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Abstract

Machine Learning (ML) is becoming more prominent in daily life. A key aspect in ML is Feature En-
gineering (FE), which can entail a long and tedious process. Therefore, the automation of FE, known as
Feature Learning (FL), can be highly rewarding. FL methods need not only have high prediction per-
formance, but should also produce interpretable methods. Many current high-performance ML methods
that can be considered FL methods, such as Neural Networks and PCA, lack interpretability.

A popular ML used for FL that produces interpretable models is Genetic Programming (GP), with
multiple successful applications and methods like M3GP. In this thesis, I present two new GP-based FL
methods, namelyM3GPwith Domain Knowledge (DK-M3GP) and DK-M3GPwith feature Aggregation
(DKA-M3GP). Both use grammars to enhance the search process of GP, in a method called Grammar-
Guided GP (GGGP). DK-M3GP uses grammars to incorporate domain knowledge in the search process.
In particular, I use DK-M3GP to define what solutions are humanly valid, in this case by disallowing
operating arithmetically on categorical features. For example, the multiplication of the postal code of an
individual with their wage is not deemed sensible and thus disallowed.

In DKA-M3GP, I use grammars to include a feature aggregation method in the search space. This
method can be used for time series and panel datasets, to aggregate the target value of historic data based
on a known feature value of a new data point. For example, if I want to predict the number of bikes seen
daily in a city, it is interesting to know how many were seen on average in the last week. Furthermore,
DKA-M3GP allows for filtering the aggregation based on some other feature value. For example, we can
include the average number of bikes seen on past Sundays.

I evaluated my FL methods for two ML problems in two environments. First, I evaluate the inde-
pendent FL process, and, after that, I evaluate the FL steps within four ML pipelines. Independently,
DK-M3GP shows a two-fold advantage over normal M3GP; better interpretability in general, and higher
prediction performance for one problem. DKA-M3GP has a much better prediction performance than
M3GP for one problem, and a slightly better one for the other. Furthermore, within the ML pipelines it
performed well in one of two problems. Overall, my methods show potential for FL.

Both methods are implemented in Genetic Engine an individual-representation-independent GGGP
framework, created as part of this thesis. Genetic Engine is completely implemented in Python and shows
competing performance with the mature GGGP framework PonyGE2.

Keywords: Feature Learning, Grammar-Guided Genetic Programming, Domain knowledge, Aggre-
gation, Interpretability





Resumo alargado

A Inteligência Artificial (IA) e o seu subconjunto de Aprendizagem Automática (AA) estão a tornar-
se mais importantes para nossas vidas a cada dia que passa. Ambas as áreas estão presentes no nosso
dia a dia em diversas aplicações como o reconhecimento automático de voz, os carros autónomos, ou o
reconhecimento de imagens e deteção de objetos. A AA foi aplicada com sucesso em muitas áreas, como
saúde, finanças e marketing.

Num contexto supervisionado, os modelos de AA são treinados com dados e, posteriormente, são usa-
dos para prever o comportamento de dados futuros. A combinação de etapas realizadas para construir um
modelo de AA, totalmente treinado e avaliado, é chamada um AA pipeline, ou simplesmente pipeline.
Todos os pipelines seguem etapas obrigatórias, nomeadamente a recuperação, limpeza e manipulação
dos dados, a seleção e construção de features, a seleção do modelo e a otimização dos seus parâmetros,
finalmente, a avaliação do modelo. A construção de AA pipelines é uma tarefa desafiante, com especi-
ficidades que dependem do domínio do problema. Existem desafios do lado do design, otimização de
hiperparâmetros, assim como no lado da implementação.

No desenho de pipelines, as escolhas devem ser feitas em relação aos componentes a utilizar e à sua
ordem. Mesmo para especialistas em AA, desenhar pipelines é uma tarefa entediante . As escolhas de
design exigem experiência em AA e um conhecimento do domínio do problema, o que torna a construção
do pipeline num processo intensivo de recursos.

Após o desenho do pipeline, os parâmetros do mesmo devem ser otimizados para melhorar o seu
desempenho. A otimização de parâmetros, geralmente, requer a execução e avaliação sequencial do
pipeline, envolvendo altos custos. No lado da implementação, os programadores podem introduzir bugs
durante o processo de desenvolvimento. Esses bugs podem levar à perda de tempo e dinheiro para serem
corrigidos, e, se não forem detectados, podem comprometer a robustez e correção domodelo ou introduzir
problemas de desempenho. Para contornar esses problemas de design e implementação, surgiu uma nova
linha de investigação designada por AutoML (Automated Machine Learning). AutoML visa automatizar
o desenho de AA pipelines, a otimização de parâmetros, e a sua implementação. Uma parte importante
dos pipelines de AA é a maneira como os features dos dados são manipulados. A manipulação de dados
temmuitos aspetos, reunidos sob o termo genérico Feature Engineering (FE). Em suma, FE visa melhorar
a qualidade do espaço de solução selecionando as featuresmais importantes e construindo novas features
relevantes. Contudo, este é um processo que consome muitos recursos, pelo que a sua automação é uma
sub-área altamente recompensadora de AutoML. Nesta tese, defino Feature Learning (FL) como a área
de FE automatizado.
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Uma métrica importante de FE e, portanto, de FL, é a interpretabilidade das features aprendidas. In-
terpretabilidade, que se enquadra na área de Explainable IA (XIA), refere-se à facilidade de entender o
significado de uma feature. A ocorrência de diversos escândalos em IA, como modelos racistas e sexis-
tas, levaram a União Europeia a propor legislação sobre modelos sem interpretabilidade. Muitos métodos
clássicos, e portanto amplamente usados, carecem de interpretabilidade, dando origem ao interesse recém-
descoberto em XIA. A atual investigação em FL trata os valores de features existentes sem os relacionar
com o seu significado semântico. Por exemplo, engenharia de uma feature que representa a multiplicação
do código postal com a idade de uma pessoa não é um uso lógico do código postal. Embora os códigos
postais possam ser representados como números inteiros, eles devem ser tratados como valores categóri-
cos. A prevenção deste tipo de interações entre features, melhora o desempenho do pipeline, uma vez
que reduz o espaço de procura de possíveis features ficando apenas com as que fazem semanticamente
sentido. Além disso, este processo resulta em features que são intrinsecamente interpretáveis. Deste
modo, o conhecimento sobre o domínio do problema, impede a engenharia de features sem significado
durante o processo de FE..

Outro aspecto de FL normalmente não considerado nos métodos existentes, é a agregação de valores
de uma única feature por várias entidades de dados. Por exemplo, vamos considerar um conjunto de
dados sobre fraude de cartão de crédito. A quantidade média de transações anteriores de um cartão
é potencialmente uma feature interessante para incluir, pois transmite o significado de uma transação
’normal’. No entanto, isso geralmente não é diretamente inferível nos métodos de FL existentes. Refiro-
me a este método de FL como agregação de entidades, ou simplesmente agregação.

Por fim, apesar da natureza imprevisível dos conjuntos de dados da vida real, os métodos existentes
exigem principalmente features que tenham dados homogêneos. Isso exige que os cientistas de dados re-
alizem um pré-processamento do conjunto de dados. Muitas vezes, isso requer transformar categorias em
números inteiros ou algum tipo de codificação, como por exemplo one-hot encoding. Contudo, conforme
discutido acima, isso pode reduzir a interpretabilidade e o desempenho do pipeline.

A Programação Genética (GP), um método de ML, é também usado para FL e permite a criação
de modelos mais interpretáveis que a maioria dos métodos tradicionais. GP é um método baseado em
procura que evolui programas ou, no caso de FL, mapeamentos entre apresentas de espaços. Os métodos
de FL baseados em GP existentes não incorporam os três aspectos acima mencionados: o conhecimento
do domínio, a agregação e a conformidade com tipos de dados heterogêneos. Algumas abordagens in-
corporam algumas partes desses aspetos, principalmente usando gramáticas para orientar o processo de
procura. O objetivo deste trabalho é explorar se a GP consegue usar gramáticas para melhorar a qual-
idade da FL, quer em termos de desempenho preditivo ou de interpretabilidade. Primeiro, construímos
o Genetic Engine, uma framework de GP guiada por gramática (Grammar-Guided GP (GGGP)). O Ge-
netic Engine é uma framework de GGGP fácil de usar que permite expressar gramáticas complexas.
Mostramos que o Genetic Engine tem um bom desempenho quando comparado com a framework de
Python do estado da arte, PonyGE2.

Em segundo lugar, proponho dois novos métodos de FL baseados em GGGP implementados no Ge-
netic Engine. Ambos os métodos estendem o M3GP, o método FL do estado da arte baseado em GP.
A primeira incorpora o conhecimento do domínio, denominado M3GP com conhecimento do domínio
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(M3GP with Domain Knowledge (DK-M3GP)). O primeiro método restringe o comportamento das fea-
tures permitindo apenas interações sensatas, por meio de condições e declarações. O segundo método
estende X DK-M3GP, introduzindo agregação no espaço de procura, e é denominado DK-M3GP com
Agregação (DK-M3GP with Aggregation (DKA-M3GP)). O DKA-M3GP usa totalmente a facilidade de
implementação do Genetic Engine, pois requer a implementação de uma gramática complexa.

Neste trabalho, o DK-M3GP e DKA-M3GP foram avaliados em comparação com o GP Tradicional,
M3GP e numerosos métodos clássicos de FL em dois problemas de ML. As novas abordagens foram
avaliadas assumindo que são métodos autônomos de FL e fazendo parte de uma pipeline maior. Como
métodos FL independentes, ambos os métodos demonstram boa previsão de desempenho em pelo menos
um dos dois problemas. Como parte da pipeline, os métodos apresentam pouca vantagem em relação
aos métodos clássicos no seu desempenho de previsão. Após a análise dos resultados, uma possível
explicação encontra-se no overfitting dos métodos FL para a função de fitness e no conjunto de dados de
treino. O

Neste trabalho, discuto também a melhoria na interpretabilidade após incorporar conhecimento do
domínio no processo de procura. Uma avaliação preliminar do DK-M3GP indica que, utilizando a me-
dida de complexidadeExpression Size (ES), é possível obter umamelhoria na interpretabilidade. Todavia,
verifiquei também que a medida de complexidade utilizada pode não ser a mais adequada devido a es-
trutura de características em forma de árvore das características construídas por DK-M3GP que potencia
um ES. Considero que um método de avaliação de interpretabilidade mais complexo deve apontar isso.

Keywords: Feature Learning, Grammar-Guided Genetic Programming, Conhecimento do Domínio,
Agregação, Interpretabilidade
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Chapter 1

Introduction

1.1 Motivation

Artificial Intelligence (AI), and its subset Machine Learning (ML), are becoming more important for
our lives every day. They are present in our daily life, in various applications, such as automatic speech
recognition, self-driving cars, image-recognition, and object-detection. ML has been successfully applied
in areas such as health care [46], Natural Language Processing [12], finance [24], and marketing [13].

In a supervised context, ML models are trained with data, and thereafter used to predict behaviour of
future data. The combination of steps undertaken to build a fully trained and evaluatedMLmodel is called
amachine learning pipeline, or simply pipeline. Necessary steps of these pipelines include retrieving data,
cleaning and manipulating data, feature selection and feature construction, model selection and model-
parameter optimization, and model evaluation. The construction of ML pipelines is a challenging task,
with domain-dependent specificities. There are design-side challenges, hyperparameter optimization,
and implementation-side challenges.

When designing pipelines, choices must be made regarding the components to use and their order.
Even for ML experts, designing pipelines is a tedious matter [39]. Design choices require both ML ex-
pertise and domain knowledge, making the construction a resource-intensive process. Moreover, human
choices introduce bias, which could deteriorate performance and reduce fairness.

After design, pipeline parameters should be optimized to enhance performance. Parameter optimiza-
tion generally requires the sequential running and evaluation of the pipeline, incurring high computational
costs.

On the implementation side, developers may introduce bugs during the construction process. These
bugs can cost time and money to be fixed, but if undetected, they can compromise the robustness and
the correctness of the model, or introduce performance issues. Some examples of these bugs occur when
training and testing data are mixed [113], algorithms are wrongly implemented [99], local and ML li-
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brary environments do not align [111, 48], ML library’s frameworks are misused [23, 111, 48], software
engineering standards are neglected [88], etc.

To bypass these design and implementation issues, a new field of research has appeared: Automated
Machine Learning (AutoML). AutoML aims to automate ML pipeline design, parameter optimization,
and implementation. Hutter et al. [43] define AutoML as the area that studies the automatization of the
usage of ML technologies, and is, as such, “democratizing” ML.

An important part of ML pipelines is the manner in which the features of the data are manipulated.
In this work, we consider Feature Selection, Feature Transformation, and Feature Generation as defined
by Dong and Liu [26]. Dong and Liu [26] gather the used feature-manipulation techniques (and more)
under the umbrella term Feature Engineering (FE). Summarizing, FE aims to improve the quality of the
solution space [97] by selecting important features and constructing new, relevant features.

1.2 Problem Statement

There is no standard procedure to perform FE, as it requires “domain knowledge, intuition, and [...] a
lengthy process of trial and error” [26]. Altogether, it is a resource-intensive process, making automation
of FE a highly rewarding subarea of AutoML.Moreover, “automation of the [FE] process” [28] is claimed
as the reason for Deep Learning’s (DL) success. Here, the trained weights in DL can be considered
engineered features, and each network layer as a set of engineered features. In this sense, training the
weights is an automated feature engineering process, where each layer is performing FE on the previous
Layer, creating an immensely complex FE system. In this thesis, I define Feature Learning (FL) as the
area of automated FE.

An important metric of FE, and thus FL, is the interpretability of the learned features [26]. Inter-
pretability, which falls under Explainable AI (XAI), refers to how easy it is to understand what a feature
means. Scandals in AI, such as racist and sexist models [114], parallel to more philosophical consider-
ations [60], made the European Union move to propose legislation concerning models lacking explain-
ability [94]. Many widely used, classical methods lack interpretability and explainability, giving rise
to the new-found interest in XAI. For example, a drawback of using the layers of DL models is that
they are not interpretable [19]. Other popular methods, like Support Vector Machines (SVM) and the
feature-dimensionality reduction algorithm Principal Component Analysis (PCA) [110] also automati-
cally engineer features that are not interpretable [19].

Current FL research treats existing feature values regardless of their semantic meaning. For example,
engineering a feature that is the multiplication of the postal code with the age of a person is not a logical
usage of the postal code. Even though postal codes can be represented as integers, they should be treated
as categorical values. The prevention of senseless interactions between features enhances performance
by reducing the search space of possible features to those that make sense, and results to features that are
intrinsically interpretable. Encoding Domain knowledge in the FE process could prevent the engineering

2



Chapter 1 Introduction

of senseless features.
Another aspect of FL normally not considered in existing methods is the aggregation of values of

a single feature over multiple data entities. For instance, let us consider a dataset on credit card fraud.
The average amount of previous transactions from a card is potentially an interesting feature to include,
as it conveys a ’normal’ transaction. Nevertheless, this is generally not directly inferable in existing FL
approaches. I refer to this FE method as entity aggregation, or simply aggregation.

Lastly, despite the unpredictable nature of real-life datasets, existing methods mostly require input
features to have homogeneous data types. This requires data scientists to perform preprocessing to the
dataset. Often times, this requires transforming categories to integers, or some sort of one-hot encoding.
As discussed above, this might reduce both interpretability and performance.

One ML method, Genetic Programming (GP), can create interpretable models [7], and can also be
used for FL. GP is a search-based method that evolves programmes, or, in the case of FL, mappings
between features spaces. GP has been applied to FL multiple times successfully [9, 4, 5, 19, 38, 102].
Existing GP-based FL approaches are mostly designed for a limited set of data types, typically scalars
or vectors [6]. On the one hand, aggregation of the value of a single feature over multiple data entities
is generally not possible for scalar representations, but would be beneficial for certain datasets, e.g.,
time-series and panels. On the other hand, inter-scalar functions are generally not available in vector
representations. Overall, grammars have been used to incorporate domain knowledge into the search
process, but traditional GP requires input data to be homogeneous, and aggregating over historic data has
not been thoroughly studied.

