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Summary 

Climate change is one of the most important challenges for current and future generations. 

The Intergovernmental Panel on Climate Change (IPCC) estimates that human activities 

are responsible for approximately 1.0 °C of global warming above pre-industrial levels, 

resulting in major negative impacts. In this context, the IPCC has set a target of limiting 

global warming to 1.5 °C by 2050, above which the damage will become irreversible. 

Greenhouse gas (GHG) emissions are the main drivers of climate change. The period 

2010-2019 showed their highest values in history. During this period, the buildings sector 

accounted for 21% of global GHG emissions. Such data motivated this thesis, framed in 

the study of the systems that comprise GHG emissions in buildings, as well as the 

development of technologies to mitigate them. The first section analyses, using 

bibliometric analysis techniques, the main systems that drive the energy demand of 

buildings. Therefore, building services and their impact on climate change were studied. 

In addition, household appliances and their trends in energy efficiency, correlated with 

the policies implemented at global level, were also studied. Likewise, the co-benefits of 

thermal energy storage (TES) extrapolated from the field of renewable energies were also 

studied, identifying TES as transcendental in the energy transition. The second section of 

the thesis focused on the experimental and simulation analysis of three thermal energy 

storage systems. The first system focused on decreasing the thermal losses of a heating 

storage tank by using vacuum insulation. It was found that vacuum insulation can reduce 

thermal losses by up to 10 times compared to conventional insulation. The second study 

performed a benchmark evaluation between two designs of phase change material (PCM) 

macro-encapsulation in a TES. It was concluded that the design to be used will be 

determined by the application and a trade-off between higher energy density or higher 

heat transfer. The third study identified the main challenges in using concrete to store 

energy at high temperature, and a new design was proposed and analysed to overcome 

these challenges. The results of this thesis have demonstrated that thermal energy storage 

represents a great potential in the energy transition in general and in buildings in 

particular.   
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Resumen 

El cambio climático constituye uno de los retos más importantes para las actuales y 

futuras generaciones. El Panel Intergubernamental sobre Cambio Climático (IPCC) 

estima que las actividades humanas han sido responsables aproximadamente de 1,0 ºC de 

calentamiento global por encima de los niveles preindustriales, trayendo consigo grandes 

impactos negativos. En este contexto, el IPCC ha fijado el objetivo de limitar el 

calentamiento global en 1.5 ºC para el 2050; por encima de este valor los daños serían 

irreversibles. Las emisiones de gases de efecto invernadero (GHG) son los principales 

impulsores del cambio climático. El período 2010-2019 arrojó sus valores más altos de la 

historia. Durante este período, el sector de los edificios aportó el 21% de las emisiones 

mundiales de GHG. Tales datos impulsaron esta tesis, enmarcada en el estudio de los 

sistemas que componen las emisiones de GHG en edificios, así como el desarrollo de las 

tecnologías que permitan mitigarlas. La primera sección analiza, mediante técnicas de 

análisis bibliométricos, los principales sistemas que componen la demanda energética de 

los edificios. Para esto, se estudiaron los servicios de los edificios y su impacto sobre el 

cambio climático. Así como, los electrodomésticos y sus tendencias en eficiencia 

energética, correlacionadas con las políticas implementadas a nivel global. Al igual que, 

los co-beneficios del almacenamiento de energía térmica (TES) extrapolados desde el 

campo de las energías renovables, identificando al TES como trascendental en la 

transición energética. La segunda sección de la tesis se centró en el análisis experimental 

y mediante simulaciones de tres sistemas de almacenamiento térmico. El primer sistema 

se enfocó en disminuir las pérdidas térmicas de un depósito de almacenamiento para 

calefacción mediante el uso de aislamiento al vacío. Se demostró que este aislamiento 

puede disminuir hasta en 10 veces las pérdidas térmicas con respecto al convencional. El 

segundo estudio realizó una evaluación comparativa entre dos diseños de materiales de 

cambio de fase (PCM) macro-encapsulados en un TES. Se concluyó que el diseño a 

utilizar dependerá de la aplicación y de un compromiso entre mayor densidad energética 

o mayor entrega de calor. El tercer estudio identificó los principales retos en la utilización 

del hormigón para almacenar energía a alta temperatura, a la vez que se propuso y analizó 

un nuevo diseño para superar dichos retos. Los resultados de esta tesis han demostrado 

que el almacenamiento de energía térmica tiene un gran potencial en la transición 

energética de manera general y de los edificios de manera particular.   
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Resum 

El canvi climàtic constitueix un dels reptes més importants per a les generacions actuals 

i futures. El Grup Intergovernamental d'Experts sobre el Canvi Climàtic (IPCC) estima 

que les activitats humanes han estat responsables aproximadament de 1.0 ºC 

d'escalfament global per sobre dels nivells preindustrials, portant grans impactes negatius. 

En aquest context, l'IPCC ha fixat l'objectiu de limitar l'escalfament global a 1.5 ºC per al 

2050; per sobre d'aquest valor, els danys serien irreversibles. Les emissions de gasos amb 

efecte d'hivernacle (GHG) són els principals impulsors del canvi climàtic. El període 

2010-2019 va donar els seus valors més alts de la història. Durant aquest període, el sector 

dels edificis va aportar el 21% de les emissions mundials de GHG. Aquestes dades van 

impulsar aquesta tesi, emmarcada en l’estudi dels sistemes que componen les emissions 

de GHG en edificis, així com el desenvolupament de les tecnologies que permetin 

mitigar-les. La primera secció analitza, mitjançant tècniques d’anàlisi bibliomètrica, els 

principals sistemes que componen la demanda energètica dels edificis. Per això, es van 

estudiar els serveis dels edificis i el seu impacte sobre el canvi climàtic. A més, es van 

estudiar els electrodomèstics i les seues tendències en eficiència energètica, 

correlacionades amb les polítiques implementades a nivell global. Així mateix, es van 

estudiar els co-beneficis de l'emmagatzematge d'energia tèrmica (TES) extrapolats des 

del camp de les energies renovables, identificant el TES com a transcendental en la 

transició energètica. La segona secció de la tesi es va embrancar en l’anàlisi experimental 

i mitjançant simulacions de tres sistemes d’emmagatzematge tèrmic. El primer sistema 

es va enfocar a disminuir les pèrdues tèrmiques d’un dipòsit d’emmagatzematge per a 

calefacció mitjançant l’ús d’aïllament al buit. Es va demostrar que aquest aïllament pot 

disminuir fins a 10 vegades les pèrdues tèrmiques respecte al convencional. El segon 

estudi va realitzar una avaluació comparativa entre dos dissenys de materials de canvi de 

fase (PCM) macro-encapsulats en un TES. Es va concloure que el disseny a utilitzar 

dependrà de l'aplicació i d’un compromís entre més densitat energètica o més entrega de 

calor. El tercer estudi va identificar els principals reptes en la utilització del concret per 

emmagatzemar energia a alta temperatura, alhora que es va proposar i analitzar un nou 

disseny per superar aquests reptes. Els resultats d’aquesta tesi han demostrat que 

l’emmagatzematge d’energia tèrmica té un gran potencial en la transició energètica de 

manera general i dels edificis de manera particular. 



   

 

viii 

 

Table of contents 

Acknowledgements ......................................................................................................... iii 

Dedication ........................................................................................................................ iv 

Summary ........................................................................................................................... v 

Resumen .......................................................................................................................... vi 

Resum ............................................................................................................................. vii 

Table of contents ........................................................................................................... viii 

List of figures .................................................................................................................. xi 

List of tables .................................................................................................................. xiii 

List of symbols and abbreviations ................................................................................. xiv 

Chapter 1 Introduction and objectives ........................................................................ 16 

1.1 Introduction .................................................................................................... 17 

1.1.1 Statement of the problem and motivation .................................................. 17 

1.1.2 Thermal energy storage .............................................................................. 22 

1.2 PhD objectives ................................................................................................ 26 

Chapter 2 PhD thesis structure and methodology ....................................................... 27 

2.1 PhD thesis structure ........................................................................................ 28 

2.2 Methodology ................................................................................................... 29 

Chapter 3 Results ........................................................................................................ 36 

3.1 Paper 1: Which building services are considered to have impact on climate 

change? ....................................................................................................................... 37 

3.1.1 Overview .................................................................................................... 37 

3.1.2 Contribution to the state-of-the-art ............................................................. 37 

3.1.3 Contribution of the candidate ..................................................................... 39 

3.1.4 Journal paper .............................................................................................. 39 

3.2 Paper 2: Trends in research on energy efficiency in appliances and correlations 

with energy policies. ................................................................................................... 40 



   

 

ix 

 

3.2.1 Overview .................................................................................................... 40 

3.2.2 Contribution to the state-of-the-art ............................................................. 40 

3.2.3 Contribution of the candidate ..................................................................... 43 

3.2.4 Journal paper .............................................................................................. 43 

3.3 Paper 3: Thermal energy storage co-benefits in building applications 

transferred from a renewable energy perspective. ...................................................... 44 

3.3.1 Overview .................................................................................................... 44 

3.3.2 Contribution to the state-of-the-art ............................................................. 45 

3.3.3 Contribution of the candidate ..................................................................... 45 

3.3.4 Journal paper .............................................................................................. 46 

3.4 Paper 4: Experimental study of a small-size vacuum insulated water tank for 

building applications. ................................................................................................. 47 

3.4.1 Overview .................................................................................................... 47 

3.4.2 Contribution to the state-of-the-art ............................................................. 47 

3.4.3 Contribution of the candidate ..................................................................... 49 

3.4.4 Journal paper .............................................................................................. 49 

3.5 Paper 5: Experimental study on two PCM macro-encapsulation designs in a 

thermal energy storage tank. ....................................................................................... 50 

3.5.1 Overview .................................................................................................... 50 

3.5.2 Contribution to the state-of-the-art ............................................................. 51 

3.5.3 Contribution of the candidate ..................................................................... 52 

3.5.4 Journal paper .............................................................................................. 52 

3.6 Paper 6: Modular concrete system for high temperature thermal energy storage

  ........................................................................................................................ 53 

3.6.1 Overview .................................................................................................... 53 

3.6.2 Contribution to the state-of-the-art ............................................................. 54 

3.6.3 Contribution of the candidate ..................................................................... 56 



   

 

x 

 

3.6.4 Journal paper .............................................................................................. 57 

Chapter 4 Global discussion of results ........................................................................ 58 

Chapter 5 Conclusions and future work ...................................................................... 62 

5.1 Conclusions .................................................................................................... 63 

5.2 Future work .................................................................................................... 65 

Other research activities ................................................................................................. 66 

Other journal publications .......................................................................................... 67 

Contributions to books chapters ................................................................................. 68 

Contributions to international conferences ................................................................. 69 

Contributions to seminars and workshops .............................................................. 70 

Scientific foreign-exchange .................................................................................... 70 

Projects participation .............................................................................................. 70 

Organising committee participation ....................................................................... 71 

References ...................................................................................................................... 72 

 

  



   

 

xi 

 

List of figures 

Figure 1-1. Global and regional impacts attributed to climate change, (a) on ecosystems, 

and (b) on human systems [2]. ....................................................................................... 18 

Figure 1-2. Global net anthropogenic GHG emissions (GtCO2-eq yr-1) 1990–2019 [2].

 ........................................................................................................................................ 19 

Figure 1-3. Building GHG emissions: historical data based on International Energy 

Agency (IEA) [6]. ........................................................................................................... 20 

Figure 1-4. Final energy demand per fuel: historical based on IEA data. Adapted from 

[6]. .................................................................................................................................. 20 

Figure 1-5. Global CO2 emissions from building operations [5]. ................................. 21 

Figure 1-6. Decompositions of changes in historical residential energy emissions 1990-

2019 [6]. ......................................................................................................................... 22 

Figure 1-7. Infographic of the TES technologies benefits from IRENA (2020) [11]. .. 23 

Figure 1-8. Operating temperatures and time ranges for TES technologies. Adapted from 

IRENA (2020) [11]. ........................................................................................................ 24 

Figure 1-9. Classification of phase change materials. Adapted from IRENA (2020) [11].

 ........................................................................................................................................ 25 

Figure 2-1. Scheme of the PhD thesis structure by chapters ......................................... 28 

Figure 2-2. PhD thesis structure by chapter. ................................................................. 29 

Figure 2-3. Bibliometric analysis in brief (adapted from [24]). .................................... 30 

Figure 2-4. Schematic of the 0.535 m3 water tank built by Sirch Tankbau-Tankservice 

Speicherbau GmbH [25]. All dimensions are presented in millimetres. ........................ 32 

Figure 2-5. Schematic view of the experimental set-up used to perform paper four 

experiments. .................................................................................................................... 33 

Figure 2-6. ThinICE and FlatICE slabs encapsulation. Dimensions in millimetres. ..... 33 

Figure 2-7. Latent heat TES. ......................................................................................... 34 

Figure 2-8. Schematic view of the experimental set-up used to perform paper five 

experiments. .................................................................................................................... 34 

Figure 3-1. Identified building services [35]. ................................................................ 38 

Figure 3-2. Average publications year and number of occurrences of the different 

appliances in each studied country/region, (a) range of years from 1985 to 2020, (b) year 

range from 2005 to 2020.. Data from the Scopus query. The green crosses indicate the 



   

 

xii 

 

first appliance efficiency standard or policy implemented in each country/region. The 

dark green crosses indicate the first appliance efficiency standard or policy that includes 

brown goods appliances. Data obtained from the IEA policies database [40]. .............. 42 

Figure 3-3. Temperature profiles (left) and calculated heat losses (right) for test A. Tamb 

represents the ambient temperature and Qtot is the sum of heat losses from Q1 to Q5 . 48 

Figure 3-4. Temperature profiles (left) and calculated heat losses (right) for test B. Tamb 

represents the ambient temperature and Qtot is the sum of heat losses from Q1 to Q5 . 48 

Figure 3-5. ThinICE and FlatICE slabs encapsulation. Dimensions in millimeters. ..... 51 

Figure 3-6. Concrete TES concept: (a) fitting connections, (b) stacked distribution 

example, (c) connection points. ...................................................................................... 55 

Figure 3-7. Temperature distribution inside the proposed concrete block obtained from 

the CFD analysis: (a) initial charge, (b) mid-charge, (c) full charge. ............................. 56 

 

  



   

 

xiii 

 

List of tables 

Table 2-1. Thermophysical properties of concrete implemented in CFD ..................... 35 

Table 2-2. Thermophysical properties of the HTF (air) implemented in CFD .............. 35 

  



   

 

xiv 

 

List of symbols and abbreviations 

Abbreviations 

TES Thermal energy storage 

IPCC Intergovernmental Panel on Climate Change 

GHG Greenhouse gas emissions 

IEA International Energy Agency 

SDGs Sustainable Development Goals 

IRENA International Renewable Energy Agency 

PCM Phase change material 

SHTES Sensible heat thermal energy storage 

LHTES Latent heat thermal energy storage 

TCM Thermochemical materials 

CFD Computational Fluid Dynamics 

SCADA Supervisory Control and Data Acquisition 

HTF Heat transfer fluid 

HVAC Heating, ventilation, and air conditioning 

EES&L Energy Efficiency Standards and Labelling 

LNG Liquefied natural gas 

SH Space heating 

DHW Domestic hot water 

CSP Concentrated solar power 

ORC Organic Rankine cycle 

 

  



   

 

xv 

 

This page was intentionally left blank 

 



  1. Introduction and objectives 

16 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1  

Introduction and objectives 

 

 

  



1. Introduction and objectives   

 

17 

 

1.1 Introduction 

This chapter describes the background and motivation of the present PhD. Furthermore, 

it provides an overview of the state-of-the-art of the proposed technologies and finally 

details the objectives pursued during its development. 

1.1.1 Statement of the problem and motivation 

Climate change represents one of the most important challenge for humanity today, 

setting a large part of the world population at risk [1].  

According to the Sixth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC) [2], human-induced climate change, including more frequent and intense 

extreme events, was the cause of widespread adverse effects and damage to nature and 

people, beyond natural climate variability. Human activities are estimated to be 

accountable for approximately 1.0 °C of global warming above pre-industrial levels. 

Moreover, the global warming is likely to reach 1.5 °C between 2030 and 2052 if it 

continues to increase at the current rate [3]. 

Although development and adaptation efforts reduced vulnerability, increased extreme 

weather and climate events are leading to irreversible impacts, as natural and human 

systems are pushed beyond their adaptive capacity (Figure 1-1). 

Greenhouse gas emissions (GHG) are the main drivers of climate change. Figure 1-2 

shows that the total net anthropogenic GHG emissions have continued to rise during the 

period 2010–2019, as have cumulative net CO2 emissions since 1850. Moreover, the 

average annual GHG emissions during 2010 to 2019 were higher than in any previous 

decade.  
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(a) 

 

(b) 

Figure 1-1. Global and regional impacts attributed to climate change, (a) on ecosystems, and (b) on 

human systems [2]. 

The above data evidence that we are approaching a decisive moment for the development 

of the human species, so efforts from all sectors of society are needed to tackle the climate 

crisis. Pivoting in the right direction, the number of countries committed to achieve net-

zero emissions by mid-century or soon after continues to grow, but so do global 

greenhouse gas emissions [4]. This gap between rhetoric and action must be closed if we 

are to stand a fighting chance of limiting by 2050 the rise in global temperatures to 1.5 

°C. 



1. Introduction and objectives   

 

19 

 

 

(a) 

 

(b) 

Figure 1-2. Global anthropogenic GHG emissions, (a) Global net anthropogenic GHG emissions 1990–

2019, and (b) Global anthropogenic GHG emissions and uncertainties by gas – relative to 1990 [2]. 

In this context, buildings are a source of enormous potential. The total GHG emissions in 

the building sector reached 12 GtCO2eq in 2019. It was, equivalent to 21% of global GHG 

emissions that year, of which 57% were indirect CO2 emissions from the offsite 

generation of electricity and heat, followed by 24% of direct CO2 emissions produced 

onsite and 18% from the production of cement and steel used for construction and/or 

refurbishment of buildings (Figure 1-3). If only CO2 emissions are considered, the share 

of buildings CO2 emissions increases to 31% of global CO2 emissions. Global final 

energy demand from buildings reached 128.8 EJ in 2019, equivalent to 31% of global 

final energy demand. Residential buildings consumed 70% of global final energy demand 

of buildings. Electricity demand of buildings was slightly above 43 EJ in 2019, equivalent 

to more than 18% of global electricity demand. Over the period 1990 to2019, global CO2 

emissions from buildings increased by 50%, and global final energy demand grew by 

38%, with a 54% increase in non-residential buildings and a 32% increase in residential 

ones [5]. Among energy carriers, the growth in global final energy demand was strongest 

for electricity, which increased by 161% (Figure 1-4) [6]. 



  1. Introduction and objectives 

20 

 

 

Figure 1-3. Building GHG emissions: historical data based on International Energy Agency (IEA) [6]. 

 

 

Figure 1-4. Final energy demand per fuel: historical based on IEA data. Adapted from [6]. 

In 2020, direct and indirect emissions from buildings operation decreased to around 9 

GtCO2eq, after increasing by an average of 1% per year since 2010 (Figure 1-5). Although 

minimum performance standards are becoming more stringent [7] and the integration of 

renewables is accelerating, the drop in CO2 emissions from the buildings sector in 2020 

is mainly due to lower activity in the services sector (resulting from smart working, closed 

schools, and empty hotels and restaurants) due to COVID-19 [5].  
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Figure 1-5. Global CO2 emissions from building operations [5]. 

In 2021, global energy-related CO2 emissions (from all sectors) are estimated to have 

rebounded by more than 4% as demand for coal, oil, and gas bounced back with the 

economy. The increase of over 1.2 GtCO2eq would be the largest single increase since 

the carbon-intensive economic recovery from the global financial crisis more than a 

decade ago [8]. 

IPCC AR6 Chapter 9 [6] states that the drivers of GHG emissions from buildings and 

their climate impact can be identified through an index decomposition analysis (Figure 

1-6). Over the period 1990 to 2019, population growth accounted for 28% of the growth 

in global emissions in residential buildings, the growth in floor area per capita accounted 

for 52%, and increasing carbon intensity of the global energy mix accounted for 16%. 

Efficiency improvement contributed to decreasing global emissions from residential 

buildings by 49% [6]. Based on these results, the lack of sufficiency policies has 

contributed to the largest increase in CO2 emissions. However, developing sufficiency 

policies is not enough, decarbonizing the power sector through the penetration of 

renewable energies is already a necessity to reach the Paris Agreement. According to the 

IEA, in order to be in line with the sustainable development goals (SDGs) by 2040, the 

average annual share of renewables in the energy mix should reach 45% [9]. To do so, 

the way in which energy is generated, stored, transmitted, distributed, and used must 

undergo a process of transformation. For this, the development of thermal energy storage 

(TES) technologies is of paramount importance.  
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Figure 1-6. Decompositions of changes in historical residential energy emissions 1990-2019 [6]. 

1.1.2 Thermal energy storage 

Thermal energy storage is the temporary storage of energy by heating or cooling a storage 

medium so that the stored energy can be used at a later time from generation. According 

to IRENA [10], TES technologies offer unique benefits, such as helping to decouple 

heating and cooling demand from immediate power generation and supply availability. 

The resulting flexibility allows far greater reliance on variable renewable sources, such 

as solar and wind power. TES reduces the need for costly grid reinforcements, helps to 

balance seasonal demand and supports the shift to a predominantly renewable-based 

energy system (Figure 1-7). 

Research on TES has grown exponentially over the last decade, exemplified in various 

books [11–13] and journal articles [14–20]. Three main technologies have been identified 

for TES: sensible thermal energy, latent thermal energy, and sorption and chemical 

reactions, also known as thermochemical, with their respective operating temperature 

ranges (Figure 1-8).  

Sensible thermal energy storage (SHTES) is the most deployed and commercially 

advanced type of TES. It stores thermal energy by heating or cooling a storage medium 

(liquid or solid) without changing its phase. The amount of stored energy is proportional 

to the temperature change on charging, within the operational temperature range, and the 
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thermal capacity of the material. Sensible heat storage systems offer storage capacities 

ranging from 10 to 80 kWh/m3 (up to 200 kWh/m3 in the case of molten salts) and storage 

efficiencies between 50% and 98%, depending on the specific heat of the storage medium 

and thermal insulation technologies. 

 

Figure 1-7. Infographic of the TES technologies benefits from IRENA (2020) [11]. 
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Figure 1-8. Operating temperatures and time ranges for TES technologies. Adapted from IRENA (2020) 

[11]. 

Compared to other thermal storage technologies, sensible storage offers the simplest and 

often cheapest form of storage. As a result, sensible technologies are the most widespread 

today. The most commonly used storage materials are water, concrete, rock beds, ceramic 

bricks, molten salts, and soil [21]. 

In latent heat thermal energy storage (LHTES), the energy is stored when the storage 

material undergoes a phase change. Unlike sensible heat storage, the process is nearly 

isothermal, which means that the energy is stored due to the molecular restructuration that 

takes place within the transition from one phase to the other. Thus, the amount of energy 

is proportional to the mass and phase change enthalpy of the storage medium. The most 

widely used and studied phase change transition is the solid-liquid transition, and the 

materials used are known as phase change materials (PCMs) [11]. Latent heat storage 

systems offer storage capacities ranging from 50 to 180 kWh/m3 and storage efficiencies 

above 90%. The most commonly used PCMs can be classified into five categories (Figure 

1-9): salt-water eutectics, ice, paraffin wax, salt hydrates, and salts and their eutectics 

mixtures [10]. 

Sorption and chemical reactions category, also known as thermochemical energy storage 

consists of reversible physical and chemical processes or reactions involving two or more 

substances, usually known as thermochemical materials (TCMs). This means that the heat 
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supplied during the dissociation process can be recovered if a synthesis reaction takes 

place. Thermochemical heat storage systems offer storage capacities ranging from 200 to 

1200 kWh/m3 and storage efficiencies between 40% and 60%. 

 

Figure 1-9. Classification of phase change materials. Adapted from IRENA (2020) [11]. 
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1.2 PhD objectives 

According to the available literature, buildings have a key role to play in reducing GHG 

emissions. The introduction section identified that demand shifting to maintain stable 

energy generation without peak carbon generation and the integration of renewable 

energy are two of the main measures that can influence the reduction of up to 16% of 

GHG emissions from buildings. TES is presented as one of the most promising 

technologies to meet the identified measures. Consequently, the main objective of this 

PhD thesis is to provide a contextualisation of the background, experimental evidence, 

and detailed analysis of TES for buildings integration. The research studies carried out in 

this thesis range from simulations, and laboratory tests, to experimental set-up analyses 

of full-scale TES prototypes. 

The main objectives of the PhD are listed below: 

• To critically assess the literature in order to identify the existing energy 

requirements of buildings and their future trends. Moreover, to identify the main 

barriers to meeting these requirements in a sustainable way.    

