonetheless, data are

available for some ecologically diverse avian subclades, including Struthioniformes

(e.g., ostrich, emu) and Sphenisciformes (penguins). Thus far, there has only been a

handful of descriptive embryological studies in the most speciose subclade of Aves,

that is, the songbirds (Passeriniformes). Furthermore, we found that temporal

variances for developmental events are generally uniform across a consensus

chronological sequence for birds. Based on the available data, developmental

trajectories for chicken and other model species appear to be highly similar. We

discuss future avenues of research in comparative avian embryology in light of the

currently available wealth of data on domesticated species and beyond.
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1 | INTRODUCTION

The selective breeding of plants and animals for human use and

consumption (domestication) has enabled human civilization to

flourish (Larson & Fuller, 2014; Sánchez‐Villagra, 2022). From a

scientific perspective, the intricate relationship between humans

and domesticated animals can be traced to Aristotle's fascination

with the embryology of chicken (Gallus gallus) in the 4th century

BC (Leroi, 2014). Aristotle is regarded as the first developmental

biologist because he described morphological changes in chick

embryos, thereby establishing that organisms are not “precon-

structed” but are rather the sum of progressive tissue transfor-

mations (Leroi, 2014). Many of such transformations were

well documented with the advent of staining and enhanced

microscopy technologies of the 19th century (Mason, 2009;

Wolpert, 2004). By the 20th century, embryos of the domesti-

cated chicken were among the best described, particularly among

tetrapod animals (Duval, 1889; Hamburger & Hamilton, 1951;
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Keibel & Abraham, 1900; Künzel et al., 1962; Lillie, 1908;

Stern, 2005, 2018).

Descriptive embryological studies in chicken supported several

groundbreaking experiments that validated key principles in modern

developmental biology (Huxley & de Beer, 1934; Mason, 2009;

Stern, 2005, 2018; Wolpert, 2004). For example, critical insights into

the mechanisms of pattern formation and morphogenesis were

gained via experiments on limb bud development (Saunders, 1948;

Zwilling & Hansborough, 1956). Chicken embryos were attractive

models to experimental embryologists owing to practical reasons

(Tzika et al., 2008). Eggs can be readily obtained year‐round and are

laid with embryos that do not yet feature a primitive streak, thus

most developmental events can be observed (Hamburger &

Hamilton, 1951; Künzel et al., 1962). Furthermore, eggs are rather

large and can be manipulated in the laboratory with relative ease

(Mason, 2009). Interest in chicken embryology motivated the

enhancement of criteria to describe the timing of developmental

events (Arnaout et al., 2021; Hamburger & Hamilton, 1951; Künzel

et al., 1962; Toledo Fonseca et al., 2013), including those that unfold

before oviposition (Eyal‐Giladi & Kochav, 1976). There was also

interest in using chicken embryology as a reference to guide studies

on wild avian species (Herbert, 1969; Price, 1938; Schumacher &

Wolff, 1966).

Beyond chicken, embryology in other domesticated species of

Galliformes was also described in the 20th century (Clark, 1960;

Fant, 1957; Hendrickx & Hanzlik, 1965; Labisky & Opsahl, 1958;

Mun & Kosin, 1960; Smith Padgett & Ivey, 1960; Wilhelm &

Robertson, 1941; Williams & Phiillips, 1944). Although domesti-

cated lineages outside of Galliformes were also studied (duck

and goose; Cooper & Batt, 1972; Koecke, 1958; Montgomery

et al., 1978), the diversity of species in which embryonic develop-

ment has been studied in detail remains low compared to mammals

(Cordero et al., 2020; Hopwood, 2007; Werneburg & Geiger, 2016).

As such, Butler and Juurlink's (1987) Atlas for Staging Mammalian

and Chick Embryos included 14 representative mammalian species

and prioritized chicken as the comparative reference for birds,

which continues to be the case today (Bellairs & Osmond, 2014;

Bronner‐Fraser, 2008; Stern, 2018).

There are nearly 10,000 bird species (Tobias et al., 2020). This

diversity has served as an outstanding model to study the evolution

of growth rates, incubation time, and other life‐history traits (Austin

et al., 2020; Cooney et al., 2020; Starck & Ricklefs, 1998). However,

similar macroevolutionary comparisons of sequential transformations

in the embryonic development of birds remain rare and the

taxonomic breadth of sampled species is biased towards domesti-

cated species. This is sensible because many avian species cannot be

sampled because they are protected or are otherwise of conservation

concern (Jetz et al., 2014). Moreover, birds lay eggs in a sequential

fashion, such that collecting an entire clutch in the wild would require

much interference from the mother (Deeming & Reynolds, 2015).

