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Scientific Novelty & Significance 

 

Within the field of biologics, monoclonal antibodies have ruled the market with blockbuster and top 

selling drugs over the last decades. With the advancements in technological discoveries, lightspeed 

progress has been achieved to discover novel antibodies and mechanisms of action to address unmet 

needs and indications. Particularly, display technologies, in vitro systems, and high/ultra-high-

throughput technologies have shown monumental progress to ensure the rapid discovery of novel 

biological entities.  

 

In the first study presented herein, the focus laid on the generation of a bidirectional plasmid for 

recombinant antibody production in mammalian cells to facilitate native antibody folding and post-

translational modifications. Conventional approaches for transient antibody production utilise co-

transfection of heavy and light chain genes encoded on separate plasmids. Here, a single plasmid under 

the control of two independent promoters, constructed in a bidirectional fashion, is used. This study 

assessed promoter combinations resulting in the best antibody yields of two U.S. Food and Drug 

Administration (FDA)-approved antibodies, durvalumab and avelumab. By comparing promoters with 

varying strengths (CMV, minCMV, EF-1α and enhanced CMV), gene expression of heavy and light chain 

genes and subsequent IgG1 yields gave rise to the 2xeCMV combination, consisting of two mirrored 

eCMV cassettes controlling the expression of the light and heavy chains individually in each direction. 

This combination effectuated the most promising mRNA synthesis for both chains in two regularly used 

mammalian cell lines, human embryonic kidney 293 (HEK293) and Chinese hamster ovary (CHO) cells, 

and the highest yields after IgG quantification, comparable to the conventional co-transfection method. 

By substituting the co-transfection approach with this bidirectional plasmid, lower plasmid preparation 

efforts are required and further facilitates the handling of a higher number of mAb candidates 

simultaneously.  

 

In the second study, the described bidirectional plasmid was put into practise by generating a Fab-

presenting yeast surface display (YSD) library from immunised OmniRats. After screening of antibody 

formats via fluorescence-activated cell sorting (FACS), reformation of single candidates into their final 

IgG format is required, rapidly converting itself into a cumbersome step, and often resulting in the 

bottleneck to proceed with further characterisation. Within this study, a novel workflow based on Golden 

Gate Cloning (GGC) was established, allowing the bulk reformatting of antibody candidates after YSD 

FACS screening. By using an OmniRat-derived Fab library against MerTK, two screening rounds of YSD 

were performed by FACS. Subsequently, the antibody-encoding genes were transferred into a 

Mammalian_Destination (MD) vector, which contained a partial hinge-CH2-CH3 sequence, resulting in 

a full-length heavy chain after GGC with Esp3I. In order to produce the full-length variants, the yeast-
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specific Gal1,10 promoter was exchanged for the described promoter cassette combinations from the 

first study, 2xeCMV, by a final GGC step with BbsI. After assembly, the resulting MD vector contained 

the variable domains from the second sorting round with the respective constant domains required for 

the production of full-length IgG molecules. Next generation sequencing (NGS) of the screening rounds 

confirmed that the entire VH family diversity was covered in the resulting clones after bulk reformatting. 

Ten candidates were subsequently transiently expressed in mammalian cells and characterised for target 

binding and biophysical properties. This workflow presented a two-pot, two-step, PCR-free method to 

transition from YSD to a mammalian expression vector, eliminating any unwanted polymerase-

introduced mutations and allowing for bulk cloning of yeast display-enriched antibody fragments. By 

this procedure, heavy and light chain pairing is conserved, contrary to other reformatting approaches, 

and paves the way to accelerate antibody hit discovery campaigns with YSD. Furthermore, this platform 

is malleable to other antibody formats and immunisation hosts, such as single chain variable fragments 

(scFvs) and chickens, and has the potential to be developed for bispecific or multispecific antibodies. 

 

Next-generation antibodies, including bi- and multispecific antibodies, have been set under the spotlight 

for their ability to combine multiple modes of action simultaneously and result in higher efficacy, where 

monoclonal antibodies are lacking. A special class of such are immune cell engagers which target 

immune cells and tumour-associated antigens (TAAs) to create an immune synapse. Depending on the 

effector cell being targeted, specialised killing mechanisms are triggered to efficiently kill the targeted 

cells. Macrophage engagers are aimed at forcing targeted phagocytosis of the engaged cell type and have 

typically targeted the CD47/SIRPα axis up to date, known as the “do not eat me” signal. Nevertheless, 

targeting CD47 lacks specificity due to its ubiquitous expression pattern. On the other hand, T-cell 

engagers (TCEs) result in very specialised signals by targeting CD3 on T cells and additional TAAs. The 

hyperactivation of T cells results in a feedback loop through the activation of macrophages and the over-

release of cytokines, resulting in cytokine storms or cytokine release syndrome (CRS). If left untreated, 

these can provoke life-threatening conditions. Thus, macrophage engagers and TCEs require novel cell-

specific targets and widening of their therapeutic windows for restored patient alleviation.  

 

In the third study within this cumulative thesis, the first bispecific macrophage engager targeting the 

receptor tyrosine kinase MerTK and epidermal growth factor receptor (EGFR) is presented. From the 10 

antibody candidates derived in the second study, one candidate displayed agonistic properties, detected 

by the dose-dependent activation of the downstream signalling molecule phospho AKT (pAKT). MerTK’s 

overexpression on macrophages and tumour-associated macrophages within the tumour 

microenvironment (TME) lays the foundation to generate macrophage-engaging bispecific antibodies 

for targeted phagocytosis of tumour cells. Therefore, tandem biparatopic EGFR-binding VHH molecules 
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(termed 7D9G) were combined in different architectures to generate bispecific molecules. By using the 

Knob-into-Hole technology, a bispecific with a MerTK-binding Fab arm and an EGFR-binding tandem 

VHH arm were generated, abolishing the agonistic properties of the parental MerTK mAb. On the other 

hand, a tetravalent bispecific antibody was generated by fusing the tandem VHHs to the C-terminus of 

the CH3 domain, resulting in intact MerTK-binding Fabs. The bispecific antibodies were able to bind 

both targets simultaneously in their soluble form and engage macrophages with EGFR+ tumour cells. 

Furthermore, they were able to compete with the binding site of EGF and therefore inhibit EGF-mediated 

signalling transduction by inhibiting pAKT. EGFR domain mapping of 7D9G by YSD resulted in binding 

to domain III of the extracellular EGFR domain, confirming its ligand-inhibiting abilities. Moreover, the 

bispecific antibodies resulted in targeted phagocytosis of EGFR+ tumour cells by macrophage-like THP-

1 cells. This work represents the first bispecific macrophage-engager targeting MerTK for immuno-

oncology applications by harnessing its expression and role in the tumour microenvironment to 

selectively phagocytise tumour cells.  

 

In the last study presented here, a trispecific T-cell engager and cytokine release modulating antibody 

(TriTECM) was generated. In brief, a tetravalent, bispecific two-in-one antibody binding EGFR and PD-

L1 simultaneously with a single Fab arm was combined with anti-CD3 and anti-IL-6R scFvs, derived from 

foralumab or sarilumab, respectively. By testing two TriTECM architectures varying mainly in the anti-

CD3 scFv positioning and valency of IL-6R binding, tetraspecific molecules were generated with multiple 

mechanisms of action. Firstly, increased tumour specificity was ensured by targeting EGFR and PD-L1 

with a low nanomolar on-cell affinity. Checkpoint inhibition by blockage of the PD-1/PD-L1 axis was 

mediated by binding to PD-L1. T-cell engagement and subsequent T-cell-mediated cytotoxicity was 

attenuated, resulting in reduced pro-inflammatory cytokine release. And lastly, inhibition of the IL-6/IL-

6R pathway can modulate cytokine storms after T-cell activation. The attenuation of CD3 binding could 

allow existing CD3-binders to be used, that were previously shown to result in cytotoxicity. With cytokine 

release still putting obstacles in the way of novel immune cell engagers, TriTECM designs represent a 

novel class of therapeutics with the potential to inertly modulate over-activated immune responses and 

widen the therapeutic index of T-cell-engaging therapeutics.   
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Zusammenfassung und wissenschaftlicher Erkenntnisgewinn 

 

Auf dem Gebiet der Biologika haben monoklonale Antikörper (mAb) in den letzten Jahrzehnten den 

Markt mit Blockbustern und umsatzstarken Medikamenten durchdrungen. Fortschritte bei der 

Entwicklung neuer Technologien gingen einher mit rasanten Fortschritten bei der Entdeckung neuartiger 

Antikörper und Wirkmechanismen, die es ermöglichen, neue Anwendungsgebiete zu erschließen. 

Insbesondere Display-Technologien, In-vitro-Systeme und Hoch- bzw. Ultra-Hochdurchsatz-

Technologien ermöglichen heute die Isolierung von biologischen Wirkstoffkandidaten in relativ kurzen 

Zeiträumen.  

 

In der ersten hier vorgestellten Studie lag der Schwerpunkt auf der Herstellung eines bidirektionalen 

Plasmids für die rekombinante Antikörperproduktion in Säugetierzellen, um die native 

Antikörperfaltung und posttranslationale Modifikationen zu erleichtern. Konventionelle Ansätze für die 

transiente Antikörperproduktion nutzen die Co-Transfektion von Genen der schweren und der leichten 

Kette eines Antikörpers, die auf separaten Plasmiden kodiert sind. In der vorgestellten Studie wird nur 

ein einziges Plasmid unter der Kontrolle von zwei unabhängigen Promotoren eingesetzt. Der Fokus lag 

dabei auf der Untersuchung, welche Promotorkombination die beste Antikörperausbeute für zwei von 

der U.S. Food and Drug Administration (FDA) zugelassenen Antikörper, Durvalumab und Avelumab, 

erbringt. Durch die Kombination von Promotoren unterschiedlicher Stärke (CMV, minCMV, EF-1α und 

Enhanced CMV) für die Genexpression der schweren und leichten Kette, waren die IgG-Ausbeuten am 

höchsten bei der 2xeCMV-Kombination. Bei dieser wurden zwei gespiegelte eCMV-Kassetten eingesetzt, 

welche die Expression der leichten und schweren Kette individual in jeder Richtung steuerten. Diese 

Kombination bewirkte eine hohe mRNA-Syntheserate für beide Ketten in zwei standardmäßig 

eingesetzten Säugetierzelllinien und die höchsten Ausbeuten an Antikörpern, vergleichbar mit der 

herkömmlichen Co-Transfektionsmethode. Der Ersatz der Co-Transfektionsmethode bei Einsatz zweier 

Plasmide durch dieses bidirektionale Plasmid verringert den Aufwand für die Plasmidpräparation, was 

die gleichzeitige Bearbeitung einer größeren Anzahl von Antikörperkandidaten ermöglicht.  

