
Introduction

In contrast to other mantle-derived magmas such as midocean 
ridge basalt, magmas generated in arc settings during active 
subduction are generally sulfur and volatile-rich (900–2,500 
ppm S; 2–6 wt % H2O; 500–2,000 ppm Cl) and moderately 
oxidized (ΔFMQ = 0.5–2; where ΔFMQ is log fO2

 deviation from 
the fayalite-magnetite-quartz buffer), due to volatile release 
during slab dehydration and metasomatism of the mantle 

wedge (e.g., Ballhaus et al., 1990; De Hoog et al., 2003; Shar-
ma et al., 2004; Wallace, 2005; Zimmer et al., 2010; Plank et 
al., 2013; Van Hoose et al., 2013). In arc magmas, sulfur is 
present in the melt as a combination of sulfide (S–2) and sul-
fate (S+6) species (Carroll and Rutherford, 1985; Jugo, 2009; 
Jugo et al., 2010; Evans and Tomkins, 2011). These melts 
may attain sulfide saturation in the lower crust due to cool-
ing, crustal assimilation, and fractional crystallization (Mavro-
genes and O’Neill, 1999; Lesher and Burnham, 2001; Robert-
son et al., 2015). When this occurs, chalcophile elements (Cu, 
Au, and platinum group elements, PGE: metals of economic 
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Abstract
Some arc magmas lead to the formation of porphyry deposits in the relatively shallow upper crust (<5 km). 
Porphyry deposits are major sources of Cu and an important Au source but lack significant amounts of platinum 
group elements (PGE). Sulfide phases control the behavior of chalcophile elements and affect the potential 
to form ore deposits either by remaining in the mantle residue or by fractionating from arc magmas at lower 
crustal levels, although in detail the role of sulfide saturation in the lower crust remains poorly understood. 
Lower crustal cumulate rocks from the 85 Ma Chilas Complex of the Kohistan arc, Pakistan, provide insight 
into processes that occur at depth in arcs. Here we provide Cu, Ni, Au, and PGE concentrations and Os iso-
tope ratios of the Chilas Complex in order to constrain the extent of sulfide saturation in the lower crust and 
the effect of sulfide saturation on the metal budget of evolved melts that ascend to the upper crust. The Chilas 
rock suite contains less than 0.17 wt % sulfides and low PGE concentrations. In situ laser ablation-inductively 
coupled plasma-mass spectrometry (LA-ICP-MS) measurements of the sulfide inclusions in silicate minerals 
show enrichment in several chalcophile elements (up to 34 wt % Cu, 23 ppm Au, 245 ppm Pd, and 20 ppm Pt), 
whereas iridium group PGE (IPGE- Os, Ir, Ru) are mainly below detection limits. The metal content of the 
parental melt was modeled based on the elemental concentrations of the sulfides. The modeled parental arc 
magmas contain 70 to 140 ppm Cu, 0.2 to 1.5 ppb Au, and 1.2 to 8 ppb Pd, but low concentrations of IPGE, sug-
gesting that IPGE were likely retained in the mantle source. Mass balance calculations show that segregation 
of a sulfide melt in the lower crust could further deplete the melt by more than 95% in Pd and Pt, 33 to 85% in 
Au, and 13 to 60% in Cu. Thus, magmas that ascend to the upper crust would contain very low concentrations 
of Au (< 0.2 ppb) and Pd (< 0.04 ppb), but they would retain sufficient concentration of Cu (~45–57 ppm) to 
form porphyry Cu deposits upon emplacement in the upper crust, as is commonly observed in arc settings. 

Supplementary files are available online at www.segweb.org/SP24-VOL2-Appendices. 
doi: 10.5382/SP.24.16; 14 p.  297

*Deceased June 7, 2019
†Corresponding author: e-mail, iahmad@laurentian.ca

Open Access (CC-BY-NC) publication of the Jeremy P. Richards memorial volume was generously supported by BHP Metals Exploration and the Laurentian  
University Mineral Exploration Research Centre (MERC) and Harquail School of Earth Sciences (HES).

Gold Open Access: This paper is published under the terms of the CC-BY-NC license. 
©2021 Society of Economic Geologists, Inc.
SEG Special Publications, no. 24, v. 2, pp. 297–310

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/5683202/edocsp24v2ch16.pdf
by Univ Quebec A Chicoutimi Bibliotheque user
on 23 January 2023



298 AHMAD ET AL. 

interest in arc settings) will partition into sulfide phases and 
precipitate in the lower crust, removing a significant fraction 
from the remaining melt (Richards, 2009, 2011; Lee et al., 
2012; Thakurta et al., 2014; Holwell et al., 2019). 

The extent to which sulfide phases are enriched in chalco-
phile elements depends on their partition coefficients (Dsulf/

sil), their initial abundance in the melt Ci, and the mass ratio 
of silicate melt to sulfide melt interaction (R factor; Camp-
bell and Naldrett, 1979). Relatively abundant chalcophile 
elements such as Cu (50–90 ppm in primitive arc magmas; 
Lee et al. 2012) with moderate partition coefficients (DCu)sulf/

sil ≈ 1,500; Mungall and Brenan, 2014) will behave very dif-
ferently compared to low-concentration PGE, such as Pt (~7 
ppb; Becker et al., 2006), because of their very high partition 
coefficients (e.g. (DPt)sulf/sil ≈ 8.5 × 105; Mungall and Brenan, 
2014). Under conditions of moderate silicate/sulfide melt ra-
tio (R factor ≈ 102–105; Richards, 2009) relatively small vol-
umes of sulfide (~0.1 wt %; Hao et al., 2019) precipitating 
from the melt are predicted to host the bulk of the PGE due 
to their strong partitioning into sulfide phases (Richards, 
2011). Segregation of these sulfide phases in the lower crust 
would strongly deplete the melt in PGE and to a moderate 
extent in Au, whereas Cu would be less affected due to its 
lower sulfide-melt partition coefficient (Richards, 2009; Du 
and Audétat, 2020). Therefore, such magmas could ascend 
and eventually form Cu-rich yet PGE-Au-depleted porphy-
ry-style deposits (Richards, 2009, 2011).