• To identify and analyse the main co-benefits of TES integration in buildings. 

• To characterise and study heat losses in TES, with special emphasis on heat loss 

reduction through the use of vacuum insulation. 

• To experimentally evaluate different PCM macro-encapsulations for TES to 

optimise its distribution to match the building energy demands. 

• To assess the main challenges in concrete TES and to design and evaluate new 

concrete TES to meet these challenges. 

• Through the research results obtained in this PhD, to contribute to new approaches 

to commercial targets and future implementations in commercial-scale 

applications within R&D&I projects. 
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This chapter describes the structure development of the thesis and the methodology used 

to define the framework and experimental studies of the PhD. 

2.1 PhD thesis structure 

The present doctoral thesis is based on six papers, of which four are already published in 

SCI journals and two were submitted. 

This PhD thesis is divided into five chapters, as shown in the scheme of the structure of 

the PhD presented in Figure 2-1. Chapter 1 introduces the urgency for climate actions, 

the role of the buildings sector in it, and the importance of TES in the energy transition; 

moreover, this chapter also presents the main objectives of this PhD thesis. Chapter two 

describes the structure of the PhD thesis and the methodology followed throughout the 

thesis. Chapter three details the six papers that make up this PhD, providing for all of 

them the overview of the study, their contribution to the state of the art and the 

contributions of the candidate. In the fourth chapter, the overall discussion of the results 

is presented, connecting the results obtained in the six papers, and highlighting the 

importance of joint efforts of all sectors of society in the fight against climate change. 

Finally, chapter five highlights the main conclusions drawn from this PhD and 

recommendations for future work.  

 

Figure 2-1. Scheme of the PhD thesis structure by chapters. 
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2.2 Methodology 

This section presents the methodology used to achieve the objectives of the thesis and the 

materials used for the experimental tests. To have an overview of the path followed during 

its development, this thesis can be divided into two main groups: the analysis of the 

energy requirements of buildings through bibliometric analysis, and both experimental 

and simulation studies of thermal storage systems. A diagram of this PhD distribution can 

be seen in Figure 2-2, where the relation between the research approaches and the papers 

that were prepared within each of them is presented. 

 
Figure 2-2. PhD thesis structure by chapter. 

The first group focuses on bibliometric techniques as a source of analysis of the factors 

and requirements that can influence the building energy needs, and therefore the type of 

energy system to be used in each case.  

Many studies of the literature were instrumental to identify the main findings in different 

research fields. In general, the reviews focused on synthesising the main findings through 

an in-depth and detailed search of existing publications. However, in other fields such as 

health and social sciences a new technique of literature review proved useful, hence it is 

now beginning to have a wider impact in other fields of research. This technique is 

commonly known as bibliometric analysis (considering only scientific literature 

scientometric analysis) and it is based on the extraction and quantitative analysis of the 
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most relevant data from scientific databases such as Web of Science, Elsevier Scopus, 

Dimensions, and Google Scholar [22].  

Through the results obtained from scientific databases, bibliometric analyses allow a 

more holistic perspective of the topic of study, find correlations in research and identify 

bibliographic gaps inherent to a research topic. Furthermore, this type of analysis enables 

to study the main authors of a particular topic and the relationships between them, as well 

as the trend of publications over the years. 

The methodology followed to perform a bibliometric analysis can be summarised as in 

Figure 2-3. The first step is to pre-formulate the query(s). For this purpose, representative 

keywords are selected to ensure an adequate framing of the study. The next step is the 

selection of the database to be used (in the framework of the studies of this PhD, Scopus 

was used as the database). Next, the search criteria are established, setting both the 

geographical scope and the time frame (in this PhD all the studies had a worldwide and 

regional scope, and the entire period of available publications was analysed). A thorough 

review of the publications is then carried out to exclude publications that are not related 

to the topic. At this point the final query of the study is ready, therefore the bibliometric 

data is downloaded from the database, and the data analysis begins.  

 

Figure 2-3. Bibliometric analysis in brief (adapted from [24]). 

The analysis is divided into two sections. The first section consists of graphing and 

analysing the downloaded bibliometric data. This first analysis includes the trends in 

publications, the journals where the results are published, the authors with the most 

publications, among others. In the second section, a more in-depth analysis is carried out 

by performing a literature map of the downloaded data, which allows to group the studies 
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into clusters, as well as to identify relationships and gaps between topics. Furthermore, 

by means of an overlay time-line representation of the clusters, it is possible to identify 

where the research is going, the lines of research that have not been successful, and to 

identify the most promising ones. 

As a result of the first group of studies conducted for this PhD, it was identified that 

thermal energy storage is of vital importance for a transition to clean energy use in 

buildings, and required to meet the SDGs and Europe proposed 2050 targets. In addition, 

the great diversity of buildings that make up the global building stock and the great variety 

of climates worldwide mean that there is no single storage technology that can meet all 

building requirements. Within this context, it is essential to develop advances in all fields 

of thermal energy storage. 

Therefore, this PhD evaluates three thermal storage systems, two of which were evaluated 

experimentally, and the third by means of Computational Fluid Dynamics (CFD) 

techniques. The systems to be evaluated were a vacuum insulated water TES tank for 

liquid sensible heat storage, a macro-encapsulated PCM TES tank for liquid-solid latent 

heat storage, and a new modular concrete storage design for solid sensible heat storage. 

The experimental tests were carried out on two set-ups of the GREiA research group 

designed and built as part of this PhD for the testing of these TES, and for future testing 

of similar systems.  

There are two critical variables in the performance of a water tank TES, which are 

stratification and heat losses. The literature reports that reducing heat losses contributes 

positively to the stratification of the tank [24]. Additionally, literature studies report that 

vacuum insulation can reduce the heat losses of a tank by at least a factor of six compared 

to standard insulation (only tested on TES tanks over 100 m3) [25]. Therefore, paper four 

undertakes the performance analysis of a 0.535 m3 vacuum insulated water TES tank for 

building applications (Figure 2-4). The performance was evaluated by analysing the heat 

losses of the tank. This was done by a "cooling test", preheating the tank to different 

temperature levels and recording the temperature inside the tank, on the external surface 

of the tank, and the ambient temperature for 48 hours. Mainly, two heat loss tests were 

performed with two different boundary conditions:  
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• Test A: the water tank is preheated to a uniform temperature of 65 °C. 

• Test B: the water tank is preheated to 45 °C in the lower and middle layers and 65 

°C in the upper layer. 

Figure 2-4. Schematic of the 0.535 m3 water tank built by Sirch Tankbau-Tankservice Speicherbau 

GmbH [25]. All dimensions are presented in millimetres. 

The experimental set-up developed for this test (Figure 2-5) consists of a 200-litre 

commercial buffer tank with a built-in 9 kW electric heater and a monobloc pump (model 

OE-IP22-12037) controlled by an Invertek optidrive E3 IP20 variable speed drive. To 

measure the ambient temperature and the external surface temperature of the tank, 3 Pt-

100 class A IEC 60751 temperature sensors of standard type (accuracy 0.15 ± 0.002·t) 

were implemented. All control variables were recorded through a data acquisition system 

(STEP DL-01 data logger) connected to a computer equipped with Indusoft SCADA 

software [26]. The measurement interval was 1 second and the recording interval (time 

step) was set to 10 seconds. 

According to the IEA, the use of electric air conditioners and fans to keep cool accounts 

for almost 20% of the total electricity used in buildings worldwide. Increased demand for 

space cooling is also putting enormous pressure on many countries electricity systems, as 

well as increasing emissions. Therefore, paper five studies two PCM macro-encapsulation 

designs (Figure 2-6) in a thermal energy storage tank (Figure 2-7) for low temperature 

applications. 

The experimental tests of paper five consisted of performing four different charging and 

discharging processes to evaluate the effect of the PCM macro-encapsulation design and 
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the flow rate on the temperature distribution, heat transfer rate, and energy 

stored/released. 

Figure 2-5. Schematic view of the experimental set-up used to perform paper four experiments. 

 

 

Figure 2-6. ThinICE and FlatICE slabs encapsulation. Dimensions in millimetres. 

Figure 2-8 shows the experimental set-up developed for the tests, which is composed of 

a 25-litre inertia water tank, whose temperature is controlled by a vapour compression 

cooling unit (Zanotti model GCU2030ED01B) of 5 kW cooling power, and two 

immersion thermostats (OVAN TH100E-2kW and JP SELEC-TA-1kW). The set-up also 

integrates: two variable speed pumps, used to control the flow and inlet temperature in 

the TES system; a Badger flowmeter type ModMAG M1000, with an accuracy of ±0.25 

% of the actual value; and the TES latent heat storage. The data acquisition system used 

consisted of 3 STEP DL-01 data loggers [39] connected to a computer integrating system 
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control and data acquisition (SCADA) software developed in InduSoft Web Studio [26]. 

The data logging interval was set to 10 seconds. 

 

Figure 2-7. Latent heat TES. 

 

 

Figure 2-8. Schematic view of the experimental set-up used to perform paper five experiments. 

Concerning sensible thermal storage solutions in solids, concrete has a high potential [27–

29]. However, this technology still poses challenges, such as manufacturing techniques, 

material formulation, and design, which limit construction feasibility and thermal 

performance. In order to improve the current configurations, paper six proposes a new 

thermal energy storage design using concrete based on a modular concept, improved 

concrete formulation, and direct contact between the HTF and the concrete. In addition, 

a preliminary evaluation of the thermal performance of the new concept is carried out by 

means of a CFD analysis showing the temperature distribution of the modules and the 

feasibility of the concept. 
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The design of the proposed concrete module was carried out using Autodesk Inventor 

software [30], and the simulations were performed with Autodesk CFD software [31]. 

The main characteristics of the materials used in the simulation are shown in Table 2-1 

and Table 2-2. 

Table 2-1. Thermophysical properties of concrete implemented in CFD 

Property Value 

Thermal conductivity x, y, z 

direction [W/m·K] 

1.01 

Density [kg/m3] 2306 

Specific heat [kJ/kg·K] 0.837 

Emissivity [-] 0.95 

Transmissivity [-] 0 

Electrical resistivity [ohm·m] 0 

Wall roughness [μm] 0 

 
Table 2-2. Thermophysical properties of the HTF (air) implemented in CFD 

Property Value 

Density [m2/s2·K] Equation of state 

Viscosity [poise] 0.0001817 

Thermal conductivity [W/m·K] 0.02563 

Specific heat [kJ/kg·K] 1.004 

Compressibility [Cp/Cv] 1.4 

Emissivity [-] 1 

Wall roughness [μm] 0 
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3.1 Paper 1: Which building services are considered to have 

impact on climate change? 

3.1.1 Overview  

Buildings are large consumers of energy, with buildings and the building construction 

sector accounting for more than 30% of global final energy consumption and 40% of total 

CO2 emissions, both direct and indirect [32]. However, heating and cooling of buildings 

is one of the areas with the greatest potential to reduce energy consumption and CO2 

emissions [33]. Indeed, heating and cooling are clearly identified as energy-consuming 

building services. However, in order to have a comprehensive view of the real climate 

change mitigation potential of buildings, other building energy services (e.g. lighting) 

should also be taken into account. 

There are several definitions of building services in the literature with different scopes. 

One states that building services are the systems installed in buildings to make them more 

comfortable, functional, efficient and safe. Under this definition, building services 

include building control systems, energy distribution and energy supply. Another 

definition states that building services aim to achieve a safe and comfortable indoor 

environment while minimising the environmental impact of a building. Then, under this 

concept other scopes appear in the framework of building services, with wellbeing, 

circular economy, and climate change mitigation becoming increasingly important. 

However, a more holistic approach would also include terms such as shelter, cooking, 

materials, embodied energy and embodied carbon, CO2 emissions, GHG emissions, and 

pollution.  

3.1.2 Contribution to the state-of-the-art 

This study was focused on the analysis of the available scientific literature using 

bibliometric techniques. Therefore, the study pursued the following research objectives: 

(I) to establish the main categories of building services; (II) to identify trends and 

geographical patterns in the building services literature; (III) to establish the most 

productive and influential researchers in the field of building services; (IV) to generate 

and analyse a keyword co-occurrence network; (V) to analyse the main gaps and 
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emerging research themes from the keyword analysis; and (VI) to assess the impact of 

climate change on the building services research. 

The main results of the study can be summarised as follows: 

• Building services can be divided into four categories, as shown in Figure 3-1. 

• The most recent research on building services can be associated with safety, 

comfort, and efficiency. With special emphasis on improving the building thermal 

efficiency and air quality by studying natural ventilation techniques coupled with 

HVAC systems and the development of new HVAC technologies.  

• Electrical efficiency improvements focus on the use of LED lighting and the use 

of smart control strategies optimised through building simulations.  

• When relating building services to climate change, the most recent studies focus 

on social aspects such as social housing, urban growth, and thermal comfort.  

• The main research gaps identified is the lack of strategies that integrate the four 

groups of building services (identified in this study) in order to draw a more 

holistic and effective research in the fight against climate change.  

 

Figure 3-1. Identified building services [34]. 
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3.1.3 Contribution of the candidate 

David Vérez and Luisa F. Cabeza conceived and designed the study. After that, David 

Vérez performed the analysis of the bibliometric data and both co-authors wrote the 

paper. 

3.1.4 Journal paper 

The scientific contribution from this research work was published in Energies in 2021. 

Reference: D. Vérez, L.F. Cabeza, Which building services are considered to have impact 

on climate change?, Energies 14 (2021) 3917.  
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3.2 Paper 2: Trends in research on energy efficiency in 

appliances and correlations with energy policies. 

3.2.1 Overview  

Nowadays, the buildings sector accounts for almost a third of the total final energy 

consumption and 15% of the direct CO2 emissions of the end-use sector. Moreover, its 

share of emissions rises to about 30% if indirect emissions from electricity and heat used 

in buildings are included [8].  

According to the IEA (International Energy Agency), appliances are responsible for 17% 

of final electricity use in buildings [35]. Furthermore, the energy consumption of building 

appliances shows an increasing trend over the last 20 years with a small growth in highly 

developed regions such as North America and the European Union, and a high growth of 

4 to 8 times the values reached in 2000 in regions such as China, India, and the Middle 

East. Nowadays, only one-third of appliance energy use is covered by mandatory 

performance standards. The IPCC (Intergovernmental Panel on Climate Change) 5th 

Assessment Report states that energy efficient appliances can reduce the expected 

increase in electricity consumption due to the proliferation of appliance types and their 

increased ownership and use. Furthermore, policy measures such as appliance standards 

with strong energy efficiency requirements are available to help achieve this goal [36]. 

United States, European Union, China, India, Brazil, Australia, Mexico, South Africa, 

and Malaysia, nine of the countries that have been operating the longest EES&L (Energy 

Efficiency Standards and Labelling) programmes, reduced annual electricity 

consumption in 2018 by 1580 TWh. This represents the same order of magnitude as the 

total electricity generated by solar and wind energy in those countries showing the high 

importance of energy efficiency in appliances [37]. 

3.2.2 Contribution to the state-of-the-art 

The aim of this paper is to evaluate how the energy efficiency in appliances was studied 

in the world and the main research question is to evaluate if there is a penetration of this 

concept in the research of countries all over the world and if there is a correlation with 

energy policies and the EES&L programmes. 
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This study was focused on the analysis of the available scientific literature using 

bibliometric techniques.  

The main results of the study can be summarised as follows: 

• Energy efficiency standards and labelling (EES&L) started in the 1970s and today 

operate in more than 120 countries worldwide for more than 100 different types 

of appliances and equipment [37]. 

• The countries with larger EES&L programs are the United States, China, the EU, 

and Australia. 

• In countries with strong regulations and long-standing programs that are regularly 

updated, the contribution was much greater, reducing the electricity consumption 

of many appliances by more than 50%.  

• The most intensive research carried out was after 2010 (Figure 3-2). 

• Refrigerators and freezers were the first appliances to be studied in the scientific 

literature. Moreover, 3D printers, smart meters, and smartphones are the most 

recent ones. 

• The first regions/countries to establish policies on appliance efficiency are the 

ones that first started to publish on this topic and the ones with the highest overall 

number of publications. 

• There is a 3- to 30-years gap between the establishment of the first standards or 

policies in the different regions and the core of publications in these regions 

(Figure 3-2).  

• India stands out for a good relationship between publications and policies, 

showing a quick response of the scientific community to the policies in place. 
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(a) 

(b) 

Figure 3-2. Average publications year and number of occurrences of the different appliances in each 

studied country/region, (a) range of years from 1985 to 2020, (b) year range from 2005 to 2020. Data 

from the Scopus query. The green crosses indicate the first appliance efficiency standard or policy 

implemented in each country/region. The dark green crosses indicate the first appliance efficiency 

standard or policy that includes brown goods appliances. Data obtained from the IEA policies database 

[38]. 
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3.2.3 Contribution of the candidate 

David Vérez and Luisa F. Cabeza conceived and designed the study. After that, David 

Vérez performed the analysis of the bibliometric data. The co-authors collaborated in the 

preparation of the manuscript, as well as during the answer to reviewers. 

3.2.4 Journal paper 

The scientific contribution from this research work was published in the journal Energies 

in March 2022. 

Reference: D. Vérez, E. Borri, L.F. Cabeza, Trends in research on energy efficiency in 

appliances and correlations with energy policies, Energies 15 (2022) 3047.  
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3.3 Paper 3: Thermal energy storage co-benefits in building 

applications transferred from a renewable energy perspective. 

3.3.1 Overview 

Any action in buildings may have substantial value beyond the direct impact looked for; 

that is, any action has multiple impacts, which can affect the economy, society, or end 

user []. These impacts are related to health (better indoor conditions, energy poverty 

alleviation, better ambient air quality, reduction of the heat island effect), environment 

(reduced local air pollution, reduced sewage production), resource management 

(including water and energy), social well-being (increase productivity for women, fuel 

poverty alleviation, decrease in energy expenditure), microeconomic effects (increase 

productivity in non-residential buildings), macroeconomic effects (creation of jobs), and 

energy security.  

These positive impacts that are not related to the direct objective of study are known as 

co-benefits. According to the IPCC AR6 [40], co-benefit is “a positive effect that a po ic  

or measure aimed at one objective has another objective, thereby increasing the total 

 enefit to societ  on the environment”. Another definition of co-benefit, related to 

c imate, states that “climate co-benefits are beneficial outcomes from action that are not 

directly related to climate change mitigation” [41].  

Highlighting co-benefits of TES technologies, such as with any other technology, 

contributes to social acceptance of such technologies [41]. Since literature agrees [42] 

that one of the main barriers for TES implementation is the lack of knowledge about these 

systems, dissemination of their co-benefits, especially those related to health and 

environment, can help in the knowledge deployment. Moreover, literature states that local 

climate actions would potentially occur faster and at a higher level if they generate co-

benefits, such as environmental, public health, or economic development benefits, on top 

of energy efficiency and cost savings, although usually the last two are already powerful 

motivators [43]. 
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3.3.2 Contribution to the state-of-the-art 

The literature highlights the advantages of using TES in buildings (i.e., increasing 

efficiency and reliability of energy systems, better economic feasibility, reducing 

investment and operation costs, reducing pollution, reducing CO2 emissions) [44–46], but 

these advantages have never been identified as co-benefits. Therefore, this paper aims at 

filling up this literature gap by evaluating the potential co-benefits of TES in buildings. 

To this end, this article first reviews the literature on the co-benefits of renewable energy 

for building applications, and then evaluates how these co-benefits can be attributed to 

thermal energy storage in buildings. 

The main results of the study can be summarised as follows: 

• By cross-sectorizing the renewable energy and thermal energy storage (TES), the 

co-benefits of thermal energy storage in buildings were identified. 

• The TES co-benefits identified in the literature are those related to environmental 

co-benefits, water co-benefits, health related co-benefits, economic and cost 

related co-benefits, and benefits related to policies. 

• TES is a fundamental technology in the energy transition not only to increase the 

efficiency of energy systems and allow a better integration of renewables but also 

to provide benefits to health impact, economic growth, and energy security. 

• Economic investments in the technological development of TES together with 

targeted energy policy is fundamental to overcome the actual barriers and enhance 

the integration of this technology in the actual energy system. 

3.3.3 Contribution of the candidate 

David Vérez and Luisa F. Cabeza conceived and designed the study. After that, David 

Vérez and Emiliano Borri performed the analysis of the bibliometric data. The co-authors 

collaborated on the preparation of the manuscript, as well as during the answer to 

reviewers. 
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3.3.4 Journal paper 

The scientific contribution from this research work was submitted to Journal of Energy 

Storage in May 2022. 
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3.4 Paper 4: Experimental study of a small-size vacuum 

insulated water tank for building applications. 

3.4.1 Overview 

As stated in the introduction chapter, the use of renewable energy sources is one of the 

key actions for the reduction of GHG emissions into the atmosphere. Today, the 

exploitation of solar energy in building applications represents the most common 

alternative to the use of fossil fuels to supply thermal energy for space heating or domestic 

hot water. However, due to the mismatch between solar availability and energy demand, 

the integration of thermal energy storage (TES) is fundamental to enhance the efficiency 

of solar heating systems, increasing the potential use of renewable energy resources 

[44,47]. In solar heat applications with temperatures below 100 ºC, water represents the 

most common storage material due to its high specific heat, low cost, and availability. 

The scientific literature on water tanks as TES is mostly related to two topics: 

"stratification" and "heat losses". Indeed, the efficiency of water tanks can be enhanced 

by exploiting the stratification effect that naturally takes place due to the difference in 

density induced by the water at different temperatures. This allows to extract hot water at 

the top (that can be used for domestic hot water) and less heated water in the middle (that 

can be suitable for space heating). In the literature, different studies and techniques were 

proposed to improve the stratification by enhancing the stratification effect [48–53]. In 

order to reduce heat losses (which also contributes positively to stratification [54]), 

studies focus on improving the thermal insulation of storage tanks [55]. One of the most 

promising technologies is the use of vacuum insulation. Using vacuum insulation, the 

thermal conductivity can be reduced 6 to 10 times compared to conventional materials 

[56]. However, this technology has only been used for storing cryogenic materials such 

as liquefied nitrogen, air, or natural gas (LNG) [57,58], or for large water tanks (100 m3 

or more) [59,60].  

3.4.2 Contribution to the state-of-the-art 

At present, there are no studies in the literature that report the efficiency of small-size 

water tanks using vacuum-insulation for small building applications such as single-family 

house. On this basis, this paper shows the heat transfer performance of a 0.535 m3 water 
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tank with a vacuum insulated double wall suitable for space heating (SH) and domestic 

hot water (DHW) supply for domestic applications. The study shows that vacuum 

insulation can effectively reduce the heat losses in small-size water tanks for domestic 

applications. Indeed, compared to a standard water tank, the U-value can be significantly 

lower allowing to maintain the water at high temperature inside the tank. However, as 

shown in Figure 3-3, the critical part of the design of those tanks is the bottom side that 

is usually used to place the support parts and the piping of the tank, which act as thermal 

bridges to the ambient.  

 

Figure 3-3. Temperature profiles (left) and calculated heat losses (right) for test A. Tamb represents the 

ambient temperature and Qtot is the sum of heat losses from Q1 to Q5. 

The two different tests carried out in this study (Figure 3-3 and Figure 3-4) showed that 

the heat loss rate depends on the average water temperature inside the tank. Indeed, a tank 

filled with water at lower temperature due to stratification (Figure 3-4) has a considerably 

lower heat loss rate due to the smaller temperature difference with respect to the ambient, 

which is especially significant at the bottom surface, where most of heat losses occur. 

 

Figure 3-4. Temperature profiles (left) and calculated heat losses (right) for test B. Tamb represents the 

ambient temperature and Qtot is the sum of heat losses from Q1 to Q5. 
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3.4.3 Contribution of the candidate 

David Vérez, Emiliano Borri and Gabriel Zsembinszki conceived and designed the study, 

David Vérez and Emiliano Borri built the experimental set-up, and performed the 

experiments. The co-authors collaborated on the interpretation of the results and on the 

preparation of the manuscript, as well as during the answer to reviewers. 

3.4.4 Journal paper 

The scientific contribution from this research work was published in the journal 

Sustainability in 2021. 

Reference: D. Vérez, E. Borri, A. Crespo, G. Zsembinszki, B. Dawoud, L.F. Cabeza, 

Experimental study of a small-size vacuum insulated water tank for building applications, 

Sustainability 13 (2021) 5329. 
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3.5 Paper 5: Experimental study on two PCM macro-

encapsulation designs in a thermal energy storage tank. 

3.5.1 Overview  

The use of thermal energy storage (TES) has proven to be an effective way to enhance 

the penetration of renewable energy into energy systems. Amongst all TES technologies, 

latent heat thermal energy storage (LHTES) received the attention of several researchers 

over the last decade due to its high energy density and the wide range of applications [46]. 