 

In der zweiten Studie wurde das zuvor beschriebene bidirektionale Plasmid verwendet, um eine Fab-

Bibliothek aus immunisierten OmniRats zu generieren und die Fab-Varianten im Hefeoberflächendisplay 

(YSD) zu präsentieren. Nach der Durchmusterung von Antikörperkandidaten mittels fluoreszenz-

aktivierter Zellsortierung (FACS) ist die Reformatierung einzelner Kandidaten in ihr endgültiges IgG-

Format erforderlich, was mit größerem manuellem Aufwand verbunden ist und oft zu einer zeitlichen 

Verzögerung bei der weiteren Charakterisierung führt. Im Rahmen dieser Studie wurde ein neuartiger, 

auf Golden Gate Cloning (GGC)-basierender Arbeitsablauf etabliert, der die Massenreformatierung von 

Antikörperkandidaten nach dem YSD-FACS-Screening ermöglicht. Unter Verwendung einer von 
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OmniRat stammenden Fab-Bibliothek gegen MerTK wurden zwei YSD-Durchmusterungsrunden mittels 

FACS durchgeführt. Anschließend wurden die Antikörper-kodierenden Gene in einen 

Mammalian_Destination (MD)-Vektor übertragen, der eine partielle Hinge-CH2-CH3 Sequenz enthielt, 

was nach einem GGC-Schritt mit Esp3I in einem ORF resultierte, welche die vollständige schweren Kette 

kodierte. Um die Volllängenvarianten zu erzeugen, wurde der hefespezifische Gal1,10-Promotor in einen 

abschließenden GGC-Schritt mit BbsI gegen die beschriebenen Promotorkassettenkombination aus der 

ersten Studie, 2xeCMV, ausgetauscht. Nach der Assemblierung enthielt der resultierende MD-Vektor die 

variablen Domänen aus der zweiten Sortierrunde mit den jeweiligen konstanten Domänen, die für die 

Produktion von IgG-Molekülen erforderlich sind. Next Generation Sequencing (NGS) aller 

Durchmusterungsrunden bestätigte, dass die gesamte Vielfalt der Sequenzen der VH-Familien in den 

resultierenden Klonen nach der Massenumformatierung wiedergefunden wurde. Zehn Kandidaten 

wurden anschließend transient in Säugetierzellen exprimiert und hinsichtlich ihrer Antigenbindung und 

biophysikalischen Eigenschaften charakterisiert. Dieser Arbeitsablauf ermöglicht einen direkten Transfer 

von Fab Fragmente kodierenden Genen aus einem Hefedisplayvektor in einen Säugetier-

Expressionsvektor, vermeidet unerwünschte Polymerase-induzierte Mutationen und erlaubt eine 

Massenklonierung von angereicherten Antikörperfragmenten. Durch dieses Verfahren bleibt die Paarung 

von schwerer und leichter Kette im Gegensatz zu anderen Reformatierungsansätzen erhalten und ebnet 

somit den Weg zur Beschleunigung von Antikörper Durchmusterungskampagnen mit YSD. Darüber 

hinaus ist diese Plattform für andere Antikörperformate und Immunisierungswirte, wie scFvs und 

Hühner, anpassbar und hat das Potenzial, für bispezifische oder multispezifische Antikörper entwickelt 

zu werden.  

 

Antikörper der neuesten Generation, einschließlich bi- und multispezifischer Antikörper, sind in den 

Fokus der Forschung gerückt, da sie mehrere Wirkmechanismen gleichzeitig kombinieren und eine 

höhere Wirksamkeit als monoklonale Antikörper erzielen können. Eine besondere Klasse von 

Antikörpern sind Immunzell-Engager, welche gleichzeitig Immunzellen und tumorassoziierte Antigene 

(TAAs) auf malignen Zellen targetieren, und so eine Immunsynapse schaffen. Je nach adressierter 

Immunzelle werden spezielle Effektorfunktionen aktiviert, was in der effizienten Tötung der targetierten 

Zellen resultiert. Makrophagen-Engager vermitteln eine gezielte Phagozytose der angegriffenen Zelle 

und adressierten bisher in dem meisten Fällen die CD47/SIRPα-Achse, welche für sogenannte "Friss mich 

nicht"-Signale verantwortlich ist. Allerdings wird CD47 ubiquitär exprimiert und ist daher nicht selektiv. 

T-Cell Engager (TCEs) hingegen erkennen zumeist CD3 auf T-Zellen und zusätzlich ein TAA auf einer 

Tumorzelle. Durch die Bildung einer immunologischen Synapse vermittelt der TCE die Aktivierung der 

T Zelle, was in einer zytotoxischen Reaktion gegen die Zielzelle resultiert. Die Hyperaktivierung von T-

Zellen führt zu einer Rückkopplungsschleife durch die Aktivierung von Makrophagen und damit in der 
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Folge zur übermäßigen Freisetzung von Zytokinen, was zu Zytokinstürmen oder einem 

Zytokinfreisetzungssyndrom führen kann, welche unbehandelt lebensbedrohlichen Zustände 

hervorrufen. Daher benötigen Makrophagen-Engager und TCEs neue, zellspezifische Targets und eine 

Erweiterung ihres therapeutischen Fensters, um das Auftreten von Nebenwirkungen im Patienten zu 

verhindern.  

 

In der dritten Studie, die im Rahmen dieser kumulativen Dissertation vorgestellt wird, wurde der erste 

bispezifische Makrophagen-Engager generiert, welcher den Rezeptor-Tyrosinkinase MerTK und den 

epidermalen Wachstumsfaktor-Rezeptor (EGFR) targetierte. Von den zehn Antikörperkandidaten, die in 

der zweiten Studie entwickelt wurden, zeigte ein Kandidat ein agonistisches Wirkprofil, welches durch 

die dosisabhängige Aktivierung eines nachgeschalteten Signalmoleküls, phospho-AKT, nachgewiesen 

wurde. Die Überexpression von MerTK auf Makrophagen und tumorassoziierten Makrophagen in der 

Tumormikroumgebung bildet die Grundlage für die Entwicklung von Makrophagen-aktivierenden 

bispezifischen Antikörpern zur gezielten Phagozytose von Tumorzellen. Daher wurden biparatopische 

EGFR-bindende tandem-VHH-Moleküle (bezeichnet als 7D9G) in verschiedenen Architekturen mit dem 

MerTK mAb kombiniert, um bispezifische Moleküle zu erzeugen. Mit Hilfe der „Knob-into-Hole“-

Technologie wurde ein bispezifischer Antikörper designt, welcher mit einem Fab-Arm MerTK adressiert 

und ein weiterer Arm durch die EGFR-bindenden tandem-VHH dargestellt wurde. Dieses Konstrukt 

zeigte jedoch keine agonistische MerTK Bindung. Durch die Fusion der tandem VHHs an den C-terminus 

der CH3-Domäne des anti-MerTK IgGs, wurde die agonistische Bindungseigenschaft wiederhergestellt. 

Die bispezifischen Antikörper waren in der Lage, beide Zielmoleküle gleichzeitig in ihrer löslichen Form 

zu binden und Makrophagen mit EGFR-positiven Tumorzellen in Kontakt zu bringen. Darüber hinaus 

waren sie in der Lage, mit der Bindung von EGF, dem natürlichen Liganden von EGFR, zu kompetieren 

und somit die EGF-vermittelte Signaltransduktion durch Hemmung von phospho-AKT zu inhibieren. Des 

Weiteren führten die bispezifischen Antikörper zu einer gezielten Phagozytose von EGFR-positiven 

Tumorzellen durch makrophagenartige THP-1-Zellen. In dieser Arbeit wurde der erste bispezifische 

Makrophagen-Aktivator generiert, welcher MerTK adressiert und für immunonkologische Anwendungen 

geeignet ist, indem er dessen Expression und Rolle in der Mikroumgebung des Tumors für die selektive 

Phagozytose von Tumorzellen nutzt.  

 

In der letzten hier vorgestellten Studie wurde ein trispezifischer T-Cell Engager und Zytokinfreisetzungs-

modulierender Antikörper (TriTECM) entwickelt. Hierzu wurde ein tetravalenter bispezifischer Zwei-in-

Eins-Antikörper, der EGFR und PD-L1 gleichzeitig mit einem einzigen Fab-Arm bindet, mit Anti-CD3- 

und Anti-IL-6R-Einzelketten-Variablen-Fragmenten (scFvs) kombiniert, welche von Foralumab bzw. 

Sarilumab abgeleitet wurden. Es wurden zwei TriTECM-Architekturen erzeugt, die sich hauptsächlich in 
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der Positionierung der Anti-CD3-scFvs und der Valenz der IL-6R-Bindung unterschieden, welche 

mehreren Wirkmechanismen vereinten. Zunächst wurde eine erhöhte Tumorspezifität gewährleistet, 

indem EGFR und PD-L1 mit einer niedrigen nanomolaren Affinität auf doppelt-positive Zielzellen 

gebunden werden. Durch Bindung an PD-L1 wurde die PD-1/PD-L1-Achse blockiert und dieser 

Immuncheckpoint inhibiert. Die T-Zell-Bindung und die anschließende T-Zell-vermittelte Zytotoxizität 

wurden abgeschwächt, was zu einer verringerten Freisetzung von pro-inflammatorischen Zytokinen 

führte. Abschließend kann die Hemmung des IL-6/IL-6R-Signalwegs die Zytokinausschüttung nach der 

T-Zell-Aktivierung herunterreguliert. Die Abschwächung der CD3-Bindung könnte es ermöglichen, 

Literatur-bekannte CD3-Binder zu verwenden, die zuvor nachweislich Zytotoxizität bewirkten. 

Angesichts der Tatsache, dass die Freisetzung von Zytokinen immer noch eine Problematik bei der 

Entwicklung neuartiger Immunzellen-targetierender Antikörper darstellt, sind TriTECM eine neue Klasse 

von Therapeutika, die das Potenzial haben, überaktivierte Immunantworten gezielt zu modulieren und 

den therapeutischen Index von T-Zell-aktivierenden Therapeutika zu erweitern.  
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1 Introduction 

 

1.1  Immune System  

Vertebrates have the most advanced immune system, composed of a complex network of signalling 

molecules, immune cells, organs and tissues. The immune system protects the human body from disease-

causing substances, such as germs, bacteria, viruses, parasites or fungi (1). It is composed of two main 

systems: the innate and the adaptive immune system. The innate immune response represents a rapid, 

general immunological response. On the other hand, the adaptive immune system is considered a 

specialised, antigen-specific response, representing a slower reaction. While the innate system is 

evolutionarily older and found in virtually all living organisms, the adaptive response was first 

discovered approximately 500 million years ago in jawed fish and has since only been found in 

vertebrates (2,3). Both systems will be reviewed in 1.1.1 and 1.1.2, accordingly.  

 

1.1.1 Innate Immune System 

The first line of defence comprises three different types of barriers: structural, chemical and biological 

barriers. Structural barriers include the outermost layer of the body, the skin, composed of a number of 

structural cells (4–6) and mucosal membranes found within close proximity of body cavities (7–9). These 

membranes prevent the infiltration of inhaled or ingested foreign pathogens. Additionally, the mucosa 

of vertebrates serves as a chemical and biological barrier by secreting bioactive molecules including pro-

inflammatory cytokines and lysozyme (9,10). Lysozyme is further present in nasal secretions, tears and 

saliva and inhibits microbial growth (11–13). Chemical barriers include regions of lowered pH, i.e., as 

found within the stomach and mucous membranes to avoid microbial growth and invasion.  