An alternate view proposes that the mantle source of arc 
magmas is relatively reduced (i.e., not significantly different 
than MORB) with fO2

 in the range –1 < ΔFMQ < 0 (Lee et al., 
2005, 2010; Mallmann and O’Neill, 2009; Tang et al., 2018) 
and would exsolve larger volumes of sulfide (~1%) in the low-
er crust (Lee et al. 2012). Retention of these sulfides in the 
lower crust would deplete the residual melt in PGE, Au, and 
also Cu (because of the larger volume of sulfides that would 
form). A consequence of such a model is that the formation 
of porphyry Cu deposits would requires a second step of re-
mobilization of these sulfides during arc magmatism (Jenner 
et al., 2010; Lee et al., 2012; Chiaradia, 2014; Jenner, 2017; 
Chen et al., 2020; Lee and Tang, 2020). The key to assess-
ing the validity and feasibility of these contrasting models is 
to constrain the chalcophile metal content in whole rocks and 
sulfides from the rare samples that represent lower crust in 
arc settings. Here, we provide Cu, Ni, Au, and PGE concen-
tration data for cumulate rocks and their sulfides from one of 
the best exposed lower crustal arc sections in the world: the 
Chilas Complex of the Cretaceous-Paleogene Kohistan pa-
leo-arc, northern Pakistan. The rocks contain a relatively small 
fraction of sulfides (≤0.17 wt %), but the sulfides have rela-
tively high concentrations of Cu (≤34 wt %), Au (≤23 ppm), 
Pd (≤245 ppm), and Pt (≤20 ppm). These findings are consis-
tent with a model involving minor, but pervasive early sulfide 
saturation in parental arc melts, leading to PGE-Au-depleted 
but relatively Cu-undepleted fractionated magmas that have 
the potential to form typical subduction-related porphyry  
Cu deposits.

Kohistan Arc
The Kohistan island arc developed during the Cretaceous-Pa-
leogene by northward subduction of the Indian plate in equa-

torial regions of Neo-Tethys Ocean and was accreted between 
the Eurasian (Karakoram) and Indian plates (Tahirkheli and 
Jan, 1979; Khan et al., 2009; Petterson, 2010; Burg, 2011). 
The Kohistan island arc is estimated to have collided with 
Eurasia between 102 and 85 Ma, followed by the collision of 
India with the combined Kohistan-Eurasia block at about 50 
Ma (Patriat and Achache, 1984; Petterson and Windley, 1985; 
Khan et al., 1993; Treloar et al., 1996; Petterson, 2019). How-
ever, Bouilhol et al. (2013) and Jagoutz et al. (2015) proposed 
a different sequence of events—the India-Kohistan island arc 
collision occurred at ~50 Ma, followed by a final collision with 
Eurasia at ~44 Ma.

The Southern Plutonic Complex and the Chilas Complex 
(Fig. 1A) are two distinct lower crustal sections of the Ko-
histan arc (Jagoutz et al., 2009). The Southern Plutonic Com-
plex is structurally deeper and relatively older, having formed 
before ~95 Ma (Burg et al., 2006). The Chilas Complex is 
relatively younger (85–81 Ma; Schaltegger et al., 2002), un-
deformed, with no pervasive surficial alteration, and exposed 
over a larger area (~300 × 40 km; Khan et al., 1989).

Mafic rocks comprise the bulk of the Chilas Complex and 
consist of gabbro, norite, and diorite (gabbronorite associa-
tion; Khan et al., 1989). These cumulates are largely homo-
geneous but locally layered (Jagoutz et al., 2006; Fig. 1B). 
The complex also contains a few ultramafic bodies (ultramaf-
ic-mafic association; Khan et al., 1993; Jagoutz et al., 2006) 
and late feldspar-hornblende-pyroxene pegmatite lenses (Fig. 
1C). Although the contact relationship of ultramafic bodies 
and the gabbronorite rocks are complex, the rocks are inter-
preted to be cogenetic based on geochemistry (Khan et al., 
1989; Jagoutz et al., 2006). 

The northern section of the Kohistan arc consists of 
metasedimentary rocks of the Jaglot Group (~125–99 Ma), 
overlain by the Chalt and Shamran Volcanic groups (~99–32 
Ma), which consists of pillowed and massive boninite, basalt, 
and andesite flows (Petterson and Treloar, 2004). The Yasin 
Group sedimentary rocks (~125–99 Ma) rest conformably on 
top of the Chalt Volcanic Group and contain sandstone, silt-
stone, and minor carbonates (Robertson and Collins, 2002). 
The mid to upper plutonic crust of the Kohistan island arc 
comprises intermediate-to-felsic rocks of the Kohistan ba-
tholith, part of the Trans-Himalayan batholith, that intrud-
ed these stratiform sequences mainly between 120 to 30 Ma 
(Fig. 1A; Jagoutz et al., 2009).

Samples and Methods
Twenty-six samples of gabbro and four dunite samples were 
selected from a larger suite of collected samples (n = 79), 
from three traverses of the Kohistan island arc (Fig. 1A). 
Whole-rock compositions were determined by Activation 
Laboratories (Ancaster, Ontario). Major elements were de-
termined using inductively coupled plasma-atomic emission 
spectrometry (ICP-AES). Trace element concentrations 
were determined using ICP-mass spectrometry (ICP-MS) 
and instrumental neutron activation analysis (INAA; Actlabs 
analysis code 4E-Research + ICPMS). Fire assay ICP-MS 
was used for Au (Actlabs analysis code 1C-Research). The re-
producibility of standard reference material is summarized in 
Appendix Table A1. Precise PGE analyses at lower detection 
limits (~0.4–0.6 ppt) and Os isotope ratios in whole-rock sam-
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ples were determined by isotope dilution, using the meth-
od of Pearson and Woodland (2000) and Liu and Pearson 
(2014), at the Arctic Resources Laboratory of the University 
of Alberta. Measured standard and blank composition are re-
ported in Table A2.

Sulfide inclusions consist of pyrrhotite-pentlandite-chalco-
pyrite (Po-Pn-Ccp; Fig. 2A-C). Unexposed sulfide inclusions 
(Fig. 2D-E) hosted by silicate minerals (mainly olivine, py-
roxene and amphibole) were selected to determine the chal-
cophile element compositions of the entire inclusions, using 
100-μm-thick polished sections. The concentration of S, Fe, 

Cu, Ni, Co, PGE, and Au were determined by LA-ICP-MS at 
the LabMaTer, University of Quebec at Chicoutimi (UQAC), 
using an Excimer 193-nm RESOlution M-50 laser ablation 
system (Australian Scientific Instrument) equipped with a 
double volume cell S-155 (Laurin Technic), coupled with an 
Agilent 7900 mass spectrometer. LA-ICP-MS operating pa-
rameters were as follows: a laser frequency of 15 to 30 Hz, 
peak dwell times of 20 ms for PGE and Au, and 5 ms for all 
other elements, and a fluence of 3 J/cm2. Spot analyses were 
used, with laser beam sizes ranging from 33 to 55 μm in diam-
eter, depending on the size of the sulfide inclusion. To ensure 

Fig. 1.  A. Simplified geologic map of the Kohistan paleoarc, Pakistan (after Jagoutz et al., 2006) B. Layered gabbronorite of 
the Chilas Complex. C. Layered dunite of the Chilas Complex with crosscutting pegmatite.
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complete ablation of the entire sulfide droplets, the beam size 
was made slightly larger than the inclusion, ablating parts of 
the host. The gas blank was measured for 20 s before switch-
ing on the laser and drilling through the silicate host, through 
the sulfide inclusion, and back into the silicate host, generally 
producing a sulfide signal of 30- to 60-s duration (Fig. 3). The 
ablated material was carried into the ICP-MS by an Ar-He-N2 
gas mix at a rate of 0.8 to 1 L/min for Ar, 350 mL/min He, and 
2mL/min N2. 

