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Summary

Until the present moment, an extensive amount of research has been done
on how humans estimate motion or parameters of a task, such as the time-
to-contact in simple scenarios. However, most avoid questioning how we
extract 3D information from 2D optic information. A Bayesian approach
based on a combination of optic and prior knowledge about statistical
regularities of the environment would allow solving the ambiguity when
translating 2D into 3D estimates. The present dissertation aims to analyse if
the estimation of motion and time-to-contact in complex 3D environments
is compatible with a combination of visual and prior information.

In the first study, we analyse the predictions of a Bayesian model with
a preference for slow speeds to estimate the direction of an object. The
information available to judge movement in depth is much less precise than
information about the lateral movement. Thus, combining both sources
of information with a prior with preference for low speeds, estimates of
motion in depth will be proportionally more attracted to low speeds than
estimates of lateral motion. Thus, the perceived direction would depend
on stimulus speed when estimating the ball’s direction. Our experimental
results showed that the bias in perceived direction increased at higher
speeds, which would be congruent with increasingly less precise motion
estimates (consistent with Weber’s law).

In the second study, we analyse the existing evidence on using a priori
knowledge of the Earth’s gravitational acceleration and the size of objects
to estimate the time to contact in parabolic trajectories. We analysed the
existing evidence for using knowledge of the Earth’s gravity and the size of
an object in the interaction with the surrounding environment. Next, we
simulate predictions of the GS model. This model allows predicting the
time to contact based on a combination of a priori variables (gravity and



ball size) and optic variables. We compare the accuracy of the predictions
of time-to-contact with an alternative only using optic variables, showing
that relying on priors of gravitation and ball size solves the ambiguity in
the estimation of the time-to-contact. Finally, we offer scenarios where the
GS model would lead to predictions with systematic errors, which we will
test in the following studies.

In the third study, we created trajectories for which the GS model
gives accurate predictions of the time to contact at different flight times but
provides different systematic errors at any other time. We hypothesized that
if the ball’s visibility is restricted to a short time window, the participants
would prefer to see the ball during the time windows in which the model
predictions are accurate. Our results showed that observers preferred to
use a relatively constant ball viewing time. However, we showed evidence
that the direction of the errors made by the participants for the different
trajectories tested corresponded to the direction predicted by the GS model.

In the fourth and final study, we investigated the role of a priori knowl-
edge of the Earth’s gravitational acceleration and ball size in estimating
the time of flight and the direction of motion of an observer towards the
interception point. We introduced our participants in an environment where
both gravitational acceleration and ball size was randomized trial-to-trial.
The observers’ task was to move towards the interception point and predict
the remaining flight time after a short occlusion. Our results provide ev-
idence for using prior knowledge of gravity and ball size to estimate the
time-to-contact. We also find evidence that gravitational acceleration may
play a role in guiding locomotion towards the interception point.

In summary, in this thesis, we contribute to answering a fundamental
question in Perception: how we interpret information to act in the world.
To do so, we show evidence that humans apply their knowledge about
regularities in the environment in the form of a priori knowledge of the
Earth’s gravitational acceleration, the size of the ball, or that objects stand
still in the world when interpreting visual information.
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Resumen

Hasta el momento, se ha realizado una gran cantidad de investigación
sobre cómo el ser humano estima el movimiento o los parámetros de una
tarea como el tiempo de contacto en escenarios simples. Sin embargo, la
mayoría evita preguntarse cómo se extrae la información 3D a partir de la
información óptica 2D. Un enfoque bayesiano basado en una combinación
de información óptica y a priori sobre regularidades estadísticas del entorno
interiorizadas en forma de conocimiento permitiría resolver la ambigüedad
a la hora de traducir claves ópticas en 2D a estimaciones sobre propiedades
del mundo en 3D. El objetivo de esta tesis es analizar si la estimación
del movimiento y del tiempo de contacto en entornos 3D complejos es
compatible con una combinación de información visual y a priori.

En el primer estudio, se analizan las predicciones de un modelo bayesiano
con preferencia por las velocidades lentas para la estimación de la dirección
de un objeto. La información disponible para juzgar el movimiento en pro-
fundidad es mucho menos precisa que la información sobre el movimiento
lateral. Así, cuando se combinan ambas fuentes de información con un prior
con preferencia por la velocidad baja, las estimaciones del movimiento
en profundidad serán proporcionalmente más atraídas por el prior que las
estimaciones del movimiento lateral. Por lo tanto, la dirección percibida de-
pendería de la velocidad del estímulo. Nuestros resultados experimentales
mostraron que el sesgo en la dirección percibida aumentaba a velocidades
más altas, lo que sería congruente con estimaciones de movimiento cada
vez menos precisas (consistente con la ley de Weber).

En el segundo estudio, analizamos las evidencias existentes sobre el
uso del conocimiento a priori de la aceleración gravitatoria de la Tierra
y el tamaño de los objetos para estimar el tiempo de contacto en trayec-
torias parabólicas. Analizamos las pruebas existentes sobre el uso del



conocimiento de la gravedad de la Tierra y el tamaño de un objeto en la
interacción con el entorno. A continuación, simulamos las predicciones del
modelo GS, un modelo que permite predecir el tiempo de contacto a partir
de una combinación de variables a priori (gravedad y tamaño de pelota) y
variables ópticas. Comparamos la precisión de las predicciones del tiempo
de contacto con una alternativa que sólo utiliza variables ópticas, mostrando
que basarse en las variables a priori de la gravedad y el tamaño de la bola
resuelve la ambigüedad en la estimación del tiempo de contacto. Por úl-
timo, mostramos varios escenarios en los que el modelo GS conduciría a
predicciones con errores sistemáticos; escenarios que pondremos a prueba
en los siguientes estudios.

En el tercer estudio, creamos trayectorias para las que el modelo GS da
predicciones precisas del tiempo hasta el contacto en diferentes tiempos
de vuelo, pero proporciona diferentes errores sistemáticos en cualquier
otro momento. Hipotetizamos que, si la visibilidad de la pelota está re-
stringida a una ventana de tiempo corta, los participantes preferirían ver
la pelota durante las ventanas de tiempo en las que las predicciones del
modelo son precisas. Nuestros resultados mostraron que los observadores
preferían utilizar un tiempo de visualización de la pelota relativamente con-
stante. Por otra parte, mostramos pruebas de que la dirección de los errores
cometidos por los participantes para las diferentes trayectorias probadas se
correspondía con la dirección predicha por el modelo GS.

En el cuarto y último estudio, investigamos el papel del conocimiento a
priori de la aceleración gravitatoria de la Tierra y del tamaño de la pelota
en la estimación del tiempo de vuelo y la dirección de movimiento de
un observador hacia el punto de interceptación. Introdujimos a nuestros
participantes en un entorno en el que tanto la aceleración gravitatoria
como el tamaño de la pelota se asignaban aleatoriamente ensayo a ensayo.
La tarea de los observadores consistía en desplazarse hacia el punto de
interceptación y predecir el tiempo de vuelo restante tras una breve oclusión.
Nuestros resultados proporcionan pruebas del uso del conocimiento previo
de la gravedad y el tamaño de la pelota para estimar el tiempo de contacto.
También encontramos pruebas de que la aceleración gravitatoria puede
desempeñar un papel en la orientación de la locomoción hacia el punto de
intercepción.
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En resumen, en esta tesis contribuimos a responder a una cuestión funda-
mental en la Percepción: cómo interpretamos la información para actuar en
el mundo. Para ello, mostramos evidencias de que los humanos aplican sus
conocimientos sobre regularidades del entorno en forma de conocimiento a
priori de la aceleración gravitatoria de la tierra, del tamaño de la pelota o de
la estabilidad del mundo a nuestro alrededor para interpretar la información
visual.
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1 General Introduction

Contrary to what one might think, the world we live in is relatively
predictable. As of the time of writing, it is clear that neither the keyboard
will spontaneously grow like Alice in Wonderland nor start floating around
the room in weightlessness. Although pushed towards the absurd, these
examples bring out an important point. The world maintains an internal
coherence that underpins predictability. Throughout this thesis, we will
study how known statistics of the environment in the form of prior knowl-
edge affect our percepts and help build predictive components that can
be used to control our behaviour. Specifically, we will analyse how prior
knowledge of relevant visual features affects motion estimation in different
3D environments leading to systematic errors in our perception.

This introductory chapter aims to give the reader the necessary context
to understand the different experimental studies and grasp their relevance
for motion perception and optic flow, that is, the retinal changing pattern.
Thus, we must start with some key points. Throughout this thesis, we will
assume a constructivist perspective of Perception. This approach assumes
that recreate internal representations of features in the world based on
sensory information (Helmholtz, 1867). These representations would allow
us to predict future events based on simple computations that attempt to
replicate common patterns in the real world. In our everyday life, these
computations will allow us to predict that a cup will fall off the table if
we bump it unintentionally. However, this prediction would not apply in a
non-gravitational space, as the cup will be suspended in the air floating in
weightlessness. As a result, the over-generalisation of these computational
assumptions may lead to systematic errors.

From a probabilistic perspective, a feature about the visual world can
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be represented in the form of a probability distribution. A probability
distribution is a mathematical function that describes the occurrence of
an event with two parameters: accuracy and precision. Accuracy would
refer to the mean error of the estimation, while precision would refer to the
variability of those errors. The following figure illustrates the combination
of high/low accuracy and precision with an example of distance estimation
(see Figure 1.1).

Figure 1.1. Representation of different levels of accuracy and precision (high/low).
In this example, the ball is 30 meters from the observer (ball’s position in x), denoted
by a green vertical line. The y-axis represents distance estimation probability.
The steeper the distribution, the more likely a ball distance will be estimated.
Accuracy would represent the mean error concerning the real value to be represented.
Precision would represent the variability of the errors.

In Figure 1.1, accuracy would refer to the average error between the
actual distance to the ball (30 meters) and the estimates. If the estimates are
systematically biased away from the actual distance (bottom panels), the ac-
curacy of our estimate is low. Precision, however, would refer to the inverse
of the variability in our estimates. Right panels represent a high variability
in our estimates, that is, low precision. These two aspects become key when
describing the prior distributions that reflect our perceptual knowledge of
visual features of the environment. In turn, prior distributions affect how
we solve a fundamental problem in perception: the inverse problem.
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1.1 The inverse problem in Perception

Obtaining sensory information is key to grasping what is going on in our
environment. However, the interpretation of sensory information has to
serve some purpose. Whether it is to identify the nearest river or avoid a
predator pouncing on us, being able to interpret our environment correctly,
predict what will happen and act accordingly is key to maximising our
survival. Here, the visual system is crucial, providing information about
distant elements to interact with in the near future.

The problem with prediction is that we must first infer different states
of the environment and then extrapolate them over time. As we will see
below, the features of the objects around us are underspecified in the visual
information reaching our retina. Hence, visual information does not suffice
to infer those features in many cases. However, our ability to perform
actions that require some degree of prediction, such as catching or hitting
a ball on the fly, is astonishing (Brenner & Smeets, 2015; Regan, 2012).
Therefore, understanding how we translate optical information into features
of the world is fundamental.

As previously mentioned, relying only on visual information stimu-
lating our retina presents a profound problem: using 2D images to infer
properties of a 3D world. Relying on 2D images is problematic because
there are many interpretations but just one real cause or distal stimulus. This
epistemological problem is also known as the inverse problem of vision
(Kersten et al., 2004; Pizlo, 2001). Figure 1.2 represents a simple example
where many possible combinations of ball size and distance would project
the same retinal angle onto the retina. The retinal angle is the projected
angular size of an object on the retina (usually denoted by the Greek letter,
θ).

It would be impossible to tell apart the actual size from the other pos-
sibilities without further information. Nevertheless, a simple solution to
this problem can be found in many species: binocular vision. A binocu-
lar system provides two independent and horizontally displaced images.
Their comparison solves the ambiguity partially within 2D images (Foley,
1980; Qian & Yazdanbakhsh, 2015). However, some elite sports players
maintained their performance after losing sight with one eye (Regan, 2012).
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Figure 1.2. Representation of the inverse problem as a many-to-one problem, where
many possible combinations of ball size and distances project the same angular size
onto the retina. In this case, the observer has no means to infer the real combination
of ball size and distance.

Thus, there might be another possible solution available with monocular
vision. In the following equation, the reader can see how retinal size, object
size and distance are related:

Distance «
Size
θ

(1.1)

Derived from the previous expression, one solution to this problem
could be imposing constraints to the possible ball sizes or distances (Pizlo,
2001). This would be close to using a ball size as an a priori. If ball size is
unknown or non-constant, distance cannot be computed. Thus, all distances
would be equally possible. In Figure 1.3 an equiprobable estimation is
represented by a uniform distribution (gold flat line). However, if ball size
is known and constant, distance can be computed as the ratio between ball
size and retinal size (Ittelson, 1951; Maltz et al., 2021). In that case, only a
handful of distances would remain possible given our available information
(black distribution in Figure 1.3). This simple example shows how prior
knowledge of a contextual variable (ball size) and the assumption of a
constant world, in this case, size constancy, provide the grounds to solve
the inverse problem. However, this solution may not lead to a correct
estimate if the wrong ball size is assumed.

Imagine that a Tennis ball size is assumed instead of assuming the
correct size (Soccer ball). Following Equation 1.1 the distance would be
underestimated (see Figure 1.3B). Thus, the accuracy of our prediction
would be undermined. On the other hand, uncertainty in our estimation
of distance would be caused by variability or noise in our visual measure,
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Figure 1.3. A) Probability distributions for judged distance with unknown ball size
(gold line) and the correct ball size assumed (black line). B) Probability distribution
assuming an incorrect ball size. C) Probability distribution with low precision visual
measurements.

retinal size (see black distribution in Figure 1.3A). Perceptual uncertainty
results from sensory measurements being affected by random noise of errors.
Generally, the sensory representation of a physical quantity is finite given
the limits of the biological structures involved in the process of transduction
and communication processes within the nervous system (Faisal & Wolpert,
2009). In this sense, measurement variability will influence perceptual
variability. For example, if the image of the ball is blurred, the retinal size
would be more variable, which would translate into more uncertainty in
distance estimation (see Figure 1.3C).

Here, classic psychophysics provides a standard method for estimating
the discriminability (variability) of sensory measurements in our system
(Fechner, 1948/1860). Weber’s law indicates that the discriminability
for most sensory modalities is a linear function of a constant known as
the Weber fraction (usually referred to with the letter k). Comparing the
Weber fraction across sensory modalities makes it possible to compare the
precision with which they are represented. For example, the precision of
positional estimates (Westheimer & McKee, 1977) is much higher than
that of motion (de Bruyn & Orban, 1988; McKee, 1981) or acceleration
(Gottsdanker et al., 1961a). As a rule of thumb, it is usually assumed
that estimating variables of a higher temporal order (velocity compared
with position) leads to increased measurement errors or Weber fractions.
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This suggests that using variables such as acceleration within our estimates
may not be the best approach because the following estimates will be very
unreliable.

1.2 Perception as a Bayesian inferential process

Since Helmholtz (1867), Perception has been proposed as an inferential
process in which visual information is interpreted as a best guess. This
inferential process has been formulated in terms of "encoding" and "decod-
ing" (Friston, 2010; Knill & Pouget, 2004; Wei & Stocker, 2015). Encoding
would correspond to the activity resulting from the transduction of external
energy that stimulates our sensory receptors resulting in an activity pat-
tern in our nervous system. The information resulting from the encoding
would be combined with prior knowledge during the Decoding providing a
"read-out". The read-out represents an interpretation of the available data.
In sum, the "encoding-decoding" framework generally assumes that we
usually have prior knowledge that will assist during the decoding to solve
the inverse problem of vision. In the following figure, the reader can see a
scheme of the whole cycle involved in any sensorimotor task.

Combining new sensory evidence with our previous knowledge makes
what is considered a Bayesian perspective. Following Helmholtz, 1867
thesis, the Bayesian perspective envisions Perception as an inferential
process that combines all the available information to obtain the most likely
interpretation (Maloney & Zhang, 2010). Within a Bayesian framework,
all the available pieces of information are weighted and then combined,
minimising the variance of the final estimate. The following expression
represents a simplified version of the Bayes’ theorem (Doya et al., 2007;
Knill & Pouget, 2004), the algorithm that describes how prior and new
information is combined.

PpEvent|Dataq 9 PpData|Eventq ˆ PpEventq (1.2)

How does the above expression reads? The left-hand side of the expres-
sion is the Posterior, that is, the conditional probability of an event given
the new information. In our perceptual experience, it would represent our
percept. The right-hand side represents the Likelihood, the probability of
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Figure 1.4. External visual information is encoded as a sensory array. Both sensory
information and prior knowledge are combined within the decoding process. The
product is a read-out or inference used to select an action from the existing repertoire.
An observer’s action would affect the environment and the optic array. From the
difference between the expected outcome of the action and the consequences,
the observer will store some information correcting the prior to refining further
estimates.
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the new information given an event multiplied by the Prior, that is, the prob-
ability of that event. Thus, the Posterior distribution would be proportional
1 to the product between the Likelihood and Prior distributions.

To describe the process of Bayesian inference, let us use an example.
Imagine the context of a tennis training session. An athlete has to estimate
the remaining flight time of a ball thrown by a well-known training machine.
Her visual measurements (i.e. retinal size or the displacement of ball’s
image) would represent the Likelihood distribution for different flight
durations Figure 1.5 (black lines in Figure 1.5). The previous experience
with that machine would conform to the Prior knowledge (golden lines in
Figure 1.5). The Likelihood and the Prior distributions will result in the
Posterior. The Posterior distribution would represent the most probable
flight durations given our available information (blue lines in Figure 1.5).
The above example is an ordinary case where the player has access to
reliable information (left panel in Figure 1.5). However, what would
happen if visual information were compromised?

Figure 1.5. Representation of Bayesian estimation under the presence of reliable
(left) and unreliable (right) sensory evidence (Likelihood). When the Likelihood is
reliable, the effect of the Prior is limited. Thus, the Posterior is very close to the
estimates provided by the Likelihood. In contrast, in the right panel, the Likelihood
is unreliable. As a result, the Prior is weighted more heavily. Despite the Prior
being the same, the relative weight differs due to different Likelihood reliability.

Imagine that the tennis player removes her contacts while training. In

1"9" reads as proportional.
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this case, her visual information may be blurry due to myopia, and thus,
her visual measurements would be unreliable. To optimise her flight time
estimates, she should rely more heavily on her prior knowledge. In this
case, relying more on the Prior shifted the Posterior distribution closer
to the peak of the Prior distribution. Note that in both conditions, the
Prior distribution is the same. However, relying more on the Prior if the
Likelihood is unreliable would lead to an optimal estimate.

The Bayesian perspective has been a prolific research program in the
last decades (see Geisler, 2011; Wei and Stocker, 2017 for reviews), show-
ing that both sensorimotor tasks and perceptual judgments are consistent
with combining visual and prior information. Among others, we would
find pointing tasks (Trommershauser et al., 2003), manual interception
(McIntyre et al., 2001; Zago et al., 2004), visual tracking tasks (Jörges &
López-Moliner, 2020b), and motion judgements (Stocker & Simoncelli,
2006; Weiss et al., 2002) and temporal estimation (Jazayeri & Shadlen,
2010). However, Bayesian models have not gone uncriticised (Bowers &
Davis, 2012; Rahnev & Denison, 2018). One of the main criticisms raised
against the Bayesian perspective argues that many proposed models are
underspecified. In this line, Bowers and Davis (2012) argues that usually,
the parameters of either the Likelihood or the prior are chosen a posteriori
to fit the data. Therefore, those models are hardly falsifiable. Nevertheless,
recent works aimed at constraining better the Bayesian model to address
this problem (Wei & Stocker, 2015, 2017).

1.3 A complex but predictable visual world

Framing Perception as a Bayesian inferential process is helpful because
our world is governed by a series of regularities that we can extract from
interacting with our environment. Throughout our lives, we encounter
certain regularities as individuals or as species, such as the light coming
from above (Adams et al., 2004), bigger objects being heavier (Peters et al.,
2018) or objects of constant size (Ittelson, 1951; López-Moliner & Keil,
2012) that provide the grounds to solve the inverse problem on a day-to-
day basis. However, in some cases, using those constraints would lead
to perceptual errors or illusory percepts (Brunswik, 1956; Körding et al.,
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2007; Samad et al., 2015). In the following sections, we will discuss how
prior knowledge may assist in estimating motion and temporal predictions,
highlighting how their use sometimes leads to perceptual errors.

1.3.1 Motion estimation

The study of local motion estimation has shown that perceived motion
depends on factors such as motion direction, stimulus contrast, luminance
or spatial frequency. For example, several studies have shown that motion
for low contrast stimuli is consistently underestimated when compared
with high contrast ones (Thompson, 1982; Weiss et al., 2002). A similar
underestimation has been found for motion-in-depth compared to lateral
motion (Brooks & Stone, 2006; Welchman et al., 2008). This bias may
seem shocking at first glance. However, assuming that the objects around
us generally remain still, a preference for slow motions arises as an optimal
percept. This bias has proved to have general applicability, showing that
it could even explain biases in the perceived direction of trajectories in a
collision course (Aguado & López-Moliner, 2019; Welchman et al., 2008;
Welchman et al., 2004), time perception (Chen et al., 2016) and even tactile
illusions (Goldreich, 2007).

However, we generally do not estimate the speed of an object in the void.
Instead, we estimate it in natural contexts for intercept or to predict the time
it will take to reach some point. In most cases, this cannot be done directly
using only visual information. Instead, it would be necessary to translate
retinal measurements into 3D information, i.e. real-world measurements.

When we judge the velocity of two identical known balls at different
distances moving at the same speed, we tend to perceive their movement as
being equal even though the angular information is different (Distler et al.,
2000; Rock et al., 1968; Zohary & Sittig, 1993) (see Figure 1.6A). This
phenomenon is often referred to as speed constancy. Just as known object
size allows to compute the distance with an object, it might also provide
the grounds to estimate 3D motion in absolute coordinates. Indeed, speed
constancy only holds in rich environments where contextual and pictorial
cues are available. Instead, in a context with low pictorial cues such as a
clear sky, speed estimates would be biased towards angular measures (Bian
et al., 2013; McKee & Welch, 1989; Rushton & Duke, 2009).
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Figure 1.6. A) Two identical balls move at the same speed but at different distances,
projecting distinct angular displacement. B) Ball moving in depth at a constant
speed towards an observer. Motion-in-depth can be computed from retinal size
correlates. C) Ball moving in a parabolic trajectory. Since distance does not change
linearly, it can not be estimated from retinal size.

When an object moves towards the observer at a constant speed, motion
in depth can be estimated using information about how the distance of
the ball changes over time using retinal size correlates (see Figure 1.6B)
(López-Moliner et al., 2007; Regan & Beverley, 1979; Rushton, 2004).
However, in parabolic trajectories, the distance with the observer does
not decline linearly. For example, in some cases, the distance to the ball
increases as it travels upwards (see Figure 1.6C). For this reason, motion
in depth cannot be retrieved through correlates of retinal size or binocular
cues. Instead, some studies argue that a combination of known gravity
and visual cues can provide estimates of motion-in-depth (Brouwer et al.,
2006; Jörges & López-Moliner, 2017; Saxberg, 1987a). Nevertheless, the
literature suggests that if possible, the observers would prefer to rely on
correlates of retinal expansion and ball size to estimate motion-in-depth
(Todd, 1981).
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1.3.2 Temporal prediction

The time it takes an object to reach a predefined location is commonly
known as the time-to-contact (TTC). Daily, we face scenarios where pre-
dicting precisely the time-to-contact with a car on the highway, a flying ball,
or a cup falling off the table is vital to execute an action properly. Generally,
position and velocity estimates can be used to extrapolate the movement.
However, relying only on velocity estimates would result in significant
temporal errors inconsistent with our own experience when dealing with
accelerated motion.

One solution to intercept an object without prediction entails coupling
some visual cue between actions and the motion of the object to be inter-
cepted (Chapman, 1968; Montagne et al., 1999; Peper et al., 1994). This
way, our actions would be self-corrected based on concurrent sensory infor-
mation. However, relying on concurrent information may be problematic.
Sensory feedback is usually delayed around 80-150 ms (Miall et al., 1986;
Nijhawan, 1994). Because of that, online corrections would lead to jerky
behaviour (Kistemaker et al., 2009; Tresilian, 1995) which is incoherent
with amateur performance in batting or catching (McLeod et al., 2006;
Regan, 1992).

Another solution that would avoid the need to predict could entail
establishing mappings between different sources of visual information and
temporal estimates. This strategy would allow producing timed actions
without invoking internal computations or prior knowledge. For example,
pressing a button when an object reaches a distance or an optic cue reaches
a threshold (López-Moliner & Keil, 2012). This scheme would apply to
a multitude of tasks even without sensorimotor feedback (Baurès et al.,
2007; Zhao & Warren, 2015). Nevertheless, it would be a strategy attached
to the conditions present when the mapping was learnt and thus, neither
generalisable to other situations nor transferable to other tasks.

Thus, the prediction seems the most reasonable solution to reach such
levels of accuracy at the time the system deals with sensorimotor delays.
For example, we have previously mentioned that a preference for slow
speeds could affect the estimation of the direction of an object in depth.
This perceptual bias may impair our performance in catching or hitting a
ball. However, continuously correcting our actions based on the perceived
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errors as we obtain sensory feedback would explain our accuracy (Brenner
& Smeets, 2018; Regan, 2012). Furthermore, previous studies have shown
that the integration of new visual evidence may help us refine our motion
(Snowden & Braddick, 1991) and temporal estimates (de la Malla & López-
Moliner, 2015) in a Bayesian fashion similar to signal processing algorithms
used in Engineering (Kalman, 1960).

However, predictions based solely on sensory information would not
suffice to explain certain events in everyday life. For example, even if
we only see the upwards part of a parabolic trajectory, we will predict
the descending part (Grealy et al., 2004; López-Moliner et al., 2010).
Incorporating visual acceleration estimates into the system would explain
this phenomenon. However, our perception of acceleration is too poor to
be used reliably (Gottsdanker et al., 1961a; Werkhoven et al., 1992). Thus,
a strong prediction of the ball moving downwards can not be based on
acceleration estimates. In turn, knowledge of the gravitational constant
would be a way of incorporating acceleration into our predictions without
the need to estimate it visually (Jörges & López-Moliner, 2017).

Research studying Gravity perception is challenging because visual
and vestibular information may be inconsistent. For example, in Virtual
Reality (VR), it is possible to modify the visual feedback to match arbitrary
gravitational accelerations. However, the vestibular information from the
otoliths would still be consistent with Earth’s gravitational constant. A
prominent exception is McIntyre et al. (2001). McIntyre et al. (2001)
carried out the first experiment with astronauts in space where visual
and vestibular information is congruent. Astronauts were able to time
their actions accurately. However, they initiated the interceptive action
consistently with an assumption of 1g. This effect persisted for the first
few days of the experiment in the space, although the errors were slowly
reduced over the days. These results show human attunement to Earth’s
gravity, which could be interpreted as a strong prior that adapts slowly to
new environments.

Further studies have shown that the internal representation of terrestrial
gravitation is consistent with tasks such as biological motion perception
(Jokisch & Troje, 2003), interception of free-fall (Lacquaniti & Maioli,
1989) and parabolic trajectories (de la Malla & López-Moliner, 2015; Russo
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et al., 2017) or judging durations (Jörges et al., 2021; Jörges & López-
Moliner, 2019). Estimating the time-to-contact on parabolic trajectories
would allow to anticipate the interception point or plan a displacement if
needed. In this respect, the GS model (Gómez & López-Moliner, 2013) pro-
poses an algorithm to predict the remaining time-to-contact of a parabolic
trajectory with a combination of visual information and prior knowledge of
gravitation or object size. Besides the a priori variables, the formulation
of the GS model (Equation 4.3) includes monocular cues such as retinal
size (θ), the elevation angle (γ), that is, the angle between eyes’ and ball’s
height; and its the first derivative with time ( 9γ). In Figure 1.7, the reader
can see a representation of the above-mentioned visual cues available in a
parabolic trajectory.

TTC ≊
2
G

¨
size
θ

¨
9γ

cospγq
(1.3)

The observer is assumed to use known constants of gravitational ac-
celeration and object size. Therefore, this model would predict systematic
errors that would be testable. As illustrated in Figure 1.7B, the time-to-
contact is overestimated when faced with gravities greater than terrestrial.
Conversely, the time-to-contact is underestimated with a ball bigger than
the assumed size. Note that the direction of the errors with unexpected
gravitations or ball sizes arise because each term is in the denominator and
the numerator of the expression, respectively.

This model predicts the time-to-contact accurately for purely parabolic
trajectories in a collision course with the observer. Nevertheless, in real
life, parabolic trajectories are deviated by air drag or the Magnus effect
(Adair, 2002; Brancazio, 1985; Hubbard, 1995) which would undermine
the accuracy of the predictions.
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Figure 1.7. A) Representation of a parabolic trajectory under different gravitational
accelerations (see legend). The monocular cues available for the estimation of
time-to-contact are represented with shaded areas. Retinal size (θ, in blue), the
elevation angle (γ, in pink) and the rate of change of the elevation angle ( 9γ, in
burdeos). B) Predictions of time-to-contact for head-on approaches based on the
GS model. A discontinuous line in the background indicates perfect accuracy in the
predictions. Terrestrial gravity (G = 9.807 m{s) and Soccer ball size were assumed.
Trajectories with different ball sizes (panels) and gravitational accelerations (colour
code) were simulated.
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2 Research objectives

2.1 Aims and objectives

During the introductory chapter, we have discussed one of the fundamental
problems of Perception, the inverse problem and how the use of prior dis-
tributions can tackle this problem. Studying how information is processed
to solve the inverse problem is the foundation behind the main objective of
this thesis.

So far, extensive research has been carried out on estimating motion
or time-to-contact in relatively simple scenarios. However, most of these
studies have avoided questioning whether we can extract 3D information
from visual information when faced with tasks like catching a ball on the
fly. A Bayesian approach provides predictions based on visual informa-
tion and prior knowledge. The main objective of this thesis is to analyse
whether estimating the motion and time-to-contact of objects in complex
3D environments is compatible with a Bayesian model. In order to analyse
our main objective, we set different sub-objectives:

• Objective 1: Analyse whether direction estimation is consistent with
a Bayesian model with a preference for slow speeds and the estimates
of 3D motion following Weber’s law.

• Objective 2: Describe the available evidence on the use of priors
about object gravitational acceleration and object’s size. Simulate
and analyse the predictions of time-to-contact of a model based on
both priors (GS model) to characterise their accuracy and precision
in complex environments.