 

Once pathogens penetrate anatomical barriers, an immune cascade is started to immediately fight 

against possible infection. This system is known as the innate immune response and is the first line of 

defence against a pathogen that was able to intrude the chemical and physical barriers. As a fast response 

is required to clear pathogens before causing more damage, the innate immune response occurs 

immediately or within a maximum of hours after encountering a pathogen-derived antigen, thus it is 

known as an antigen-independent, non-specific defence mechanism (14). Pathogens entering the body 

must fulfil a number of requirements in order to be efficiently cleared by the immune system. One of 

these requirements is the presence of conserved molecular patterns and structures across large groups 

of pathogens, which are the main target of innate immune recognition. These patterns are known as 

pathogen-associated molecular patterns (PAMPs) (15) or more recently as microbe-associated molecular 

patterns (MAMPs) (16,17). Examples of PAMPs include lipopolysaccharides (LPS), lipoproteins, 

peptidoglycans and oligosaccharides, all often found on the surface of pathogens (18). Furthermore, 
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dangerous endogenous signals that may contribute to tissue stress are designated damage-associated 

molecular patterns (DAMPs) (19,20). 

 

While PAMPs and MAMPs originate from external pathogens, DAMPs generally play a physiological role 

within the body but transform into danger signals when exposed to external environments, for example 

after being released from dying cells (21). PAMPs, MAMPs, and DAMPs can be recognised due to their 

conserved molecular patterns, hence the receptors that do such were termed pattern-recognition 

receptors (PRRs) (22). As PAMPs are broadly expressed on pathogens but not in host cells, PRRs are 

able to discriminate between self and non-self, as first proposed by Janeway in the early 1990s (23,24). 

PRRs are germline-coded receptors that can either be present on the surface of sensor cells important 

for detecting pathogen infection, such as monocytes, macrophages, dendritic cells (DCs), epithelial and 

endothelial cells, and fibroblasts (25,26), or can be found in soluble forms (18). PRRs can be divided 

into four subclasses, based on their downstream signal transduction activation and their residency 

location. The Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) are both transmembrane 

receptors that detect PAMPs either on the cell surface or the lumen of intracellular vesicles. TLRs are the 

most well-studied class of PRRs and can be classified into two subfamilies. Cell surface TLRs, including 

TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10, recognise microbial membrane components (lipids, 

lipoproteins). For example, TLR4 specifically recognises bacterial LPS. The second subfamily comprises 

intracellular TLRs that recognise nucleic acids from bacteria or viruses and additionally recognise self-

nucleic acids in autoimmunity. These include TLR3, TLR7, TLR8, TLR11, TLR12, and TLR13 (27,28). 

Two further PRR subclasses exist that were recently shown to detect intracellular PAMPs cytosolically, 

namely retinoic acid-inducible gene I-like receptors (RLRs) and nucleotide-binding oligomerisation 

domain-like receptors (NLRs) (25,26). Once the innate immune system detects and recognises foreign 

molecules via PRRs on sensor cells, a downstream signalling cascade is activated leading to the secretion 

of inflammatory mediators, including cytokines, chemokines, interferons, and antimicrobial peptides 

(AMPs) (29–33). 

 

A further system within innate immune responses is the complement system. It is composed of over 40 

proteins found in the plasma and on cellular surfaces and constitutes over 15% of the globular fraction 

of plasma. Its versatile functions include pathogen opsonisation through complement opsonin (e.g., 

C3b), release of pro-inflammatory mediators, and targeted lysis of pathogenic surfaces through 

membrane-penetrating pores known as the membrane attack complex (MAC). These actions are the 

result of three complement pathways that are activated and mediated in different ways (34,35). 

 

Integral effector cells of the innate immune system are phagocytic cells, consisting of granulocytes 

(neutrophils, basophils, eosinophils, mast cells), monocytes/macrophages, and DCs (10). Neutrophils 
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and monocyte-derived macrophages are known as professional phagocytes, as their precise reason for 

existing is to engulf pathogens through receptor-mediated endocytosis. The phagocytosis theory 

originates from Elie Metchnikoff in 1882, for which he was later awarded the 1908 Nobel Prize together 

with Paul Ehrlich (36,37). Neutrophils make up 40-60% of all leukocytes in human blood and are the 

first to arrive to an infected scene, hours before monocytes and monocyte-derived macrophages. To 

recognise phagocytic targets, neutrophils and macrophages express a number of cell-surface PRRs. 

Neutrophils, for example, express Dectin-1 and Dectin-2, both belonging to the CLR family, recognising 

β-glucan found in the cell wall of a wide array of microbes and mannose-rich structures present on a 

range of species, respectively (38–42). Additionally, they possess cell-surface receptors for the Fc portion 

of antibodies and for the C3b component of the complement system.  

 

Upon encountering pathogens, actin polymerisation is induced at the site of pathogen attachment after 

ligand binding via PRRs. The plasma membrane of phagocytes can subsequently surround the pathogen 

and results in phagosomes with engulfed pathogens (43). The phagosome fuses with intracellular 

granules filled with proteases and AMPs to form the phagolysosome, where microbes are subsequently 

killed. Two main mechanisms exist for killing of microbes: i) de-granulation of granules to expose 

bacteria to AMPs, enzymes and proteases, or ii) generation of reaction oxygen species (ROS) (44). The 

former is known as the oxygen-independent mechanism and is predominantly responsible for altering 

the permeability of bacterial membranes, for example through the release of defensins and cathelicidins 

such as hCAP-18/LL-37 (45–47). Defensins and cathelicidins predominantly disrupt anionic bacterial 

surfaces by forming pores in their membranes, rendering bacterial more susceptible to lysis (46). The 

enzyme lysozyme is also released from neutrophil granules that leads to bacterial killing through the 

targeted hydrolysis of peptidoglycans (PGs) present on their cell walls (13,48,49). Neutrophil serine 

proteases (NSPs), including neutrophil elastase (NE) and cathepsin G (CG), also contribute to the non-

oxidative pathways of neutrophil-driven killing. Under normal conditions, these inactivated proteases 

are stored in granules, which are only activated upon release into phagocytic vacuoles (50). The most 

well-known direct antibacterial function of NSPs is the direct killing of bacterial cells. NE has been shown 

to directly kill gram-negative bacteria, for example through the degradation of outer membrane protein 

A (OmpA) in Escherichia coli resulting in loss of membrane integrity and bacterial degradation (51). 

Gram-positive Streptococcus pneumoniae are rather killed through the collective action of NE, CG and 

other proteases (52). Furthermore, NSPs can indirectly result in bacterial killing by other mechanisms, 

such as generating AMPs through cleavage of host proteins or degrading virulence factors (50).  

 

Monocyte-derived macrophages and tissue-resident macrophages also partake in the onset of an acute 

inflammatory event but play a more crucial role in the subsequent resolution of inflammation, whereas 

neutrophils are merely responsible for the initial removal of pathogens (44). Consequently, macrophages 
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ultimately phagocytose apoptotic neutrophils after pathogen removal. Additionally, macrophages are 

long-lived cells that are involved in antigen presentation (14). Macrophages are largely influenced by 

external factors (e.g., cytokines) leading to changes in both their phenotype and function. Two main 

groups of macrophages are known, namely “classically activated” M1 macrophages which are known to 

secrete pro-inflammatory cytokines, including tumour necrosis factor α (TNFα) and interleukins (IL)-6, 

IL-1β, IL-12, and IL-15. The polarisation to M1 macrophages occurs in response to different stimuli such 

as exposure to LPS, interferon-γ (IFNγ) and other factors. On the other hand, “alternatively activated” 

M2 macrophages secrete anti-inflammatory cytokines including transforming growth factor β (TGFβ), 

IL-4, IL-10, and IL-13 and are stimulated by macrophage colony-stimulating factor (M-CSF) and other 

interleukins. While M1 macrophages play a pro-inflammatory role with anti-microbial and anti-tumoral 

activity, M2 macrophages exhibit an anti-inflammatory role and aid in tissue homeostasis, wound 

healing and fighting infections (53–55). 

 

Besides phagocytic cells, antigen-presenting cells (APCs) compose an important share in maintaining 

innate immunity. Professional APCs consist of macrophages, DCs, and B cells. APCs first recognize their 

target through binding of PAMPS or DAMPs to PRRs and internalising their target by initiating 

phagocytosis, pinocytosis, or clathrin-mediated endocytosis. Depending on the PRR family, different 

pathways of endocytosis are initiated to degrade external PAMPs/DAMPs and display them on major 

histocompatibility complex (MHC) for further T cell recognition, as discussed in 1.1.2 (56,57). A further 

group of innate immune cells are natural killer (NK) cells that play a large role in antiviral immunity by 

destructing virus-infected cells through the release of perforins and granzymes which induce 

programmed cell death. NK cells are also known as large producers of IFNγ aiding subsequent T cell 

responses (14,58). APCs, especially dendritic cells, and the complement system represent the linkage 

between the innate and adaptive immune responses (35,56,59,60). 

 

1.1.2 Adaptive Immune System 

The adaptive immune response represents an antigen-specific and memory response, contrary to the 

non-clonal recognition pathways of cells pertaining to the innate immune system. Responses of the 

adaptive immune system are mediated by lymphocytes derived from hematopoietic stem cells and can 

be separated into two broad categories. Cell-mediated immune responses are carried out by T 

lymphocytes (T cells), whereas antibodies are produced by B lymphocytes (B cells) (43). 

 

T Cells 

T cells arise from the bone marrow and migrate to the thymus where somatic gene rearrangement takes 

place, leading to the expression of a unique antigen-binding molecule, the T cell receptor (TCR). The 

TCR recognises peptide antigens that have undergone proteolytic cleavage and are presented on a host 
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cells’ MHC molecule. Nucleated cells are capable of expressing MHC class I (human leukocyte antigen 

HLA A, B, and C) molecules that lead to T cell responses. Further, professional antigen-presenting cells, 

including B cells, DCs and macrophages, constitutively express MHC class II (HLA DP, DQ and DR) 

molecules, allowing for an enhanced activation of T cells. MHC class I and II molecules can interact with 

different TCR co-receptors, such as CD8 and CD4, accordingly, and differ in presenting either 

endogenous or exogenous peptides, respectively (61). The TCR itself does not consist of any intracellular 

signalling domains, and instead associates non-covalently with signalling apparatus from co-receptors. 

This complex consists of CD3εγ and CD3εδ heterodimers and a CD3ζζ homodimer, collectively forming 

the TCR-CD3 complex (62).  

 

T cells can be separated into two primary types, cytotoxic T cells (CTLs) and T-helper (Th) cells. Upon 

antigen presentation via MHC molecules, stimulated T cells differentiate either into CD8+ CTLs or CD4+ 

Th cells. CD8+ CTLs are responsible for killing foreign agents and tumour cells expressing the appropriate 

antigens by two main mechanisms. The first involves the release of pore-forming perforin, that forms 

transmembrane channels in the target cell. Proteases, such as granzyme B, are contained in secretory 

vesicles together with perforin which are released by CTLs through exocytosis. Granzyme B cleaves and 

activates members of the caspase family of proteases, resulting in a cascade that ultimately arbitrates 

apoptosis. The second mechanism also involves the activation of the caspase cascade, however through 

Fas ligand on the cell surface of CTLs binding to Fas on the target cell. Binding results in the activation 

of the caspase cascade, similarly resulting in apoptosis (43). 