1.3 Objective

The goal of this work is to explore if Genetic Programming can use grammars to improve the quality of
FL, either in terms of predictive performance or in interpretability. We propose to design a customizable
process in which practitioners can encode domain knowledge in the program, making the FL process
problem-dependent. In particular, we intend to improve the predictive performance and the interpretabil-
ity of feature types through the incorporation of domain knowledge. Furthermore, we introduce a gram-
mar with the ability to aggregate over historic data.

There are three prospected advantages of incorporating domain knowledge to the search process:
Firstly, feature interactions that do not make sense will be excluded from the search process, which I
expect to improve prediction performance. As an example, categorical features will not be multiplied by
continuous variables. Secondly, as learned features only conform to domain-specific rules, the learned
features are anticipated to be more easily interpreted. Finally, our approach is time-series aware, and
can perform aggregations over multiple data entities, assuming higher predictive performance due to
higher expressive power. This extra expressive power does not come at the cost of interpretability, as
aggregations are easily interpreted by domain experts.
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In this work, I introduce two approaches; the first only incorporates domain knowledge; and the
second incorporates both domain knowledge and the ability to perform aggregations. Since I based my
approaches on M3GP [73], I name these methods M3GP with Domain Knowledge (DK-M3GP) and
DK-M3GP with Aggregation (DKA-M3GP), respectively.

In this work, I also introduce Genetic Engine [29], a GP framework with a Strongly Typed GP
(STGP) [70] frontend and a Grammar-Guided GP (GGGP) [106] backend. Genetic Engine is used to
build a GP-based FL model that incorporates domain knowledge into the search space, allows for ag-
gregation, and works for any data type. Genetic Engine is also a contribution in light of the need of GP
to be “integrated into standard software development infrastructure” [91]. I introduce Genetic Engine
more elaborately in chapter 5. In the context of FL, we implement both DK-M3GP and DKA-M3GP in
Genetic Engine. As such, we use Genetic Engine to experiment with (1) implementing domain-specific
knowledge to enhance performance and feature interpretability, (2) aggregation over multiple entities to
improve performance and feature interpretability, and (3) combining different data types to allow hetero-
geneous features.

In summary, this work has the following contributions:

1. Genetic Engine, a GP framework aimed at allowing a larger audience the benefits of GP and its
various adversaries.

2. A comparison between M3GP implemented in Genetic Engine and M3GP implemented by [9]. By
comparing Genetic Engine with a respectable implementation, I justify using Genetic Engine as an
acceptable tool for GGGP.

3. The application of Genetic Engine to the problem of FL on two heterogeneous, complex datasets.

4. The implementation of DK-M3GP andDKA-M3GP inGenetic Engine. Thesemethods incorporate
domain-specific knowledge, entity aggregation and heterogeneous data types. Given the domain-
specific knowledge, this method is generalizable for other datasets.

5. Researching the impact of domain-knowledge incorporation, entity aggregation, and heteroge-
neous data types to GP-based FL.

1.4 Outline

The rest of this document is structured as follows. In chapter 2, I introduce the building blocks used
withinML pipelines. Furthermore, I elaborate on the basic concepts of GP. In chapter 3, I discuss existing
research on the area of FL, and, in particular, the area of GP-based FL, as well as different search-space-
restricting techniques within GP. In chapter 4 I introduce a regression problem, through the BoomBikes
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dataset [10], and a classification problem, through the credit-g dataset [27]. Genetic Engine is introduced
elaborately in chapter 5. Chapter 6 introduces Traditional GP, M3GP, and my proposed approaches DK-
M3GP and DKA-M3GP. In chapter 7 I present the results of my thesis.
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Chapter 2

Background

In this chapter, I introduce topics crucial to this thesis. Firstly, I introduce basic concepts of Machine
Learning (ML) in section 2.1. In section 2.1.1, I introduce a subset of ML: search-based methods, with a
focus on GP. Finally, I introduce formal grammars in section 2.2 which I will later use in GGGP.

2.1 Machine Learning

There are two main areas in ML, supervised and unsupervised. Unsupervised ML aims to extract un-
known relations between individuals from a dataset. Supervised ML concerns learning models to predict
unknown features from known features. These unknown features are called the target features. Models
are learned through training on a subset for which the target features are known.

During training, the target features supervise the model on what predictions are correct and incorrect.
Once trained, the model is tested on a test set, of which the target features are not given. A model that
performs well on a training dataset does not necessarily perform well on test data. When the model is
optimized for the training dataset, but does not generalize to the test data, themodel is said to be overfitted.

FL is a key part of ML, which aims to create new features by combining existing features and oper-
ators. FL is the automation of FE, which is an umbrella name for various methods. Methods are Feature
Selection (FS), Feature Transformation (FT), and Feature Generation (FG), as defined by Dong and Liu
[26]. FS addresses the reduction of the number of features in the data, by only selecting the most relevant
ones. FT, also known as Feature Construction, combines different features through arithmetic operations
to find new relevant features. An example of FT is the Body Mass Index (BMI), which combines sex,
weight and height to create a new feature. The BMI is more compact than the separate features, and
contains the necessary health information, allowing for quick consultation. FG extracts features from the
whole data set to be assembled in new relevant features. An example of FG is the aggregation method
discuss in chapter 1. There are other methods, but for this thesis, only FS, FT and FG are relevant.

The usefulness of a feature is measured by the improvement at solving the problem at hand, but its
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interpretability is also important [26]. Interpretability falls under Explainable AI (XAI), discussed in
section 2.1.3.

2.1.1 Search-based methods

In comparison to other optimization methods, a benefit of search-based methods is that the shape of the
solution must not necessarily be given beforehand. Only the solution space must be defined. The solution
space consists of two disjoint sets, the terminal set and the function set. Functions operate on terminals
and function results, whereas terminals do not operate on anything.

Let’s look at the example of symbolic regression. Given a dataset D with features x0, . . . , xn and
target values Y , a symbolic regression solution is a combination of the features x0, . . . , xn, using a prede-
fined set of operators and possibly scalar values. For this example, let the function set be a set of operators,
say {+, ∗}, and let the terminal set be the set of features and scalar values, i.e., {x0, . . . , xn} ∪R. Given
an error function, the aim of symbolic regression is to find a solution S such that the error between S(d)
and yd ∈ Y is minimized, for all d ∈ D. Possible solutions are

S1 : y = 2x0x1x3 + x4 − 3x1x5,

S2 : y = 11x31 + 5.2x62, and

S3 : y = x20 − x0x1 + x21.

If there are finite possible solutions, one can simply generate all and see which one is best. However, this
can be extremely expensive, especially for complex solution spaces. Moreover, the number of possible
solutions are not necessarily finite.

Search-based methods aim to efficiently find the best possible solution. Checking all solutions is
generally not feasible, so, in practise, finding a well-performing solution is good enough. The most basic
search-based method is Random Search (RS). RS randomly selects solutions from the solution space until
some criteria are met.

2.1.2 Genetic Programming

Genetic Programming (GP) [56] is a particular search-based method, inspired by the concept of natu-
ral selection. In the following, naming and explanation ideas are taken from A Field Guide to Genetic
Programming [83].

Given a problem and a solution space S, a GP algorithm needs three components. Firstly, it needs
a way of randomly generating individuals from S. Generally, individuals are represented as trees or as
strings, representing a possible solution. Secondly, it must be provided with an evaluation method for
individuals. This method is called the fitness function, and measures an individual’s capability of solv-
ing the problem at hand. Thirdly, we require a method for randomly changing individuals within S.
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There are two generally used operations for this, mutation of single individuals, and crossovers between
individuals, i.e., combining two individuals to create a new one. The above operators are called evolu-
tionary operators. The individuals that are used to construct new individuals are called the parents, and
the obtained individuals are called the children. These operators can be used separately, or they can be
combined.

A GP algorithm starts by generating a population of individuals. It then iterates over generations,
where in each generation a new population is produced. The new individuals of the new population
are created through three different methods. Firstly, some individuals are directly moved to the next
generation. This is called elitism, and the number of individuals directly moved is called the elitism size.
Secondly, some individuals are created through the evolutionary operators. Two probability parameters
are used to determine whether two parents undergo crossover and/or mutation. These parameters are
called crossover probability and mutation probability. Finally, the population is completed by adding
new, randomly generated individuals. This is called novelty, and the number of newly created individuals
is called the novelty size. After each generation, the goal is to achieve an improvement of the population’s
fitness.

Being a search-based method, GP can benefit from restricting the search space. There are plenty of
methods to do so (more on this in section 3.1). In this thesis I use grammars to restrict the search space
in a method called Grammar-Guided GP (GGGP). In section 2.2 I introduce grammars.

2.1.3 Metrics

2.1.3.1 Performance

In ML, prediction metrics (e.g., accuracy, mean-squared error (MSE), F1 score, area under the curve) are
used to evaluate the performance of solutions. More specifically, the prediction performance is evaluated
against time, the number of evaluations, or the number of generations. In this thesis I use the MSE
(definition 1) to evaluate regression solutions, and the F1 score (definition 2) to evaluate classification
solutions.

Definition 1. Given a dataset with n data points, with ground truth ygt. The MSE of solution S with
predictions ypred is then

MSEM =
1

n

n−1∑
i=0

(ygt[i]− ypred[i])
2.

The F1 score combines precision and recall. For a classC and a solution S, let the true positives (tpC)
be the set of data points that were correctly classified by S as being of C, and let the false positives (fpC)
be the set of data points that were wrongly classified by S as being of C. The precision of S for class C
is then pS,C = tpC

tpC+fpC
. Now, let the false negatives (fnC) be the set of data points that were wrongly

classified by S as not being of C. The recall of S for class C is then rS,C = tpC
tpC+fnC

. A disadvantage
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of both precision and recall is that they focus on part of the predicted values, making it possible to have
overall badly performing models with good prediction and recall scores. To remediate that, the F1 score
combines the two scores.

Definition 2. Given a dataset with class C, and a classification solution S, with precision pC and recall
rC , the F1 score of S for class C is

F1,S,C = 2 ∗ pC ∗ rC
pC + rC

.

The overall F1 score of S can be defined in multiple manners. The binary method is only applicable
to binary classification, in which one of the classes is chosen to be the positive class, and the overall F1
score equals the F1 score of that class. In the weighted method, the overall F1 score is the weighted mean
of the F1 scores of all the classes. It is weighted on class size.

As our dataset has a binary class, we can use both methods. Both methods have advantages and dis-
advantages. The binary method does not include true negatives (the set of data points that were correctly
classified as being from the negative class). The weighted mean might push for the F1 score of the dom-
inant class to be given too much importance. In line with the implementation of Batista and Silva [8], I
used the weighted average. Oftentimes, I append results using the binary method to support the narrative.

To conclude, a lower MSE is better, as the error is smaller. The minimum and best MSE is 0. A
higher F1 score is better, with a perfect score of 1. The lowest F1 score is 0.

2.1.3.2 Interpretability

In many domains where accountability is required, such as policy, medicine, defence and critical infras-
tructures, it is necessary to explain how decisions are made [60]. As such, solutions are required to be
interpretable. Due to recent scandals in AI, such as racist and sexist solutions [114], there is a push for
legislation concerning the use of non-interpretable solutions [94]. Furthermore, well-predicting solutions
have learned something about the data, and thus the domain. The understanding of the decisions of the
solution can thus contribute to domain knowledge.

Recently, there was a call for GP solutions to be evaluated based on their complexity and inter-
pretability [105], as GP solutions are naturally interpretable. Interpretability, and XAI in general, is sub-
jective [62, 115]. There are many stakeholders in XAI [96], making it hard to take a well-representing
user study. One convenient metric to measure complexity, a key part of interpretability, is the expression
size (ES), in this case, the number of nodes that make up an expression. GP solutions that are too complex
have a reduced interpretability. ES is convenient as different solutions can easily be compared. Still, it
does not convey the complexity of interpretability, but, in lack of a better metric, we will use this metric
as a basis. In addition to ES, we will have a discussion on interpretability, in line with the proposal of
Liao et al. [62].

ES was used by Batista et al. [9] and for the GECCO’22 Interpretable Symbolic Regression for Data
Science Competition [55].
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1 S ::= <Sa>
2 | <b>
3 <a> ::= "ha"
4 <b> ::= "ho"
5 | "hi"

Listing 2.1: Example of a simple grammar.

2.2 Formal Grammars

Formal grammars, or just grammars, describe how to form words, or strings, according to the syntax of
a language, given the symbols of that language, also known as its alphabet. Grammars can be used to
formally define a solution space, to avoid exploring programs that are not valid in the domain. This way,
a solution space can be more-efficiently traversed.

Grammars consist of a set of production rules that specify how a particular word on the left-hand side
(LHS) of the production can be rewritten into another word on the right-hand side (RHS). Production
rules are defined by a set of terminals symbols, a set of non-terminal symbols, a set of production rules,
and a starting symbol. Rewriting starts from a starting symbol. Rewriting is straight-forward and can
best be shown through an example. Let’s look at the example grammar in listing 2.1 which is written in
Backus-Normal-Form (BNF) [52].

From the starting symbol S, there are two production possibilities, either Sa or b. Productions are
denoted by ::=. This grammar is recursive, as one production possibility ofS containsS. As the grammar
is recursive, a productionmight never stop. Choosing the first possibility, Sa, leaves us with two symbols,
that both have different production possibilities, S and a. We can rewrite S as Sa or as b, and a as ”ha”.
As the production Sa of S is recursive, the production process will only end once b is chosen. Possible
productions are baaa, ba, baaaaaa, and many more. baaa would then produce either ”hohahaha” or
”hihahaha”.

In this thesis, I use Context-Free Grammars (CFGs). CFGs distinguish themselves with productions
that do not rely on their context, i.e., surroundings. In other words, each production rule only sees a single
non-terminal symbol at the LHS. CFGs are more restricted than general grammars, but are much faster
in terms of computing time.

11





Chapter 3

Related Work

In this chapter, I discuss research related to this thesis. I start by introducing solution-space restriction
methods in GP in section 3.1. In section 3.2, I introduce some basic AutoML concepts. I then move on
to existing FL research in section 3.3, and I discuss GP-based FL in section 3.4. Finally, I introduce
already-existing, GP-based FL frameworks in section 3.5.

3.1 Constraining the Solution Space of GP

As GP is a search-based method, its main drawback is the time needed to explore vast solution spaces.
To restrict the solution space, multiple methods have been introduced [35, 16]. Most-commonly used are
Strongly Typed GP (STGP) [70] and Grammar-Guided GP (GGGP) [106]. STGP uses types to restrict
interaction between functions and terminals, thus only defining valid trees at tree construction. GGGP
uses a grammar to define what are valid trees. To restrict the solution space in this work, I use the GGGP
approach through Genetic Engine, which uses an STGP front-end for the grammar definition. Genetic
Engine is individual-representation independent, allowing for the use of various GGGP methods, such
as Context-Free Grammars GP (CFG-GP) [108], Grammatical Evolution (GE) [87], and Structured GE
(SGE) [63]. A more elaborate discussion on different GGGP methods is given in section 5.2.

Solution-space restriction can also be done by validating the tree before fitness evaluation [67]. By
assigning invalid trees the worst possible fitness, they are naturally not selected throughout the search
process. STGP and GGGP are more efficient because they only generate valid trees at each branch, so
there is no time wasted generating full invalid trees, only to be discarded right away. Another approach
is not to discard invalid trees, but to repair them [87].
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3.2 AutoML

AutoML, and more particularly FL, is a broad area. He et al. [39] split ML pipelines into four mod-
ules: data preparation, FL, model generation, and model evaluation. They, and others [116, 43], consider
any automatization within any of these parts as AutoML. Extending their argumentation, libraries as
scikit-learn [82] and Keras [20] could be considered AutoML, even though they only include limited
pipeline-optimization functions. There is a broad selection of AutoML frameworks that aim to opti-
mize the complete ML pipeline. Some use GP [76, 22, 69] and others use different optimization meth-
ods [33, 98, 37, 50], like Bayesian optimization, meta-learning and ensemble construction. Furthermore,
there have been extensive surveys and other resources concerning AutoML recently, that encompass all
AutoML subfields [39, 116, 43]. In this work, I focus only on FL and, more specifically, on GP-based
FL.