• Objective 3: Analyse whether the errors in estimating time-to-



contact for parabolic trajectories are consistent with predictions based
on the GS model.

2.2 Hypothesis

2.2.1 Motion direction estimation with motion-in-depth

As explained in the introductory chapter, the estimation of the direction of
an object in collision with the observer is commonly biased. The existing
explanation for this bias would be consistent with the combination of
visual sensory information and a prior expectation of zero motion in the
scene. Specifically, this bias would arise from the differential attraction
towards the prior for lateral and depth movement. However, to further
constrain and validate this model, it would be necessary for this perceptual
bias to occur under the same prior but with different levels of physical
and perceived speed. According to Weber’s law, trajectories with higher
velocities will experience reduced precision, which, in turn, would result in
more significant biases in the perceived direction. In Chapter 3 (Study 1),
we worked with two main hypotheses to test if the estimation of direction
is consistent with a Bayesian model on motion estimation:

• Hypothesis 1.1: Trajectories of larger physical and perceived speed
will lead to greater biases in perceived direction.

• Hypothesis 1.2: A slow-motion prior will explain direction estimates
will less error than a model based solely on visual information (e.g.
visual evidence).

2.2.2 Gravity and Size Priors to estimate the Time-to-
contact

To address the second objective of this thesis, in Chapter 4 (Study 2), we
review the literature supporting the use of internalised priors of size and
gravity for the estimation of time-to-contact in 3D parabolic trajectories.
We worked with the hypothesis that (Hypothesis 2.1) the predictions of
time-to-contact for parabolic trajectories based on the GS model are more
accurate and precise than the predictions based only on visual information.
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We first reviewed the optic cues readily available for an observer from a
parabolic trajectory to estimate the time-to-contact. Our literature review
suggests that all the variables included in the computations of the GS model
are encoded precisely enough to provide a reliable estimation of time-to-
contact in combination with priors of gravity and ball size. Then, we
simulated predictions based on the GS model and analysed their accuracy
and precision compared to predictions based on a combination of optic
cues. Our simulations sketch the GS model as a flexible algorithm that
provides predictions of the remaining time-to-contact even when the ball’s
course does not follow a perfect parabola or the ball is not in a collision
course with the observer.

2.2.3 Time-to-contact in 3D parabolic trajectories

In the course of Chapter 4 (Study 2), we showed that the GS model predicts
systematic errors in different situations:

• Trajectories directed to a point other than the observer’s location.

• Trajectories in which the assumed gravity or ball size do not match
the actual parameters of the task.

• Trajectories affected by complex effects such as air drag.

In Chapter 5 (Study 3), we analysed the first situation where the tra-
jectory is not in a collision course with the observer. In Chapter 4 (Study
2), we described how the predictions of the GS model would differ de-
pending on the ending point of the trajectory with respect to the observer.
Concretely, we identified that for trajectories directed to a point behind the
observer, the estimates of the time-to-contact are accurate at two different
moments during the flight. At launch and at a different time during the
flight depending on the specific geometry of the parabola. Concretely, when
the viewing angle describes a right angle between the observer, the ball and
the interception location. If an observer were to use the GS model to predict
time-to-contact but viewing time is restricted to a brief temporal window,
she would benefit from using the information within the time window when
the predictions are accurate. During any other viewing time, the predictions
of the GS model would present systematic errors. Those errors would
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allow us to compare with the errors in our participants’ estimates. Taking
into account the above, in this Chapter 5 (Study 3), we worked with two
different hypotheses:

• Hypothesis 3.1: If participants exploit the GS model, they will look
at the trajectory more often when the predictions of the GS model
are more accurate.

• Hypothesis 3.2: Estimates of the remaining time-to-contact will be
in the direction expected by the GS model across different trajecto-
ries.

In Chapter 6 (Study 4), we study the second situation mentioned above
in which the GS model would predict systematic temporal errors: when the
gravity and ball size do not correspond to the standard expected values. In
this study, gravitation and ball size were arbitrarily selected and thus, would
not correspond with our participants’ expectations. We designed a task in
which our participants had to move in a virtual reality setup replicating
the catch of a flying ball and predict the time-to-contact after an occlusion
at the end of the trajectory. We hypothesised that our observers would
commit systematic errors in the direction predicted by the GS model under
unexpected gravitations and ball sizes. Specifically, we hypothesise that:

• Hypothesis 4.1: Our observers would overestimate the remaining
time-to-contact if gravitation is greater than the standard on Earth
and vice-versa.

• Hypothesis 4.2: Our observers would underestimate the remaining
time-to-contact if the ball size is larger than the standard of a Soccer
ball and vice-versa.

• Hypothesis 4.3: Our observers would deviate their path travelled
towards the interception location in a direction consistent with a
misestimation of time-to-contact due to unexpected values of gravity
and ball size.



3 Study 1: Perceived speed of motion in depth
modulates misjudgements of approaching
trajectories consistently with a slow prior

Previous studies have shown that the angle of approach is consistently over-

estimated for approaching (but passing-by) objects. An explanation based on a

slow-motion prior has been proposed in the past to account for this bias. The mech-

anism relies on the (less reliable) in-depth component of the motion being more

attracted towards the slow motion prior than the (more reliable) lateral component.

This hypothesis predicts that faster speeds in depth will translate into a greater

bias if the perception of velocity in depth follows Weber’s law. Our approach is

different than the one used in previous studies where perceived speed and direction

were measured in different experiments. To test our hypothesis, we conducted

an experiment in which participants estimated approaching angles via a pointing

device, while at the same time comparing the speed of the approaching object with

a lateral velocity reference. This way, we couple perceived speed with perceived

trajectory for each approaching angle in the same trial. Our results show that the

directional bias is larger for faster objects, which is consistent with motion in depth

following Weber’s law. The differential biases can be accounted for by a Bayesian

model that includes a slow motion prior.

This study has been published as: Aguado, B., & López-Moliner, J. (2019). Perceived
speed of motion in depth modulates misjudgements of approaching trajectories consistently
with a slow prior. Vision Research, 159, 1–9



3.1 Introduction

One of the main functions of the visual system is to recover the 3D structure
of the environment. This is particularly important when we need to estimate
the direction and speed of moving objects on a collision (or near-collision)
course with us.

Knowing how different cues, both monocular and binocular, contribute
to estimate direction and motion in depth (MID) has attracted interest in
the past (Beverley & Regan, 1973; Cumming & Parker, 1994), but still is
an active field of research (J. Harris et al., 2008; Rokers et al., 2018). Past
work on MID, however, has mainly focused on precision and accuracy of
motion estimates (J. Harris & Dean, 2003; Rushton & Duke, 2009).

Regarding the direction of approach, several studies have shown that
we tend to overestimate the bearing angle (from now on β); see Figure 3.1)
of the trajectory of an approaching target (J. Harris & Drga, 2005; Lages,
2006; Poljac et al., 2006; Welchman et al., 2004). This is, we overestimate
the lateral distance by which a ball passes us. This can be counter-intuitive,
given that we are very sensitive to the motion direction of objects on a
collision course (Regan et al., 1986).

To explain this bias, Welchman et al. (2008) put forward a Bayesian
explanation that included the so-called Slow Motion Prior which is a
main component of a motion perception model by Stocker and Simoncelli
(2006). Sensory estimates (likelihood) are combined with an expectation
of nearly zero motion in the environment (prior) resulting in consistent
underestimations of speed (posterior), with the extent of underestimation
depending on the reliability of the likelihood (e.g. contrast of a grating;
Stocker and Simoncelli, 2006). Therefore, if the reliability of the signal is
low, the slow prior will be weighted more, resulting in a slower posterior
and, consequently, the speed of the stimulus will be underestimated more
strongly.

In the same study, Stocker and Simoncelli (2006) found that the width
of likelihood estimates for speed discrimination tasks increases logarith-
mically as a function of speed approximately following Weber’s law (for
targets moving faster than 1 deg/sec), as suggested by previous literature
in the field (McKee et al., 1986; Welch, 1989). Furthermore, they used
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Figure 3.1. The prior is represented by the grey radial gradient centred at Vx “

Vz “ 0. Two different movements with the same bearing angle β are depicted in
this scene. The speed of each movement is indicated by the color of the arrow:
the slow movement is indicated in red whereas the fast movement is indicated in
blue. Assuming Weber’s law, the faster movement is noisier than the slower one,
which is denoted by the SD of the respective likelihood gaussian ones. In addition,
Vz is less reliable than Vx (depicted by the spread of the likelihood distributions
for each vector, represented as thick lines at the margin). The effect of the prior
(grey radial gradient, centered at Vx “ Vz “ 0) affects each speed vector differently.
This effect is represented by the shift of the posterior distribution (distributions
represented with dotted lines for each vector at the margin). Given that the prior
will affect the slow and fast movements differently, the perceived trajectory would
depend on the physical speed of the movement while keeping the physical trajectory
constant (β). The perceived trajectory is denoted by β̂1 for a slow movement (red)
and β̂2 for a fast movement (blue). The dashed segments connecting the centroids
of likelihood and posteriors denote the speed bias for each movement. 9ϕ represents
rate of azimuth change for each eye.37 of 194



a Bayesian Observer model to infer the shape (SD) of the Slow Motion
Prior, which falls from a peak at slow speeds becoming shallower for faster
ones. As a result, the prior expectation introduces increasingly biases for
the posterior as a function of the perceived speed.

Welchman et al. (2008) explained the underestimation of approaching
angles in terms of this slow prior: The estimate of the lateral component
(Vx); Equation Equation 3.1) is more reliable than the estimate of the depth
component in MID (Vx); Equation Equation 3.1)(see Figure 3.1).

Vx «
9ϕ ¨ i ¨ d

i ` 9δ ¨ d
(3.1)

Vz «
9δ ¨ d2

i ` 9δ ¨ d
(3.2)

Vx estimates are based on the rate of change of the azimuth ( 9ϕ); Equa-
tion Equation 3.3; Figure 3.1) and the rate of change of the disparity ( 9δ);
Equation Equation 3.4), while Vz depends solely on the rate of change of
the disparity. The variance of the azimuth signal is up to two times lower
than for disparity. As a consequence, Vx, as it combines both signals, is
much more reliable than Vz, which only depends on the less reliable signal,
the rate of change of the disparity ( 9δ)) (see Gaussian curves in Figure 3.1).
In Equation 3.1 and Equation 3.2: i stands for interocular distance and d
for viewing distance.

9ϕ «
9ϕL ` 9ϕR

2
(3.3)

9δ « 9ϕL ´ 9ϕR (3.4)

As Stocker and Simoncelli (2006) pointed out, the greater the reliability
of the measure, the lower the effect of the prior and vice-versa (see Fig-
ure 3.1). As a consequence, the fact that Vx is much more reliable than
Vz should result in a differential influence of the prior for the posterior
speed estimate. Under the assumption that Weber’s Law holds for motion
in depth, yields the prediction that faster velocities should lead to more
biased trajectories.

Specifically, our hypothesis suggests that higher speeds in depth would
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lead to a larger overestimation of the bearing angle. Since we assume that
the perception of the trajectory depends on the perceived speed (i.e. how
the depth component is affected by the slow motion prior), we can test the
hypothesis that the bias can be accounted for by how different speeds are
encoded through the mediation of a slow prior. Thus, we investigated if
different perceived speeds in depth lead to different degrees of bias on the
perceived angle. To do so, we followed a different approach than Welchman
et al. (2008). In the present study, we asked for the perceived speed in
the same trials used for adjusting the direction. In this way, we can study
if perceived speed is related to perceived direction for the same physical
trajectories. In this study, only the case in which the initial lateral position
of an object is the same as the position of the observer will be taken into
account. For a more general approach, see (Rokers et al., 2018). As a
final step, we formulated a Bayesian model to test the predictions of a slow
motion prior model.

3.2 Methods

3.2.1 Participants

Eleven observers participated in the experiment. All of them had normal
or corrected-to-normal vision and were naive with respect to the purpose
of the experiment. One subject was stereo-blind as tested with StereoFly
test (Stereo Optical Co.) and had to be excluded from further analysis. The
final sample consisted thus of ten participants (n=10).

The research in this study is part of an ongoing research program
that has been approved by the local ethics committee of the University
of Barcelona. This study is in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). Before taking part in
the experiment, every subject signed an informed consent form.
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3.2.2 Material

Apparatus

Two Sony laser projectors (VPL-FHZ57) were used to provide overlaid
images on a back-projection screen (244 cm height and 184 cm width) with
a resolution of 1920x1080 pixels. The refresh rate of the image was 85 Hz
for each eye. Circular polarizing filters were used to provide stereoscopic
images. A pointing device (see Procedure; Figure 3.2) was used to record
the perceived direction with the position data being acquired by an Arduino
board. The device was calibrated to provide linear measures of azimuth
within a 180 degrees space. It was calibrated only once to make sure that
the measurements were consistent across the participants. A custom input
device with 2 buttons was used for the participants to indicate whether the
first or second ball moved faster within each trial.

Top View:

β: ±[2,4,8,16,32,64]

Speed estimation device

Trajectory estimation device

Screen

Lateral View:

Screen

1m 2m

x (lateral)

z 
(d

ep
th

)

2m

Test (x-z component)
Reference (x component)

β^

A B

Figure 3.2. The figure represents a top (A) and lateral (B) view of the setup. (A)
The colour of each trajectory indicates the bearing angle. In order to produce an
estimate of the bearing angle, the participants aligned the pointer with the perceived
direction of movement. To estimate the speed of the target moving in depth the
participants were instructed to press a button indicating which ball had moved faster
(blue for first/reference or red for second/test). As illustrated in the top view, the
reference target only included a lateral component of movement (grey dashed line).
However, test target included depth and lateral speed components (no vertical speed
component was involved)
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Stimulus

The stimulus consisted of two spheres with a checked texture presented
consecutively. The first ball (reference target) moved along the x axis
without any depth or vertical component. The second ball (test target)
included a z (depth component) approaching to the observer at different
bearing angles (β = 2, 4, 8, 16, 32, 64 degrees) which would pass the
observer either to their left (negative β) or right (positive β) (see colour
code for each β in Figure 3.2). The simulated vertical position of the target
was 1.48 meters above the ground. The vertical speed component was
0, that is, there was no change in vertical position. The initial distances
from the observer were 4 and 5 meters for the reference and test target
respectively. We chose these values to match the average visual angle for
both targets. The physical radius of the target was 3.3 cm (the size of a
standard tennis ball). The presentation time was fixed to 1 s. The reference
speed and β were pseudo-randomized within participants and angles taking
the values 2, 2.5 or 3 m/s (26.5, 32 and 37.5 deg/s). Once determined,
the reference target was the same for a given angle and participant, while
the speed of the test target (with depth component) varied according to a
Bayesian staircase (see Procedure). Since the estimated duration of the
experiment using all possible combinations of direction and velocity (3
speeds and 12 directions) was too high, each participant observed only 12
different pseudo-randomized conditions.

3.2.3 Procedure

The experiment was performed in a dim room. Participants stood centrally
at 2 m distance from the screen. The projected disparity was adapted to
each participant’s inter-ocular distance.

One session consisted of 360 trials (30 trials per approaching angle).
Each trial consisted of two trajectories. We first showed the reference target
that moved laterally (Vx component only: reference speed), followed by the
test target (test speed: motion in depth with both Vx and Vz components).
The speed of the test target varied according to a QUEST procedure (A. B.
Watson & Pelli, 1983). We ran a total of twelve interleaved QUEST stair-
cases (30 trials each), one for each combination of speed and approaching
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angle to compute the point of subjective equality (PSE) of speed between
the test and reference target, that is, the speed of the motion in depth that is
perceived as fast as the reference movement.

The participants completed 10-15 training trials previous to the main
experimental procedure in order to familiarize themselves with the task.
No feedback about response performance was provided during any part of
the experiment.

After the two stimuli disappeared, an auditory signal prompted the
participants to perform 2 different tasks in each trial:

1. Trajectory estimation: The observers were required to estimate the
trajectory of the test target with the pointing device. To this end, the
participants aligned the pointer with the perceived direction of the
movement.

2. Speed estimation: In a two alternative forced choice (2AFC) task,
the participants were instructed to press a button indicating which
ball had moved faster (left for first/reference or right for second/test).

The participants gave their response for the speed estimation task while
keeping the pointing device aligned with the estimated trajectory (from
now on β̂), such that both responses were registered simultaneously.

3.3 Model Specification

We developed a Bayesian model to estimate the variability of a prior in the
x ´ z plane that can describe the perceived trajectories in our experimental
results. To define this model we assumed that motion and direction were
estimated consistently with one another. For the sake of simplicity we
introduced the model assuming that β > 0, but the same would apply for β
< 0. Stocker and Simoncelli (2005) found that motion estimates deviated
from the Weber’s law for low angular speeds (< 1 deg/s). In order to
account for this deviation, they decided to introduce a correction for speed
estimates in their model. Even though Welchman et al. (2008) introduced
this adjustment, since the angular velocities of our experiment are much
greater, we have not corrected for this deviation.
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We defined the likelihood distribution of our test stimulus as a 2D
Gaussian (N) for each β, that is, a join of two 1D distributions, one for each
axis or component (i.e. Vx and Vz as viewed by an observer).

pp 9ϕ|Vx,Vzq “ Npµxz,σ
2
xzq

(3.5)

pp 9ϕ|Vxq “ Npµx,σ
2
xq (3.6)

pp 9ϕ|Vzq “ Npµz,σ
2
z q (3.7)

Means for Vx and Vz were defined from the estimated PSE for each
reference speed and β:

PSEx “ PSE ¨ sinpβq (3.8)

PSEz “ PSE ¨ cospβq (3.9)

Standard deviations for Vx and Vz were defined as the discrimination
thresholds for each component. Assuming that Weber’s law holds for the
range of speeds shown in this experiment, we calculated the discrimination
thresholds for each component. Lateral discrimination thresholds were
calculated assuming a Weber fraction of 10% as previously found in the
literature (Portfors-Yeomans & Regan, 1996; Welchman et al., 2008).
Depth discrimination thresholds, similarly, were obtained assuming that
the Weber fraction at β = 2 is approximately equivalent to that of a stimulus
in a collision course with the observer (β = 0). Therefore, we obtained the
standard deviations from the respective Weber fractions (from now on WF
for x and z axis by β and participant (see inset at Figure 3.2B):

σx “ WFx ¨ VRe f ¨ sinpβq ñ σx « 0.1 ¨ VRe f ¨ sinpβq (3.10)

σz “ WFz ¨ VRe f ¨ cospβq ñ σz « WFβ˘2 ¨ VRe f ¨ sinpβq (3.11)
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Therefore, Vx and Vz follow a 2D Gaussian distribution with compo-
nents:

pp 9ϕ|Vxq “ NpPS Ex,σ
2
xq (3.12)

pp 9ϕ|Vzq “ NpPS Ez,σ
2
z q (3.13)

The distribution of the prior was defined as an isotropic 2D Gaus-
sian in real world speed with mean 0 and a free parameter (variance).
We chose a Gaussian with mean 0 since, in practical terms, a Gaussian
approximates very well to a prior distribution following a power law
as used by Stocker and Simoncelli (2006) and Welchman et al. (2008)
(pp|v|q “ exp´7.04p 9x2`9z2q´8.49). Additionally, this is also motivated by the
assumption that speeds > 1 (deg/s) follow Weber’s law.

pvx “ Np0,σ2
v q (3.14)

pvz “ Np0,σ2
v q (3.15)

The variance of the prior (vσ2) is the only free parameter in this model.
To estimate it, we obtained the posterior of each component V̂x and V̂z by
means of a MLE procedure (Ernst & Banks, 2002). This procedure com-
bines different sources of information (prior and likelihood) in a weighted
fashion to obtain an optimal posterior estimate (see Figure 3.1):

V̂xPred “
PS Ex

1 `

´

σx
σv

¯2 (3.16)

V̂zPred “
PS Ez

1 `

´

σz
σv

¯2 (3.17)

By simple trigonometry, the trajectories were calculated as a function
of the predicted components of speed.

β̂Pred “ arctan
ˆ

V̂xPred

V̂zPred

˙

(3.18)
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As a result:

BiasPred “ β̂Pred ´ β (3.19)

We estimated the free parameter (prior variance) in a optimization
routine using the optim function included in R (R Core Team, 2020). The
objective function was formulated as a minimization of the sum of squared
differences between the predicted (β̂Pred) and the measured trajectories (β̂)
for each trial.

Min :
ÿ

pβ̂Pred ´ β̂q2 (3.20)

Substituting in Eq. Equation 3.18 with Equation 3.16 and Equa-
tion 3.17:

β̂Pred “ arctan
ˆ

PSE ¨ sinpβq { p1 ` pWFx ¨ VRe f ¨ sinpβq{σvq2q

PS E ¨ cospβq { p1 ` pWFz ¨ VRe f ¨ cospβq{σvq2q

˙

(3.21)
In Figure 3.5B we use Equation 3.21 to show the predicted perceived

trajectories for each reference speed using parameters WFx “ 0.1; WFz “

0.28; and the prior standard deviation obtained by the optimization routine
σv “ 0.33.

3.4 Data analysis

3.4.1 Speed estimation

We fit a cumulative Gaussian curve (mean and SD) to the proportion of
faster than standard responses for each β and participant using the R (R
Core Team, 2020) package quickpsy (Linares & López-Moliner, 2016)
in order to obtain the PSE (i.e speed in the cumulative Gaussian curve
that elicited 50% faster from the standard). We defined the discrimination
thresholds as the half difference between 16% and 84% faster from the
standard response probabilities in the psychometric function (i.e. 1 standard
deviation).

Then, we calculated the Weber fractions for each β and reference speed
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as the discrimination threshold divided by the speed of the reference motion.
We calculated this value for each participant and bearing angle separately.

Next, we obtained a ratio between the PSE and the reference speed.
This value represents a measure of the degree of underestimation of the
test relative to the reference speed. Ratios larger than 1 would denote an
underestimation of test speed compared to reference speed.

Then, we used the PSE as a boundary to classify each trial as perceived
as slow and fast. We made sure that the mean speed difference between
both categories (i.e. slow and fast) was above discrimination threshold for
speed by comparing the discrimination threshold with the speed difference
between slow and fast groups across β in a two-way ANOVA.

3.4.2 Trajectory estimation

First, we filtered out those trials in which participants misjudged the ab-
solute direction of the test movement (either left or right; less than 1%).
Then we fitted a Linear Mixed Model to disentangle the effect of the speed
group and β over β̂ with the R-package lme4 (Bates et al., 2015). We
transformed the dependent variable β̂ into its absolute value and β into the
logarithm of its absolute variable to linearize the data. Speed group, β and
their interaction were introduced as fixed effects. Slopes of β by participant
and trial were introduced as random effects.

3.5 Results

3.5.1 Speed estimation

Figure 3.3A shows the psychometric fit for the speed judgement of a
representative participant. In this example, both psychometric fits were
carried out for the same reference speed (2 m/s), but for two different
bearing angles (β). Figure 3.3B illustrates to what extent speed in depth
was underestimated relative to lateral speed (ratios larger than one denote
underestimation of the test target speed). Speed in depth was strongly
underestimated for trajectories closer to the observer (smaller β). For these
trajectories, the velocity had to be increased by a factor of 1.5-2 in order
to be perceived as moving as fast as the reference. The underestimation
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Table 3.1. Weber fractions for each β.

Weber Fraction CI

-64 0.13 0.06 - 0.20
-32 0.10 0.02 - 0.17
-16 0.14 0.02 - 0.26
-8 0.20 0.11 - 0.29
-4 0.26 0.14 - 0.38
-2 0.23 0.09 - 0.37
2 0.30 0.14 - 0.46
4 0.22 0.14 - 0.31
8 0.08 0.04 - 0.12
16 0.16 0.10 - 0.22
32 0.08 0.03 - 0.14
64 0.13 0.01 - 0.24

Table 3.2. Weber fractions for each reference
speed.

Weber Fraction CI

2.00 0.18 0.14 - 0.23
2.50 0.16 0.12 - 0.21
3.00 0.16 0.12 - 0.20

attenuates and disappears for trajectories approaching a lateral movement.
These results are in line with the matching speeds for lateral and depth
motion in Welchman et al. (2008).

Figure 3.3C shows Weber fractions for the estimation of speed in depth.
As expected, Weber fractions depend on the presented trajectory (F(11,
85) = 2.73, p = .005) and increased as the Vz component (i.e. β) increased.
Participants thus judged the speed of MID less accurately than for lateral
motion (see Table 3.1). Our results show a Weber fraction close to 0.25 for
depth speed estimation, which is in agreement with those values reported
by Welchman et al. (2008) and Rushton and Duke (2009). However, we
found no significative effect of the reference speed (F(1, 85) = 0.001 p
= .975, see Table 3.2) or interaction effect (F(11, 85) = 0.91, p = .538)
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Figure 3.3. A) Psychometric functions for two different bearing angles for one
participant (reference speed: 2 m/s). The y axis indicates the probability of judging
the target’s speed as faster than the reference speed. The horizontal error bar
indicates the discrimination threshold. Speed in depth is underestimated with
respect to the reference movement, as shown by the psychometric curve for β=2.
Discrimination thresholds are higher for motion in depth compared to lateral motion.
B) Average relative speed (PSE/Standard lateral). Values above the dashed line
(Ratio > 1) denote underestimation of depth vs lateral speed. C) Weber Fraction
as a function of β. Weber fractions are higher for motion in depth, indicating that
observers are less precise when judging differences for MID compared to lateral
movement. D) Representation of the differences between fast and slow trials (blue)
and differential threshold (red) across β. Error bars indicate the 95% confidence
interval. Mean differences for slow-fast trials are consistently higher than the
discrimination threshold, therefore we assume speed was perceived as different.
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suggesting that MID estimates follow Weber’s law.
Finally, Figure 3.3D illustrates, for the sake of comparison, the speed

differences between slow and fast trials and the measured differential thresh-
olds. The speed difference (fast-slow) was significantly larger than the
differential threshold F(1, 198) = 24.63, p < .001) and did not change sig-
nificantly with β (i.e. interaction with β failed to reach significance, F(11,
198) = 0.82, p = .620). This provides sufficient grounds to assume that fast
and slow speeds were perceived differently for further trajectory analysis.

3.5.2 Trajectory estimation

Figure 3.4 displays the average perceived trajectory across subjects and
β split by slow/fast trials in a polar representation. Figure 3.5A shows
the adjusted trajectory (β̂) as a function of the physical trajectory of the
stimulus (β).

β

2
4
8
16
32
64

Perceived speed

Fast
Slow

Figure 3.4. Polar representation of the average perceived trajectory pooled across
subjects for each β and slow/fast perceived speed (upwards/downwards triangles in-
dicate fast or slow group of trials respectively). Smaller triangles indicate observer’s
mean perceived trajectory split by β, perceived speed and participant. Jittering was
added to the smaller triangles in order to ease interpretation.

An ANOVA on β̂ yielded a significant (trivial though) effect of β (F(1,
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3560) = 7495.39, p < .001) and, more importantly, speed group (F(1, 3560)
= 100.77, p < .001) indicating that the perceived speed of the physical
movement had an effect on the perceived trajectory and thus confirming
our hypothesis showing that faster perceived speeds lead to more biased
trajectory estimates. The interaction failed to reach significance (F(1,
3560) = 2.44, p = .118), indicating that the effect of the physical speed is
independent of the presented trajectories in our study.

3.5.3 Bayesian model

As obtained by the optimization routine, the standard deviation of the
slow prior is Vσ = 0.329. Figure 3.5B shows the performance of the
Bayesian model split by reference speed and mean participant reports of
the participants.

The predictions of the model strongly correlate with the reported esti-
mates β̂ (r(3481) = 0.91, p < .001). To check the suitability of our model
predicting β̂, we computed and compared the log likelihood of a model
with real β and reference speed as a dependent variables against a model
including only the predicted trajectories in the Bayesian model β̂Pred. The
results show that the Bayesian model has a larger likelihood (LogLik β̂Pred:
-15625.86) than the model based on β and reference speed (LogLik β ˆ

VRe f : -16414.7). This shows that our model predicts better β̂ than a model
relying on the physical trajectory (β) and reference speed.

3.5.4 Initial distance under-estimation

A Bayesian model can successfully explain several characteristics of this
bias in the perceived trajectory (i.e. superior bias close to β = 0), participants
variability (Welchman et al., 2008) and dependence with speed). However,
a more parsimonious explanation for these results could be a simple mis-
estimation of the initial distance on the target. Since viewing distance and
target size are important variables to extract the rate of change in depth from
the optic array, a constant underestimation of the initial distance would
result in an overestimation of the trajectory of the target. We, therefore,
checked if an underestimation of the initial distance could explain our
results.
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Figure 3.5. A) Average perceived trajectory between subjects as a function of
the physical trajectory of the stimulus (β) split by fast/slow perceived speed (up-
wards/downwards triangles indicate fast or slow group of trials respectively). Error
bar indicates the 95% confidence interval. Smaller triangles indicate observer’s
mean perceived trajectory split by β, perceived speed and participant. B) The curves
represent the fit of the model across β split by reference speed. The points indicate
the individual mean reported trajectories for each participant split by reference
speed and β (WFx = 0.1; WFz = 0.28; σv = 0.33). Horizontal jittering was added
to the individual points in both figures to ease interpretation. Inset indicates the
Weber fractions used to estimate the perceived trajectories in the model for each
participant.
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In order to do so, we specified a linear model of the perceived trajectory
(β̂) as a function of the initial distance (D0), and derived the expected value
of the parameter that multiplies D0 assuming there is no underestimation.

Given the following equivalence:

tanpβq “
Vx

Vz
(3.22)

Multiplying Vx and Vz by the total time of presentation t0 we obtain:

tanpβq “
Vx ¨ t0

D0
(3.23)

Then, we can compute the value of (Vx t0)) in our experiment and use
it as a constant (k) in the linear model:

tanpβq “
k

D0
(3.24)

Therefore, if D0 is underestimated we expect a slope larger than 1
dependent on the term k

D0
since D0 is in the denominator. Based on Eq.

Equation 3.24, we applied a Linear Mixed Model to estimate this slope
and check if it is larger than 1. Slopes of the ratio ( k

D0
) were introduced as

random effects, and the intercept was dropped since it is not present in Eq.
Equation 3.24. The results for the fixed effects showed that the slope do not
differ from 1 (Estimate = -6.479, t(9.267) = -0.389, p = 0.706). Therefore,
we did not find enough evidence to support the hypothesis that the initial
viewing distance may have been underestimated.