The principle behind LHTES is the use of phase change materials (PCM) as the storage 

medium, allowing to store thermal energy at a nearly constant temperature exploiting the 

latent heat during the phase transition. The most common one is the phase change from 

solid to liquid to minimize the impact of volume variations [11]. One of the weaknesses 

of PCM is its low thermal conductivity that negatively affects the thermal power involved 

in the charging and discharging processes of the energy storage system. Indeed, this 

represents one of the main challenges facing the implementation of PCM in various 

applications. 

The main solutions that were extensively studied in the literature to overcome this 

drawback are the increase in the convection coefficient of heat transfer by means of 

dynamic systems, the addition of particles (such as carbon elements, metallic particles, 

and nanoparticles), the inclusion of PCM in a metallic matrix, and the increase in the heat 

transfer surface area by using fins, and micro and macro-encapsulation [61–63]. On the 

one hand, PCM micro-encapsulation allows increasing heat transfer surface area between 

the PCM and the heat transfer fluid. However, for PCM microencapsulation, complex and 

expensive processes are needed, such as spray drying (physical method) or interfacial 

polymerization (chemical method) [64]. On the other hand, macro-encapsulation requires 

a simpler making process resulting in a lower cost [65]. Macro-encapsulated PCM can be 

designed with different geometries mainly based on rectangular [66], cylindrical [67,68], 

and spherical shapes [69] that can be adapted to different applications. However, the 

effect of macro-encapsulation design on heat transfer performance has never been 

experimentally analysed in the scientific literature. 
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This paper shows for the first time a comparison based on experimental results of the 

thermal behaviour of two different designs of macro-encapsulation of rectangular PCM 

slabs. 

3.5.2 Contribution to the state-of-the-art 

This research provides an experimental benchmark evaluation of two PCM macro-

encapsulation designs in a LHTES, to assess the trade-off between different macro-

encapsulation design thicknesses on the heat transfer rate or energy density of the LHTES. 

Figure 3-5 shows the two macro-encapsulation designs employed in the research. The 

comparison of the two designs was done in terms of temperature profile, heat transfer 

rate, and energy obtained during the discharging process.  

 

Figure 3-5. ThinICE and FlatICE slabs encapsulation. Dimensions in millimetres. 

The effect of increasing the heat transfer surface area by using ThinICE slabs on the heat 

transfer rate delivered by the storage tank is noticeable at higher flow rate where the heat 

transferred by convection is higher. Furthermore, using thinner slabs, the higher heat 

transfer surface area achieves a higher discharging power but, due to the lower energy 

density of the LHTES with this type of slab, the power is delivered for a shorter period 

of time. Therefore, for longer discharging periods and for higher storage capacity given 

a fixed volume of storage tank, the use of FlatICE is recommended to be considered in 

preference. 

Type of Slab A B C D E F

ThinICE 250 500 17 16 10 6

FlatICE 250 500 35 10 7 3

A

B

C

F
E

ThinICE FlatICED
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3.5.3 Contribution of the candidate 

David Vérez and Luisa F. Cabeza conceived and designed the study, David Vérez built 

the experimental set-up, and performed the experiments. The co-authors collaborated on 

the interpretation of the results and on the preparation of the manuscript, as well as during 

the answer to reviewers. 

3.5.4 Journal paper 

The scientific contribution from this research work was published in the journal Applied 

Sciences in 2021. 

Reference: D. Vérez, E. Borri, A. Crespo, B.D. Mselle, Á. de Gracia, G. Zsembinszki, 

L.F. Cabeza, Experimental study on two PCM macro-encapsulation designs in a thermal 

energy storage tank, Applied Sciences 11 (2021) 6171.  
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3.6 Paper 6: Key challenges for high temperature thermal 

energy storage in concrete. First steps towards a novel storage 

design. 

3.6.1 Overview  

Thermal energy storage (TES) allows overcoming the mismatch between energy supply 

and demand, and this mismatch can be in time, temperature, power, and location [70]. 

Therefore, TES has multiple applications. If high temperature is considered above 150 

ºC, where water cannot be used as storage medium, high temperature TES applications 

include process heat and electricity production in concentrating solar power (CSP) plants. 

Process heat demand in industry can be supplied by fossil fuels, as is common practice 

today, but could also be supplied by solar energy, or by recovery of waste heat (on-site 

or off-site). The integration of solar energy in the industry requires TES systems using 

any of the available technologies (sensible, latent, and thermochemical TES) [71]. 

Similarly, to efficiently use industrial waste heat as input in industry, a TES system is 

required [72]. The potential of waste heat recovery in the European non-metallic mineral 

industry in the period 2007-2012 was estimated by Miró et al. [73] using a bottom-up 

approach, showing an average of 0.33 PJ/year. This estimation highlights the high 

potential of this energy source. 

Solar energy represents today the main renewable source to produce both thermal and 

electric power. One of the main large-scale technologies to convert solar energy into 

electricity is represented by CSP plants. According to REN21 [74], in 2020 the total 

capacity installed worldwide amounts to 6.2 GWe, and it is expected to continue growing. 

In order to deal with the intermittency of the sun, thermal energy storage is an essential 

component. Current commercial CSP technologies mainly rely on the use of molten salts 

as storage medium [75]. However, its main drawbacks consist of corrosion issues and its 

limited operating temperature range (up to 360 ºC), which limits CSP in both global 

performance and cost [76]. Amongst all storage medium alternatives, the use of concrete 

represents a viable option due to its versatility, relatively low cost, and the possibility to 

reach a high operating temperature above 500 ºC [77].  
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Although concrete has a high potential as a storage solution, there are still challenges 

posed by this technology that need to be addressed, including its fabrication techniques, 

material formulation, and design, which limit the construction feasibility and thermal 

performance.  

3.6.2 Contribution to the state-of-the-art 

This paper focused on analysing concrete as a high temperature TES. The study identified 

5 key challenges for the development of this technology. They are: 

• On-site construction. During this first heating up, the free water and a certain 

amount of chemically bonded water evaporate, which could mean excessive vapor 

pressure causing damage to the storage module. This pressure is higher the larger 

the TES module; similarly, on-site production means higher water content in the 

concrete than production and curing in a controlled environment [78]. 

• Different thermal expansion coefficient of steel and concrete. Due to the different 

coefficient of thermal expansion, to maintain a correct operation of the system, 

the temperature difference between the metal pipes and the concrete should not 

be higher than 40 K, seriously penalizing the operating power of the system [79]. 

• Poor thermal conductivity of concrete. According to Asadi et al. [80], concrete 

has a thermal conductivity between 0.4 W/m·K and 1.01 W/m·K. Efforts to 

increase the thermal conductivity of concrete to be used in high temperature TES 

(Table 1) show that the use of calcium aluminate cements (CAC) brings higher 

thermal conductivity (up to 5 W/m·K) [81,82], and the use of metal fibres shows 

an increase up to 2 W/m·K [83]. Finally, the literature shows that thermal cycling 

can lead to a decrease in thermal conductivity, usually attributed to an increase in 

open porosity [84,85]. 

• HTF thermal oil or molten salts with limited operating temperature range. The 

other commercial HTF, molten salts, can theoretically withstand 600 ºC, but there 

is a lot of literature showing that impurities seriously compromise this temperature 

limit, since their decomposition starts at around 380-400 ºC [86]. Therefore, future 

CSP plants are considering the use of air as HTF [87]. 
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• HTF thermal oil or molten salts in direct contact with concrete: migration of 

oil/salt in concrete. The use of thermal oils or molten salts as HTF when there is 

direct contact between the HTF and concrete would lead to migration of the HTF 

into the concrete, but also the contrary, contamination of the HTF by concrete 

components. The use of air as HTF avoids such migration and contamination, 

however, the low conductivity of air presents new challenges to overcome. 

In order to improve the current configurations and to respond to the challenges posed, this 

study proposes a new thermal energy storage concept using concrete based on a modular 

concept, an improved concrete formulation, and a direct contact design (Figure 3-6). In 

addition, a preliminary evaluation of the thermal performance of the new concept 

proposed in this study was carried out by means of a CFD analysis, showing the 

temperature distribution of the modules (Figure 3-7). 

  

(a) (b) 

 

(c) 
Figure 3-6. Concrete TES concept: (a) fitting connections, (b) stacked distribution example, (c) 

connection points. 
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(a) 

 

(b) 

 

(c) 

Figure 3-7. Temperature distribution inside the proposed concrete block obtained from the CFD analysis: 

(a) initial charge, (b) mid-charge, (c) full charge. 

3.6.3 Contribution of the candidate 

David Vérez and Luisa F. Cabeza conceived and designed the study, David Vérez 

performed the CFD analysis. The co-authors collaborated on the interpretation of the 

results and on the preparation of the manuscript, as well as during the answer to reviewers. 



3. Results   

 

57 

 

3.6.4 Journal paper 

The scientific contribution from this research work was published in the journal Energies 

in June 2022. 

Reference: L.F. Cabeza, D. Vérez, G. Zsembinszki, E. Borri, C. Prieto, Key challenges 

for high temperature thermal energy storage in concrete — First steps towards a novel 

storage design, Energies 15 (2022) 4544.  
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Today, a large share of the world population is at risk due to climate change. Without 

urgent action, this share will only increase dramatically. The main driver of climate 

change is GHG emissions. In this context, the buildings sector represents a source of 

enormous potential. Total GHG emissions in the buildings sector reached 12 GtCO2eq. 

in 2019, equivalent to 21% of global GHG emissions that year. Decarbonisation of the 

energy sector is one of the main measures needed to reduce GHG emissions in buildings. 

The latter can be achieved by replacing carbon-intensive energy generation from 

polluting sources with renewable energy sources. To this end, the incorporation of TES 

in buildings plays a critical role. 

Considering the aforementioned as the basis of this PhD, the first part of the research 

focused on using bibliometric techniques as a source to analyse the factors and 

requirements that can influence the type of energy system to be employed in building 

applications. Therefore, the first analysis focuses on building services. These are used in 

order to make buildings more comfortable, functional, efficient, and safe. The research 

showed that the most abundant and recent studies related to building services are based 

on improving energy efficiency by optimising systems such as ventilation or lighting. 

Moreover, new trends focused on social factors such as housing and urban growth. As 

part of the studies, building services were classified into four groups (Safety, Comfort, 

Efficiency, and Climate change) (Figure 3-1).  

The building services study covers a wide range of energy end-uses in buildings. 

However, it does not capture emerging technologies that will play an important role in 

the building energy matrix of the coming decades, such as connected and small 

appliances. Therefore, the second research was focused on the study of appliances. 

Research on the topic began in the mid-1970s, although it was not until after the 2000s 

that more than 20 articles per year were published, with a linear growth trend to reach 

160 publications per year by 2020. Moreover, the results showed that progress in energy 

efficiency in appliances is generally policy-driven, with a gap in most regions of the world 

because most connected and small appliances are not covered by any energy efficiency 

policies that regulate them. 

Having identified and analysed all energy end-uses in buildings, TES presents itself as 

one of the most critical technologies for the decarbonisation of buildings. Therefore, the 
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next step was to investigate the co-benefits of TES in buildings through a cross-

sectorisation from renewable energies. The study showed that, in addition to higher 

penetration of renewable energy in buildings, the use of TES in buildings influences at 

least 4 groups of co-benefits (environmental, health, economics, and policy). The cross-

sectorisation and identification of TES co-benefits facilitate the breaking down of social 

and economic barriers to the implementation of TES in buildings. 

The aforementioned studies led the research to its second stage, which focused on the 

experimental and simulated analysis of thermal storage technologies. On the basis that no 

single TES technology is able to cover all the end-use needs of buildings, three thermal 

energy storage technologies were investigated. 

Water storage tanks are the most deployed TES technology globally, therefore the first 

experimental study focused on decreasing heat losses by using vacuum insulation 

techniques. This experiment showed a good performance of the TES tank, the heat losses 

of the vacuum insulated tank decreased by a factor of three compared to similar sized 

tanks with standard insulation. However, special attention has to be devoted to the thermal 

bridges caused by the hydraulic connections. 

Taking all the knowledge acquired in the previous experiments and with the aim of 

increasing the energy density of the TES to be analysed, a new study based on latent heat 

thermal energy storage was developed. The test consisted of an experimental 

benchmarking of two types of PCM macro-encapsulation design in a storage tank for low 

temperature applications. The encapsulation design consisted of two rectangular slabs 

with the same length and width but different thickness (35 mm and 17 mm). The results 

were compared in terms of temperature profile, heat transfer rate, and energy 

stored/released. The use of a thinner macro-encapsulation design (ThinICE) allowed 

fitting a larger number of slabs inside the tank. However, the higher amount of 

encapsulation material and the larger distance between the slabs (i.e., higher HTF 

channels height) resulted in a 30% less amount of PCM introduced inside the tank with 

this encapsulation design penalizing the energy storage density. Moreover, both designs 

reported efficiency values close to 85%. 

Recent trends in the power sector include the use of distributed generation and the sector 

coupling, both gaining momentum as tools to incentivise the energy transition, generating 

gaps in existing terminal storage technologies. Therefore, it is necessary to develop 
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thermal storage technologies for temperatures above 150 ºC that (coupled with renewable 

thermal power generation) will facilitate the introduction of technologies such as organic 

Rankine cycle (ORC) and sorption chillers in multi-family houses and localities. 

Concrete, thanks to its relatively low cost, is a great alternative for high temperature 

thermal energy storage. However, there are still challenges with this technology that need 

to be addressed, including its manufacturing techniques, material formulation and design, 

which limit construction feasibility and thermal performance. In order to improve the 

currently available configurations, the last experimental study of the PhD proposed a 

novel concept of thermal energy storage using concrete based on a modular concept, 

improved concrete formulation, and a direct contact design. Moreover, a preliminary 

assessment of the thermal performances of the new concept proposed was analysed using 

CFD analysis showing the temperature distribution of the modules. 

Finally, throughout the experimental and theoretical studies that were carried out in this 

thesis, increased knowledge is brought within the TES field, regarding building energy 

end-uses, liquid sensible thermal energy storage, solid-liquid latent thermal energy 

storage, and solid sensible thermal energy storage. The key contributions developed in 

this PhD are the following: 

• The assessment of the building energy end-uses for energy transition toward 

renewable energy. 

• The identification through cross-sectorisation of the TES co-benefits.  

• The potential of vacuum insulation to minimise heat losses in TES tanks.  

• The best distribution (depending on thermal requirements) of storage tanks with 

macro-encapsulated PCM for low temperature applications.  

• An innovative and modular high temperature concrete storage design that addresses 

the current challenges identified for this technology. 
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5.1 Conclusions 

Climate change threatens the very existence of all living creatures on our planet, 

including, of course, human beings. The main driver of climate change is the GHG 

emissions. In the period 2010-2019, they reached the highest annual average values in 

history. However, to ensure a liveable future, international organizations like the IPCC 

set the maximum allowable global warming at 1.5°C above pre-industrial levels. Beyond 

this margin, the damage would be irreversible and would exceed the adaptive capacity of 

the human species. Limiting global warming will require major transitions in all sectors. 

Therefore, the main objective of this PhD thesis is to provide tools to empower the 

building sector and consequently the energy sector to reduce their GHG emissions. 

As general conclusions, in order to achieve the 1.5°C target and the SDGs, much more 

integrative analyses are needed, involving interdisciplinarity and multidisciplinarity 

between all fields of development, especially in the field of technical and social sciences. 

In addition, there is an urgent need to develop energy systems that are technically 

efficient, but also to contribute to improving energy access and security. Towards these 

goals, the transition of the energy sector towards renewable energies is fundamental, but 

their intermittent nature is a major challenge to address. Thermal energy storage therefore 

presents a great potential to overcome this challenge. On this basis, every advance in the 

field of energy storage translates into a grain of sand in the fight against climate change, 

and a more sustainable and equitable future. 

In more detail, papers 1, 2, and 3 analysed a total of over 5400 documents to establish the 

current energy requirements of buildings and to identify emerging technologies that can 

potentially increase the energy demand of buildings. It was identified that energy storage 

coupled with renewable energy generation can be used to meet these requirements (both 

current and future) in a sustainable manner. 

Among the conclusions obtained in these studies, the technologies with the greatest 

advances in recent years to increase energy efficiency in buildings are HVAC and lighting 

technologies. Moreover, although some progress is made, there are still a large number 

of countries without policies in place to regulate the energy efficiency of new 

technologies such as small and connected appliances, a critical aspect considering that 
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these technologies are projected to become a major contributor to the energy demand 

matrix in buildings.  

Furthermore, the co-benefits of TES identified in this PhD highlight that TES is a key 

technology in the energy transition not only to increase the efficiency of energy systems 

and enable better integration of renewables, but also to provide benefits in health, 

economic growth, and energy security. However, economic investments in the 

technological development of TES, together with a dedicated policy framework, are 

essential to overcome current barriers and improve the integration of this technology into 

the current energy system. 

The above research indicated that there is no single energy storage technology that can 

meet the energy requirements of buildings. Therefore, this PhD focuses the experimental 

and simulation parts on the study of three different TES technologies. Accordingly, the 

main conclusions indicate that vacuum insulation is a technique that effectively reduces 

the heat losses in small-size storage tanks, but special attention must be paid to the thermal 

bridges that are generated by the hydraulic connections of the storage tank. Moreover, 

when designing storage tanks with macro-encapsulated PCM, the design and layout of 

the PCM encapsulation plays a critical role in the performance of the tank, hence the 

macro-encapsulation must be selected based on the application demand profile to find a 

balance between power output, energy density, and economic cost. Finally, thanks to its 

thermal and mechanical properties, relative low cost, and great abundance, concrete is an 

excellent candidate for storing thermal energy at high temperatures. Therefore, the 

proposed new design to overcome the five main challenges (identified as part of this PhD) 

related to the use of concrete in high temperature energy storage, has great potential for 

distributed energy generation in buildings. 
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5.2 Future work 

The research presented in this PhD thesis increased the knowledge about the energy 

requirements of buildings and the TES systems which, coupled to buildings energy 

systems, can contribute to meeting these energy requirements with a high share of 

renewable energy. However, there are some aspects that should be further explored in the 

future. 

Related to the energy demands of buildings, there is a low awareness of the urgency for 

climate action, affecting the willingness to incorporate technologies that facilitate the 

transition to renewable energies. Therefore, synergies between the in-depth identification 

and exploitation of TES co-benefits with social acceptance techniques for mainstreaming 

of renewable energies are needed. Moreover, related to the experimental tests, the next 

steps are the analysis of a latent heat storage tank with macro-encapsulated PCM with 

different packing factors for an optimal ratio between power output and energy storage 

density. The installation of the PCM tank with different packing factor in the set-up 

designed as part of this PhD is already planned and will be analysed in future studies.  

Finally, the most ambitious goal to be achieved is to take the new high-temperature 

concrete storage design towards a real prototype to validate it. The implementation of a 

prototype in an experimental set-up to assess its strengths and drawbacks against a 

commercially available technology is the next step towards the future integration of the 

new design into the market. 
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Abstract: The building sector, as a major energy consumer with high direct and indirect CO2

emissions, plays a vital role in the fight against climate change. In order to make buildings more
comfortable, functional, efficient and safe, building services are used. Therefore, building services are
the key to decrease their contribution to climate change. Due to the lack of organized literature on this
topic, this paper presents the first comprehensive assessment of trends in the literature on building
services related to climate change, which was completed by conducting a bibliometric analysis of
the existing literature on the topic. The ultimate goal is to provide a source where researchers and
other interested parties can find this information in an organized manner. Results show that the most
abundant and recent studies related to building services are based on improving energy efficiency by
optimizing systems such as ventilation or lighting, the latter with the installation of LED lights. In
addition, recent studies have focused on social factors such as housing and urban growth.

Keywords: building services; climate change; literature trends; bibliometric analysis

1. Introduction

Buildings have been identified as high energy consumers, as buildings and the build-
ing construction sectors account for more than 30% of the global final energy consumption
and 40% of the total CO2 emissions, both direct and indirect [1]. However, at the same time,
heating and cooling of buildings is one of the areas where there is a high potential to de-
crease energy consumption and CO2 emissions [2]. Heating and cooling are indeed clearly
identified as energy-consuming building services. Nevertheless, building services other
than these and other building energy services (e.g., lighting) should also be considered in
order to have a holistic view of the real climate change mitigation potential of buildings.

Building services are the systems installed in buildings to make them more comfort-
able, functional, efficient, and safe [3]. Building services might include building control
systems, energy distribution, and energy supply. This traditional description includes a
classification of building services such as building management systems; energy generation,
distribution and supply; escalators and lifts; facade engineering; fire safety, detection and
protection; heating, air conditioning and air conditioning systems (HVAC); ICT networks;
lighting; lighting protection; refrigeration; security and alarm systems; and water, drainage
and plumbing.

Another definition states that building services aim at achieving a safe and comfortable
indoor environment whilst minimizing the environmental impact of a building [4]. Then,
other concepts appear in the framework of building services, with wellbeing, circular
economy, and climate change mitigation becoming increasingly important, such as air
quality, thermal comfort, and acoustic comfort. However, a more holistic approach would
also include terms such as shelter, cooking, materials, embodied energy and embodied
carbon, CO2 emissions, GHG emissions, and pollution. Therefore, a potential classification
of such building services could be the one presented in Figure 1. As it can be seen,
building services have been classified into four types; safety-related services, comfort-
related, services related to efficiency, and finally, services related to climate change. Within
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each type, different building services are included, among them are those known as
building energy services [5] (i.e., thermal comfort, lighting, energy generation, building
management systems).
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Figure 1. Identified building services.

However, when assessing the literature to evaluate building services and their re-
lation with climate change, the literature is scarce and very dispersed. Therefore, the
aim of this paper is to fill this knowledge gap by performing a bibliometric analysis of
the existing literature on the topic. In more detail, this paper includes a comprehensive
assessment of trends of the literature on building services related to climate change to give
a source where researchers and other interested stakeholders can find this information in
an organized manner.

2. Methodology

Bibliometrics allows to perform a wide statistical literature analysis of the existing
publications in a determined research field [6]. Figure 2 presents the specific methodology
utilized to define all the steps to map the state-of-the-art of the scientific topic researched
within the scope of this paper. The first step consists of the definition of the research topic,
from which two queries were developed, including the key messages of the paper. The
next step was the selection of the proper database. On this matter, Wuni et al. [7] stated that
the WoS and Scopus databases can be used to extract bibliometric data, but the content of
both for the same research tends to differ. Moreover, Cabeza et al. [8] showed that Scopus
contains more publications in the area of technology. Therefore, Scopus was selected as
the database for the presented study. Then all references were downloaded, as well as the
statistics for the bibliometric analysis. Finally, the software VOSviewer [8–10] was used to
analyze relations between countries and keywords.
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The world population was obtained from the United Nations, Department of Economic
and Social Affairs [11], and the number of researchers from the United Nations Science
Report [12].

3. Results
3.1. Bibliometric Analysis

The search carried out on 14 March 2020 revealed 3300 documents related to building
services and 477 publications related to building services and climate change. Figure 3a
shows that nearly 70% of those documents are papers/articles, and about 20% are confer-
ence papers; reviews, book chapters and other types of documents are anecdotic. Moreover,
the statistics are similar for the two queries. The assessment of the trends in Figure 3b re-
veals that both queries have the same profile, with documents talking about the topic since
1965, but with a growth in interest in 2000–2002, and somehow a stagnation in 2014–2015.
Considering the countries with more publications on the topic of study and with good
representation of the different continents, Figure 3c shows that the EU publishes one-third
of the literature published worldwide. The UK published a similar number of documents
as the EU; although, in the last ten years, this number seemed to stagnate (in 2010, the
UK had nearly the same number of publications as the EU—37 and 39, respectively, while
in 2018, it had only half—62 and 122, respectively). China increased its publication rate
on the topic only recently (in 2015, it published 28 documents and 48 in 2018). When the
relation with climate change is considered (Figure 3d), the UK shows a higher number of
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publications but also more stability than the other countries/territories considered. The EU
has more publications than the UK, and all other countries have much fewer documents.
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Figure 3. (a) Type of documents, (b) trends in publications, (c) trends in countries general query, and (d) trends in countries
query with climate change.

Figure 4 shows the specific number of publications for the countries/territories with
more documents. It is interesting to see that although the EU is the territory with more
publications, its contribution only stands out when the number of documents per number
of researchers with the general query is considered. The USA stands out when the number
of publications per number of inhabitants is considered for both queries. China stands
out when the number of publications per number of researchers in the query with climate
change is considered, focusing their studies on LED light sources, as shown in Figure 4e,
to improve energy efficiency [13–15], and 12 publications in the Lighting Research and
Technology journal.