The masses monitored correspond to the following iso-
topes: 24Mg, 27Al, 28Si, 29Si, 33S, 34S, 43Ca, 44Ca, 47Ti, 49Ti, 51V, 
53Cr, 55Mn, 57Fe, 59Co, 60Ni, 61Ni, 63Cu, 65Cu, 66Zn, 68Zn 75As, 
77Se, 82Se, 95Mo, 99Ru, 101Ru, 103Rh, 105Pd, 106Pd, 108Pd, 107Ag, 
109Ag, 111Cd, 115In, 118Sn, 121Sb, 125Te, 185Re, 189Os, 190Os, 193Ir, 
194Pt, 195Pt, 197Au, 202Hg, 208Pb, 209Bi. Po727, a synthetic FeS, 
supplied by Memorial University of Newfoundland, doped 
with ~40 ppm PGE and Au was used to calibrate Fe and 
S. UQAC-FeS1, a synthetic sulfide doped with Ni, Cu and 
40 to 100 ppm of most chalcophile elements (Mansur et al., 
2020; Table A3) was used calibrated for Co, Ni, Cu, PGE, 
and Au. GSE-1g, a natural basaltic glass supplied by the U.S. 
Geological Survey, doped with many trace elements at 300 
to 500 ppm, was used to monitor the silicate component of 
the signal, using the Georem preferred values (Jochum et al., 

2005). JB-MSS5, a synthetic FeS, supplied by James Brenan, 
containing 50 to 70 ppm of most chalcophile elements (Patten 
et al., 2013), was used as a secondary standard to monitor the 
results (Table A3). 

Polyatomic interferences of 63Cu40Ar on 103Rh and 65Cu40Ar 
on 105Pd were corrected using a Cu-blank (PGE-free Cu 
wire), 1% Cu produced ~0.05 ppm Rh interference. Direct 
interference of 106Cd on 106Pd was corrected by monitoring 
111Cd. Interference of 61Ni40Ar on 101Ru was corrected using 
an NiS sulfide with no detectable Ru. One percent Ni pro-
duced ~0.007 ppm Ru interference and was not a significant 
part of the Ru signal.

Data reduction of the ablated sulfide inclusions, including 
separation of the sulfide signal from the host, was done fol-
lowing the method of Chang and Audétat (2018). The method 
uses two external standards for quantification in two steps. In 
the first step, the Fe/S ratio of the sulfide inclusion is quan-
tified based on the known Fe/S ratio of the Po727 standard. 
In the second step, all other elements are quantified using 
Fe as internal standard and UQAC-FeS1 as an external stan-
dard. The data is then normalized to 100 wt % using the sum 
of S, Fe, Ni, Co, and Cu. The ablation interval representing 
sulfide was carefully selected based on the S signal in sulfide 
inclusions (Fig. 3). The signal contribution from the host was 

Fig. 2.  A.-B. Representative example of sulfide inclusions in olivine from dunite (sample K11) and amphibole from gabbro 
(sample K11b). C. Example of chalcopyrite inclusion hosting electrum inclusion (inset SEM image) from the Thurley dunite 
(sample K6). D.-E. Photomicrograph showing unexposed sulfide inclusions in olivine from a dunite sample (K11) and amphi-
bole from a gabbro sample (K3).
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subtracted based on the Si signal. Standard JB-MSS5 was run 
as unknown every 10 analyses, and the calculated values for 
each element are within the uncertainty of their reported con-
centration (Table A3), which validates the method's accuracy. 
The relative uncertainty of our data is <3 to 8%, which is with-
in the reported uncertainties of the method (≤5–10%; Zhang 
and Audétat, 2017; Chang and Audétat, 2018), suggesting that 
our quantification is accurate.

Results

Sulfide inclusions

Less than 25% of the samples studied from the Chilas Com-
plex contain sulfides. Where present, the sulfide modal abun-
dance is very low (<0.1 vol %). Sulfides typically occur as 
globular or subhedral micrometer-scale inclusions in silicate 
minerals (mainly olivine, pyroxene, and amphibole) and con-
sist mainly of pyrrhotite with minor pentlandite and chalcopy-
rite (Fig. 2A-C). Because of their round section and mineral 
association, these inclusions are interpreted to represent sul-
fide melt droplets trapped in the cumulate silicate minerals, 
which then underwent crystallization and exsolution during 
cooling to form the discrete sulfide mineral phases observed. 
At the Thurly body (Khan et al., 1989), macroscopically visible 
sulfides (~2 vol %) occur interstitially between olivine crys-

tals in a small zone (1–2 m in length and less than a meter in 
thickness) within a dunite body. An electrum inclusion was 
observed in chalcopyrite from this sample (Fig. 2C).

Whole-rock Os isotope ratios and chalcophile element 
compositions

The initial Os isotope ratios (187Os/188Os)i of 11 gabbro sam-
ples from the Chilas Complex range from 0.129 to 0.295, with 
two samples showing significantly higher values of 0.958 and 
1.470. The four dunite samples yielded low (187Os/188Os)i ra-
tios of 0.128 to 0.165 (Table 1). These values are within the 
range (0.127–3.15) of mantle-derived magmas (e.g., Gannoun 
et. al., 2016), with the elevated values likely indicating inter-
action with crust.