3.6 Discussion

In this study we found a dependence between the speed and the perceived
direction of an object, congruent with a Bayesian model of depth perception
based on a slow prior as proposed by Welchman et al. (2008) and Stocker
and Simoncelli (2006).

Our data show that the movement in depth is strongly underestimated
with respect to lateral movement. A comparison between the Weber frac-
tions for our trajectories (Figure 3.3C) shows that reliability depends on the
z component, that, in turn, translates into the bearing angle (β). Consistent
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with this, we have found that the variability in the estimation of the move-
ment in depth is approximately two times greater. This is important, since,
within a Bayesian framework depth estimates would be more affected than
lateral estimates, presumably, causing the directional bias found in this and
other studies.

In this study we were mainly interested in obtaining the PSE coupled
with the estimated trajectory rather than obtaining a precise estimate of
the discrimination threshold (∆V). For this reason we chose the QUEST
method. However, as Figure 3.3A (β “ 64) shows, for a few conditions, the
amount of speeds sampled by this procedure might affect these estimates.
Because of this reason we had to formulate our Bayesian model assuming
a Weber Fraction based on previous literature for the lateral movement. In
addition, our results show that the PSE for β “ ˘ 64 is significantly lower
than the reference speed (t(18.0) = -5.16, p < .001). This is against our first
hypothesis, given that the rest of the angles show an underestimation of
speed with respect to the reference. We hypothesized that, in this condition,
for high speeds the target would have to move out of the projection frustrum
before 1 s. (presentation time) possibly causing an effect on the perceived
speed (Anstis & Kim, 2018). Consequently, the participants could have
judged the test target as faster than the reference.

Our results are in line with previous literature in which the speed
in depth was strongly underestimated with respect to lateral movements
(Brenner et al., 1996; Brooks & Stone, 2006; Rushton & Duke, 2009;
Welchman et al., 2008). For example, in Lages (2006), the participants
were prompted to indicate both, the perceived trajectory angle and radial
distance for stimuli moving in the x ´ z space. Their results show a visual
space describing an ellipsoidal shape as a result of Vz being underestimated
with respect to Vx for the same physical speeds. Rokers et al. (2018)
showed that a Bayesian model based on the slow motion prior can account
for errors when judging the direction of an object. Their model is capable of
predicting perceptual errors under different levels of contrast, eccentricity
and distance to the stimulus. According to their results, the greater the
distance to the stimulus, the greater the perceived lateral bias. The extent of
trajectory bias in our study is higher than shown in the previous literature
(J. Harris & Dean, 2003; Welchman et al., 2008). However, just as the
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Rokers et al. (2018) model would predict, given that our initial distance is
the highest (5, 1, and 0.5 m. respectively), the trajectory bias we would
found would be the strongest.

Recently, Wei and Stocker (2017) have proposed a simple mathematical
relationship that could be applied to this study. They hypothesize that
perceptual bias is proportional to the rate of change of the discrimination
threshold along the stimulus space, a notion that is supported by our results.
At high angular speeds, lateral motion perception seems to follow Weber’s
law (Stocker & Simoncelli, 2006). Also, as we found in this study, Weber’s
law seems to apply to motion in depth. Therefore, the attraction towards
the slow prior would be stronger for higher angular speeds (see Figure 3.1).
This would account for an increased directional bias for higher speeds as
shown by our results.

Even though our results seem clear, simulations of 3D movement in
stereoscopic setups are known to introduce problems such as the conflict
between vergence and accommodation. Conflict between these two cues
could be responsible for consistent depth underestimation shifting perceived
position closer to the screen due to accommodation for simulated depth
movements (Regan et al., 1986), that is, increasing the bias in the perceived
bearing angle. However, this conflict has been studied with contradictory
outcomes for perceived distance, which according to our results would
be a by-product of speed estimation: Watt et al. (2005) found that when
accommodation was changed by manipulating the distance between display
and observer, disparity scaling was corrected. Willemsen et al. (2008),
however, found that vergence-accommodation conflict does not affect the
perceived distance.

Future studies may explore the effect of a target moving with a non-null
vertical component in order to constrain a full 3D motion model. It is
known that sensitivities for stimulus oriented vertically or horizontally are
nearly equal (Manning et al., 2018a; Portfors-Yeomans & Regan, 1996)
and reports in the x ´ y plane show little directional bias (Welchman et al.,
2008). We thus expect our results to generalize to the y ´ z plane. On
the other hand, Poljac, Neggers, and Van Den Berg (2006) found that bias
in the plane y ´ z is lower than x ´ z, suggesting that vertical estimation
may be less reliable than lateral estimation. Interestingly, Poljac et al.
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(2006) found that direction was estimated more precisely when the target
crossed the eye height. This suggests that additional visual cues may be
used to estimate the direction of moving targets in this case. Furthermore,
the participants performed the experiment in a free gaze situation. Since
pursuit is known to influence the accuracy of speed estimates (Schütz et al.,
2008), an interesting future direction would be to investigate the effect of
smooth pursuit or fixation on the speed precision estimation for motion in
depth and the resulting lateral bias.

Given that we have found a dependence between the estimation of speed
and direction, there might be some common neural processes integrating
both features. Lages and Heron (2010) previously proposed a parallel
processing of 2D velocity estimates and disparity to extract estimates of 3D
motion. 2D motion information would be encoded in V1 under a preference
for slow speeds and selective directions (Perrone, 2006; Series et al., 2002).
This could be interpreted as a prior for slow speeds (Vintch & Gardner,
2014). Then, this information is further processed by MT (Braddick et al.,
2001; Burge & Geisler, 2015; Sanada & DeAngelis, 2014). Concerning
disparity, an early computation of this signal is carried out by V1 (Nienborg
et al., 2005). Further indirect projections to MT relay on V2 and V3 (Ponce
et al., 2008) as an intermediate processing of disparity (Thomas et al.,
2002). As a result, speed, direction and disparity processing are performed
by MT. Therefore, it is the most probable candidate for the integration
of these signals in order to obtain the structure of 3D motion perception
(Rokers et al., 2009).

3.7 Conclusions

We show that the direction of an object on a near-collision course with the
observer is overestimated as a function of the perceived speed. Objects
are consistently judged as passing the observer further away than they
actually do. Our methodology allowed us to couple the perceived speed
for different bearing angles (β) with directional biases in depth perception.
Our results indicate that a Bayesian model of speed discrimination in depth
following Weber’s law can successfully simulate both types of perceptual
biases denoting a coherence between speed and direction estimation. Thus,
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future research could manipulate the reliability of motion signals to further
investigate the relation between motion and direction estimates.
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4 Study 2: Gravity and known size calibrate
visual information to time parabolic
trajectories

Catching a ball in a parabolic flight is a complex task in which the time and area of

interception are strongly coupled, making interception possible for a short period.

Although this makes the estimation of time-to-contact (TTC) from visual informa-

tion in parabolic trajectories very useful, previous attempts to explain our precision

in interceptive tasks circumvent the need to estimate TTC to guide our action. Ob-

taining TTC from optical variables alone in parabolic trajectories would imply very

complex transformations from 2D retinal images to a 3D layout. We propose based

on previous work and show by using simulations that exploiting prior distributions

of gravity and known physical size makes these transformations much simpler,

enabling predictive capacities from minimal early visual information. Optical infor-

mation is inherently ambiguous, and therefore, it is necessary to explain how these

prior distributions generate predictions. Here is where the role of prior information

comes into play: it could help to interpret and calibrate visual information to yield

meaningful predictions of the remaining TTC. The objective of this work is: (1) to

describe the primary sources of information available to the observer in parabolic

trajectories; (2) unveil how prior information can be used to disambiguate the

sources of visual information within a Bayesian encoding-decoding framework; (3)

show that such predictions might be robust against complex dynamic environments

and (4) indicate future lines of research to scrutinize the role of prior knowledge

calibrating visual information and prediction for action control.

This study has been published as: Aguado, B., & López-Moliner, J. (2021a). Gravity and
known size calibrate visual information to time parabolic trajectories. Frontiers in Human
Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.642025

https://doi.org/10.3389/fnhum.2021.642025


4.1 Introduction

Intercepting a ball in a parabolic trajectory before reaching ground level
is a fundamental task in different sports: batting a baseball, hitting a high
lob in tennis, or heading a football. In those situations, the time at which
the interception is possible is very tight, yet our performance is astonishing.
Time-to-contact (from now on TTC), that is, the time until an object reaches
a location of interest, can provide very useful information that would help
anticipate motor programs to solve those tasks.

In principle, to intercept a target, it would be enough to estimate its
position and predict its future position based on speed estimates. Solutions
based on this idea have been put forward for 2D motion (Aguilar-Lleyda
et al., 2018; Kwon et al., 2015) but the generalization to 3D parabolic
trajectories faces complex problems deeply rooted in the inverse-projection
problem of Perception. The inverse problem of Perception refers to the
ambiguous mapping between a distal stimuli and final percept (Kersten
et al., 2004; Pizlo, 2001). Unlike previous attempts where TTC is obtained
from optical variables, in this paper, we propose that some constants in the
environment like gravity and size are considered and ease the otherwise
complex transformation of optical variables to a 3D world to obtain relevant
variables like TTC. The stance taken in this work will assume that we make
implicit inferences (Helmholtz, 1867) about the present and future states of
the world to act. However, the nature of the information guiding the control
of action is an ongoing source of debate within the study of Perception.

4.1.1 Two theories for interceptive control

Information-based control

The information-based control perspective, rooted in the Ecological or
Gibsonian framework of Psychology (Gibson, 1966, 1979) (Figure 4.1A),
assumes that perceptual information is governed by certain physical regu-
larities (Turvey et al., 1981) that can be captured and exploited to control
our action. Under ecologically valid conditions (i.e. full-cue conditions),
our perceptual system would be attuned to perceptual invariants directly
specifying the characteristics of an event without the need to perform in-
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ternal computations according to which humans act (Gibson, 1979). Thus,
the information to solve a given task is directly specified in the optic flow
(direct perception) explaining why only identifying task-relevant visual
variables will determine an actor’s successful action from a perceptual
perspective.

Figure 4.1. A) Optic flow conforms to invariants that specify properties of the
environment (direct perception), indicating the adequacy and availability of action
within the task. B) Sensory stimulation is combined with prior information to infer
current or future states in the environment (read-out), providing the grounds to plan
and adapt action.

Under this framework, mainstream interpretations argue that the role of
the observer is to actively seek out invariants within certain task-relevant
pieces of optic information and unfold a coupled action based on instanta-
neous information. Following this line, detecting and maintaining invariant
stimulation requires reducing the difference or the error with an “ideal
value”. Because of that, these strategies are also called error-nulling strate-
gies (Fajen, 2005b). Based on this idea, different control laws have been
proposed for visually guided actions such as intercepting a moving ob-
ject (Bruggeman et al., 2007; Warren et al., 2001; Wilkie & Wann, 2003;
Zhao et al., 2019), braking (Lee, 1976) or catching a ball on the fly (Chap-
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man, 1968; McBeath et al., 1995; McLeod & Dienes, 1993; Michaels &
Oudejans, 1992).

Among the previous examples, catching a ball in a parabolic flight is
a paradigmatic interception case including locomotion and manual inter-
ceptive phases. The study of the underlying mechanisms regarding the
locomotive phase is usually referred to as the outfielder problem (Todd,
1981). The outfielder problem studies a case of interception in which base-
ball players known as outfielders must move to catch a high-flying ball in a
parabolic trajectory before it hits the ground (Chapman, 1968; Michaels &
Oudejans, 1992; Todd, 1981).

The first catching error-nulling strategy put forward to explain action
control within the outfielder problem was Chapman’s strategy (Chapman,
1968). S. Chapman noticed that when a ball follows a parabolic trajec-
tory on a collision course with the observer, the elevation angle (γ) (see
Figure 4.2), that is, the vertical angle between the ball’s position and an
observer’s eye level, increases during the whole trajectory. Therefore, all
an observer would need to do to navigate towards the interception location
is keeping the elevation angle increasing during the whole trajectory at a
constant rate. However, others suggested it should increase at a decreasing
rate (McLeod & Dienes, 1993, 1996).

Later, Michaels and Oudejans (1992) described Chapman’s strategy in
terms of the projected image in the vertical plane at launch distance. If the
ball is in a collision course with the viewer, the vertical projection of the
ball increases linearly through the trajectory. In any other case, the image
of the ball would displace non-linearly, that is, accelerated. Therefore, to
catch a ball in a parabolic trajectory, one needs to actively maintain the
acceleration of the projected vertical position of the ball at zero. Motivated
by that, this strategy was named Optic Acceleration Cancellation (from
now on, OAC) in McBeath et al., 1995.

Although the error nulling strategies emerged within the ecological
framework, they conflict with a key concept at the core of the Ecological
theory, the theory of affordances (Gibson, 1979). The affordance-based
theory emphasizes the idea that observers are tuned to the availability of
an action given a sensory array. This tuning would be a by-product of a
gauging process that maps optic into movement information and even into
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Figure 4.2. Lateral view of a parabolic trajectory depicting the primary primitive
monocular cues, that is, retinal size (green projection; θ) and elevation angle (orange
projection; γ).

optic correlates in object size units (Jacobs & Michaels, 2006; Peper et al.,
1994). Hence, if a fielder is correctly calibrated, acting to keep certain
variables of interest into a “safe region” would ensure interception. This
notion provides the grounds for an affordance-based control strategy theory
(Fajen, 2007).

Reformulating the OAC under the scope of the affordance-based control,
either cancelling out vertical acceleration or running at maximum speed
without being able to cancel out vertical acceleration, would be required
to perceive catchability. However, a series of studies (Postma et al., 2017;
Postma et al., 2018) found that actual catchers did not need to cancel out
acceleration nor run at their maximum speed to judge catchability. These
results cast doubts on the informational nature of a catchability affordance.

Despite a lesser dependence on immediate visual information, an
affordance-based control strategy is still dependent on instantaneous vi-
sual information. In this respect, simulations of the locomotion based on
error nulling strategies showed irreconcilable with actual catches when
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accounting for human neuromotor acceleration and sensorimotor integra-
tion delays (Kistemaker et al., 2009; Kistemaker et al., 2006; McLeod &
Dienes, 1996). Consequently, a minimal prediction seems necessary to
account for sensorimotor delays in the central nervous system (Nijhawan,
1994). Furthermore, the occlusion of visual information would result in
a considerable impairment of the action. A possible solution to provide
adequate responses would be to continue to do what has been done so far
(Bootsma, 2009). Nevertheless, in temporally constrained tasks, another
question arises: for how long? In the outfielder problem, catching the ball
in-flight imposes tight temporal restrictions constraining the interception
area. Hence, predicting parameters such as TTC or the interception area
in dynamic contexts is key to planning our actions while looking around
for a teammate, finding a safe path towards the goal, or modulating speed
to reach the interception location in time. Following this reasoning, some
alternatives have been proposed in the literature as solutions based on
predictions about future states of the world.

Model-based control

The model-based control is framed within the constructivist framework
(Helmholtz, 1867). It assumes that the information picked up by our senses
is inherently ambiguous, to some degree corrupted by noise in the neural
system and delayed at higher-order brain areas. (Craik, 1967) proposed
that the brain tries to infer and replicate an external world model given the
available sensory information. This replica results in an internal model of
the environment, including an agent’s state that allows one to predict future
states of the world and act accordingly avoiding sensorimotor delays.

Relying on predictions would allow us to divert our gaze from the
immediate region of interest and consequently interrupt the sensory flow.
For example, Hayhoe et al., 2005 and Diaz et al., 2013 showed anticipatory
saccades towards future interest points to plan future goal states. The same
applies to catching a ball in a parabolic trajectory for manual interception
tasks. Despite distractors, parallel tasks, occlusions or head-turns that
might divert our attention, we still manage to intercept a ball in flight
(Binaee & Diaz, 2019; Dessing et al., 2009; López-Moliner & Brenner,
2016; López-Moliner et al., 2010). In fact, we can hit it even when the ball

62 of 194



was visible for just a short time (Amazeen et al., 1999; Sharp & Whiting,
1974; Whiting & Sharp, 1974), revealing that actually, the major constraint
for the use of a predictive strategy would be to obtain predictions early
enough to overcome sensory-motor delays.

The trajectory prediction strategy (Saxberg, 1987a, 1987b), framed
within the model-based theory, assumes that an observer predicts where
and when the ball will be within reach in Cartesian units, allowing to pre-
program a minimal action plan since motion onset. However, the available
optic information is egocentric and therefore ambiguous with respect to
its source. Therefore, an observer must perform an inferential process to
interpret optic information accurately.

In this line, Perception has been proposed as a Bayesian inferential
process in which visual information is interpreted as a function of the most
probable state of the world given prior knowledge. This inferential process
has been formulated in terms of “encoding” and “decoding” (Friston, 2010;
Knill & Pouget, 2004; Wei & Stocker, 2015). Encoding corresponds to the
activity resulting from the transduction of external energy onto the sensory
receptors. The encoded sensory information is then combined with prior
knowledge through an inferential process called decoding (Figure 4.1B).
The product of the decoding is an interpretation (read-out) of the currently
available data resulting in a belief of the state of the world that provides the
grounds to draw predictions.

In real life, we generally do not judge the parameters of a task for am-
biguous targets in the environment. Instead, we have some prior knowledge
of the elements to be judged that are stable and might help disambiguate
optic information providing the grounds to extract valuable information
for the task. In this line, a significant number of works highlighted the
role of prior knowledge about contextual variables such as gravitational
acceleration (Jörges & López-Moliner, 2017; McIntyre et al., 2001) or
known/familiar size (Hosking & Crassini, 2010; López-Moliner et al.,
2007), framing the interpretation of visual information for the control of
timed actions.

Note that using a priori knowledge does not imply the availability of
accurate Cartesian metrics or Newtonian laws within an internal model. A
fully-featured 3D internal model replicating the external world has been
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repeatedly dismissed. For example, Shaffer and McBeath, 2005 showed
that even expert baseball players could not judge the apex of a ballistic
trajectory on a collision course with the observer. In this situation, the apex
was estimated to be 0.33 seconds before collision for flight durations of 4
seconds, that is, 1.66 seconds after the actual apex. These results indicate
a tendency to judge the apex of the elevation angle as the physical apex
of the trajectory. Also, Reed et al., 2010 showed that neither expert nor
novel baseball players could reconstruct the visual trajectory of a parabolic
trajectory in a head-on approach mixing up the ball’s movement in space
with the visual trajectory it follows.

Unlike Craik, 1967, we propose that the prior knowledge can be kept
to a minimal number of components that help exploit the optic flow’s com-
plexity. Thus, in line with a Bayesian framework, under our view, the
use of prior knowledge just suggests the existence of a probabilistic and
implicit knowledge acquired by repeated experience that helps infer the
most probable sources of visual information in the external world (Gómez
& López-Moliner, 2013; Zago et al., 2009). In this sense, an accurate rep-
resentation of a priori parameters would suffice to obtain reliable estimates
of the task’s parameters.

Here we propose using priors as internalized knowledge to translate
optic variables into temporal estimates in a process we name calibration.
Calibration would be the process by which optical or angular information is
mapped into Cartesian ones with the assistance of different pieces of prior
knowledge providing actionable predictions (López-Moliner et al., 2007;
López-Moliner et al., 2013). Calibrating optic cues into Cartesian allows
us to test the correspondence between the prediction of a model and our
actions in terms of accuracy. Furthermore, it may allow us to formulate
hypothesis based on known psychophysical precision levels for the different
pieces of information in the sensory array and even check if integration
rules apply (de la Malla & López-Moliner, 2015; Wolpert et al., 1995).

As an example, the GS model (Gómez & López-Moliner, 2013) is
an algorithm that predicts the TTC for parabolic trajectories based on
a combination of optic variables and prior knowledge information. Its
predictions have been partially validated based on predictions about the
accuracy and the precision of temporal estimations (Aguado & López-
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Moliner, 2021b; de la Malla & López-Moliner, 2015). However, there is
a lack of mathematical formulations to predict the interception location.
This makes it harder to test experimentally predictive control strategies
within the outfielder problem. Hence, in this work, we will limit ourselves
to indicate the role of TTC estimates guiding the interceptive action.

It is essential to mention here that our definition of calibration is differ-
ent from the definition of calibration made within the Ecologic framework
(Fajen, 2005a; Jacobs & Michaels, 2007). Under our perspective, cali-
bration is a process by which otherwise ambiguous optical information
is directly mapped into kinematic and temporal estimates such as motion
vectors or TTC highlighting the relevance of prior knowledge to provide
predictions that may assist visually guided actions. In contrast, within the
Ecological framework, calibration would be a by-product of a gauging
process that maps visual information into movement information and even
into optic correlates in object size units (Jacobs & Michaels, 2006; Peper
et al., 1994).

Nevertheless, producing predictions does not necessarily mean that
those predictions will be accurate or that the new visual information would
be disregarded. Take the case of Fink et al., 2009 study. Participants had to
catch a ball in a parabolic trajectory that suddenly would alter its motion
towards the ground. As a reaction, the catchers changed their trajectory
towards the ball as well which was taken as support for the information-
based control perspective. Under Fink et al., 2009 rationale, a model-based
control strategy would result in a consistent path towards the interception
point despite mid-flight disturbances. This rationale assumes that new in-
formation would be dismissed or might be irrelevant because the prediction
would remain invariant. However, predictions would also be subject to
continuous evaluations to avoid errors or perceptually driven biases. In a
similar line, Postma et al., 2014 reasoned that continuously gazing the ball
through the trajectory would support the information-based control perspec-
tive. However, following the ball with our gaze does not necessarily imply
that action guidance must be driven by instantaneous optic information.
Periodically sampling visual input to correct the prediction made would be
an alternative strategy to guide action with reasonable levels of accuracy in
a more general framework (Brenner & Smeets, 2018). In fact, a simulation
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study conducted by Belousov et al., 2016 showed that predictive behaviour
would be indistinguishable from using error-nulling strategies if the ball is
continuously monitored.

In the following sections, we will unveil how the interaction between
perceptual information and prior knowledge contributes to interpreting and
reliably predict TTC for gravitationally accelerated objects under parabolic
trajectories. To do so, we will first analyse the available sources of visual
information within the optic flow to judge TTC or time an interceptive
action. Then, we will stress the role of prior information in calibrating
visual information. After that, we will show the accuracy and reliability of
the GS model which includes known gravity and size in complex environ-
ments. Finally, we will indicate future lines of research to address the role
of predictions of TTC guiding interceptive behaviour.

4.2 Available visual information

When an observer faces a ball in a parabolic trajectory, the projectile de-
scribes the following sequence of events (see Figure 4.2). The ball initially
goes up at a decreasing speed until it reaches the peak of its trajectory. Then,
it accelerates during the descent towards the ground. However, an observer
cannot access the underlying dynamics of projectile motion using Cartesian
metrics. Instead, they only have access to information based on egocentric
angular variables that depend on their position and the kinematics of the
ball (McBeath et al., 2018; Shaffer & McBeath, 2005). Hence, the ball’s
kinematics and an observer’s movement influence the visual information
being exposed throughout the trajectory. Figure 4.2 depicts the main primi-
tive optic variables that we will consider and how both unfold over time
(t) depending on the observer’s position and total flight time (T ), which is
unknown to the observer.

While interpreting sensory information is a central part of this work,
we also need to consider the limitations of our sensory system to gather
that visual information. Because of that, in the following subsections, we
will elaborate on the conditions that render different visual cues helpful
regarding detectability or discriminability, describing their precision as
Weber fractions. To do so, we will assume that the observers keep their
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gaze on the projectile, which is usually the case in free viewing situations
(Oudejans et al., 1999; Postma et al., 2014) and laboratory-controlled tasks
when the position to hit a target is not pre-specified (Brenner & Smeets,
2007; Cámara et al., 2018; Soechting et al., 2009).

4.2.1 Retinal size (θ)

The visual angle or retinal size is the angular size projected by an object
on the retina (θ; see green projections in Figure 4.2). Retinal size (θ)
is proportional to both object size and distance, being the prototypical
example of an ambiguous optic variable. Previous studies have shown that
human performance in discrimination tasks for angular size judgments is
about a 3 - 6% Weber fraction (WF) (kθ) for objects yielding > 0.0009
radians, increasing steeply up to a 20 - 30% (WF) for smaller objects (Klein
& Levi, 1987; McKee & Welch, 1992; Westheimer & McKee, 1977).

Figure 4.3. Rate of expansion ( 9θ) for two different ball sizes at five different initial
distances. The total flight time is two seconds. Values under the red dashed line
(0.004 rad/s) indicate that an observer cannot discriminate differences.

Retinal size is a zero-order variable; that is, it does not carry temporal
information and thus, cannot be employed alone to estimate motion compo-
nents or TTC. To do so, one needs to have access to the rate of expansion
( 9θ), which is the speed at which the retinal image changes. The absolute de-
tection threshold for 9θ has been reported to be about 0.0003 rad/s (McKee,
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1981), while the discrimination threshold associated with this parameter is
about an 8.5 - 14% of change (WF) (k9θ) (Regan & Hamstra, 1993).

In some cases, such as baseball games, the players meet scenarios where
the ball is at a considerable distance. In those cases, although mediated
by physical size and ball’s horizontal speed, discriminability of the rate of
expansion ( 9θ) is generally poor (20% of change (WF) for objects expanding
at a rate of less than 0.004 rad/s (J. Harris & Watamaniuk, 1995; Regan &
Beverley, 1978).

To show the effect of ball size on an observer’s ability to discriminate
differences in the rate of expansion ( 9θ), we computed the rate of expansion
for two different balls (baseball and soccer balls) moving in a parabolic
trajectory towards an observer from different initial distances. Figure 4.3B
shows how retinal expansion unfolds as a function of time. Values below
0.004 rad/s (red dashed line) would fall below the optimal discriminability
range, indicating that the observer’s ability to discriminate differences
is inferior. As depicted in Figure 4.3B, a player facing a baseball will
not discriminate retinal expansion during more than half of the trajectory.
Instead, differences in retinal expansion can be discriminated during most
of the trajectory of the Soccer ball. This example aims to point out that even
when visual cues are present in the optic flow, the resolution of our visual
system might not allow us to use them to guide our actions. Therefore,
initial estimates of TTC might be computed using alternative routes.

4.2.2 Tau (τ)

Lee’s seminal work (Lee, 1976) described Tau (from now on, τ) as the ratio
between the visual angle (θ) and its rate of expansion ( 9θ) (see Hecht and
Savelsbergh, 2004 for a review). Tau signals TTC and is directly accessible
within the optic flow without prior knowledge or previous estimates of
distance, size, or approaching speed.

Although τ can not be conceptualized as a primitive variable in the
study of visual cues, it has shown different features that could allow us
to consider it as such. Regan and Hamstra, 1993 found that differences
in τ could be distinguished independently of differences in θ or 9θ (k9τ «

0.07:0.13; WF). Because of this, Regan and Hamstra, 1993 concluded
that there might exist a mechanism sensitive to τ independently of θ or 9θ.

68 of 194



Indeed, other studies have shown the existence of a neural mechanism tuned
to τ (independently of retinal size and rate of expansion) or some of its
modifications (such as the η-function Judge and Rind (1997) or τm-function
Keil and López-Moliner (2012)) in various species such as pigeons and
humans (Rind & Simmons, 1999; Sun & Frost, 1998; Yonas et al., 1977).

Tau (τ) has been indicated as a source of prospective information that
might be used as a threshold (as a criterion) to perform different tasks
such as hitting (Bootsma & van Wieringen, 1990; Lee et al., 1983) or
catching (Savelsbergh et al., 1991). This threshold is usually referred to
as Tau-margin (Wann, 1996). However, its applicability to time parabolic
trajectories might be compromised due to several limitations.

First, τ would only generate accurate TTC predictions at launch when
the ball travels in a collision course with the observer.

Second, the object should approach the observer at a constant speed. In
a parabolic trajectory, from an allocentric viewpoint, Vx and Vz are constant
(assuming no air resistance). Nevertheless, the approaching speed for the
observer corresponds to radial velocity (Vr), which would carry the isotropic
expansion of the retinal expansion. However, Vr is not constant through
the trajectory and cannot be directly estimated from the optic flow (Gómez
& López-Moliner, 2013). For instance, consider a trajectory launched 2
meters far from an observer in a trajectory 10 meters of height. In this
situation, during the first half of the trajectory,Vr and retinal expansion 9θ

would be negative; that is, the object moves further away from the observer,
rendering meaningless estimates of TTC using Tau.

Third, even though Tau could be discriminated independently of the rate
of expansion ( 9θ), it is likely constrained to the same detection thresholds
(Keil & López-Moliner, 2012). Therefore, rates of expansion ( 9θ) lower
than 0.004 rad/s could result in a non-informative source to guide tempo-
ral estimations during an important section of parabolic trajectories. As
reported above, the Weber Fraction for Tau ranges between 7% to 13%.
Therefore, we will be using a mean Weber fraction of 10% referring to Tau
in the following sections.

Finally, it might not be directly implemented as a general-purpose
mechanism because the object must be spherical and rigid, which is not the
case for interception in some sports such as Rugby or Frisbee.
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4.2.3 Elevation angle (γ)

The elevation angle (γ) is the position of an object in the vertical meridian
of the retina (see orange projection in Figure 4.2). We conceptualize the
elevation angle (γ) using a spherical projection because angular variables
are assumed to be directly accessible to an observer (McBeath et al., 2018).

Even though it is often referred to as the vertical position of an object in
the retina, when a projectile is visible, we tend to perform continuous visual
follow-ups foveating the object, which might prevent perceptual biases (de
la Malla et al., 2017). In those cases, the retinal angle of the elevation angle
(γ) would tend to zero. Because of that, it has been suggested that this
visual angle can be estimated as a combination of the displacement of the
environment in the retina (Brenner & Smeets, 2015; Oudejans et al., 1999),
the movement of the eyes with respect to the observation axis (Crowell &
Banks, 1996) and estimates of the heading angle generated at the otoliths of
the vestibular system (Berthoz, 2000; Roy & Cullen, 2003) produced by the
movement of the head and trunk (Crowell et al., 1998; Lewis et al., 1998).
Previous literature has found that foveated objects require a difference of
up to a 3 - 5% of change (WF) to be effectively discriminated (Crowell
et al., 1998; Regan & Kaushal, 1994).

The first derivative with the time of the rate of change of the elevation
angle ( 9γ) is the vertical rate of displacement of a target in the retina (see
Figure 2). According to several studies (de Bruyn & Orban, 1988; Orban
et al., 1984), the ability to judge differences in 9γ is about 5% (WF) for
angular velocities between 0.03 rad/s (1.71 deg/s) and 1.2 rad/s (69 deg/s).
Interestingly, Portfors-Yeomans and Regan, 1996 suggest channels that
process position and cardinal motion independently, which indicates that
the noise for both estimates is independent.