 

On the other hand, CD4+ Th cells do not possess cytotoxic activity but are rather involved in maximising 

an immune response by directing other cell types to kill infected cells or pathogens. Upon activation, Th 

cells influence the activity of other cell types, including APCs, by releasing cytokines. Th cell responses 

can be classified into different subsets, depending on the effector mechanisms required for elimination 

of the presented pathogen. The major subsets include Th1, Th2, Th17, and regulatory T cells (Tregs). 

The first response to be discovered, Th1, is characterised by the release of IFNγ which leads mainly to 

the activation of macrophages and further enhances anti-viral immunity. Th2 responses are induced by 

IL-6 and IL-13 and are characterised by the release of cytokines IL-4, IL-5 and IL-13, playing a role in 

the development and recruitment of mast cells and eosinophils, an essential response for effective 

protection against parasites. Furthermore, Th2 responses are involved in B cell-mediated humoral 

responses, such as the development of immunoglobulin E (IgE)-secreting B cells and enhancing the 

production of IgG production. Th1 responses also contribute to B cell differentiation, as described below. 

As the name suggests, Th17 cells are characterised by the production of IL-17 and other IL-17 family 

members and are associated with chronic infection and disease. Lastly, Tregs control aberrant responses 

to self-antigens and thus limit and suppress immune responses, playing a large role in controlling the 
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development of autoimmune disorders. Both CTLs and helper T cells die upon resolution of infection 

and are cleared by phagocytes, with a few cells remaining as memory cells. Upon encounter with the 

same antigen, these memory cells can differentiate into effector cells and swiftly resolve infections 

(14,43,63–66). 

 

B Cells 

B cells are derived from the bone marrow where B cell development takes place and mediate antibody 

responses. The B cell receptor (BCR) undergoes somatic recombination, similar to the TCR, resulting in 

very high specificity, where each B cell represents a unique BCR. To reach this point, immunoglobulin 

(Ig) heavy and light chain encoding genes undergo DNA recombination. A detailed description of the 

structure and function of antibodies is provided in 1.1.3. During B cell development, V(D)J 

recombination occurs in the bone marrow. Starting at the pro-B cell stage, the Ig heavy chain gene is 

produced by joining of diversity gene segments (D) to joining gene segments (JH), resulting in a late pro-

B cell. Then, variable heavy chain segment (VH) is rearranged to the joined DJH sequence. Successful 

heavy chain V gene rearrangement associates with an intact µ chain as a constant (C)-region sequence, 

and the cell can progress into a pre-B cell, stopping VH to DJH rearrangement and starting to proliferate. 

In the case where both heavy-chain alleles are non-productive, pro-B cells are unable to receive the 

proliferation signal and are eliminated. The pre-B-cell receptor consists of the µ heavy chain, and two 

further proteins made in pro-B cells, λ5 and VpreB, which pair to form a surrogate light chain. Together 

with the association of Igα and Igβ, the pre-B-cell receptor complex is formed, allowing for signalling 

and structurally resembling a mature BCR complex. Light chain rearrangement occurs as with the heavy-

chain locus. Synthesised light chains after successful rearrangement are combined with the heavy chain 

to form intact IgM molecules on the surface of B cells, together with Igα and Igβ, forming the functional 

B-cell receptor complex. Throughout this process, recombination-activation genes 1 and 2 (RAG-1 and 

RAG-2) play a large role in gene rearrangement, forming a RAG-1:RAG-2 dimer that acts as a component 

of the V(D)J recombinase. Further, terminal deoxynucleotidyl transferase (TdT) adds N-nucleotides at 

the joints between rearranged gene segments, contributing to the diversity of both B-cell and T-cell 

receptor repertoires (67–70). 

 

From the intact IgM molecule on the surface of mature B cells, a central tolerance process is initiated to 

eliminate B cells that have produced autoreactive cells reacting with the body’s “self” proteins, leading 

to autoimmune diseases. Non-reactive cells are then released from the bone marrow into the periphery, 

where naïve B cells can become activated by contact with antigens. In contrast to T cells which only 

recognise short peptide sequences presented on MHC molecules, B cells can recognize three-dimensional 

large antigens (71,72). Somatic hypermutation occurs in the antigen-binding site of BCRs to increase 

their affinity by hypermutating along the V gene region of the Ig gene (73). This process is mediated by 
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activation-induced cytidine deaminase (AID) which induces cytosine to uracil deamination. To repair 

this process, error-prone polymerases are recruited, allowing any base to be incorporated. Here too, 

tolerance mechanisms result in positive selection for BCRs with the highest affinity and remove low 

affinity or autoreactive BCRs. Fully differentiated, antibody-secreting B cells are known as plasma cells, 

which together with memory B cells exist in the germinal centre of secondary lymphoid tissues (74,75). 

Lastly, high affinity antibodies undergo a class switch from low-affinity IgM or IgD antibodies to matured 

IgA, IgE and IgG isotypes (76). 

 

Besides their role as antibody-secreting cells, B cells also play a large role as professional APCs for CD4+ 

Th cells through the expression of MHC class II molecules. Hereby, B cells recognise antigens through 

membrane-bound immunoglobulins and take them up via endocytosis. Through a lowered pH, the Ig is 

proteolytically cleaved, allowing for peptide generation to occur. Newly synthesized MHC class II 

molecules are then loaded with peptides and endocytosed to present them to T cells (77,78). 

 

1.1.3 Structure and Function of Antibodies 

Antibodies are heterodimeric glycoproteins exerting high affinity and specificity to bind foreign invaders 

and avoid inflammation. Antibodies can be split into five isotype classes, each employing specific 

functions and varying mainly in their heavy chain structure: IgA, IgD, IgE, IgG and IgM (Figure 1A). 

IgMs are the first isotype to be produced upon differentiation of naïve B cells into plasma cells, as 

described above. They exhibit a pentameric structure and result in avidity effects, compensating for their 

relatively low affinity and are mainly found in the blood (79,80). IgA is predominantly responsible for 

mucosal immunity by binding to FcαRI (CD89) and thus contributes to the first line of defence (81,82). 

The IgA isotype exists as a monomer in serum, or as a dimer, containing two IgA with one J chain and a 

secretory component (83). IgD exists in two forms and represents a monomeric structure. Membrane-

bound IgD is recognised as B-cell receptors (BCR), while its soluble form is implicated in mucosal innate 

immunity (84). IgE and IgG are isotypes found exclusively in mammals and both exist only as monomers 

(85). IgE plays a crucial role in mediating allergic reactions by binding to Fc receptors FcεRI and FcεRII 

(CD23) (86). IgGs are the most abundant class of antibodies, constituting up to 75% of Igs in human 

serum. From the IgG family, four subclasses exist, namely IgG1, IgG2, IgG3 and IgG4, with minor 

differences in structure and effector functions. Besides isotypes, IgG heavy chain polymorphisms, known 

as allotypes, add an additional layer of variation (87). 

 

The IgG isotype consists of four polypeptide chains, two identical γ heavy chains (HC) and two identical 

κ or λ light chains (LC), resulting in a molecule of approximately 150 kilodaltons (kDa).  The heavy and 

light chains are linked together by inter-chain disulphide bonds, while the individual domains of each 

chain are stabilized by intra-chain disulphides. Variable domains (Fv) are found at the N-terminus of 
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each chain and consist of VH and VL domains for the heavy and light chain, respectively, that make up 

the antigen-binding site (paratope). Together with the Fv and a constant domain, fragment antigen 

binding (Fab) regions are formed by pairing of VL and CL of the light chain with VH and CH1 of the 

heavy chain (Figure 1B).  

 

Figure 1: Antibody structure and function. A) Immunoglobulin (Ig) isotypes. B) Structure of IgG antibody. Variable 

regions are shown in light blue and green for VH and VL, respectively, making up the variable fragment (Fv). 

Constant domains are in dark blue and green for heavy and light chains, respectively. Stars represent the 

glycosylation site at N297 in the CH2 domain. C) Zoom-in of a Fab fragment with the complementary-determining 

regions (CDRs) highlighted in white for VH and VL. The crystal structure of the variable regions and their respective 

loops is taken from (90). D) Fc-mediated effector functions of IgG molecules. Binding of IgG molecule (blue) to a 

cell-bound receptor (purple) and simultaneous binding to different effector molecules mitigates CDC, ADCC or 

ADCP. Figure created in Biorender.com.   

 

Each variable domain contains three hypervariable regions termed complementarity-determining 

regions (CDRs) that mediate antigen recognition. These six loops, CDR-L1, CDR-L2, CDR-L3 for VL and 

CDR-H1, CDR-H2, and CDR-H3 for VH, find themselves in close proximity to each other and steer the 

orientation of VL and VH after formation of the Fv (Figure 1C). The CDR-H3 is the most diverse loop as 

it is the focal point of V(D)J recombination and is often considered the most important CDR for antigen 

binding (88,89). Framework regions (Fr) are located between the CDRs of Fv domains and are numbered 

Fr1 to Fr4.  
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Heavy chains contain three constant domains: CH1, CH2, and CH3. The crystallisable fragment (Fc) that 

mediates effector functions consists of domains CH2 and CH3. Joining the CH1 and CH2-CH3 domains 

is a hinge region, which results in Fab arm flexibility and provides disulphide bonds to join two heavy 

chains together to form an antibody molecule (87). While light chains only consist of one constant 

domain (CL), two light chain isotypes are found in humans, κ or λ. The ratio of kappa/lambda antibodies 

detected strongly depends on the class of antibody heavy chain. Kappa/lambda ratios were reported to 

be 2.0 for IgG, 1.1 for IgA, and 1.7 for IgM, highlighting the isotype-dependent preferences in light chain 

isotypes (91,92). Compared to other isotypes, IgG molecules have a single glycosylation site at position 

N297 of the CH2 domain, except for IgG3 that exhibits an additional glycosylation site (93).  

 

The function of antibodies rests not only in binding to a specific antigen through their Fv regions, but 

also through Fc-mediated effector functions by binding to Fc gamma receptors (FcγR) and the first 

subcomponent of the C1 complex (C1q) (94). These functions are known as antibody-dependent cellular 

cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and antibody-dependent cellular 

phagocytosis (ADCP) (Figure 1D). ADCP is reviewed in more detail in 1.4.2. ADCC is mainly mediated 

by NK cells through binding of FcγRIIIa (CD16a) of antibody-opsonised target cells and induces cellular 

cytotoxicity by the release of perforins and granzymes. The potency of ADCC is influenced not only by 

the IgG subclass, but also by glycosylation patterns and IgG allotypes. The largest allotype-dependent 

variations have been reported for IgG3, whereas all IgG1, IgG2 and IgG4 allotypes were shown to behave 

similarly (95). CDC is triggered in a similar manner, by binding of antibody-coated target cells to C1q 

through essential residues in the CH2 domain (96). IgM molecules, for example, are exceptionally 

effective in activating the complement system due to their pentameric structure (97). Additionally, the 

CH2-CH3 interface of the Fc fragment interacts with the neonatal Fc receptor (FcRn) under acidified 

conditions and prolongs serum half-life. FcRn recycling avoids intracellular degradation of IgG molecules 

and extends the serum half-life of IgGs up to 21 days (98).  