Platinum group element concentrations in the Chilas Com-
plex gabbros (Fig. 4A; Table 1) are generally low relative to 
mantle with significant PPGE to IPGE fractionation (Ir ≤0.07 
ppb, Os ≤0.03 ppb, Pt = 0.23–3.67 ppb, Pd = 0.07–7.67 ppb, 
Pt/Os = 22–224). The dunites mostly contain higher con-
centrations of PGE than gabbros and slightly less fractionat-
ed patterns (Ir = 0.31–1.05 ppb, Os = 0.19–0.89 ppb; Pt = 
4.37–29.6 ppb, Pd = 3.3–22.4 ppb, Pt/Os = 23–104). Copper 
content varies from 11 to 44 ppm in the dunites and 7 to 119 
ppm in gabbros, and mantle normalized Cu patterns (Fig. 
4A) mostly show enrichment relative to PGE and Au. Gold in 

Fig. 3.  Time-resolved spectra of sulfide inclusions. A. Cu-rich inclusions in olivine. B. Cu-rich inclusions in amphibole. C. 
MSS-type inclusions in pyroxene. D. MSS-type inclusions in amphibole. The sudden increase in the Cu count rates (panels 
A, B, and D) or Ni count rate (panel C) indicates the start of sulfide ablation. Changes in Ni and Cu counts indicate changes 
through different sulfides in the inclusions (as shown in Fig. 2A-B). The uneven distribution of PGE and Au indicates they 
are hosted as small inclusions (nanometer-scale) in the sulfides.
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both the rock types is less than 4 ppb, slightly more enriched 
than Pt and Pd, but more depleted than Cu. The sulfide-rich 
dunite sample (K6) from the Thurly body is anomalous, com-
pared to the rest of the samples analyzed, and is enriched in 
Cu (4,500 ppm), Ni (2,010 ppm), Pt (533 ppb), Pd (747 ppb), 
and Au (310 ppb).

Major and trace element abundances in sulfide inclusions

Magmatic sulfide inclusions exsolved several mineral phases 
upon cooling, and analyses of exposed inclusions would not 
be representative. Therefore, to constrain their composition 
during entrapment, we report the bulk content of unexposed 
inclusions (contained in host minerals). Major and trace ele-
ment data are presented in Table 2 and Figure 4B-C. Vari-
ous populations of inclusions can be distinguished using the 
Fe-S-Cu phase diagram at 1,000ºC (Fig. 4B) as a frame of 
reference. Data from several analyses plot within or near the 
monosulfide solid solution field (MSS). Few inclusions plot 
within the Cu-rich sulfide liquid field (SL), and some in the 
region show the tie lines between the MSS and SL fields. The 
samples near the SL field (e.g., cluster of three K3 and one 
K11 samples) are consistent with the composition of a Cu-
rich sulfide melt in equilibrium with MSS; by contrast, the 
cluster near the center of the diagram (cluster of K11b and a 
single C17 sample) is consistent with intermediate solid solu-
tion (ISS) that is expected to form at lower temperatures (T 
<900°C) from a fractionated Cu-rich sulfide melt.

As shown in Table 2, Cu-rich inclusions (with Cu ranging 
from 9.3–31.6 ± 2.7 wt %) have higher concentrations of ele-
ments that are more compatible with sulfide liquid than MSS 
(Liu and Brenan, 2015), such as Au (~0.07–12 ± 10 ppm), 
Pd (~6.3 ± 3–62.3 ± 100 ppm), Pt (~0.5–4.6 ± 8 ppm), Ag 
(~7.9–223 ppm), and Ni (~1.2 ± 0.6–15.3 wt %). In contrast, 
MSS-type inclusions show relatively lower concentration in 
these elements (Cu from ~2.3 ± 0.6–4.7 ± 2 wt %; Au <0.2 
ppm; Pd from <0.1–4.4 ± 4 ppm; Pt <0.3 ppm; Ag from 2.3 ± 
2.3–7.7 ± 2 ppm, and Ni from 0.4 ± 0.09–7.1 ± 2 wt % (Table 
2). The osmium and Ru contents of all the inclusions were 
below detection limits; Ir, Rh, and Re are less than a ppm, Mo 
and Cd are in tens of ppm range, Zn and Se are in ten to hun-
dreds of ppm range, Co in thousands of ppm range, and Pb 
is less than122 ppm (Table 2). Spikes in Au, Pd, and Pt count 
rates within the sulfide domain in time-resolved spectra (Fig. 
3), and petrographic observation of electrum in chalcopyrite 
(Fig. 2C) indicate that these elements exist as submicrometer 
inclusions and not in solid solution. Although these features 
can cause nugget effects and there is some intrasample het-
erogeneity, we assume that by ablating entire sulfide blebs 
and averaging several inclusions, the results are reasonably 
representative of the sulfide phases prior to exsolution. 

Discussion

Petrogenesis of the Chilas Complex magmas

Several workers have proposed a suprasubduction (mantle 
wedge) source for the Chilas magmas based on whole-rock 
geochemistry, mineralogy, and Nd-Sr-Hf isotope systematics 
(e.g., Mikoshiba et al., 1999; Schaltegger et al., 2002; Jagoutz 
et al., 2006). The initial Os isotope ratios for the Chilas cumu-
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lates, especially the dunites with higher Os contents, that are 
less susceptible to the effects of crustal contamination, most-
ly overlap or are slightly more radiogenic than the range of 
Os isotope compositions shown by PGE alloys derived from 
suprasubduction zone ophiolites (187Os/188Os = 0.119–0.129); 
the compositions reflect a mix of depleted mantle and mantle 
slightly enriched by subduction zone processes (Pearson et 
al., 2007). Therefore, we interpret the Chilas rocks to have 
derived from partial melting of a subduction-modified mantle 
wedge. However, two of our gabbro samples have significantly 
higher values (187Os/188Os = 0.96, 1.47), likely reflecting crust-
al assimilation of the Jagloat Group metasedimentary rocks, 
since xenoliths of these rocks are found within the complex 
(Fig. 1A; Mikoshiba et al., 1999).

Origin of the sulfide inclusions

Magmas emplaced in the lower crust of arc settings are typ-
ically assumed to be sulfide undersaturated due to the in-

creasing S solubility in silicate melt with decreasing pressure 
(Mavrogenes and O’Neill, 1999). Thus, assimilation of S-rich 
sediments is commonly proposed as the mechanism required 
to induce sulfide saturation (Grinenko, 1985; Lesher and 
Burnham, 2001; Ripley and Li, 2003; Keays and Lightfoot, 
2010; Fiorentini et al., 2012; Robertson et al., 2015). If sulfide 
saturation is reached, the initial sulfide melt starts to crystal-
lize MSS when the system cools below ~1,120°C. Extraction 
of MSS results in Cu-rich residual melts, which subsequently 
crystallize ISS on further cooling below ~950°C (e.g., Cabri, 
1973; Holwell and McDonald, 2010; Kosyakov and Sinyakova, 
2012; Mansur et al., 2020). Sulfides of the Chilas Complex 
are consistent with a similar crystallization sequence. Entire-
ly unexposed sulfide inclusions in the Chilas Complex show 
that the sulfide melt fractionated to MSS and Cu-rich sulfide 
liquid (Fig. 4B; Table 2). Three samples (K3, K11, K11b) con-
tain both MSS and Cu-rich inclusions, with a set of highly 
fractioned ISS-type inclusions in sample K11b (Table 2). Sul-