Given that parabolic trajectories move accelerated by terrestrial gravity,
it is reasonable to consider humans’ ability to detect acceleration. Calderone
and Kaiser, 1989 proposed that acceleration in the visual system can be
studied as the rate of change in speed divided by the average object speed in
a two-stage process carried out in about 200 ms. (Werkhoven et al., 1992;
Zaal & Bootsma, 2011). This delay would mean that the observer would
not continuously monitor the adequacy of their actions. Furthermore, some
studies found that it is necessary at least 2̃0% of the change in speed to
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detect acceleration (Babler & Dannemiller, 1993; Brouwer et al., 2006;
Gottsdanker et al., 1961b; Werkhoven et al., 1992; Zaal & Bootsma, 2011)
indicating that humans are quite insensitive to changes in speed.

4.2.4 Disparity (δ)

Disparity (δ) is the vertical/horizontal difference between the position of an
object in the retinal image of both eyes. An algorithm like Tau (τ) for the
estimation of TTC has been proposed as a combination of the knowledge of
interocular distance (I), the distance with the ball (D) and the rate of change
of horizontal disparity ( 9γ) (TTC « I

D˚ 9γ
). Furthermore, it can be used to

estimate the lateral distance at which an object would pass an observer
position.

A combination of Tau and the information contained in above expres-
sion would assist the estimation of TTC to achieve our exceptional temporal
precision batting fastballs (Gray & Regan, 1998). This solution may ac-
count for systematic underestimations of TTC by weighting the visual cue
that indicates a shorter TTC to guide the final interceptive phase (Gray
& Regan, 1998; Rushton & Wann, 1999; Savelsbergh & Whiting, 1992).
However, Brenner et al., 2014 found no evidence that hitting a free fall
ball uses the rate of change in disparity ( 9γ) to estimate TTC. In this sense,
Brenner and Smeets, 2018 argue that some studies that compare the perfor-
mance between monocular and binocular conditions “ignore the benefit of
having two estimates of the relevant monocular cues” instead of one.

4.3 Evidence of prior knowledge calibrating vi-
sual information

Humans quickly acquire knowledge about regularities in their interaction
with the environment. Regularities such as the light coming from above
(Adams et al., 2004), that bigger means heavier (Peters et al., 2016) or the
fact that object size is generally constant (López-Moliner & Keil, 2012)
enhance predictability and reduce uncertainty about future states of the
world. Indeed, the assumption of a stable world is at the heart of essential
findings in different areas of vision science, such as speed perception
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(Stocker & Simoncelli, 2006), depth estimation (Glennerster et al., 2006)
and manual interception (Brenner & Smeets, 2015).

Such known regularities may also be referred to here as contextual in-
formation stressing the role of acquired knowledge by repeated experience
within a specific context. In this work, we will focus on two pieces of
internalized knowledge that usually remain stable in our world and might
frame the interpretation of visual information for parabolic trajectories:
known size and gravity.

4.3.1 Size

The assumption of constant size is likely one of the most critical assump-
tions about action because, in general, the objects around us do not change
size unexpectedly. Under this assumption, known size calibrates visual
information into distance estimations with an object as the ratio between
known size and the retinal size projected (Hecht et al., 1996; Ittelson, 1951;
Sousa et al., 2011) even though irregular objects such as rugby balls and
frisbees can be problematic.

d « s{θ (4.1)

The previous expression provides a mechanism to scale the optic space
into ball size units (Gómez & López-Moliner, 2013; Peper et al., 1994)
for a broad range of contexts. Calibrating the optic space with known size
provides estimates of relative distances in paintings, pictures, video games,
and environments with low or incongruent pictorial detail (Saxberg, 1987b;
Todd, 1981), sometimes at the cost of leading to systematic misperceptions
(Battaglia et al., 2011; Battaglia et al., 2005; Tcheang et al., 2005). In line
with the use of known size calibrating visual information, López-Moliner
et al., 2007 showed that when an object approaches at a constant speed
and physical size is known; an observer can exploit the lawful relations
between physical size and optic variables in the equation above to estimate
approaching speed (Vz) as its first derivative:

Vz «
s ¨ 9θ

θ2
(4.2)

In the above expression, known size (s) allows calibrating retinal size
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(θ) and rate of expansion ( 9θ) into an estimate of approaching speed (Vz)
from otherwise spatio-temporally ambiguous optic variables. Then, an
observer could use single optic variables (e.g. retinal size or expansion rate)
to time the initiation of interceptive actions (López-Moliner et al., 2007;
López-Moliner & Keil, 2012; Smith et al., 2001) depending on noise levels
(Aguilar-Lleyda et al., 2018). However, what happens when it comes to
obtaining parameters of more complex tasks such as parabolic trajectories?

In Todd, 1981, the participants had to judge if a ball on a parabolic
trajectory would fall in front or behind an observer in different experimental
conditions. Todd’s work showed that, even though there might be enough
information to estimate the final position qualitatively for parabolic trajec-
tories only based on sensory information, prior knowledge of an object’s
size helped the participants to judge the final position in depth accurately.
In each block, the absolute size was either fixed, selected at random, or
fixed to a single dot during the whole trajectory. Accuracy was significantly
better when the absolute size was fixed than the condition in which size
was selected randomly. Those results indicate that prior knowledge of the
ball’s size aids the estimation of motion-in-depth.

Interestingly, the third condition yielded the worst performance of all
three conditions, yet performance was slightly over chance level. In this
condition, only the vertical movement was available to the observers to
judge approaching speed. Participants judged landing position based on
“the amount of vertical speed.” In line with these results, Jörges and López-
Moliner, 2017 showed that prior knowledge of gravity might be essential to
calibrate estimates of the rate of change ( 9γ) into estimates of approaching
speed (Vz) in parabolic motion.

4.3.2 Gravity

Since Lacquaniti and Maioli, 1989 work, showing an anticipatory activity
for gravitationally accelerated objects, there is evidence that an internal
representation of gravity may play a key role in controlling interceptive
actions and judging TTC. For example, McIntyre et al., 2001 found that
astronauts react to moving objects as if they were accelerated by Earth grav-
ity under micro-gravity conditions. That study showed that although the
astronauts were immersed in an environment where visual and bodily cues
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indicated microgravity conditions, they could not adapt their interceptive
actions completely. After 15 days, the astronauts were still anticipating
their reaching, mimicking the conditions under terrestrial gravity. Subse-
quent work using virtual reality setups showed that participants could adapt
to arbitrary gravities in a few trials. However, the performance is still lower
than that under terrestrial gravity conditions (Zago et al., 2005; Zago &
Lacquaniti, 2005).

Since then, an implicit representation of gravity has been found at a
neurobiological level (Indovina, 2005; Miller et al., 2008) and in a broad
range of tasks such as eye behaviour (Bosco et al., 2012; Diaz et al., 2013;
Jörges & López-Moliner, 2019) or the estimation of the duration of events
(Hosking & Crassini, 2010; Jörges et al., 2021; Moscatelli & Lacquaniti,
2011) despite our general insensibility to accelerations (Werkhoven et al.,
1992).

However, the best example of a representation of gravity for sensori-
motor control is that an observer does not need to see an ascending ball
falling to intercept it (de la Malla & López-Moliner, 2015). In general,
humans have an implicit expectation that upwards moving objects will
eventually fall (López-Moliner et al., 2010; Reed et al., 2010). Neverthe-
less, this representation may not be available for every kind of tasks. For
example, timing tasks for gravitationally accelerated objects in imagination
show a bias towards the last visible motion speed (Bratzke & Ulrich, 2021;
Gravano et al., 2017). In this line, some authors dismiss an internal model-
based explanation favouring a prediction-free explanation (Baurès et al.,
2007; Katsumata & Russell, 2012). However, the lack of adaptation under
microgravity conditions and the need to account for sensorimotor delays
pinpoint the relevance of a gravity prior guiding predictive control (Zago
et al., 2008).

A recent study (Jörges & López-Moliner, 2020b) tried to derive the
mean and standard deviation of the Gravity prior in a Bayesian framework.
Their results found a prior with a standard deviation of 14% (WF). Accord-
ing to the authors, these results might correspond with an upper bound,
as there seem to be theoretical reasons such as the lack of adaptation to
arbitrary gravity values suggesting a relatively inflexible and robust gravity
prior (Jörges & López-Moliner, 2017).
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To test the use of different pieces of prior information for calibration,
it is first necessary to put forward algorithms that require pieces of inter-
nalized knowledge. In the temporal domain, (Gómez & López-Moliner,
2013) showed that by using both prior knowledge of gravity and size, visual
information could be calibrated, resulting in actionable estimates of TTC.
The model was named GS model about the assumption of a priori known
gravity and size.

4.4 Time-to-contact estimation

4.4.1 GS model

The GS model (Gómez & López-Moliner, 2013) is an algorithm that relies
on calibrated optic information using prior knowledge to obtain estimates
of TTC for parabolic trajectories. It relies on a combination of contextual
variables such as known ball size (s) and gravitational acceleration (g)
along with monocular cues such as retinal size (θ), elevation angle (γ) and
its first derivative ( 9γ), providing accurate estimates of TTC.

TTCGS “
2
g

s
θ

9γ

cospγq
(4.3)

Known ball size (s) and retinal size (θ) provide a mapping from retinal
to Cartesian metrics. On its part, gravitational acceleration (g) calibrate and
normalize the rate of change of the elevation angle ( 9γ) to be interpreted into
meaningful predictions of TTC under arbitrary gravitational accelerations.
In addition, cos(γ) would act as a non-declarative internalized parameter
linked to action expecting that the elevation angle (γ) would increase over
time (Reed et al., 2010; Shaffer et al., 2013). Removing the internalized
variables from the GS model, one can still obtain a correlate of TTC based
on retinal size (θ), the elevation angle (γ) and the rate of change of the
elevation angle ( 9γ). However, its value is meaningless in signalling an
actionable TTC and, therefore, not directly applicable. In the following
section will illustrate that envisioning those pieces of prior knowledge as
priors within an encoding-decoding framework could calibrate ambiguous
visual cues into accurate estimates of TTC for parabolic trajectories.
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Simulating the benefits of using gravity and size priors for the decoding

Under the constructivist framework, visual information is underspecified,
and many trajectories can originate the same stimulation. This simulation
shows how entering the correct gravity and size values increases the chances
of inferring the actual trajectory exposed to the system from a subset of the
possible ones.

In the case of this simulation, the possible inferred parabolas are a
combination of the nine different TTC (ranging from 1.8 to 2.2 s in steps
of 0.05 s), five different conditions of gravity (8.826, 9.316, 9.807, 10.297,
10.787 m{s2) and five different sizes (0.0703, 0.07215, 0.074, 0.07585,
0.0777 m) launched at eye-level 30 meters away from the observer in a
head-on approach. We chose those values of gravitational acceleration and
size using differences of 5% the standard of Earth gravity and 2.5% of the
standard size of a baseball to envision reliable values of prior knowledge of
gravity and size (however, see Jörges and López-Moliner, 2020b).

Figure 4.4 represents 9 test trajectories exposed to the system (panel
A), whereas panels B, C and D represent the range of possible values for
each variable available for the observer: retinal size (θ), the elevation angle
(γ) and the rate of change of the elevation angle ( 9γ) respectively.

To reproduce the encoding process of a sensory stimulus, we simulated
a set of tuning curves covering the range of possible stimulus strengths
(stimulus values) for each optic variable 200 ms. after motion onset. In
Figure 4.5, the reader can see an illustration of the tuning curves (black
curves), the stimulus strength presented to the system (blue vertical line),
and an example of the average response by a detector (red curve) for
the average TTC under standard conditions of gravity and size (light blue
trajectory in Figure 4.4). The detectors simulated for retinal size (θ) covered
a range from 0.0024 to 0.0031 rad (SD = 0.00014; representing a 5% WF).
The stimulus range covered for the elevation angle (γ) and its rate of change
( 9γ) was from 0.045 to 0.085 rad (SD = 0.00325 rad; 5% WF) and from 0.2
to 0.45 rad/s (SD = 0.01625 rad/s; 5% WF) respectively.

After the detectors were exposed to the stimulus, we obtained the aver-
age response probability (r) (solid red line in Figure 4.5) for corresponding
neural detectors (Dayan & Abbott, 2001) as:
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Figure 4.4. Test parabolas used in the simulation. A) Ball´s vertical versus depth
position. Panels B, C and D indicate retinal size (θ), elevation angle (γ) and rate
of change of the elevation angle ( 9γ) as a function of time for the first 200 ms. of
the trajectory. Panels E and F depict the output of the GS model using visual
information only and combined with prior information, respectively.

pprq “ f pθ, γ, 9γqr e´ f pθ,γ, 9γq

r!
(4.4)

In this expression, (f) indicates the mean activity per detector, whereas
(r!) corresponds to the factorial response for each detector. In our simu-
lation, the resulting activation varies on each iteration by adding Poisson
noise, representing random variability in neural activation.

We simulated 1000 trials per TTC in which the size was the standard of
a baseball (0.074 m), and gravity was the standard on Earth (9.807 m{s2).
Once the optic variables were encoded by the detectors simulated, we
recovered the most likely stimulus strength presented to the system for each
optic variable using a Maximum Likelihood estimate (MLE) procedure.
Then, we obtained a value corresponding to the GS model based only on
the optic variables retrieved by the encoding procedure.

We compared that output to the GS model’s ideal (noiseless) output
based only on optic variables for all the simulated trajectories. We obtained
two possible sets of decoding responses to select all the potential trajectories
that matched the model’s output. For the first set of responses, we only used
sensory information without resorting to size or gravity priors to decode the
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Figure 4.5. Simulated tuning curves of neurons specialized for different values of
A) retinal size (θ), B) elevation angle (γ) and C) rate of change of the elevation
angle ( 9γ). The blue vertical line indicates the true stimulus strength exposed to the
system. The stimulus strength was selected from the standard condition 200 ms.
after motion onset (see main text). The red curve indicates the average activation
per neuron in a single trial (Poisson noise added). The red dashed lines indicate the
stimulus strength inferred by the encoding process.
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correct TTC; that is, we used a Maximum Likelihood Estimation procedure.
We assumed the correct size and gravity priors to decode the correct TTC
for the second set of responses. Then, we selected all potential trajectories
that would fall into a relatively low error margin of ˘ 5%.

Figure 4.6 depicts the average accuracy per procedure. Here, the per-
formance of a system using only sensory information (MLE; red dashed
line) is slightly over the chance level (blue dashed line). On the contrary,
using the correct priors (central dots in panels A and B of Figure 4.6)
improves the proportion of correctly estimated TTC’s substantially. Note
that since the relative difference between the different simulated gravity
values is higher than those of size, the procedure benefits more from an
accurate representation of internalized knowledge of gravity. This example
highlights that, despite the inherent ambiguity of sensory information in
the optic flow, the use of prior information is a powerful calibration tool to
interpret otherwise ambiguous visual information.

Figure 4.6. Average accuracy per procedure. The blue dashed line indicates chance
level (11%), red dashed line indicates the performance of an MLE procedure. The
black points indicate the performance assuming different size priors in panel A (g
= 9.807 m{s2 assumed) and assuming different gravity priors in panel B (baseball
size assumed).
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Accuracy and precision of using gravity and known size

So far, we have shown that calibrating visual information in the light of
prior knowledge allows us to draw accurate predictions using the GS model.
However, it could still be the case that even if the output is accurate, the
visual information in the optic flow is so noisy that an estimation of TTC
might not be available.

To evaluate an observer’s ability to estimate TTC accurately and pre-
cisely from the GS model, we simulated a series of typical spatio-temporal
parameters for parabolic trajectories. We simulated parabolic trajectories
launching at eye-level at five initial distances (ZInit = 15,20,30,40,50 m.),
one contact time (TTC = 2 s; ∆t = 0.01 s.) and a single radius correspond-
ing to a baseball (0.037 m.). In each case, the endpoint is the origin, that is,
the position of the simulated observer.

To evaluate the precision of the output, we introduced independent
Gaussian noise to θ, γ and 9γ according to their respective Weber fractions
(identified with the letter k).

θχ “ θ ` Npµ“0;σ“θ¨θkq θk “ 0.05 (4.5)

γχ “ γ ` Npµ“0;σ“γ¨γkq γk “ 0.05 (4.6)

9γχ “ 9γ ` Npµ“0; σ“ 9γ¨ 9γkq 9γk “ 0.05 (4.7)

To test the noise-suppression performance for the GS model, we ran
10,000 simulations for each condition using Equations 4.5 - 4.7. Then,
we obtained a Weber fraction timewise as the ratio between the standard
deviation of the signal and the mean predicted TTC. Note that the χ version
of a variable denotes its noisified version.

Figure 4.7A depicts the output of the GS model for each initial distance
(colour code), whereas the inset indicates the predicted temporal error for
the ideal (noise-free) output of the model. The GS model provides very
accurate estimates for which the maximum error is lower than 10 ms. On
its part, Figure 4.7B represents the Weber fraction estimated timewise for
the GS model. As a comparison, the Weber fraction for Tau was envisioned
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as constant at 10% as reviewed above. The GS model presents a precise
output during most of the trajectory (Weber Fraction is always lower than
10%), resulting in an accurate and robust solution to the estimation of TTC
in parabolic trajectories comparable to previous Weber Fractions found in
the literature (Jörges et al., 2021; Moscatelli & Lacquaniti, 2011).

Figure 4.7. A) Noisified estimates of TTC using the GS model for different
trajectories. The inset represents the temporal error for the noiseless output of the
GS model. B) Weber fraction computed as the ratio between standard deviation and
mean of the GS model each frame. The red dashed line indicates the mean Weber
fraction of Tau (see main text). The translucid output indicates the Weber fraction
of a combination of the GS model and Tau using an MLE procedure.

It is essential to mention here that just as others have already described
in the literature, the sources of information to estimate TTC may vary
depending on the segments of an approach visible (DeLucia, 2004; DeLucia
et al., 2016; Gómez & López-Moliner, 2013). While an initial temporal
estimate would be available using the GS model, final interceptive actions
would take advantage of more straightforward strategies such as a distance
criterion (Gómez & López-Moliner, 2013; López-Moliner & Keil, 2012;
Wann, 1996), Tau (Lee, 1976; Shaffer & McBeath, 2005; Zago et al., 2004)
or correlates of binocular disparity (Rushton & Wann, 1999).

Following this reasoning, de la Malla and López-Moliner, 2015 partially
validated the use of the GS model, showing that early estimates of TTC
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based on the GS model could be integrated with the latest estimates derived
from correlates of the rate of expansion resulting in an accurate and precise
timing mechanism. Mimicking that context, we combined the predictions
of Tau and the GS model using a maximum likelihood process (Ernst &
Banks, 2002). The output results in a robust solution against sensory noise
for the estimation of TTC and timing interceptive actions (see translucid
lines in Figure 4.7B).

4.4.2 Generalization of the GS model

The formalization of the GS model assumes that the ball moves in a collision
course with the observer (Gómez & López-Moliner, 2013). However, this
is not usually the case. Commonly an observer must move to intercept
the ball. Therefore, the following question is to what extent the output
of the GS model deviates from perfect accuracy for trajectories ending in
locations other than the observer’s position?

To investigate those cases, we estimated the output of the GS model
for trajectories ending at different interception locations. We simulated
one initial distance (ZInit= 50 m.) and eight interception points around
the observer (see Figure 4.8A). Initially, the GS model provides accurate
estimates of the TTC regardless of the position of the observer. Then, in
contrast with trajectories on a collision course, the simulation reflects sys-
tematic errors in TTC estimation shortly after motion onset if the observer
remains stationary (see Figure 4.8B). If the ball falls behind the observer,
the rate of change of the predicted TTC decreases. Thus, the model’s output
overestimates the remaining TTC and vice versa for balls falling ahead
(see Figure 4.8B), pointing out that the errors depend on the interception
location. In this context, a navigational strategy predicting where and when
the ball would be within reach would initially guide the observer towards
the wrong position.

Nevertheless, the simulations described so far result in predictions of
TTC for an unlikely situation in which the observer is not at the interception
location and remains stationary. Usually, an observer would control the ball
moving towards the interception area. As a result, an observer’s movement
would prompt changes in the optic flow. As we will show, simulating the
observer’s movement, we found interesting properties in the output of the
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Figure 4.8. A) Ending positions for simulated trajectories around the observer. The
lines represent the trajectories followed by the moving observer. Figures B) and C)
depict the output of the GS model for a stationary and a moving observer. The line
code indicates lateral ending position (XEnd = 0, 5 (m)). The colour code indicates
the ending position in depth (ZEnd = -5, 0, 5 (m)) . Note that the GS model predicts
an underestimation of TTC for balls falling ahead and an overestimation of TTC
for those falling behind the observer.
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GS model that might indicate the availability of a navigational strategy.
To perform the following simulations, we replicated the previous tra-

jectories. However, in this case, the observer started moving towards the
interception location at a constant speed 500 milliseconds after the ball’s
launch. We chose this moment because catchers generally start running
in the right direction 500 milliseconds after the ball’s flight has started
(Brouwer et al., 2006; McLeod & Dienes, 1993, 1996; Michaels & Oude-
jans, 1992). The displacement speed of the observer was computed to reach
the interception point just in time to catch the ball (see inset in Figure 4.8).
Although this pattern of displacement and speed does not correspond pre-
cisely to the found in real life (McLeod & Dienes, 1993; McLeod et al.,
2006), it is essential to point out that it will be useful for an illustrative
purpose.

In Figure 4.8B, the reader can see that when the observer remains
stationary for some time in a position other than the interception location,
the rate of change of the predicted TTC changes (see Figure 4.8B). When
the rate of change in TTC decreases, the ball will fall behind the observer
and vice versa. This would signal the need to move and the correct direction
in depth. Therefore, departures from the initial rate of change in TTC
(slopes different from -1) could be used as a navigational strategy indicating
if the observer must move forward or backwards. Then, an observer’s
movement provides the necessary changes in the optic flow to linearize
the predictions of the remaining TTC (see Figure 4.8C). Thus, keeping
the prediction linear will ensure that the observer would end up at the
interception position in time.

In sum, the above simulations indicate that the model’s output is accu-
rate when the observer moves in the correct direction and speed providing
the basis for a mechanism to navigate towards the interception location.
However, these simulations were performed in a context in which the ball
is only affected by the gravitational acceleration. Would a simulation of
trajectories under air drag provide equally accurate temporal estimates?

Dynamic effects: Air drag

In real life, the ball is affected by external forces other than gravity, such as
air drag, Magnus force or wind currents. These forces deviate the trajectory
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from a perfect parabola compared to motion in a vacuum in astonishing
ways (McBeath et al., 2008). For instance, previous works indicate that
air drag can reduce flight time and distance travelled by a flying ball up to
50% (Adair, 2002; Brancazio, 1985). Therefore, trajectories initially on
a collision course with the observer are no longer so after a short period.
This pattern would potentially preclude the use of different algorithms for
estimating the TTC, such as the Tau or GS model.

It has been argued that the self-regulatory nature of information-based
strategies can efficiently deal with dynamic effects in a parabolic trajectory,
provided that continuous visual information is available. In contrast, it is
commonly argued that an internal model assuming a constant gravitational
acceleration would be insufficient to account for dynamic forces such as air
drag (Fink et al., 2009). To account for air drag, an internal model would
have to gain access to a drag coefficient, mass and size for every single
object and environment dynamically, which limits a massive application
(Craig et al., 2006). Furthermore, it seems at odds with the fact that most
people think that objects fall at the same rate despite their mass or volume
(Oberle et al., 2005). However, explicit knowledge of physics may not
affect performance in action-related tasks (Flavell, 2014; Reed et al., 2010).
Following this reasoning, in our view, predictions using priors would only
include variables facilitating the interpretation of the most generic case of
natural law or parameters for a given task. In the following, we will show
how the GS model, which relies only on gravity and size priors, can predict
the remaining TTC reliably for the general case of trajectories under gravity
and air drag conditions.

Unlike the gravitational force, which exerts the same force for different
projectiles, air resistance depends on several factors: ρ, the viscosity of the
environment surrounding the object; Cd, a drag coefficient relative to the
texture and shape of the projectile essentially; r object’s radius and v, the
tangential speed of the object estimated dynamically. To simulate the effects
of air drag on a parabolic trajectory, we followed the procedure described
in Timmerman and van der Weele (1999) and Gómez and López-Moliner
(2013). We simulated different trajectories under two different conditions:
gravity only and gravity + air drag. Air viscosity around the ball (ρ) was
set to 1.225 kg{m3 (value at sea level), and Cd was set to 0.346 or 0.4
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for baseball and soccer balls, respectively (Alam et al., 2010; Kagan &
Nathan, 2014). We introduced one initial vertical speed Vy0 “ 9.807m{s (2
seconds of flight time under gravity only conditions) for each trajectory and
corresponding approaching speeds (Vy0 = 7.5,15,25 m{s) different balls
launched at the origin. In this simulation, we did not include horizontal
displacements.

In Figure 4.9A, the reader can see how air drag influences the trajectory
described by the ball in both: the spatial and the temporal domain. In
Figure 4.9A, the grey trajectory represents the trajectory followed by a
ball under gravity-only conditions, whereas the blue and red trajectories
indicate the trajectories followed by baseball and soccer balls including
air drag in the simulation. For soccer balls, the effect of air drag is more
pronounced mainly due to a larger cross-sectional area against the air. Note
that since the initial vertical speed was the same for all the trajectories,
the differences in flight time and distance travelled can be attributed to the
different approaching speeds.

Thus, how well can the GS model estimate the remaining TTC in
trajectories, including air drag? To answer this question, we simulated the
output of the GS model for the worst-case scenario previously simulated.
In that case, the GS model will yield the least accurate predictions. As
shown in Figure 4.9A, the trajectory most affected by air drag is when a
Soccer ball moves at the highest horizontal speed (Vz0 = 25 m{s).

To test the model’s accuracy, we used three different situations. In
the first one, the observer is stationary at the interception position under
gravity + air drag conditions (black dot in Figure 4.9A). In the second, the
observer is stationary at a midpoint between the fall point under gravity-
only and gravity + air drag conditions (black dot in Figure 4.9B). Finally,
we simulated a situation in which the observer is at the same “mid-point”.
However, in this case, the observer moves towards the intercept point at
a constant speed (8.13 m{s), 500 ms after motion onset (green arrow in
Figure 4.9A).

The output of the model for corresponding situations is depicted in
Figure 4.9B-D. In all cases, the GS model reflects initial temporal errors
corresponding to the difference in flight time between trajectories under
gravity-only and gravity + air drag conditions (see annotations within

86 of 194



Figure 4.9. A) Lateral view of different parabolic trajectories under gravity (grey
lines) and gravity + air drag conditions for two different balls (red: soccer ball;
blue: baseballs) and three initial approaching speeds (different panels). The figure
annotates the difference in distance travelled (Z∆) and flight duration (t∆) compared
to a trajectory only considering gravity. The black and orange dots in the third
panel indicate the position of the corresponding simulated observer in panels B or
C and D, respectively. The green arrow indicates the displacement simulated in
panel D. Panels B), C) and D) indicate the predicted TTC using the GS model for
different simulated observers in the worst-case scenario simulated. Insets depict the
corresponding temporal errors using the predictions of the GS model.
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Figure 4.9A). When the observer stands still in the interception location
(see Figure 4.9B), the GS model presents a high degree of accuracy during
most of the trajectory. For instance, 0.5 seconds before the collision,
the output converges to temporal errors of about 10 to 20 milliseconds.
However, if the observer stands still at the midpoint (see Figure 4.9C), the
model’s output deviates severely. In this case, the rate of change in the
predicted TTC remains consistently lower than -1. In principle, this pattern
could inform the observer that the interception point would be ahead of
their position. In contrast, when the observer heads towards the interception
location (Figure 4.9D), the model yield accurate predictions.

These simulations provide evidence that the output of the information
included within the GS model provides accurate and actionable predictions
of the remaining TTC when the observer remains stationary in the inter-
ception location or displaces towards the interception location. Therefore,
it could be used as a navigational strategy or to plan the final interceptive
action even when air drag is present.

Benefits and limitations of the generalization of the GS model

The GS model, like Tau, provides temporal information that may involve
certain predictive benefits compared to the error-nulling strategies within
the outfielder problem. Nevertheless, it also has some limitations that will
be addressed in this section.

First, the GS model is much more robust to sensory noise than Tau
(Gómez & López-Moliner, 2013). It uses the rate of change of the elevation
angle ( 9γ) to estimate the TTC instead of a much noisier variable, the rate of
expansion ( 9θ) upon which Tau relies.

Second, Tau only provides accurate estimates when the ball is moving at
constant speed towards the observer. In contrast, the GS provides accurate
estimates at launch independently of the observer’s position, which would
provide an initial accurate temporal information useful for planning the
action.

Third, the GS model overestimates the TTC for trajectories under air
drag as a function of the difference in flight time between trajectories under
gravity-only and gravity + air drag conditions. However, our simulations
show that in combination with the observer movement, temporal errors
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of less than 50 milliseconds are possible one second before collision (see
Figure 4.9D).

Fourth, in contrast with previous error-nulling strategies, the GS model
provides temporal information and can help compensate for the temporal
delays and occlusions due to its predictive nature. The TTC can be used
to adjust locomotion speed, inform of the remaining TTC under restricted
visibility conditions or plan the final manual interception. On its part, the
rate of change of TTC could be used to adjust the direction of movement.
In this sense, both signals are complementary. However, the viability of
the latter requires being able to detect changes in the rate of change of the
predicted TTC, which needs further research. Furthermore, the detection of
variations in the rate of change of TTC will likely incur delays. Therefore,
future studies should study to which extent the simultaneous TTC signal
can compensate for these delays.

Finally, the prediction from the GS model shares some limitations with
Tau; that is, dealing with non-spherical objects such as Rugby balls or
Frisbees would need further elaboration. However, some studies found that
those errors can be cancelled out by adding binocular information at the
latter stages of catching (Gray & Regan, 1998).

4.5 Evidence of prediction in eye behaviour and
manual interception

The main problem to find support for model-based controlled behaviour
is that, when possible, the observer would keep track of the trajectory
continuously (Oudejans et al., 1999; Postma et al., 2014). Indeed, this
is the case of the outfielder problem, for which there is only anecdotal
evidence of successful catchers directing away the gaze from the ball
(Chodosh et al., 1995). In this context, accurate actions would not allow
us to discriminate between information-based and model-based control
directly (Belousov et al., 2016). Because of that, we need to scrutinize
scenarios in which simple solutions such as heuristics or mappings between
sensory information and temporal correlates for temporal estimation or
action initiation are not available (Zhao & Warren, 2015).