 

 

1.2  Therapeutic Antibodies for Immunotherapy 

Harnessing the innate qualities of antibodies, including but not limited to, their high affinity and 

specificity, their Fc-mediated effector functions, and their ability to modulate biological responses, 

monoclonal antibody therapy has seen incredible growth as a therapeutic class. The birth of monoclonal 

antibody production began by the discovery of the hybridoma technology by Köhler and Milstein in 1975. 

The system consists of fusing mouse antibody-producing B cells isolated from immunised mice together 

with myeloma cells to generate immortal hybrid cells that produce antibodies in large quantities (99). 

While the hybridoma technology allowed the fast production of antigen-specific monoclonal antibodies, 

murine antibodies poised severe immunogenic effects including severe adverse effects such as 
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anaphylaxis and cytokine release syndrome (100,101). A total of 6 approved antibody therapeutics are 

murine IgG molecules (either mIgG2a or mIgG1), of which 4 have been withdrawn due to safety or 

commercial reasons, among them the first antibody to ever receive regulatory approval, anti-CD3 

muromonab-CD3 (Orthoclone OKT3) (102). Patients administered with murine monoclonal antibodies 

showed human anti-murine antibody (HAMA) responses, stagnating the success of mAb therapy 

(103,104). Thus, the focus shifted towards the generation of less immunogenic molecules by developing 

chimeric antibodies. Chimeric antibodies combine the murine variable regions with human constant 

domains and result in better human Fc-mediated effector functions and lower immunogenicity, entailing 

approximately 60% human components (105,106). Ten chimeric antibodies have successfully been 

approved for therapy, including the renowned anti-CD20 antibody rituximab (Rituxan), cetuximab 

(Erbitux) binding EGFR, and siltuximab (Sylvant) binding IL-6 (102). 

 

The largest subset of approved and next-generation antibody therapeutics has taken a step further by 

performing humanisation after discovery of antibody candidates from different origins, representing 56 

approved antibodies and a further 11 undergoing regulatory review (102). The most common type of 

humanisation is known as CDR-grafting, where the heavy and light chain CDRs of the variable domains 

are grafted onto a human framework, resulting in an antibody that is >90% human when considering 

the entire antibody molecule. Specificity-determining residue (SDR) grafting further minimises the 

murine content in the CDRs of CDR-grafted humanised antibodies (107). The first fully human antibody 

to be approved was the anti-TNF antibody adalimumab (Humira) in 2003 that was discovered through 

phage display screening (108,109). Adalimumab has achieved blockbuster status, surpassing the $20 

billion mark in sales in 2021 and often emerging in the top drug sales lists (110). The discovery and 

development of fully human antibodies has been facilitated by powerful technologies, among them 

phage display and transgenic animals which will be covered in 1.3.1.  

 

Revolutionised by the number of approved drugs on the market, humanised and fully human antibodies 

make up a large part of approved biologics. Nevertheless, their homology to human proteins does not 

entirely rule out immunogenic responses. Anti-drug antibodies (ADAs) have been reported after 

treatment with adalimumab and another fully human anti-TNF mAb golimumab (Simponi), obstructing 

the drug’s bioavailability, altering its pharmacokinetics and pharmacodynamics, and ultimately 

hampering its efficacy (111,112). Advances in computational power may help predict the 

immunogenicity of humanised and fully human therapeutics before they reach critical clinical 

development (113). 

 

In the context of complex diseases, IgG molecules pose several limitations, such as poor tumour 

penetration due to their large size, and Fc-mediated bystander activation of the immune system, among 
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others (114). To avoid the latter, antibody engineering approaches have paved the way to abate binding 

of Fc domains to FcγRs, rendering them “effector silenced”. The first point mutation described was 

Leu235Glu, resulting in 100x decreased affinity to the FcγRs (115). This initial mutation was 

investigated further and the double mutant Leu234Ala and Leu235Ala (abbreviated as LALA) was born, 

reducing binding to FcγRI, FcγRII, and FcγRIIIa for both IgG1 and IgG4 isotypes, diminishing ADCC, 

ADCP and CDC effector functions (116,117). With the additional substitution of Pro329Gly (PG), the 

LALA-PG modification abolished binding to FcγRI, FcγRII, FcγRIIIa and C1q, obliterating Fc functions in 

mouse and human IgGs (118). As interaction of the Fc and FcγRs or C1q is additionally mediated through 

glycosylation at position Asn297, mutants thereof also resulted in diminished effector functions. These 

mutations include Asn297Ala (119), and Asn297Gln (120,121). The potential of such mutations to 

abolish or reduce bystander effects has been spotlighted through clinical development of monoclonal 

antibodies carrying LALA, LALA-PG or N297 mutations (122).  

 

 

Figure 2: Structure of antibody fragments. The constant domains are depicted in dark blue and green, and the 

variable chains are coloured in light blue and light green for VH and VL, accordingly. The white lines represent the 

complementary-determining regions.  Abbreviations: Immunoglobulin – Ig, single chain variable fragment – scFv, 

fragment crystallisable – Fc, antigen binding fragment – Fab. Figure created in Biorender.com.  

 

To overcome the poor penetration of IgG molecules, antibody formats represent an interesting class of 

therapeutic entities. Antibody fragments include single chain variable fragments (scFvs, 25 kDa), scFv-
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Fc (100 kDa), Fabs (50 kDa), nanobody domain antibodies (VHH) (15 kDa), and VNAR (13 kDa) (Figure 

2). Fab fragments consist of the VH and VL domains and CL and CH1 constant domains of an IgG 

molecule, whereas scFvs are composed only of the variable domains connected by a flexible linker. 

Nanobodies and VNARs originate from camelids and sharks, respectively, and represent single-domain 

antibodies (sdAbs). Fabs and scFvs contain a total of six CDRs, three from the heavy and three from the 

light chain, whereas VHH fragments consist of three CDRs. VNAR fragments only consist of two CDRs, 

equivalent to CDR-H1 and CDR-H3 (123).  

 

Owing to their smaller size and lack of an Fc fragment, antibody fragments demonstrate improved tissue 

penetration and broader biodistribution, no effector functions and easier manufacturing. Four Fab 

fragments have made their way into the clinic, with abciximab (Reopro) marking the first antibody 

fragment to reach the market in 1994. The first scFv fragment to be approved was blinatumomab in 

2014, a bispecific T-cell engager (BiTE) that is discussed in 1.4.1. Of the sdAb type, only one humanised 

nanobody has been approved targeting the von Willebrand factor in 2018. Bivalent or bispecific 

antibodies can also be generated, for example as F(ab’)2 or by joining two scFvs (termed tandem scFv) 

(Figure 2). Taken together, both IgG molecules and antibody fragments have shown great success as 

therapeutic entities and their characteristics can be fine-tuned depending on the disease indication and 

desired mechanism of action  (124,125). 

 

1.2.1 Immuno-oncology Applications 

Cancer is one of the leading causes of death, attributing nearly 10 million deaths worldwide in 2020. 

The cancer types with the highest incidence rates are breast, lung and colorectum cancer, with lung and 

colorectum cancer accounting for the highest mortality rates (126). Independent of the cancer types, 

cancer originates from the abnormal and dysregulated proliferation of malignant cells causing the 

uncontrolled growth to invade healthy tissues and organs, leading to metastatic tumours. New 

dimensions in the proposed hallmarks of cancer have been described in 2022 to summarize the 

complexity of different tumour types and find common ground between all types of cancer cells (127). 

While conventional therapeutic strategies such as chemotherapy or radiation therapy have shown 

success in shrinking or eradicating tumours in the past, targeted therapy is becoming of utmost 

importance due to milder adverse effects, high efficacy and reduced off-target toxicities. Close to half of 

all approved monoclonal antibodies are for the treatment of oncology indications (128), with the 

authorisation of rituximab for the treatment of non-Hodgkin’s lymphoma in 1997 marking the first 

clinically relevant anti-cancer agent. Since then, a number of mAbs have been approved to treat many 

cancer types, especially for the treatment of breast cancer (129,130), and lung cancer (131,132). The 

success in the area of oncology is exemplified with Roche’s anti-human epidermal growth factor receptor 

2 (HER2) antibody trastuzumab (Herceptin) with sales of more than $5 billion in 2018 (133). 
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The tumour microenvironment (TME) is composed of a heterogenous nexus of cancer cells with 

infiltrating and resident host cells, extracellular matrix and secreted cytokines and chemokines. Immune 

cells within the TME can promote either an anti-tumour or an immune suppressive environment, 

depending on the tumour types and form of inflammation that is persistent (134,135). Solid tumours 

are particularly infiltrated by leukocytes harbouring an immunosuppressive environment, hampering the 

efficacy of novel therapies (136). In order to efficiently target tumour cells, the tumour 

microenvironment must also be modified and targeted (137). Tumour types can be further separated 

into two categories, namely “hot” or “cold” tumours. “Hot” tumours are characterised by the 

accumulation of pro-inflammatory cytokines and higher infiltration of T cells, whereas “cold” tumours 

largely lack T cell infiltration. The breakthrough of immune checkpoint inhibitors (ICIs), such an anti-

PD-1/PD-L1 (pembrolizumab, nivolumab, avelumab, durvalumab, atezolizumab) or anti-CTLA-4 

antibodies (ipilimumab) have shown great promise in anti-cancer therapy. Nonetheless, there is 

accumulating evidence that only a fraction of patients benefits from ICIs, with the response rates largely 

being related to tumour-infiltrating lymphocytes (138). Accordingly, “hot” tumours are associated with 

better ICI efficacy compared to “cold” tumours, posing a challenge for immunotherapy. The focus for 

novel therapeutic approaches is spotlighted onto turning “cold” tumours into “hot” tumours by improving 

T-cell infiltration into the TME (139–141). 

 

While the success of mAb therapy is obviated by the number of approved mAbs and the number of 

candidates in pre-(clinical) phases, their efficacy is sometimes hindered. Among other reasons, the 

complexity of tumours and their microenvironment further employ strategies to overcome the immune 

response, the so-called immune escape mechanisms. These mechanisms may include the loss of MHC 

class I molecules on APCs resulting in a loss of antigenicity and preventing appropriate presentation to 

T cells, or through the conversion of malignant cells and their environment to an immunosuppressive 

TME by upregulation of PD-L1 or immunosuppressive cytokines, including IL-10 and TGFβ (142). While 

ICIs have dramatically increased patient’s response rates and survival, novel strategies are required to 

tackle the TME that poses several obstacles in efficacy in solid and “cold” tumours. Accordingly, bispecific 

antibodies (bsAbs) binding multiple targets have been set in the spotlight in recent years. Bispecific 

antibodies have two main mechanisms of action: cell-bridging or non-cell-bridging. Cell-bridging 

bispecifics will be reviewed in detail in 1.4, but they are able to link immune cells to malignant cells, 

improving specificity and effectiveness. Non-cell-bridging bispecific antibodies bind two antigens 

simultaneously and block signals of cell survival and cell growth, enhancing inhibitory or stimulatory 

effects in malignant cells or immune cells, respectively (143). By combining multiple modes of action 

and activating immune cells, their therapeutic effect and benefit is greater than monoclonal antibodies. 