3.3 Feature Learning

Feature Learning (FL)1 can improve the quality of the solution space by “decreasing the dimensionality,
speeding up the learning process, and enhancing [the] algorithm’s performance” [97]. Simply said, FL
aims to create a ’better’ feature set from the original features. Generally, ’better’ refers to either a simpler
feature set, a feature set that improves a prediction metric, or a feature set that is more easily interpretable.
The automation of FL is considered “one of the holy grails of [ML]” [25], and it leads to the discovery
of hidden relations between features [90].

A famous automated FL method is Principal Component Analysis (PCA) [110]. PCA is based on
formatting data to a smaller dimension space. The variance of the data over each dimension expresses
something over the importance of that dimension. Values for less important dimensions can be discarded,
reducing the number of features. Similarly, Self-Organising Maps [53] create lower-dimensional repre-
sentations of data. Both methods fail at allowing the implementation of domain-specific knowledge, the
input to be heterogeneous, and entity aggregation. Furthermore, the obtained features are not very hard
to interpret.

Two well-known FL frameworks are FeatureTools [51] and AutoFeat [42]. FeatureTools was created
to easily combine different relational datasets and extract aggregated features from them. One interesting
aspect of the framework is the possibility to aggregate past data based on a feature value, and incorpo-
rating it into a new feature. Automatic optimization of the feature set in FeatureTools is very basic, only
incorporating a simple feature selection method. On the other hand, AutoFeat works on non-relational
data, and doesn’t allow for aggregations. Interestingly, AutoFeat allows a minimal implementation of
domain knowledge to disallow nonsensical features. AutoFeat supports some feature optimization func-
tionalities based on sklearn’s Lasso method LassoLARS [100].

1For a formal definition and broad survey of FL, see [92].
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3.4 Feature Learning using GP

Early examples of GP for FL used a simple function set and obtained promising results [90, 34]. Gen-
erally, the function set consists of addition, subtraction, multiplication, and division. The terminal set
contains all the possible features, and possibly constants. Each individual represents a single learned
feature, which is evaluated on its ability to represent the whole data point.

Later, more complex work on FL using GP showed GP’s power to enhance classification perfor-
mance [101] and its ability to construct complex relations [85]. In this section, we discuss different
approaches to GP-based FL.

Individual shapes In GP-based FL individuals generally have either of two shapes, “Single-[Feature]-
per-Individual” (SFI) or “Multiple-[Features]-per-Individual” (MFI) [36]. SFI individuals evolve a single
feature from the original feature space, whereas MFI individuals evolve a set of features. Consisting of a
single feature, SFI individuals are overall simpler to interpret, but cannot easily find complex inter-feature
relations like MFI. Performance of SFI and MFI was compared by Tran et al. [103] and Ain et al. [3],
and MFI was concluded to perform better.

Fitness functions Across GP applications, fitness functions differ vastly. Espejo et al. [30] identify
two approaches to defining the fitness function, the filter approach and the wrapper approach. These
approaches are distinguished by whether the fitness function is model-dependent, or not. Examples of
the wrapper approach use decision trees [2, 103] and XGBoost[19]. The filter approach normally uses an
independent statistic to measure fitness. Examples of statistics used in the filter approach are Information
Gain [80, 72, 71], Fisher’s criterion [38, 1], the Gini Index [72, 71], and class-separation [9]. The filter
approach is said to be more efficient [74, 80], and, being model-independent, it introduces no bias to the
FL process. Furthermore, Tran et al. [103] researched and compared a filter and a wrapper approach,
returning better results for the filter approach.

Support of domain knowledge Incorporating domain knowledge in GP-based FL can enhance perfor-
mances and interpretability. Domain knowledge for operator definition has improved performance [61].
By integrating domain knowledge into a grammar, Cherrier et al. [19] used GGGP to improve perfor-
mance and interpretability for FL. Sadly, the method is not general, but domain specific.

Support of heterogeneous input data Interestingly, FL function and terminal sets are generally similar
throughout research [30], only incorporating homogeneous input data. Breaking with the homogeneous-
input-data convention is Vectorial GP (VE-GP) [6], a GP-based framework specifically created for panel
datasets. They define panel datasets as “[collections] of observations for multiple subjects at different
equal-spaced time intervals” [6]. VE-GP supports solving problems that consist of both scalar and vector
data.
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Support of entity aggregation Another interesting implementation detail of VE-GP, is that it allows
aggregation of multiple values of a subject over time. Despite possible benefits, VE-GP does not extend
to aggregating over other features than the subject, nor does it support other data types than scalars and
vectors. It also requires the to-be-aggregated data to be available as a vector. If this data is historic data
available in other parts of the dataset, then this requires a preprocessing step. Furthermore, the data must
be available for each data point, which results to duplicate data.

Another attempt at automatically aggregating entities was done by Song [93] in AutoFE. Firstly, new
features are exhaustively generated by combining terminals through a set of operators. AutoFE generates
new features by (1) discretizing them, by (2) combining features through standard arithmetic operators,
and by (3) feature aggregation after grouping on another discrete feature. The generated features then
undergo an evolutionary-based FS process. This process indirectly optimizes a feature set by first expand-
ing the feature set and then selecting relevant features. My method directly optimizes the aggregation
operator itself. As such, not all feature combinations need to be generated beforehand, making the pro-
cess more efficient. Furthermore, in AutoFE the aggregation can only be done over all data, whereas in
my method I aggregate over historic data. Moreover, I evolve the number of data points included in the
aggregation, making my method more dynamic.

3.5 Existing GP-based FL Frameworks

Many GP-based FL methods have been introduced. Muñoz et al. [73] proposed M3GP, a multi-class
classification GP method that extends on previous work called M2GP [45]. It distinguishes itself with its
individual representation, which is an MFI representation, and its wrapper fitness function. The fitness
function first calculates the cluster centroids of each class in the new feature space. Using theMahalanobis
measure, each data point is assigned the class of the closest centroid. The fitness is the accuracy of this
classification. M3GP has been shown to have excellent performance.

Two years later, Cava et al. [17] presented M4GP, improving M3GP. It introduces a stack-based pro-
gram representation, multi-objective parent-selection techniques, and an archiving strategy. The stack-
based program representation contributes to simpler models, making M4GP more efficient. The differ-
ent multi-objective parent-selection techniques have different purposes. Where lexicase selection [95]
rewards solutions that perform well on hard cases (generally data points), age-fitness Pareto survival
prefers solutions in less explored areas of the search space, enhancing the diversity of populations. Above
enhancements of M3GP implemented in M4GP were not part of this thesis.

Feature Engineering Automation Tool (FEAT) [58] is a multi-objective, GP-based FL method that
learns features for a linear regressionmodel. It combines six different perturbationmethods, fourmutation
variations, and two crossover variations. Four objective functions are incorporated that aim to optimize
three solution aspects; the mean square error; the complexity of the solution; and the disentanglement of
the solution. Complexity is optimized based on a function that sums the complexity weights of operators
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within a subtree. Here, the authors assign the complexity weights. Disentanglement is measured through
two functions, one measuring bivariate correlations; the other captures higher-order dependencies.

Notice that measuring complexity and interpretability are recurring aspects of GP-based FL methods,
as they are paramount advantages of using GP for FL. In addition to above methods to improve on these
aspects, adding a preference to smaller trees in the fitness function is a usual sight in literature, for example
done by Tran et al. [102] and Li and Yang [61].

Like FEAT, there are other GP-based symbolic regression tools, such as Python’s GP-GOMEA [104]
and C++’s OPERON [15]. These tools perform very well on symbolic regression, but don’t directly
support FL.
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Case Studies
To guide the explanation of the method, we are considering two ML problems as case studies. The

first problem is a regression problem for the prediction of bicycle usage. The second one is a classification
problem to predict whether the credit risk of a person is high or low.

4.1 The BoomBikes dataset

The BoomBikes dataset [10] was created for the fictitious bike-sharing company BoomBikes after the
Corona pandemic revenues dropped, and BoomBikes wanted to have a clearer view on the demand for
shared bikes. With the dataset made available, BoomBikes aimed to obtain an interpretable prediction
model that would (1) “predict demand with high accuracy”, and (2) give “insight into the significant
relationships that exist between demand and available predictors”. The resulting analysis consists of a
lengthy, manual process of, amongst other steps, data processing, outlier correction, and feature selection,
before a linear regression model is trained. The final regression model is

cnt =2392.0791 + 1946.7864 yr + 444.4907 Saturday + 466.0136 winter

− 890.3115 july − 1063.6669 spring + 296.8008 workingday

− 1749.8275 hum + 4471.6602 temp − 1110.3191 windspeed

− 1273.7519 light snow/rain.

Notice that the model is not very complex and gives some insight into the effect of certain feature values.
In this thesis, I am not further concerned with linear regression.

4.1.1 Dataset specifics

The dataset contains 730 instants and 16 features: instant, dteday, season, yr, mnth, holiday, weekday,
workingday, weathersit, temp, atemp, hum, windspeed, casual, registered, cnt. Feature cnt, a discreet,
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positive, integer value, is the feature we want to predict (see it depicted over time in fig. 4.1). It is the sum
of the features casual and registered. Because predicting cnt would be easy from those features, they are
discarded, leaving us with 13 features and the target. The first 547 (~75%) instants are used as training
set, and the last 183 (~25%) instants comprise the validation set.
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Figure 4.1: Bikes counted over time.

The BoomBikes dataset is a time series with seemingly homogeneous data, where all data are floats.
As such, general FL frameworks can be applied to the dataset. Further inspection unfolds that certain fea-
tures should be considered as categories or booleans, e.g., season, day of the week and holiday. Regarding
this as domain knowledge, I can use my method to acknowledge these features as categories instead of
floats, and in this way incorporate domain knowledge. Furthermore, my method can use historic data
in the construction of new features, as it is a time series. Historic data can be aggregated with respect
to any feature, or not. Altogether, the BoomBikes dataset allows us to test all aspects of my method,
incorporating domain knowledge, and entity aggregation.

4.1.2 Data analysis

The data is very irregular through time, as you can see in fig. 4.1. Each time instant concerns a day.
The data encompasses two years, starting on January first, 2018. A summer peak is visible twice, with
a valley around the end of the year, the 365th day. Furthermore, there is a clear increase visible in the
second year in comparison with the first.

Let’s look more in-depth at some features in fig. 4.2. Figure 4.2a repeats the information retrieved
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from fig. 4.1, namely more bikes counted during the summer. In fig. 4.2b we see relatively fewer bikes
counted on Sunday. Figures 4.2c and 4.2d show the same information, more bikes are counted on working
days and non-holidays. Differences are minimal, except for the difference in bikes counted on holidays
and non-holidays.
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(a) Bikes counted in each month.
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(b) Bikes counted on each day of the week.
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Figure 4.2: Bike count analysis for different kinds of days.

4.2 The credit-g dataset

The credit-g dataset [27] contains financial and general attributes of a group of people from Germany.
People are classified as low or high credit risks. I took the dataset from the PMLB benchmark [77]. No
solutions are proposed for the classification of this dataset.
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4.2.1 Dataset specifics

The dataset contains 1000 data points and 21 features: checking_status, duration, credit_history, purpose,
credit_amount, savings_status, employment, installment_commitment, personal_status, other_parties,
residence_since, property_magnitude, age, other_payment_plans, housing, existing_credits, job, num_dependents,
own_telephone, foreign_worker, target. Feature target is a boolean value, stating whether a person has
a high (0) or a low (1) credit risk. The dataset is imbalanced, as ~70% is classified as low-risk, versus
~30% being classified as high risk. The first 750 (75%) instants are used for training the models, and the
last 250 (25%) is used for testing.

In the PMLB benchmark all data is numerical, so also this dataset. However, the original dataset
source shows that most data is not numerical, but categorical. I define this information as domain knowl-
edge, and, using my method, I incorporate the information in the search process. The dataset is a panel,
as each data point specifies an individual. Aggregation is done on previously analysed individuals in the
dataset.

4.2.2 Data analysis

In fig. 4.3, I take a closer look at four features and the distribution of risk over its categories. In fig. 4.3a a
clear correlation between one’s credit history and risk score. The better is one’s credit history, the lower
is one’s the risk. Similar sensible trends are seen in figs. 4.3b and 4.3c; owning a house results to lower
credit risks in comparison to renting or free housing; and unemployed individuals tend to have higher
risk in comparison to employed individuals.

Figure 4.3d depicts something especially peculiar. Throughout the data, women face higher risks
than men, on average. In a world where women are systematically underpaid in comparison to men [11],
occupy less prestigious jobs, and have a harder time to be promoted [75], it is expected for women to be
classified, on average, as being a bigger risk to provide credit to. Even so, one’s sex has nothing to do
with one’s credit risk; the data is only the symptom of a sexist society. AI models that use the sex of an
individual to determine their risk, indirectly inherit this sexism. In AI models that lack interpretability,
these undesired side effects can go unnoticed. In my method these issues can be easily spotted and
resolved.
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Figure 4.3: Risk analysis for different individual features.
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Genetic Engine

Genetic Engine [29] is a GGGP framework that allows the user to encode the constraints of a problem
independently of the individual representation. In this chapter, I will start with presenting the motivation
for Genetic Engine and some relevant features of Genetic Engine in section 5.1. Then I will discuss
search-space restrictions in section 5.2, and how to use the framework in section 5.3. In section 5.4 I
show the results of comparing Genetic Engine to PonyGE2 [32], the most widely used GGGP framework
in Python. Finally, I list my contributions to Genetic Engine in section 5.5.

5.1 Motivation and overview

Genetic Engine was developed as an all-purpose GGGP framework that has an only Python front-end.
The aim of Genetic Engine is to create a high-performance GGGP framework that can easily be used
by data scientists. Genetic Engine distinguishes itself from other GGGP frameworks because of three
characteristics.

Firstly, users can define grammars using Python classes in a STGP way. As the fitness function is
also defined in Python, Genetic Engine is a Python-native library. This allows people without knowledge
of BNF, or any of its extensions, to implement GGGP easily. Moreover, using Python allows the use of
standard development tools like linting and type checking, improving the usability of the framework, one
of the key challenges for GP [89, 79].

Secondly, Genetic Engine is individual-representation independent, allowing users to choose different
individual representations to their convenience. Users can even define new individual representations to
their convenience.

The third notable feature is the implementation of Meta-Handlers, a dynamic refinement [35] that
restricts the nodes of the tree.
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5.2 Search-space Restrictions

Being a search-based method, GP gains from the restriction of the solution space. As discussed in sec-
tion 3.1, there are various methods to do so. Even though the front end of Genetic Engine uses types,
as in STGP, the actual algorithm works in a GGGP manner, i.e., it uses grammars to guide the search
process. In this section, I introduce GGGP.

As discussed in section 2.2, a grammar is a set of rules for rewriting objects, conforming to some
syntax. In GGGP, grammars are used to define what valid individuals look like. In other words, the
grammar is a set of rules for creating individuals, and, as such, defines the validity of an individual. There
are multiple GGGP methods. The most-widely used methods are the original Context-Free Grammars
GP (CFG-GP) [108] and Grammatical Evolution (GE) [87]. Both use Context-Free Grammars to guide
the search process, even though the names suggest otherwise. They mainly differ on the individual-
representation method. The individuals in CFG-GP are syntax trees, of which the construction is guided
by a grammar. GE uses a linear string to represent an individual, which is called the genotype of the
individual. Starting from the grammar’s starting symbol, the characters of the linear string can be used to
select productions step by step. This results in a syntax tree, i.e., the actual individual, or the phenotype.
The mapping of the genotype to the phenotype is called the genotype-to-phenotype mapping.

Research has shown that CFG-GP performs better than GE [107, 86, 65]. Furthermore, GE faces
issues with the locality of its off-spring [86], the redundancy in its genotype [78, 86], and invalid individ-
uals [80]. Still, GE is one of the most widely used GGGP methods[66]. Ingelse et al. [47] have argued
that this is mainly because of the simplicity of implementation and performance gains of the evolutionary
operations on linear strings, the representation of GE individuals. Another reason is that, due to the de-
coupling of the search algorithm and the problem at hand through the genotype-to-phenotype mapping,
algorithms can be reused for different use cases. These implementation advantages come at a cost in
performance. As part of this thesis, [47] discussed the advantages and disadvantages of both CFG-GP
and GE, and introduced various advantages of CFG-GP not proposed before in research.