The relations between countries/territories are presented in Figure 5. In both queries,
the EU centralize all collaborations, and in both queries, China and South Korea are
the newest countries to appear (in the general query, Jordan also appears as new). It is
interesting to see that the research on building services is older in the USA and Canada
than in the EU, while its relation to climate change is older in the EU, which could be
because of the fast implementation of climate change mitigation policies in the EU [16] (in
general, this relation with climate change is newer).
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Figure 4. Scientific production per country: (a) per million inhabitants (general query), (b) per million inhabitants (query
with climate change), (c) per thousand researchers (general query), (d) per thousand researchers (query with climate change),
and (e) overlay visualization for China (query 2).

Table 1 lists the researchers with more documents on the topic of building services
(Query 1). It is interesting to see that there is not a clear correlation between the authors
with more publications and the countries with more publications. For example, the UK
includes three authors (Steve A. Fotios, Michael J. Davis, and Chris Cheal), and only two
institutions are represented (University of Sheffield with two authors and Univ. College
London). Hong Kong also contributes with three researchers, but in this case, only one
institution is represented (Hong Kong Polytechnic University). In both cases, we find two
researchers publishing together, Steve A. Fotios and Chris Cheal for the UK, and L.T. Wong
and K.W. Mui for Hong Kong.
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Table 1. Authors with more publications on the topic of building services and their impact.

Author Institution Country #doc Search h-Index Search Total doc Total h-Index

Steve A. Fotios University of Sheffield UK 39 13 120 20

Wim Zeiler Technische Universiteit
Eindhoven Netherlands 32 4 171 15

Mark S. Rea Rensselaer Polytechnic
Institute USA 29 15 220 41

L.T. Wong Hong Kong
Polytechnic University Hong Kong 26 7 178 23

Michael J. Davis University College
London UK 24 9 135 33

Liisa Halonen Aalto University Finland 24 11 75 18

Kowk Wai Mui Hong Kong
Polytechnic University Hong Kong 24 7 142 22

Ming Ronnier
Luo

State Key Laboratory
of Modern Optical

Instrumentation
China 23 8 129 16

Chris Cheal University of Sheffield UK 22 12 41 14

Cheuk Ming Mak Hong Kong
Polytechnic University Hong Kong 21 8 203 24

Furthermore, the topics of research are different for the different authors and coun-
tries/territories. For example, the main topic of S.A. Fotios from the UK and M.S. Rea from
the USA is lighting [17–22]. W. Zeiler from the Netherlands studied building design from
the human perspective point of view [23], and energy efficiency [24]. L.T. from Hong Kong
worked on indoor air quality, pollution, and ventilation [13].

Finally, Table 1 shows that all these authors study topics related to building services
but without this being their unique research interest.

As expected, the journal Building Services Engineering Research and Technology is one of
the journals with more documents (511) (Figure 6a), but surprisingly, the journal Lighting Re-
search and Technology has more publications (670). All other journals used have much fewer
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documents on the topic, i.e., the third journal is Energy and Buildings, with 55 documents.
On the other hand, when the relation with climate change is studied (Figure 6b), the journal
Building Services Engineering Research and Technology includes 88 documents, more than four
times the second journal listed.
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Table 2 shows that when the authors select the journal to publish their research on the
topic, the impact factor and classification of the journal is not as important as the scope of
the journal (the first and second journal are Q2 and Q3, respectively). This is interesting to
highlight since this is not the same trend found in other studies on different topics [8].
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Table 2. Journals with more publications on the topic of building services and their impact.

Journal #pub Editorial Impact factor
(2018)

Classification
(2018) Open Access

Lighting Research
and Technology 670 SAGE Journals 2.311 Q2 No

Building Services Engineering
Research and Technology 558 SAGE Journals 1.170 Q3 No

Energy and Buildings 55 Elsevier 4.495 Q1 No

Facilities 33 Emerald Group
Publishing Ltd. — — Yes

Building and Environment 23 Elsevier 4.820 Q1 No

Finally, Figure 7 shows that most documents published on the topic of building ser-
vices are within the area of engineering (77% in building services and 78% in building
services and climate change). All other areas found have a much lower number of publi-
cations (i.e., computer science includes 9% of documents on building services). However,
it is interesting to highlight that in building services, the next most published topics are
climate change energy 15% and environmental science 13 %.
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services are within the area of engineering (77% in building services and 78% in building 
services and climate change). All other areas found have a much lower number of 
publications (i.e., computer science includes 9% of documents on building services). 
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3.2. Keywords Network Analysis

Table 3 and the literature map presented in Figure 8 (the one for the general query)
shows that the co-occurrences keywords can be grouped into six clusters. The first one,
in red, groups “hvac” and “ventilation” with the building service “thermal comfort”.
Interestingly, “thermal comfort” is also linked to “air quality” and “indoor air pollution”, as
is stated in [25,26]. This cluster also groups “hvac”, with “energy conservation”, “computer
simulation”, “mathematical model”, “optimization”, and “control” [27–31], and “elevator”,
with “Monte Carlo method” and “high rice building”. The second cluster, in green, links
“building services” with “intelligent buildings” (also related to control in cluster 1), “bems”,
and “control system”. It also groups “building service” with “construction industry”,
and “project management”, “maintenance”, and “cost”. The third cluster, in blue, groups
“building”, “energy efficiency” and “energy utilization” with “building codes”, “climate
change”, “carbon dioxide emissions”, and “renewable energies”. It is important to highlight
the keyword “energy efficiency” in this cluster as it has the highest number of occurrences
(324) of the map (excluding the keywords present in query 1), therefore is of great interest
in the research on building services [32–37]. The fourth cluster, in yellow, groups the
“lighting” building service; this keyword has been of great interest globally since the
introduction of light-emitting diodes (LED) and their low energy consumption as reflected
in [37–41], thus the strong relationship with “energy efficiency” is expected. This cluster
groups “lighting”, “engineering research” and “light emitting diodes”, with “light sources”,
“color”, “luminance”, “spectral power distribution”, and “color rendering”. The fifth
cluster, in purple groups “office buildings”, “structural design”, and “design”, with “lca”,
“environmental impact” and “building material”. The last and sixth cluster, in light blue
groups “architectural design” and “sustainable development” with “sustainable building”
and “built environment.
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Table 3. Keywords with more than 80 occurrences (query 1).

Cluster Label Occurrences Avg. Pub. Year Avg. Citations

1 hvac 248 2008 10.85
ventilation 200 2008 10.79

energy conservation 178 2010 11.19
computer simulation 140 2006 23.29
mathematical models 123 2004 16.63

cooling 108 2011 12.77
2 building services 621 2009 11.89

intelligent buildings 135 2012 9.78
construction industry 110 2008 8.14

3 building 666 2005 16.54
energy efficiency 324 2013 25.08
energy utilization 273 2012 27.60

heating 136 2009 12.31
carbon dioxide emissions 111 2013 15.67

housing 108 2014 11.43
energy management 96 2009 12.29

building codes 87 2008 10.37
climate change 87 2012 25.41

in buildings 80 2011 5.33
4 lighting 256 2013 15.37

light emitting diodes 129 2016 9.04
light sources 127 2014 14.00

color 94 2016 12.07
luminance 92 2014 13.78

engineering research 80 2014 8.95
5 office buildings 192 2012 12.52

structural design 151 2008 8.89
design 136 2012 8.03

lca 89 2013 11.21
6 architectural design 185 2013 9.60

sustainable development 152 2012 10.46

When “climate change” is added to the query, a more detailed analysis can be done,
as shown in Figure 9 and Table 4. The first cluster, in red, groups “climate change” and
“design” with “building simulation”, “energy use”, “weather data”, “meteorology”, and
“urban heat island”. This cluster shows the effort made to achieve mathematical models
that represent complex phenomena such as urban heat island [42,43], which in building
services is highly necessary for efficient energy retrofit of existing buildings [44] and is
used to optimize the dimensioning of heating and cooling systems [45]. The second cluster,
in green, groups “energy efficiency”, “energy utilization”, “carbon dioxide emissions” and
“architectural design”, with “environmental impact”, “embodied energy”, “lca” [46,47],
“sustainable development”, and “intelligent building”. Interestingly, “energy efficiency”
continues to have the highest number of occurrences (61) of the map (excluding the key-
words present in query 2). The third cluster, in blue, links “building services”, “energy
conservation”, and “office buildings”, with “building codes”, “climate control”, and “light-
ing”. The use of the Passivhaus [48] and NZEB standards [49] have proved to be effective
in improving the building’s energy efficiency, but it has also increased the overheating
risk [50–52]. Therefore, the fourth cluster, in yellow, groups “building”, “energy manage-
ment”, and “heating” with “thermal comfort”, “building performance”, and “overheating”.
This cluster also links “building” with “housing” and “retrofitting”. The fifth and last
cluster, in purple, links “hvac” with “ventilation”, “air quality”, and “natural ventilation”.
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Table 4. Keywords with more than 20 occurrences (query 2).

Cluster Label Occurrences Avg. Pub. Year Avg. Citations

1 climate change 87 2012 25.41
design 22 2012 12.86

2 energy efficiency 61 2014 74.25
energy utilization 55 2014 72.11

carbon dioxide emissions 42 2015 26.00
architectural design 34 2015 7.62

sustainable development 31 2013 16.13
lca 22 2015 11.23

construction industry 20 2014 10.30
3 building services 52 2013 75.69

energy conservation 29 2014 21.14
office buildings 25 2013 13.84
building codes 21 2013 22.43

4 building 97 2013 57.79
housing 32 2016 12.00
heating 30 2014 19.33

overheating 22 2017 9.50
5 hvac 35 2013 14.83

ventilation 29 2015 17.69

4. Discussion, Past Trends and Future Perspectives

To better understand which building services are analyzed in the literature with more
emphasis on climate change, Figure 10 shows the keywords that have a direct link with
“building services” and “climate change” keywords in query 2. It shows that “energy
efficiency” is one of the most studied topics with the highest number of occurrences (440)
and the highest link strength with both “building services” (16) and “climate change”
(20). The next keywords are “energy utilization” and “hvac”. Moreover, “ventilation”,
“heating” and “climate models” have a clear affinity to climate change, while “sustainable
development” and “lca” have higher affinity to “building services”.
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Figure 10. Keywords link strength directly related to building services and climate change in query 2 keywords
network analysis.

Following the trend presented in Figure 3b, the overlay visualization by year of the
keyword analyses (Figure 11) shows that most keywords appear after 2002, highlighting
the progress of research towards new topics. Figure 11a shows that the keywords used
in earlier documents were “maintenance”, “architecture”, “project management”, also
“computer simulation” and “mathematical models”, related to “control system”, “hvac”,
“ventilation”, and “heating”; indeed, these are the building services classified within the
safety and comfort types in Figure 1. However, most recent interests have changed to
energy efficiency topics such as “lighting”, “luminance” and “led emitting diode”, the
transition from building to city with “urban heat island”, and more recent building subjects
such as “embodied carbon”, “data centre”, “overheating”, “performance gap”, and finally
“bim”, which are within the efficiency and climate change types in Figure 1.

Moreover, when the relation between building service and climate change is studied
Figure 11b, with all the topics newer than in query 1, the keywords used in earlier docu-
ments were “gas emissions”, “climate control” and “building regulations” [53], showing
that the literature related building services with climate change when HVAC systems
are studied, also mentioning regulations and policies. Recent interests can be grouped,
for example, social topics like “housing” close to “social housing”, “urban growth” and
“retrofitting” [46,54,55], highlighting that retrofitting of social housing is a topic to consider
to ensure thermal comfort to low-income population and to avoid energy poverty. Other
recent keywords are “overheating”, “risk assessment”, “thermal comfort”, and “embodied
energy”, with the latter closely related to “carbon dioxide emissions”, “energy efficiency”,
and “lca” [56,57], showing the growing importance of sustainable topics in recent research.
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5. Conclusions

This paper presents a bibliometric-driven analysis of research trends in the field of
building services and their relationship to climate change. It was developed using data from
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the Scopus database from 1969 to March 2020. Two queries were analyzed, TITLE-ABS-KEY
(“building service*”) and TITLE-ABS-KEY (“building service*” AND “climate change”).
The results of both queries were analyzed in terms of publications by years, countries
and top journals in which the research was published and through a keyword network
analysis. This made it possible to identify the most recent research trends. The most recent
research on building services can be associated with safety, comfort and efficiency. The
studies show that improvements in thermal efficiency in buildings and improvements in air
quality are made by studying natural ventilation techniques coupled with HVAC systems
and the development of new HVAC technologies. On the other hand, improvements in
electrical efficiency focus on the use of LED lighting and the use of intelligent control
strategies, optimized through building simulations. When relating building services to
climate change, the most recent studies focus on social aspects such as social housing,
urban growth, and thermal comfort. The main research gaps identified are the lack of
integration of the four groups of building services identified in this study in order to draw
more effective research in the fight against climate change. Finally, the study of building
services not related to energy services is also a research gap.
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Abstract: According to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment
report, energy-efficient appliances can reduce global electricity consumption even though there is
an expected increase in the number and ownership of appliances. The International Energy Agency
(IEA) expects a high increase in energy efficiency in traditional appliances (refrigerators, washing
machines, television, etc.), and in the number of new appliances installed (also called plug loads).
The bibliometric study of publications related to energy-efficient appliances carried out in this paper
shows that research on this topic is growing in developed regions (North America and Europe) and
even more in some developing regions (Asia Pacific) with a high emphasis on China and India. The
results indicate that, in general, policies are always implemented before the core of publications on
the topic, with time spans ranging from 3 to 30 years. However, the trend seems to be changing with
publications related to new appliances where the core research happens shortly after or in parallel to
the establishment of policies.

Keywords: energy efficiency; appliance; climate change; policies; label; bibliometric analysis

1. Introduction

In order to achieve the objectives targeted by the sustainable development goals,
immediate actions are necessary. Moreover, to reach deep decarbonization, different
strategies should be adopted, including the use of clean energy sources and efficient energy
conversion and management approaches [1]. However, special attention should be given
to the building sector, which accounts for nearly the 40% of the global energy consumption
and emission to the atmosphere [2]. According to the IEA (International Energy Agency),
appliances are responsible for 17% of final electricity use in buildings [3]. Furthermore, the
energy consumption of building appliances shows an increasing trend over the last 20 years
with a small growth in highly developed regions such as North America and the European
Union, and high growth of four to eight times the values reached in 2000 in regions such as
China, India and the Middle East (Figure 1). Nowadays, only one-third of appliance energy
use today is covered by mandatory performance standards. The IPCC (Intergovernmental
Panel on Climate Change) 5th Assessment report stated that energy-efficient appliances
can reduce the electricity use expected due to the proliferation of appliances types and
their increased ownership and use [4] and policy measures such as appliance standards
with strong energy efficiency requirements are available to help achieve this objective.
The United States, European Union, China, India, Brazil, Australia, Mexico, South Africa,
and Malaysia, nine of the countries that have been operating the longest EES&L (Energy
Efficiency Standards and Labelling) programs reduced annual electricity consumption in
2018 by 1580 TWh. This represents the same order of magnitude as the total electricity
generated by solar and wind energy in those countries [5].
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Energy intensity improvement in appliances such as refrigerators, washing machines,
TVs, and computers has counteracted the substantial increase in ownership and use since
the year 2000. Moreover, digitalization is essential in buildings that support more energy-
efficient systems.

Table 1 shows the worldwide final energy used by a variety of appliances and the
contribution of each one of the different drivers (activity, structure, and efficiency) in the
period 2000–2017. The activity driver is given by a change in the overall level of activity that
drives energy consumption (i.e., population); the structure effect reflects a change in the
mix of activities within a sector (i.e., appliance stocks per person); and the energy efficiency
shows changes in sub-sectoral energy intensities, that is, in energy used per unit of activity
(i.e., appliance energy per appliance stocks). It is clear traditional appliances (refrigerator,
freezer, television, etc.), have a very low impact on the total energy intensity (understood
as the quantity of energy required per unit) growth, which is due to the new appliances,
also called plug loads. On the other hand, energy efficiency will have its maximum energy
efficiency increase in the traditional appliances.

Table 1. Worldwide energy intensity improvements in appliances in the period 2000–2017 [6].

Appliance Type Total (EJ)
Drivers

Activity (EJ) Structure (EJ) Efficiency (EJ)

Appliances +4.6 +3.5 +1.6 −0.5
Refrigerator +0.2 +0.7 +0.1 −0.6
Freezer 0.0 +0.1 0.0 −0.1
Dishwasher +0.1 +0.1 0.0 0.0
Washing machine +0.1 +0.2 0.0 −0.1
Clothes dryer +0.1 0.1 0.0 −0.1
Television −0.4 +0.6 +0.4 −1.4
Plug loads +3.6 +1.7 +2.1 0.0

Cabeza et al. [7] studied the ownership of appliances in different countries (Figure 2).
Most white goods (refrigerators, freezers, and washing machines) ownership in Europe
reached saturation already in the 1970s, and other developed countries of the world (Japan
and USA) show ownership higher than 100%. Developing countries show very diverse
results in ownership of the different appliances, with a few already showing saturation
(such as refrigerators, washing machines, and televisions (TVs) in China) and in others a
slow growth (such as refrigerators and TVs in India).
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In order to identify the trends of a certain topic, bibliometric analysis techniques were
recognized as an interesting approach to defining the state of the art as well as identifying
research gaps using both a quantitative and qualitative approach.

The aim of this paper is to evaluate how the energy efficiency in appliances was
studied in the world, and the main research question is to evaluate if there is a penetration
of this concept in the research of countries all over the world and if there is a correlation
with energy policies and the EES&L programs. The appliances considered in this paper are
presented in Table 2. The results of this paper can be used by researchers to have a clearer
picture of research trends and to understand the main pathways of the development of
policies related to appliances in buildings.

Table 2. Appliances considered in this study.

White Goods Brown Goods Small Appliances

Refrigerator Television Microwave oven
Freezer Video recorder Coffee maker

Fridge-freezer Laptop Vacuum cleaner
Washing machine

Wet appliances
Desktop Electric mixer/Hand blender

Clothes dryer Phone Rice cooker
Dryer machine Record player Kitchen robot

Dishwasher DVD Hairdryer
Oven Media center Electric toothbrush

Cooker Media player Towel drying rack/Towel
dryer

Gas hob/Gas cooker Printer Toaster
Electric hob/Electric cooker 3D-printer/3D printing Electric fan

Kitchen smoke extractor
Console/Games machine Ceiling fan

Tablet
Portable fanConsumer electronic

2. Materials and Methods

Bibliometric analysis and bibliographic mapping were carried out following the
methodology presented in Figure 3. Both studies are complementary to achieve a correla-
tion of data based on an initial query formulation of the target topic, the energy efficiency
of appliances. Four main databases are recognized for completing bibliometric analyses:
Dimensions, Google Scholar, Web of Science (WoS), and Scopus. In this study, the Scopus
database was selected as it provides more comprehensive content focused on science and
technology disciplines [8].

This study was carried out with the following query:
KEY ((“energy efficien*”) AND (“Refrigerator” OR “Television” OR “Freezer” OR

“Video recorder” OR “Fridge-freezer” OR “Laptop” OR “Washing machine” OR “Wet
appliance” OR “Desktop” OR “Clothes dryer” OR “Phone” OR “Dryer machine” OR
“Record player” OR “Dishwasher” OR “DVD” OR “Oven” OR “Media centre” OR “Cooker”
OR “Media player” OR “Gas hob” OR “Gas cooker” OR “Printer” OR “Electric hob” OR
“Electric cooker” OR “3D-printer” OR “3D print*” OR “Kitchen smoke extractor” OR
“Console” OR “Games machine” OR “Tablet” OR “Consumer electronic” OR “Microwave
oven” OR “Coffee maker” OR “Vacuum cleaner” OR “Electric mixer” OR “Hand blender”
OR “Rice cooker” OR “Kitchen robot” OR “Hair dryer” OR “Electric toothbrush” OR
“Towel drying rack” OR “Towel dryer” OR “Toaster” OR “Electric fan” OR “Ceiling fan”
OR “Portable fan”) AND NOT (“combustion” OR “Computer aided engineering” OR
“static mixer” OR “industrial refrigeration” OR “air duct” OR “biomass” OR “casting”
OR “cryogen*” OR “drying method” OR “industry*” OR “kinetic model” OR “kiln” OR
“printing technolog*” OR “polygeneration” OR “semiconduct*” OR “transportation sector”
OR “corrosi*”)) AND (EXCLUDE (PUBYEAR, 2022)).
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Figure 3. Methodology followed in the bibliometric analysis.

After a thorough review of the publications, a total of 273 documents were excluded
from the query, 36 due to being published in 2022 and 237 for not being related to the topic.
As a result, the number of publications to be analyzed was clearly identified. Figure 3
shows that the query has 1957 documents.

Once all the information and references were downloaded from the specified database,
the next stage was to proceed with the data analysis. This part was divided into two
sections, the results of the bibliometric analysis and the representation of the literature
map. In the bibliometric analysis, the extracted data were plotted in different chart types,
where there are denoted assessments, as shown in Figure 3. On the other hand, the
present work encompasses a literature map analysis that was performed by taking the
reference information from Scopus. These data were exported to a software tool, called
VOSviewer [9]. The selected software has two visualization options, grouped clusters or an
overlaid timeline representation. The latter visualization shows the analysis of the average
publication date of the keywords, being able to recognize the most recent keyword in the
field. The relationship between keywords, authors, and countries was studied. The last
step was to analyze the correlation between the statistics of the bibliometric analysis, the
literature maps, and the implementation of national standards in each region analyzed.

The study was done with different geographic coverage. First, all publications world-
wide are considered. Then all countries were aggregated into IEA regions [10]. The top five
countries with more publications were also considered and used to illustrate the analyses
carried out (United States, China, India, United Kingdom (UK), and Germany).

The world population was obtained from the United Nations 2019 Revision of World
Population Prospects [11].
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3. Results
3.1. Global Bibliometric Analysis

The present search was carried out in February 2022, which is why the time frame
was established in the query, considering all historical publications on the subject up to the
year 2021.

Figure 4a shows that around 50% of publications on the topic are articles/papers and
the other 50% are conference papers, with a small number of reviews and books. The same
distribution is also followed individually by all countries included in the study. Moreover,
when analyzing the number of publications by region, Figure 4b shows that the Asia Pacific
and Europe show similar values, being the regions with the highest number of publications.
Followed by North America with 35% fewer publications. When analyzed by country, the
United States is the country with the highest number of publications, followed by China.

Energies 2022, 15, x FOR PEER REVIEW 7 of 18 
 

 

  
(a) (b) 

Figure 4. Distribution of documents by (a) type of documents (b) country/region of publication 
and in the orange bars publications per million inhabitants. 

 
(a) 

 
(b) 

Figure 5. Trends in the number of publications in the area of study (a) worldwide (b) per country. 

Figure 4. Distribution of documents by (a) type of documents (b) country/region of publication and
in the orange bars publications per million inhabitants.

When the population of each country/region is also taken into account, the United
Kingdom stands out with more than two publications per million inhabitants, followed by
Germany and the United States. Regionally, Europe and North America show the highest
values with one publication per million inhabitants.

The trends in the number of publications are shown in Figure 5. The figure shows
that energy efficiency in appliances was already a topic of research in the 1970s, with
continuous interest in the peer-reviewed literature until today. However, in 2007 the
number of publications started to grow (from 51 documents in 2007 to 127 in 2011 to 166
in 2021). The same trend can be seen worldwide and for each country/region considered.
Interestingly, the region that started publishing on this topic was North America, followed
by the Asia Pacific and Europe. The growth in the number of publications was very high
in Asia Pacific, Europe, and North America in the period 2007–2011. Then, somehow
publications stagnated in North America, continuing to grow in Europe and even more so
in the Asia Pacific.

Figure 6 shows the relationship between the countries’ publications obtained with
VOSviewer. When considering countries aggregated in the IEA regions Figure 6a, the
network highlights that Europe, Asia Pacific, and North America are the regions with the
oldest research publications, showing more recent interest in the remaining regions. This is
evidence that this topic has spread from developed to developing regions.
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The analysis of country relationships in Figure 6b in accordance with Figure 6a shows
that the United States, Japan, and Denmark started research on this topic at an earlier stage.
The most recent countries to start research on this topic are Iran, Pakistan, United Arab
Emirates, Qatar, and the Czech Republic. Moreover, it is interesting to see the strong link
between the United States, China, and the United Kingdom.

The analysis of the authors with a higher number of publications (Table 3) shows that
R. Saidur from Sunway University of Malaysia is the author with the most documents
(12 publications). The most-cited article by R. Saidur (published in 2002) is an experimental
analysis of two domestic refrigerators to investigate the effect of variables such as tem-
perature, thermostat setting positions, and door opening on energy consumption. His
research reveals that room temperature has the greatest effect on energy consumption,
followed by door opening [12]. Furthermore, the most recent publication by R. Saidur (2021)
reports on a thermodynamic analysis of a domestic refrigerator using the nano-refrigerant
Al2O3. The results showed that the energy consumption of the refrigerator was reduced by
approximately 2.69% when using 0.1% Al2O3 [13].