To date, there are 7 approved bispecific antibodies, with more than 180 in pre-clinical development and 

50 undergoing clinical investigation. From the approved bsAbs, four target CD3 on T cells with an 
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additional tumour-associated antigen (TAA) that will be reviewed in 1.4.1. The remaining three 

bispecific antibodies are non-cell-bridging bsAbs, targeting two receptors to cross-link antigens or 

combined antagonism of pathways resulting in cell death (144). 

 

1.2.2 Severe Adverse Effects – Cytokine Release 

Besides lack of efficacy, many biologics are hampered by severe toxicity in early clinical stages. While 

the development of humanised and fully human antibodies has drastically improved their in vivo 

tolerability, adverse effects may still occur (145). A severe adverse effect observed after first doses of 

mAbs is cytokine storm or cytokine release syndrome (CRS). Back in the 1980s, the term was coined 

after infusion with Muromonab-CD3, due to infusion-related reactions that were observed. CRS is a life-

threatening systemic inflammatory syndrome, where elevated levels of cytokines through 

hyperactivation of immune cells occurs. CRS can be triggered through therapies, pathogens, cancer, and 

autoimmune reactions, among others, and is one of the most frequent grave adverse effects after T-cell-

engaging immunotherapies via CD3 binding (146–148). Nonetheless, the onset of CRS is not only 

characteristic to CD3-binding mAbs but has also been reported after treatment with anti-CD52 

alemtuzumab (149), anti-CD20 rituximab (150) and tositumomab (145), anti-CD40 CP-870893 (151), 

anti-CD2 BTI-322 (152) and anti-CD28 TGN1412 (153) antibodies (154). TGN1412, in particular, 

displayed a tremendous public outcry for regulatory agencies to standardise in vitro and in vivo studies 

prior to first-in-human studies (155).  

 

While the pathophysiology of CRS is not entirely understood, it can be induced by two main mechanisms: 

direct target cell lysis or activation of T cells through therapeutics. Focusing on T cell-engaging 

therapeutic-induced CRS, IFNγ is released upon activation of T cells which induces the activation of 

other immune cells, principally macrophages and DCs. The subsequent activation of macrophages results 

in excessive amounts of IL-6, TNFα and IL-10 (Figure 3). Excessive amounts of IFNγ and TNFα elicit flu-

like symptoms including fever, chills, dizziness, fatigue and diarrhoea (146) . IL-6 seems to play a 

particularly important role in the CRS pathophysiology, as its trans-signalling pathway leads to 

characteristic symptoms of CRS such as vascular leakage (156), and elevated serum IL-6 levels have 

been consistently observed in patients with CRS (157–159). 

 

Grade 1 and 2 CRS results in mild reactions including fever and hypotension, where intravenous fluids 

or low-dose vasopressors are required. Grade 3 CRS results in hospitalisation with the need for high-

dose vasopressors, and signs of organ dysfunction appear to instigate. Life-threatening complications are 

observed with grade 4 CRS where mechanical ventilation support is required, grade 4 organ toxicities 

are observed and severe hypotension requiring a combination of high-dose vasopressors is exhibited 

(160). The onset of grade 4 CRS is triggered by the feedback loop between activated T cells and 
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macrophages, resulting in extremely high serum IL-6 levels of 600-1000 pg/ml compared to normal 

levels of 7-30 pg/ml (161,162). Due to IL-6’s key role in the pathophysiology of CRS, grade 3 and 4 CRS 

symptoms are managed by treating patients with tocilizumab (Actemra), an anti-IL-6R antibody that 

blocks receptor activation via both cis- and trans-activation pathways. While tocilizumab was initially 

approved for treatment of rheumatoid arthritis by the FDA in 2010, it has recently received emergency 

use authorisation for the management of CRS (163–165).  

 

 

Figure 3: Pathophysiology of cytokine release syndrome. The onset of cytokine release syndrome is depicted, 

initiating with the activation or lysis of T cells and B cells. Their release of IFNγ and TNFα results in the activation 

of macrophages, endothelial and dendritic cells. Following the release of inflammatory cytokines from activated 

immune cells, the further activation of T cells is triggered, and a feedback loop is initiated, resulting in 

hyperactivation. The third step represents grade 4 CRS where mechanical ventilation and grade 4 organ toxicities 

are observed. Figure created in Biorender.com and adapted from (146). 

 

Furthermore, in light of the unprecedented COVID-19 pandemic where life-threatening infections 

resulting in CRS were observed, sarilumab, another therapeutic anti-IL-6R antibody has been 

investigated in the management of CRS in critically ill patients (166–170). While risk- and grade-

management of CRS appears to alleviate patients from life-threatening indications, improvements are 

required for novel T cell-engaging therapies to widen their therapeutic index and boost their efficacies 

(171).  
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1.3  Discovery & Generation of Therapeutic Antibodies 

Biotherapeutics are not only relevant in immuno-oncology applications, but also for a plethora of 

important disease areas such as metabolic diseases (172), neuro-degenerative diseases (173,174), 

regenerative therapy (175–177), infectious diseases including Ebola (178) or COVID-19 (179,180), and 

many others (128,181). Advances in protein engineering and platform technologies have facilitated the 

rapid discovery of novel potential therapeutics. In order to generate novel biotherapeutics, several 

aspects must be taken into consideration. The discovery and development of antibodies will be discussed 

in the sections 1.3.1 and 1.3.2, respectively.  

 

1.3.1 Discovery of binders 

The discovery of novel therapeutic entities begins with an antibody repertoire from which antigen-

specific monoclonal antibodies can be selected. Different sources of antibody libraries exist, with the 

most common ones being synthetic, naïve or immune libraries. Synthetic antibody repertoires are created 

by designed synthetic DNA, giving scientists free choice of the framework. Thus, higher stability and low 

immunogenic variants can be generated by designing optimised human frameworks and diversity can 

be restricted to four of the six CDRs to generate antigen-binding sites with high specificity (182,183). 

On the other hand, natural naïve libraries originate from B cells from individuals or donors that were 

not altered by immunisation. Such libraries are known as “universal libraries” that can be screened 

against an array of antigens, as the individual/donor did not react to a specific antigen. Limited by the 

size of the human naïve antibody repertoire, combinatorial libraries of multiple donors can generate 

large libraries. While naïve libraries can be screened for virtually any antigen of interest and are of 

human origin, the antibodies exhibit lower affinity compared to other sources due to lacking in vivo 

affinity maturation. Nonetheless, a number of approved antibodies have been selected from natural naïve 

library sources, such as raxibacumab, necitumumab, and belimumab (184–187). Semisynthetic libraries 

combine synthetic and naïve libraries by mainly introducing random sequences in the CDR-H3 to 

increase the affinity of human antibodies (188,189).  

 

Immune libraries originate from cells of immunised animals. A particular antigen of interest is infected 

in the immunisation host, where genetic rearrangement of antibody germ line genes and somatic 

hypermutation occurs upon exposure to a foreign antigen. Due to in vivo affinity maturation and V gene 

hypermutation, antibodies from immune libraries generally exhibit higher affinities compared to other 

sources, however they are antigen-specific libraries against the immunised antigen. The first 

immunisation hosts described were mice, rats, and rabbits (187,190,191). More recently, chicken 

immunisation has shown great promise due to the large phylogenetic distance between birds and 

mammals, resulting in antibody repertoires addressing epitopes that are conserved in rodents. A handful 

of early-stage chicken-derived antibodies have been described in literature, highlighting their potential 
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as therapeutic entities (192–199). Independent of the immunisation host, humanisation of antibody 

candidates is required to avoid immunogenic responses. Advances in antibody engineering have 

facilitated the humanisation of rodent (200–203), rabbit (191,204), and chicken antibodies (205,206). 

To circumvent this cumbersome process, transgenic animals have eased the generation of fully human 

antibodies by integrating human immunoglobulin gene loci in animal strains that can undergo normal 

processes of rearrangement and hypermutation, resulting in high diversity and specificity (207–209). 

Transgenic mice were the first of their kind, thereafter followed by rats, chickens and recently cows, as 

embodied by the OmniAb platform of Ligand Pharmaceuticals (210).  

 

Besides the hybridoma technology, in vitro selection technologies have paved the way for the rapid 

discovery of novel therapeutic biologics. These include phage display (211,212), ribosome display (213), 

yeast surface display (214), mRNA display (215), and mammalian display (216,217). Phage display 

represented the first in vitro technology to offer fully human antibodies, by containing human VH and 

VL repertoires (218,219). As not all organisms are capable of efficiently producing full-length 

glycosylated IgG molecules, display technologies are generally performed with antibody fragments in 

the form of scFv or Fabs, exhibiting robust display and expression in different systems (220,221). 

Mammalian display has the particular advantage of screening directly in the final IgG format, not 

requiring further reformatting of antibodies after screening (216,222,223). Additionally, losses of 

affinity have been reported after conversion of antibody fragments, particularly scFvs, into the IgG 

format, requiring subsequent affinity maturation (224). Very recent advances in phage display systems 

have allowed the construction of full-length IgG antibodies on M13 phages for phage display screening, 

however the production of IgGs in Escherichia coli is limited to aglycosylated mAbs  (225). 

 

After screening in antibody formats, antibody hits must be reformatted into the desired IgG subclass, 

depending on the desired biological activity (226). Reformatting can become a cumbersome approach 

as the number of antibody hits becomes larger. To this effect, platform technologies have seen 

advancements in bulk reformatting of entire libraries to their desired final format, e.g., IgG1. In the case 

of phage-displayed libraries, several approaches have been reported for batch reformatting (227–229). 

However, no such reports were noted for YSD-derived antibody fragment libraries, still requiring single 

candidate reformatting in order to avoid losing heavy and light chain pairing.  

 

1.3.2 Development of therapeutic antibodies 

Once potential antibody candidates have been selected, reformatted into the desired final format and 

thoroughly characterised exhibiting the desired affinity, pharmacodynamics and pharmacokinetics 

(PD/PK) both in vitro and in vivo, the development of the best antibody candidate may begin. While 

binding to the target of interest is crucial, therapeutic antibodies must also be free from other attributes, 
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such as aggregates, heterogeneity or unstable product, known as critical quality attributes (CQA). As the 

development of a therapeutic mAb carries great time and economic burdens, a developability assessment 

is required before entering process development to ensure the selected candidate exhibits exceptional 

biophysical and biochemical behaviour to lower the risk of development. By in silico methods, atypical 

behaviour of mAbs may be evaluated and/or predicted from antibody sequence or molecular dynamics 

simulations in a more effective and rapid process, based on learnings from previous mAbs that have 

undergone development. Parameters for in silico assessment may include hydrophobicity, net charge, so-

called “hot spots” within CDR regions, or post-translational modification sites (230–232). These 

parameters can lead to suboptimal behaviour, such as high aggregation resulting in immunogenicity and 

impacting their biological activity (233,234), or high viscosity presenting challenges in formulation 

development and subcutaneous drug delivery (235). While in silico methods provide a good selection 

criterion for antibody candidates, thorough characterisation by in vitro methods including forced 

degradation studies is still required or may be combined (236). 