Recently, Structured GE (SGE) [63] was proposed to alleviate the above-mentioned issues of GE.
SGE uses a different individual representation from GE. SGE structures the linear string, separating it
into substrings specific to each production rule. If a production rule can be passed only once, the substring
has a length of one, if it can be passed twice, the substring has a length of two, etc. This method requires a
preprocessing step to find the maximum length of each substring. Furthermore, notice that for recursive
grammars, one must predefine the maximum recursion for each recursive step, as to prevent a never-
ending production to be constructed. Overall, SGE wins on locality and reduces redundancy, but loses
on simplicity when compared with GE.

Lourenço et al. [64] later proposed Dynamic SGE (DSGE), in which the substrings are grown as
needed while constructing individuals. DSGE gains on locality and reduces redundancy in comparison
with SGE. It requires a user-defined maximum tree depth instead of a maximum recursion for each re-
cursive production, making it more-easily comparable with other GGGP methods.
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Genetic Engine focusses on CFG-GP, but also supports GE and an SGE version. As the user can eas-
ily switch between individual representations, the implementation is said to be individual-representation
independent. The magic of individual-representation independence in Genetic Engine derives from the
equivalence between, on the one hand, generating an individual in CFG-GP based on a sequence of
randomly generated production choices, and, on the other hand, the phenotype-to-genotype mapping in
(S)GE based on a beforehand-generated (set of) linear string(s) that define the choices. In other words,
individual generation in CFG-GP and genotype-to-phenotype mapping in GE and SGE are implemented
by the same code. As such, Genetic Engine can be used to fairly compare different individual represen-
tations in GGGP.

5.3 Genetic Engine usage

In this section, I elaborate on show to use Genetic Engine. Genetic Engine requires the user to define two
things in Python; the grammar through Python classes; and a fitness function to guide the search process.
Grammars can have more expressive productions, through the usage of Meta-handlers. Finally, I show
all the features that Genetic Engine currently supports.

5.3.1 Grammar definition

The grammar is defined through Python classes. Classes represent terminal and non-terminal nodes,
one of which needs to be identified as the starting symbol. From the starting symbol and the nodes,
Genetic Engine automatically extracts the grammar. See listing 5.1 for a simple classification example.
For simplicity, the example only contains the summation and multiplication operators ”+” and ”*” as
non-terminals, and the dataset features and integer constants as terminals.

The Number node is the starting symbol and extends all other nodes. Through this extension, Genetic
Engine denotes the productions of a class. Looking at the Plus node, we see it has two arguments, left
and right, both Numbers. Evaluating the Plus node evaluates both arguments and sums them. The other
function nodeMultiply is implemented equivalently. The terminal nodes, Variable and Literal both have
singleAnnotated arguments, which implementsMeta-Handlers. In section 5.3.3 I discussMeta-Handlers.

Number is the starting symbol, and, together with the nodes Plus, Multiply, Variable, and Literal, the
grammar is extracted by the extract_grammar function. The extract_grammar function iterates over all
the nodes and registers its possible productions and the productions it extends. See listing 5.2 for the
extracted grammar in BNF.

As is standard in GGGP, Genetic Engine now used the grammar to generate trees. When using CFG-
GP, the grammar is used directly at individual generation, when generating tree individuals, and for the
evolutionary operations. On the other hand, when using GE or SGE, it is only used for the phenotype-to-
genotype mapping.
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5.3.2 Fitness function definition

The fitness function definition is quite straight-forward. The fitness function should take in a candidate
solution and return the fitness of that candidate. See listing 5.3 for an example of a fitness function for
classification. First, the solution is evaluated on the preprocessed dataset of X, obtaining y_predicted, the
predicted target values of each data point in X. Then y_predicted is compared to the ground truth y using
some metric, in this case the F1-score. Finally, the F1-score is returned as the fitness.

Here we quickly return to the evaluation of the Variable node in listing 5.1, which returns a column of
the DATASET. This is a simplified way notation of the true implementation. The data is actually passed
through the tree with the evaluation functions. This is done using Python kwargs. The preprocessing in
line 5 refers to creating a dictionary of the dataset that can be passed through the evaluation functions.

5.3.3 Meta-Handlers

A novel approach introduced in Genetic Engine is the use of Meta-Handlers. Meta-Handlers allow the
user to overwrite the production rules to a more informative format, i.e., they allow the introduction of
Dependent Types. For example, in line 27 of listing 5.1, you see the integer type Annotated with an
IntRangeMeta-Handler. The IntRangeMeta-Handler allows the user to define maximum and minimum
values for the integer type, in this case 0 and 9. At tree generation, the integers selected for this production
will be in between 0 and 9. See listing 5.4 for the implementation of the IntRangeMeta-Handler. Other
Meta-Handlers are easily created by the user.

Another Meta-Handler can be found in line 21 of listing 5.1. Here, the user defines which columns
of the data are included in the classification process. Meta-Handlers are not limited to defining generate
methods, but can also specify mutate and crossover methods. These replace the standard evolutionary
operations throughout the evolutionary process.

Meta-Handlers can also be used to implement specific grammars. For example, Meta-Handlers may
define probabilistic grammars as used for Probabilistic GE (PGE) [68]. Furthermore, they may be used
to introduce Refined Types in the grammar, which can be beneficial for GGGP [35]. Adding Refined
Types is a prospected enhancement for Genetic Engine.

5.3.4 Genetic Engine features

Genetic Engine includes three search-based algorithms: Random Search, Hill Climbing, and GP (see
section 2.1.1 for an introduction). The GP algorithm is the most elaborated. It is contained within a GP
object, which can be configured with several options, shown in table 5.1. Furthermore, the CFG-GP
implementation supports in-node storage, as proposed by Ingelse et al. [47] as part of this thesis. The
in-node storage is currently used to keep track of the number of nodes and the depth of each individual.
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In the future, we intend to boost the performance of Genetic Engine by saving node evaluations in each
node.

Except for the possibility for users to implement their ownGGGPmodels, Genetic Engine comes with
some off-the-shelf features. Firstly, there are many grammar terminals and function predefined for sym-
bolic regression, string matching, basic arithmetic and programme synthesis. Secondly, I implemented
a GP-based symbolic regression function compatible with the scikit-learn [82] estimator API. This was
done in light of the SRBench Competition at GECCO’221 in which we participated along with 12 other
participants in two tracks; the synthetic track; and the real-world-application track. In the synthetic track
we ended 7th, and in the real-world-application track we ended 3rd. The scikit-learn API contributes to
the necessity of GP to be ”integrated into standard software development infrastructure”, as promoted by
Sobania et al. [91] for programme synthesis, but as important for the area of symbolic regression.

5.4 Performance Comparison against PonyGE2

As part of the introduction of Genetic Engine, we compared its performance against PonyGE2 [32], a state
of the art framework for Grammar-Guided GP in Python. PonyGE2 is a Python library that implements
GE and where the user is required to write a fitness function in Python and a grammar in BNF.

We compared the performance (considering fitness) in five benchmarks: a classification task; a re-
gression Task; VE-GP [6], a string matching problem, and Conway’s game of life problem [21]. We
also implemented a large variety of examples in Genetic Engine to compare with implementations in
PonyGE2, but they sadly didn’t work in PonyGE2. As part of that, we implemented a program synthesis
framework based on an implementation in PonyGE2.

The algorithms were started under the same conditions considering initialization method, population
size, operator probabilities, and a budget of 60 seconds. The code for replicating these experiments is
available at https://github.com/pcanelas/GeneticEngineEvaluation.

Figure 5.1, shows the distribution of the final fitness in both frameworks, where higher is better.
PonyGE2 and Genetic Engine have comparative performance, as neither one is clearly better than the
other overall.

We also looked at expressive power of the grammar definition and usability of both Genetic Engine
and PonyGE2. Because of Meta-Handlers, Genetic Engine can express more complex grammars than
the BNF of PonyGE2. Firstly, probabilistic grammars can be completely and more easily expressed in
Genetic Engine. Probabilistic grammars cannot be completely expressed in PonyGE2 as exact expression
of irrational probabilities is not possible. Moreover, it is easier to implement in Genetic Engine as BNFs
require repeating productions in the correct partitions to create probabilistic grammars, whereas Genetic
Engine only needs a single number. Secondly, the future incorporation of Refinement Types gives Genetic
Engine a clear advantage in expressivity regarding its grammars.

1https://cavalab.org/srbench/competition-2022/
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Table 5.1: The variables of the GP object of Genetic Engine.

Feature Description Type
Grammar This object contains all the grammar information nec-

essary for the tree generation. See section 5.3.1 for
more information.

Grammar

evaluation_function A function that takes in a solution and returns the fit-
ness of this solution. See section 5.3.2 for more infor-
mation.

Solution→ float

representation The individual representation you wish to use. Cur-
rently, implemented are CFG-GP, GE, and SGE.

Representation

randomSource A function that takes in an integer (the seed) and re-
turns a random source.

function

seed The seed of the random source integer
population_size The population size used during evolution. integer
n_elites Number of individuals that are directly reproduced in

the next generation.
integer

n_novelties Number of novel individuals introduced in each fol-
lowing generation.

integer

number_of_generations Number of generations to run the algorithm. integer
max_depth The maximum depth the trees that represent each indi-

vidual may have.
integer

favor_less_deep_trees Allows the user to favor less deep trees. This gives a
small penalty to deeper trees so that simpler solutions
are favored.

boolean

selection_method The selection method used by the algorithm. Cur-
rently, only tournament selection is implemented.

tuple

probability_mutation Probability of occurence of mutation and crossover. float [0,1]
probability_crossover
specific_type_mutation Type given preference in mutation and crossover. Node type
specific_type_crossover
hill_climbing Whether to use hill climbing in the mutation process. boolean
minimize Select whether the fitness functionmust be minimized. boolean
target_fitness Gives the target fitness. Evolution stopswhen reached. float
force_individual Allows the user to introduce a custom individual. -
timer_stop_criteria Make the algorithm stop after the timer has stopped. boolean
timer_limit Limit of the timer. integer (s)
save_to_csv Given a csv path, individual trees are saved. string
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Figure 5.1: Comparison of Genetic Engine and PonyGE2 on five benchmark problems. A higher fitness
corresponds to a better performing solution.
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Concerning usability, we argued that Genetic Engine is more user-friendly than PonyGE2. Again,
Meta-Handlers increase usability with easy implementation of complex grammars, and the possibility
of implementation of customized mutation and crossover for certain nodes. Furthermore, the fact that
Genetic Engine is completely Python native gives its users multiple advantages. For example, the user
can use functionalities from its code editor directly at production time, such as linting, autocompletion,
and error checking. A BNF file is only read at runtime, and thus does not have this advantage.

5.5 Personal contributions

Except for overall assisting in the backend implementation of Genetic Engine I had the following concise
contributions:

• Implementation of various examples.

• Implementation of the HC mutation and stand-alone algorithm.

• Numerous functionalities of the GP object, namely,

- favouring of less deep trees, to reduce tree size,

- the either-mutation-or-crossover evolutionary-operations method, in line with Batista et al. [9],

- specific type mutation and crossover, to allow the user to define node types to be favoured for
mutation and crossover,

- an adjustable timer limit, and

- the possibility to save generation information to CSVs with all relevant sub-functionalities
(genotype saving, solely recording of the best individual, saving test data results).

• The Structured GE representation.

• A large part of the ready-to-use grammar.

• Personalized mutation and crossover through Meta-Handlers.

• The Meta-Handlers IntList, FloatList, ListSizeBetween with personalized mutation and crossover,
in line with Batista et al. [9].

• The off-the-shelf classifier and regressor methods of GP and HC.

• Helping with writing a paper on Genetic Engine.

• A large part of the documentation.
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1 @abstract
2 class Expr:
3 pass
4

5 @dataclass
6 class Plus(Expr):
7 left: Expr
8 right: Expr
9 def evaluate(self):
10 return self.left.evaluate() + self.right.evaluate()
11

12 @dataclass
13 class Multiply(Expr):
14 left: Expr
15 right: Expr
16 def evaluate(self):
17 return self.left.evaluate() * self.right.evaluate()
18

19 @dataclass
20 class Variable(Expr):
21 name: Annotated[str, VarRange(["x", "y", "z"])] # features of the dataset
22 def evaluate(self):
23 return DATASET[self.name]
24

25 @dataclass
26 class Float(Expr):
27 val: float
28 def evaluate(self):
29 return self.val
30

31 grammar = extract_grammar(
32 nodes = [Plus, Multiply, Variable, Literal],
33 starting_symbol = Expr,
34 )

Listing 5.1: Grammar definition of a simple grammar that can be used for classification.
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1 <Number> ::= <Plus>
2 | <Multiply>
3 | <Variable>
4 | <Literal>
5 <Plus> ::= <Number> + <Number>
6 <Multiply> ::= <Number> * <Number>
7 <Variable> ::= x1 | x2 | x3
8 <Literal> ::= 0 .. 9

Listing 5.2: Extracted grammar from the grammar definition in listing 5.1.

1 def fitness_function(solution: Solution):
2 X = data
3 y = target
4

5 variables = preprocess(X)
6 y_predicted = solution.evaluate(variables)
7

8 fitness = f1_score(y_predicted, y)
9

10 return fitness

Listing 5.3: Fitness function for classification.

1 class IntRange(MetaHandlerGenerator):
2 def __init__(self, min, max):
3 self.min = min
4 self.max = max
5

6 def generate(self, random_source)
7 random_source.randint(self.min, self.max)

Listing 5.4: Integer range Meta-Handler implementation.
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Chapter 6

Domain-Aware Interpretable Feature
Learning

In this chapter, I will present the proposed approach to apply Domain-Aware and Aggregation-based
GP-based FL. I start by discussing Traditional GP and its extension M3GP [73] in section 6.1. Finally, I
introduce two new FL methods; M3GP with Domain Knowledge (DK-M3GP) which allows the incorpo-
ration of domain knowledge to restrict the search space (in section 6.2); and DK-M3GPwith Aggregation
(DKA-M3GP) in which aggregation over historical data is made possible (in section 6.3).

6.1 Traditional GP & M3GP for Regression

When applying Traditional GP (also known as standard GP) to FL, the GP algorithm evolves a mapping
from the original feature set to a one-dimensional feature set. That mapping is a function that can be
composed of a function and terminal set. The function set consists of the following functions: addition,
subtraction, multiplication, and safe division. Safe division refers to a division method, that is slightly
adapted to be ”safe” from division by zero. When a division by zero occurs, safe division replaces the
result with a one: for example, a

0 = 1. The terminal set consists of the original features of the dataset
(see chapter 4). In line with the M3GP implementation of Batista et al. [9], I chose not to use constant
values. The above is interpreted as a grammar in listing 6.1. Notice that the evolved one-dimensional
feature is called a BuildingBlock, the standard name for (partial) features that are learned.

The fitness function differs for the two datasets. For the BoomBikes dataset with a numeric target,
the fitness of the feature mapping is the quality of the prediction made by a Decision Tree (DT) regressor
with depth 4 that was trained and applied using the resulting feature. As such, the fitness function is
a wrapper function of a DT regressor with depth 4, similar to the method done by Ain et al. [2]. The
simplified code of the fitness function is shown in listing 6.2. For the credit-g dataset with a class target,
I use a DT classifier with the same depth. Implementation is mostly analogous.
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1 <BuildingBlock> ::= <Plus>
2 | <Minus>
3 | <Multiply>
4 | <SafeDiv>
5 | <Variable>
6 <Plus> ::= <Number> + <Number>
7 <Minus> ::= <Number> - <Number>
8 <Multiply> ::= <Number> * <Number>
9 <SafeDiv> ::= <Number> / <Number>
10 <Variable> ::= x1 .. xn # features of the dataset

Listing 6.1: Grammar interpretation of Tradtional GP.

1 def fitness_function(fs: Solution, data, target):
2 transformed_data = mapping(data, fs)
3 dt = DecisionTreeRegressor(max_depth=4)
4 scores = cross_validate(dt, transformed_data, target)
5 return np.mean(scores)

Listing 6.2: The wrapper fitness function of a DT regressor with depth 4.

In listing 6.2, each candidate solution is amapping between the original feature space and a new space.
Using the solution the original feature set is mapped into a new feature space. With the transformed data
the DT regressor/classifier is trained in a cross-validation process using the transformed data and the
target data. The cross-validation process uses a metric that differs for the DT regressor and classifier. For
the regressor I use themean squared error (MSE), and for the classifier I use the weighted F1 score. Both
are introduced in section 7.2.6. Cross validation for time series is not straight-forward, and is discussed
in section 7.2.5.