Also, locating natural nests can be a challenging and time‐consuming

endeavor (Deeming & Reynolds, 2015). Thus, the study of domesti-

cated species has been highly useful to researchers aiming to trace

the ontogenetic origins of morphological diversity in birds

(Schneider, 2018).

The objective of the present study was to provide a brief

overview of the available data on the timing of developmental events

in avian embryos. In birds, changes in the timing of development may

sometimes reflect interspecific differences in life history (Starck &

Ricklefs, 1998), but also key changes in the growth rate of

functionally relevant traits (Dobreva et al., 2021; Faux & Field, 2017).

We aimed to characterize the taxonomic breadth of published studies

that focused on describing avian embryology and its chronology. This

enabled us to explore trends in the timing of developmental

characters across ontogeny. Lastly, to address whether observations

in a particular taxon can be generalized to others, we explore

similarities in developmental trajectories of chicken and other well‐

studied (i.e., model) bird species, including common commercial

breeds. We defined model species as those that can be easily bred or

reared in the laboratory and have therefore been the subject of

research across multiple biological subdisciplines.

2 | STUDIES OF DEVELOPMENTAL
CHARACTERS IN BIRDS

We adopted Starck's (1993) definition of “physical” and “morphologi-

cal” measures in incubation days and ranked stages of avian species,

respectively. However, rather than measuring morphological changes

in embryos as a ranked sequence of developmental stages

(Starck, 1993), we ranked the median for incubation days during

which we observed developmental events across species. Owing to

the sample small sizes, the median was used. Developmental events

were described by scoring characters from the Standard System to

Study Vertebrate Embryos, that is, SES (Werneburg, 2009). The SES

characters were initially designed to compare homologous traits in

embryos of diverse vertebrate species, though avian‐specific charac-

ters were later added to this system (Nuñez‐León et al., 2021). We

extracted temporal data for the appearance of characters that were

available in the primary literature (see online supplementary file). Our

search yielded 51 studies. However, several studies could not be

included because they lacked data for absolute incubation time, as

only relative stages were indicated. Converting absolute timing data

from hours to days optimized the total number of species that could

be sampled. If values were available from multiple studies for the

same species, redundant data were combined by taking the median of

values. After filtering, the timing (in days) of 122 characters in 24

species, see Table 1, was mapped onto a pruned topology of Aves

based on the phylogenetic studies of Jetz et al. (2014) and Prum et al.

(2015) (Figure 1).

Anseriformes and Galliformes were overrepresented (11 out

of 24 species) in our dataset. Only three members of the most

speciose avian clade, the songbirds (Passeriformes), were repre-

sented in the data. However, character sequences for two of the

three species were well sampled (>62% scored characters). By

contrast, the three species of shorebirds (Charadiiformes: Uria

448 | CORDERO AND WERNEBURG
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F IGURE 1 Phylogenetic distribution for the timing of 122 developmental characters in avian species. Phylogeny after Prum et al. (2015) and
Jetz et al. (2014). Empty cells denote characters for which data were unavailable and the heatmap color gradient depicts the incubation days at
which developmental characters were scored. Data sources and the proportion of characters scored per species are shown in Table 1.
Silhouettes representing avian taxonomic orders are from PhyloPic (www.PhyloPic.org; Public domain dedication 1.0 license).
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aalge, Larus delawarenensis, and Sterna hirundo) were sparsely

sampled (< 30% scored characters), as was the sole representative

of the birds of prey (Accipitriformes: Milvus migrans). As expected,

Gallus gallus featured the most complete character sequence

(Figure 1; Table 1). The earliest‐branching subclade in the

topology, Struthioniformes, was represented by the ostrich

(Struthio carnelus) and emu (Dromaius novaehollandiae), which

featured the longest incubation periods in our data set (Figure 1).