Fig. 4.  A. Whole-rock content of selected chalcophile elements of gabbros and dunites from the Chilas Complex, normalized 
to primitive upper mantle (PUM). One dunite sample (K6) has anomalously high values compared to the other samples and 
contains visible sulfides in hand specimen. B. Composition of sulfide inclusions; for reference a portion of the Fe-S-Cu phase 
diagram at 1,000ºC is shown(Kullerud et al., 1969). The symbols labeled SL I and SL II are estimates of the primary sulfide 
melt composition (see text for detail). C. Mantle-normalized content of selected chalcophile elements in sulfide inclusions, 
showing enrichment in PGE, Au, and Cu. The Pt, Pd, and Au contents are highest in inclusions matching the Cu-rich sulfide 
liquid (ISS-type) composition. D. Calculated parental and derivative magma compositions for the Chilas Complex (PUM-nor-
malized). According to calculations, the parental magmas were depleted in IPGE relative to PUM but contained Cu, Au, 
and Pd in concentrations similar or slightly above mantle values, and slightly depleted Pt concentrations. The obtained values 
are consistent with values from natural examples in other localities (Granada arc picrites; Pual Ridge arc lavas). Calculated 
derivative magmas are depleted in PGE and Au by incorporation of cumulate sulfides but to different extents (e.g., Ru and Ir 
are more strongly depleted than Pd or Au). However, Cu is not significantly affected. Mantle normalization values are from 
Palme and O’Neill (2014), Grenada data from Woodland et al. (2002), and Pual Ridge arc data from Park et al. (2013). Bn = 
bornite field, ISS = intermediate solid solution, MSS = monosulfide solid solution, SL = sulfide liquid. 
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Table 2.  Major and Trace Element Compositions of Sulfide Inclusions

Inclusions K11-1 K11-2 K11-3 K11-4 K11-5 C17 K11b-1 K11b-2 K11b-3
Rock type Dunite Dunite Dunite Dunite Dunite Dunite Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Host mineral Olivine Olivine Olivine Olivine Olivine Olivine Pyroxene Pyroxene Amphibole
Inclusion-type MSS MSS MSS Cu-rich SL MSS Cu-rich SL 

(ISS-type)
MSS Cu-rich SL MSS

S (wt %) 39.0 39.7 29.5 34.6 34.1 27.0 38.7 37.8 35.1
Fe (wt %) 53.5 51.5 56.5 40 51.95 39.26 45.3 41 51.85
Co (wt %) 0.3 0.4 0.7 1.1 0.6 0.1 0.4 0.5 0.4
Ni (wt %) 4.4 6.6 9.5 15.4 8.0 1 8.9 10.2 7.4
Cu (wt %) 2.9 1.4 4.2 9.3 5.4 32.7 6.4 10.5 5.3
Zn (ppm) 12.2 –8.2 48.4 163.6 74.8 222.5 15.9 105.3 64.6
As (ppm) <2.6 <4.3 3.46 <4.6 <5.1 <3.2 1.4 2.04 <4.2
Se (ppm) 23.1 53.8 55.8 42.3 58.0 227.1 168.6 178.4 110.3
Mo (ppm) <3.4 <3.8 <2.8 5.8 <3.9 <0.3 1.9 3.3 <5.6
Ru (ppm) <0.2 <0.3 <0.2 <0.3 <0.3 <0.1 <0.04 <0.1 <0.2
Rh (ppm) <0.03 <0.05 <0.04 <0.04 0.09 <0.45 <0.005 <0.03 <0.04
Pd (ppm) <0.3 <0.4 <0.2 <0.6 4.6 30.5 1.8 8 <0.6
Ag (ppm) 8.9 4.9 7.6 38.6 9.5 223.2 2.4 7.9 6.8
Cd (ppm) <1.5 <2.1 0.8 <2.9 3.7 18.4 <0.4 <0.9 <0.7
In (ppm) 0.4 <0.2 <0.3 <0.3 0.1 1.3 <0.06 0.1 <0.4
Sn (ppm) 0.5 <0.6 <0.6 <1.08 <0.5 n.a. <0.1 <0.5 <0.9
Sb (ppm) <0.3 <0.5 <0.5 0.4 <0.3 n.a. <0.0 <0.2 0.3
Te (ppm) <2.5 7.4 3.8 14.5 <3.3 n.a. 1.9 9.6 7.9
Re (ppm) 0.5 <0.1 0.2 0.1 0.4 <0.2 0.3 0.1 0.2
Os (ppm) <0.2 <0.2 <0.2 <0.3 <0.3 <0.1 <0.04 <0.1 <0.4
Ir (ppm) <0.05 <0.09 <0.08 <0.1 <0.1 <0.03 <0.01 <0.05 <0.1
Pt (ppm) <0.1 <0.2 <0.2 <0.2 <0.3 0.36 <0.03 0.5 <0.3
Au (ppm) <0.5 <0.2 <0.3 <0.4 <0.5 10 0.2 <0.3 <0.3
Hg (ppm) <3.8 <5.2 <3.7 <5.6 <10.6 n.a. <2.09 <2.3 <5.2
Pb (ppm) 1.5 1.4 2.2 4.8 2.1 122.6 0.3 0.9 2.5
Bi (ppm) 0.5 0.4 0.4 1.4 0.1 n.a. 0.1 0.5 0.5
Mg number 0.845 0.846 0.848 0.841 0.842 0.846

Inclusions K11b-4 K11b-5 K11b-6 K11b-7 K11b-8 K11b-9 K11b-10 K3-1
Rock type Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Host mineral Pyroxene Pyroxene Amphibole Amphibole Amphibole Plagioclase Amphibole Amphibole
Inclusion-type MSS Cu-rich SL 

(ISS-type)
Cu-rich SL 
(ISS-type)

Cu-rich SL 
(ISS-type)

Cu-rich SL 
(ISS-type)

Cu-rich SL 
(ISS-type)

Cu-rich SL 
(ISS-type)