In M3GP the GP algorithm evolves a mapping from the original feature set to a multidimensional
feature set. See listing 6.3 for the grammar definition of this multidimensional feature set. A FeatureSet
consists of a list of BuildingBlock nodes, with a length between 1 and 15. The length of 15 is chosen as a
DT regressor with depth 4 has a maximum of

∑3
i=0 2

i = 15 choices to make. Each BuildingBlock node
represents a feature.

In their implementation, Batista et al. [9] defined special mutation and crossover operators. When
mutating an individual, there is a 1

3 probability that the algorithm removes an element from the feature set,
and there is a 1

3 probability that it adds a random element to the feature set. If neither of those possibilities
occur, it mutates one feature of the feature set. Similarly, for crossover there are two possibilities. One
randomly cuts the feature sets of two individuals in two parts and combines one splice of each individual.
Otherwise, two features of different individuals undergo crossover.

I implemented the above evolutionary operators in Genetic Engine using the ListSizeBetweenMeta-
Handler. This only created the possibility for the evolutionary operator to happen. To align with Batista
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1 @abstract
2 class Solution():
3 pass
4

5 @dataclass
6 class FeatureSet(Solution):
7 subset: Annotated[List[BuildingBlock], ListSizeBetween(1,15)]
8

9 def evaluate(self):
10 return [ el.evaluate() for el in self.subset ]
11

12 @abstract
13 class BuildingBlock():
14 pass

Listing 6.3: Grammar definition of a FeatureSet node. A FeatureSet node contains a list of BuildingBlock
nodes, which represent learned features.

et al. [9], I require theFeatureSet nodes to be operated uponmore often. Using the specific_type_mutation
and specific_type_crossover variables introduced in table 5.1, I give preference to the FeatureSet nodes
to be operated on, resulting in at least half of the mutation and crossovers done on FeatureSet nodes. This
deviates slightly from the implementation of Batista et al. [9]. I compare my M3GP implementation with
the implementation of Batista et al. [9] in chapter 7.

Originally, M3GP was proposed as a classification method, with its fitness function being a wrapper
function that involves clustering. Batista and Silva [8] showed that simpler and quicker wrapper functions
like a DT regressor/classifier do not perform worse than the clustering method. As such, I chose the same
fitness function as used for Traditional GP, found in listing 6.2.

6.2 Implementation of Domain Knowledge

Starting of from theM3GPmethod introduced above, I enhance mymodel by introducing domain knowl-
edge. I did this by recognizing the intrinsic meaning of certain features of both the BoomBikes dataset, as
the credit-g dataset. As a running example, I will use the feature season from the BoomBikes dataset. I
name this method M3GP with Domain Knowledge (DK-M3GP). In this section, I discuss the implemen-
tation of DK-M3GP and prospected improvement of both prediction performance and interpretability.

Originally, the node Season can take on the values 1 to 4, referring to the seasons Winter to Fall,
respectively. Without telling my models what these values mean, the values are considered integers, and
treated as such. Because of this, it is possible to do integer operations on these values. For example, we
can sum the season of a data point with its temperature, which is given as a float. To Python, summing
an integer with a float makes sense, so this is a legitimate operation. However, to a human being, the
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1 @abstract
2 class Category:
3 category: int
4 column: Col
5

6 @abstract
7 class Col:
8 col_name: str
9

10 def evaluate(self):
11 return DATASET[self.col_name]
12

13 @dataclass
14 class SeasonCol(Col):
15 col_name = "season"
16

17 @dataclass
18 class Season(Category):
19 category: Annotated[int, IntRange( 1, 4 )]
20 column: SeasonCol

Listing 6.4: Season category-column combination defined in the grammar. Notice how a Category node
consists of both a category value (in this case an integer between 1 and 4), and a column (when evaluated
this returns the values of the season column).

summation of the season and the temperature does not make sense at all; e.g., what doesSummer+25◦C

mean?. As such, the evolutionary process can result in feature spaces that are built up from nonsensical
features. If we want to be able to easily interpret learned features, a basic requirement is for them to make
sense. Furthermore, we hypothesize that nonsensical features represent the data worse, as they do not
represent real relationships. Therefore, restricting the solution space by making the search through these
unreal relations impossible, should improve prediction performance.

Essentially, the issue is that the season shouldn’t be seen as an integer, but as a category. Being a
category, I must operate on seasons distinctly in comparison to features of types integer and float. This
operation should have a season category as input, and output a BuildingBlock node. To solve this, I intro-
duce conditions that can be formed from categories, for example an equal condition: DATASET[season]
= Winter. The resulting column of booleans can then be used in control flows such as an if statement,
which I will discuss later in listing 6.6. This requires combining a possible value of season and the
season column from the dataset. See listing 6.4 for the implementation of the Season category-column
combination, and see listing 6.5 for the implementation of the Equals condition.

Season is not the only feature that shouldn’t be interpreted as an integer. For the BoomBikes dataset,
the other features are month, weekday, year, holiday and workingday, of which the last two are of
type boolean. For the credit-g dataset, the features are checking_status, credit_history, purpose, sav-
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1 @abstract
2 class Condition:
3 pass
4

5 @dataclass
6 class Equals(Condition):
7 input: Category
8

9 def evaluate(self):
10 return np.apply_along_axis(
11 lambda x: x == self.input.category,
12 0,
13 self.input.column.evaluate()
14 )

Listing 6.5: Equals condition defined in the grammar. The numpy (np) function applies the equals
statement along the season column. Evaluating a node of type Category therefore returns a column with
boolean values stating whether or not the column value in that place equals the specified category value.

ings_status, employment, personal_status, other_parties, property_magnitude, other_payment_plans,
housing, job, own_telephone and foreign_worker, of which the last two are of type boolean. These were
all implemented as Category nodes.

Except for the Equals condition, I implementedNotEquals similarly. Furthermore, I implemented the
InBetween condition. This evaluates categories to be between two values, requiring the implementation
of Category nodes with two category values, implemented in the IBCategory node. Note that this is only
possible for categories with an explicit order, so, in this case, the features of type boolean (holiday and
workingday for the BoomBikes dataset, and own_telephone and foreign_worker for the credit-g dataset)
are not considered. Implementation is straight-forward, and thus not discussed.

Conditions can be used in conditional statements, like an if statement. An if statement takes in three
variables; a condition; and two possible outcomes, one for when the condition is True, and the other for
when the condition is False. See the IfThenElse implementation that extends a BuildingBlock node in
listing 6.6.

I expect the improvement of domain knowledge incorporation in DK-M3GP to be two-fold. First,
I expect performance to improve, as nonsensical relations are disregarded, so that the search space is
restricted to only consider sensible relations. Secondly, I expect the learned features to be more easily in-
terpreted, as they are learned without considering nonsensical relations. As all building blocks considered
make sense to human beings, the final learned features hopefully also make sense.
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1 @dataclass
2 class IfThenElse(BuildingBlock):
3 cond: Condition
4 then: BuildingBlock
5 elze: BuildingBlock
6

7 def if_statement(self,x):
8 if x[0]:
9 y = x[1]
10 else:
11 y = x[2]
12 return y
13

14 def evaluate(self):
15 y = np.apply_along_axis(
16 self.if_statement,
17 0,
18 np.array([
19 self.cond.evaluate(),
20 self.then.evaluate(),
21 self.elze.evaluate()
22 ])
23 )
24 return y

Listing 6.6: If statement defined in the grammar. The numpy (np) function applies the if_statement along
the columns of the Condition node and the two possible outcomes, then and elze, both BuildingBlock.
Evaluating a node of type IfThenElse therefore returns a column with BuildingBlock evaluations of either
the then or the elze node, depending on the result of the Condition node.

6.3 Aggregation

Developing further on the implementation of domain knowledge, I added the possibility of aggregating
historical data. As the BoomBikes datasets is a time series, where every data point records information of
one day, I might suppose there is a relation between future data and historical data. Likewise, the credit-g
dataset is a panel, with data points representing different individuals, and thus newly gathered data might
resemble information on previously gathered data. For example, the target of the BoomBikes dataset,
the number of bicycles (cnt) of each day, might resemble the average number of bicycles of previous
days. Having constructed categories in section 6.2, I can even add a restriction to the average based on
a category. For instance, for the BoomBikes dataset it might be interesting to look at the average of the
same day in previous years, the same weekdays in previous weeks, or only average over days in the same
season. For the credit-g dataset, we might want to consider the average risk assessment of individuals
with the same job. I name this method DK-M3GP with Aggregation (DKA-M3GP).
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1 @dataclass
2 class Average(BuildingBlock):
3 col: Col
4 aggregation_col: Annotated[str, VarRange(["target"])]
5 window_length: Annotated[int, IntList([10, 25, 50, 75, 100, 150, 200, 300, 400, 600, 800])]
6

7 def assign_target_values_to_data(self, data, historical_data):
8 ...
9 return combined_data
10

11 def aggregate(self, combined_data, instants, window_length):
12 ...
13 return aggregated_vals
14

15 def evaluate(self):
16 historical_data = DATASET['historic']
17 historical_data = historical_data[[TIME_COL, self.col.col_name, self.aggregation_col]]
18 instants = kwargs[TIME_COL]
19 data = pd.DataFrame({TIME_COL:instants, self.col.col_name: self.col.evaluate()})
20

21 combined_data = self.assign_target_values_to_data(data, historical_data)
22 aggregates = self.aggregate(combined_data, instants, self.window_length)
23 aggregates = np.nan_to_num(aggregates)
24 return aggregates

Listing 6.7: Aggregation implementation of the Average node. The implementations of the functions
assign_target_values_to_data and aggregate are shown in listing 6.8 and listing 6.9, respectively.

The implementation of the Average node is depicted in listing 6.7, and is not straight-forward. The
node is initialized by three variables; a category column (col), to restrict the aggregation so that the
aggregation is done over data points with that same category value; an aggregation column (aggrega-
tion_col), the values to be aggregated; and a window length (window_length), the number of historic
data points to be considered in the aggregation. Evaluation of the Average node is split up into three
parts; the assign_target_values_to_data function in listing 6.8; the aggregate function in listing 6.9; and
the evaluation function itself in listing 6.7.

The evaluate function starts by collecting all necessary input. The historical_data is taken from the
DATASET and then filter on the columns that matter, the TIME_COLUMN, the category col, and the
aggregation_col. Then the current data (data) is obtained from the DATASET. Subsequently, I use the
helper functions assign_target_values_to_data and aggregate to assign target values to the current data
and aggregate all available historic data for each data point, respectively. After filling the NaN values of
the aggregates, they are returned as the aggregated column. Most work is done in the helper functions,
which I discuss below.

To aggregate, I must first construct a dataframe that combines historic data with input data. In list-
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1 def assign_target_values_to_data(self, data, historical_data):
2 data = data.merge(historical_data,how='left')
3 first_data_instant = data[TIME_COL].min()
4 historical_data = historical_data[historical_data[TIME_COL] < first_data_instant]
5

6 means = historical_data.groupby(self.col.col_name).mean()[self.aggregation_col]
7 uns = data[self.col.col_name].unique()
8 def missing_mean_zero(un):
9 try:
10 return means[un]
11 except:
12 return 0
13 mapping = dict([ (un,missing_mean_zero(un)) for un in uns ])
14 def fill_nans(row):
15 if np.isnan(row[self.aggregation_col]):
16 return mapping[row[self.col.col_name]]
17 else:
18 return row[self.aggregation_col]
19 data[self.aggregation_col] = data.apply(lambda row: fill_nans(row), axis=1)
20

21 combined_data = pd.concat([historical_data,data])
22 return combined_data

Listing 6.8: The assign_target_values_to_data function in the Average node.

ing 6.8 this is implemented in the assign_target_values_to_data function. First, all current data is as-
signed target values from the historic data, if a target value is available. This is done by merging them,
and following this, the historic dataset is trimmed from data points that occurred after the current data
started.

Now a mapping is constructed for all current data that is not represented in the historical target values,
based on the category value of each data point. For example, if the category is season, the target value of
each unrepresented data point is filled with the average of the historic data from the same season. To start,
I find the means for each value of the category. If no mean is found, I fill it with zero. Consecutively,
the fill_nans function is built. Given a row, this function checks whether its target value is NaN, and if
so, it returns the target value from the mapping based on its category value. After applying the fill_nans
function to the current data I concatenate the historic data with the current data. Remember that I trimmed
the historic data to not contain data from after that start of the current data, so there will not be any historic
data from after the start of the input data included.

Listing 6.9 depicts the aggregate function, which is slightly more straight-forward, but has many
small implementation details. The centrepiece to finding the historic mean is the rolling function of
pandas [81]. I first reindex the data with the time instant, and sort it. Then, I group the data by the
category column, as to only aggregate data based on its category value. Following, I reset the index again
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1 def aggregate(self, combined_data, instants, window_length):
2 aggregated_vals = combined_data.set_index(TIME_COL).sort_index().groupby(self.col.col_name).

↪→ rolling(window=window_length, min_periods=1, closed='left').mean()
3 aggregated_vals = aggregated_vals.reset_index().set_index(TIME_COL).sort_index()
4 aggregated_vals = aggregated_vals[self.aggregation_col].filter(instants)
5

6 return aggregated_vals

Listing 6.9: The aggregate function in the Average node.

and sort the data. The data is now in the correct format, sorted, and with aggregation values. Remember
that the data contains historic data to get correct aggregations, even though it is now redundant. So the
final step consists of throwing the historic data out.

The addition of aggregation in DKA-M3GP enlarges the solution space, allowing for more solutions
to be found. The main improvement that I expect to see in DKA-M3GP is a performance improvement,
due to the enlarged solution space. Secondly, aggregation can unravel complex relationships from data,
possibly contributing to domain knowledge. Lastly, these complex relationships might resemble human-
engineered features more closely, enhancing interpretability.
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Chapter 7

Evaluation
In this chapter, I evaluate the proposed methods. I compare my methods with a number of baselines,

introduced in section 7.1. Then, I introduce the actual experiment details in section 7.2. After that, I
show the results of the comparison between my M3GP implementation using Genetic Engine and the
implementation as done by Batista et al. [9] in section 7.3. Finally, in section 7.4 I compare all the other
FL methods.

7.1 Baselines

To evaluate my methods, I compare them to a number of baselines, most of which I introduced in chap-
ter 3, and the last two I detailed in section 6.1:

No FL To be sure that FL had any effect at all, I compared to no FL, passing the input feature set
directly.

PCA PCA implementation was directly taken from the decomposition library of Scikit-learn [82].

FS throughFeatureTools I used the remove_highly_correlated_featuresmethod fromFeatureTools [51]
which, as the name suggests, removes highly correlated features.

Random Search FS Using Random Search (RS) as introduced in section 2.1.1, I implemented an FS
method. For the implementation, I used the RS algorithm from Genetic Engine. The grammar consisted
of Var, FeatureSet, BuildingBlock, and starting symbol Solution, all introduced above in section 6.1.

M3GP as implemented by Batista et al. [9] M3GP-JBwas directly imported from the library provided
by Batista et al. [9]. A slight adaptation had to be made for the method to allow for regression. The fitness
function was adapted in line with the fitness function based on a DT, introduced in section 6.1.
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M3GP as implemented by Batista et al. [9] is only used compared to my implementation of M3GP
using Genetic Engine, to evaluate the performance of Genetic Engine. This is done in section 7.3. The
other four FL methods together with Traditional GP, M3GP, DK-M3GP and DKA-M3GP are separately
compared in section 7.4. Below, I introduce the experiment details.

7.2 Experiment details

I evaluate the FL methods mainly in two ways. The search-based algorithms are evaluated on their
training fitness progression and test fitness progression, introduced in section 7.2.1. To compare the all
FL methods, I evaluate them within one of 4 full ML pipeline, described in section 7.2.2. I then introduce
the settings of the experiment and of the FL methods in section 7.2.3. To make sure performance is less
dependent on specific model settings, I first pass each evaluation through a grid search, as elaborated
upon in section 7.2.4. After that, in section 7.2.5 I discuss my implementation of cross-validation for
time series, paramount in good evaluation techniques. As evaluation is not straight-forward, I finally
define the evaluation techniques in section 7.2.6.