Examinations in other members of avian subclades that were

highlighted in our analyses were sometimes restricted to a specific

set of stages. As such, data for the passerines Turdus pilaris, see

Blom and Lilja (2005), as well as the blue tit (Cyanistes caeruleus)

and great tit (Parus major) (Hemmings & Birkhead, 2016), were

excluded. Although we only included data for Pygoscelis adeliae as

the sole representative of Sphenisciformes (penguins), embryos of

closely related species (P. antartica and P. papua) have been

studied (Herbert, 1967). Embryos of the emperor penguin

(Aptenodytes forsteri) were also described but chronological

information on these specimens was limited (Glenister, 1953),

thus we excluded this species.

It is worth noting that several subclades could not be included in

our survey because timing data (measured in days or hours) were

unavailable or incomplete, e.g., Psittaciformes (Abraham, 1901; Carril

& Tambussi, 2015, 2017; Carril et al., 2016; Tokita et al., 2013).

Embryonic development in taxa with highly derived craniofacial traits,

such as Strigiformes (Tyto alba), was documented but estimates for

incubation time were incomplete (Köppl et al., 2005). The exclusion

of these and other studies that did not meet our sampling criteria

should not diminish their importance. In fact, perhaps the best

anatomical descriptions of avian embryos in nondomesticated species

are available in the classical embryological literature, including

accounts on enigmatic species such as the kiwi (Apterygiformes:

Apteryx spp.) (Parker, 1891, 1892). An exhaustive description of a

Charadiiformes species (Vanellus vanellus) was also published in

Keibel's outstanding Normentafeln series (Grosser & Tandler, 1909).

3 | VARIATIONAL TRENDS IN ONTOGENY

Differences that characterize the morphology of species may

originate or become apparent during the growth period that precedes

the end of embryonic development, as this is when ontogenetic

sequences are more likely to undergo evolutionary change (Alberch &

Blanco, 1996; Duboule, 1994). As embryonic development ensues,

inductive tissue interactions decrease because traits gain greater

structural independence, and energy is prioritized for growth (Galis &

Metz, 2001). It has, therefore, been hypothesized that this growth‐

dominated period might coincide with elevated levels of phenotypic

variation among individuals of a species or among species (De Jong

et al., 2009; Irmler et al., 2004; Werneburg et al., 2021). This

hypothesis has been supported in mammals (Cordero et al., 2020),

as well as by a recent study that concluded that interspecific variation

in the duration of the growth period (Hamburger and Hamilton

Stages 33–45) was most variable in embryos of 20 bird species

(Cooney et al., 2020). We took the opportunity to address this

expectation by comparing variances for the timing of developmental

characters in most species studied by Cooney et al. (2020).

For characters that could be scored in more than five species, we

computed and compared a robust coefficient of variation (RCV)

based on the standardized median absolute deviation, that is, RCVM

(Arachchige et al., 2020). Temporal variances for characters might be

affected by different developmental periods of species (Laurin &

Germain, 2011). To account for this, data were divided by the total

duration of egg incubation before computing RCVM. In general,

variances were uniformly distributed across the consensus median‐

ranked character sequence for the bird species sampled (Figure 2).

Notably, the most temporally variable developmental event was

described by the “blastoporous” character, which was ranked first in

the median‐ranked sequence (Figure 2). Note that our “blastoporous”

character is synonymous with the pre‐primitive streak terminology

used to describe the onset of gastrulation in chicken embryos, which

may begin before oviposition (Eyal‐Giladi & Kochav, 1976; Lee

et al., 2020). Otherwise, the large yolk of avian eggs obscures the

observation of a proper blastopore (Dye, 2012).

The elevated variance for the “blastoporous” character might

have been related to the delayed appearance, i.e., three days after

oviposition, of the pre‐primitive streak in penguin embryos

(Herbert, 1967). This was supported by histological sections that

confirmed that the neural tube and associated characters mature

about three days later in penguins relative to chickens

(Herbert, 1969). This shift is attributed to an overall slower rate of

development in penguins, which was possibly caused by exposure to

cold temperatures during the collection of eggs in the field

(Herbert, 1967, 1969). Similar slowdowns in the emergence of traits

that are generally expected to be highly canalized are perhaps not

uncommon in vertebrate animals exposed to extreme environmental

fluctuations. Experimental exposure to hypoxia caused the delayed

development of the eye in zebrafish embryos (Schmidt &

Starck, 2010). Even so, how the environment influences the pace

of avian embryonic development is still unclear. An experiment on

eight tropical songbirds found that embryonic development was

prolonged, rather than accelerated, by increasing incubation temper-

ature (Robinson et al., 2013). Furthermore, whether eggs are

incubated artificially or naturally (with parental care) did not affect

incubation duration in the zebra finch (Taeniopygia guttata)

(Hemmings & Birkhead, 2016).