Energies 2022, 15, 3047 8 of 17

Energies 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

Figure 6 shows the relationship between the countries’ publications obtained with 
VOSviewer. When considering countries aggregated in the IEA regions Figure 6a, the 
network highlights that Europe, Asia Pacific, and North America are the regions with 
the oldest research publications, showing more recent interest in the remaining regions. 
This is evidence that this topic has spread from developed to developing regions. 

 
(a) 

 
(b) 

Figure 6. Countries’ relationships (a) considering the IEA regions (b) considering all countries 
with publications. 

The analysis of country relationships in Figure 6b in accordance with Figure 6a 
shows that the United States, Japan, and Denmark started research on this topic at an 
earlier stage. The most recent countries to start research on this topic are Iran, Pakistan, 
United Arab Emirates, Qatar, and the Czech Republic. Moreover, it is interesting to see 
the strong link between the United States, China, and the United Kingdom. 

Figure 6. Countries’ relationships (a) considering the IEA regions (b) considering all countries
with publications.

The second author with the most publications is J.K. Nurminen, from the VTT Techni-
cal Research Centre in Finland. His most cited publication (published in 2009) deals with
a burst content sharing mechanism for energy-constrained mobile devices. The results
showed that compared to standard BitTorrent technologies the energy-limited peers can
achieve 50% energy savings without significantly affecting the download speeds of regular
peers [14]. The most recent publication by J.K. Nurminen (2013) deals with characteriz-
ing the energy impact of concurrent network-intensive applications on mobile platforms.
Among its findings is that running multiple network-intensive applications concurrently
can significantly improve energy efficiency, up to 2.2 times compared to running them
separately [15].
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Table 3. Authors with more publications in the field of study.

Author Institution Country
Number

Documents
Search

Number
Doc Total

h-Index
Total

R. Saidur Sunway University Malaysia 12 577 95
J.K. Nurminen VTT Technical Research Centre of Finland Finland 11 127 25
H.H. Masjuki University of Malaya Malaysia 10 510 97

R.K. Radermacher A. James Clark School of Engineering United States 10 359 48
U. Sharma Indian Institute of Technology Delhi India 9 65 10

T.M.I. Mahlia University of Technology Sydney Australia 8 361 67

I. Kelényi Budapest University of Technology
and Economics Hungary 8 25 9

B. Singh Indian Institute of Technology Delhi India 7 2168 72
Z. Wei Tongji University China 7 49 11

Y. Amano 6 135 14

H.H. Masjuki is the third most published author, sharing both his most-cited publica-
tion and his most recent publication with R. Saidur.

The three authors mentioned above show a high consistency in their research line
being their most-cited and most recent works on the same research topic. All of them are of
high relevance for improving the efficiency of appliances. It is interesting to highlight that
Table 3 does not follow the same trend of countries as shown in Figures 4 and 5. Finally,
the h-index of the searched papers shows that for most of the authors the papers on the
topic had a high impact.

When analyzing where the authors publish and how these documents are grouped
(Figure 7), the journal with the highest number of publications is Applied Energy, showing
that energy efficiency in appliances is very related to research in energy systems. Table 4
shows that all journals used have a high impact (being classified in the first 25% of most-
cited journals–Q1) except for the journal Energy Efficiency, probably used because of the
relation between the journal scope and the topic of study. It is interesting to see that
none of the journals are open access and the documents are mostly related to Engineering,
Computer Science, and Energy fields.
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Table 4. The journals most used and their impact.

Journal Number Documents
Search

Total h-Index
(2022) Category Open Access

Applied Energy 51 9.746 Q1 No
Energy 39 7.147 Q1 No

International Journal of Refrigeration 21 3.629 Q1 No
Applied Thermal Engineering 38 5.295 Q1 No

Energy Policy 95 6.142 Q1 No
ASHRAE Transactions 23 — — No

Energy Efficiency 51 2.574 Q2 No
Journal of Cleaner Production 24 9.297 Q1 No

Renewable Energy 22 8.001 Q1 No
Energy conversion and management 21 9.709 Q1 No

3.2. Analysis of Keywords

Figure 8a shows details of the co-occurrence map of the search considering worldwide
publications. The map is divided into five clusters, the first cluster in red encompasses
keywords related to digital applications such as “personal computer”, “digital television”,
“wireless communication”, and “smartphone”. In this cluster, we can find research studies
on approaches to reduce the energy consumption of wireless networks, both at the domestic
and industrial levels [10,16–18]. A special emphasis is placed on improving the energy
efficiency of the new generation of devices connected to the Internet of Things (IoT),
including smartphones [19–22].

The next cluster in yellow focuses on heating and cooling appliances with keywords
such as “heating”, “cooling systems”, and “absorption cooling”. In this cluster, we can also
find the keywords “carbon dioxide emissions” and “renewable energy” which demonstrate
the efforts being made to transform the energy demand matrix of these highly energy-
intensive appliances into renewable energy [23–26].

The third cluster in blue gathers the keywords related to refrigeration, with keywords
such as “refrigeration”, “refrigerants”, “food preservation”, “thermodynamics”, and “solar
energy”. The latter with a strong link to “absorption cooling” from the yellow cluster.
This cluster comprises a wide range of experimental studies focused on improving the
efficiency [27–29] and reducing the cost [30,31] of vapor compression systems.

The fourth cluster gathers studies that pursue more efficient alternatives to the current
manufacturing systems [32–34], therefore its main keywords are “3d printers”, “manufac-
ture”, “additives” and “additive manufacturing”. This cluster also contains the keywords
“environmental assessment” and “sustainable development” closely related to the first
keywords mentioned in this cluster and to “refrigerator” from the yellow cluster.

Finally, the purple cluster comprises the studies related to the use of energy in appli-
ances and the effect of standards and policies [35–38]. Among the most relevant keywords,
we can find “domestic appliances”, “energy policy”, “standards”, “energy labels”, “energy
use”, and “energy savings”.

The overlay visualization Figure 8b shows that studies with the oldest average number
of publications focus on refrigerators (average year of publications 2010), and washing
machines (2008), with a strong link to refrigerants (2010), compressors (2008), standards and
energy policy (2006 and 2011), respectively. Next is the keyword “domestic appliance” in
(2011) related to energy label (2012), and the keyword “personal computer” (2011) related
to “mobile device” in 2012 and wireless communication (2013). The figure shows that
the most recent studies focus on IOT (2018), and 3D printers (2018), the latter with high
attention from the scientific community representing 15% of the total publications captured
by this study.
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4. Discussion and Conclusions

According to the IEA TCP 4E (International Energy Agency Technology Collaboration
Programme Energy Efficiency End-use Equipment), between 2004 and 2014, the average
sales-weighted efficiency of new refrigerators in the EU improved by 3.4% per year, result-
ing in a 25% reduction in energy consumption. In Australia, the sales-weighted average
energy efficiency of refrigerators increased 2.7% per year between 1993 and 2014, and 2.2%
for freezers. Figure 9 shows that, in developed countries, the average sales-weighted effi-
ciency of new refrigerators increased between 2% and 4% per year. This can be correlated
with the exponential increase in publications on the topic worldwide from the late 1990s
to 2011 Figure 5a. In other appliances, the range of improvement per year between the
different countries is higher, but also the best energy efficiency is higher. For example, for
TVs, the range varies from 1% in Switzerland to 13% in Japan. This trend cannot be directly
correlated with the number of publications on the topic. Indeed, it can be correlated to
the lack of standards regulating the energy efficiency of brown goods in a large number of
countries (Figure 10).
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Energy efficiency standards and labeling (EES&L) started in the 1970s and today oper-
ate in more than 120 countries worldwide for more than 100 different types of appliances
and equipment [39]. Moreover, according to the IEA, and based on global data from coun-
tries with EES&L programs, the average energy efficiency of new major appliances in these
countries has increased by two to three times the underlying technology improvement rate.
This has resulted in energy savings of 10 to 30% over 15 to 20 years in the stock of most
regulated products in all countries. In countries with strong regulations and long-standing
programs that are regularly updated, the contribution was much greater, reducing the
electricity consumption of many appliances by more than 50% [3]. The countries with
larger EES&L programs are the United States, China, the EU, and Australia.

The above indicates that energy efficiency policies were introduced in countries with
different timeframes ranging from 1978 to the present day. This study analyses how the
policies and standards in place have encouraged research in the field of appliances and
vice versa. Figure 10 presents the number of occurrences of a term (the name of a studied
appliance) appearing per average year of publication and per country, according to the
references obtained from the Scopus search. The figure shows that the most intensive
research carried out was after 2010. The results obtained are consistent with Figure 8b, with
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refrigerators and freezers being the first appliances to be studied in the scientific literature,
and 3D printers, smart meters, and smartphones the most recent ones.

The trend in the graph indicates that the first regions/countries to establish policies
on appliance efficiency are the ones that first started to publish on this topic and the
ones with the highest overall number of publications (with the exception of Central and
South America). Surprisingly, the first country to establish energy efficiency policies in
appliances was Japan in 1978 with the Energy Efficiency Act (in force). Contrary to the
trend, only 69 documents published by this country were captured in the bibliometric
search of this study.

North American and European regions were next to publish on the energy efficiency of
appliances. Indeed, this correlates with the legislation enforced. In the case of North Amer-
ica, the first appliance efficiency standard was implemented in the United States in 1987
(“National Appliance Energy Conservation Act” still in force) [40], followed by Canada
in 1995 (still in force) [41]. However, these two standards do not cover the Brown goods
categories in Table 2. Initiatives such as the energy star [42] created in 1992 have helped as
sources of information to make well-informed purchasing appliance decisions. However,
compliance with this label is not mandatory for appliance manufacturers. Therefore, the
first standard in North America to include brown goods was implemented in 2006 [43]. In
the case of North America, it is interesting to highlight that the policies were implemented
within a time span of 5 to 15 years before the more intensive research on the appliances of
the policies’ scope.

The first program developed in Europe related to the energy efficiency of appliances
was in 1975 in France, with the Existing Buildings Programmes [44]. However, the first
regulation established within Europe with a direct target on appliances was in Spain
in 2001 [45]. This regulation was limited only to the field of household appliances, it was
not until 2010 that it was amended, enlarging the scope of application to all energy-related
products, and whose use may have either a significant direct or indirect impact on energy
consumption. The countries with the most publications in the region (United Kingdom,
Germany) show a similar trend to the results for the region. There is a difference of about
10 years between the first policies and the core of scientific publications.

The Asia Pacific region shows that the first appliance efficiency policies were applied
in the region in 1978, and the first to include brown goods in 2000. The core of research
in this region was from 2011 to 2016, which represents a gap of more than three decades
between the first policies and the most intensive research work. On closer analysis, these
leading policies were implemented in Japan, which accounts for only 9% of the region’s
publications. When analyzing the countries with the most publications in the region, China
with 40% of the publications shows similar behavior to North America and Europe with a
difference of 15 years between the first policies and the most intensive research work. On
the other hand, India with 23% of the publications in the Asia Pacific region shows a great
synergy between policy and research. With core research on appliances only three years
after the implementation of the first policies, and even in the case of brown goods, the core
research of several appliances takes place before the first policies which include it.

Eurasia, Central and South America, Africa, and the Middle East were the regions
with the fewest publications, accounting for only 13% of the publications captured in this
study. All four regions showed a similar trend with policies being implemented between 5
and 10 years earlier than the average publication. The exception to this was the Central
and South America region, with the first policies implemented in Brazil in 1988, 20 years
earlier than the average publications in the region.

Generally speaking, there is a 3- to 30-years gap between the establishment of the first
standards or policies in the different regions and the core of publications in these regions.
However, there are countries such as India that stand out for a good relationship between
publications and policies, showing a quick response of the scientific community to the
policies in place.
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Furthermore, this trend seems to be changing as the most recent studies on improving
the efficiency of appliances focus on brown goods Figure 8b, contrary to the low coverage
of current policies in this category of appliances.
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Thermal energy storage co-benefits in building applications transferred from a renewable 

energy perspective. 

David Vérez, Emiliano Borri, Gabriel Zsembinszki, Luisa F. Cabeza* 

GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001-Lleida, Spain 

 

Abstract 

 

Although one of the main aims of using renewable energy sources in building applications is to 

reduce the environmental impact caused by the high global energy demand of buildings, it may 

also produce other positive effects, known as co-benefits. Thermal energy storage technologies 

are often used in building applications, either integrated into the renewable system or 

independently, for energy savings or energy efficiency reasons. This paper shows that it is possible 

to identify the co-benefits of the use of thermal energy storage in buildings by cross-sectorizing 

the renewable energy and thermal energy storage sectors. To this end, this article first reviews the 

literature on the co-benefits of renewable energy for building applications, and then evaluates 

how these co-benefits can be attributed to thermal energy storage in buildings. As a result of a 

keywords analysis, the main co-benefits of thermal energy storage were identified related to 

environmental, health, economic, cost, and policies aspects. 

 

Keywords: co-benefits; renewable energy; thermal energy storage; buildings; cross-sectorisation 

 

 

1. Introduction  

 

Any action in buildings may have substantial value beyond the direct impact looked for; that is, 

any action has multiple impacts, which can affect the economy, society, or end user [1]. These 

impacts are related to health (better indoor conditions, energy poverty alleviation, better ambient 

air quality, reduction of the heat island effect), environment (reduced local air pollution, reduced 

sewage production), resource management (including water and energy), social well-being 

(increase productivity for women, fuel poverty alleviation, decrease in energy expenditure), 

microeconomic effects (increase productivity in non-residential buildings), macroeconomic 

effects (creation of jobs), and energy security.  

 

These impacts that are not related to the direct objective of study are known as co-benefits. 

According to the IPCC AR6 [2], co-benefit is “a positive effect that a policy or measure aimed at 

one objective has another objective, thereby increasing the total benefit to society on the 
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environment”. Another definition of co-benefit related to climate states that “climate co-benefits 

are beneficial outcomes from action that are not directly related to climate change mitigation” [3].  

Moreover, the term co-benefits refers to simultaneously meeting several interests or objectives 

resulting from a political intervention, private sector investment or a mix thereof [4]. 

 

Thermal energy storage (TES) in buildings is a technology used for energy savings, energy 

conservation, and energy efficiency [5]. TES is the technology to overcome any mismatch 

between energy generation and energy use (in time, temperature, power, or location) [6]. TES can 

be used to convert an intermittent energy source, such as solar energy, in meeting the demand 

profile. For instance, TES can be used for free-cooling in buildings, or to increase the thermal 

inertia of the building (by integrating TES materials, such as phase change materials, into the 

building materials or into the building structure) [7]. 

 

Highlighting co-benefits of TES technologies, such as with any other technology, contributes to 

social acceptance of such technologies [3]. Since literature agrees [8] that one of the main barriers 

for TES implementation is the lack of knowledge about these systems, dissemination of their co-

benefits, especially those related to health and environment, can help in the knowledge 

deployment. Moreover, literature states that local climate actions would potentially occur faster 

and at a higher level if they generate co-benefits, such as environmental, public health, or 

economic development benefits, on top of energy efficiency and cost savings, although usually the 

last two are already powerful motivators [9]. 

 

The literature highlights the advantages of using TES in buildings (i.e., increasing efficiency and 

reliability of energy systems, better economic feasibility, reducing investment and costs, reducing 

pollution, reducing CO2 emissions) [6,10,11], but these advantages have never been identified as 

co-benefits. Therefore, this paper aims at filling up this literature gap by evaluating the potential 

co-benefits of TES in buildings. To this end, this article first reviews the literature on the co-

benefits of renewable energy for building applications, and then evaluates how these co-benefits 

can be attributed to thermal energy storage in buildings. 

 

2. Methodology 

 

This section describes the methodology adopted (Figure 1) to prepare the bibliographic study and 

the bibliometric analysis presented in the following sections. In this study, the Scopus database 

was used as a reference, since it includes a large number of papers referring to technological topics 

compared to other databases such as Web of Science [12]. Databases such as Google Scholar or 

ResearchGate were excluded due to their low reliability of bibliometric results [13]. Moreover, 
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the data on world population was obtained from the United Nations 2019 Revision of World 

Population Prospects [8]. 

 

 

Figure 1. Methodology followed in the bibliometric analysis. 

 

This study was carried out with the following query: 

(TITLE-ABS-KEY ( "renewable energ*" ) AND TITLE-ABS-KEY ( "co-benefit*" OR 

"cobenefit*")) AND ( EXCLUDE ( PUBYEAR,2022) )  

 

In order to obtain a clear picture of research topics, similar keywords were groups using a 

thesaurus file into the VOSViewer software. Moreover, this avoid having a dispersion of 

keywords with low relevance and highlight the macro-area of research. 

 

3. State-of-the-art of renewable energy co-benefits 

 

3.1. Bibliometric analysis 

 

The present study was conducted in May 2022; therefore, the time frame was established in the 

query, considering all historical publications on the subject up to 2021. 
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 Figure 2a shows that around 70% of publications on the topic are articles/papers and the other 

30% are reviews, conference papers, with a small number of books chapters. Moreover, when 

analyzing the number of publications by countries, Figure 2b shows that the United States is the 

country with more publications, having published more than twice compared to the next two 

countries in line United Kingdom and China. 

  

  

(a) (b) 

Figure 2. Distribution of documents by (a) type of documents (b) country/region of publication 

and in the orange bars publications per million inhabitants. 

 

The trends in the number of publications are shown in Figure 3. The figure shows that renewable 

energy co-benefits started to be mentioned in research papers in 2006, with continuous interest in 

the peer-reviewed literature until today. The trends of paper published by the main countries that 

are interested in the studies of co-benefits in renewable energy is shown in Figure 3b. The figure 

shows that United States is one of the countries that started to publish on the topic and that today 

has the highest research output followed by United Kingdom. 
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(a) 

 

(b) 

Figure 3. Trends in the number of publications in the area of study (a) worldwide (b) per 

country. 

 

The authors with more publications that are related to the co-benefits of renewable energy are 

listed in Table 1. In this case it is interesting to notice that there is only one scholar from United 

States and that the first author publishing in the topic is B. Limmeechokchaiai, from Thammasat 

University located in Thailand. The first paper from this author was published in 2012 on the 

assessment of Thailand energy policies on renewable electricity generation and energy efficiency 

in industries and buildings evaluating also the CO2 emissions from power generation expansion 

plans [14]. The most cited paper was then published in 2013 on the analysis of the mitigation 

measures in Thailand with emission trading and carbon capture and storage (CCS) using a 

computable general equilibrium (CGE) model (AIM/CGE) [15]. From the co-authors of this paper 

is worth to mention R. Shrestha, and T. Masui which is also in list of top authors. In particular R. 

Shrestha is author of one of the first paper published on the topic in 2010 on the co-benefits of 

CO2 emissions reduction in Thailand [16]. From the authors listed in the table the most cited 
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papers was published by Dai, H. in 2016 on the economic and environmental impact assessment 

of large-scale renewable energy development in China [17]. B.K. Sovacook is also author of 

highly cited papers including a study on energy justice of low-carbon transition in Europe [18] 

and a study on the o-benefits of electric vehicles and vehicle-to-grid [19]. The main journals that 

contain publications related to co-benefits of renewables are shown in Figure 4  and details listed 

in Table 2, where the most targeted journal in this case is Energy Policy. From the bibliometric 

data is possible to notice that most of journal are classified as Q1 and only few of them are full 

open access. Nevertheless, almost half of documents published in the topic are available in hybrid 

gold, bronze, or green in open access. 

 

Table 1. Authors with more publications in the field of study. 

Author Institution Country 

Number 

Documents 

Search 

Number 

Documents 

Total 

h-Index 

Total 

Limmeechokchai, B. Thammasat University Thailand 6 132 19 

Almeida, M. Universidade do Minho Portugal 3 76 18 

Armstrong, A. Energy Lancaster United Kingdom 3 41 19 

Becchio, C. Politecnico di Torino Italy 3 53 17 

Dai, H. Peking University China 3 86 32 

Ferreira, M. Universidade do Minho Portugal 3 16 12 

Holloway, T 
University of Wisconsin-

Madison 
United States 3 73 31 

Masui, T. 
National Institute for 

Environmental Studies of Japan 
Japan 3 176 47 

Shrestha, R 
 Asian Institute of Technology 

Thailand 
Thailand 3 92 25 

Sovacool, B.K. Aarhus Universitet Denmark 3 508 74 

 

 

Figure 4. Journals where the documents are published. 
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Table 2. The journals most used and their impact. 

Journal 
Number Documents 

Search 
Total h-Index (2022) Category Open Access 

Energy Policy 13 6.142 Q1 Hybrid 

Renewable and Sustainable Energy Reviews 10 14.982 Q1 Hybrid 

Environmental Science and Technology 7 9.028 Q1 No 

Journal of Cleaner Production 5 9.297 Q1 Hybrid 

Applied Energy 4 9.746 Q1 Hybrid 

Climate Policy 3 5.085 Q1 Yes 

Climatic Change 3 4.743 Q2 Hybrid 

Energies 3 3.004 Q2 Yes 

Energy 3 7.147 Q1 Hybrid 

Global Environmental Change 3 9.523 Q1 Hybrid 

 

3.2. Keyword analysis 

The data extracted from the Scopus database were implemented in a bibliographic mapping 

(Figure 5). This figure shows the relationships among the keywords extracted from each 

document. The size of the bubbles represents the occurrence of the keywords and the colours 

represent groupings in clusters. Given the high number of keywords found, and that the main 

objective of the paper is not to analyse the relationship between the keywords of renewable energy 

but to identify its co-benefits, the figure is not analysed in detail. To identify that relationship, all 

keywords related to one specific area were joined using the thesaurus technique to be able to 

analyse the relation between the co-benefit areas (e.g., environment, health, policy). 200 of the 

231 keywords presented in Figure 5 were grouped into 100 main keywords groups (Figure 6). 

This main groups were: those related to the energy sector; to health impact; to carbon dioxide 

(emissions, carbon sequestration); to air pollution and air quality; to the environmental impact 

management and protection; economic aspects such as cost and green economy; biomass 

including bioenergy and biofuels; buildings; waste management and waste treatments; and finally, 

policy related keywords. The results after such grouping are shown in Figure 7. 
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Figure 5. Keywords co-occurrences bibliographic mapping. 
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(e) (f) 

 
 

 

(g) (h) (i) 

 

(j) 

Figure 6. Keywords linked by means of thesaurus, (a) keywords related to the energy sector, (b) 

keywords related to the health impact, (c) keywords related to carbon dioxide, (d) keywords 

related to air pollution, (e) keywords related to the environmental impact, (f) keywords related 

to the economic aspects, (g) keywords related to the biomass, (h) keywords related to the 

buildings, (i) keywords related to waste management, (j) keywords related to policies.  
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Figure 7 shows a first cluster in green where carbon dioxide-related keywords are linked to 

biomass and waste management groups; other keywords also included in this cluster are climate 

change, landfill, nuclear energy, and electricity. Another cluster in light blue relates those 

keywords group in air pollution very strongly with those related to health impact; other keywords 

appearing in this cluster are fossil fuels, coal, and employment. The third cluster in red relates 

those keywords included in policy with other keywords such as renewable energy, environmental 

impact, sustainability, water, biodiversity, and conservation; and more interestingly in social 

aspects. Other renewable energy keywords (such as solar energy, photovoltaics) are linked in the 

cluster in purple with keywords co-benefits, climate change mitigation, and developing countries. 

Finally, the cluster in yellow groups keywords such as energy sector and economic aspects with 

renewable energy sources, energy efficiency, emission reduction, and building.   

 

 

Figure 7.  Keywords linked by means of thesaurus grouped by main topic 
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4. Cross-sectorisation to thermal energy storage 

 

This section presents the cross-sectorisation to thermal energy storage of the renewable energy 

co-benefits presented in Section 3.  

 

Environmental co-benefits 

Reduction of indoors and outdoors air pollution is an identified co-benefit of local climate actions 

in the area of transportation (vehicle efficiency), energy efficiency (green buildings), and the use 

of renewable energy in cities [20–22]. This co-benefit is also related to TES as shown, for 

example, by Xie et al. [23] who demonstrated that TES has great potential in improving the energy 

efficiency of electric vehicles (i.e., cars, buses), specially low- and medium-temperature phase 

change materials (PCM) technology. On the other hand, electric vehicle efficiency is highly 

improved with a correct thermal management using TES technologies [24].  

If green buildings are understood as a building that includes sustainable and energy efficient 

concepts and technologies, reduction of indoors and outdoors air pollution are co-benefits of TES 

systems demonstrated widely in the literature. For example, Palanisamy et al. [25] studied the use 

of a TES module in an air conditioning system to improve indoor air quality. Wang et al. [26] 

used a TES module in a biomass boiler to reduce the number of boiler cycles and, therefore, 

reduce indoors air pollution.  