7.2.1 Search-based algorithm evaluation

For the search-based FL methods Traditional GP, M3GP (both implementations), DK-M3GP and DKA-
M3GP I will separately compare the methods. I will compare the evolutionary process in each generation
of these methods on (1) the training fitness of the best individual, (2) the test fitness of the best individual,
and (3) the complexity of the best individual. Finally, I compare the methods on the time spend.

7.2.2 Pipeline

To evaluate each FL method, I contain them within full ML pipelines. To evaluate diversely, I compare
the following four models also researched by Ain et al. [3]: a Decision Tree (DT), Random Forest (RF),
a Multilayer Perceptron (MLP), and a Support Vector Machine (SVM). The other two models researched
by Ain et al. [3] (Naive-Bayes and k-Nearest Neighbour) are not suitable for regression, and are therefore
left out. Each model is instantiated using the experiment seed (see section 7.2.6 for details).

7.2.3 Experiment settings

The comparison is done using two different comparison methods. First, we compare the FL methods
without restricting the resources of the methods. Secondly, we compare them with a restriction on the
resources, namely allowing an hour for the algorithm to run, excluding the grid search. We call the
comparison methods free comparison and budgeted comparison respectively.
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Except for the algorithm parameters included in the grid search that are introduced in section 7.2.4,
the FL methods rely on other parameters. See table 7.1 for an overview of all these parameters.

Table 7.1: Parameters of FL methods, excluding grid search parameters introduced in section 7.2.4.

Parameter Applicable to Value
Individual representation All search-based methods Treebased1

Max feature depth All search-based methods 10
Population size All search-based methods 2002

Number of generations All search-based methods 500 or 200
Crossover probability All search-based methods except RS FS 0.51

Mutation probability All search-based methods except RS FS if no crossover1

Number of novelties All search-based methods except RS FS 01

Tournament size All search-based methods except RS FS 51

Favour less deep trees All search-based methods except M3GP-JB True

7.2.4 Grid search

To make sure performance is less dependent on specific model settings, each evaluation undergoes a very
simple grid search. The goal of a grid search is exhaustively searching through all user-defined model
parameters, and selecting the best performing ones. As our search-based methods are time-consuming,
we only run the grid search over a part of the generations, in this case 25. Below, I outline the parameters
I selected for each method.

Originally, I included many parameters in the grid search for the search-based FL methods, but in
order to align as much with the M3GP implementation of Batista et al. [9], I had to exclude almost all. I
ended up with only including the elitism size in the grid search, including 1 and 5 as possible sizes. The
RS FS method doesn’t use any of the above parameters, so no grid search is performed. PCA has a single
parameter, namely the number of components constructed by the algorithm. The grid search analyses 1,
2, 3, 4 and 5 components. Finally, FS using FeatureTools has a correlation threshold which I include in
the grid search for the parameters 0.6, 0.7, 0.8, 0.9 and 0.95.

7.2.5 Cross validation for time series

The grid search is done in a cross-validation-for-time-series manner, similar to the method proposed by
Hyndman and Athanasopoulos [44] in Section 5.10. The training data is split up in parts, specifically at

1Aligned with implementation of Batista et al. [9].
2For testing with the BoomBikes dataset, I used a population size of 500. For testing with the credit-g dataset, I used a

population size of 200.
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I run the grid search using cross-validation-for-time-series on 75 % of the data, the training set. After
that, I train the model on the whole training set, and test it on the final 25 %. In this way, the grid search
parameters are independent of the test data.

7.2.6 Evaluation

I evaluate my methods using the performance metrics MSE for evaluation of regression solutions, and F1
score for the evaluation of classification solutions, as introduced in section 2.1.3. To show statistical sig-
nificance when comparing methods, I use a statistical significance test, elaborated upon in section 7.2.6.1.

I primarily evaluate the interpretability of my methods using the ES, also introduced in section 2.1.3.
Furthermore, for I discuss interpretability in a broader sense as suggested by Liao et al. [62].

7.2.6.1 Statistical significance

To show statistical significance, each FL method is trained for each model for 30 different seeds. For
the statistical significance tests I use the Mann-Whitney-Wilcoxon test [109]. To do so, two experiments
must be independent of each other, which they clearly are, as both consider different FL methods. The
Mann-Whitney-Wilcoxon U statistic is defined as follows.

Definition 3. Given two samples X = {x1, . . . , xn} and Y = {y1, . . . , ym}, we calculate the UX

statistic as follows:

UX =
n∑

i=1

m∑
j=1

S(xi, yj),
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where

S(xi, yj) =


0 if xi < yj
1
2 if xi = yj

1 if xi > yj .

The UY statistic is calculated in an analogous way.

Given a null hypothesisH0 stating thatX and Y come from the same distribution, we expect the two
samples to have a similar median. As such,

H0 : P (x < y) =
1

2
, ∀x ∈ X, y ∈ Y, and

H1 : P (x < y) ̸= 1

2
, ∀x ∈ X, y ∈ Y.

Now, the p-value is

p-value = P (U |H0).

I reject the null hypothesis if the p-value is less than 0.05.
I visualize the p-values directly in the plots. For visualization, I make use of the statannotations [18]

library. Whenever it is relevant, the p-values appear at the top of the plots.

7.3 Comparison of M3GP implementations.

To see whether our implementation of M3GP in Genetic Engine functions well, I compared it with the
implementation presented by Batista et al. [9]. I compared the performance of theM3GP implementations
in section 7.3.1. I separate the performance comparison for the two datasets. Finally, I briefly compare
run times in section 7.3.2.

7.3.1 Performance comparison

7.3.1.1 The BoomBikes dataset

For both datasets, I looked at performance on training data and at performance on testing data. See fig. 7.2
and fig. 7.3 for the fitness per generation comparisons between the two M3GP implementations for the
BoomBikes dataset. The max tree depth for the features of each individual is set to 10.

In fig. 7.2, the Genetic Engine implementation has a better fitness at initialization. Note that the
fitness is based on the MSE, and the lower MSE, the better. As such, we are aiming to minimize the
fitness. After only a few generations, the Batista et al. [9] implementation passes the Genetic Engine
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Figure 7.3: BoomBikes testing fitness
comparison.

implementation and both stabilize. As such, the Batista et al. [9] implementation has a better training
fitness, and thus shows better training performance. It is expected that both implementations give similar
fitness progressions, as they implement the same algorithm. I found two reasons for this discrepancy.

First, as Genetic Engine is still immature, I suspect that our node generation method is worse. Further
inspection shows that in the first generation there are multiple duplicate individuals. This is not expected
of a purely random node generation, as there are millions of different individuals possible. Having multi-
ple duplicate individuals in a population of 500 individuals is therefore highly unlikely. As part of future
work, I will improve the diversity of the node generation method.

Secondly, Genetic Engine creates much more complex individuals at generation (see fig. 7.4). As
deeper trees suffer from failed disruption propagation, i.e., evolutionary operations having no effect,
because of more redundant information [59], it is likely that the Genetic Engine implementation suffers
from this, reducing its performance.

On the other hand, looking at fig. 7.3 we see that, very soon after the start of the evolution, the
training fitness improvement is not translated to an improvement in the test fitness. In other words, both
implementations overfit the training data. Overall, the Genetic Engine implementation shows a better
testing performance, and it thus generalizes better.

I also looked at both implementations within the ML pipelines. See fig. 7.5 for the comparison within
ML pipelines with models DT, RF, MLP and SVM.

The comparison shows that for two models (RF and SVM) the Batista et al. [9] implementation
performs significantly better than the Genetic Engine implementation. On the other hand, the Genetic
Engine implementation performs better for MLP.

50



Chapter 7 Evaluation

0 200 400 500

0

100

200

300

400

500

600

N
um

be
r o

f n
od

es
M3GP implementation comparison of nodes

Method
G Engine
J Batista

100 300
Generation

Figure 7.4: Comparing the complexity of solutions generated by each implementation for the BoomBikes
dataset. Complexity is measured by the number of nodes in the best individuals of both implementations per each

generation (as introduced in section 7.2.6).

7.3.1.2 The credit-g dataset

I also compared the M3GP implementation for classifying the credit-g dataset. As discussed in sec-
tion 7.2.6, I used the F1 score with the weighted method in the fitness function in line with the implemen-
tation of Batista and Silva [8]. As you can see in fig. 7.6, the Batista et al. [9] implementation does not
improve during the evolution. Further inspection shows that the best individual classifies everything as
the positive class, obtaining an acceptable fitness (±0.825), and does not improve on that. Obviously, as
the Genetic Engine implementation does not suffer from this, my implementation performs better in this
case.

As there are other methods, I decided to also compare the implementations using the binary F1 score.
In figs. 7.7 and 7.8 the train and test fitness using the binary F1 score are depicted respectively.

For credit-g, the Genetic Engine implementation outperforms the Batista et al. [9] implementation in
both cases, even though the Genetic Engine implementation is muchmore complex (see fig. 7.9). Like for
the BoomBikes dataset, both implementations overfit the train data, as the training fitness improvement
is not translated to an improvement in the test fitness.

Now, let’s analyse both implementations within the ML pipelines. See fig. 7.10 for the comparison
within ML pipelines with models DT, RF, MLP and SVM. Both implementations do not significantly
perform differently except for MLP, for which the Genetic Engine implementation significantly performs
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Figure 7.5: MSE comparison of the two M3GP implementations within ML pipelines for the
BoomBikes dataset. The ML pipelines differ only on the models. In the figures, outliers were taken out
for aesthetical reasons. At the top of each figure, statistical significance scores are portrayed. I included
the outliers for the calculation of the statistical significance score. RF, and SVM show significant better
performance for the Batista et al. [9] implementation, whereas MLP performs significantly better for the

Genetic Engine implementation.

better.

Overall, my implementation using Genetic Engine performs quite well in comparison with the M3GP
implementation implemented by Batista et al. [9]. However, there are many improvements possible for
Genetic Engine. Amongst others, the node generation should be randomized further to improve diversity,
and (ϵ-)lexicase selection [40, 57] can easily boost performance for both use cases above. I discuss this
further in section 8.3.
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parison.

7.3.2 Time comparison

Lastly, I compared the two implementations on the execution time. In fig. 7.11 the execution time is
compared (excluding the time spend on the grid search) for both datasets. For each model and dataset,
Genetic Engine is much faster and less variant.
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Figure 7.9: Comparing the complexity of solutions generated by each implementation for the credit-g dataset.
Complexity is measured by the number of nodes in the best individuals of both implementations per each

generation (as introduced in section 7.2.6).

It would be interesting to compare both implementations with a budget. As the implementation of
Batista et al. [9] does not include running with a time limit, this was out of scope for this work.
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Figure 7.10: Binary F1 score comparison of the two M3GP implementations within ML pipelines for
the credit-g dataset. The ML pipelines differ only on the models. In the figures, outliers were taken out
for aesthetical reasons. At the top of each figure, statistical significance scores are portrayed. I included
the outliers for the calculation of the statistical significance score. RF, and SVM show significant better
performance for the Batista et al. [9] implementation, whereas MLP performs significantly better for the

Genetic Engine implementation.
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Figure 7.11: Time comparison of the Batista et al. [9] implementation and the Genetic Engine
implementation for both datasets. the Genetic Engine implementation is significantly faster for both

datasets across models. Grid search time is excluded.

7.4 Comparison of FL methods

In this section, I compare my novel FL approaches to the different baselines introduced in section 7.1. I
start by analysing the results of the BoomBikes dataset in section 7.4.1. After that, I analyse the results of
the credit-g dataset in section 7.4.2. Finally, in section 7.4.3, I compare the expressions of some solutions
for both datasets.

7.4.1 The BoomBikes dataset

First, I compare against the search-basedmethods (excluding RS FS) in section 7.4.1.1. In section 7.4.1.2,
I include the classical methods. Finally, I compare the FL methods on time in section 7.4.1.3.

7.4.1.1 Comparison of search-based Feature Learning methods

In fig. 7.12 I compare the training fitness of the different search-based methods. Traditional GP performs
significantly worse than the other methods. When zooming in on M3GP, DK-M3GP and DKA-M3GP.
M3GP and DK-M3GP have a comparable fitness progression, reaching a similar final fitness. DKA-
M3GP, on the other hand, has a much better fitness, indicating that adding aggregation to the grammar
improves the solution space.

Figure 7.13 depicts the test fitness for the different methods. As for M3GP, Traditional GP, DK-
M3GP and DKA-M3GP overfit the training data. The methods perform similarly on the test data, except
for Traditional GP, which performs worse than the other methods. Overfitting could be caused by the
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Figure 7.12: Comparison of Traditional GP, M3GP, DK-M3GP and DKA-M3GP.

methods not being suitable for the task at hand. Another reason for the methods to consistently overfit
the training data could be that the training data does not represent the test data well. Looking back at
fig. 4.1, we see that at roughly the last 25% (the size of the test data) the data makes a big sudden drop.
Such a big drop had not occurred before in the data. As such, the test data seems not to be represented
well by the training data.

Subsequently, I compared the methods within the different ML pipelines. See fig. 7.14 for the results.
Across all models, DK-M3GP does not perform well within the pipeline, significantly worse than M3GP,
even though training fitness is similar for DK-M3GP and M3GP. From this, I derive that DK-M3GP
overfits the DT regressor of the fitness function and its particular training seed. Traditional GP performs
well for all models except for MLP. That Traditional GP does not perform well on MLPs is expected, as
Traditional GP generates a single feature and MLPs excel when combining features. Except for MLP and
RF, Traditional GP significantly performs best. Apparently the learned feature generalizes the data best.
DKA-M3GP performs quite similar to M3GP. For SVM it performs significantly better than M3GP, but
for MLP significantly worse.

As for the M3GP implementation comparison, good training fitness does not translate to good per-
formance within ML pipelines. Even more so, the worse performing model, Traditional GP, performs
best within ML pipelines. In search for answers, I compared the complexity of the models in fig. 7.15.
Most significantly, there is a negative correlation between complexity and performance on the test set.
Traditional GP is the least complex and performs best. DK-M3GP is the most complex and performs
worse. M3GP and DKA-M3GP have similar complexity progressions and perform comparably.

Hypothetically, this negative correlation can be explained by the training task not representing the
testing task correctly. While a solution is less complex, it does not specialize on the specific task. Methods
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Figure 7.13: Comparison of Traditional GP, M3GP, DK-M3GP and DKA-M3GP on test data.

aim to become more complex for them to fit the task better. If that task, in this case training, does not
represent the testing task well, this complexity would only be counter-productive. It would be interesting
to research this hypothesis further.

7.4.1.2 Comparing to classical Feature Learning methods

For a more general comparison of FL methods, I compare above search-based methods to classical FL
approaches. See fig. 7.16 for a comparison of training performance of M3GP and DKA-M3GP and
classical methods. The classical methods compared to are RS FS, FeatureTools FS, PCA, and No FL,
as introduced in section 7.1. In terms of statistical significance, DKA-M3GP performs best for DT and
ties for best for RF and SVM. Furthermore, for MLP it is only beaten by No FL (notice that fig. 7.16c is
crooked due to outlier removal). The above shows that DKA-M3GP can be a good FL method.

In fig. 7.17 the test performance ofM3GP andDKA-M3GP compared to classicalmethods is depicted.
No FL performs best for all models except for DT, where it performs second best only to FeatureTools
FS. Overall, high training performance is not necessarily translated to high test performance, just like we
saw before.

In line with the hypothesis I presented in section 7.4.1.1, the best performing methods learned the
least complex models, and are not influenced by a DT in their fitness function, like for RS FS. As such,
they were not overfitted during training.
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Figure 7.14: MSE comparison of the search-based methods within ML pipelines for the BoomBikes
dataset. The ML pipelines differ only on the models. In the figures, outliers were taken out for

aesthetical reasons. At the top of each figure, statistical significance scores comparing the models with
M3GP are portrayed. I included the outliers for the calculation of the statistical significance score.

7.4.1.3 Time

Finally, I compare the running time of the different methods in fig. 7.18. There are no surprises here:
DKA-M3GP is slowest, then DK-M3GP, then M3GP, and finally Traditional GP, all statistically signifi-
cant. Classical methods were left out as their runtime is negligible.