Cu-rich SL

S (wt %) 38.6 32.7 30.5 18.8 33.4 35.9 32.9 40.4
Fe (wt %) 53.75 32.55 33.1 50.25 33.5 31.5 34.6 48
Co (wt %) 0.1 0.2 0.1 0.1 0.0 0.1 0.2 0.1
Ni (wt %) 5.1 1.7 1.7 2.0 1.0 0.9 0.7 0.5
Cu (wt %) 2.5 33.0 34.7 28.9 32.1 31.3 31.5 11.0
Zn (ppm) 8.7 687.7 342.4 593.4 456.9 575.0 1354.0 326.5
As (ppm) <5.3 <1.8 <1.6 <2.6 <2.4 <4.6 <3.3 <8.6
Se (ppm) 77.5 303.9 178.8 844.7 288.0 69.0 8899.1 79.1
Mo (ppm) <4.9 2.1 <1.1 <1.6 <2.4 <0.2 <0.2 64.6
Ru (ppm) <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.3
Rh (ppm) <0.06 <0.01 <0.01 0.04 <0.04 <0.03 0.2 <0.06
Pd (ppm) <0.6 0.3 10.4 2.7 1.6 110.3 245.06 7.4
Ag (ppm) <1.3 76.3 156.8 111.7 66.8 103.2 68.5 21.4
Cd (ppm) <1.9 7.03 8.2 16.2 13.9 3.01 7.4 <2.5
In (ppm) <0.4 1.1 0.9 1.9 0.6 1.2 1.6 <0.2
Sn (ppm) <0.9 <0.2 0.8 0.8 <0.5 n.a. n.a. n.a.
Sb (ppm) <0.6 <0.2 <0.1 <0.3 <0.2 n.a. n.a. n.a.
Te (ppm) 2.9 38.9 40.0 98.3 10 n.a. n.a. n.a.
Re (ppm) <0.1 <0.06 0.09 <0.08 <0.1 <0.06 <0.05 0.8
Os (ppm) <0.3 <0.1 <0.1 0.5 <0.2 <0.08 <0.1 <0.3
Ir (ppm) <0.1 <0.03 <0.03 <0.05 <0.08 <0.03 0.1 <0.1
Pt (ppm) <0.2 <0.09 1.1 <0.1 <0.2 4.7 19.4 <0.1
Au (ppm) <0.2 1.6 18.1 6.5 0.6 22.5 22.7 2.2
Hg (ppm) <4.6 <1.8 2.5 5.6 3.7 n.a. n.a. n.a.
Pb (ppm) -0.7 1.5 0.6 2.1 1.5 2.8 1.5 1.9
Bi (ppm) -0.1 0.2 5.5 0.6 1.5 n.a. n.a. n.a.
Mg number
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Table 2.  (Cont.)

Inclusions K3-2 K3-3 K3-4 K3-5 K3-6 K3-7 K4-1 K4-2
Rock type Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Host mineral Amphibole Amphibole Amphibole Amphibole Amphibole Amphibole Amphibole Amphibole
Inclusion-type Cu-rich SL Cu-rich SL Cu-rich SL MSS MSS MSS MSS MSS
S (wt %) 42.0 40.3 39.9 43.8 38.4 40.7 39.6 33.0
Fe (wt %) 46.6 46.8 47.9 51.5 57.3 57 55 61
Co (wt %) 0.5 0.8 0.5 0.3 0.3 0.1 0.4 0.4
Ni (wt %) 1.0 2.1 1.4 1.0 1.0 0.7 0.4 0.5
Cu (wt %) 9.6 9.7 9.8 3.1 2.7 1.6 4.8 5.0
Zn (ppm) 660.5 223.6 475.3 462.5 124.2 98.1 147.9 183.7
As (ppm) <1.4 <13.6 <3.7 <7.6 <6.8 <10.2 <3.2 <6.0
Se (ppm) 91.3 73.1 108.7 117.8 107.6 70.9 35.7 51.1
Mo (ppm) 3 19.1 77.2 18.7 <0.4 <0.7 16.6 34.2
Ru (ppm) <0.04 <0.5 <0.1 <0.3 <0.3 <0.8 <0.1 <0.3
Rh (ppm) <0.01 <0.08 <0.02 <0.08 <0.05 <0.10 0.04 <0.05
Pd (ppm) 5.2 3.1 9.5 1.06 3.1 10.6 <0.2 <0.2
Ag (ppm) 44.8 11.0 34.4 5.1 <2.9 <5.1 <1.07 <2.3
Cd (ppm) 3.6 <4.1 1.7 <0.9 <0.8 <3.2 2.01 <1
In (ppm) 0.05 <0.04 <0.2 <0.2 <0.2 <0.2 <0.1 <0.2
Sn (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Sb (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Te (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Re (ppm) 0.1 <0.1 0.3 0.1 <0.1 <0.2 0.1 0.3
Os (ppm) <0.03 <0.3 <0.09 <0.2 <0.3 <0.5 <0.1 <0.2
Ir (ppm) 0.02 <0.1 0.07 <0.1 <0.1 <0.1 <0.02 <0.08
Pt (ppm) 0.4 <0.5 0.26 <0.3 <0.8 <0.4 0.52 <0.1
Au (ppm) 0.4 1.4 1.05 0.6 0.1 <0.2 0.2 0.3
Hg (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Pb (ppm) 2.4 2.2 1.9 1.1 0.7 <0.2 <0.09 0.7
Bi (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Mg number

Inclusions K4-2 K4-3 K4-4 K4-5 K4-6 K4-7 K4-8 K20 LoD
Rock type Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Subalkalic 

gabbro
Host mineral Amphibole Amphibole Amphibole Amphibole Amphibole Amphibole Amphibole Amphibole
Inclusion-type MSS MSS MSS MSS MSS MSS MSS MSS
S (wt %) 33.0 45.3 40.3 39.2 36.5 41.6 43.4 43.5
Fe (wt %) 61 50 53.5 56.5 62 53.7 51.7 50.5
Co (wt %) 0.4 0.3 0.3 0.3 0.3 0.5 0.3 0.2
Ni (wt %) 0.5 0.4 0.4 0.3 0.3 0.6 0.4 1.0
Cu (wt %) 5.0 4.4 5.9 4.2 1.1 3.7 4.3 4.5
Zn (ppm) 183.7 –2.1 161.5 79.5 244.0 457.0 154.1 58.7 0.7–26
As (ppm) <6.0 <1.4 <0.5 7.03 <8.8 <18.1 <2.4 <1.8 0.5–18
Se (ppm) 51.1 119.3 53.5 51.5 63.8 68.2 54.0 17.9 1.6–44
Mo (ppm) 34.2 1.13 0.94 57.8 <0.8 <1.5 <0.1 0.1 0.05–5.6
Ru (ppm) <0.3 <0.08 <0.02 <0.05 <0.4 <0.8 <0.1 <0.09 0.03–0.9
Rh (ppm) <0.05 <0.02 <0.005 <0.10 <0.20 <0.1 <0.1 <0.01 0.01–0.2
Pd (ppm) <0.2 <0.1 <0.01 <0.03 <0.2 <0.4 <0.1 0.09 0.02–0.7
Ag (ppm) <2.3 2.4 3.1 2.6 <3.9 <8.2 3.6 3 0.1–8
Cd (ppm) <1 <0.4 0.2 <0.4 <2.7 1.3 0.4 <0.4 0.1–6
In (ppm) <0.2 0.05 <0.01 <0.04 <0.3 <0.4 0.0 <0.02 0.02–0.4
Sn (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.1–1
Sb (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.08–0.6
Te (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.7–6
Re (ppm) 0.3 <0.04 0.03 0.4 <0.1 <0.6 0.0 <0.03 0.02–0.6
Os (ppm) <0.2 <0.05 <0.01 <0.03 <0.2 <0.5 <0.1 <0.06 0.02–0.6
Ir (ppm) <0.08 <0.01 0.01 0.04 <0.08 <0.1 0.0 <0.01 0.01–0.1
Pt (ppm) <0.1 <0.06 <0.02 1.2 <0.7 <1.4 <0.1 <0.07 0.02–1.4
Au (ppm) 0.3 0.7 <0.01 0.8 <0.1 0.1 0.0 <0.02 0.01–0.6
Hg (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.5–10
Pb (ppm) 0.7 0.8 1.6 1.4 1.5 2.5 1.2 1.2 0.02–0.7
Bi (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.02–0.1
Mg number