 

The reduction of air pollution due to the use of renewable energies in cities is due to the 

substitution of fossil fuels. The literature shows that adding TES in renewable energy systems 

increases its energy efficiency, therefore contributing again to this co-benefit. Examples of this 

are the increase of efficiency of photovoltaic panels when adding TES [27], the use of TES in 

low-temperature thermal solar systems [28], or the hybridization of a solar/geothermal system 

using TES [29]. 

 

Another environmental co-benefit of local climate actions is biodiversity conservation (habitat 

conservation) [20,30]; this co-benefit is classified in the area of land use and carbon offsets. An 

example where this co-benefit can be transferred to TES is the biodiversity conservation achieved 

when green roofs and green facades are used as passive TES technology [31].  

 

Water as co-benefit 

Water use efficiency, water reduction and recycling, watershed health, and water savings are co-

benefits of local climate actions [20]. Managing the level of storage in the water damp is a 

potential source of hydroelectric power [32]. An example of water management and water use 
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efficiency is the technology aquifer TES (ATES), where underground water is used for heating 

and/or cooling of buildings among other uses [33]. 

 

Health co-benefits 

Public health is identified as co-benefit of local climate actions in the area of land use [20]. 

Offshore wind installations also contribute to the health and climate benefits of cities [34]. The 

2015 Lancet Commission concluded that “tackling climate change could be the greatest global 

health opportunity of the 21st century” [35]. Several modelled scenarios suggest that the 

commitment to reduce 80% of greenhouse gas (GHG) emissions by 2050 compared to 1990 

brought health as a co-benefit [36–38]. Therefore, transferring health co-benefits from renewable 

energies to TES are related to the reduction of CO2 and GHG emissions [39,40].  

 

Economic co-benefits 

Economic growth is a co-benefit of local climate actions in the area of energy efficiency (green 

buildings) and the use of renewable energy in cities [20]. New jobs opportunities and 

establishment of new economy sectors are also co-benefits from investments in renewable energy 

sector [41]. Similarly and according to IRENA [42], a growing business case lies ahead for TES 

technologies, projections show that in the next decade investment in the range of US$ 12.8 billion 

to US$ 27.22 billion is foreseen for power and cooling TES applications. 

 

Policy co-benefits 

Energy security is a co-benefit of local climate actions when integrating renewable energy in 

cities [20]. Employment is another co-benefit of renewable energy integration in both the power 

and buildings sectors [43]. Furthermore, local municipalities besides feeling motivated to 

collaborate with the energy transition of the country, and the economic advantages it could bring 

to the municipality, also look at other co-benefits such as enhancing the image of the town and 

strengthening community life [10]. Moreover, TES plays a fundamental role in the 

implementation of renewable energies and is therefore also an important component in energy 

security [44]. 

 

5. Conclusions 

 

The term co-benefit related to renewable energy started to be mentioned in research papers only 

in 2006, with a rising interest literature. The evaluation of the main keywords related to co-

benefits of renewable energies assess in this paper, shows that all terms are strongly interrelated. 

For example, climate change mitigation is mostly related to renewable energy sources, economic 

aspects, but also to developing countries. On the other hand, all keywords related to policies has 
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a strong relation with the energy sector and environmental impact. Keywords related to the health 

impact show a strong relation with air pollution. And finally, the keyword carbon dioxide has 

strong relationship with health impact, renewable energies, and sustainability.   

 

This paper shows that by cross-sectorizing the renewable energy and thermal energy storage 

(TES) sectors it is possible to identify the co-benefits of thermal energy storage in buildings. 

When focusing on TES, co-benefits identified in the literature are those related to environmental 

co-benefits, water co-benefits, health related co-benefits, economic and cost related co-benefits, 

and benefits related to policies. The co-benefit of TES identified in the literature highlight that 

TES is a fundamental technology in the energy transition not only to increase the efficiency of 

energy systems and allow a better integration of renewables but also to provide benefits to health 

impact, economic growth and energy security. Nevertheless, economic investments in the 

technological development of TES together with targeted energy policy is fundamental to 

overcome the actual barriers and enhance the integration of this technology in the actual energy 

system. 
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Highlights 

- The use of renewable energy in buildings may also produce positive effects known as co-

benefits 

- Research on renewable energy co-benefits systems is assessed in a bibliometric analysis 

- Cross-sectorizing is used to identify thermal energy storage co-benefits from renewable 

energy 

- The main co-benefits of TES are related to environmental, health, economic, and policies 

aspects 
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Abstract: Insulation of thermal energy storage tanks is fundamental to reduce heat losses and to
achieve high energy storage efficiency. Although water tanks were extensively studied in the litera-
ture, the enhancement of the insulation quality is often overlooked. The use of vacuum insulation has
the potential to significantly reduce heat losses without affecting the dimension of the storage system.
This paper shows for the first time the results of the heat losses tests done for a 0.535 m3 water tank
for residential building applications built with a double wall vacuum insulation. The different tests
show that the rate of heat losses strictly depends on the temperature distribution inside the tank at
the beginning of the experiment. Compared to a conventional water tank insulated with conventional
materials, the U-value of the lateral surface was reduced by almost three times (from 1.05 W/K· m2

to 0.38 W/K· m2) using vacuum insulation. However, the bottom part, which is usually used to place
the support parts and the piping, is the critical design part of those tanks acting as a thermal bridge
with the ambient and enhancing heat losses.

Keywords: thermal energy storage; water tank; thermal insulation; vacuum insulation; heat losses
test; building applications

1. Introduction

The use of renewable energy sources is one of the key actions towards the reduction
of gas emissions into the atmosphere. Today, the exploitation of solar energy in building
applications represents the most common alternative to the use of fossil fuels to supply
thermal energy for space heating or domestic heat water. However, due to the mismatch
between solar availability and energy demand, the integration of thermal energy storage
(TES) is fundamental to enhance the efficiency of solar heating systems increasing the
potential use of renewable energy resources [1,2]. TES applied to solar heating systems
allows to store thermal energy when it is highly available and release it when solar radiation
is low and energy demand is needed. In solar heat applications with temperatures below
100 ◦C, water represents the most common storage material due to the high specific heat,
low cost, and availability. In this case, TES commonly refers to water tanks. This storage
typology was studied in the literature for decades. In order to evaluate the topics that
had the highest relevance in the scientific literature, bibliometric analysis is an effective
method to evaluate research trends and gaps [3–5]. Figure 1 shows the co-occurrence of the
keywords used by the authors on a total number of 2006 studies published in the literature
related to water storage tanks. Documents were obtained from the Scopus database on
April 2021 using the query “TITLE-ABS-KEY (“water tank” AND “storage”) and analysed
through the software VOSviewer [6]. The results show that studies on water tanks are
mainly related to “stratification”. Indeed, the efficiency of water tanks can be enhanced by
exploiting the stratification effect that naturally takes place due to the difference in density
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induced by the water at different temperatures. This allows to extract hot water at the
top (that can be used for domestic hot water) and less heated water in the middle (that
can be suitable for space heating). In the literature, different studies and techniques were
proposed to improve the stratification by enhancing the stratification effect [7–12]. Other
studies were related to the integration of phase change materials (PCM) to increase the
storing efficiency [13,14] and the use of water tanks with heat pumps using demand-side
management techniques [15–17]. Furthermore, the figure shows that most of the studies
were conducted through simulations, highlighting a lack of experimental studies.

Sustainability 2021, 13, x FOR PEER REVIEW 2 of 11 
 

enhanced by exploiting the stratification effect that naturally takes place due to the differ-
ence in density induced by the water at different temperatures. This allows to extract hot 
water at the top (that can be used for domestic hot water) and less heated water in the 
middle (that can be suitable for space heating). In the literature, different studies and tech-
niques were proposed to improve the stratification by enhancing the stratification effect 
[7–12]. Other studies were related to the integration of phase change materials (PCM) to 
increase the storing efficiency [13,14] and the use of water tanks with heat pumps using 
demand-side management techniques [15–17]. Furthermore, the figure shows that most 
of the studies were conducted through simulations, highlighting a lack of experimental 
studies. 

 
Figure 1. Co-occurrence of the authors keywords in studies related to water tanks. 

In the co-occurrence of authors keywords, it is possible to notice that there are no 
terms related to heat losses and/or insulation. When water storage tanks are integrated 
into systems where the thermal energy is managed in a short-term period, the weight of 
heat losses on the global performance is lower compared to the quality of stratification 
that affects the temperature delivered by the tank. 

However, today the attention is moving to thermal energy storage solutions able to 
manage and store thermal energy for long or seasonal periods, allowing a better use of 
energy coming from renewable sources. Therefore, the need for storage systems with re-
duced heat losses is fundamental. To achieve this, many studies in the literature focus on 
new emerging technologies such as thermochemical TES and only a few are based on the 
improvement of existing and commercially available technologies. For this reason, ther-
mal insulation represents a significant aspect in the optimisation of commercial TES sys-
tems. Furthermore, in water tanks, the reduction of heat losses helps to maintain the strat-
ification, thus increasing the exergy efficiency of the tank [18]. Practically, thermal insula-
tion can be placed either inside or outside the storage system. However, placing the insu-
lation outside is usually the simplest option. At present, most water tank storage systems 
are insulated using conventional materials such as mineral wool with thermal conductiv-
ity in the range of 19 to 46 mW/(m·K) [19]. Therefore, to significantly achieve low heat 
losses with conventional materials, thicker insulation is required to increase the living 
space of the storage and, indirectly, the cost. 

Figure 1. Co-occurrence of the authors keywords in studies related to water tanks.

In the co-occurrence of authors keywords, it is possible to notice that there are no
terms related to heat losses and/or insulation. When water storage tanks are integrated
into systems where the thermal energy is managed in a short-term period, the weight of
heat losses on the global performance is lower compared to the quality of stratification that
affects the temperature delivered by the tank.

However, today the attention is moving to thermal energy storage solutions able to
manage and store thermal energy for long or seasonal periods, allowing a better use of
energy coming from renewable sources. Therefore, the need for storage systems with
reduced heat losses is fundamental. To achieve this, many studies in the literature focus
on new emerging technologies such as thermochemical TES and only a few are based on
the improvement of existing and commercially available technologies. For this reason,
thermal insulation represents a significant aspect in the optimisation of commercial TES
systems. Furthermore, in water tanks, the reduction of heat losses helps to maintain the
stratification, thus increasing the exergy efficiency of the tank [18]. Practically, thermal
insulation can be placed either inside or outside the storage system. However, placing
the insulation outside is usually the simplest option. At present, most water tank storage
systems are insulated using conventional materials such as mineral wool with thermal
conductivity in the range of 19 to 46 mW/(m·K) [19]. Therefore, to significantly achieve
low heat losses with conventional materials, thicker insulation is required to increase the
living space of the storage and, indirectly, the cost.
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Using vacuum insulation, the thermal conductivity can be reduced 6 to 10 times
compared to conventional materials [20]. Those type of tanks are already used to store
cryogenic materials such as liquefied nitrogen, air, or natural gas (LNG) [21,22].

Recently, vacuum insulation is also used in water tanks for solar heating applications
to store water below 90 ◦C. However, only a few studies were published in the literature.
The benefit of using a vacuum insulated storage tank in solar systems for a multi-family
house located in Estonia was studied by Kadler et al. [23]. The results showed that using a
vacuum insulated water tank to store the solar heat on a seasonal basis increases the direct
renewable heating by 41%, reaching a system efficiency of 51%. Vacuum insulation can be
integrated mainly into a storage tank through the use of vacuum insulation panels (VIPs)
or realising a double wall vacuum envelope (done through evacuated powders) [19,24].
The testing of a 100 m3 water storage tank using VIPs was reported in the literature
by Fuchs [25]. The water tank used in [16], which was built in Sengenthal (Germany),
consisted of eight precast concrete elements with VIP attached inside the storage. Heat
losses tests were performed for 31 days; results gave a U-value of 0.36 W/(m2·K). This
value corresponds to only 30% of the one estimated from the initial calculations due to
thermal bridges and defects on the insulation. Regarding water storage with double wall,
a water tank of 16.4 m3 with a 20-cm-thick insulation of evacuated perlite was built at the
Center of Applied Energy Research (ZAE) in Bavaria, Germany. Heat losses test results
reported by Beikircher et al. 2014 [26] showed that the tank had a cooling rate of 0.23 K/day.
Different materials to be used as vacuum insulation in a double walled water storage tank
were investigated by Lang et al. [27]. The study concluded that a mixture of expanded
perlite (70%) and fumed silica (30%) had the best results at vacuum pressures between
1 and 10 mbar. The mixture was tested in a real water tank of 12 m3 built by Sirch Tankbau-
Tankservice-Speicherbau GmbH. The experimental test showed an overall temperature
drop of around 0.25 K/day. The heat losses were mostly attributed to the thermal bridges
at the bottom of the tank due to the TES support. To the best of the authors’ knowledge,
the experimental studies published so far only show the performance of vacuum water
tanks with a useful volume higher than 10 m3. At present, there are no studies in the
literature that report the efficiency of small-size water tanks using vacuum insulation for
small building applications such as a single-family house.

To fill this literature gap, this paper shows the heat transfer performance of a water
tank of a volume of 0.535 m3 with a vacuum insulated double wall suitable for space
heating (SH) and domestic hot water (DHW) supply for domestic applications. The tank
was included and tested in the framework of the EU-funded project SWS-HEATING
(GA 764025) to be coupled with a novel seasonal TES based on selective water sorbent
materials to maximise the solar fraction. The study shows the experimental results of heat
loss tests to evaluate the behaviour of the vacuum water tank, considering also the effect
of stratification on the heat losses. In the literature, different methods were employed to
evaluate the heat losses of solar water tanks. Cruickshank et al. [28] evaluated the heat
loss coefficient through a “cool-down test”. The tests were conducted in a 0.270 m3 electric
water-storage tank with fibre-glass insulation. During such experiments, the water tank
was preheated to 54 ◦C and the temperature was recorded over a period of 48 h. Another
way to estimate the heat losses in a water tank is to charge the tank over a long period with
a gradual temperature increase, reaching a steady state value of heat losses, which are then
evaluated from the heating power supplied to the tank and the ambient temperature, as
reported by Deng et al. [29].

2. Materials and Methods
2.1. Experimental Methodology
2.1.1. Experimental Set-Up

The tests were carried out using a specific test rig built in the GREiA research group
of the University of Lleida (Figure 2). The test rig consists of a 200 litres commercial
buffer tank with a built-in 9 kW electric heater and a monoblock pump (model OE-IP22-
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12037) controlled by an Invertek optidrive E3 IP20 variable speed drive. To measure the
ambient temperature and the external surface temperature of the tank, 3 Pt-100 class A IEC
60751 standard type temperature sensors (accuracy 0.15 ± 0.002 * t) were implemented.
All monitoring variables were recorded through a data acquisition system (STEP DL-01
data logger) connected to a computer equipped with Indusoft SCADA software. The
measurement interval was 1 s and the recording interval (time step) was set at 10 s.
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2.1.2. Characteristics of the Water Tank

The storage tank tested in this study is a vacuum insulated water tank built by Sirch
Tankbau-Tankservice-Speicherbau GmbH [30]. A general schematic of the tank is shown
in Figure 3. The tank contains 5 ports evenly distributed over the height of the tank. It is
made of steel S235JRG2, has a total height of 2.5 m and an external diameter of 1 m, with
a total capacity of 0.535 m3. The water tank was built with a vacuum insulated double
wall evacuated and filled with thermal radiation absorber. The vacuum insulation with a
thickness of 0.17 m is not removable and, according to the manufacturer, it is characterised
by an absolute pressure below 10 mbar and thermal conductivity of 0.008 W/m·K. In
order to analyse the stratification and heat losses inside the tank, the manufacturer was
asked to place 5 Pt-100 class A IEC 60751 standard type (accuracy 0.15 ± 0.002 * t) tem-
perature sensors inside the tank. The sensors were placed at the central axis of the tank
vertically distributed with similar spacing between them and at the same height of each
tank port, as shown in Figure 4. At least three repetitions of each test were performed to
ensure repeatability.

2.1.3. Heat Losses Test

In this study, heat losses were evaluated through a “cool-down test”, preheating the
tank at different temperature levels and recording the temperature inside the tank, in the
external surface of the tank, and the ambient temperature for 48 h. Mainly, two different
heat losses tests were performed with two different boundary conditions:

• Test A: water tank is preheated at a uniform temperature of 65 ◦C;
• Test B: water tank is preheated at 45 ◦C at the bottom and middle layers, and at 65 ◦C

at the top.
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Figure 3. Schematic of the 0.535 m3 water tank built by Sirch Tankbau-Tankservice Speicherbau
GmbH [30]. All measurements are presented in millimeters.
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Figure 4. Schematic of the connections and sensors inserted inside the water tank (TP1, TP2, TP3, TP4,
TP5), and on the outer surface (T_ext_a, and T_ext_b). All measurements are presented in millimetres.

To perform test A, water at 65 ◦C was circulated between the buffer tank and connec-
tions 1 and 5 of the vacuum water tank (Figure 2) until all sensors inside the tank (TP1 to
TP5) were at (65 ± 2) ◦C. Then all connections to the vacuum water tank were closed, and
temperatures inside the tank were recorded for 48 h.

To perform test B, water at 45 ◦C was circulated between the buffer tank and connec-
tions 1 and 5 of the vacuum water tank (Figure 2) until all sensors inside the tank (TP1 to
TP5) were at (45 ± 2) ◦C. Next, water at 65 ◦C was circulated between the buffer tank and
connections 4 and 5 of the vacuum water tank until the sensors TP4 and TP5 inside the
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tank were at (65 ± 2) ◦C. Then all connections to the vacuum water tank were closed, and
temperatures inside the tank were recorded for 48 h.

2.1.4. Repeatability of Results

Each test was repeated three times to demonstrate the repeatability of the methodology
and the experimental results. Figure 5 presents the water temperature profiles of test A at
the five temperature levels presented also in Figure 5. Results from the repeatability tests
show that the methodology adopted for the present experimentation produced repeatable
values with a maximum standard deviation of 0.189 ◦C in the sensor TP1 over the first
5 min of experiments, and a mean standard deviation of 0.036 ◦C between all sensors
throughout the experiment. Results for test B showed similar differences and are therefore
not presented.
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2.2. Theoretical Methodology

The heat losses (kWh) were calculated from the experimental data considering the
variation of the temperature inside the tank at different heights. To calculate total losses,
the tank was divided into five different water volumes corresponding to the position of the
sensors, as shown in Figure 6. Therefore, the total heat losses were calculated as the sum of
the heat loss by each element i with mass of water mi, as shown in Equation (1):

Qloss =
n

∑
i=1

mi × cp × ∆T (1)

where ∆T is the temperature variation of each layer during the heat losses test.
Then, the data obtained from the heat losses test can be used to estimate the U-value

and the UA-value of the vacuum water tank.
In this case, for the calculation of the U-value, heat conduction between the adjacent

nodes is assumed negligible. For each volume “i”, the UA-value can be calculated from the
heat losses as shown in Equation (2):

UAi =
Qloss,i

Tave,i − Tave,amb
(2)



Sustainability 2021, 13, 5329 7 of 11

where Qloss,i is the heat loss (kW) calculated from the experimental data of the volume
i characterised by the average temperature value (Tave,i), and the ambient temperature
measured from the test (Tave,amb),

The U-value can be derived from the UA-value as:

U =
UAi
Ai

(3)Sustainability 2021, 13, x FOR PEER REVIEW 7 of 11 
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According to the design of the tank, three different U-values can be calculated for
three different surfaces: bottom base, lateral (side) surface, and top base.

The U-value for the lateral surface can be obtained from any of the middle layers (T2,
T3, and T4) using Equation (4):

Ulateral =
UAi,lateral

Ai,lateral
(4)

where UAi,lateral is derived from Equation (3) because, for a middle layer, heat transfer only
takes place through the lateral surface, and Ai,lateral is the lateral surface area of the middle
layer “i”.

For the bottom layer, the total UA-value is the sum of the UA-value of the bottom base
surface and the UA-value of the lateral surface, as shown in Equation (5):

UAbottom,tot = UAbottom,base + UAbottom,lateral (5)

where UAbottom,tot is derived from Equation (3) and UAbottom,lateral is obtained by multiply-
ing the value of Ulateral calculated in Equation (4) by the lateral surface area of the bottom
layer (Abottom,lateral).

Therefore, the U-value of the bottom base surface can be calculated as shown in
Equation (6):

Ubottom,base =
UAbottom,base

Abottom,base
=

UAbottom,tot − UAbottom,lateral

Abottom,base
(6)

Equations similar to (5) and (6) can be applied to calculate the UA-value of the top
base surface of the tank and derive the U-value of the top base surface, Utop,base.
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3. Results
3.1. Heat Losses Test Results
3.1.1. Test A

Figure 7 shows the variation of the temperature inside the tank previously charged
uniformly at 65 ◦C and left at ambient temperature for 48 h. The figure also reports the
variation of the ambient temperature (Tamb) and the external temperature of the tank
measured by means of two sensors placed on the surface (T_ext_a, T_ext_b). During the test,
the ambient temperature and the external surface temperature of the tank were almost
constant. From Figure 7, one can see that the temperature variation at the bottom of the
tank (TP1) had the highest cooling rate, decreasing to 46 ◦C after 48 h. On the other hand,
the temperature of the top and middle layers (TP2, TP3, TP4, TP5) experienced a small
variation during the test, decreasing to 60 ◦C after 48 h.
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Figure 7. Temperature profiles (left) and calculated heat losses (right) for test A. Tamb represents the ambient temperature
and Qtot is the sum of heat losses from Q1 to Q5.

The calculated energy losses are shown in Figure 7 right. The results show that a total
energy amount of 4 kWh was lost during the test, mostly affected by the heat losses at the
bottom layer of the tank (Q1).

3.1.2. Test B

The temperature profiles measured during the heat losses test of the water tank
charged with a stratified profile (45 ◦C at the bottom and middle layers 2 and 3, and 65 ◦C
at the top layers 4 and 5) are shown in Figure 8 left. From the results, it is possible to
notice that in the middle of the tank (TP3) the temperature increases over time due to
the conduction between the water volumes at different temperatures. In this case, the
temperature of the top layers (TP4 and TP5) drops faster than the bottom of the tank.
Indeed, due to heat transfer between layers, the temperature of the top levels drops below
60 ◦C after 48 h, resulting in higher energy losses compared to the previous case shown in
Figure 8. The energy losses evaluated from the test are shown in Figure 8 right.

In this case, the total energy loss is almost half compared to the previous case (Test A)
with the initial tank uniformly charged at 65 ◦C (2.1 kWh compared to 4 kWh). Furthermore,
Figure 8 right shows that the part of the tank with the highest temperature drop are the top
layers of the tank (TP4, TP5) and the bottom layer (TP1). The temperature drop at the top
part are probably mostly due to heat transfer towards the middle part of the tank, while
the temperature drop at the bottom is mainly due to heat losses to the ambient.

However, compared to the previous case with the water tank fully charged at 65 ◦C,
the final value of heat losses at the bottom layer is lower (0.7 kWh) due to the lower
temperature difference between the water inside the tank and the ambient that results in a
lower heat transfer rate, thus reducing the heat losses. On the other hand, Figure 8 right
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shows that in the middle layer (Q3) the heat losses has a negative value (that in this case is
a heat gain) due to the increase in temperature (TP3) shown in Figure 8 left.
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3.2. U-Value Calculation

The results of the heat loss tests were used to obtain a first estimation of the U-value
of the water tank tested in this study. To reduce the effect of the conduction between the
layers inside the tank, the results of Test A (preheating at a uniform temperature of 65 ◦C)
were used. The U-values calculated for the different sections of the tank are presented in
Table 1. To quantitatively evaluate the values obtained from the calculation, the U-values
were compared with the one obtained from the literature. In particular, Table 1 shows the
comparison of the U-value with the one obtained from Cruickshank et al. [28] calculated
for a commercial 0.270 m3 standard water storage tank insulated with 0.047 m of fibre-glass
(k = 0.036 W/(m·K)).

Table 1. U-values calculated for this study and comparison with the literature.

Tank Volume (m3) Insulation Type U-Value (W/(m2·K))

Top Lateral Bottom

This study 0.535 Double wall with vacuum 0.32 0.38 2.00
Cruickshank et al. [28] 0.270 Fibre-glass 0.66 1.05 2.54

Table 1 shows that the U-value of the bottom surface of the vacuum tank is the highest
compared to the one estimated for the lateral surface due to the high energy loss observed
at the bottom of the tank (Figure 6). This value is similar to the one of a standard electric
water tank due to the absence of vacuum insulation in the bottom part of the tank. However,
the U-value of the lateral and the top surface, calculated for the vacuum water tank tested
in this study, are significantly reduced compared to conventional insulation due to the
minor energy losses at the top and middle layers of the tank.