As training time is sometimes limited in real-life applications, I also compared the methods on budget.
In this case, I ran them with a time limit of 20 minutes. See the comparison of test performance with the
budget in fig. 7.19. The performance of DKA-M3GP suffered from the limited budget forMLP. However,
it did not suffer for DT, RF and SVM, and even improved slightly. As the DKA-M3GP is very slow it
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Figure 7.15: Complexity comparison of the best individuals of the FL methods over generations. DK-M3GP is
most complex, whereas Traditional GP is least-complex by far.

was only able to run a limited number of generations. On average, it only ran for 7.2 generations. The
resulting individuals had an average of ±300 nodes, which is much less than the average of ±500 nodes
for individuals after 500 generations. This again affirms the hypothesis of a negative correlation between
complexity and performance.
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Figure 7.16: MSE comparison of training performance of M3GP and DKA-M3GP with classical
methods within ML pipelines for the BoomBikes dataset. In the figures, outliers were taken out for

aesthetical reasons.
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Figure 7.17: MSE comparison of test performance of M3GP and DKA-M3GP with classical methods
within ML pipelines for the BoomBikes dataset. In the figures, outliers were taken out for aesthetical

reasons.
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Figure 7.18: Comparison of the run time of the different methods for the BoomBikes dataset. DKA-M3GP is
slowest, then DK-M3GP, then M3GP, and finally Traditional GP, all statistically significant. Note that the

statistical significance score is the same because it is the highest possible.

7.4.2 The credit-g dataset

First, I compare mymethods against the other search-based methods (excluding RS FS) in section 7.4.2.1.
In section 7.4.2.2, I include the classical methods. Finally, I compare the FL methods on time in sec-
tion 7.4.2.3.

7.4.2.1 Comparison of search-based Feature Learning methods

In figs. 7.20 and 7.21 I compare the training fitness and test fitness of the different search-based methods,
respectively.

Consider the training fitness progression in fig. 7.20. Like the Batista et al. [9] implementation,
Traditional GP does not evolve actual solutions but facilitates classifying everything as the positive class
(low-risk). Classifying each data point as low-risk gives quite a high fitness (±0.825). Furthermore,
DKA-M3GP performs best, followed closely by DK-M3GP. Adding aggregation does not improve the
evolutional process in the same proportions as it does for the BoomBikes dataset. Looking more closely
at the credit-g dataset (see section 4.2) we see that aggregating over different categories generally does
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Figure 7.19: MSE comparison of test performance on a 20 minutes budget of M3GP and DKA-M3GP
with classical methods within ML pipelines. In the figures, outliers were taken out for aesthetical

reasons.

not give very insightful information. In fig. 4.3 the features show risks per unique category value, all
averaging around 0.7, with only slight variances. For example, fig. 4.3c shows only slight differences
between different job categories. Including the average for those categories as a building block adds little
information. On the other hand, comparing my methods to standard M3GP shows an improvement. This
suggests that the evolutional process benefits from the inclusion of domain knowledge in the grammar.

Now consider the test fitness progression in fig. 7.21. As expected, the fitness of Traditional GP does
not change throughout the evolution. The other progressions show a close resemblance to the test fitness
progression for the BoomBikes dataset. Again, it shows all the methods overfit the training data.

Following this, I compared themethods within the differentML pipelines. See fig. 7.22 for the results.

64



Chapter 7 Evaluation

0.825

0.830

0.835

0.840

0.845

0.850

Fi
tn

es
s 

(F
1 

sc
or

e)

Nodes comparison of search-based methods

Figure 7.20: Comparison of training fit-
ness of search-based methods.
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Figure 7.21: Comparison of test fitness of
search-based methods.

Across all models, we see that Traditional GP performs best, by predicting all data as low-risk. The other
models do not perform significantly different, except for theML pipeline with an SVMclassifier; standard
M3GP outperforms my methods.

7.4.2.2 Comparing to classical Feature Learning methods

I continue with a general comparison of FL methods; I compare above search-based methods to classical
FL approaches. See fig. 7.23 for a comparison of training performance of M3GP, DKA-M3GP and
the classical baselines. The classical baselines used are RS FS, FeatureTools FS, PCA, and No FL, as
introduced in section 7.1. RS FS consistently has a fitness of ±0.825 by classifying all data as low-risk.
It significantly performs best for DT, MLP and SVM. Clearly, RS FS does not evolve the best solution,
but the fitness function does not reveal that. For RF No FL performs best on average. For all ML pipeline
models the best models generated by DKA-M3GP outperform or perform on par with the best generated
models of all other methods. This shows the potential of DKA-M3GP.

In fig. 7.24 the test performance of M3GP and DKA-M3GP compared to classical methods using the
weighted F1 score is depicted. The story is the same as for the training data, RS FS on average performs
best by classifying all data as low-risk. Still, the best models evolved by DKA-M3GP perform well when
compared to the other methods.

As the fitness function using the weighted F1 score did not reveal the models evolved by RS FS
as undesirable, I also ran the tests using the binary F1 score. See the results in fig. 7.25. No method
consistently predicts all data as a single class. On average, DKA-M3GP does not perform particularly
well. Still, the best performing runs, generally outperform the classical methods, but DKA-M3GP shows
little consistency.

When comparing our methods during evolution, domain knowledge and aggregation clearly show to
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Figure 7.22: Weighted F1 score comparison of the search-based methods within ML pipelines for the
credit-g dataset. The ML pipelines differ only on the models. In the figures, outliers were taken out for
aesthetical reasons. At the top of each figure, statistical significance scores comparing the models with
M3GP are portrayed. I included the outliers for the calculation of the statistical significance score.

be beneficial. As for the BoomBikes dataset, this is not translated to a good performance within the ML
pipelines. The learned features do not enhance the prediction performance of the models. From this I
conclude that either the ML pipelines should be revisited, or the fitness function is ill-defined. Moreover,
the fact that classifying the whole dataset as one class returns high fitness shows the need for an improved
fitness function. I discuss this more elaborately in section 8.3.
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Figure 7.23: Weighted F1 score comparison of training performance of M3GP and DKA-M3GP with
classical methods within ML pipelines for the credit-g dataset. In the figures, outliers were taken out for

aesthetical reasons.

7.4.2.3 Time

Finally, I compare the running time of the different methods in fig. 7.26. Results resemble the results for
the BoomBikes dataset. Classical methods were left out as their runtime is negligible.

As with the BoomBikes dataset, I ran the FL methods with a budget of 20 minutes to see how well
they performed with limited resources. See the results in fig. 7.27. The results show that on a budget,
DKA-M3GP and DK-M3GP perform slightly worse, especially when looking at the best-found fitness.
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Figure 7.24: Weighted F1 score comparison of test performance of M3GP and DKA-M3GP with
classical methods within ML pipelines for the credit-g dataset. In the figures, outliers were taken out for

aesthetical reasons.
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Figure 7.25: Binary F1 score comparison of test performance of M3GP and DKA-M3GP with classical
methods within ML pipelines for the credit-g dataset. In the figures, outliers were taken out for

aesthetical reasons.
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Figure 7.26: Comparison of the run time of the different methods for the credit-g dataset. DKA-M3GP is
slowest, then DK-M3GP, then M3GP, and finally Traditional GP, all statistically significant. Note that the

statistical significance score is the same because it is the highest possible.
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Figure 7.27: MSE comparison of test performance on a 20 minutes budget of M3GP and DKA-M3GP
with classical methods within ML pipelines. In the figures, outliers were taken out for aesthetical

reasons.

7.4.3 Expression comparison of domain knowledge incorporation

To get an idea of the interpretability improvement of incorporation of domain knowledge in the grammar,
I now highlight an evolved feature from the feature sets produced by the FL methods M3GP and DK-
M3GP, for the seed 0, for the BoomBikes dataset. See the full evolved feature sets for the above models
for seed 0 in chapter A.

For M3GP, the evolved features are combinations of original features using standard arithmetic op-
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1 workingday + temp - (weekday / season) - (mnth * temp) + windspeed + (((season * atemp) + (atemp
↪→ / yr)) / mnth)

Listing 7.1: The first evolved feature by M3GP for seed 0. See full feature set in listing A.1.

1 if (mnth == December):
2 if (mnth inbetween (October,November)):
3 atemp / hum
4 else:
5 temp * temp
6 else:
7 atemp + atemp

Listing 7.2: Last evolved feature by DK-M3GP for seed 0. See full feature set in listing A.2.

erators. For example, see the feature in listing 7.1. The feature combines multiple categorical features
using arithmetic operators, making no sense. For example, see workingday− temp and weekday/season.

Looking at DK-M3GP, we see no categorical features being combined through arithmetic operations,
but only through if statements. See, for example, the feature presented in listing 7.2. The feature returns
different values based on the month of a data point. This feature can be displayed in a tree-like format
(see fig. 7.28 for an example).

Figure 7.28: The feature from listing 7.2 in a tree-like format.

Showing the feature in a tree-
like format improves the inter-
pretability of the feature. In this
case, I manually create the tree,
but it could be automated, which
would be a great enhancement of
Genetic Engine. Notice that the
ES of the M3GP-evolved feature
in listing 7.1 and the DK-M3GP-
evolved feature in listing 7.2 is
both 23, even though the DK-
M3GP-evolved feature is far more
easily interpreted and less com-
plex.
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Conclusion

In this chapter, I discuss the results and conclude on the thesis. I start with discussing the results in
section 8.1. Then, I conclude on the thesis in section 8.2. Finally, in section 8.3 I discuss interesting
directions for future research.

8.1 Results discussion

In chapter 7 I presented the results in two main parts. First, I compared M3GP implemented in Genetic
Engine to M3GP as implemented by Batista et al. [9]. This was done to justify Genetic Engine as an
acceptable tool for an M3GP GGGP-based implementation. I discuss the results of this evaluation in sec-
tion 8.1.1. Following, I introduced DK-M3GP and DKA-M3GP and implemented them through Genetic
Engine. These methods were applied to two complex datasets with heterogeneous data types. I discuss
the evaluation of DK-M3GP and DKA-M3GP in section 8.1.2.

8.1.1 M3GP implementations comparison

The Genetic Engine and the Batista et al. [9] implementation resulted in different training progressions.
For the BoomBikes dataset, the Genetic Engine implementation performed worse than the Batista et al.
[9] implementation, but for the credit-g dataset, the Genetic Engine implementation performed better.
Furthermore, the Genetic Engine implementation showed to be generalizing better over the training set.
Lastly, when included in an ML pipeline, the Genetic Engine implementation showed to have a better
overall performance. The difference in performance is not expected, as the algorithms are the same.
There are multiple possible reasons for this discrepancy, found in differences in implementation.

Firstly, the random generation of nodes is done differently in both implementations. This results
in differences in population diversity. Even though Genetic Engine showed to perform well enough, it
would benefit tremendously from a population-diversity-analysis system to keep track of the diversity of

73



Chapter 8 Conclusion

the population throughout the evolutionary process. Furthermore, (ϵ-)lexicase selection [40, 57] should
be implemented as it improves population diversity [41].

Secondly, the Batista et al. [9] implementation implements mutation and crossover differently from
the Genetic Engine implementation. When operating on individuals the Batista et al. [9] implementation
initially disregards the tree depth. Once a new individual is generated, the Batista et al. [9] implementation
checks whether the individual has the correct depth. If it is too deep, the Batista et al. [9] implementa-
tion discards the individual. In the Genetic Engine implementation, operations are depth-safe. When
operating on a node, the Genetic Engine implementation first filters the candidate replacements on their
depth, making sure that candidates that are too deep cannot be selected. As such, each operation creates
trees that are within the depth limit. Besides an evident performance improvement on the the Genetic En-
gine implementation side, there is an unexpected side effect. In the the Batista et al. [9] implementation
implementation, there is a difference in the probability of trees being discarded after the evolutionary
operation. More specifically, if the node that is selected for operation is deeper in the tree, there is a
higher probability that the resulting tree is too big. The deeper the node is that is operated on, the bigger
the chance of a failed disruption propagation [59], i.e., for the operation not to have effect. As the imple-
mentation the Batista et al. [9] implementation accidentally discards more trees that are operated on at a
deeper level, there will be less failed disruption propagation, resulting in a higher diversity. To improve
Genetic Engine, we should give less deep nodes a larger chance of being operated on.

Thirdly, the method of crossover is different between the two implementations. In the Batista et al. [9]
implementation two trees are selected, and of each tree a node is selected. The subtrees of the selected
nodes are then swapped, resulting in two trees that together contain all the same nodes of the original
individuals. In the Genetic Engine implementation two trees undergo crossover independently. First, the
Genetic Engine implementation selects a node of each tree, and creates a new tree, using the root of the
first tree. Following the creation, it selects another new node from each tree, and, again, it creates a new
tree, using the root of the second tree. The result is two new trees that do not necessarily contain all the
same nodes of the original individuals. What the result is of the different crossover implementations, I
do not know; further research should point that out.

Finally, there is a negligible difference in mutation and crossover methods. In the Batista et al. [9]
implementation a mutation or crossover is done either (1) on the complete list of features (removing or
deleting a feature, or swapping feature subsets), or (2) on an individual feature (standard tree mutation
and crossover). In the Genetic Engine implementation this is almost the same. The difference is that the
feature set has a parent node itself, and when the second of above options is chosen, the whole feature
set can be mutated. This results in a completely new individual. The probability of this happening is
1
2 ∗ 1

#nodes , which averages to one individual per generation for a population of 500 when the average
individual size is 250 nodes, as is the case at initialization (see fig. 7.4). This can be interpreted as a
cumbersome implementation of novelty, or as a mutation with extremely low locality. Again, the impact
of this I do not know, but I expect it to be negligible.

Except for performance differences, there is also a clear difference in execution speed of the two im-
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1 <A> ::= <B>
2 <B> ::= <C>
3 <C> ::= 1
4 | 2

Listing 8.1: Grammar with redundant information.

plementations. Foremost, the Genetic Engine implementation is much quicker than the Batista et al. [9]
implementation. There are multiple reasons for this, of which the impact I did not analyse. One impor-
tant aspect of Genetic Engine is that trees are directly evaluated while traversing the trees, allowing for
tremendous speed-ups. Furthermore, throughout the evolution, trees are operated on in a depth-safe man-
ner, so that no trees need to be discarded. Moreover, Genetic Engine implements in-node storage, making
it easy to retrieve basic tree information. Genetic Engine can be made quicker by storing subtree evalu-
ations in nodes alongside the basic information. Lastly, Genetic Engine can incorporate deduplication.
All the above I elaborate on in a late-breaking abstract submitted to EuroGP [47].

Finally, there is a difference between the Genetic Engine implementation and the Batista et al. [9]
implementation concerning the expression size (ES) of the evolved models. In line with PonyGE2 [32],
Genetic Engine implements Position-Independent (PI) grow as defined by Fagan et al. [31], which in-
fluences the ES of individuals. The PI grow method is used to generate random nodes, always with the
maximum depth possible. It can be changed to randomly select a depth smaller than the maximum and
generate a random node for that depth, using PI grow.

Furthermore, Genetic Engine has followed PonyGE2 in the method of counting nodes. PonyGE2
counts nodes for every production step, even when a production does not materialize in an actual node.
For example, see listing 8.1. Each individual produced by this grammar is a single literal node with either
value 1 or 2. PonyGE2 counts A, B and C as nodes as well, making each individual four nodes in total.
We implemented Genetic Engine to be comparable with PonyGE2, so it follows the same node counting
method, contributing to the larger ES of the Genetic Engine implementation. Genetic Engine should
implement both node-counting methods to allow for comparisons with a wider variety of methods.

The different method of counting nodes also impacts the way the depth of a tree is measured. For
the Genetic Engine implementation, each production increase the depth by one. An individual formed
from listing 8.1 would thus have a depth of 4. This impacts the depth of individuals in Genetic Engine
throughout the evolutionary process. A better evaluation should be done where these methods are aligned
for both implementations.

Altogether, Genetic Engine shows to be a reliable GGGP framework for FL, when compared to the
GGGP implementation of Batista et al. [9]. Together with the performance evaluation of Genetic Engine
compared to PonyGE2 in section 5.4 and the participation in the GECCO’22 SRBench competition, I
conclude that Genetic Engine shows great promise as a general GGGP framework. We plan to submit
a paper concerning its implementation details in the near future. Furthermore, we intend to conduct a
survey concerning the usability of Genetic Engine.
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8.1.2 Evaluation of DK-M3GP and DKA-M3GP

Incorporating domain knowledge in the search process, as done in DK-M3GP, had varying outcomes in
terms of prediction performance. When comparing DK-M3GP with M3GP for the BoomBikes dataset,
the effect on the training fitness progression was negligible. On the other hand, regarding the compari-
son for the credit-g dataset, the effect on the training fitness progression was plain; domain knowledge
improved the performance. Moreover, DK-M3GP showed little success in generalizing to functioning
within the ML pipelines, scoring worse than or on par with M3GP in almost all cases.