Notes: n.a. = not analyzed, LoD = limit of detection, L = sulfide liquid 
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fide inclusions of such composition are not uncommon and 
have been reported from the Flatreef, Bushveld Complex, 
a layered igneous intrusion in South Africa (Holwell et al., 
2011) and from the mafic xenoliths of the Santa Rita and Cer-
rillos porphyry Cu deposits, formed in an arc setting in New 
Mexico (Chang and Audétat, 2018). 

The MSS- and Cu-rich sulfide inclusions of the Chilas 
Complex could represent cumulate and fractionated liquid 
components of an initial sulfide melt. The question of what 
proportion to use for each component is not evident. How-
ever, several studies propose that the average of sulfides in 
a deposit may approximate the composition of the unfrac-
tionated sulfide melt (e.g., Keays and Lightfoot, 2004). In 
addition, the composition of the calculated unfractionated 
sulfide melt should lie along the tie lines between the MSS 
field and the sulfide melt (SL, Fig. 4B). Therefore, we as-
sume that the average of samples containing both MSS- and 
Cu-rich inclusions (Table 2) is a reasonable approximation for 
the bulk composition of the original sulfide melt. The major 
element composition of such a melt would be 37.2 ± 2.5 wt % 
S, 47.5 ± 2.7 wt % Fe, 8.6 ± 1.3 wt % Cu, 6.2 ± 0.8 wt % Ni, 
and 0.5 ± 0.2 wt % Co (see Table A4 for trace elements). This 
approach likely overestimates the amount of Cu in the sulfide 
melt because the Cu content of some of the K11b inclusions 
approaches the composition of ISS (Cu = 31.6 ± 2.7 wt %). A 
preferred estimate excludes ISS-like compositions from the 
average, and yields a primary sulfide melt with 37.7 ± 1.8 wt 
% S, 47 ± 1.7 wt % Fe, 6.8 ± 0.8 wt % Cu, 7 ± 0.8 wt % Ni, 
and 0.5 ± 0.1 wt % Co (see Table A4 for trace elements). The 
composition of the estimated primary sulfide melts is indicat-
ed in Figure 4B as SL I, for the estimate including ISS-like 
compositions, and SL II, for the estimate excluding ISS-like 
compositions.

Chalcophile element concentrations in the parental and 
derivative magmas

The chalcophile element concentration in the parental and 
derivative magmas (silicate melts) of the Chilas Complex were 
calculated based on the estimated composition of the calcu-
lated sulfide melt, using the mass balance equation for the 
relative mass of silicate melt that could have interacted with 
sulfide liquid (the R factor of Campbell and Naldrett, 1979). 
This requires estimates of the Dsulf/sil: 1,500 (Cu), 6,300 (Au), 
2 × 105 (Pd), 8.5 × 105 (Pt), 4.2 × 105 (Ru), 2 × 105 (Rh), and 
5 × 105 (Ir) (Mungall and Brenan, 2014); 800 (Ag) and 300 
(Bi) (Li and Audétat, 2012); Se (D = 550) and Te (D = 6,100) 
(Brenan, 2015). Some of the experimental work cited includes 
data for various ranges in oxygen fugacity (fO2

). In those cases, 
we used the average values from experiments conducted at 
ΔFMQ ≥0 because of the relatively oxidized nature of arc mag-
mas (Ballhaus et al., 1990). 

The other parameter required, the R factor, can be ap-
proximated from mantle-normalized metal patterns. Barnes 
et al. (1993) and Barnes and Ripley (2016) have shown that 
elements with different partition coefficients show similar 
enrichment in sulfides if the R factor is less than 3,000. En-
richment of Cu (D = 1,500) and Pd (D = 2 × 105) in sulfide 
melt does not diverge much if the R factor is roughly less than 
3,000, resulting in mantle-normalized patterns showing no 
significant enrichment of Pd over Cu. The mantle-normalized 

diagram for our sulfide inclusion data (Fig. 4C) shows no Pd 
over Cu enrichment, suggesting that these inclusions formed 
at an R factor ≤3,000; therefore, a range of R factors (from 
1,000–3,000) was assumed. The proposed R factors are con-
sistent with the range of R factors proposed for primitive arc 
magmas (Richards 2009). Similar R factors have been esti-
mated for some magmatic deposits, for example, Sudbury (R 
factor of 700–1,000; Mungall et. al., 2005) and for the dissem-
inated sulfides of the Talnakh and Kharaelakh deposits (R fac-
tor of ~3,000; Barnes and Ripley, 2016). Extending the range 
of the R factor to a lower limit of 1,000 and an upper limit of 
10,000 does not significantly change our results (Fig. 4C). 

The metal concentrations in the parental silicate melt were 
calculated using the protocol summarized in Table A4. The 
model may underestimate elements compatible in silicate 
phases that fractionate before sulfide saturation, as it is based 
on element concentration in sulfide melts. Sulfide inclusions 
hosted in olivine with an Mg number (Mg number = (Mg/
(Mg + Fe)) of ~0.84 within the dunites suggests that the crys-
tallized silicate fraction before sulfide saturation was minor. 
However, Ni was not included in the model because it is com-
patible in olivine (Mavrogenes and O’Neill, 1999). None of 
the other chalcophile elements considered are expected to 
be significantly lost to the crystallized silicate fraction prior to 
sulfide saturation (Li and Audétat, 2012; Mungall and Brenan, 
2014; Brenan, 2015). 