As in comparisons of ossification sequences that also included

model domesticated species (Koyabu et al., 2014; Maxwell, 2008;

Mitgutsch et al., 2011), our ranked sequences of developmental

events were highly conserved with the exception of a few characters

(Figure 3). These analyses did not show a progressive increase in

temporal variances of characters, as one may predict based on the

findings of Cooney et al. (2020). This may be explained by the fact

that most of our characters described the organogenic phase of

development that is expected to be highly evolutionarily conserved in

vertebrates (Cooney et al., 2020; Cordero, 2021; Cordero et al., 2020).
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F IGURE 2 Variation in the timing of developmental characters in 24 avian species. The RCVM (standardized median absolute deviation)
values for characters were ranked by the median (see y‐axis) and fitted with locally estimated scatterplot smoothing (red line). RCV, robust
coefficient of variation.
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F IGURE 3 Spearman rank correlations (ρ) on the timing of developmental characters for chicken (Gallus gallus; see x‐axis) against select avian
species (y‐axis) that are considered models for the study of development. (a) Coturnix coturnix; (b) Anas platyrhynchos; (c) Anser cygnoides;
(d) Columba livia; (e) Taeniopygia guttata; and (f) Lonchura striata. Characters outside the 95% confidence intervals for correlations (grey ellipses)
are highlighted in red. Species silhouettes are from PhyloPic (www.PhyloPic.org; public domain dedication 1.0 license).
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To comprehensively address this hypothesis, additional bird species

will need to be studied. Also, scoring the timing of developmental

transformations is one of several means by which the origins of

phenotypic differences among species may be observed. Describing

the relative growth of the beak and limb has proven effective in

demonstrating divergence at the interspecific level (Faux &

Field, 2017)2014, as well as within species (Nuñez‐León et al., 2021).

4 | A COMPARISON OF MODEL SPECIES
IN AVIAN EMBRYOLOGY

Our pairwise analyses of model species focused on the timing of

appearance for a set of developmental events that can be externally

scored without clearing or dissecting embryos. The observed

temporal differences may not necessarily translate to tissue‐level

changes that ultimately produce discrete morphological differences

among species (Werneburg & Sánchez‐Villagra, 2009). In addition,

heterochronies may be detected across distinct levels of biological

organization (Dobreva et al., 2021). Species‐specific phenotypes

may emerge via changes in growth processes that span both

embryonic and post‐embryonic life stages, as in beak shape

development in Darwin's finches (Abzhanov et al., 2004;

Grant, 1981). Nonetheless, identifying temporal differences in

embryonic development remains valuable to studies seeking to

identify the origin of phenotypic diversification in birds (Dobreva

et al., 2021). An understanding of embryonic development is also

informative to research on life history characteristics of avian

species. Descriptive embryology has been used to evaluate hatching

failure (Hemmings & Birkhead, 2016).

Most characters that potentially represent heterochronic

shifts in our pairwise comparisons of model species were related

to beak keratinization, egg tooth differentiation, or eyelid

structural changes (Figure 3). It is worth noting that some of

these potential heterochronies may be the result of technical error

and potential biases in character interpretation. We, therefore,

welcome researchers to further explore these data and cross‐

reference the source studies (Table 1). In addition, our survey was

restricted to studies wherein absolute timing data was unambigu-

ously listed and we present these data in day units, rather than

standardized units, to clearly expose variation in egg incubation

duration (Figure 1). It is possible to expand upon this study by

using proxies for developmental time (ranks or relative timing) if

absolute time data is not available for some species. For instance,

a subset of characters could be compared by standardizing the

onset of trait development by the total duration of trait formation

in different species, that is, the “continuous analysis” of Laurin and

Germain (2011). Also, the timing of cranial ossification modules

has been studied using this approach in domestic mammals

(Koyabu et al., 2014).