 

Antibody variants produced during process development must be kept to a minimum, as they can impair 

an antibody’s activity, efficacy, safety and PK/PD properties. The introduction of heterogeneous species 

begins with antibody production in mammalian cells, such as Chinese hamster ovary (CHO) cells. A 

number of possible modifications exist, increasing the heterogeneity of the drug product. For example, 

N-terminal modifications (e.g., introduction of pyroglutamate) may occur, altering the mass and charge 

of antibody molecules, that must then be separated by cation exchange (237). In the case of bispecific 

antibodies, process development becomes more difficult as the correct heavy chain and light assembly 

must be ensured to avoid mispairing or heterogeneous molecules. In the case of the Knob-into-Hole 

technology, extensive chromatography can remove unwanted by-products or impurities (238,239). 

 

When a homogenous product is up to regulatory standards after quality assessments, formulability of 

antibody molecules must be assessed. Due to their macromolecular structure offering high specificity 

and efficacy, its complexity poses challenges in formulation and drug delivery. Antibody formulations 

must fulfil the requirements for the desired route of administration. Intravenous (IV) applications were 

the most common route of administration for mAbs, now substituted with subcutaneous (SC) delivery 

for chronic diseases (240,241). Due to platform technologies, advances in process development and in 

silico technologies, the development of mAbs has seen great advances lowering risk and cost for 

pharmaceutical companies.  
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1.4  Immune-Cell Engagers 

Owing to the heterogeneity of tumours and their microenvironment, ICIs and monotherapy still have 

exposed limitations. To improve these shortcomings, immune cell engagers (ICEs) have been discovered, 

generally consisting of bispecific antibodies targeting both immune effector cells and TAAs. By re-

directing immune cells and forming immune synapses between effector and tumour cells, MHC-

independent tumour cell killing, and successive elimination is ensured, overcoming possible immune 

escape mechanisms (242). Depending on the type of immune effector cell to be engaged, ICEs can be 

split into three sub-types: T-cell engagers (TCEs), NK-cell engagers (NKCEs), and phagocytic cell 

engagers (Figure 4) (243). T-cell engagers will be reviewed in 1.3.1, and macrophage-engagers in 1.3.2. 

 

Figure 4: Immune cell engagers. Three types of immune cell engagers are depicted: T-cell engagers (TCE), NK 

cell engagers (NKCE) and phagocytic cell engagers, from left to right. Generic bispecific antibodies are depicted 

with the red Fab arm binding to a tumour-associated antigen (TAA) on tumour cells, and the other arm binding 
immune cell-specific markers. Some immune cell-specific markers are depicted, such as CD3, CD28 and 4-1BB for 

TCEs, CD16, NKG2D and NKp30 for NKCEs, and CD64, SIRPα and MerTK for macrophage-engagers. Figure created 

in Biorender. 

 

1.4.1 T-Cell Engagers 

The most common category of TCEs is bispecific T-cell engagers (BiTEs) as introduced by Micromet in 

2008, where T cells are redirected to tumour cells to employ T-cell mediated cytotoxicity. BiTEs consist 

of two tandem single-chain variable fragments, one binding a TAA and the other a part of the TCR 

complex (244–247) Usually, a specific chain of the CD3 complex associated to the TCR complex is 

targeted and participates in TCR-mediated signalling, resulting in the simultaneous redirection and 

activation of T cells to the tumour cells. Tumour cell lysis is mediated by the secretion of perforin and 

granzymes stored in secretory vesicles of cytotoxic T cells (248,249). 
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The first-in-class BiTE molecule to be approved by the FDA was blinatumomab (Blincyto) in 2014 for 

treatment of B-cell malignancies, targeting CD19 on B cells and CD3 on T cells (250–252). With a 

different architecture, catumaxomab (Removab) gained approval by EMA several years before, binding 

epithelial cell adhesion molecule (EpCAM) and CD3 with a functionalised Fc region to mediate effector 

functions, resulting in a trifunctional antibody (253,254). Regulatory approval of both molecules 

validated the breakthrough of bispecific T-cell engagers, however they both come with limitations. 

Treatment with blinatumomab was reported to be associated with a high risk of CRS due to T cell over-

activation, narrowing its therapeutic window and additionally requiring frequent infusion due to its short 

half-life as it lacks an Fc fragment (146,255–258). Similarly, catumaxomab exhibited very high affinity 

for CD3 and led to CRS events, and it was later withdrawn due to commercial reasons (259).  

 

As is the case for existing TCEs, the development of novel T-cell-redirecting molecules is often hampered 

by high toxicities in early stages of preclinical or clinical development. To this end, next generation TCEs 

have laid the focus on CD3 affinity to improve the therapeutic index of TCEs by lowering the affinity to 

CD3. These next generation TCEs have resulted in less critical cytokine release profiles as T cells were 

not over-stimulated (260–264). Moreover, trispecific T-cell engagers (TriTEs) have been recently 

described and their efficacy has been validated in vivo. One strategy described a CD3-specific scFv 

flanked by two different tumour-targeting VHH antibody fragments targeting EGFR and EpCAM for the 

treatment of colorectal cancer (265). Another elegant approach using a cross-over dual variable (CODV) 

bispecific antibody format was described by Sanofi by targeting not only CD3 and a TAA, but also CD3’s 

co-stimulatory receptor CD28 in order to enhance T cell activation and the efficacy of T-cell redirecting 

antibodies (SAR442257, NCT04401020) (266). Treatment with this trispecific T-cell engager in 

humanised mouse models resulted in suppressed tumour growth and stimulation of effector T cell 

proliferation. Moreover, a novel T-cell engager format was developed by Harpoon Therapeutics using 

their Trispecific T-cell Activating Construct (TriTACs) platform. They comprise two sdAbs and a CD3-

specific scFv. Due to their small size, TriTACs aim to achieve superior efficacy through penetrating the 

TME of solid tumours, and a half-life extender has been built-in by incorporating an albumin-binding 

VHH  (267). The second nanobody can be exchanged to target different tumour types. Three clinical 

candidates are being evaluated for different indications: HPN328 targeting DLL3 for small cell lung 

cancer (NCT04471727) (268), HPN217 binding BCMA for multiple myeloma (NCT04184050) (269), 

and HPN536 targeting MSLN for ovarian cancer (NCT03872206) (270).  

 

As of date, there are a significant number of CD3-targeting bispecific antibodies in early-phase 

development, including TNB-383B (NCT03933735) and REGN5458 (NCT03761108, NCT05167054) 

both targeting BCMAxCD3, and talquetamab targeting GPRC5DxCD3 (NCT0464552) all for relapsed or 

refractory multiple myeloma. Three further candidates are in phase II development: odronextamab 
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targeting CD20xCD3 (NCT03888105), flotetuzumab targeting CD123xCD3 (NCT04582864, DART 

format), and tarlatamab binding DLLxCD3 (NCT05060016). Phase III clinical candidates include 

glofitamab (NCT04408638) and epcoritamab (NCT04628494, DuoBody) targeting CD20xCD3 for 

diffuse large B cell lymphoma. A further BCMAxCD3 bispecific for treatment of multiple myeloma, 

elranatamab, is also in late-stage clinical development (NCT05317416). Surprisingly, the previously 

withdrawn catumaxomab binding EpCAMxCD3 is being evaluated in phase III clinical trials for advanced 

gastric cancer with peritoneal metastasis (NCT04222114) and in early-stage clinical investigation for 

non-muscle invasive bladder cancer (NCT04799847) (144). 

 

In 2022, three bispecific T-cell-engaging immunotherapies have been approved by the European 

Medicines Agency (EMA), two of which have also received approval by the FDA. At the beginning of the 

year, tebentafusp-tebn (Kimmtrak) targeting gp100xCD3 was approved for treatment of patients with 

unresectable or metastatic uveal melanoma. By June 2022, mosunetuzumab (Lunsumio) binding 

CD20xCD3 was approved by EMA for relapsed or refractory follicular lymphoma. Teclistamab (Tecvayli), 

a first-in-class bispecific antibody for the treatment of patients with multiple myeloma, has been granted 

conditional marketing authorisation by EMA in August 2022. Teclistamab binds and redirects CD3-

positive T cells to B-cell maturation antigen (BCMA)-expressing myeloma cells to induce T-cell-mediated 

killing of tumour cells (271,272). Together, bi- and trispecific T-cell engagers represent a promising 

platform for cancer immunotherapy for a plethora of tumour types and highlights the unmet need and 

interest in pursuing T cell-activating immunotherapies with widened therapeutic windows. 

 

1.4.2 Macrophage Engagers 

One of the prominent strategies to target macrophages and exploit their phagocytic capabilities to engulf 

tumour cells is antibody-dependent cellular phagocytosis (ADCP) (273). ADCP is a well-known 

mechanism of action of several therapeutic antibodies, such as rituximab (274) and trastuzumab (275). 

All subclasses of IgGs can elicit such responses due to binding to different Fc gamma receptors expressed 

on macrophages. Triggering of phagocytosis is mediated after binding of the Fab domain of the antibody 

to target cells and clustering to generate avidity, where signalling is activated on macrophages (276). As 

the FcγRs contain immunoreceptor tyrosine-based activation motifs (ITAMs), these motifs become 

phosphorylated upon binding and a downstream signalling pathway is activated. Among others, the 

MAPK and PI3K/AKT pathways are activated, leading to actin remodelling, engulfment and phagocytosis 

of the tumour cell (277,278). 

 

Even though a number of therapeutic antibodies have a functional Fc domain capable of ADCP and other 

effector functions, this effect relies on clustering of antibody molecules on tumour cells in order to elicit 

a good response. To improve this, bispecific macrophage-engagers (BiMEs) have been developed, 
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targeting different TAAs and an additional macrophage-specific receptor. Phagocytosis checkpoint 

inhibitors, such as CD47, have shown great promise, as blocking the CD47/SIRPα axis by CD47 blockage 

induces phagocytosis (279–281). By combining CD47 blockers with tumour-specific binding moieties, 

targeted phagocytosis can be induced and additionally improves binding specificity, as CD47 is 

ubiquitously expressed throughout the body. Similar to CD3 affinity for TCEs, BiMEs also benefit from 

lower affinity to CD47 compared to the TAA-arm (282). A variety of antibody formats co-targeting the 

CD47/SIRPα axis are currently being evaluated in clinical trials, including AK117 (anti-CD47; 

NCT04980885, NCT04728334, NCT05235542), HX009 (anti-CD47/anti-PD-L1 bispecific; 

NCT05189093, NCT04886271), IBI188 (anti-CD47; NCT03763149), IBI322 (anti-CD47/anti-PD-L1 

bispecific, NCT04338659), STI-6643 (anti-CD47; NCT04900519), Hu5F9-G4 (anti-CD47; 

NCT02216409, NCT02678338), IMM2902 (anti-Her2/SIRPα antibody-receptor trap; NCT05076591), 

ALX148 (anti-CD47; NCT05025800). This non-exhaustive list highlights the potential of targeting 

macrophages to use their innate function to specifically eradicate tumorous cells (283). 