The calculated parental magma compositions for the Chilas 
Complex rocks (Fig. 4D) show strong depletions in Pt, Rh, 
Ru, and Ir; minor, or no depletion in Bi, Te, Au, and Pd, and 
some enrichment in Se, Cu, and Ag relative to the primitive 
upper mantle (Fig. 4D). The model (Fig. 4D, Table A4) indi-
cates that the parental magma was already depleted in IPGE 
before reaching the lower crust, likely due to the well-known 
compatibility of IPGE in the mantle during partial melting 
(e.g., Alard et al., 2000; Barnes and Lightfoot, 2005). Deplet-
ed mantle-normalized whole-rock metal patterns (Fig. 4A) 
and lack of detectable IPGE in MSS-type inclusions (Fig. 
4C; Table 2) further supports the interpretation that IPGE 
were retained in mantle residue. Palladium, Au, and Cu were 
fully mobilized from the mantle source, as shown from their 
relatively high concentrations in the modeled parental melt, 
perhaps due to the complete mobilization of Cu-rich inter-
stitial sulfides into partial melt (e.g., Alard et al., 2000). Our 
model predicts low concentrations (0.04–0.5 ppb) of Pt in the 
calculated parental melt compared to Pd (1.2–8 ppb) due to 
the lower Pt concentration (0.1–0.5 ppm) in the interpreted 
sulfide melt compared to Pd (3.5–8 ppm; Table A4). The rel-
atively low concentration of Pt in sulfides suggests that other 
phases may control the Pt budget, in addition to sulfides. This 
could be attributed to early crystallization of Pt-rich alloys or 
Cr spinel fractionation prior to sulfide saturation (e.g., Alard 
et al., 2000; Park et al., 2016). However, we observe no sup-
porting evidence for the latter, as analyzed spinel inclusions 
contained no detectable PGE (Fig. A1). Another possible 
explanation is that mantle wedge metasomatism caused by 
subducted slab fluids could have contributed to the relatively 
high Pd (1.2–8 ppb), Au (0.2–1.5 ppb), and Cu (70–140 ppm) 
concentrations of the calculated melt (e.g., Noll, Jr. et al., 
1996; Rielli et al., 2018). Our estimates are consistent with the 
concentrations of chalcophile elements observed in picrites 
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from Granada, Lesser Antilles arc (Woodland et al., 2002) and 
the Pual Ridge arc lavas, eastern Manus Basin (Park et al., 
2013; Fig. 4D). They are also consistenet with the Cu  con-
tents (50–90 ppm) of primitive arc magmas (Lee et al., 2012) 
and low degrees of sulfide saturation at the Tolbachik volcano, 
Kamchatka (Zelenski et al., 2018).

From mass balance calculations, the mass fraction of sul-
fides segregated by the Chilas Complex lower crust was calcu-
lated using equation 3 in Barnes et al. (1993):

Cd/Ci=[1 + X (D – 1)/100],

where, Cd = concentration of an element in the derivative/
fractionated melt, and was calculated from sulfide/silicate 
melt partition coefficient, Ci = concentration of an element 
in the parental melt, X = wt % sulfides, and D = partition 
coefficient.

The mass fraction of segregated sulfides ranges from 0.1 to 
0.17 wt % which is consistent with the sulfide fraction (~0.1–
0.2 wt %) calculated for other sulfide saturated magmas (e.g., 
Lightfoot and Keays, 2005; Jamais et al., 2008; Cocker et al., 
2016; Hao et al., 2019). The percentage of metal lost due to 
the segregation of sulfides was then calculated by dividing the 
element concentration in the derivative silicate melt (Cd) by 
parental melt (Ci), the depletion factor. The calculated results 
(Fig. 5) show that the segregated sulfides would deplete the 
residual melt by >95% of its Pd, Pt, Rh, Ru, and Ir, 33 to 
86% of its Au, 13 to 60% of Cu, 7 to 44% of Ag, 5 to 35% of 
Se, and 3 to 23% of Bi. Copper in the derivative melt (Figs. 
4D, 5) is less affected by the segregation of sulfides than Au 
and PGE because of its relatively lower partition coefficient 
in sulfide melt, relatively greater abundance in the parental 
silicate melt, and the small volumes of fractionating sulfide in 
the lower crust.

Implications for arc metallogeny

Our results support models of arc metallogeny in which sub-
duction-related magmas, produced by partial melting of a 
metasomatized mantle wedge, are depleted in PGE ± Au by 
sulfide segregation in the lower crust. However, the magmas 
transport sufficient concentration of Cu (Fig. 4D; Table A4) 
into the upper crust to generate the most common type of 
porphyry deposits, which are Cu-rich but PGE-poor (e.g., 
Richards, 2011; Cocker et al., 2016; Du and Audétat, 2020). 
In contrast, we did not find evidence for relatively voluminous 
(~1%) precipitation of sulfides in the Chilas Complex mag-
mas, as suggested by the models of Lee et al. (2012), Chen 
et al. (2020), and Lee and Tang (2020). Therefore, a second 
stage of melting of lower crust cumulates may not be required 
to generate Cu-rich magmas as precursors for normal arc-re-
lated porphyry Cu deposits.

However, there are no known porphyry deposits in the 
upper section of the Kohistan arc, suggesting that porphyry 
deposits are formed from the optimized combination of mul-
tiple processes operating at lower and upper crustal levels. 
Elimination of any of these processes may result in the failure 
of a deposit to form (e.g., Richards, 2005). Also, our results 
provide constraints to evaluate the influence of sulfide satu-
ration only in the Chilas Complex lower crust, and variations 
across arc settings are possible. Therefore, further studies on 
other lower crustal arc sections, such as the Talkeetna arc in 

Alaska (Greene et al., 2006) and the Sierra Valle Fertil arc in 
Argentina (Walker et al., 2015) are required to understand if 
the same processes operate globally.

Conclusions
The ultramafic-mafic lower crust of the Kohistan arc contains 
a small amount of residual magmatic sulfides (0.1–0.17 wt %), 
with sulfides containing up to 34 wt % Cu, 23 ppm Au, 245 
ppm Pd, and 20 ppm Pt. Mass balance calculations indicate 
that the parental magmas from which these rocks crystallized 
were depleted in IPGE but not in Cu, Au, and Pd before en-
tering the lower crust. Segregation of a small amount (<0.2 
wt %) of sulfide liquid from the parental magma depleted the 
derivative magma in PGE and Au because of their very high 
Dsulf/sil. The PGE-depleted magma that ascended from these 
lower crustal cumulate zones retained sufficient Cu to poten-
tially form porphyry Cu but PGE-depleted deposits in the 
shallow crust, as commonly observed in arc settings. 
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