One possibility to unveil the need for prediction in action control is to
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manipulate the target’s visibility. It is the most widely used experimental
manipulation to study the predictive nature of behaviour in interception
(Brenner & Smeets, 2011; de la Malla & López-Moliner, 2015; López-
Moliner et al., 2010; Sharp & Whiting, 1974; Spering et al., 2011; Whiting
& Sharp, 1974). Nevertheless, more natural conditions are essential to
understand how an observer could use temporal estimates to guide their
action. In natural conditions, our gaze is often shifted to different locations
to gather information that may be relevant shortly (Hayhoe et al., 2005). In
other contexts, a player would divert her gaze to check for deviations caused
by balls’ bouncing (Diaz et al., 2013) or confirm whether the ball was
appropriately hit (Mann et al., 2013). Some studies in manual interception
and temporal estimations gave the observer complete freedom to decide
which part of a trajectory they wanted to exploit visually while dealing
with alternative tasks (Aguado & López-Moliner, 2021b; Faisal & Wolpert,
2009; López-Moliner & Brenner, 2016). In those cases, where and when
the observer averts the gaze from the target may provide valuable clues
about the most relevant pieces of information according to task demands.
Therefore, future studies might investigate when people prefer to divert the
gaze from the ball while moving towards the interception location.

In some cases, it has been suggested the existence of privileged portions
of the trajectory available for an observer to judge TTC. For example, in
juggling or catching a ball, looking at the apex would provide the most
relevant information (Todd, 1981; J. Watson et al., 1992; Whiting, 1968).
However, a closer look at experimental data indicates that an observer does
not actively search for a particular position in the parabola. Instead, prefers
to use fixed temporal viewing windows generating priors during the task.
These priors could then be used to weight visual information or estimate
TTC when sensory information is unavailable (Aguado & López-Moliner,
2021b; Amazeen et al., 1999; López-Moliner & Keil, 2012).

For example, most studies show acceptable catching performance in
manual interception tasks for short flight durations no matter the section of
the trajectory viewed. However, visual information had to be captured at
least 200 ms before the catch to avoid sensorimotor delays (López-Moliner
& Brenner, 2016; López-Moliner et al., 2010; Sharp & Whiting, 1974). For
longer flight durations (up to 2 seconds), catching performance describes
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an inverted U shape with respect to flight duration (Amazeen et al., 1999;
Sharp & Whiting, 1974). If the observer can only see the ball well in
advance, performance would be low because the predictions decay rapidly
(Aguado & López-Moliner, 2021b; Binsted et al., 2006).

Zhao and Warren, 2015 reasoned that in the case of short flight dura-
tions, part of an observer’s performance could be explained by the observer
having learnt some of the regularities of a predictable trajectory mapping
optic variables with a temporal correlate. Still, this would indicate the
usefulness of developing priors during the task, which would be exploited
when online visual information is not available. However, the fact that an
observer exploits visual information when optic mappings are available
indicates that they prefer to update their predictions based on the latest
available visual information and combine it with evidence from previous
knowledge (Binaee et al., 2016; Mazyn et al., 2007). In the end, having a
rough prediction is better than none (Brenner & Smeets, 2018).

In this line, de la Malla and López-Moliner, 2015 proved that general
rules of integration apply to the estimation of the TTC, which means:
the observer integrates past and concurrent information to optimize the
precision of temporal responses in a continuous fashion (Dimitriou et al.,
2013; Liu & Todorov, 2007; Todorov, 2004). Assuming this is true, we
can use Kalman filters to predict an observer’s estimation of TTC and
response variability. A Kalman filter (Kalman, 1960) is a Bayesian tool that
estimates the state of a system combining new noisy estimates, a prediction
from prior measurements and a prior knowledge of how the system behaves.
Using this technique, we could estimate both the accuracy and precision of
online measurements for temporal judgments, manual interceptive tasks,
and more general interceptive tasks such as the locomotion within the
outfielder problem.

4.6 Future research

One of the main objectives of this work is to highlight the potential role
of prior knowledge in calibrating visual information in terms of actionable
predictions such as TTC. In our view, drawing predictions based on prior
knowledge is not just a reliable and accurate way to predict future states of
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the environment but also helps us override the need to use unreliable optic
cues (Cutting & Vishton, 1995). For instance: expansion rate ( 9θ) and thus
Tau (τ) might not be available at large distances, optic acceleration (:γ) is
hardly discriminable by humans and would not allow for the continuous
control of action (Werkhoven et al., 1992) even though some studies claim
that the values of optical acceleration available are large enough to be
detected (Babler & Dannemiller, 1993; Zaal et al., 2012); lastly, the litera-
ture is mixed with regards to the benefits of providing binocular disparity.
Because of these reasons, here we advocate for using the rate of change
in the elevation angle ( 9γ), which is very precise, in combination with an
internalized knowledge of gravity and physical size for the estimation of
TTC in the GS model.

Here, the GS model provides different contexts to test the information
included. For example, within the GS model, each contextual piece of
information, gravity or size, is either in the denominator or the numerator.
Hence, introducing proportional changes in the parameters governing the
trajectory would result in proportional errors in the estimates of the remain-
ing TTC. In a similar line, Jörges and López-Moliner, 2017 showed that an
observer might be able to extract information about the approaching speed
of a ball through estimations of the rate of change of the elevation angle
prior knowledge of gravity. Therefore, different values of gravity governing
a trajectory should influence the prediction of the interception location.

Moreover, using TTC discrimination tasks, it could be possible to study
if an observer can detect differences between trajectories under gravity-only
conditions and gravity + air drag conditions. Our simulations indicated a
Weber Fraction of about 7% for the GS output (see Figure 4.7). Therefore,
the difference in TTC should be above the discrimination threshold in some
cases, as depicted in Figure 4.9. Furthermore, decision tasks based on an
observer’s ability to decide if there is enough time to perform alternate
tasks (e.g. looking for teammates or running towards the interception area)
from early visual information might be essential to test the availability of
temporal estimates as a parameter to plan action for a broader range of
interceptive actions.

On another note, it might be interesting to investigate the use of the GS
model as a navigational mechanism. Since the GS model does not specify
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the interception location to plan interception in advance, we discovered a
continuous coupling to keep a constant rate of change of the predicted TTC.
To test if an observer would adapt locomotion to a constant rate of change,
we should introduce players into contexts in which the value of gravitational
acceleration or ball size do not correspond with the parameters assumed
a priori. As introduced above, changes in the parameters would result in
estimation errors of the remaining TTC. Thus, these manipulations would
lead to predictions of the path followed by the observer. Nevertheless, to be
able to use such a strategy, an observer might be able to detect deviations
from different rates of change in TTC. To our knowledge, there is no
previous work providing figures about how well people detect changes in
TTC. Thus, our ability to detect differences in the rate of change and the
time required to do so will need to be studied in future works.

To generate the suggested experiments, we need immersive and realistic
spaces. Virtual scenarios will provide ecologically valid contexts to evalu-
ate to what extent predictions influence interception. To do so, the use of
wireless head-mounted displays (HMD) and portable eye-trackers will be
essential. Head-mounted displays insert the participants into rich and con-
trolled environments already being used to train professional sports players
(Gray, 2017; D. Harris et al., 2020; Zaal & Bootsma, 2011). Combining
this technique with built-in eye-tracking systems provides access to how
players interact with the environment to gather relevant visual information
(Binaee et al., 2016; Moran et al., 2018). Those findings would still need to
be replicated in real life under full-cue conditions. However, augmented
reality devices are becoming more and more accessible and are likely to
become more widespread. Those results may not be fully transferable
to real life. However, it still would provide us information about human
performance interacting with increasingly in-demand devices with potential
applicability in a growing industry, eSports.
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5 Study 3: Flexible viewing time when
estimating time-to-contact in 3D parabolic
trajectories

Obtaining reliable estimates of the time-to-contact (TTC) in a 3D parabolic trajec-

tory is still an open issue. A direct analysis of the optic flow cannot make accurate

predictions for gravitationally accelerated objects. Alternatively, resorting to prior

knowledge of gravity and size can provide accurate estimates of TTC in parabolic

head-on trajectories, but its generalization depends on the specific geometry of the

trajectory and particular moments. The aim of this work is to explore the preferred

viewing windows to estimate TTC and how the available visual information affects

these estimations. We designed a task in which participants, wearing an HMD had

to time the moment a ball in a parabolic path returned at eye-level. We used five tra-

jectories for which accurate temporal predictions were available at different points

of flight time. Our results show that our observers can predict both the trajectory of

the ball and TTC based on the available visual information and previous experience

with the task. However, the times at which our observers chose to gather the visual

evidence did not match those in which visual information provided accurate TTC.

Instead, they looked at the ball at relatively fixed temporal windows depending on

the trajectory but not of TTC.

This study has been published as: Aguado, B., & López-Moliner, J. (2021b). Flexible
viewing time when estimating time-to-contact in 3D parabolic trajectories. Journal of Vision,
21(4), 9. https://doi.org/10.1167/jov.21.4.9
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5.1 Introduction

The time remaining before an object reaches a point of interest is called
TTC (time-to-contact). To estimate this parameter accurately is of great
importance, as it can be used for multiple actions such as avoiding collisions,
intercepting moving targets and, more generally, regulating one’s own
speed.

Previous literature has focused on the study of TTC for objects under
different visual conditions such as objects moving at a constant speed
in the fronto-lateral plane (Bootsma & Oudejans, 1993; Tresilian, 1994)
or moving towards the observer (Heuer, 1993; Lee, 1976; Wann, 1996).
In contrast, during the last decades, others have focused on the study of
gravitationally accelerated objects in free-fall (Lacquaniti & Maioli, 1989;
McIntyre et al., 2003; McIntyre et al., 2001; Zago et al., 2004), parabolic
motion in head-on trajectories (de la Malla & López-Moliner, 2015) or
fronto-parallel ones (Joerges et al., 2018; Jörges & López-Moliner, 2019).
However, the estimation of TTC for objects describing parabolas in the
more general case has not been systematically addressed. This is probably
due to the complex mapping between the distal three-dimensional trajectory
and the projected optic variables. The same optic pattern can be caused
by a multitude of sources in the external world (Pizlo, 2001) rendering the
interpretation of the real source of stimulation an ill posed problem known
as the inverse problem of vision (Kersten et al., 2004). This problem would
compromise an agent’s performance based on optic information alone.

A paradigmatic case in which the computation of TTC for a 3D flying
object is key is the so-called outfielder problem. In baseball, players known
as outfielders must catch a flying ball at a specific time and location avoiding
ground contact. The distances involved in this task and the size of the ball
render binocular cues and retinal expansion non-discriminable. Therefore,
it is usually assumed that only a reduced set of monocular cues are available
to guide action (Cutting & Vishton, 1995; Wilson et al., 2013; Zago et al.,
2008). To control the ball, some people advocate to keep task-relevant
sources of visual information invariant (Chapman, 1968; Fink et al., 2009;
McBeath et al., 1995). For example, Chapman (1968) realized that all an
observer had to do to control the ball is to keep the elevation angle (γ), that
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is, the vertical angle between ball’s position and an observer’s eye-level at
an increasing rate without passing over an observer’s head. These strategies
override the need to estimate parameters of the task such as the interception
area or TTC (Shaffer & McBeath, 2005). Nevertheless, this solution is
strongly dependent on concurrent sensory feedback. Because of that, it
fails to explain catching behaviour when the observer must turn the gaze
from the ball to run directly towards the interception area or look around
for a partner (Belousov et al., 2016).

It is known that continuous visibility is not particularly necessary to
make a catch (Chodosh et al., 1995). Instead, all that seems necessary
to catch a ball at hand is to see a portion of the trajectory large enough
to integrate positional and motion estimates (Elliott et al., 1994) before
the last 200 milliseconds in order to avoid sensorimotor delays (Keele &
Posner, 1968; López-Moliner & Brenner, 2016; López-Moliner et al., 2010;
López-Moliner & Keil, 2012; Sharp & Whiting, 1974). In this line, an
alternative question arises: is there any moment when viewing the ball is
most beneficial?

Previous mathematical analysis of the information provided in the optic
flow suggested that there are certain privileged positions that an observer
can exploit to judge the remaining TTC. For example, in the case of jug-
gling or catching a ball in a parabolic trajectory, kinematic information
around the apex would provide privileged information to predict the re-
maining TTC (Todd, 1981; J. Watson et al., 1992; Whiting, 1968). This
hypothesis was tested showing that, actually, the observers do not actively
search for a particular position during the course of the parabola. Instead,
they use fixed visibility windows to time the interceptive action when on-
line visual information is not available or reliable (Amazeen et al., 1999;
López-Moliner & Brenner, 2016; López-Moliner et al., 2010). However,
a problem with the studies reported above is that the balls were always
thrown towards the observer and the flight time was relatively short (e.g.,
less than a second). Therefore, actual predictions could be overridden
by learnt mappings between visual information and the remaining TTC
without the need to invoke computations by an internal model (Zhao &
Warren, 2015). In fact, the mathematical analysis mentioned above was
carried out in terms of Cartesian variables which, unlike optic variables, are
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not readily available to human experience. Therefore, it is first necessary to
explain how to move from optic to Cartesian variables in order to estimate
the remaining time to contact.

Over the last years, a growing body of literature has advocated for
the combined use of optic and prior information for the estimation of
TTC. A priori knowledge of an object’s size (Hosking & Crassini, 2010;
López-Moliner et al., 2007; López-Moliner & Keil, 2012) and gravitational
acceleration (Brouwer et al., 2006; McIntyre et al., 2001; Saxberg, 1987b)
has been suggested to calibrate the optic space into actionable estimates
of TTC (Gómez & López-Moliner, 2013) and approaching speed (López-
Moliner et al., 2007). Along these lines, Gómez and López-Moliner (2013)
proposed the so-called GS model. The GS model resorts to a combination
of contextual variables (ball size s and gravitational acceleration g) that
are assumed to be constant and known by the observer along with time-
dependent monocular cues present in the optic flow. The GS model resorts
to retinal size (θ), the elevation angle (γ), and it’s rate of change ( 9γ) to
obtain accurate estimates of TTC for head-on trajectories.

TTCGS «
2
g

s
θ

9γ

cospγq
(5.1)

A priori known ball size (s) combined with retinal size (θ) maps retinal
variables into Cartesian metrics. On its part, gravitational acceleration (g)
normalizes the rate of change of the elevation angle ( 9γ) into meaningful
estimates of TTC under arbitrary gravity values. As a result, the GS model
is an algorithm capable of signalling accurately TTC for trajectories on a
head-on approach throughout the entire flight (Gómez & López-Moliner,
2013). This is the case for the trajectory represented by a grey (thinner)
line in Figure 5.1.

However, when a projectile is not landing on the observer, the GS
model predictions are no longer accurate during all the ball flight, because
the elevation angle (γ) does not increase during the whole trajectory. As
an example, in Figure 5.1A the reader can see a top-view representation
of 5 different parabolic trajectories. Each trajectory presents a different
lateral offset and two different flight durations (see inset in Figure 5.1A).
Figure 5.1B and Figure 5.1C represent respective predictions and predicted
errors of the remaining TTC across time using the GS model. There the
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Figure 5.1. A) Top-view representation of the five different trajectories tested in
the study and a head-on approach (grey line). B) Predictions of remaining TTC
for each trajectory as a function of time elapsed since motion onset using the GS
model. Grey line constitutes near-perfect accuracy for a head-on trajectory using
the GS model. C) Prediction error for each trajectory using the GS model. Positive
errors indicate an overestimation of the remaining TTC and vice versa.

reader can see that the predictions drawn by the GS model depend on
the geometry of the corresponding trajectories (GS rel) and flight duration
(TTC). When the ball is launched at eye-level, the GS model signals the
remaining flight time accurately. Afterwards the remaining flight time
is overestimated (positive errors). At a certain time for each trajectory,
the predictions become accurate for a short period of time (indicated in
Figure 5.1B and Figure 5.1C with dashed lines). After that, the model
severely underestimates the remaining flight time rendering the predictions
invalid.

Figure 5.1B shows that these model predictions could be used as a
starting point to analyse if people can exploit the information used by the
model to estimate TTC, which can be performed accurately at different
proportions of flight time (see the key legend in Figure 5.1). As an example,
the visual information contained in the model would allow to estimate the
remaining TTC accurately by 1.5 or 1.75 seconds after launch for the blue
trajectory depending on the duration of the flight. These privileged time
points correspond with a 50% of total flight time passed (as indicated by
GS rel = 50%). In principle, if an observer is sensitive to the information
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included in the GS model and is able to improve the performance based
on feedback by using such privileged windows, it seems reasonable to
assume that the observer will look actively at the ball during these temporal
windows.

In this study we will explore whether observers are able to predict TTC
for parabolic trajectories of 3- and 3.5-seconds restricting ball’s visibility to
an initial window of 300 milliseconds and a second mid-flight window of
400 milliseconds that depends on the observer’s actions in each trial. With
this manipulation, we will explore the preferred windows for the estimation
of the remaining flight time. In that regard, the GS model can be used as a
reference since provides a different privileged temporal point to estimate
the remaining flight time for each trajectory. Then, we will explore if the
observers can estimate the remaining flight time with the visual information
available at the moments when they look at the ball. This will allow us to
test if their predictions conform to the GS model.

5.2 Methods

5.2.1 Participants

In this experiment, we tested ten participants (n = 12; 4 self-identified
women). They were between 21 and 32 years old. They had normal
or corrected-to-normal vision. All of them were naïve to experimental
goals and volunteered to take part in the experiment. This study is part of
an ongoing research program that has been approved by the local ethics
committee of the University of Barcelona in accordance with the Code of
Ethics of the World Medical Association (Declaration of Helsinki).

5.2.2 Materials

Apparatus

The experiment was run by an Intel i7-based PC (Intel, Santa Clara, CA).
The stimuli were rendered by an NVIDIA GeForce GTX 1070 and sent
for display to an HTC Vive Pro head-mounted display at 90 Hz per eye.
HTC Vive Pro has a Field of view (FOV) of about 100 horizontal degrees
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and 110 vertical degrees. Head position and rotation was recorded by two
SteamVR BASE STATION 2.0 at 90 Hz (see a representation of the setup
in Figure 5.2A).

Figure 5.2. A) Representation of the back view inside the environment of the
experimental setup. B) Representation of the course of two typical trials. 1: The
ball is visible for 300 milliseconds after launch. 2: When looking at the floor, an
arrow lights up indicating the correct controller for using in the timing task. 3: The
viewer decides when to look up again for the ball (visible for 400 milliseconds). 4:
The observer receives feedback about the temporal task ("early," "good" or "late")
and the use of the correct controller (blue or red colour panels).

Head rotation was defined using a 3-axis system: yaw, pitch and roll.
Assuming that the observer keeps the roll axis constant, the rotation over
the pitch axis corresponds to a change in gaze vertical direction and rota-
tion over the yaw axis corresponds to horizontal changes in gaze direction.
Since we will be referring to both ball’s angular position and gaze direction,
hereafter we will refer to yaw as βgaze (horizontal) and pitch as γgaze (verti-
cal) to ease the interpretation of results (see Figure 5.3). Note that gaze is
inferred from the position of the head, no eye-tracking device was used.

Latency between head movement and visual feedback is about 30 mil-
liseconds whereas controller latency is about 15 milliseconds (Chénéchal &
Goldman, 2018). Both should render almost negligible effects in the case
of the present experiment because we are using flight times of 3 and 3.5
seconds.
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Figure 5.3. A) Representation of ball’s position (solid lines) and gaze direction
(dashed lines) across time. Blue and red lines indicate horizontal and vertical
angles, respectively. The red area indicates ball’s visibility windows. Note that
the mid-flight visibility window depends on an observer’s gaze (threshold at -20
degrees). The green area indicates the visibility of the arrows on the floor (threshold
at -40 degrees). The ball was always occluded 300 milliseconds before returning at
eye-level again (horizon).

5.2.3 Stimulus

Our stimulus consisted of a Soccer ball (radius = 0.11 m) moving frontally
along the 3 dimensions on parabolic trajectories. The ball was frontally
and vertically aligned with the observer’s eye level at the beginning of each
trial to account for posture changes during the experiment.

Flying time was set to 3 seconds for 5 out of 6 trials. However, in order
to prevent observers from developing rhythmic responses, a second flight
time of 3.5 seconds was randomly interleaved in a proportion of 1 out of 6
trials.

We explored the 10 different trajectories shown in Figure 5.1A corre-
sponding with a combination of 5 different initial positions in depth (Zinit=

23.49, 24.23, 25.16, 26.24, 27.47 m.) and two flight times (see inset within
Figure 5.1A). Each initial distance corresponds with a lateral final position
relative to the observer (Xend= 15.09, 12.53, 10.06, 7.71, 5.53 m. either
left or right) and depth position (Zend= -4.53, -5.01, -5.03, -4.63, -3.87
m.) both with a final height at eye level. Each trajectory was tailored to
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predict perfect accuracy by the GS model at different temporal moments
corresponding to a 30, 40, 50, 60, 70 % of the flight time elapsed, that is,
0.9, 1.2, 1.5, 1.8, 2.1 s. and 1.05, 1.4, 1.75, 2.1, 2.45 s. for trajectories of 3
and 3.5 seconds of flight time respectively.

A detailed scene was stereoscopically displayed providing cues for
relative distance, retinal size (θ) and cardinal motion angles (horizontal:
βball, vertical: γball). Note that from now on we will use βball and γball to
denote ball’s angular position in the horizontal and vertical axis with respect
to the observer and ball’s initial position. See Figure 5.3 for a combined
representation of ball’s angular position and gaze direction. Figure 5.4
represents βball and γball across time in our experimental trajectories. Note
that horizontal angles larger than 90 indicate that the ball is behind the
observer under the initial frame of reference assuming that the observer
does not rotate. Gravitational acceleration was set at 1g (9.807 m⁄s2, the
standard at sea level). Complex dynamic effects such as air resistance, and
Magnus effects were neglected. Therefore, horizontal and depth move-
ment remained constant during the same trial. No embedded rotation was
simulated.
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Figure 5.4. Horizontal and vertical ball’s angular position for the trajectories
present in this study under both flight durations. Dashed vertical lines indicate the
privileged time points specified by the GS model.
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5.2.4 Procedure

The main events present in the task can be described as (for a graphic
representation see Figure 5.2B and Figure 5.3):

1. A Soccer ball appeared frontally aligned with the observer. After
450-550 milliseconds standing still on a pole, the ball was launched
and remained visible for 300 milliseconds (first visibility period in
Figure 5.3). Note that the ball keeps moving in space even when
non-visible.

2. After this 300 milliseconds interval, the participants were instructed
to look at the floor, where there will be an arrow lighting up to
indicate the proper commander in that trial to perform a temporal
judgment. The arrows remain visible if the head’s angle is less than
-40 deg in γgaze (γgaze within the green zone in Figure 5.3).

3. While looking at the floor, they were instructed to freely decide
when to look for the flying ball. As soon as they looked up (crossed a
fixed threshold at -20 deg. of γgaze), the ball reappeared and remained
visible for a fixed period of 400 milliseconds (second visibility period
in Figure 5.3).

4. The ball was always occluded 300 milliseconds prior to returning
at eye-level (horizon). After ball’s occlusion, the observers had to
estimate when the ball would return at eye-level by pressing a button
with the proper commander. A trial was considered as a hit if the
error of the temporal judgement was within ˘ 50 milliseconds (3.3%
of 3 seconds). We provided feedback for both, the use of the proper
commander and whether the response corresponded to a hit or a miss
(early or late response).

All subjects completed 6 blocks of 120 trials in length. Each trajectory
was presented 24 times per block (20 test trials and 4 control trials in
which flight time was 3.5 seconds). The participants completed between
15-30 training trials before the main experimental procedure in order to
familiarise themselves with the task. The researcher did not act as a model
for the participant, that is, he did not solve the task in the presence of the
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participant. Instead, the participants were always encouraged to "explore
different strategies" and encouraged to "freely choose when to look up for
the ball to obtain relevant information for the timing task".

5.2.5 Data Preparation and Analysis

Data preparation and analysis was performed using R (R Core Team, 2020).
We filtered out outliers using a 1.5 IQR interval based on the response time
grouped by subject, trajectory, and flight duration. This procedure removed
342 trials (3.96% of the total).

We checked that ball’s relative direction with respect to the observer did
not influenced the preferred viewing time (t(8295.7) = -0.403, p = 0.687)
or response time (t(8263.8) = -0.459, p = 0.646), the two main variables in
our study. Then, for the sake of simplicity, we used the absolute value of all
the spatial related quantities for further analysis and visual representations.

Then, we tested our hypothesis using Linear Mixed Modelling functions
from lme4 (Bates et al., 2015) package. We used Linear Mixed Models
to discriminate between effects in the whole population (random-effects)
and effects for each experimental condition or subgroup in the population
(fixed effects). Furthermore, we used a Deming regression present in the
mcr (Manuilova et al., 2021) R package to fit linear models with measure
errors in both x- and y- axis.

5.3 Results

5.3.1 Could the observers predict the trajectory?

In our experiment, the ball reappeared in the second period of visibility for
just 400 milliseconds. Therefore, the observers should predict future ball’s
position picking up information within the first 300 milliseconds.

Due to our experimental design, the ball reappeared when vertical gaze
direction (γgaze) crossed a fixed threshold of -20 deg. Thus, we cannot use
this variable directly to check the quality of the prediction. Alternatively, if
our participants were able to predict ball’s vertical position, the vertical rate
of change in gaze ( 9γgaze) at ball’s reappearance would be linearly related to
the position of the ball in the vertical axis (γball). To test this hypothesis, we
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adjusted a Linear Mixed Model with ball’s vertical angular position (γball)
as a predictor (fixed effect) of the vertical rate of change in gaze ( 9γgaze).

Furthermore, if our observers were able to predict ball’s position in the
horizontal axis, the horizontal position of the ball (βball) at reappearance
must be linearly related to the horizontal direction of gaze (βgaze). To test
this hypothesis, we adjusted a Linear Mixed Model in which we used ball’s
horizontal angular position (βball) as a predictor (fixed effect) of horizontal
gaze direction (βgaze).

For both models we introduced participant as random effects. The
Linear Mixed Models were specified as:

βgaze „ βball ` p1|Participantq (5.2)

9γgaze „ γball ` p1|Participantq (5.3)

To check whether our participants used their predictions to guide their
gaze, we compared the previous Test models with Null models only includ-
ing the random term:

βgaze „ p1|Participantq (5.4)

9γgaze „ p1|Participantq (5.5)

A Likelihood Ratio Test showed that both Test models are significantly
better at predicting gaze direction for the horizontal meridian (χ2(1) =
1460.82, p < 0.001, BICNull= 62443, BICTest= 60991) and the vertical
meridian (χ2(1) = 12.70, p < 0.001, BICNull= 89759, BICTest= 89756)
indicating that our participants were able to predict different ball positions
across trajectories. This pattern can be interpreted in Figure 5.5, in which,
horizontal gaze direction (βgaze) and vertical rate of change in gaze direction
( 9γgaze ) are linearly related to the position of the ball in both axis (βball and
γball).

A closer look at Figure 5.5A points out that one of the participants
(s_12) seems to behave differently from the rest. To illustrate in which
sense the behaviour of s_12 is different from that of the average subject,
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Figure 5.5. A) Gaze horizontal position as a function of ball’s position at reappear-
ance. B) Gaze rate of change in the vertical axis as a function of ball’s position in
the vertical axis. Both panels depict angular measures. Each trajectory (GS rel) is
indicated with a different colour whereas shape indicates flight duration (TTC). The
grey lines denote the best linear fit per participant. The grey dashed line in Panel A
represents the identity line.

we produced Figure 5.6. Figure 5.6 represents how ball’s position and gaze
direction unfolds across time for the average participant (s_6) and s_12
The average participant (s_6) keeps the horizontal gaze direction (βgaze)
fixed until the participant decides to look for the ball. From that moment
on, the participant tries to keep the ball centred horizontally for the rest of
the trial. In contrast, s_12 rotates horizontally close to the position where
the ball will fall at eye-level while the ball is still occluded. Then prior to
ball’s reappearance s_12 predicts ball’s current position and try to keep the
ball centred horizontally during the visibility window.

5.3.2 When do participants prefer to look at the ball?

Do different trajectories influence the moment at which the observers prefer
to look for the ball? To analyse if this were the case, we tested whether
our participants would change their preferred viewing time (from now on
tVisible) across flight duration (TTC) and trajectory (GS rel). The preferred
viewing time is defined as the first point in time at which the ball reappears
from motion onset (t “ 0). To do this, we fitted a Linear Mixed Model
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Figure 5.6. Representation of ball’s position (solid lines) and gaze direction (dashed
lines) in the horizontal (blue) and vertical (red) axis across time for two different
participants s_6 and s_12.

predicting the preferred viewing time (tVisible) with trajectory (GS rel) and
flight duration (TTC) plus their interaction as predictors (fixed effects).
Participant was introduced as random effects.

tVisible „ TTC ¨ GS rel ` p1|Participantq (5.6)

To test whether our participants exploited different windows depending
on the trajectory, we compared the Test model with a Null model only
including the random term:

tVisible „ p1|Participantq (5.7)

A Likelihood Ratio Test proved that the Test model fits significantly
better than the Null model (χ2(3) = 65.68, p <0.001, BICNull= -2763,
BICTest= -2802). These results indicate that our participants decided when
to look for the ball depending on the conditions present at launch (see
Figure 5.7A).

Our results point out that the trajectory influenced when the participants
preferred to look for the ball (GS rel : Coef. = 0.118, SE = 0.017, CI95% =
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model. The error bars denote ˘ a standard deviation. B) Mean preferred viewing
time (tVisible) across blocks per participant (small dots) and group of participants
(big dots).

0.085 – 0.151, t = 6.872). However, neither flight duration (TTC: Coef. =
0.029, SE = 0.022, CI95% = -0.014 – 0.072, t = 1.308) nor the interaction
term (TTC ˆ GS rel: Coef. = -0.016, SE = 0.042, CI95% = -0.098 – 0.066,
t = -0.383) reached significance. Hence, our results indicate that our
participants adjusted the preferred viewing time to the trajectory but not to
the duration of the flight, which is not unexpected since one value of flight
duration (3 seconds) was more frequent than the other (3.5 seconds) on a
ratio of 5 trials against 1.