 

Besides indications within the oncology field, macrophage-engagers have been described for 

autoimmune disorders including rheumatoid arthritis. The receptor tyrosine kinase belonging to Tyro3, 

Axl, Mer (TAM) receptor family, MerTK, is expressed on macrophages and has been shown to play a 

crucial role in the clearance of apoptotic cells to prevent inflammation and autoimmunity. Further, it 

promotes anti-inflammatory functions by supressing TLR-mediated cytokine production and inhibiting 

NF-κB signalling. Thus, MerTK-mediated phagocytosis may be an interesting approach to avoid the pro-

inflammatory cytokine release that occurs through the engagement of IgG molecules with activating 

FcγRs (ADCP). By activating the MerTK-specific signalling pathway, phagocytic clearance may be 

achieved in an immunologically silent manner. As shown by Kedage et al., combining a MerTK agonist 

with anti-CD20 or anti-Aβ to generate MerTKxCD30 or MerTKxAβ bispecifics resulted in targeted 

phagocytosis of live cells or protein aggregates, respectively (284). In summary, macrophages or tumour-

associated macrophages (TAMs) play key roles in the regulation of the TME and thus specific targeting 

of macrophages may also contribute to eradicate tumours. Targeted phagocytosis approaches still require 

further clinical investigation due to the widespread expression of targets such as CD47.  

 

1.4.3 Multispecific antibodies 

Due to the ever-evolving understanding of the immensely complex pathogenesis of cancer, monospecific 

therapies only targeting single signalling pathways often result in moderate efficacy. Besides bispecific 

antibodies targeting two distinct antigens, multispecific antibodies are gaining momentum to address 

unmet therapeutic needs (285,286). Such molecules can take on different architectures, mainly split into 

two categories: IgG-like antibody formats carrying an Fc domain, and non-IgG-like antibody formats 

lacking an Fc domain. IgG-like formats possess binding to the neonatal Fc receptor FcRn and result in 
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better pharmacokinetic properties and may exert additional effector functions (ADCP, ADCC, CDC). On 

the other hand, non-IgG-like formats are generally smaller in size and permit greater penetration to 

tumour sites, which can result in enhanced efficacy. They also exhibit a relatively short half-life 

compared to IgG-like formats as they are cleared faster (287). A handful of next generation multispecific 

antibodies are highlighted in Figure 5. 

 

 

Figure 5: Multispecific antibodies in development. The Fc domain and constant regions of both heavy and light 

chains are depicted in grey. Heterodimeric chains with Knob-into-Hole technology are displayed with different 

shading of grey and a representative “knob-into-hole” schematic. Where relevant, the region binding effector cells 

is depicted in blue. Abbreviations: VHH – single variable domain on a heavy chain/nanobody; scFv – single chain 

variable fragment; scFab – single chain Fab fragment. Figure created in Biorender.com. 

 

Facilitated by advances in antibody engineering over the years, complex molecules can be generated to 

combine several mechanisms of action. Besides the trispecific T-cell engagers described in 1.4.2, 

trispecific NK-cell engagers (TriKEs) have also emerged as potent immune cell engagers, redirecting NK 

cells to the tumour site and mediating elevated NK cell activity and potent ADCC (288). A few TriKEs 

are currently in (pre-)clinical development by GT Pharma, with the most advanced program, GT-3550, 

consisting of two scFvs binding CD16xCD33 together with human IL-15, that was shown to be safe and 

well-tolerated in a Phase I/II clinical study (NCT03214666) (289). Nevertheless, further clinical 
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development was terminated due to the development of second generation VHH-based TriKEs 

(NCT03214666). All next generation TriKEs from GT Pharma consist of a VHH binding the CD16 receptor 

on NK cells, a tumour-specific scFv, and human IL-15 to further activate NK cells and enhance their 

ability to kill tumour cell (290). Additional TriKE molecules have been reported in literature (288,291). 

Furthermore, tetraspecific killer engagers (TetraKE) have been described by Schmohl et al. (2016) 

comprising three scFvs binding to CD16xEpCAMxCD133 and cross-linked to human IL-15 for enhanced 

NK proliferation, combining mechanisms of action of two bispecific molecules to improve activity, 

proliferation and stimulation of NK cells (292). 

 

Stepping away from killer cell engagers, tri- and tetraspecific antibodies have been described addressing 

a combination of targets relevant for efficacious tumour clearance. Pharmaceutical companies have 

developed antibody engineering platforms to generate fast turnaround plug-and-play multispecific 

antibodies. For example, Numab Therapeutics has developed a heterodimeric “multispecific antibody-

based therapeutics by cognate heterodimerisation” (MATCH) platform which can incorporate up to six 

lambda-capped variable fragments (293). Promising clinical data was achieved with their first clinical 

candidate, NM21-1480, targeting 4-1BBxPD-L1xHSA, with HSA as a half-life extender (NCT04442126). 

 

To circumvent half-life extenders, IgG-like architectures are also being investigated within the 

multispecific antibody space. Tetraspecific IgG-scFv-conjugates of Baili Pharmaceuticals represent the 

most trivial form of multispecific antibodies resulting in symmetrical, octavalent molecules. GNC-038 

binding PD-L1x4-1BBxCD3xCD19 is the first tetraspecific antibody under clinical investigation for 

recurrent or refractory non-Hodgkin’s lymphoma (NCT04606433) (294). Two further tetraspecifics have 

been protected under patent by exchanging the specificity of the Fab arm for other tumour markers, 

including EGFRvIII (GNC-039) and ROR1 (GNC-035) (295).  

 

TetraMabs with binding specificities for four oncogenic RTKs have been described by designing HER1 

and IGF1R-specific scFabs instead of generic Fabs and C-terminal scFv fusions. By the Knob-into-Hole 

technology, tetraspecificity can be introduced, as reported by Castoldi et al. (2016), for 

HER1xcMETxHER3xIGF1R (296). Further complex IgG-like architectures for tetraspecific antibodies 

include “four-in-one” antibodies, where two “two-in-one” antibodies are combined by using Knob-into-

Hole, CrossMab and DVD-Ig technology to ensure heterodimerisation of the heavy chains, correct light-

chain/heavy-chain interactions and tetraspecificity. A four-in-one antibody binding 

EGFRxHER2xHER3xVEGF displayed increased in vitro and in vivo efficacy compared to bispecific 

antibodies, presumably due to combined signal pathway inhibition and limiting drug resistance (297). 

Additional IgG-like tri- and tetraspecific antibodies have been patented by Roche. To ensure 

heterodimerisation, the Knob-into-Hole technology was applied. Correct heavy- and light-chain pairing 



 

  25 

was guaranteed through different strategies, among them the replacement of specific domains with each 

other from a single arm, including CL/CH1, VL/VH or a combination of both (298). Multispecific 

antibodies show tremendous potential in revolutionising the fight against different cancers due to their 

combined mechanism of actions, however hitches concerning developability, stability, and large-scale 

manufacturability still require great improvements. All in all, such molecules might represent the next 

wave of next-generation therapies.  
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2 Objective 

 

Before reaching clinical development, antibodies must first be discovered and thoroughly characterised 

to ensure their attributes are appropriate and in-line with their desired functionality. Great progress has 

been made to streamline antibody hit discovery workflows to ensure the faster turnaround of novel 

biologics. Yeast surface display (YSD), in particular, has shown to be a robust, high-throughput screening 

technology for isolating high-affinity binders from immune and naïve libraries. YSD libraries are 

screened by fluorescence-activated cell sorting (FACS), from which single clone analysis can be 

performed. Subsequently, the most interesting candidates are reformatted into the final IgG format (or 

desired format) for their in vitro characterisation after production in mammalian cells to ensure the 

correct folding and glycosylation pattern. Reformation of antibody candidates after YSD is a laborious 

and time-intensive process, habitually ensuing the bottleneck of antibody hit discovery campaigns as a 

method for bulk reformatting is yet to be described.  

 

State-of-the-art antibody production in mammalian cells is performed by co-transfection of heavy and 

light chain genes encoded on different plasmids. The first aim of this study was to develop a bidirectional 

vector encoding both heavy and light chain genes on a single plasmid under the control of individual 

promoters for transfection of IgG molecules in mammalian cells. By using two FDA-approved antibodies, 

different promoter and enhancer element combinations were evaluated by analysing heavy and light 

chain mRNA expression after transient transfection in commercial cell lines apt for antibody production. 

Subsequent quantification of fully folded IgG molecules was used to confirm the most suitable promoter 

combination resulting in yields comparable to conventional methods to facilitate small-scale mAb 

production with a single vector in a cost- and time-efficient manner.  

 

Having found a suitable bidirectional plasmid for mammalian expression of IgG molecules, the second 

goal of this study was to simplify the transition of Fab-displaying YSD libraries to the production of full-

length mAbs in mammalian cells. To this end, a Fab-displaying YSD library was constructed from 

genetically immunised transgenic OmniRats against MerTK. The library was screened using FACS and 

then transferred into designed vectors exhibiting type II restriction enzyme cleavage sites for Golden 

Gate Cloning (GGC). The diversity of the initial library and the reformatted candidates was investigated 

by Next-Generation Sequencing. Lastly, the verification of successful reformation was performed by 

transiently transfecting Expi293 cells with the resulting bidirectional vectors encoding single antibody 

candidates.  

 

While mAbs targeting single antigens have shown great promise, they carry their own limitations, in that 

their efficacy is often hampered by immune escape mechanisms. Due to the complex disease 
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environment, multiple mechanisms of action are required to improve tumour penetration and increase 

the efficacy of drugs. Immune cell engagers represent a class of bispecific antibodies that bridge immune 

cells, such as macrophages or T cells, with tumour cells to form immune synapses and harness the innate 

power of immune cells to kill tumour cells, pertaining to so-called next-generation antibodies. These bi- 

or multispecific antibodies result in increased efficacy but issues with toxicity and severe adverse effects 

are often faced.  

 

The third goal of this study was to generate the first bispecific macrophage engaging antibodies by 

harnessing the expression of MerTK on tumour-associated macrophages for oncology indications. From 

the OmniRat-derived screened library after reformation, single clones were functionally characterised 

by investigating MerTK’s downstream signalling cascade. The most suitable candidate was selected for 

the generation of bispecific molecules. This mAb was then fused with tandem, biparatopic VHH fragments 

binding EGFR, to generate a MerTK/EGFR bispecific. The biophysical properties of the bispecific 

molecules were investigated to ensure specific binding to both targets in a simultaneous matter. 

Ultimately, targeted phagocytosis of tumour cells through macrophages was investigated.  

 

Besides macrophage engagers, the efficacy of T-cell engaging immunotherapies are often hampered by 

high toxicities and adverse effects, mainly resulting in cytokine release syndrome (CRS). Within the last 

aim of this thesis, the first tetraspecific T-cell engaging antibody with built-in risk mitigation of cytokine 

release events (TriTECM) was generated. By using a two-in-one antibody binding to EGFR and PD-L1 

and fusing single-chain variable fragments (scFvs) targeting CD3 and IL-6R, different TriTECM 

architectures were investigated. The tetraspecificity of the molecules was determined by specific binding 

to both soluble proteins and target-specific cell lines. Functional cell-based assays were performed to 

validate the concept of an attenuated T-cell engager with an additional IL-6R binding moiety to inhibit 

the IL-6/IL-6R pathway. Finally, peripheral blood mononuclear cells (PBMCs) isolated from healthy 

human subjects were used to study the cytokine release profiles after treatment with TriTECM molecules.  
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