It was hypothesized that early‐occurring events in the develop-

mental sequence of birds are highly evolutionarily conserved

(Starck, 1993), though we showed that early development might be

delayed in species that are exposed to extreme environmental

conditions. Also, it was reported that differences in the growth rates

of some traits, including the blastoderm, might already be discernable

at the onset of avian embryogenesis (Nagai et al., 2011; Sellier

et al., 2006). Beyond these exceptions, the use of model species, such

as chicken and quail, as proxy references for early development in

distantly related species is well justified. As supported by our

comparisons of developmental sequences of chicken against other

model avian species. Even so, there are slight differences in

developmental rates of quail, chicken, and goose (Sellier et al., 2006).

Thus, further clarifying spatial and temporal differences in avian

morphogenesis, even in closely related species, remains crucial to

experiments in developmental biology (Dobreva et al., 2021). For

example, quail features an unusually shaped nucleolus that permits

differential staining of cells when transplanted to chick tissue, i.e.

quail‐chick chimeras (Lwigale & Schneider, 2008). In quail‐duck

chimeras, mechanisms that underlie morphological differences

between these species are perhaps easier to discern, because these

species differ in growth rate and incubation duration (Lwigale &

Schneider, 2008). As a result, the use of the quail‐duck chimera

system has proven valuable in exposing the mechanisms that

determine craniofacial variation in these lineages (Schneider, 2018).

It would be intriguing to discover additional temporal and structural

differences as more species are sampled across the avian tree of life.

An open question concerns the degree to which diverse species

distributed across the altricial‐precocial spectrum vary in the timing

of organogenesis (Blom & Lilja, 2005; Olea et al., 2016; Starck &

Ricklefs, 1998). Such analyses are beyond the scope of the present

paper, but we encourage researchers to incorporate embryological

data described herein with comparative phylogenetic analyses on the

evolution of the altricial‐precocial spectrum. Already, it was shown

that the total duration of embryogenesis is truncated in the altricial

zebra finch (Taeniopygia guttata), though the sequence of develop-

mental events is seemingly conserved relative to the precocial

chicken (Hemmings & Birkhead, 2016). In agreement, the develop-

mental character sequences of zebra finch and chicken were highly

concordant in our study.

Model avian species have proven highly useful in the design of

assays aimed at exposing the molecular mechanisms that guide

tissue construction and pattern formation in embryos (Bronner‐

Fraser, 2008; Mason, 2009; Schoenwolf, 1999; Wolpert, 2004). In a

landmark study, chicken embryos were used to optimize in situ

hybridization assays that were subsequently used to trace gene

expression changes associated with beak morphological differences

among Darwin's finches (Abzhanov et al., 2004). Morphogenetic

events observed during beak development in Darwin's finches were

further validated in chicken and duck embryos (Abzhanov

et al., 2004; Wu et al., 2004). Similarly, chicken embryos were used

as a reference in experiments that revealed the cellular mechanisms

of limb reduction in the emu (Young et al., 2019). This study

followed comparative embryological assays that previously hinted

at a slowdown in the outgrowth of the forelimb buds in emu

embryos (Nagai et al., 2011).
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5 | DEVELOPMENT UNDER
DOMESTICATION

Pinpointing heterochronic shifts in ontogeny could yield additional

insights into the potential for domesticated organisms to undergo an

evolutionary change in human‐controlled environments. It was recently

shown that, within Gallus gallus, the initial processes by which embryos

are assembled remain canalized, and thus parameters that later control

relative trait dimensions are probably more likely to undergo change

during the evolution of domesticated breeds (Nuñez‐León et al., 2021).

Because changes to early tissue differentiation processes would most

likely induce lethal phenotypes, early development in vertebrate embryos

tends to be conserved (discussed in Galis &Metz, 2001). Thus, universally

shared developmental constraints also apply to avian evolution in human‐

controlled environments, even if human‐assisted breeding favors viable

offspring with potentially maladaptive traits (Núñez‐Leon et al., 2019;

Nuñez‐León et al., 2021). Maladaptive forms can be clearly observed in

domesticated forms. For example, selective breeding for rapid growth

may generate ascites and skeletal deformities in broiler chickens

(Julian, 1998). In this sense, domestication can be viewed as an

experiment that provides insights into selective processes that may not

be fully appreciated in nature, particularly in vertebrate animals. As such,

domestication as a whole can be thought of as a model system for the

extended evolutionary synthesis (Zeder, 2017). In support of this

framework, poultry scientists have made key contributions by describing

the chronology of developmental events that are otherwise challenging to

document in wild species (Brand et al., 2014, 2017; Dupuy et al., 2002;

Gefen & Ar, 2001; Lumsangkul et al., 2018; Malecki et al., 2005; Sellier

et al., 2006; Toledo Fonseca et al., 2013). These studies are highly

informative in understanding how development may vary at the

intraspecific level and are valuable to future research on natural

populations (e.g., Hemmings & Birkhead, 2016).