As the reader could recall, the GS model allows for accurate estimates of
the remaining TTC for the trajectories present in this experiment at different
points in time. Specifically, at time points from 30% to 70% (by steps of
10%) of elapsed flight duration. If our participants were exploiting these
privileged time points (dashed lines in Figure 5.7A), viewing time should
change for both: trajectory (GS rel) and flight duration (TTC). Concretely,
viewing time, tVisible would be centred around the corresponding (same
colour) dashed lines in Figure 5.7A. However, by simple eye inspection of
Figure 5.7A one can notice that the observers use relatively fixed viewing
windows and quite independent from those predicted by the GS model. This
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was so, despite the fact that their variability could have allowed them to
discover, at least, two privileged time points per flight time (In Figure 5.7A
the error bars indicate ˘ a standard deviation).

It could be argued that our observers did not adjust ball’s visibility
to different flight durations because there was not enough information to
predict TTC in the initial period of visibility. At motion onset the rate of
change of the elevation angle ( 9γball) is larger for longer flight durations
which translates into higher trajectories. Therefore, at ball’s reappearance
the rate of change in vertical gaze direction ( 9γgaze) should be different
between flight durations, and this was exactly the case (t (2010.6) = -4.612,
p < .001). Therefore, our observers predicted differences in ball’s vertical
position across different flight durations. This result points out that the
information needed to estimate different flight durations was available from
motion onset.

Further exploratory analysis showed that our participants could be
divided into two different groups. Those who looked at the ball before 1.5
seconds since motion onset (early viewers; from s_1 to s_7) and those who
looked after 1.5 seconds (late viewers; from s_8 to s_12). For the sake
of simplicity, participants’ labels were ordered according to the average
time at which the ball reappeared, with s_1 preferring to see the ball earlier
and s_12 preferring to see the ball later on average. In this regard, a visual
comparison across blocks seems to indicate that the participants changed
the viewing time throughout the experiment emphasizing the differences
between the two groups (see Figure 5.7B). These results are consistent with
previous studies in which the observer is free to choose when to gather
visual information. Under these conditions, an observer usually explores
different viewing windows but ends up exploiting a fixed visibility time
window to solve the task (López-Moliner & Brenner, 2016).

5.3.3 Is response time affected by different flight times?

We have just shown that participants can discriminate both flight durations
with the initial information at ball’s launch. However, our participants used
a relatively fixed viewing time to see the ball. In the same line, we should
test whether their temporal responses could be explained by using some
constant criterion, mapping their actions with a fixed time to solve the task.
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This simple strategy, however, would result in the same response time for
both flight times. Instead, if they were using some prediction based on the
last moments of visibility, we would expect different response times for
the two flight durations. To test this hypothesis, we fitted a Linear Mixed
Model predicting ResponseTime with flight time (TTC) as predictor (fixed
effect) and participant as random effects.

ResponseTime „ TTC ` p1|Participantq (5.8)

Then, we compared the previous model with a Null model only includ-
ing the random term:

ResponseTime „ p1|Participantq (5.9)

The Test Model proved to fit significantly better to our experimental
results than the Null model (χ2(1) = 1922.96, p < 0.001, BICNull= 2402,
BICTest= 488). The intercept for the Test model is 2.988 (S E = 0.018,
CI95% = 2.954 – 3.023, t = 162.69) and the coefficient for TTC, that
is, the difference between mean response time for trajectories of 3 and
3.5 seconds is 0.34 (S E = 0.007, CI95% = 0.326 – 0.354, t = 46.52).
Figure 5.8A depicts mean response time per participant and flight time
(different shapes). These results show that our participants were able to use
different predictive information for the two trajectories. But which sources
of visual information were available to perform this prediction?

To answer the previous question, we computed the average difference
for each optic cue between both flight durations in the last frame the ball
was visible. Then, we obtained the proportion of change per optic cue and
inferred whether an observer could use such differences to discriminate both
flight durations (TTC). Previous studies have shown that human sensitivity
to changes in retinal size (θ), elevation angle (γ) and the rate of change
of the elevation angle ( 9γ) is very high, discriminating differences of «

5% (Weber fraction) (McKee, 1981; McKee & Welch, 1992; Regan &
Kaushal, 1994). Thus, we use this value as a threshold to infer if each
visual cue might be readily available to be used for prediction. Our results,
as depicted in Figure 5.8B, indicate that all the optic cues considered were
discriminable between flight durations. In this sense, since all the variables
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Figure 5.8. A) Response time as a function of flight duration (colour and shape
code). Big dots indicate the average across participants. Smaller dots indicate the
average per participant. B) Mean difference in percentage between flight durations
(TTC) per visual cue and the combination of cues (GS model). The red area
denotes differences that cannot be discriminable (lower than ˘ 5%). Big black
dots represent the average difference across participants. Small dots represent the
average difference per participant.

included in the GS model can be discriminated, our results sustain the
possibility of combining optic variables in the form of the GS model, which
as well, results in a discriminable output for all participants. But how well
did early and late viewers estimate the remaining flight time?

For both flight durations, late viewers reflect a better performance in
terms of hit rate (Figure 5.9A). However early viewers are more accurate
estimating 3 second trajectories (Figure 5.9B). This seems rather contra-
dictory. Thus, what could explain this pattern? Besides the mean error,
we also need to take into account the precision in the response (error vari-
ability). Figure 5.9C shows hit probability against the standard deviation
(SD) of response time. The most precise participants were also the most
successful for trajectories of 3 seconds. This can be explained by the decay
of prediction on the response variability (de la Malla & López-Moliner,
2015). To confirm this possibility, Figure 5.9D displays the hit probability
as a function of the response time since the time of prediction. We defined
the time of prediction as the midpoint within the visibility window at which
the observer preferred to look at the ball. For 3 second trajectories, those
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who relied on longer predictions also present the lower hit probability.
Therefore, the prediction decay may explain why late viewers present a
higher hit probability.
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Figure 5.9. A) Hit probability per flight duration (TTC) and group of participants.
B) Response time per flight duration (TTC) and group of participants. In panels A
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indicates the average per participant. C) Hit probability as a function of the SD of
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For 3.5 second trajectories, most participants underestimate the remain-
ing TTC (Figure 5.9B). This underestimation can be explained by the mean
response time being pulled down towards the more frequent TTC. In this
case, the early viewers seem to underestimate more the remaining TTC
than late viewers explaining their performance in terms of hit probability
for trajectories of 3.5 seconds (Figure 5.9A).
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5.3.4 Are their estimates consistent with the use of infor-
mation in the GS model?

Our participants seem to be using relatively fixed temporal windows to
look for the ball instead of the privileged viewing times specified by the
GS model. Besides that, the predictive capacities of the model allow us to
study the correspondence with our participants’ responses. Figure 5.10A
reminds us of the model predictions; the predicted remaining flight time as
a function of the time elapsed since motion onset. In the example present
in Figure 5.10A, the vertical red line denotes the midpoint of the visibility
window («200 ms. after ball’s reappearance). We computed this moment
on a trial-to-trial basis as the time at which the observer gather visual
information to draw predictions about the remaining flight time.
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Figure 5.10. A) Predictions of remaining flight time using the GS model as a
function of the time elapsed since motion onset and trajectory. The dashed vertical
lines indicate the privileged time points specified by the GS model. The vertical
red line indicates an example of midpoint visibility time. B) Response time since
the time of prediction as a function of the predictions of the model at the viewing
window per trajectory (colour code) and participant. The coloured lines indicate
single fits per trajectory. Big dots indicate the average per participant and trajectory.

To test if the estimated remaining time at the viewing window correlates
with the prediction of the model, we fitted a Deming linear model to
the response time since the central moment of the viewing window as a
function of the prediction of the model at the same viewing window. We
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did so per participant and trajectory (GS rel). Individual fits are represented
in Figure 5.10B. The confidence interval for the pooled slopes across
participants and trajectories does not contain zero (CI95%: 0.387 - 0.852).
This result points out that initially there is a relation between the response
time since the viewing window and the predictions of the GS model.

Furthermore, the remaining flight time predicted by the model is differ-
ent across trajectories: the vertical red line (viewing window) intersects the
prediction of the GS model at different predicted values per each trajectory.
Concretely, the GS model predicts longer flight durations for those trajecto-
ries in which the privileged time takes place later after motion onset (e.g.
yellow line in Figure 5.10A). Unlike the previous analysis in which we
fitted a linear model within trajectories, we now fitted a linear model across
trajectories. We used a linear mixed model with the trajectory (GS rel) as
fixed effect (predictor) and participant as random effects. The fitted slope is
positive and different from 0 (GS rel: Coef. = 0.322, S E = 0.025, t = 13.111,
CI95% = 0.273 - 0.371). These results can be inferred in Figure 5.10B, in
which the average response time since the viewing window is larger for
those trajectories where the privileged time takes place later. However,
one participant (s_9) does not seem to follow this overall trend (see Fig-
ure 5.10B). Because of that, it is important to note here that we cannot rule
out the possibility that an observer may be using simpler strategies based
on mapping some available optic cues to the temporal response (Zhao &
Warren, 2015).

Finally, since the GS model predicts different moments for which
the estimation of the remaining flight time is accurate, we decided to
check whether when people look at the trajectory closer to those privileged
windows leads to some benefit in terms of the temporal error. To do so, we
used the median to split the trials per participant and trajectory depending
on how close/far they looked at the trajectory with respect to the privileged
time specified by the GS model (i.e. 50% closer vs. 50% far). The mean
error for the closer trials (-0.031 s.) is smaller than the mean error for the
far trials (-0.045 s.)(t(8264.7) = 2.371, p = 0.018). Therefore, these results
indicate some benefit for when the observer looks at the trajectory closer to
the privileged time points specified by the GS model.
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5.4 Discussion

We humans normally track a ball to catch it on the fly. Nevertheless, there
are times when this is not possible because we need to divert our gaze
somewhere else. By studying the behaviour and performance mimicking
these situations, we might gain important insights into how people cope
with these scenarios. In this work, we analyse a task in which observers
had to judge TTC on the basis of a short periods of visual information.
This is a very demanding task in which the participants had to predict ball’s
position in flight in order to capture the necessary information to estimate
the remaining TTC. Our task tries to capture situations in which players
control a ball in a parabolic flight while looking elsewhere searching for a
teammate.

If possible, an observer will try to reduce the use of an off-line (pre-
dictive) strategy by always keeping the ball visible (Brenner & Smeets,
2011; Mazyn et al., 2007). Continuously updating predictions increases
reliability (Snowden & Braddick, 1991) and lessens perceptually-driven
errors (Belousov et al., 2016; Binaee & Diaz, 2019; de la Malla & López-
Moliner, 2015; de la Malla et al., 2018) which explains why our behaviour
changes when unexpected perturbations occur (Fink et al., 2009). However,
the present task requires a predictive component at all stages.

Congruently with previous literature (Diaz et al., 2013; Jörges & López-
Moliner, 2019), our findings show evidence that people can successfully
use visual information from a short visibility period at motion onset to
predict future balls’ positions and likely TTC. After that, restricting mid-
flight visibility to a brief window forced our participants to focus on and
exploit useful visual information for the estimation of TTC. Previous
studies had already shown that it is only necessary to see a short portion
of the trajectory to catch a ball (López-Moliner et al., 2010; Whiting &
Sharp, 1974). But here we provide further evidence that, there is enough
information to estimate TTC despite of the viewing window that is chosen
to extract visual information. In this line, the estimations of the remaining
flight time are related to the predictions by the GS model and consistently
biased across trajectories in the expected direction. However, we cannot
rule out the possibility that an observer may be using simpler strategies

115 of 194



based on temporal mappings between different optic cues and the temporal
response (Zhao & Warren, 2015).

Gathering visual information in advance can be useful for action plan-
ning when a secondary activity has to be performed. However, in our
experiment, those participants relying on longer predictions (early viewers)
were also more affected by the average flight time and prediction decay.
In contrast, those who preferred to see the ball at the very last-minute
(late viewers) showed less response variability. This difference seems to
be responsible for the better performance of late observers. Nevertheless,
despite of the preferred viewing time all our observers preferred to look
at the ball in relatively fixed time windows regardless of TTC and the
privileged time point specified by the GS model. Why did they decide to
look for the ball at those specific moments?

Likely, our participants may not be sensitive to the improvement in hit
rate resulting from the use of the visual information within the privileged
time points. If the privileged time occurs well before the response, response
variability may hinder the detection of an increase in accuracy. Moreover,
due to the interleaved presentation of trajectories, our experimental design
may have prompted our participants to adopt a unitary strategy to exploit the
available visual information rather than taking advantage of the privileged
windows specified by the GS model (Amazeen et al., 1999; López-Moliner
& Brenner, 2016; López-Moliner et al., 2010). Under this rationale, our
observers would be less likely to correct the preferred viewing time. Instead,
they would prefer to correct their temporal estimates on a trial-to-trial basis
(López-Moliner et al., 2019; Shadmehr et al., 2010).

An important consideration concerning this study is the possible per-
ceptual distortions introduced by immersion in virtual reality (VR) wearing
a head mounted display. A number of studies have shown that the perceived
space in VR is compressed, presumably due to a conflict between accom-
modation and disparity signals (Hoffman et al., 2008). This could explain
why TTC is consistently underestimated when the estimations are guided
by a combination of binocular variables (the rate of change of disparity)
and an estimate of distance (Gray & Regan, 1998; Lages, 2006; Rolin et al.,
2018). Nevertheless, the geometric layout in our experiment would reduce
the impact of spatial compression since distance is uninformative of TTC
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in parabolic trajectories with a lateral offset. In line with the GS model,
we think that cardinal monocular variables (horizontal and vertical angles:
β & γ) are more likely to be used in the estimation of TTC and future
positions of the ball. For example, viewing the ball peripherally may bias
and reduce the reliability of elevation angle estimates (γ) (Crowell & Banks,
1996) leading to systematic errors in the estimation of the remaining flight
time. However, the direction in which visual eccentricity translates into
systematic errors might need to be addressed in further studies in which
temporal visibility and visual eccentricity can be decoupled.

Tracking a ball visually typically requires the use of both, head and eye
movements (Mann et al., 2013). However, in our study, we only have data
on head’s direction. It is known that eye movements can be quite different
from head tracking in interception tasks. Usually, eye movements reflect
a predictive component that seems to improve visual pursuit and reflects
predictions of a future position of an object at key moments (Diaz et al.,
2013; Jörges & López-Moliner, 2019; Mann et al., 2013). An analysis of
eye movements could have allowed us to be more precise analysing how the
quality of visual tracking improves the estimation of TTC. Furthermore,
analysing eye-movements at key moments such as ball’s reappearance or
the moment the ball falls at eye-level would be interesting to shed light on
the predictive component of visual function for the control of interception
tasks.

5.5 Conclusion

Our data indicate that the observers are able to use a predictive strategy
to estimate both the position of the ball in flight and the remaining flight
time using the visual information available during short visibility windows.
To estimate the remaining TTC from a mid-flight visibility window, our
observers preferred to use fixed temporal windows that might help them to
interpret visual information combined with their previous experience.
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6 Study 4: Prediction based on a gravity and
size prior explains temporal errors and
heading locomotion for catching

Catching a flying ball usually requires a locomotion phase towards the inter-
ception area and a manual interception phase. An initial prediction of the position
and time of interception would allow planning the action overcoming sensorimotor
delays and the variability in the visual information related to an observer’s move-
ment. In this work, we present a novel formulation in which a spatial-temporal
prediction of time-to-contact and interception location is computed combining optic
cues and gravitation and ball size knowledge. Previous literature suggested that
the interpretation of visual (optical) information would rely on prior knowledge
about constants in the world (Earth gravitational acceleration or ball size) to obtain
relevant predictions. If such interpretation occurs, consistent deviations are to be
expected when the task parameters do not correspond to the ones expected a priori
by the observer. In this chapter, we studied if such deviations would be reflected in
both phases of ball catching. To do so, we introduced our participants to a virtual
environment using a head-mounted display (HTC Vibe @ 90 Hz). A combination
of three gravitational accelerations (9.807 m{s2; ˘ 10%), three different ball sizes
(0.22 m diameter; ˘ 10%) and ten different parabolic trajectories around an ob-
server’s initial position were presented. We asked our participants to move as if
they were to head the ball in flight. After 90% of the flight time passed, the ball
was occluded from view. Then, the observers had to judge the time-to-contact with
eye-level using a controller while moving towards the interception location. We
show evidence that the temporal errors incurred by our participants correspond
to expected from using prior knowledge of gravity and ball size. Furthermore,
we found evidence that gravitation had an effect on locomotion congruently with
predictions of the interception location.

The present study is being prepared for submission
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6.1 Introduction

Catching a ball on the fly is an interception problem that requires two
distinct phases. The first is a locomotion phase towards the place where
interception is available. The second is a manual interception phase. Even
though the first phase has been repeatedly addressed as a case of study
known as the outfielder problem (Chapman, 1968; Michaels & Oudejans,
1992; Todd, 1981), the influence of the locomotion phase on the visual
information sampled to perform the final interceptive action has been largely
neglected.

Traditionally, different perspectives would emphasize how an action
is controlled based on an online or a model-based control. An online
control perspective would envision locomotion and manual interception as
independent modules controlled by different sources of sensory information
(Fink et al., 2009; McBeath et al., 1995; Peper et al., 1994). In contrast, the
model-based perspective would assume that the visual feedback acquired
in one phase would serve to refine the action in subsequent phases (Aguado
& López-Moliner, 2021a; Kwon et al., 2015) consistently with stochastic
control theory (Belousov et al., 2016; de la Malla & López-Moliner, 2015;
Todorov, 2004). However, repeated comparisons between both perspectives
have shown that neither is superior to the other (Belousov et al., 2016; Höfer
et al., 2018). Instead, each one would be able to account for some aspects
better.

In line with a model-based perspective, predicting the trajectory fol-
lowed by the ball (Saxberg, 1987a, 1987b) could allow us to plan our
actions. In this respect, there is a debate as to whether reconstructing and
predicting a parabolic trajectory is possible or even necessary (Aguado &
López-Moliner, 2021a; Fink et al., 2009; Zhao & Warren, 2015). Expert
sports players can not describe how visual cues unfold for a parabolic tra-
jectory (Shaffer & McBeath, 2005). Nevertheless, there are sound reasons
to assume that such computations may be available for action (Gómez &
López-Moliner, 2013; Zago et al., 2009) and, in fact, necessary to avoid
sensory-motor delays (Hayhoe et al., 2005; McIntyre et al., 2001; Nijhawan,
1994; Todorov, 2004).

So far, computational models simulated catching based on Cartesian
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variables (Belousov et al., 2016; Höfer et al., 2018). However, previously it
might be necessary to explore a way to estimate parameters of a task such as
the time-to-contact or the interception location based on visual information.
Translating retinal information into parameters of the world to act upon is a
common problem in vision research (Kersten et al., 2004; Pizlo, 2001). At
this respect, the knowledge of different constants in the environment such as
such as gravitational acceleration (Jörges & López-Moliner, 2017; McIntyre
et al., 2001; Moscatelli et al., 2019), object size (Berkeley, 1709) or even
zero-net motion (Stocker & Simoncelli, 2006) have been suggested to
calibrate visual information to allow the estimation of spatial and temporal
estimates (Aguado & López-Moliner, 2021a; Ittelson, 1951; López-Moliner
et al., 2007). However, only the temporal side of the problem has been
addressed in the literature (Aguado & López-Moliner, 2021a; Gómez &
López-Moliner, 2013). In the following sections, we will describe the
necessary computations to estimate the time-to-contact and the interception
location in the x-z plane at the eye’s height accurately.

6.1.1 Time-to-contact estimation

The GS model (Gómez & López-Moliner, 2013) proposes a solution to
estimate the time remaining until the ball returns to eye-level in parabolic
trajectories, that is, the time-to-contact. This algorithm relies on a com-
bination of optic variables such as retinal size (θ) and the elevation angle
(γ) (see Figure 6.1A) calibrated by internalized a priori variables such as
Earth’s gravity (G) and ball’s size (s) in seconds.

TTCGS «
2
G

¨
s
θ

¨
9γ

cospγq
(6.1)

The correspondence between the a priori assumed variables with the
task’s parameters assures the accuracy of the predictions. However, if
the trajectories’ parameters do not correspond to the assumed priors, the
resulting calibration would lead to systematic errors. Hence, if either
gravitational acceleration or ball size is different from the assumed ones,
the predicted time-to-contact would be misestimated. For example, given
a constant time-to-contact, the initial vertical speed is larger for greater
gravities governing the motion (dark blue parabola in Figure 6.1B). In that
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Figure 6.1. A) Representation of the main primitive monocular variables available
in a parabolic trajectory: Retinal size (θ), the elevation angle (γ) and bearing angle
(β). B) Sketch of the conditions tested in the present work and a collision course
trajectory (not tested here). We presented 5 trajectories directed to both sides (dots
colour code), 3 gravities and 3 ball sizes.

case, an observer assuming terrestrial gravity would interpret a larger initial
vertical speed as if the remaining time-to-contact were greater either. On
the other hand, larger ball sizes would have the opposite effect: a general
underestimation of the time-to-contact.

6.1.2 Interception location

In this section, we will describe the geometrical specification of the position
of a parabolic trajectory in 3D coordinates from a nasal position (between
the eyes). Here we will consider x, y and z as the ball’s horizontal, vertical
and depth position. In Figure 6.2, the reader can find a sketch of lateral view
and a bird-eye perspective of a parabolic trajectory with all the necessary
angles involved.

Prior to beginning with the spatial formulation, it is necessary to note
that we will assume that the observer is looking at the ball at launch time
and that the standard ball size and terrestrial gravitation are known to the
observer.

With the above considerations, absolute distance would be defined as
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Figure 6.2. A) Lateral representation of a parabolic trajectory. B) Bird-eye view of
a parabolic trajectory. Note that the computations in main text assume an estimate
of x position at ball’s height.

the ratio between the projected retinal size and absolute ball size:

d «
s
θ

(6.2)

Following basic trigonometric properties, it is easy to compute the
position of the ball in the three-dimensions (see Figure 6.2)1:

x «
s
θ

¨ cospγq ¨ tanpβq “ z ¨ tanpβq (6.3)

y «
s
θ

¨ sinpγq (6.4)

z «
s
θ

¨ cospγq (6.5)

1Note that we estimate lateral ball’s position in the plane defined by observer’s gaze at
ball’s height as described by McBeath et al. (2018).
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Then, it is easy to see in Figure 6.2 that when t tends to zero, that is, at
launch time, the ball’s displacement vectors are given by:

Vx0 «
s
θ

¨ 9β (6.6)

Vy0 «
s
θ

¨ 9γ (6.7)

Vz0 «
s ¨ 9θ

θ2
(6.8)

However, gravitational acceleration introduces a non-linearity in the
projectile’s motion, which makes posterior computations more complex.
Nevertheless, lateral displacement is still directly measurable if size is
known. Its computation is given by:

Vx «
s
θ

¨ cospγq ¨ 9β “ z ¨ 9β (6.9)

Estimating both vertical speed (Vy) and depth speed (Vz) is considerably
more difficult. To understand why, let us consider depth speed. When an
object approaches the observer at a constant speed, depth and radial speed
are coupled. Radial speed (see vt in Figure 6.2) is provided by the first
derivative of ball’s retinal size:

Vr « s ¨
9θ

θ2
(6.10)

Thus, depth speed can be estimated from radial speed (Vr). However,
in a parabolic flight, the ball does not approach the observer at a constant
speed and thus, the lawful relation between depth and radial motion breaks.
Radial speed would be still available to the observer. However, like vertical
speed, it is no longer constant. Instead, it covariates with a vector tangential
to the radial motion, the tangential speed(see Vt in Figure 6.2). Tangential
speed envisions the vertical displacement of the ball from the observer’s
perspective. It can be estimated using the first derivative of the elevation
angle with respect to the observer’s position:

Vt « 9γ ¨
s
θ

(6.11)
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Once radial and tangential speed are recovered, vertical speed (Vy) and
depth speed (Vz) can be estimated as follows:

Vy « Vt ¨ cospγq ´ Vr ¨ sinpγq (6.12)

Vz « vt ¨ sinpγq ` vr ¨ cospγq (6.13)

Hence, it is possible to predict the interception location in the x-z plane:

XEnd «
s
θ

¨ cospγq ¨ 9β “ z ¨ 9β ¨ TTC (6.14)

ZEnd «
s
θ

¨ cospγq ´ pvt ¨ sinpγq ` vr ¨ cospγqq ¨ TTC “ z ´ vz ¨ TTC (6.15)

By predicting the interception location, it would be possible to estimate
the angle between the observer and the predicted interception location.
Here, we refer to that angle with the Greek letter phi (ϕ).

ϕ “ atanp
XEnd

ZEnd
q (6.16)

Phi (ϕ) would represent the required angle to reach the interception
location. Thus it would correlate strongly with heading angle.

In sum, the above expressions allow us to predict where the ball would
fall at eye height and the required direction to head towards the interception
location using a combination of optic cues with known gravitation and ball
size.

Without loss of generalizability, removing ball’s size from the above
expressions would provide a dimensionless estimate of the interception
location. This case will represent a situation where flight duration is known.

XEnd9
cospγq

θ
¨ 9β ¨ TTC (6.17)

ZEnd9
cospγq

θ
´

˜

9γ ¨ sinpγq

θ
`

9θ ¨ cospγq

θ2

¸

¨ TTC (6.18)

Both previous computations would not be useful per se. Still, would al-
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low to compute the angle towards the interception location if the remaining
time-to-contact is known which could be used to guide locomotion.

As a result, an observer might have two different ways of guiding
locomotion towards the interception location, either by predicting the inter-
ception location or estimating the angle towards the interception location.
Assuming that temporal predictions rely on prior knowledge of gravita-
tion and ball size, it is reasonable to assume that both will be essential to
predict ball’s movement. Hence, if the estimates of the remaining time-to-
contact deviate systematically because the assumed priors do not match
the parameters governing the trajectory, heading direction would be biased
accordingly.

6.1.3 Aim of the study

In this study, we aimed to test whether the predictions of time-to-contact
based on the GS model correspond to the estimates provided by our ob-
servers under different conditions of gravitational acceleration, ball size
and trajectory. Furthermore, the above spatial formulation also provides
us with the grounds to compare humans heading towards the interception
location with predictions based on optic information and priors. Since
the prediction of the interception location relies on an estimation of the
remaining time-to-contact it is likely to be misestimated too. Therefore,
we predict that the paths travelled across different gravities and ball sizes
would reflect those errors. Thus, an observer guiding locomotion would
travel different paths towards the interception location between gravitations
and ball sizes.

6.2 Methods

6.2.1 Participants

In this experiment, we tested 12 participants (n = 12; 6 self-identified
women and 6 self-identified men). One participant had to be discarded
due to a particularly noisy eye-tracker’s data (filtering procedure removed
more than 10% of trials). Participants’ age was between 22 and 33 years
old with normal or corrected-to-normal vision. All of them were naïve to

125 of 194



experimental goals and volunteered to participate in the experiment. They
performed the task wearing a head-mounted display holding a controller
with the dominant hand (all were right-handed). The experiment was run
by an Intel i7-based PC (Intel, Santa Clara, CA)(i7-9700F). The stimuli
were rendered by an NVIDIA GeForce (RTX 2060 SUPER) and sent for
display to wireless HTC Vive Pro head-mounted display (HMD) at 90 Hz
per eye. Eye movements were recorded using a built-in eye-tracker (Tobii
Technology 2011) sampled at 90 Hz.

This work is part of an ongoing research program approved by the local
ethics committee of the University of Barcelona in accordance with the
Code of Ethics of the World Medical Association (Declaration of Helsinki).

6.2.2 Stimuli

We explored ten different trajectories. The interception location was always
located 3 meters far from the starting position around the observer describ-
ing horizontal angles of 30, 60, 90, 120, 150 degrees to the observer’s
position either left or right-hand side (see Figure 6.1A).

The ball appeared 40 meters far from the observer’s position, vertically
aligned to eye level trial-by-trial to account for HMD slippage and posture
changes. Flying time was randomly selected from a uniform distribution
ranging from 3.15 to 3.85 seconds (˘ 10% of 3.5 seconds). Dynamic
effects were neglected.

We used both the standard gravitational acceleration (9.807m{s2) at sea
level and Soccer ball size (0.22 m of diameter) ˘ 10% the standard. In
total, our experiment consisted of 10 trajectories, three ball sizes and three
gravitational accelerations, that is, a total of 90 conditions.

6.2.3 Procedure

Prior to the experimental procedure, the participant and the experimenter
tossed back and forth a standard-sized soccer ball to develop familiarity
with ball size (diameter 22 cm, Standard size: 5).

Each participant went through a total of 10 blocks of 90 trials each. Each
condition was presented once per block. Participants completed 20 training
trials before the main experimental procedure to familiarize themselves

126 of 194



with the task and the VR environment. Eye-tracker was calibrated prior to
each block and tested using a custom program to ensure that the accuracy
of the eye-tracker remained lower than 1.89 degrees of error. The procedure
for each trial consisted of the following:

1. The participant was instructed to align both body and gaze towards
the ball. Once aligned, a button press using the controller would launch the
ball.

2. Once the ball was in the air, the observers had to follow the ball
visually while moving towards the interception point.

3. After completing 90% of the flight time, the ball was occluded from
vision. The participant was instructed to head towards the position where
they would have headed the ball and press a button to estimate time-to-
contact. The participants did not receive any feedback on the temporal or
spatial response.

The data obtained in this experiment were analysed with R language
(R Core Team, 2020) using RStudio (RStudio Team, 2020).

We first ensured that our participants looked at the ball during the whole
trajectory as requested. To do so, gaze was categorized as being on the ball
if the absolute vertical error to the ball was lower than 6.5 degrees (as done
by others Postma et al., 2014) each twentieth of flight time passed. The
probability of gaze being on the ball was larger than 90% during the whole
time the ball remained visible. The task was self-paced. Each block lasted
for about 10-16 minutes.