4. Discussion and Conclusions

The reduction of heat losses of thermal energy storage is important to maintain
high efficiency and to increase the solar fraction of solar heating systems. However, the
enhancement of insulation quality is often overlooked, still representing a research gap in
the literature. Reducing the heat losses using conventional materials with high thermal
conductivity could lead to an increase of the dimension of the storage systems indirectly
affecting the cost of the storage itself. Vacuum insulation is one technique proposed to
effectively reduce heat losses in large-size water tanks. In this study, heat loss tests were
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carried out to evaluate the performance of a 0.535 m3 water tank built with a vacuum
insulated double wall for residential building applications. In particular, two different tests
were carried out, preheating the tank at different temperature levels and recording the
temperature without supplying heat to the tank for 48 h.

The results showed that the technique of vacuum insulation can effectively reduce
the heat losses in small-size water tanks for domestic applications. Indeed, compared to
a standard water tank, the U-value can be significantly lower, allowing to maintain the
water at high temperature inside the tank. However, the critical part of the design of those
tanks is the bottom side that is usually used to place the support parts and the piping of
the tank, which act as thermal bridges to the ambient. Furthermore, due to the lack of
insulation, the bottom surface is the most exposed to the outside temperature thus reducing
the effectiveness of the insulation and enabling significant heat losses.

The two different tests carried out in this study showed that the heat loss rates depends
on the average water temperature inside the tank. Indeed, a tank filled with water at lower
temperature due to stratification has a considerably lower heat losses rate due to the
smaller temperature difference with the ambient, which is especially significant at the
bottom surface where most of heat losses occur.

Although vacuum insulation was proven to have benefits in reducing heat losses, it
has to be considered that a water tank with this type of insulation has a much higher cost
compared to a standard water tank. Therefore, in order to prove the real benefit of using
vacuum insulation in solar heating systems, further research needs to be done in future
studies, including detailed cost-benefit analysis related to the efficiency improvement in a
generic heating system.
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Abstract: The use of latent heat thermal energy storage is an effective way to increase the efficiency
of energy systems due to its high energy density compared with sensible heat storage systems.
The design of the storage material encapsulation is one of the key parameters that critically affect the
heat transfer in charging/discharging of the storage system. To fill the gap found in the literature, this
paper experimentally investigates the effect of the macro-encapsulation design on the performance
of a lab-scale thermal energy storage tank. Two rectangular slabs with the same length and width
but different thickness (35 mm and 17 mm) filled with commercial phase change material were
used. The results show that using thinner slabs achieved a higher power, leading to a reduction in
the charging and discharging time of 14% and 30%, respectively, compared with the thicker slabs.
Moreover, the variation of the heat transfer fluid flow rate has a deeper impact on the temperature
distribution and the energy charged/released when thicker slabs were used. The macro-encapsulation
design did not have a significant impact on the discharging efficiency of the tank, which was around
85% for the operating thresholds considered in this study.

Keywords: thermal energy storage; latent heat thermal energy storage; phase change materials
(PCM); macro-encapsulation; rectangular slab; experimental study

1. Introduction

The use of thermal energy storage (TES) has been proved as an effective way to
enhance the penetration of renewable energy into energy systems. Amongst all thermal
storage technologies, latent heat thermal energy storage (LHTES) received the attention of
several researchers over the last decade due to its high energy density and the wide range
of applications [1]. Buildings, for example, represent one of the most common applications
of the integration of LTHES as an active or passive system [2–4]. For the active systems,
TES can be used in HVAC components or systems to balance the supply of domestic hot
water and heating/cooling demand when renewables are used [5,6], or to reduce the energy
consumption through peak load shifting [7], or free cooling techniques [8]. On the other
hand, passive systems are directly integrated into the building envelope to reduce the
energy demand [9,10]. Other common applications where LTHES can be integrated include
solar thermal power plants, such as concentrated solar power (CSP) [11], solar cooling
applications [12], district heating or cooling [13], waste heat recovery [14], solar process
heat [15], or cryogenic applications [16].

The principle behind LHTES is the use of phase change materials (PCM) as the storage
medium, allowing to store thermal energy at a nearly constant temperature exploiting the
latent heat during the phase transition, for which the most common one is from solid to
liquid to minimize the impact of volume expansions [17]. One of the weaknesses of PCM
is its low thermal conductivity that negatively affects the thermal power involved in the
charging and discharging processes of the energy storage system. Indeed, this represents
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one of the main challenges facing the implementation of PCM in various applications.
However, different strategies and techniques that can be used to improve thermal conduc-
tivity were investigated in the literature. The main solutions that were extensively studied
are the increase in the convection coefficient of heat transfer by means of dynamic systems,
the addition of particles (such as carbon elements, metallic particles, and nanoparticles),
the inclusion of PCM in a metallic matrix, and the increase in the heat transfer area by
using fins, and micro and macro-encapsulation [18–20].

On one hand, PCM micro-encapsulation allows increasing heat transfer surface be-
tween the PCM and the heat transfer fluid. However, for PCM microencapsulation, complex
and expensive processes are needed, such as spray drying (physical method) or interfa-
cial polymerization (chemical methods) [21]. On the other hand, macro-encapsulation
requires a simpler making process resulting in a lower cost [22]. Furthermore, larger
sizes of the container also allow an increase in the mechanical stability of systems [23].
Macro-encapsulated PCM can be designed with different geometries mainly based on rect-
angular [24], cylindrical [25,26], and spherical shapes [27] that can be adapted to different
applications. The effect of the design of macro-encapsulation on the heat transfer perfor-
mance is mostly analyzed by numerical analysis with only a few experimental studies
available in the literature, highlighting a research gap. Amongst the experimental studies
available, Erlbeck et al. [28] and Al-Yasiri and Szabó [29] experimentally investigated the
thermal behavior of concrete blocks with different shapes of microencapsulated PCM. Is-
mair and Moraes [30] numerically and experimentally evaluated spherical containers made
with different geometries and materials and filled with PCM for cold storage domestic
applications. This paper experimentally analyzes the effect of two different geometries of
macro-encapsulated PCM in rectangular slabs on the performance of an energy storage
tank. The analyzed TES tank is part of the generic heating system designed for the EU
funded project SWS-HEATING (GA 764025). In particular, the PCM tank is used in the
system as a thermal buffer to store the solar energy at low-grade temperature (15 ± 5 ◦C)
to be supplied to a novel seasonal TES based on selective water sorbent materials. To
the best of the authors knowledge, very few experimental studies on PCM tanks with
rectangular slabs were published in the literature. One of the first papers was published
by Moreno et al. [31] in which the performance of a TES tank filled with commercial PCM
encapsulated in rectangular slabs was compared with the same tank filled with water. The
results showed that the energy storage capacity of the tank filled with PCM was increased
by 35.5% compared with the same tank filled with water. Another study published by
D’Avignon and Kummert [32] reported the results of experimental tests performed to study
the behavior of a real-scale PCM storage at different operating conditions. One of the main
conclusions from the study was that the PCM hysteresis and sub-cooling effects deviate
the expected behavior from the experimental results. Liu et al. [33] used the experimental
results obtained from the testing of a PCM tank filled with rectangular slabs containing a
PCM with a sub-zero melting temperature (−26.7 ◦C) suitable for refrigerated transport,
and glycol as heat transfer fluid. The developed model was based on a one-dimensional
approach considering the temperature variations along direction of the heat transfer fluid
showing a good agreement with the test. All experimental studies mentioned were carried
out using a fixed design of the PCM tank without changing any boundaries related to the
geometry or the configuration of the storage tank.

However, the geometrical design of the PCM encapsulation has a large influence on
the thermal behavior of the PCM affecting the melting and the solidification process, and
consequently the heat transfer [34]. In the case of rectangular shapes, the aspect ratio
(height to width ratio) is a parameter that has to be taken into account in the design of TES
tanks [21]. This paper shows for the first time a comparison based on experimental results
of the thermal behavior of two different designs of macro-encapsulation of rectangular PCM
slabs. The behavior of a thermal energy storage tank was analyzed using commercial PCM
slabs with different thicknesses. The comparison of the two designs was done in terms of
temperature profile, heat transfer rate, and energy obtained during the discharging process.
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The main results obtained from the experimental tests reported in this paper can be used
as a reference for institutions and manufacturers to optimize future designs of PCM tanks.

2. Materials and Methods
2.1. Materials

The PCM selected in this experimentation was PlusICE S15 (hydrated salt), supplied
by PCM products, United Kingdom [35]. The main thermophysical properties of this
material are shown in Table 1. Moreover, water was used as the heat transfer fluid (HTF).

Table 1. Thermophysical properties of PlusICE S15 [35].

Properties Value

Melting temperature [◦C] 15
Latent heat [J/g] 180

Specific heat capacity [kJ/kg·K] 1.90
Density [kg/m3] 1700–1800

Thermal conductivity [W/(m·K)] 0.43
Maximum operation temperature [◦C] 60

2.2. Experimental Set-Up

The experiments presented in this paper were carried out at the laboratory of the
GREiA research group at the University of Lleida in Spain, in a set-up designed to test
and characterize latent heat TES systems for mid-low temperature applications (−20 ◦C
< T < 100 ◦C). Figure 1 shows a detailed schematic diagram of the experimental set-up
composed by a 25 L inertia water tank, whose temperature is controlled by a vapor
compression cooling unit (Zanotti model GCU2030ED01B [36]) of 5 kW cooling power, two
immersion thermostats (OVAN TH100E-2kW [37], and JP SELECTA-1kW [38]). The set-up
also integrates: two variable speed pumps, used to control the flow and inlet temperature
at the TES system; and a flow meter Badger meter type ModMAG M1000 [39] with an
accuracy of ±0.25 % of the actual value, and the latent heat TES storage. The connections
between components were joined using 0.5” diameter copper pipes insulated with 18 × 0.9
mm polyurethane tubes. The data acquisition system used consisted of 3 STEP DL-01 data
logger [40] connected to a computer that integrates a system control and data acquisition
software (SCADA) developed in InduSoft Web Studio [41]. The data recording interval
was set to 10 s.
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Figure 2 shows the PCM storage tank connected to the experimental set-up. The tests
were carried out with two different PCM macro-encapsulation designs, namely, ThinICE
and FlatICE (Figure 3). The containers were made in HDPE. The external dimensions of
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each design are reported in Figure 3, characterized by presenting similar length and width
(A and B), but different thickness, with FlatICE dimensions being double that of ThinICE
(C). Furthermore, the (D) dimension reveals that the use of thin macro-encapsulation
enabled a larger distance between the slabs, increasing the space that allows circulating the
HTF through the TES tank. Considering the aforementioned dimensions shown in Figure 3,
the use of ThinICE encapsulation allowed fitting a larger number of slabs inside the tank,
but less amount of latent storage material compared with the FlatICE, as shown in Table 2.
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Table 2. Total weight of PCM inside the tank.

Properties FlatICE ThinICE

Capacity of the slab [liters] 3.2 1.7
Weight of the container [kg] 0.55 0.5
Total weight of a single slab

[kg] 6.7 3.8

Number of slabs inside the
PCM tank 10 13

Total amount of PCM inside
the tank [kg] 61.5 41.9

Total weight of the slabs
inside the tank [kg] 67 49.4
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The temperature inside the PCM storage was measured using nine Pt-100 class B,
IEC 60751 standard type, with an accuracy of (0.3 + 0.005 · T). The sensors were fixed as
shown in Figure 4 to the external surface of three different PCM slabs placed at the bottom,
middle, and top of the tank, respectively. Moreover, two additional Pt-100 class A IEC
60751 standard type with an accuracy of (0.15 + 0.002 · T) sensors were placed at the inlets
and outlets of the storage tank.
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2.3. Methodology

The experimental tests consisted of performing four different charging and discharging
processes to evaluate the effect of the PCM macro-encapsulation design and the flow rate on
the temperature distribution, heat transfer rate, and energy stored/released. At least three
repetitions of each process were performed to ensure repeatability. A summary of the flow
rates and temperatures used in the experimentation is shown in Table 3. Furthermore, the
heat losses in the worst-case scenario analyzed represent 4% of the charging/discharging
energy, therefore the analysis of heat losses was not included in the paper.

Table 3. Summary of the main parameters of the processes.

Process Slab Type Flow Rate
[L/min]

HTF Inlet
Temperature

[◦C]

PCM Tank
Average
Initial

Temperature
[◦C]

Code

Charge ThinICE 2 25 5 ± 1 C_ThinICE_2L
Charge ThinICE 4 25 5 ± 1 C_ThinICE_4L
Charge FlatICE 2 25 5 ± 1 C_FlatICE_2L
Charge FlatICE 4 25 5 ± 1 C_FlatICE_4L

Discharge ThinICE 2 5 25 ± 1 D_ThinICE_2L
Discharge ThinICE 4 5 25 ± 1 D_ThinICE_4L
Discharge FlatICE 2 5 25 ± 1 D_FlatICE_2L
Discharge FlatICE 4 5 25 ± 1 D_FlatICE_4L

To perform a charging process, HTF was first circulated through the PCM tank until
all sensors inside the tank reached a temperature of 5 ± 1 ◦C. Then, the HTF inlet tem-
perature was set at 25 ± 1 ◦C and the flow rate was set to the corresponding value of the
experiment shown in Table 3. The charging process was considered complete when the
HTF temperature at the outlet of the tank reached 25 ◦C. To perform a discharging process,
HTF was first circulated through the PCM tank until all sensors inside the tank reached
a temperature of 25 ± 1 ◦C. Then, the HTF inlet temperature was set at 5 ± 1 ◦C and the
flow rate was set to the corresponding value of the experiment in Table 3. The discharging
process was considered complete when the HTF at the outlet of the tank reached 7 ◦C.
This value was used instead of 5 ◦C because a minimum temperature difference of 2 ◦C was
assumed between inlet and outlet of the storage tank as a constraint from the demand side.
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2.4. Uncertainties Analysis

The impact of the uncertainties in the calculated parameters from the different mea-
surements was evaluated by performing an uncertainty analysis using the Kline McClintock
method. The uncertainties of the different monitored parameters are shown in Table 4. HTF
specific heat capacity and density were calculated following the correlations presented in
Equations (1) and (2) [42]:

ρHTF = 1.38·10−5 · T3
HTF − 5.63·10−3 · T2

HTF + 3.6·10−3 · T1
HTF + 1000 (1)

CpHTF = 2.69·10−9 · T4
HTF − 6.63·10−7 · T3

HTF + 6.67·10−5 · T2
HTF − 2.67·10−3 · T1

HTF + 4.21 (2)

Table 4. Uncertainties of the different parameters involved in the analyses of the present study.

Parameter Units Sensor Accuracy

Temperature ◦C Pt-100 1/5 DIN class
B IEC 60751 ±0.3 + 0.005 · T

Temperature ◦C Pt-100 1/5 DIN class
A IEC 60751 ±0.15 + 0.002 · T

Flow rate L/min Badger meter type
ModMAG M1000 ±0.25%

By applying Equation (3) to the different parameters [43], the uncertainties of the HTF
thermophysical properties (density and specific heat) as well as of the heat transfer rates and
total stored/released energy were estimated. The uncertainty of the HTF thermophysical
properties and heat transfer rates was estimated at each registered time step, and then the
mean value was used. Table 5 shows the average uncertainties of the HTF density, specific
heat, heat transfer rate, and stored/released energy during the different processes carried out:

WR =

[(
∂R
∂x1

·wx1

)2
+

(
∂R
∂x2

·wx2

)2
+ · · ·+

(
∂R
∂xn

·wxn

)2
]1/2

(3)

where WR is the estimated uncertainty in the final result, R the function which depends on
the measured parameters, xn is the different independent monitored parameters, and wx is
the uncertainties associated to those independent parameters.

Table 5. Estimated uncertainties of the HTF thermophysical properties, heat transfer rate, and
cumulated energy.

Test Density
[±kg/m3]

Specific Heat
[±kJ/kg · ◦C]

Heat Transfer
Rate

[±kW]

Accumulated
Energy [±kJ]

C_ThinICE_2L ±1.28 ±2.44 · 10−2 ±0.039 ±19
C_ThinICE_4L ±1.28 ±2.42 · 10−2 ±0.055 ±19
C_FlatICE_2L ±1.27 ±2.43 · 10−2 ±0.038 ±23
C_FlatICE_4L ±1.28 ±2.45 · 10−2 ±0.054 ±24
D_ThinICE_2L ±5.5 · 10−2 ±2.95 · 10−3 ±0.039 ±19
D_ThinICE_4L ±5.6 · 10−2 ±3.05 · 10−3 ±0.055 ±20
D_FlatICE_2L ±5.3 · 10−2 ±2.77 · 10−3 ±0.039 ±23
D_FlatICE_4L ±5.6 · 10−2 ±3.21 · 10−3 ±0.055 ±23

3. Results and Discussion
3.1. Temperature Evolution during the Charging Process

Figure 5 shows the charging temperature profile of all sensors placed at the surface of
the slabs for the two PCM encapsulation design at different flow rates. To analyze the effect
of the encapsulation design in the charging duration, both slabs types were compared at
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the same flow rate. Due to the higher heat transfer surface and the reduced amount of
PCM (30% less according to Table 3) when using ThinICE slabs, at both flow rates, the
experiment with the ThinICE slabs reached full charge (T_out = 25 ◦C) 14% faster than with
FlatICE. Furthermore, when analyzing the impact of the flow rate, in both slab designs the
experiments show that at 4 L/min the full charge is reached 60% faster than at 2 L/min.
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Figure 5. Charge PCM slab temperature profile for different slabs and HTF flow rates: (a) C_ThinICE
and 2 L/min, (b) C_FlatICE and 2 L/min, (c) C_ThinICE and 4 L/min, and (d) C_FlatICE and 4
L/min. Note: The red line denotes the end of the charging experiment (T_out = 25 ◦C). The time axis
is not presented on the same scale in all the figures.

When comparing temperature distribution inside the tank (Figure 5), a constant
stratification profile between the top, middle, and bottom slabs was observed in all the
experiments. This effect was more pronounced in the tests performed with FlatICE slabs in
which the lower part of the tank takes longer to charge, obtaining a temperature gradient
up to 15 K between the coldest and hottest regions of the tank. This can be explained
by the fact that the tank with FlatICE fits a lower number of slabs, as well as presenting
smaller HTF channels compared with the tank with the ThinICE design (Figure 3, Table 2).
Therefore, in this tank, the opposition to the HTF flow is higher, enhancing the distribution
of the latter towards the regions of the tank where the density is more similar to the HTF
inlet one (i.e., upper and middle region of the tank).

3.2. Heat Transfer Rate Evolution and Total Energy Stored in the Charging Process

Figure 6 presents the evolution of the heat transfer rate (HTR) during the charging
process of the four studied cases. Due to the characteristics of the experimental set-up,
at the beginning of the experiment, the inlet temperature of the tank oscillated ±2 ◦C
with respect to the desired temperature, affecting the initial peak of the heat transfer rate.
However, the inlet temperature stabilized (with Tin standard deviation lower than 0.3)
before the temperature inside the tank reaches the latent range of the PCM. The HTR
profiles showed an exponential behavior with significantly higher values during the first
20 min of the process when the heat is mainly transferred to the HTF inside the tank
and, therefore, rapidly increases its temperature. Afterwards, while the PCM temperature
increases, the values of the heat transfer exponentially decrease until minimum values.
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During the first 1.5 h of operation, ThinICE_2L and FlatICE_2L showed similar HTR
values, which indicates that, due to the low flow rate, the heat transfer by convection is
low. Therefore, the higher heat transfer surface area existing with ThinICE slabs is not
fully exploited. Moreover, after 1.5 h the HTR delivered to the ThinICE_2L decreases faster
than the one delivered to the FlatICE_2L due to the higher amount of PCM introduced into
the tank with FlatICE slabs. At a higher flow rate, heat transfer by convection increases.
Therefore, during the first 1.5 h of operation, the bigger heat transfer surface area present
with ThinICE_4L slabs increases its HTR over FlatICE_4L. After this period, and similar to
the results at 2 L/min, the power delivered to the ThinICE_4L decreased faster than the
one delivered to the FlatICE_4L.

When analyzing the effect of the flows in each slab type, the influence is greater in the
tank with ThinICE slabs obtaining, after the initial peak, up to 0.4 kW more in ThinICE_4L
than in ThinICE_2L. In the case of the tank with FlatICE, this increase drops to 0.1 kW when
comparing FlatICE_4L vs FlatICE_2L. The latter results corroborate the statement above;
the increase in heat transfer by convection, as the flow rate increases, is more pronounced in
the tank with ThinICE slabs due to the larger heat transfer surface and the lower thickness
of the PCM layer using this type of slab.

Figure 7 reports the total energy stored for each experiment condition. The results
with ThinICE slabs show that the flow variation did not affect the total stored energy,
suggesting the correct utilization of the energy storage capacity of the PCM. Conversely,
when analyzing the tank with FlatICE slabs, the charging experiments at 4 L/min stored
10% less energy than the same experiment at 2 L/min. This is due to changes in the flow
rate distribution between the slab channels inside the tank when increasing the flow rate.
At the end of the experiment, (T_out 25 ◦C) with FlatICE at 4 L/min, the PCM in the bottom
slabs of the tank had not completed the phase change (Figure 5) and therefore stored 8%
less energy.
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Figure 7. Total energy delivered to the PCM storage tank during the charging processes of the four
study cases presented in this study.

3.3. Temperature Evolution during the Discharging Process

Figure 8 shows the discharging temperature profile of all sensors placed at the surface
of the slabs at two different mass flow rates. Analyzing the influence of the PCM encapsula-
tion design on both flow rates, the tank with ThinICE slabs finished the discharging process
30% faster than with FlatICE slabs. This can be explained by the higher heat transfer
surface and the lower amount of PCM (30% less according to Table 3) when using ThinICE.
Moreover, when analyzing the influence of the flow rate, Figure 8 shows that for both slab
types at 4 L/min the experiments were completed 50% faster than at 2 L/min.
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Figure 8. Discharge process PCM slab temperature profile for different slabs and HTF flow rates:
(a) ThinICE and 2 L/min, (b) FlatICE and 2 L/min, (c) ThinICE and 4 L/min, and (d) FlatICE and
4 L/min. Note: The red line denotes the end of the charging experiment (T_out = 25 ◦C). The time
axis is not presented on the same scale in all the figures.

When comparing temperature distribution inside the tank (Figure 8), a similar temper-
ature profile between the top, middle, and bottom slabs was observed in all the experiments
performed with ThinICE slabs. Moreover, this behavior changed with the use of the Flat-
ICE, where the stratification and the profile temperature inside the tank depends on the
mass flow rate.
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3.4. Heat Transfer Rate Evolution and Total Energy Released in the Discharging Process

The HTR evolution during the discharging process for all the experimental cases is
shown in Figure 9. In all the experiments the profiles showed a similar trend. Significantly
higher values were obtained during the first 20 min of the process when the heat is mainly
transferred from the HTF inside the tank followed by an exponential decrease while
the PCM decreases its temperature until minimum values are reached. Furthermore, in
this case, due to the characteristics of the experimental facility, at the beginning of the
experimentation the inlet temperature of the tank oscillates ±2 ◦C around the desired
temperature, affecting the initial peak of power. However, the inlet temperature stabilizes
(T_in standard deviation lower than 0.3 ◦C) before the temperature inside the tank reaches
the latent range of the PCM. After the initial peak and during the first 1.5 h of operation,
ThinICE_2L shows slightly better performance getting up to 0.1 kW more HTR than
FlatICE_2L. Moreover, due to the lower amount of PCM in the storage tank with ThinICE
slabs, after 1.5 h the HTR delivered by ThinICE_2L decreases faster than the one delivered
by FlatICE_2L. At 4 L/min, after the initial peak and during the first 1.5 h, similar results to
2 L/min are obtained. Moreover, after 1.5 h the HTR of ThinICE_4L drastically decreases,
therefore for the next 2 h (from 1.5–3.5 h) FlatICE_4L maintains an HTR up to 0.4 kW higher
than ThinICE_2L.
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Figure 9. Evolution of the HTF heat transfer rate during the discharging processes of the four study
cases presented in this study.

Figure 10 reports the total energy released for each experiment conditions, and the
percentage it represents with respect to the energy stored in the charging process (Figure 7)
in each case. Analyzing the effects of flow rate, similar to the charging, both experiments
with ThinICE slabs showed a comparable energy release, suggesting a correct utilization of
the energy stored in the PCM. In the case of FlatICE slabs, experiments at 2 L/min released
10% more energy compared with 4 L/min. This is supported by the fact that in the charging
process the tank at 2 L/min manages to store 10% more energy than at 4 L/min (Figure 5).
In addition, it is interesting to note that in all cases of the selected operating threshold
approximately 85% of the energy stored in the tank was discharged.
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Figure 10. Total energy released by the PCM storage tank during the discharging processes of the
four study cases presented in this study.