Except for a deterioration of performance, DK-M3GP had two other prospected advantages. Firstly,
the categorization was necessary for aggregation to be added as part of the grammar. This advantage is
very practical and functioned as desired.

Secondly, DK-M3GP was expected to evolve more easily interpreted individuals. We measured in-
terpretability through feature complexity using expression size (ES) as defined in section 2.1.3. Looking
at ES has the advantage of the implementation being straightforward, and of results being easily compara-
ble. On the other hand, it does not cover delicate differences in interpretability. For example, Poursabzi-
Sangdeh et al. [84] found that decreasing model size does not necessarily improve interpretability, even
though predictions could be more easily simulated. Moreover, interpretability is highly subjective [112],
even more so when models do not have the same structure. As DK-M3GP incorporates if statements, the
models it evolves can be visualized in a tree-like structure (see section 7.4.3). This tree-like structure is
supposed to be more easily interpreted, but comes at a cost in ES. For an if statement, we need a Condi-
tion node, either an Equal node or a NotEqual node, that take a Category node as input, or an InBetween
node, that takes an IBCategory node as input. As such, a Condition node comprises at least a total of 7
nodes. The number of nodes needed to construct an if statement is not in line with the interpretability
of its possible tree structure. Consequently, I have not been able to correctly assess the interpretability
gains of DK-M3GP. To conclude, in the future I intend to measure interpretability using another method
than comparing ES, such as the method used in the SRBench Competition of GECCO’22, where the trust
rating of a domain expert was combined with the accuracy and complexity of the model.

DK-M3GP also played a key role in the development of DKA-M3GP, as categories are necessary
to aggregate based on the values of other features. DKA-M3GP had drastic effects on the prediction
results compared to M3GP and DK-M3GP for the BoomBikes dataset. For the credit-g dataset, there is
only a slight improvement compared to DK-M3GP, and both show a large improvement over M3GP. The
improvement of DKA-M3GP over standard M3GP can thus mostly be attributed to the incorporation of
domain knowledge. DKA-M3GP showed to be more reliable in comparison with DK-M3GP as a FL
method to be incorporated within ML pipelines.

DKA-M3GP was originally built using aggregations over the whole historic dataset. Firstly, this was
slow and would not scale well for larger datasets. Secondly, for the BoomBikes dataset, this method did
not performwell, so I chose tomake thewindow size smaller. This performedwell for certain features, but
not for all. Finally, I decided to let the window size be evolved, as to allow the solution to select the best-
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performing size. This worked well, but there are other aggregation parameters I didn’t experiment with.
For example, the window size is currently taken regarding the complete dataset, and then the relevant
data points that match the condition are filtered out. It would be interesting to research reversing this
order, first filtering out relevant data points, and then select the window size. Then, for most windows,
there would be a similar amount of relevant data points. Furthermore, I only implemented an averaging
method. I would like to implement methods like the maximum and minimum, the median, the last or first
historic value, and other functions implemented in Vectorial-GP by Azzali et al. [6].

From this, a question arises: why does one method perform well on one dataset, and one on the other
dataset? Firstly, the BoomBikes dataset is less complex, with fewer features. Furthermore, the categorical
features in the BoomBikes dataset all have an order. Rewriting ordered categorical features with numeric
substitutes is more sensible than doing so for unordered categorical features, as numeric values have
an inherent order. This might be the reason for domain knowledge to have an insignificant effect on
performance for the BoomBikes dataset. On the other hand, the credit-g dataset is more complex, with
a greater number of features, and with many unordered features. Representing these unordered features
with numeric values is not logical, as it encodes a non-existent order into each feature. In this case,
keeping the categorical values as they are, proves to be more beneficial, which is represented by the
increased performance due to domain knowledge incorporation.

On the BoomBikes dataset, aggregating over the value of a feature drastically improves performance.
Aggregating over historic data seems to be a good representative of the data. This might be because
the data is simple, and aggregating over the value of a single feature already covers the data. For the
credit-g dataset, on the other hand, aggregation does not improve performance significantly. The credit-g
dataset is more complex, and there is no single feature that influences the target value as strongly as, for
example, the month feature (see fig. 4.2a) does in the BoomBikes dataset. The difference in risk between
the values of features is less obvious for the credit-g dataset. Furthermore, the data is imbalanced, so
that aggregation will mostly result to values larger than 0.5, which, in a binary dataset, is rounded to
the positive class. All things considered, the credit-g dataset does not seem to benefit from aggregation,
as aggregating over other individuals does not seem to represent its data well. It would be interesting
to experiment with aggregation over the values of multiple features instead of only one. This way, the
more complex relationships between features are included in the aggregation process, allowing for more
complex datasets to be represented by aggregations.

8.2 Conclusion

Altogether, improving the performance of the training fitness by incorporating domain knowledge or
aggregation into the grammar is not reserved for all datasets. Some datasets will benefit from one or the
other, and some will not. I hypothesize that the higher the number of unordered features in a dataset,
the higher the impact of incorporating domain knowledge is. Aggregation in its current format benefits
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simpler datasets. The effects of introducingmore complex aggregationmethods is an interesting direction
for future research. To conclude, DK-M3GP and DKA-M3GP have shown that they can improve the
performance of FL methods. Given the domain-specific knowledge, these methods can be generally
applied to any domain.

The experiments done in this thesis had two parts. First, FL methods were trained as FL methods
only and analysed on both training and test data. Then, the FL method was analysed as part of an ML
pipeline. In retrospect, I have spent unnecessary time on building the complete experiment, even though
looking at the FL method is the first step. I assumed the need of analysing the methods within full ML
pipelines would be important and interesting. Not only are the results incoherent due to overfitting of the
DT in the fitness function, I also think there are other, more interesting paths I could have pursued after
implementing DK-M3GP and DKA-M3GP. Reflecting on my choices, I would take smaller steps, and
make less assumptions beforehand, were I to do the thesis again.

Because we were designing methods that could be applied to any dataset, I did not concern much with
the selection of the use case. I selected them on few criteria besides the availability of additional domain
information, and for them to be either a time series or a panel, so that aggregation would be applicable.
In retrospect, I should have spent some time analysing to what extent recent data represented the historic
data, in order for the chance of overfitting to be diminished. Additionally, we could have explored other
fitness functions, such as the macro weighted F1 score from scikit-learn [82], or changing the DT seed in
the fitness function for each generation.

To conclude, in this thesis I proposed the usage of Genetic Engine, an individual-representation-
independent GP framework completely implemented in Python, to allow a larger audience the benefits
of GP and its various adversaries. Through Traditional GP and M3GP, I applied Genetic Engine to the
problem of FL on two heterogeneous, complex datasets. I evaluated the performance of Genetic Engine
by comparing the M3GP implementation of Genetic Engine to M3GP implemented by [9], and showed
that Genetic Engine performs well, but also included multiple future improvements. I introduced two
novel GGGP-based FL methods called DK-M3GP and DKA-M3GP and implemented them in Genetic
Engine. Given the domain-specific knowledge, these methods are generalizable for other datasets.

Lastly, I researched the impact of domain-knowledge incorporation, entity aggregation, and hetero-
geneous data types to GP-based FL, by analysing the results of DK-M3GP and DKA-M3GP.

8.3 Future work

In this section, I discuss prospected future work. First, I discuss the improvements we want to implement
in Genetic Engine in section 8.3.1. Then, in section 8.3.2, I propose future research concerning DK-
M3GP and DKA-M3GP. Finally, I introduce some other research questions that came up in my thesis in
section 8.3.3.
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8.3.1 Improvements to Genetic Engine

As mentioned before, Genetic Engine can do with some improvements. Firstly, we would like to improve
the execution time by implementing in-node storage of subtree evaluations, and deduplication as outlined
by us [47]. Secondly, the node and depth counting methods should be enhanced to allow for both the
PonyGE2 counting method to be used, and the one used by Batista et al. [9]. This will give us more free-
dom when comparing Genetic Engine with other GGGP frameworks. Thirdly, Genetic Engine currently
uses standard PI grow with the user-defined max depth, resulting to trees being as deep as possible at ini-
tialization. A new method that does not always initialize the deepest-possible trees, but initializes trees
with depths randomly smaller than the maximum depth, should be implemented and tested. Finally, the
evolutionary operations should favour less deep nodes when selecting nodes for operations. As deeper
nodes have a larger probability of failed disruption propagation Langdon et al. [59], operating on less
deep nodes improves diversity.

Except for the above enhancements to the implementation, I would like to implement three features in
Genetic Engine. First, lexicase selection [41, 57] should be implemented to allow the user the diversity-
benefits of this selection method. Second, a local search method for numeric nodes (integers and floating
points) as, for example, done by Kommenda et al. [54] can benefit the search process by optimizing
numeric values in a more numeric-suitable way. Lastly, Genetic Engine would benefit immensely from
a diversity-tracking interface or method. If we could see the diversity of the population throughout the
evolutionary process, Genetic Engine would have a great advantage over other frameworks. One such
interface is given by Burlacu et al. [14].

Finally, to analysis the usability of Genetic Engine, a user survey should be conducted. This allows
us to compare the usability with PonyGE2, and see whether our hypotheses are true.

8.3.2 Continuing research of DK-M3GP and DKA-M3GP

The research in DK-M3GP and DKA-M3GP could see multiple extensions. First and foremost, the meth-
ods are mature enough to analyse their performance on a wide variety of benchmarks. Such an analysis
can confirm their potential and reveal their shortcomings. To do so, the fitness function should be re-
visited. To start, I would like to research the impact of using the macro weighted F1 score from scikit-
learn [82] to improve the classification method. Moreover, experimenting with changing the seed of the
DT in the fitness function each generation is interesting. Finally, I think that including the functioning of
the FL methods within ML pipelines is initially not relevant, and can be left out until a later stage.

Another alluring aspect of a wide-scale analysis on a large benchmark would be to see how the differ-
ence between training and test set influences the model performance. I noticed that all methods overfitted
the training data, also the respected Traditional GP and M3GP methods. I am curious to know whether
that is because of the datasets or because of the methods themselves.

Other improvements were mentioned in section 8.1.2, such as introducing more aggregation func-
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tions, making the aggregation functions more versatile, and allowing for more complex conditions within
the aggregation functions. Finally, the prospected improvement in interpretability for DK-M3GP is not
analysable using the simple ES analysis. A more thorough interpretability analysis should be imple-
mented, possibly including the opinion of domain experts.

8.3.3 Other research questions

During this thesis, I came across multiple interesting aspect of GGGP that I would like to explore more.
One of them is comparing the different individual representations of GE, SGE, and CFG-GPwith Genetic
Engine. As Genetic Engine is individual-representation independent, as it uses the same method for
phenotype-to-genotype mapping in GE and SGE as the node generation in CFG-GP, a comparison is fair.
This would extend on our work on CFG-GP advantages [47], and comparison efforts by Whigham et al.
[107] and by Lourenço et al. [65].

I also found interest in analysis standards within the GP community. I already discussed the different
methods of counting nodes and depth between PonyGE2 [32] and Batista et al. [9]. Another important
and non-uniformly implemented method of analysis is how to measure the prediction performance of new
EAs. Most research includes either prediction performance per generation or prediction performance per
evaluation, as their performance is independent of the machine used. There are many examples for which
these metrics suffice, for example when the time per generation and the time per evaluation do not differ
across the analysed EAs. Still, an analysis of prediction performance per set time would demonstrate
whether an EA performs well within a certain budget. If two methods are compared per generation, but
one method runs twice as quickly, should that method not be allowed to use the extra time to improve the
solution? I would like to study some publications to see how the performance prediction metric is decided
upon, and whether the results are similar when the prediction performance per set time is analysed.

Finally, together with Pedro Barbosa, I plan to use Genetic Engine for multiple DNA-related prob-
lems. We want to see if we can simulate SpliceAI [49] using GP, to make interpretable models that could
contribute to domain knowledge in biology. Furthermore, we aim to research whether we can generate
splicing data using GE in Genetic Engine. In both works, I have an assisting role.
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Appendix A

Expressions of evolved solutions

Below I list the complete evolved feature sets by M3GP (listing A.1) and DK-M3GP (listing A.2) for
seed 0. I add these as an appendix to section 7.4.3, in which I highlight the main advantage of using
DK-M3GP in terms of interpretability; tree-like feature formats. The first seed (0) was chosen to avoid
bias towards selecting a seed that benefits our approach.
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1 workingday + temp - (weekday / season) - (mnth * temp) + windspeed + (((season * atemp) + (atemp
↪→ / yr)) / mnth)

2

3 temp - ((mnth + holiday + weathersit - season) / ((mnth / weathersit) * season * mnth))
4

5 ((mnth * temp * (workingday + yr)) + ((windspeed + mnth) / (season * windspeed))) * ((holiday -
↪→ weathersit - holiday - atemp) / ((season / yr) + (hum * temp)))

6

7 holiday / (((temp - yr) / weathersit) / ((holiday * holiday) + atemp))
8

9 season * (season / (holiday - hum + atemp - weekday))
10

11 (((season + workingday) / (weekday * atemp)) + weathersit - mnth + holiday) * (season - mnth + (
↪→ season * mnth) - windspeed)

12

13 ((yr + atemp) / season) + ((workingday - weekday) / (mnth - atemp)) + hum
14

15 (windspeed / ((weathersit + holiday) * mnth)) + ((windspeed / windspeed) * (atemp + holiday)) -
↪→ weathersit + hum + windspeed

16

17 yr / (((yr * mnth) / (windspeed * windspeed)) * ((atemp / atemp) - windspeed))
18

19 (season - weekday - (temp * hum) - ((season * workingday) + atemp - yr)) / (((weathersit +
↪→ windspeed) / (atemp * weekday)) / (weathersit + atemp - (atemp * weathersit)))

20

21 (((hum / windspeed) / (holiday * temp)) / ((workingday / weekday) * (windspeed / season))) / hum
22

23 windspeed
24

25 ((yr * mnth * (season + workingday)) / (mnth + holiday - (season * holiday))) / (yr - weekday +
↪→ workingday + workingday + temp)

26

27 (((mnth * temp) + (mnth / hum)) * ((windspeed / atemp) / (mnth + weathersit))) / ((season + temp
↪→ - season - temp) / ((weekday - weathersit) * season * temp))

28

29 atemp - weekday

Listing A.1: Evolved feature set by M3GP for seed 0.
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1 (((hum / hum) - (temp * atemp)) / ((hum / atemp) / (windspeed + atemp))) / (windspeed - ((
↪→ windspeed / atemp) / (atemp / windspeed)))

2

3 if (weathersit inbetween (Clear,Misty)):
4 temp * atemp
5 else:
6 windspeed
7

8 (((windspeed / hum) * (windspeed / atemp)) - (windspeed * (hum / atemp))) / (atemp - temp -
↪→ windspeed - atemp)

9

10 (atemp * (windspeed / atemp)) - (((temp - atemp) / (hum - hum)) -
11 (if (weekday inbetween (Sunday,Wednesday)):
12 atemp + windspeed
13 else:
14 temp - windspeed))
15

16 ((temp - atemp) / (windspeed * atemp + windspeed + temp)) * (temp * atemp * hum *
17 (if (season inbetween (spring,summer)):
18 hum + temp
19 else:
20 hum + windspeed))
21

22 if (workingday != 0):
23 temp * atemp + temp
24 else:
25 atemp - temp - hum - atemp + hum
26

27 (if (yr inbetween (0,1)):
28 (temp * hum)
29 else:
30 (atemp - windspeed) / ((temp / atemp) * (windspeed / temp)))
31 / ((windspeed - atemp + windspeed) /
32 (if (weathersit inbetween (Clear,Misty)):
33 temp + hum
34 else:
35 atemp / atemp))
36

37 if (mnth == December):
38 if (mnth inbetween (October,November)):
39 atemp / hum
40 else:
41 temp * temp
42 else:
43 atemp + atemp

Listing A.2: Evolved feature set by DK-M3GP for seed 0.
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