As a preliminary analysis, we checked that the direction of the ball
(left or right) did not affect the perceived time-to-contact. We performed a
comparison of mean response time across left-right trajectories. The results
indicated that ball direction did not influenced the estimation of flight time
(t(10) = -0.786, p = .450). As a result, we decided to collapse the results
for right and left trajectories.
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6.3 Results

6.3.1 Temporal estimation

The predictions of time-to-contact based on the GS model revealed the
following pattern: an overestimation under gravitations larger than 1G (see
Figure 6.3A) and an underestimation for balls bigger than the expected
soccer ball (see Figure 6.3B). Furthermore, rearranging the predictions
based on the trajectory shows a different pattern of errors depending mainly
on whether the ball falls behind/ahead an observer’s line (see Figure 6.3C)
as predicted in previous studies (Aguado & López-Moliner, 2021a, 2021b).
See, for example, that the errors are minimal (follow the identity line
closely) when the ball falls in line with the observer’s perspective (trajectory
describing a 90-degree angle with the interception point).
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Figure 6.3. Average time-to-contact predicted by the GS model across gravities (A),
ball sizes (B) and trajectories (C). The red area denotes the occluded portion of the
trajectory. D) Temporal errors per ball size (x-axis) and gravitational acceleration
(colour code). E) Temporal errors per trajectory. The error bars indicate a 95%
confidence interval in panels D and E.

In line with the previous predictions, our observers overestimated the
time-to-contact for trajectories governed by larger gravitational accelera-
tions (see Figure 6.3D; F(2, 9536) = 13.686, p < .001) while undershooting
the time-to-contact the larger the ball size presented (see Figure 6.3D; F(2,
9536) = 12.269, p < .001). Both trends align with the initial predictions
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drawn from using priors to estimate the remaining time-to-contact. Fur-
thermore, when the balls fell behind our participants’ line, they tended to
overestimate the remaining time-to-contact and vice-versa (see Figure 6.3E;
F(4, 9536) = 11.924, p < .001).

A closer look at the predictions drawn by the GS model across gravities
during the trial indicates a pattern of temporal errors inverse to that of
the initial predictions (predictions intersect « 0.5 seconds prior to time-
to-contact in Figure 6.3A). The observer’s locomotion would explain the
differences in the optic flow. At the end of the trajectory, the distance
between the observer and the ball is relatively short. Therefore, small
movements would affect considerably the optic flow rendering optic in-
formation unreliable. Thus, it stands to reason to avoid weighting heavily
latter information to perform a prediction. Instead, updating the predictions
in the light of our prior estimates during the course of the trial would lead
to an overall better performance.

Sources of information available

So far, we assumed that our participants solved the temporal task using
standard priors of gravity and ball size. However, they could extract the
actual parameters from the information contained in the optic flow during
the trial. For example, recall that stereoscopic images were provided, and
thus, absolute ball size could be recovered (Regan & Beverley, 1979).
Another strategy would entail establishing temporal mappings with optic
cues or correlates of retinal expansion such as Tau (Lee, 1976). To test
this possibility, we studied the correlation between different sources of
information and the mean time-to-response across the conditions present in
the experiment (trajectory, gravity, and ball size) at different proportions
of flight time passed, concretely each twentieth of flight time passed (see
Figure 6.4). We defined the time-to-response as the time elapsed from
occlusion to the observer’s response.

Concretely, we analysed retinal size (θ), Tau (τ), the elevation angle (γ),
the rate of change of the elevation angle ( 9γ), the output of the GS model
using fixed priors corresponding to the standard values of gravity and size
(GS Fixed priors) and the output of the GS model using correct values of G
and size as priors (GS Correct priors). Note that the latter variable envisions an
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Figure 6.4. Correlation between different variables and the time-to-response, that is,
the time elapsed from occlusion to the observer’s response. The red area denotes the
occluded portion of the trajectory. To account for multiple comparisons (multiple
variables), we used an alpha of 0.05{6 “ 0.0083.

observer who can accurately extract gravitation and absolute size during
the trial.

All variables but retinal size (θ) and Tau (τ) present meaningful and
statistically significant correlations with time-to-response at occlusion. Our
analysis highlights the average superiority of the GS model based on fixed
priors (GS ) compared to other sources of information. The output of the
GS model using fixed priors reflects the largest correlation with the time-to-
response of them all. However, its correlation at occlusion is smaller than
that based on a temporal mapping with the elevation angle (γ).

Moreover, we analysed the correlation between the SD of different
sources of information and the SD of the response time (see right margin
in Figure 6.4). This analysis reflects how likely is the variability in the tem-
poral response given the variability contained in the each piece of sensory
information analysed. Retinal size θ, the rate of change in the elevation
angle ( 9γ) and the both predictions based the GS model present statistically
significant and positive correlations with time-to-response standard devia-
tion. However, despite the strongest correlation with mean response time,
the variability of the elevation angle (γ) at occlusion shows no relationship
with response variability, which casts doubts on its direct use.
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6.3.2 Locomotion phase

In order to analyse the trajectories travelled by our observers we first had
to normalize the flight time as the proportion of flight time passed. Then,
we split each trial into a hundred steps corresponding where the 100th
step would correspond to the time at which the ball returns to eye-level.
Then, we summarized the position of the observer in the x-z across step,
gravitation, size, angle and mean time-to-contact (3 bins).

To analyse the trajectories across different values of gravitation and size
we fitted a smooth local regression predicting the position of the observer
in depth (z) from the horizontal position of the observer (x) including the
effects of gravity, size and time-to-contact (each independently) and the
interaction with the different parabolic trajectories. Then, we applied an
ANOVA to analyse individual factor effects explaining variability. We will
not report main effects for the different trajectories because the participants
had no trouble navigating to the interception point. Thus, trajectory main
effects explain a significant portion of variability.

The first thing that stands out when we look at Figure 6.5A is that
our participants travelled a different path towards the interception point
depending on gravitation (F(2, 13206.48) = 25.513, p < .001). With a
gravity larger than the terrestrial, the paths shift greater away from ball’s
position in all trajectories. The interaction term did not reached significance
(F(8, 13206.48) = .488, p = .866). This pattern is consistent with the
observer predicting that the ball will fly further due to an overestimation
of the time-to-contact. Clear examples of this pattern are those trajectories
ending behind the initial position of the observer Figure 6.5A. On the
contrary, we did not find relevant differences between the paths followed
by our participants across ball sizes (F(2, 13206.48) = 2.143, p = .117; see
Figure 6.5B) nor its interaction term with the trajectory (F(8, 13206.48) =
1.027, p = .413).

In principle, if solely the kinematics of the ball guide locomotion, we
might expect similar paths resulting from different gravities and flight times,
for which vertical motion correlates. Grouping the trials by bins of mean
flight time, we did not found a main effect of mean time-to-contact (F(2,
13206.47) = 1.784, p = .168). Instead, we found an effect of the inter-
action between the trajectory and mean time-to-contact (F(8, 13206.48)
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Figure 6.5. Average path followed by the observers across gravitational accelera-
tions (A), ball sizes (B) and mean flight duration (C) for different trajectories. The
observer moves from the origin. The ball launches laterally and vertically aligned
with the observer at a distance of 40 meters far [x0 “ 0,z0 “ 40].

= 15.025, p < .001) showing that time-to-contact only had an effect for
some trajectories. Concretely, between those trajectories where the ball
travels to the side or behind the plane of the observer (Figure 6.5C). This
dissociation between the kinematics of the ball and the path travelled by
our observers supports the idea that prior knowledge of gravity might play
a role interpreting visual information to navigate towards the interception
location.

Given the above results across flight durations, we decided to anal-
yse movement speed (heading speed) between the different mean flight
durations. We did so to find out if there were pre-planned differences in lo-
comotion. To analyse when those differences are relevant, we divided each
trajectory into tenths of flight time passed. Then, we applied independent
ANOVAs predicting heading speed as a function of average flight duration
each tenth of flight time. In Figure 6.6B the reader can see that there are no
differences in movement speed during the first half of the trial. Nevertheless,
movement speed differed across flight durations at 70% (F(2, 30) = 6.621,
p = .004), 80% (F(2, 30) = 5.923, p = .007) and 90% (F(2, 30) = 3.380, p
= 0.047) of flight time passed. These results suggest that if locomotion is
pre-programmed, the observer would be using an approximate estimation
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of time-to-contact based on prior experience from motion onset. Then,
as more information is integrated, time-to-contact predictions are refined,
allowing the observer to modulate locomotion speed as a function of the
predicted remaining flight time. In support of this hypothesis, recall that
in the previous section we found that around 65% of flight time elapsed,
the correlation between the predictions of the GS model and response time
reaches a peak. Combined, both results suggest that temporal predictive
information is available.
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Figure 6.6. A) Average heading speed versus proportion of flight time passed
across three groups of flight durations (colour code). B) Average SD of heading
versus proportion of flight time passed across trajectories (colour code). The inset
represents the average SD of the temporal predictions based on the GS model. C)
Correlation between different variables and time-to-response versus proportion of
flight time passed. In all panels, the red area denotes the occluded portion of the
trajectory. To account for multiple comparisons, we used an alpha of 0.05{4 “

0.0125.

To further analyse if heading is congruent with refining predictions, we
computed the SD of the heading angle, that is, the direction in which the
observer moves. The SD of heading would indicate how much the observer
relies on online information. Figure 6.6B shows that, at motion onset,
heading variability is highest. After around « 0.385 seconds it decreases
steeply. Then, for those trajectories falling closer to the observer’s plane
(yellow and black lines), heading variability decreases slower. But, how
different pieces of information contribute to control heading over time?
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To answer this question, we performed an analysis correlating variables
associated to the continuous control of heading with the average heading
angle across trajectories, gravitations and ball sizes (Fink et al., 2009;
McBeath et al., 1995; McLeod et al., 2006). Thus, we correlated heading
direction with the horizontal and vertical displacement of the ball on the
retina ( 9β and 9γ respectively). Furthermore, we included two estimates based
on our spatial formulation predicting the necessary heading direction to
reach the interception location. Recall that we defined this variable above
with the Greek letter phi (ϕ) (see Equation 6.16). The first estimate included
only visual cues and a prediction of the remaining time-to-contact using
fixed priors of gravitation and ball size (from now on ϕFixed Priors). The
second used priors of gravitation and ball size adapted trial-to-trial (from
now on ϕCorrect Priors). To account for sensorimotor delays accommodating
visual information to heading angle control, we performed a correlation
with the above computed variables delayed « 0.315 s., that is, a 10% of the
average portion of the trajectory visible (Belousov et al., 2016).

At first glance, we can see in Figure 6.6C that horizontal and vertical
displacement correlate with the heading angle at different portions of flight
time. This is an expected result, as the typical motion pattern reflects a
more pronounced lateral component in the displacement at onset and then
a depth component more reliant on the rate of change of the elevation
angle. Estimates based in ϕFixed Priors, present an increased correlation as
the time-to-contact approaches, increasing sharply from 70% of flight time
passed. Moreover, the estimates based on the correct priors (ϕCorrect Priors)
correlate strongly with the direction of heading over the entire trajectory.
This result was expected since our observers are, in fact, heading towards
the interception location and this algorithm signals accurately the heading
direction required.

Putting together the results in Figure 6.6, it is interesting to note that
the larger the correlation between heading and the predicted heading angle
with fixed priors, the larger the difference in heading speed. Also, note that
at that moment the correlation between the predicted time-to-contact using
the GS model and the time-to-response reached a peak in Figure 6.4. Taken
together, these results may show evidences of an initial use of a rough mean
estimate of the remaining time-to-contact at the beginning of the trial to
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guide heading. Then, the observers would adapt locomotion continuously
as new evidence is integrated.

6.4 Discussion

6.4.1 Temporal estimation

Our results show that the temporal errors incurred by our participants are
coherent with the use of gravitational acceleration and ball size priors, this is
shown in Figure 6.3. Specifically, we found that the predictive information
in the GS model using internalized priors explains the temporal estimates
provided by our observers better than the prospective temporal information
from Tau, the use of temporal mappings with optic cues (Aguado & López-
Moliner, 2021b; Zhao & Warren, 2015) or computations based on the GS
model with correct priors adapted trial-by-trial.

First, Tau (τ) shows a negative correlation with the estimated time-to-
contact (see Figure 6.4). Second, the use of temporal mappings based on
the rate of change of the elevation angle ( 9γ) would be available to solve
the present task. However, we consider that its application would not
be consistent with the variability present in real life. Instead, it would
require contexts where the visual conditions are relatively constant, just
like experimental designs. Some evidence against the use of 9γ may come
from previous studies where time-to-contact could be estimated even when
the observers only viewed the first half of the trajectory (Aguado & López-
Moliner, 2021b; Amazeen et al., 1999; López-Moliner & Brenner, 2016).
Third, we showed that the predictions made by our participants conformed
to our initial predictions based on fixed priors. In fact, our analysis shows
that using fixed priors fits better overall than using priors adapted trial-by-
trial.

Note, however, that the instantaneous temporal errors predicted by the
GS model at occlusion did not correspond to the errors incurred by our
participants. Such pattern led us to question why this would be the case.
We reasoned that using the information contained in the GS model would
benefit from using fixed temporal windows in which prediction is most
reliable, weighting more mid-flight visual information than information at
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the end of the trajectory.

6.4.2 Locomotion phase

We found that observers modulate their trajectory towards the interception
point depending on the gravitational acceleration governing the ball’s kine-
matics (see Figure 6.5). Large gravitational accelerations prompt higher
vertical speeds given a constant time-to-contact. Thus, unexpected large
gravities could have led our observers to predict greater distances travelled
by the ball, which, in turn, may have biased our participant’s locomotion.
From an online control strategy (McBeath et al., 1995; Oudejans et al.,
1997; Zhao & Warren, 2015) one could argue that those differences can
be explained by the differences in the kinematics of the trajectory. Never-
theless, we found differences in the paths travelled across different gravi-
tational accelerations not present between different flight durations. This
dissociation casts doubts on the use of correlates of optic cues signalling
the vertical displacement of the ball. Instead, it would be more congruent
with an explanation based on using a prior of gravitational acceleration to
interpret sensory information.

In contrast, we found no an effect of ball size for locomotion. Likely
ball’s size could have been derived from binocular information (Berkeley,
1709; Regan & Beverley, 1979), realizing that the initial distance was con-
stant (Hecht et al., 1996; McConnell et al., 1998; J. Watson et al., 1992) or a
combination of both. Extracting absolute ball size would remove the effect
of assuming a single ball size during locomotion when visual information
is available. At this respect, previous studies suggest that known ball size
might not be considered when visual information is available (Armbrüster
et al., 2008; Hu & Goodale, 2000) or when other pictorial cues are missing
(Rushton & Duke, 2009). Our spatial formulation would only rely on
known ball size to predict the remaining time-to-contact. If time-to-contact
is already known, visual information would suffice to guide locomotion
towards the interception location successfully.

At this respect, it is interesting to note the temporal coupling between
the following: (1) the maximum correlation of the predictions of the GS
model with the estimates of time-to-contact (see Figure 6.4) (2) the change
in speed across flight durations (see Figure 6.6A) and (3) correlation of
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the heading angle with the spatial predictions using fixed priors (see Fig-
ure 6.6C). The fact that the three are coupled seems in agreement with
an explanation based on computations of the interception location based
on known time-to-contact. That prediction would signal about the right
heading direction from motion onset. In this sense, first the observer might
prefer to accommodate lateral displacements explaining the initial decrease
in heading variability (see Figure 6.6B). Then, as further temporal and
spatial predictions refine, prediction might take over the control of heading.

In line with a predictive mechanism, we identified different reductions
on heading variability across the trajectories tested. For example, the
more aligned the trajectory with the observer’s sagittal plane, the lower the
decrease of heading variability. These results show that an observer’s move-
ment in depth is generally more variable than its lateral counterpart, which
indicates that both might rely on different sources of visual information.
Our spatial formulation indicates that there may be two main sources of
error in calculating the interception point in depth: estimates of tangential
velocity, derived from the vertical displacement of the projection of the ball
on the retina, and estimates of radial velocity, derived from estimates of the
visual expansion of the object on the retina. Tangential speed is the same
across trajectories at motion onset. Therefore, it is not a likely candidate
to be the source of heading variability. On the other hand, radial speed is
different across the trajectories tested at motion onset. Radial speed is based
mainly on retinal expansion, which would be hard to discriminate at large
distances (Gómez & López-Moliner, 2013; J. Harris & Watamaniuk, 1995;
Regan & Beverley, 1978). And thus, might explain heading variability
decreases for trajectories close to the observer’s plane.

In sum, the above results highlight the open-loop nature of locomotion
and the possibility of modelling catching behaviour (Belousov et al., 2016;
Höfer et al., 2018). Specifically, our spatial formulation based on optic cues
provides the grounds to compare human catching accuracy and precision
with predictions based on tools such as Kalman filters (Kalman, 1960)
that integrate predictions with psychophysically plausible precision levels
across time.

At this point, we would like to mention some of the limiting factors
in interpreting the results of this study. First and foremost is the use of a
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head-mounted display. Within an HMD, some visual cues such as disparity
or accommodation are often in dispute, which makes generalizing our data
to real-life problematic (Bingham et al., 2001). In order to reduce the effect
of this mismatch, further studies would benefit from letting the participants
calibrate the visual space interacting with the environment prior to the
experimental sessions (Hornsey & Hibbard, 2021; Kelly et al., 2013).

In this study we did not render dynamic effects such as air resistance.
Air resistance would have affected the ball’s kinematics differently depend-
ing on ball’s size (Aguado & López-Moliner, 2021a; Brancazio, 1985).
Thus, if considered, an observer’s prediction of the interception location
would have been different across ball sizes. Still, we found no differences
across the paths travelled. This result suggests that an observer’s computa-
tions would not include either air resistance or even known ball size at all to
guide reaching (Peper et al., 1994). Still, the relevance of prior knowledge
of ball size remains to be explored in further studies.

In the present experiment the participants were asked to estimate the
time at which the ball would fall at eye level. Although they reported
doing so, the results in Figure 6.3 show a general overestimation of the
time-to-contact. In our view, this mismatch could be explained by the fact
that the temporal response was provided by using a hand-held controller,
which may have biased the position at which they were estimating the
time-to-contact.

6.4.3 Conclusion

The present study shows that both phases in the interception of a ball
in parabolic flight are likely to be affected by prior knowledge about a
flying ball and the variability of visual information. Our results show
differences in the estimation of the remaining time-to-contact of a flying
object consistently with using both gravity and size priors. Furthermore, we
found that our observers modify their path towards the interception location
based on known gravitation and the estimated time-to-contact. Concretely,
we found that the initial locomotion is more consistent with using a rough
estimate of time-to-contact based on prior knowledge of flight time. Then,
as time goes by, the predictions of remaining time-to-contact become more
relevant to guide locomotion congruently with a continuously updated
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prediction.
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7 General Discussion

At the beginning of this dissertation, we introduced the inverse problem
of Perception and outlined different ways of addressing it. In this work,
we took the stance of a Bayesian perspective based on knowledge about
statistical regularities of the world. Those regularities would serve as
constraints helping an observer infer features of the world correctly or draw
predictions. However, an overgeneralisation of those statistical regularities
in the inferential process would lead to systematic errors.

This dissertation uses those systematic errors to compare the predic-
tions made by different models based on a priori knowledge with human
behaviour. In Study 1, we analysed if the assumption of a stationary world
could explain systematic errors estimating the direction of an object moving
in depth. Then, in Study 2, 3 and 4, we used a model that relies on a priori
knowledge of terrestrial gravitation and ball’s size to draw predictions of
the remaining time-to-contact. Then, we compared our predictions with
our participants’ to investigate their correspondence.

7.1 Is motion perception guided by prior expec-
tations?

7.1.1 Motion estimation

Under the perspective taken in this thesis, our prior knowledge of the
world modulates our expectations about the dynamics of the objects around
us. Concretely, specific contexts activate radically different expectations
about the objects around us. For example, the expectation we have about
the movement of a car when crossing the road is not the same as the
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expectation of a free-falling ball. While the car will decelerate, the ball will
accelerate. Previous literature showed that simple associative mechanisms
might suffice to learn new sensorimotor mappings (Bedford, 1989) even
when the discriminants of the new mapping are not directly related to the
task (van Dam & Ernst, 2015). Thus, it might be possible to learn that
cars decelerate when a pedestrian approaches and that a ball will accelerate
when viewed in the air.

In Study 1, in turn, the expectation that the objects around us remain still
is key. The studies of Thompson (1982) and Weiss et al. (2002) highlighted
a general tendency to underestimate the local motion of a stimulus with
low contrast. They assumed that the lower the reliability of visual evidence,
the larger the attraction towards the prior in the posterior estimate. The
mechanism underlying this bias was then proposed by Welchman et al.
(2008) to explain why judging the direction of objects moving in 3D is
usually biased. In theory, estimates of motion in depth are less reliable
than estimates of lateral motion. Thus, motion-in-depth estimates would be
more attracted to a slow-motion prior than lateral motion within a Bayesian
model. This differential attraction towards the prior would result in a bias
in the perceived direction of movement. Indeed, in Study 1, we showed
that our participants overestimated those trajectories displayed at higher
speeds congruently with motion estimates following Weber’s law.

So far, Bayesian models and, concretely, the slow-motion prior had been
criticised for being loosely specified (Bowers & Davis, 2012). Nevertheless,
our model was constrained by just one free parameter, the variability of the
slow-motion prior. This finding is a hallmark because our model provided
a coherent explanation of how directional judgements change at different
speeds, and thus, it is likely generalisable to any movement speed. Other
criticisms against the slow-motion prior point out that the perceived speed
of a low-contrast stimulus can also be overestimated (Bowers & Davis,
2012; Rahnev & Denison, 2018; Thompson et al., 2006). In this regard,
Moscatelli et al. (2019) shows an example where the speed of a stimulus
moving downwards is underestimated at low contrast and overestimated at
high contrast. They argue that the overestimation would be congruent with
an expectation of gravitational acceleration. Motion overestimation would
only apply to high contrast stimuli similar to the objects we interact with

141 of 194



daily. This example would illustrate how different contexts would prompt
radically divergent expectations. Thus, understanding the inferred causes
of the observed movement would allow us to understand an observer’s
interpretation, not only quantitatively but also qualitatively.

7.1.2 Motion extrapolation

When our task is to intercept an object or acknowledge when it will arrive
at a pre-specified location, extrapolating the stimulus’s movement is vital.
Motion extrapolation is crucial because the sensory system has to cope
with systematic delays when processing sensory input and therefore cannot
make use of instantaneous information (Nijhawan, 1994). For example,
predictive mechanisms based on motion extrapolation would be needed to
explain the "flash-lag" effect, a visual illusion in which a moving stimulus
is perceived as ahead of a stimulus that flashes unexpectedly in the same
position (Khoei et al., 2017).

However, for a 3D parabolic trajectory, extrapolating motion is not
sufficient to accurately predict when a ball will fall at eye level. Take,
for example, our "early viewers" in Study 3. Those participants only
viewed portions of the trajectories where the elevation angle increased
in combination with an expansion rate irreconcilable with their temporal
estimates. Under those conditions, they would have no way of extrapolating
3D motion to estimate a time-to-contact. Nonetheless, our participants
predicted the remaining time-to-contact with relative accuracy. Another
available strategy that would override the need to extrapolate motion could
be establishing temporal mappings with different optic cues. In Study 3,
we could not discard their use. However, in Study 4, we were able to
discard the use of temporal mappings with variables such as retinal size,
the elevation angle or Tau (Lee et al., 1983; Zhao & Warren, 2015). The
only common available optic cue to establish a temporal mapping would
be the rate of change of the elevation angle. However, even in that case,
an expectation gravitational acceleration would be necessary to estimate
the remaining time-to-contact accurately (Brenner et al., 2014; Brenner &
Smeets, 2018).

As discussed in Study 2, we are rather bad at discriminating arbitrary
accelerations (Gottsdanker et al., 1961b; Werkhoven et al., 1992). However,
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some studies showed that given enough time, we might be able to partially
attune motion extrapolation to arbitrary accelerations (Bennett & Benguigui,
2013; Bennett et al., 2007). According to Jörges and López-Moliner (2017),
the assumption of a terrestrial gravity prior would facilitate the estimation
and prediction of motion for gravitationally accelerated objects. Indeed,
when faced with a task such as catching or tracking a ball on the fly, we
seem exceptionally attuned to trajectories under terrestrial gravitational
acceleration. Jörges and López-Moliner (2019) showed that observers
track more accurately trajectories in the frontotemporal plane at 1g than
equivalent trajectories at -1g. As previously shown by others (Postma
et al., 2014) in Study 4, we checked that our participants had no problems
tracking 3D parabolic trajectories. Furthermore, in Study 3, we found that
our observers modulated the speed at which they looked up, trying to find
the ball depending on the initial vertical motion. These results support the
assumption that observers can use vertical visual speed and use it to predict
the position of the ball even if they cannot deliberately describe its visual
pattern (Reed et al., 2010; Shaffer & McBeath, 2005).

At this point, we would like to draw the reader’s attention to the spatial
formulation developed in Study 4 for the outfielder problem. Our algorithm
describes how to predict the interception point or the necessary heading
angle towards the interception location based on a combination of optic
cues and prior knowledge in a similar way as the GS model (Gómez &
López-Moliner, 2013). To our knowledge, this is the first time that an
algorithm to predict the interception location in Cartesian units has been
put forward for parabolic trajectories using optic cues. In this respect,
Study 4 provides some insights into how optical information is processed
to extrapolate motion-in-depth. We found that our observers travelled
different trajectories depending on the gravitational acceleration present.
Remember that gravitation only appears in the estimation of the remaining
time-to-contact in our formulation. Therefore, the differences in the paths
travelled suggest a computation of motion-in-depth and an extrapolation
in time that incorporates a gravity prior. On the other hand, we did not
find differences between the trajectories followed by our observers when
exposed to different ball sizes. Those results may reflect the challenges
faced by the system trying to incorporate pictorial cues to calibrate optic
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information (Hornsey & Hibbard, 2021; Rushton & Duke, 2009). If com-
putations based on known ball’s size are not available mid-flight, relying
on prior knowledge of time-to-contact, as suggested in Study 4, would be
helpful to guide action until visual information increases reliability.

7.2 Is time-to-contact estimation guided by pre-
vious expectations?

In principle, to estimate the time-to-contact with a predetermined location,
it would be necessary to calculate both object’s position and speed. As we
have seen above, estimates of an object’s motion can be affected by different
a priori variables, either the slow-motion prior or the expectation that an
object will move in an accelerated way due to gravitational acceleration.

Concerning the gravitational acceleration, a terrestrial gravitation expec-
tation has been suggested for accurate timed-actions in free-fall (Lacquaniti
& Maioli, 1989) or parabolic trajectories in the fronto-parallel plane (Jörges
& López-Moliner, 2019, 2020a) or a head-on approach (de la Malla &
López-Moliner, 2015).In the last decades, candidate regions for the pro-
cessing and localisation of a gravitational prior have been described in the
literature (Indovina, 2005; Miller et al., 2008). On its part, knowledge
of ball size has been suggested to be critical in different time-dependent
tasks such as judging the time-to-contact (DeLucia, 2005), establishing a
starting time for the initialisation of an interceptive action (López-Moliner
et al., 2007) or even judging the distance at which an object will pass by
us (Battaglia et al., 2005). Furthermore, previous studies have shown that
time-to-contact estimates can be modulated by other factors such as the
variability in the size of the balls presented (López-Moliner & Keil, 2012)
or even perceived threat (Vagnoni et al., 2015).

In Study 2, we put forward a biologically plausible neural mechanism
that incorporates knowledge of the ball’s size and terrestrial gravitation.
In our simulations, we show how known gravitation and ball size reduce
the ambiguity in the interpretation of visual information. The result is an
algorithm that allows predicting the remaining time-to-contact accurately.
In Studies 3 and 4, we found pieces of evidence of computation of the
time-to-contact in the direction predicted by the GS model across different
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gravitational accelerations and ball sizes. After discarding alternative
explanations based on temporal mappings, the alternative that gathered
the most convincing evidence was a computation in the form of the GS
model. Thus, relying on priors of terrestrial gravity and standard ball size
even over a variant where the correct gravity and ball size were known to
the observer. In both studies, we go a step further testing the prediction
of time-to-contact for 3D trajectories in a non-collision course with the
observer. Testing different trajectories allowed us to compare the errors
committed by our participants with the systematic errors predicted by the
GS model when the ball is not in a collision course with the observer. Our
results matched the GS model predictions: overestimating the remaining
time-to-contact for trajectories falling behind the observer’s position and
vice-versa.

It is essential to mention here that gravitation or ball size are not the
only internalised pieces of information available for an observer to estimate
the remaining time-to-contact. For example, in Study 3, our observers
preferred to look at the ball during a constant time window. This strategy
may be beneficial because it reduces the variability of the visual information
extracted from the optic flow to estimate the time-to-contact. Thus, it allows
for correcting future estimates based on previous errors. In the same study,
we presented a reduced number of catch trials with a flight time slightly
longer than the standard (500 ms). In those trials, time-to-contact was
systematically underestimated. Nevertheless, their errors across trajectories
were consistent with the predictions from the GS model. These results
suggest that our participants incorporated information from previous trials
to weight optic information.

7.3 Have our goals been achieved?

The main objective of this thesis was to study how priors affect the pro-
cessing of visual information to provide a solution to the inverse problem.
During the introductory chapter, we framed the scope of the thesis focus-
ing on how motion and time-to-contact are estimated in combination with
internalised prior knowledge.

Our first objective was to analyse whether direction estimation derives
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from motion estimates based on a combination of visual and prior informa-
tion. Study 1 showed that a Bayesian model based on motion estimation
with a preference for slow speeds sufficed to characterise 3D direction
judgements. This study showed that direction judgements are biased as a
function of motion speed combined with a single prior towards low speeds.

The scope of the second objective was more general: to analyse the
existing evidence of using priors in the form of knowledge about gravita-
tional acceleration and object size to estimate the time-to-contact. Study
2 reviewed the literature supporting the relevance of gravity and ball size
priors. We showed that both might be important in coordinating depth
judgements, providing velocity constancy and guiding sensorimotor tasks
(e.g. catching or tracking). Within this objective, we also set out to analyse
the accuracy and precision of predictions of the time-to-contact based on
the GS model. Our simulations indicated that the GS model could accu-
rately predict the time-to-contact in various situations. We also showed
that even in those contexts where it does not provide accurate estimates
from motion onset, continuously updating predictions would lead to the
required level of accuracy for sensorimotor tasks. Moreover, we estimated
the precision of the predictions based on the GS model at a 7% of a Weber
Fraction, which would indicate that the algorithm would provide reliable
predictions.