4. Conclusions

Macro-encapsulation of phase change materials (PCM) represents one of the most
widely used techniques for the implementation of latent heat thermal energy storage
systems. The design of the macro-encapsulation is fundamental to archive the best com-
promise between optimal heat transfer performance and energy stored. However, current
literature lacks experimental data on the effect of macro-encapsulation in the performance
of latent heat thermal energy storage.

This paper analyzed, through an experimental study, the effect of the design of macro-
encapsulated PCM on the thermal behavior of a latent heat thermal energy storage tank
during both the charging and discharging processes. In this study, external dimensions
of the energy storage tank were fixed and two different types of commercial slabs with
different thickness filled with the same PCM were tested. The results could be particularly
useful to evaluate the best configuration of storage medium when the storage tank is
limited with a fixed volume.

The results were compared in terms of temperature profile, heat transfer rate, and
energy stored/released. The results and the conclusions obtained from this study can be
applied to similar configuration of the PCM storage that aim to use rectangular macro-
encapsulated slabs as storage medium. The lesson learnt from this study suggests that
macro-encapsulation design has a relevant impact on the heat transfer during both charging
and discharging processes, so the design of the TES unit should be done and analyzed
according to the requirements of the application.

The use of a thinner macro-encapsulation design (ThinICE) allowed fitting a larger
number of slabs inside the tank. However, the higher amount of encapsulation material
and the larger distance between the slabs (i.e., higher HTF channels height) resulted in a
30% less amount of PCM introduced inside the tank with this encapsulation design.

With ThinICE slabs, the temperature profiles were less affected by the influence of
the mass flow rate, promoting a stratified temperature profile inside the tank in both the
charging and discharging processes. Using FlatICE, this effect is more pronounced at low
flow rates due to the smaller height of the channels that obstructed the flow at the bottom
of the tank during charging and at the top of the tank during discharging. However, at
high flow rates, the stratification is reduced with the use of thicker slabs, especially during
the discharging process.

In all the discharging tests, when the outlet temperature of the tank reached 7 ◦C,
approximately 85% of the energy previously stored in the tank was discharged.

The effect of increasing the heat transfer surface using ThinICE slabs on the power
delivered by the storage tank is mostly appreciated at a higher flow rate where the heat
transferred by convection is higher. Furthermore, using thinner slabs, the higher heat
transfer surface area achieves a higher discharging power but is delivered for a shorter
period of time. Therefore, for longer discharging periods and for higher storage capacity
given a fixed volume of storage tank, the use of FlatICE should be preferred.
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Abstract: Thermal energy storage (TES) allows the existing mismatch between supply and demand
in energy systems to be overcome. Considering temperatures above 150 ◦C, there are major potential
benefits for applications, such as process heat and electricity production, where TES coupled with
concentrating solar power (CSP) plants can increase the penetration of renewable energies. To this
end, this paper performs a critical analysis of the literature on the current and most promising concrete
energy storage technologies, identifying five challenges that must be overcome for the successful
exploitation of this technology. With these five challenges in mind, this paper proposes an approach
that uses a new modular design of concrete-based TES. A preliminary study of the feasibility of the
proposed system was performed using computational fluid dynamics (CFD) techniques, showing
promising results.

Keywords: concrete; modular system; thermal energy storage; high temperature; new concept

1. Introduction

Thermal energy storage (TES) addresses the mismatches between energy supply and
demand, which involve time, temperature, power, and location [1]. Therefore, TES has
multiple applications. If high temperature is considered, i.e., above 150 ◦C, where water
cannot be used as storage medium, high temperature TES applications include process heat
and electricity production by concentrating solar power (CSP) plants.

The demand for process heat in industry can be met by fossil fuels, as is common
practice today, but it could also be supplied by solar energy or the recovery of waste heat
(on-site or off-site). The integration of solar energy with industry requires TES systems
using any of the available technologies (sensible, latent, and thermochemical TES) [2].
Similarly, to efficiently use industrial waste heat as the input for industry requires a TES
system [3]. The potential of waste heat recovery in the European non-metallic mineral
industry for the period 2007–2012 was estimated by Miro et al. [4] using a bottom-up
approach, showing an average of 0.33 PJ/year. This estimation highlights the high potential
of this energy source.

Today, solar energy represents the main renewable source of both thermal and electric
power. One of the main large-scale technologies that can convert solar energy into electricity
is represented by CSP plants. According to REN21 [5], in 2020 the total capacity installed
worldwide amounted to 6.2 GWe, and it is expected to continue growing. In order to
deal with the intermittency of the sun, thermal energy storage is an essential component.
Current commercial CSP technologies mainly rely on the use of molten salts as a storage
medium [6]. However, the main drawbacks of this medium consist of corrosion issues
and a limited operating temperature range (up to 360 ◦C), which limits CSP in terms of
global performance and cost [7]. Amongst storage medium alternatives, the use of concrete
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represents a viable option due to its versatility, relatively low cost, and the ability to reach a
high operating temperature above 500 ◦C [8].

Although concrete has a high potential as a storage solution, there are still challenges
posed by this technology that need to be addressed, including its fabrication techniques,
material formulation, and design, which limit construction feasibility and thermal perfor-
mance. In order to improve the actual configurations, this study proposes a novel concept
for thermal energy storage using concrete based on a modular concept, improved concrete
formulation, and a direct contact design. Moreover, a preliminary assessment of the thermal
performances of the new concept proposed in this study were analysed using CFD analysis
to determine temperature distribution in the modules.

2. Innovative Concrete Formulations for High Temperature TES

According to Laing et al. [9], the concrete to be used for high temperature TES should
fulfil numerous requirements, such as high thermal durability, high heat capacity, high
thermal conductivity, low cost, and be easily workable. Therefore, different approaches
can be found in the literature for the development of new concrete formulations that
can withstand harsh conditions, such as high temperature and thermal cycling. These
approaches include the use of different cements (i.e., ordinary Portland cement, OPC;
calcium aluminate cement, CAC), geopolymers, or the selection of different additives. A
summary of such efforts can be found in Table 1. Enormous efforts have been made in the
study of the aggregates to use, but the use of fibres or other additives have attracted much
less attention. Results show that innovative concretes showed a change in properties after
the first thermal cycle, especially when temperatures above 350 ◦C were reached, but then
they remained constant with temperature and thermal cycling.

Seeing the results of these efforts, a lot of research is still needed, since the formulations
reported up until now do not meet requirements listed above, but there are still options
to be tested (such as the use of other aggregates, fibres, or the inclusion of additives to
increase thermal conductivity).
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Table 1. Summary of innovative concrete formulations for high temperature TES.

Formulation Cement
Water-

Cement
Ratio

Sand Aggregate Super-
Plasticizer

Curing And
Drying Protocol

Thermal
Cycling

Compression Strength
(MPa) Porosity Thermal Properties Reference

Cement
paste OPC 0.34 — — — 28 days curing

in water

20–200 ◦C
20–400 ◦C
20–600 ◦C
20–800 ◦C

Loss of stability in
thermal cycling above

400 ◦C

Open porosity
decreases with
thermal cycles

Decrease in the thermal
conductivity from 1 W/m·K to

around 0.5 W/m·K after
thermal cycling

[10]

Cement
paste CAC 0.34 — — — 28 days curing

in water

20–200 ◦C
20–400 ◦C
20–600 ◦C
20–800 ◦C

Decrease after first
thermal cycle with

stabilisation later on

Open porosity
increased with

temperature and
thermal cycling

Lower thermal conductivity
than OPC but higher

heat capacity
[10]

Mortar

70% CAC +
30% blast
furnace

slag (BFS)

0.44 Standard
siliceous — 1% 3 days @105 ◦C 290–550 ◦C 72.67 ± 1.97 (after

7 days curing) — — [11]

Concrete Blast furnace
cement — — Iron oxides, flue

ash, and other — — — Medium material strength
with several cracks —

916 J/kg·K (@350 ◦C)
1.0 W/m·K (@350 ◦C)
9.3 ·10−6/K (@350 ◦C)

[12]

Concrete

70% CAC +
30% blast
furnace

slag (BFS)

0.5 Standard
siliceous

Natural from crash
stone, silicon

calcareous
aggregate (SCA)

0.8% 3 days @105 ◦C 290–550 ◦C
50% decrease after first

thermal cycle with
stabilisation later on

100% increase after
thermal cycles — [11]

Concrete

70% CAC +
30% blast
furnace

slag (BFS)

0.57 Standard
siliceous

Natural SCA +
industrial
waste slag

0.8% 3 days @105 ◦C 290–550 ◦C
50% decrease after first

thermal cycle with
stabilisation later on

100% increase after
thermal cycles — [11]

Concrete CAC 0.43 — Basalt 0–6 mm 0.9%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C — —

1.2–2 W/m·K
Decrease of 20–40% in the

thermal conductivity after first
thermal cycle

[13]

Concrete CAC 0.43 — CAT 0.25–4 mm 0.9%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C — —

1.2–2 W/m·K
Decrease of 20–40% in the

thermal conductivity after first
thermal cycle

[13]

Concrete CAC 0.43 — Slag 0.25–2 mm 0.9%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C — —

1.2–2 W/m·K
Decrease of 20–40% in the

thermal conductivity after first
thermal cycle

[13]

Concrete CAC 0.43 — Slat 3–7 mm 0.9%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C — —

1.2–2 W/m·K
Decrease of 20–40% in the

thermal conductivity after first
thermal cycle

[13]
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Table 1. Cont.

Formulation Cement
Water-

Cement
Ratio

Sand Aggregate Super-
Plasticizer

Curing And
Drying Protocol

Thermal
Cycling

Compression Strength
(MPa) Porosity Thermal Properties Reference

Concrete CAC 0.43 — Calcareous
0–6 mm 0.9%

Left @95% RH
and @20 ◦C
until testing

300–600 ◦C — —

1.2–2 W/m·K
Decrease of 20–40% in the
thermal conductivity after

first thermal cycle

[13]

Concrete CAC 0.43 — Siliceous
0–3 mm 0.9%

Left @95% RH
and @20 ◦C
until testing

300–600 ◦C — —

Up to 5 W/m·K
Decrease of 50% in the

thermal conductivity after
first thermal cycle

[13]

Concrete CAC 0.43 —
Siliceous +
polypropy-
lene fibres

1%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C Loss of 74% after one
thermal cycle —

Decrease of 50% in the
thermal conductivity after

first thermal cycle
[14]

Concrete CAC 0.43 —

Calcium
aluminate (CAT)
+ polypropylene

fibres

1%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C Loss of 63% after one
thermal cycle

1.6–2 µm
Increase to

24–27 µm after
thermal cycling

Decrease of 50% in the
thermal conductivity after

first thermal cycle
[14]

Concrete CAC 0.43 —

CAT + crushed
basalt +

polypropylene
fibres

1%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C Loss of 69% after one
thermal cycle

0.7 µm
Increase to

24–27 µm after
thermal cycling

Decrease of 50% in the
thermal conductivity after

first thermal cycle
[14]

Concrete CAC 0.43 —

CAT + crushed
basalt + 15%
waste slag +

polypropylene
fibres

1%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C Loss of 69% after one
thermal cycle

1.6–2 µm
Increase to

24–27 µm after
thermal cycling

Decrease of 50% in the
thermal conductivity after

first thermal cycle
[14]

Concrete CAC 0.43 —

CAT + crushed
basalt + 30%
waste slag +

polypropylene
fibres

1%
Left @95% RH

and @20 ◦C
until testing

300–600 ◦C Loss of 61% after 1
thermal cycle

1.6–2 µm
Increase to

24–27 µm after
thermal cycling

Decrease of 50% in the
thermal conductivity after

first thermal cycle
[14]

Concrete Cement 0.32
9% washed

sand
0–4 mm

Aggregate +
metal and

synthetic fibres
0.43%

28 days in a tank
@100% HR and

@15–20 ◦C

50–200 ◦C
50–300 ◦C
50–400 ◦C
(1 cycle)

Higher values at low
temperature

Density was
characterised

Specific heat is constant
with temperature treatment

Thermal conductivity
around 2 W/m·K

[15]

Concrete/PCM Cement 0.37–0.41
9% washed

sand
0–4 mm

Aggregate +
metal and

synthetic fibres +
PCM

impregnate in
porous material

0.43%
28 days in a tank
@100% HR and

@15–20 ◦C

50–200 ◦C
50–300 ◦C
50–400 ◦C
(1 cycle)

PCM content helps in
maintaining higher values

after thermal treatment

Density was
characterised

Specific heat increases with
temperature treatment
Thermal conductivity

decreases strongly with
PCM content

[15]

Geopolymer
concrete

20% OPC +
80%

inorganic
geopolymer

0.6 — Steel slag —

1 day @100% RH
+

28 days @room
temperature

— — —
More stable thermal

properties than OPC as
temperature increases

[16]
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3. Conventional TES Concept

One of the first concepts for TES based on concrete for high temperature applica-
tions was developed and studied by DLR. Laing et al. [12] built a prototype with high-
temperature concrete and a storage capacity of approximately 280 kWh. The unit com-
prised two parallel storage modules with a heat-exchanger composed of 36 tubes of high-
temperature steel with a nominal diameter of 21 × 12 mm distributed in a square arrange-
ment of 6 × 6 tubes with a separation of 80 mm. Each storage unit had a total volume of
23 m3. The prototype (Figure 1) was tested at the Plataforma Solar de Almeria in Spain in
2003–2004 [9,12,17].
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Figure 1. DLR concrete storage concept. Reprinted/adapted with permission from Ref. [9]. 2009,
American Society of Mechanical Engineers.

Concrete storage modules were also used in the project EDITOR funded by the solar
ERA-NET framework. The storage was coupled with a parabolic through collector and
installed in the KEAN drinks factory in Limassol, Cyprus. The HTF employed is a silicone-
based thermal oil named HELISOL®XA with reduced environmental impact. The objective
of this system was to produce thermal energy for industry, not electricity, and the results
for this design were presented in Ktiskis et al., 2021 [18].

4. Challenges

A state-of-the-art TES system made of concrete for high temperature applications
should address the following challenges:

(i) On-site construction.

In 2009, Laing et al. [9] already highlighted that the first heating cycle of a new
concrete TES is crucial in the process. During this first cycle, any free water and a certain
amount of chemically bonded water evaporate, which can create excessive vapor pressure
that can damage to the storage module. This pressure increases with the size of the TES
module; similarly, on-site production means higher water content in the concrete than
production and curing in a controlled environment. This problem was also identified by
Martins et al. [19] and Hoivik et al. [20].

The problem of scaling-up concrete preparation from the laboratory for an on-site
installation has already been highlighted by Prieto et al. [21]. It is widely accepted that for
concrete with special requirements, such as the formulations presented in this paper, het-
erogeneity in its properties can be a challenge. For the same concrete mixture, compressive
strength results can present a variability higher than 10%, even in the same quality control
laboratory [22].
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Another problem with construction on site is related to the complexity of casting a
large pipe register in a block of concrete. In order to enhance flexibility in scaling up a
high temperature TES, EnergyNest developed and tested a 2 × 500 kWth thermal energy
storage system based on a modular design with HEATCRETE vp1 concrete as the storage
medium, offering improved thermal conductivity, heat capacity, and compressive strength
able to resist temperatures up to 400 ◦C. The storage system included cast-in steel pipe heat
exchangers, as shown in Figure 2. The TES system was commissioned in October 2015.
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(ii) Different thermal expansion coefficient of steel and concrete.

According to Laing et al. [12], thermal expansion in the axial direction of one module
of concrete with a steel heat exchanger is 120 mm; therefore, the length of a modules can
expand by approximately 60 mm at each end. During cycling at operating temperatures,
the temperature difference should be only about 40 K, so the expansion would be less than
10 mm at each end. In this instance, two metal sheets acting as sliding planes were used to
compensate for this expansion.

Hoivik et al. [20] also mentioned the fact that different thermal expansion coefficients
have to be considered, without giving further details.

Moreover, even if concrete and metallic pipes with similar thermal expansion coeffi-
cients were used, the thermal conductivity of the two materials is different, so that, during
cycling, the temperature of the steel will increase before the concrete, which will generate
differential expansion.

(iii) Poor thermal conductivity of concrete.

According to Asadi et al. [23], concrete has a thermal conductivity between 0.4 W/m·K
and 1.01 W/m·K. The addition of components such as copper wires or phase change
materials (PCM) may bring this thermal conductivity up to 3.84 W/m·K, but it can also
decrease it to 0.21 W/m·K.

Efforts to increase the thermal conductivity of concrete for high temperature TES (Table 1)
have shown that the use of CAC can increase thermal conductivity up to 5 W/m·K [13],
compared to a maximum of 2 W/m·K with the use of metal fibres [15]. Finally, the
literature shows that thermal cycling can lead to a decrease in thermal conductivity, usually
attributed to an increase in open porosity [10,14].

Therefore, it is possible to increase the thermal conductivity of concrete with im-
proved formulations.

(iv) HTF thermal oil or molten salts with limited operating temperature range.

Vignarooban et al. [24] presented the thermophysical properties of commonly used
heat transfer fluids (HTFs) in CSP plants, which are shown in Table 2. As it can be seen,
thermal oils (mineral or synthetic) can only withstand 450 ◦C; therefore, they cannot be
used in CSP plants working at higher temperatures. The other common commercial HTF,
molten salts, can theoretically withstand 600 ◦C, but there is a lot of literature showing
that impurities seriously compromise this limit, since their decomposition starts at around
380–400 ◦C [25]. Therefore, future CSP plants are considering the use of air as a HTF [26].
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Table 2. Thermophysical properties of heat transfer fluids used in CSP plants [24,26].

HTF Melting Point
(◦C)

Stability Limit
(◦C) Viscosity (Pa·s)

Thermal
Conductivity

(W/m·K)

Heat Capacity
(kJ/kg·K)

Air — — 0.00003 (@ 600 ◦C) 0.06 (@ 600 ◦C) 1.12 (@ 600 ◦C)

Water/steam 0 — 0.00133 (@ 600 ◦C) 0.08 (@ 600 ◦C) 2.42 (@ 600 ◦C)

Thermal oils −20 300 — ~0.1 —

Mineral oil −20 350 — ~0.1 —

Synthetic oil −20 400 — ~0.1 —

Biphenyl/diphenyl oxide 12 393 0.00059 (@ 300 ◦C) ~0.01 (@ 300 ◦C) 1.93 (@ 300 ◦C)

Solar salt (60 wt.%
NaNO3-40 wt.% KNO3) 220 600 0.00326 (@ 300 ◦C) 0.55 (@ 400 ◦C) 1.1 (@ 600 ◦C)

(v) HTF thermal oil or molten salts in direct contact with concrete: migration of oil/salt
in concrete.

The use of thermal oils or molten salts as HTFs when there is direct contact between
the HTF and concrete can lead to migration of the HTF into the concrete, but also contam-
ination of the HTF by concrete components. The use of air as the HTF avoids migration
and contamination issues; however, the low conductivity of air presents new challenges
to overcome.

In the design by Laing et al. [17], the idea of using a tubeless design was investigated.
The advantages of this approach, low cost and direct heat transfer, were identified as
the main drivers of this design. Nevertheless, according to the authors, concrete did not
allow for a high enough level of impermeability, even when restressed, causing oil leaks.
Moreover, in this design, the pipe-storage unit junction became a technical challenge, which
is difficult and expensive to solve. In this paper, the problem of thermal oil (the HTF)
absorption by the concrete was also identified, along with the challenge of final disposal of
the storage unit after use.

5. New Concept Proposal

To address the challenges presented in Section 4, a new concrete TES design performed in
Autodesk inventor [27] is presented in this paper. The new concept is designed to work with
air as the HTF, and it is based on concrete blocks measuring 100 mm × 100 mm × 1000 mm
(Figure 3) with a modular design and simple direct-fit male-female connections (Figure 4a).
The blocks were designed to be stacked (Figure 4b) and interlocked (Figure 4c) to fit the
thermal needs of the installation and the available space. To address challenge (i), the design
is based on a modular concept with blocks of relatively small dimensions that allow them to
be produced in a controlled industrial environment and then transported to the installation
site. Moreover, to overcome challenge (ii), the design is made exclusively in concrete,
eliminating the need for metal piping and thus the problem of thermal expansion differences
between materials. Challenge (iii) will be addressed in future work by modifying the
thermophysical properties of the simulated concrete using new materials currently being
validated at an experimental level. Finally, the temperature limitation of molten salts
and thermal oils, and their migration into the concrete due to the non-use of metal pipes
(challenges (iv) and (v)) are solved by using air as the HTF.
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A computational fluid dynamics (CFD) model of the proposed concrete block was
developed in Autodesk CFD [28] to validate its feasibility in terms of thermal performance
during operation of the module (Figure 5). As a preliminary study, conventional concrete
was used. The thermophysical properties of the concrete and heat transfer fluid (air) used
are shown in Tables 3 and 4, respectively. Moreover, the equations governing fluid flow
and heat transfer are the Navier–Stokes equations and the first law of thermodynamics,
respectively. A k-epsilon turbulence model was selected with a turbulent laminar ratio
of 100, and finite element discretisation was performed using “ADV 5: Modified Petrov–
Galerkin”. Finally, the mesh dimensions were set to automatic with the parameters set out
in Table 5.
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Table 3. Thermophysical properties of concrete implemented in CFD.

Property Concrete

Thermal conductivity x, y, z direction [W/m·K] 1.01

Density [kg/m3] 2306

Specific heat [kJ/kg·K] 0.837

Emissivity [-] 0.95

Transmissivity [-] 0

Electrical resistivity [ohm·m] 0

Wall roughness 0

Table 4. Thermophysical properties of the HTF (air) implemented in CFD.

Property Air

Density Equation of state

Viscosity [poise] 0.0001817

Thermal conductivity [W/m·K] 0.02563

Specific heat [kJ/kg·K] 1.004

Compressibility [Cp/Cv] 1.4

Emissivity 1

Wall roughness 0

Table 5. CFD mesh parameters.

Parameter Value

Resolution factor 1

Edge growth rate 1.1

Minimum points on edge 2

Points on longest edge 10

Surface limiting aspect ratio 20

The analysis was carried out by performing a complete charging process on a concrete
block. The process started with the block at an initial temperature of 265 ◦C, simulating a
real storage cycle, and injecting HTF at 450 ◦C and 0.33 m3/s (optimised for improved air
transfer coefficient) until the concrete block was fully charged (Figure 5). The figure shows
that the concrete block reached 450 ◦C homogeneously, where the difference between the
inlet section and the outlet section of the module was about 50 ◦C in the middle of the
charging period (Figure 5b). The total energy stored in the concrete block was 4266 kJ
(1.185 kWh).

6. Conclusions and Future Work

High temperature thermal energy storage has shown great potential for increasing
the penetration of renewable energies in the energy mix. The use of concrete represents a
viable option due to its versatility, relatively low cost, and the ability to reach an operating
temperature above 500 ◦C. However, to become technologically and economically feasible,
concrete storage systems must overcome a number of challenges.

This paper, through a comprehensive literature review, identified and analysed the
five key issues that affect current systems. These are: (i) in-situ construction, (ii) different
thermal expansion coefficient of steel and concrete, (iii) poor thermal conductivity of
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concrete, (iv) HTF thermal oil or molten salts with limited operating temperature range,
and (v) migration of oil/salt by direct contact with the concrete.

Considering the challenges identified, a novel design for a high temperature thermal
energy storage system with concrete was proposed and analysed using CFD techniques.
The new design is composed of modular concrete blocks with direct-fit male-female con-
nections. These were designed to be stacked and interlocked, thus enabling quick and easy
customised sizing according to energy needs. The proposed design was able to overcome
four of the five challenges identified. Only the low conductivity of concrete remains to be
addressed in future works. In addition, the plug-and-play design facilitates construction of
the modules, which can be manufactured under controlled conditions, guaranteeing the
properties of the concrete.

Moreover, the streamlined design of the modules, the abundance of the material used,
the potential low manufacturing cost once implemented on an industrial scale, as well as
the results of the simulations favour the proposed design as a highly competitive thermal
energy storage solution. However, this new design also presents new challenges that must
be overcome, such as the low specific heat capacity and convective heat transfer coefficient
when air is used as the heat transfer fluid, the tight junction between modules, and the
interaction of concrete debris with the HTF.

Future work will address the following topics: analysis of the proposed design with
other concrete formulations or the addition of aggregates to increase the thermal conduc-
tivity of the storage material while maintaining specific heat values; optimise the design
to improve the coefficient of internal convection to overcome the low conductivity of air
when air is used as the HTF; and analysis of the connection between the modules and the
heat supply/demand.
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