Domesticated species are well suited for future studies that

disrupt inductive tissue interactions via, for example, gene‐editing

technologies. By examining the resulting phenotypic variances and

number of viable offspring, gene editing may permit biologists to

robustly test the hypothesis that early embryonic development is

under strong stabilizing selection and thus late‐occurring develop-

mental events are more amenable to undergoing adaptive change.

Along these lines, the growth‐dominated period of development can

be considered a critical window for the phenotypic diversification of

birds. It is now well understood that limb morphological differences

that define avian diversity are best appreciated during this period

(Cubo & Arthur, 2001; Faux & Field, 2017; Feduccia & Nowicki, 2002;

Wang & Clarke, 2014). In domesticated species, exaggerated forms

arise via altered growth processes (late in development) that are not

necessarily accompanied by major rearrangements in the sequence of

morphological characters (Alberch & Blanco, 1996). Crucially,

molecular assays are of critical importance because they may reveal

changes in cell proliferation processes that cannot be discerned by

examining external morphological differences between species, for

example, limb growth deceleration in emu relative to chicken (Young

et al., 2019).

6 | DOMESTIC SPECIES AND THE FUTURE
OF COMPARATIVE AVIAN EMBRYOLOGY

The taxonomic breadth of avian species sampled in comparative

embryological studies warrants expansion (Flores‐Santin

et al., 2021), though this may prove challenging owing to

conservation concerns and variable life history characteristics

of species. Nonetheless, the stages for chicken embryos of

Hamburger and Hamilton (1951) were recently used as reference

points to statistically predict (using regression models) the

duration of developmental phases in diverse species in which

data for the corresponding developmental characters were

missing (Cooney et al., 2020). A similar approach was employed

to estimate ages in a rare series of kiwi embryos (Prier et al., 2013).

Future studies may need to rely on such creative approaches, as

well as emerging technologies that may permit the efficient and

noninvasive (in ovo) characterization of embryonic features in

natural and laboratory settings (Freesmeyer et al., 2018; Henning

et al., 2011; Winkens et al., 2021). We recommend the employ-

ment of modern visualization and quantitative tools coupled with

the targeted sampling of late developmental stages that display

lineage‐specific morphological traits. This approach has already

proven fruitful in illuminating the genetic underpinnings of

beak morphology during the development of various finch

lineages (Abzhanov et al., 2004; Fritz et al., 2014; Mallarino

et al., 2012).

Similar to mammals (Parsons et al., 2020), should we expect

mechanisms that generate species‐specific morphological differ-

ences at the macroevolutionary level to be mirrored intra-

specifically? This may be the case under chicken domestication

(Nuñez‐León et al., 2021). Using the chicken embryo as a model,

it would be worth examining the extent to which genetic costs of

domestication (see Makino et al., 2018; Moyers et al., 2018), or

even the transgenerational epigenetic inheritance of traits (see

Guerrero‐Bosagna et al., 2018), have influenced the evolution of

avian ontogenies. Comparing the tolerance to environmental

fluctuation in domesticated versus wild species is also another

promising line of research. Recent broad‐scale macroevolutionary

comparisons have shown that ecological adaptation has influ-

enced the timing of key developmental phases in avian evolution

(Cooney et al., 2020). In addition, whether temperature‐sensitive

plasticity in the onset of gastrulation and subsequent growth

incurs fitness consequences remains unclear (Malecki et al., 2005;

Olson et al., 2006). How intraspecific geographic variation in life‐

history traits relates to embryology could also be further

investigated (Cooper et al., 2011). These and many other

questions could be addressed by using domesticated species as

a reference to guide field and laboratory experiments and thus

move knowledge of avian phenotypic evolution forward. As such,

we hope that our discussion of the presently available compara-

tive embryological data stimulates further exploration of the

developmental processes that underlie patterns of morphological

diversity in birds.
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