The third objective of this thesis was to analyse if the errors estimat-
ing the time-to-contact corresponded to the predictions of the GS model.
Study 2 identified different contexts where the GS model would predict the
time-to-contact with systematic errors. One of those scenarios is when the
trajectory is not in a collision course with the observer. Another situation
would occur if the actual gravity and ball size do not correspond to the
assumed a priori. Study 3 showed that the direction of the errors predicted
across different trajectories corresponded to those committed by our partici-
pants for trajectories in a non-collision course. On its part, Study 4 showed
that our participants committed systematic errors across gravitational accel-
erations and ball sizes congruent with those of the GS model. Furthermore,
we show that a model based on fixed standard priors better explains our
participants’ temporal estimates than simple temporal mappings with optic
cues or even assuming priors with the correct gravitation and ball sizes.
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7.4 Limitations and future directions

The main limitation of the studies carried out during this thesis is the
design of situations in a controlled experimental context. We usually
recreate simplified versions of complex scenarios where relevant variables
are factored out. For example, we did not include complex variables such
as air resistance or the Magnus effect to simulate parabolic trajectories. We
did this to create conditions as controlled and simple as possible. However,
it results in trajectories that may not resemble the natural parabolic flight
of an object in our day-to-day life which would be a problem to generalise
our results (Aguado & López-Moliner, 2021a; Brancazio, 1985). Future
studies would include these effects and examine whether the estimates of
time-to-contact deviate systematically in the direction predicted by the GS
model. In Study 2, we already pointed in that direction, indicating that
there might be enough information to differentiate between a trajectory
including air drag from another without air drag even at motion onset.

In Study 1, our participants had to estimate the direction of an object
of unknown size and texture. As argued during the introductory chapter,
relying only on optic cues can be problematic for extracting 3D motion
information (McKee & Welch, 1989). Familiarity with the size of the object
and pictorial cues would be fundamental to calibrate motion estimates in 3D
coordinates (López-Moliner et al., 2007; Rushton & Duke, 2009; Zohary
& Sittig, 1993). Moreover, the availability of pictorial cues has proved
to improve their precision, which might reduce the bias in directional
judgements (Hornsey & Hibbard, 2021).

In our experiments, binocularity provided stereoscopic information that
might have helped extract the ball’s absolute size (Hornsey & Hibbard,
2021; Regan & Beverley, 1979). However, this information can be in-
complete or incongruent in virtual reality setups. When using an HMD
or a back-projected display, there is any inconsistency between disparity
and accommodation cues, which has been established to affect estimates
of distance and likely motion-in-depth (Regan et al., 1986; Watt et al.,
2005). Furthermore, recent studies claim that the existing HMD would
not correctly adapt to the individual differences in interpupillary distance.
Thus, restricting their correct use to a portion of the population or posing
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generalizability problems in our results (Hibbard et al., 2020).

Furthermore, in Study 1, we extracted a measure of the variability of
motion estimation by asking participants to compare lateral with motion-
in-depth. Our results are congruent with those obtained by Welchman et al.
(2008), in which horizontal and depth motion were estimated independently
from the other. However, Manning et al. (2018b) showed that when esti-
mating the motion of stimuli with different directions, discrimination is
greatly diminished. Thus, we may have overestimated the variability in the
estimation of motion-in-depth. Thus, otherwise, the standard deviation of
the slow-motion prior would differ.

In Studies 2, 3 and 4, we derived our predictions from the monocular
signals used by the GS model, ignoring the benefits of binocularity. Binoc-
ularity has been shown to improve the estimation of time-to-contact or
performance on timed tasks. However, it is still not clear if binocularity pro-
vides radically different optic information beyond increasing the precision
of our estimates (Regan, 2012). Brenner et al. (2014) argues that preci-
sion and accuracy improve because binocularity provides two independent
images of the same event. Using the GS model as a basis, we can draw pre-
dictions of the resulting precision combining both independent measures. A
secondary aim of Study 2 was to highlight the uncertainty in the estimation
of different optic cues. It was intended to lay the groundwork for future
projects where catching is modelled as a continuous problem. To this pur-
pose, the application of tools such as Kalman filters (Kalman, 1960) could
allow us to model how the precision of our estimates improves over time
according to optimality criteria and compare it with human performance
(Aguilar-Lleyda et al., 2018; Kwon et al., 2015).

Another limitation of the studies carried out in this thesis is the absence
of an eye-tracker. Previous studies have shown that our visual tracking
system is generally guided by predictions based on factors such as Earth’s
gravitation (Delle Monache et al., 2015; Jörges & López-Moliner, 2019)
and even ball’s elasticity (Diaz et al., 2013). Studying how visual tracking
behaves under arbitrary gravitational accelerations in 3D parabolic trajec-
tories is interesting to characterise the effect of incorporating a gravity
prior in our sensorimotor system. Jörges and López-Moliner (2019, 2020a)
shows that motion congruent with gravitational acceleration facilitates
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tracking in the frontoparallel plane. However, it is unclear if those results
could be directly transferable to 3D parabolic trajectories. In Study 4, we
restricted the analysis of the tracking data to distinguish if the observers
could track the ball effectively. Nevertheless, a quantitative analysis of
tracking gains across different gravitations for 3D parabolic trajectories
remains unexplored so far.
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8 Conclusions

The studies presented in this thesis address how we interpret visual infor-
mation. Concretely, the role of prior knowledge in interpreting 3D visual
information in complex environments.

The first study explored if a slow-motion prior could explain directional
biases congruently with motion estimation following Weber’s law. The
second study presents evidence of the use of an expectation of terrestrial
gravitation and known object size. We propose the GS model as a solution
based on a combination of optic and prior information to estimate the
remaining time-to-contact in parabolic trajectories and devise situations
where those predictions would lead to systematic errors. In the third study,
we explored a context where the geometry of the presented trajectories
would determine the errors predicted by the GS model and showed evidence
that the errors incurred by our participants corresponded to the predicted.
In the fourth study, we explored if unexpected gravitational accelerations or
ball sizes lead to systematic errors as predicted by the GS model. We found
that the errors committed by our participants corresponded to the errors
predicted by the use of fixed priors of terrestrial gravitation and standard
ball size.

Our results have significant theoretical implications regarding human ra-
tionality. Nowadays, there is an ongoing debate as to whether we use heuris-
tic strategies to solve everyday problems (Baurès et al., 2007; Gigerenzer
& Brighton, 2009; Zhao & Warren, 2015) or, on the contrary, take into
account all the data available to compute a solution (de la Malla & López-
Moliner, 2015; Hayhoe et al., 2005; McIntyre et al., 2001). Throughout
this thesis, we provide evidence on how taking prior knowledge into ac-
count may shape the interpretation of sensory information congruently
with a perspective that integrates all available information to build a final
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computation.
On the other hand, it has direct practical applications. Today, com-

mercial space expeditions are just a step away from becoming a reality.
Furthermore, head-mounted displays are increasingly being used to train
professional athletes, pilots, surgeons or just for fun. Virtual reality tools
have the potential to shatter our expectations completely by recreating
micro or supergravity environments and even non-Euclidean environments
in which the size of objects is not constant. Therefore, understanding how
we interpret visual information to interact with the world around us in our
reality will help us develop better procedures to adapt to environments
where our prior knowledge is no longer helpful.
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List of abreviations

• HMD: Head-Mounted Display

• TTC: Time-to-contact / Time-to-collision

• MID: Mition-in-depth

• LMM: Linear-Mixed Model

• Vx: Horizontal displacement

• Vy: Vertical displacement

• Vz: Depth displacement

• G: Gravitational acceleration

• s: Object’s size
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1.1 Representation of different levels of accuracy and precision
(high/low). In this example, the ball is 30 meters from the
observer (ball’s position in x), denoted by a green vertical
line. The y-axis represents distance estimation probability.
The steeper the distribution, the more likely a ball distance
will be estimated. Accuracy would represent the mean
error concerning the real value to be represented. Precision
would represent the variability of the errors. . . . . . . . . 17

1.2 Representation of the inverse problem as a many-to-one
problem, where many possible combinations of ball size
and distances project the same angular size onto the retina.
In this case, the observer has no means to infer the real
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1.3 A) Probability distributions for judged distance with un-
known ball size (gold line) and the correct ball size assumed
(black line). B) Probability distribution assuming an incor-
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1.4 External visual information is encoded as a sensory array.
Both sensory information and prior knowledge are com-
bined within the decoding process. The product is a read-
out or inference used to select an action from the existing
repertoire. An observer’s action would affect the environ-
ment and the optic array. From the difference between the
expected outcome of the action and the consequences, the
observer will store some information correcting the prior
to refining further estimates. . . . . . . . . . . . . . . . . 22

1.5 Representation of Bayesian estimation under the presence
of reliable (left) and unreliable (right) sensory evidence
(Likelihood). When the Likelihood is reliable, the effect of
the Prior is limited. Thus, the Posterior is very close to the
estimates provided by the Likelihood. In contrast, in the
right panel, the Likelihood is unreliable. As a result, the
Prior is weighted more heavily. Despite the Prior being the
same, the relative weight differs due to different Likelihood
reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 A) Two identical balls move at the same speed but at dif-
ferent distances, projecting distinct angular displacement.
B) Ball moving in depth at a constant speed towards an ob-
server. Motion-in-depth can be computed from retinal size
correlates. C) Ball moving in a parabolic trajectory. Since
distance does not change linearly, it can not be estimated
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1.7 A) Representation of a parabolic trajectory under different
gravitational accelerations (see legend). The monocular
cues available for the estimation of time-to-contact are rep-
resented with shaded areas. Retinal size (θ, in blue), the
elevation angle (γ, in pink) and the rate of change of the
elevation angle ( 9γ, in burdeos). B) Predictions of time-to-
contact for head-on approaches based on the GS model. A
discontinuous line in the background indicates perfect accu-
racy in the predictions. Terrestrial gravity (G = 9.807 m{s)
and Soccer ball size were assumed. Trajectories with dif-
ferent ball sizes (panels) and gravitational accelerations
(colour code) were simulated. . . . . . . . . . . . . . . . . 30
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3.1 The prior is represented by the grey radial gradient cen-
tred at Vx “ Vz “ 0. Two different movements with the
same bearing angle β are depicted in this scene. The speed
of each movement is indicated by the color of the arrow:
the slow movement is indicated in red whereas the fast
movement is indicated in blue. Assuming Weber’s law, the
faster movement is noisier than the slower one, which is
denoted by the SD of the respective likelihood gaussian
ones. In addition, Vz is less reliable than Vx (depicted by
the spread of the likelihood distributions for each vector,
represented as thick lines at the margin). The effect of the
prior (grey radial gradient, centered at Vx “ Vz “ 0) affects
each speed vector differently. This effect is represented by
the shift of the posterior distribution (distributions repre-
sented with dotted lines for each vector at the margin).
Given that the prior will affect the slow and fast move-
ments differently, the perceived trajectory would depend
on the physical speed of the movement while keeping the
physical trajectory constant (β). The perceived trajectory
is denoted by β̂1 for a slow movement (red) and β̂2 for a
fast movement (blue). The dashed segments connecting the
centroids of likelihood and posteriors denote the speed bias
for each movement. 9ϕ represents rate of azimuth change
for each eye. . . . . . . . . . . . . . . . . . . . . . . . . 37
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3.2 The figure represents a top (A) and lateral (B) view of the
setup. (A) The colour of each trajectory indicates the bear-
ing angle. In order to produce an estimate of the bearing
angle, the participants aligned the pointer with the per-
ceived direction of movement. To estimate the speed of the
target moving in depth the participants were instructed to
press a button indicating which ball had moved faster (blue
for first/reference or red for second/test). As illustrated in
the top view, the reference target only included a lateral
component of movement (grey dashed line). However, test
target included depth and lateral speed components (no
vertical speed component was involved) . . . . . . . . . . 40

3.3 A) Psychometric functions for two different bearing angles
for one participant (reference speed: 2 m/s). The y axis
indicates the probability of judging the target’s speed as
faster than the reference speed. The horizontal error bar
indicates the discrimination threshold. Speed in depth is
underestimated with respect to the reference movement,
as shown by the psychometric curve for β=2. Discrimina-
tion thresholds are higher for motion in depth compared to
lateral motion. B) Average relative speed (PSE/Standard
lateral). Values above the dashed line (Ratio > 1) denote un-
derestimation of depth vs lateral speed. C) Weber Fraction
as a function of β. Weber fractions are higher for motion
in depth, indicating that observers are less precise when
judging differences for MID compared to lateral movement.
D) Representation of the differences between fast and slow
trials (blue) and differential threshold (red) across β. Error
bars indicate the 95% confidence interval. Mean differ-
ences for slow-fast trials are consistently higher than the
discrimination threshold, therefore we assume speed was
perceived as different. . . . . . . . . . . . . . . . . . . . . 48
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3.4 Polar representation of the average perceived trajectory
pooled across subjects for each β and slow/fast perceived
speed (upwards/downwards triangles indicate fast or slow
group of trials respectively). Smaller triangles indicate
observer’s mean perceived trajectory split by β, perceived
speed and participant. Jittering was added to the smaller
triangles in order to ease interpretation. . . . . . . . . . . 49

3.5 A) Average perceived trajectory between subjects as a func-
tion of the physical trajectory of the stimulus (β) split by
fast/slow perceived speed (upwards/downwards triangles
indicate fast or slow group of trials respectively). Error bar
indicates the 95% confidence interval. Smaller triangles
indicate observer’s mean perceived trajectory split by β,
perceived speed and participant. B) The curves represent
the fit of the model across β split by reference speed. The
points indicate the individual mean reported trajectories for
each participant split by reference speed and β (WFx = 0.1;
WFz = 0.28; σv = 0.33). Horizontal jittering was added to
the individual points in both figures to ease interpretation.
Inset indicates the Weber fractions used to estimate the
perceived trajectories in the model for each participant. . . 51

4.1 A) Optic flow conforms to invariants that specify proper-
ties of the environment (direct perception), indicating the
adequacy and availability of action within the task. B)
Sensory stimulation is combined with prior information to
infer current or future states in the environment (read-out),
providing the grounds to plan and adapt action. . . . . . . 59

4.2 Lateral view of a parabolic trajectory depicting the pri-
mary primitive monocular cues, that is, retinal size (green
projection; θ) and elevation angle (orange projection; γ). . 61

4.3 Rate of expansion ( 9θ) for two different ball sizes at five dif-
ferent initial distances. The total flight time is two seconds.
Values under the red dashed line (0.004 rad/s) indicate that
an observer cannot discriminate differences. . . . . . . . . 67
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4.4 Test parabolas used in the simulation. A) Ball´s vertical
versus depth position. Panels B, C and D indicate retinal
size (θ), elevation angle (γ) and rate of change of the eleva-
tion angle ( 9γ) as a function of time for the first 200 ms. of
the trajectory. Panels E and F depict the output of the GS
model using visual information only and combined with
prior information, respectively. . . . . . . . . . . . . . . . 77

4.5 Simulated tuning curves of neurons specialized for different
values of A) retinal size (θ), B) elevation angle (γ) and
C) rate of change of the elevation angle ( 9γ). The blue
vertical line indicates the true stimulus strength exposed to
the system. The stimulus strength was selected from the
standard condition 200 ms. after motion onset (see main
text). The red curve indicates the average activation per
neuron in a single trial (Poisson noise added). The red
dashed lines indicate the stimulus strength inferred by the
encoding process. . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Average accuracy per procedure. The blue dashed line
indicates chance level (11%), red dashed line indicates
the performance of an MLE procedure. The black points
indicate the performance assuming different size priors in
panel A (g = 9.807 m{s2 assumed) and assuming different
gravity priors in panel B (baseball size assumed). . . . . . 79

4.7 A) Noisified estimates of TTC using the GS model for
different trajectories. The inset represents the temporal
error for the noiseless output of the GS model. B) Weber
fraction computed as the ratio between standard deviation
and mean of the GS model each frame. The red dashed
line indicates the mean Weber fraction of Tau (see main
text). The translucid output indicates the Weber fraction
of a combination of the GS model and Tau using an MLE
procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

185 of 194



4.8 A) Ending positions for simulated trajectories around the
observer. The lines represent the trajectories followed by
the moving observer. Figures B) and C) depict the output
of the GS model for a stationary and a moving observer.
The line code indicates lateral ending position (XEnd =

0, 5 (m)). The colour code indicates the ending position
in depth (ZEnd = -5, 0, 5 (m)) . Note that the GS model
predicts an underestimation of TTC for balls falling ahead
and an overestimation of TTC for those falling behind the
observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 A) Lateral view of different parabolic trajectories under
gravity (grey lines) and gravity + air drag conditions for
two different balls (red: soccer ball; blue: baseballs) and
three initial approaching speeds (different panels). The
figure annotates the difference in distance travelled (Z∆)
and flight duration (t∆) compared to a trajectory only con-
sidering gravity. The black and orange dots in the third
panel indicate the position of the corresponding simulated
observer in panels B or C and D, respectively. The green
arrow indicates the displacement simulated in panel D. Pan-
els B), C) and D) indicate the predicted TTC using the GS
model for different simulated observers in the worst-case
scenario simulated. Insets depict the corresponding tempo-
ral errors using the predictions of the GS model. . . . . . . 87

5.1 A) Top-view representation of the five different trajectories
tested in the study and a head-on approach (grey line).
B) Predictions of remaining TTC for each trajectory as a
function of time elapsed since motion onset using the GS
model. Grey line constitutes near-perfect accuracy for a
head-on trajectory using the GS model. C) Prediction error
for each trajectory using the GS model. Positive errors
indicate an overestimation of the remaining TTC and vice
versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

186 of 194



5.2 A) Representation of the back view inside the environment
of the experimental setup. B) Representation of the course
of two typical trials. 1: The ball is visible for 300 millisec-
onds after launch. 2: When looking at the floor, an arrow
lights up indicating the correct controller for using in the
timing task. 3: The viewer decides when to look up again
for the ball (visible for 400 milliseconds). 4: The observer
receives feedback about the temporal task ("early," "good"
or "late") and the use of the correct controller (blue or red
colour panels). . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 A) Representation of ball’s position (solid lines) and gaze
direction (dashed lines) across time. Blue and red lines
indicate horizontal and vertical angles, respectively. The
red area indicates ball’s visibility windows. Note that the
mid-flight visibility window depends on an observer’s gaze
(threshold at -20 degrees). The green area indicates the
visibility of the arrows on the floor (threshold at -40 de-
grees). The ball was always occluded 300 milliseconds
before returning at eye-level again (horizon). . . . . . . . . 101

5.4 Horizontal and vertical ball’s angular position for the tra-
jectories present in this study under both flight durations.
Dashed vertical lines indicate the privileged time points
specified by the GS model. . . . . . . . . . . . . . . . . . 102

5.5 A) Gaze horizontal position as a function of ball’s position
at reappearance. B) Gaze rate of change in the vertical axis
as a function of ball’s position in the vertical axis. Both
panels depict angular measures. Each trajectory (GS rel) is
indicated with a different colour whereas shape indicates
flight duration (TTC). The grey lines denote the best lin-
ear fit per participant. The grey dashed line in Panel A
represents the identity line. . . . . . . . . . . . . . . . . . 106

5.6 Representation of ball’s position (solid lines) and gaze
direction (dashed lines) in the horizontal (blue) and vertical
(red) axis across time for two different participants s_6 and
s_12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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5.7 A) Mean preferred viewing time (tVisible) per flight duration
(TTC in different panels), participant (x axis) and trajectory
(GS rel in different colours). The horizontal dashed lines
indicate the privileged time points specified by the GS
model. The error bars denote ˘ a standard deviation. B)
Mean preferred viewing time (tVisible) across blocks per
participant (small dots) and group of participants (big dots). 108

5.8 A) Response time as a function of flight duration (colour
and shape code). Big dots indicate the average across par-
ticipants. Smaller dots indicate the average per participant.
B) Mean difference in percentage between flight durations
(TTC) per visual cue and the combination of cues (GS
model). The red area denotes differences that cannot be
discriminable (lower than ˘ 5%). Big black dots repre-
sent the average difference across participants. Small dots
represent the average difference per participant. . . . . . . 111

5.9 A) Hit probability per flight duration (TTC) and group of
participants. B) Response time per flight duration (TTC)
and group of participants. In panels A and B, the big
dots indicate average per group of participants and the
smaller dots indicates the average per participant. C) Hit
probability as a function of the SD of the response time per
participant and flight duration (TTC). D) Hit probability as
a function of the response time since the time of prediction
per participant and flight duration (TTC). . . . . . . . . . 112

5.10 A) Predictions of remaining flight time using the GS model
as a function of the time elapsed since motion onset and
trajectory. The dashed vertical lines indicate the privileged
time points specified by the GS model. The vertical red
line indicates an example of midpoint visibility time. B)
Response time since the time of prediction as a function
of the predictions of the model at the viewing window per
trajectory (colour code) and participant. The coloured lines
indicate single fits per trajectory. Big dots indicate the
average per participant and trajectory. . . . . . . . . . . . 113
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6.1 A) Representation of the main primitive monocular vari-
ables available in a parabolic trajectory: Retinal size (θ),
the elevation angle (γ) and bearing angle (β). B) Sketch
of the conditions tested in the present work and a collision
course trajectory (not tested here). We presented 5 trajec-
tories directed to both sides (dots colour code), 3 gravities
and 3 ball sizes. . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 A) Lateral representation of a parabolic trajectory. B) Bird-
eye view of a parabolic trajectory. Note that the computa-
tions in main text assume an estimate of x position at ball’s
height. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Average time-to-contact predicted by the GS model across
gravities (A), ball sizes (B) and trajectories (C). The red
area denotes the occluded portion of the trajectory. D)
Temporal errors per ball size (x-axis) and gravitational ac-
celeration (colour code). E) Temporal errors per trajectory.
The error bars indicate a 95% confidence interval in panels
D and E. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Correlation between different variables and the time-to-
response, that is, the time elapsed from occlusion to the
observer’s response. The red area denotes the occluded por-
tion of the trajectory. To account for multiple comparisons
(multiple variables), we used an alpha of 0.05{6 “ 0.0083. 130

6.5 Average path followed by the observers across gravitational
accelerations (A), ball sizes (B) and mean flight duration
(C) for different trajectories. The observer moves from the
origin. The ball launches laterally and vertically aligned
with the observer at a distance of 40 meters far [x0 “ 0,z0 “

40]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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6.6 A) Average heading speed versus proportion of flight time
passed across three groups of flight durations (colour code).
B) Average SD of heading versus proportion of flight time
passed across trajectories (colour code). The inset repre-
sents the average SD of the temporal predictions based
on the GS model. C) Correlation between different vari-
ables and time-to-response versus proportion of flight time
passed. In all panels, the red area denotes the occluded por-
tion of the trajectory. To account for multiple comparisons,
we used an alpha of 0.05{4 “ 0.0125. . . . . . . . . . . . 133
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A B S T R A C T

Previous studies have shown that the angle of approach is consistently overestimated for approaching (but
passing-by) objects. An explanation based on a slow-motion prior has been proposed in the past to account for
this bias. The mechanism relies on the (less reliable) in-depth component of the motion being more attracted
towards the slow motion prior than the (more reliable) lateral component. This hypothesis predicts that faster
speeds in depth will translate into a greater bias if the perception of velocity in depth follows Weber’s law. Our
approach is different than the one used in previous studies where perceived speed and direction were measured
in different experiments. To test our hypothesis, we conducted an experiment in which participants estimated
approaching angles via a pointing device, while at the same time comparing the speed of the approaching object
with a lateral velocity reference. This way, we couple perceived speed with perceived trajectory for each ap-
proaching angle in the same trial. Our results show that the directional bias is larger for faster objects, which is
consistent with motion in depth following Weber’s law. The differential biases can be accounted for by a
Bayesian model that includes a slow motion prior.

1. Introduction

One of the main functions of the visual system is to recover the 3D
structure of the environment. This is particularly important when we
need to estimate the direction and speed of moving objects on a colli-
sion (or near-collision) course with us.

Knowing how different cues, both monocular and binocular, con-
tribute to estimate direction and motion in depth (MID) has attracted
interest in the past (Beverley & Regan, 1973; Cumming & Bruce, 1994),
but still is an active field of research (Harris, Nefs, & Grafton, 2008;
Rokers, Fulvio, Pillow, & Cooper, 2018). Past work on MID, however,
has mainly focused on precision and accuracy of motion estimates
(Harris & Dean, 2003; Rushton & Duke, 2009).

Regarding the direction of approach, several studies have shown
that we tend to overestimate the bearing angle (from now on β; see
Fig. 1) of the trajectory of an approaching target (Harris & Drga, 2005;
Lages, 2006; Poljac, Neggers, & Van Den Berg, 2006; Welchman, Tuck,
& Harris, 2004). This is, we overestimate the lateral distance by which a
ball passes us. This can be counterintuitive, given that we are very
sensitive to the motion direction of objects on a collision course (Regan,
Erkelens, & Collewijn, 1986).

To explain this bias, Welchman, Lam, and Bülthoff (2008) put

forward a Bayesian explanation that included the so-called Slow Motion
Prior, which is a main component of a motion perception model by
Stocker and Simoncelli (2006). Sensory estimates (likelihood) are
combined with an expectation of nearly zero motion in the environment
(prior) resulting in consistent underestimations of speed (posterior),
with the extent of underestimation depending on the reliability of the
likelihood (e.g. contrast of a grating; Stocker & Simoncelli (2006)).
Therefore, if the reliability of the signal is low, the slow prior will be
weighted more, resulting in a slower posterior and, consequently, the
speed of the stimulus will be underestimated more strongly.

In the same study, Stocker and Simoncelli (2006) found that the
width of likelihood estimates for speed discrimination tasks increases
logarithmically as a function of speed approximately following Weber’s
law (for targets moving faster than 1 deg/s), as suggested by previous
literature in the field (McKee, Silverman, & Nakayama, 1986; Welch,
1989). Furthermore, they used a Bayesian Observer model to infer the
shape (SD) of the Slow Motion Prior, which falls from a peak at slow
speeds becoming shallower for faster ones. As a result, the prior ex-
pectation introduces increasingly biases for the posterior as a function
of the perceived speed.

Welchman et al. (2008) explained the underestimation of ap-
proaching angles in terms of this slow prior: The estimate of the lateral
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Gravity and Known Size Calibrate
Visual Information to Time Parabolic
Trajectories
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Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de
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Catching a ball in a parabolic flight is a complex task in which the time and area
of interception are strongly coupled, making interception possible for a short period.
Although this makes the estimation of time-to-contact (TTC) from visual information
in parabolic trajectories very useful, previous attempts to explain our precision in
interceptive tasks circumvent the need to estimate TTC to guide our action. Obtaining
TTC from optical variables alone in parabolic trajectories would imply very complex
transformations from 2D retinal images to a 3D layout. We propose based on previous
work and show by using simulations that exploiting prior distributions of gravity and
known physical size makes these transformations much simpler, enabling predictive
capacities from minimal early visual information. Optical information is inherently
ambiguous, and therefore, it is necessary to explain how these prior distributions
generate predictions. Here is where the role of prior information comes into play: it
could help to interpret and calibrate visual information to yield meaningful predictions
of the remaining TTC. The objective of this work is: (1) to describe the primary sources
of information available to the observer in parabolic trajectories; (2) unveil how prior
information can be used to disambiguate the sources of visual information within a
Bayesian encoding-decoding framework; (3) show that such predictions might be robust
against complex dynamic environments; and (4) indicate future lines of research to
scrutinize the role of prior knowledge calibrating visual information and prediction for
action control.

Keywords: 3D perception, calibration, internal models, optic flow, prior knowledge, TTC

INTRODUCTION

Intercepting a ball in a parabolic trajectory before reaching ground level is a fundamental task
in different sports: batting a baseball, hitting a high lob in tennis, or heading a football. In those
situations, the time at which the interception is possible is very tight, yet our performance is
astonishing. Time-to-contact (from now on TTC), that is, the time until an object reaches a location
of interest, can provide very useful information that would help anticipate motor programs to solve
those tasks.
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Obtaining reliable estimates of the time-to-contact (TTC)
in a three-dimensional (3D) parabolic trajectory is still an
open issue. A direct analysis of the optic flow cannot
make accurate predictions for gravitationally accelerated
objects. Alternatively, resorting to prior knowledge of
gravity and size can provide accurate estimates of TTC in
parabolic head-on trajectories, but its generalization
depends on the specific geometry of the trajectory and
particular moments. The aim of this work is to explore
the preferred viewing windows to estimate TTC and how
the available visual information affects these
estimations. We designed a task in which participants,
wearing an head-mounted display (HMD), had to time
the moment a ball in a parabolic path returned at eye
level. We used five trajectories for which accurate
temporal predictions were available at different points
of flight time. Our results show that our observers can
predict both the trajectory of the ball and TTC based on
the available visual information and previous experience
with the task. However, the times at which our
observers chose to gather the visual evidence did not
match those in which visual information provided
accurate TTC. Instead, they looked at the ball at
relatively fixed temporal windows depending on the
trajectory but not of TTC.

Introduction

The time remaining before an object reaches a point
of interest is called time to contact (TTC). To estimate
this parameter accurately is of great importance, as
it can be used for multiple actions such as avoiding
collisions, intercepting moving targets, and, more
generally, regulating one’s own speed.

Previous literature has focused on the study of TTC
for objects under different visual conditions such as
objects moving at a constant speed in the frontolateral
plane (Bootsma & Oudejans, 1993; Tresilian, 1994) or
moving toward the observer (Heuer, 1993; Lee, 1976;
Wann, 1996). In contrast, during the past decades,
others have focused on the study of gravitationally
accelerated objects in free-fall (Lacquaniti & Maioli,
1989; McIntyre et al., 2003; McIntyre, Zago, Berthoz, &
Lacquaniti, 2001; Zago et al., 2004), parabolic motion
in head-on trajectories (de la Malla & López-Moliner,
2015), or frontoparallel ones (Jörges, Hagenfeld, &
López-Moliner, 2018; Jörges & López-Moliner, 2019).
However, the estimation of TTC for objects describing
parabolas in the more general case has not been
systematically addressed. This is probably due to the
complex mapping between the distal three-dimensional
(3D) trajectory and the projected optic variables. The
same optic pattern can be caused by a multitude of
sources in the external world (Pizlo, 2001), rendering
the interpretation of the real source of stimulation
an ill-posed problem known as the inverse problem
of vision (Kersten, Mamassian, & Yuille, 2004). This
problem would compromise an agent’s performance
based on optic information alone.

A paradigmatic case in which the computation
of TTC for a 3D flying object is key is the so-called
outfielder problem. In baseball, players known as
outfielders must catch a flying ball at a specific time
and location, avoiding ground contact. The distances
involved in this task and the size of the ball render
binocular cues and retinal expansion nondiscriminable.
Therefore, it is usually assumed that only a reduced set
of monocular cues is available to guide action (Cutting
& Vishton, 1995; Wilson, Golonka, & Barrett, 2013;
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