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Abstract: We briefly review some recent advances in the field of nonlinear dynamics of atomic clouds
in magneto-optical traps. A hydrodynamical model in a three-dimensional geometry is applied and
analyzed using a variational approach. A Lagrangian density is proposed in the case where thermal
and multiple scattering effects are both relevant, where the confinement damping and harmonic
potential are both included. For generality, a general polytropic equation of state is assumed. After
adopting a Gaussian profile for the fluid density and appropriate spatial dependencies of the scalar
potential and potential fluid velocity field, a set of ordinary differential equations is derived. These
equations are applied to compare cylindrical and spherical geometry approximations. The results are
restricted to potential flows.

Keywords: trapped atoms; magneto-optical trap; time-dependent variational method; nonlinear
analysis

1. Introduction

Large samples of alkaline atom clouds can be optically confined by means of magneto-
optical traps (MOTs). These traps are composed of a magnetic field gradient (produced by
anti-Helmholtz coils) and an intersection of three pairs of orthogonally positioned circularly
polarized beams [1–3]. The environment that allows the confinement involves the combined
effects of magnetic trapping and Doppler cooling mechanisms, which create the potential
well and decrease the thermal energy of the samples, respectively. In addition, considering
Sisyphus or evaporative cooling techniques also allows sub-Doppler temperatures to be
reached. MOTs are important in the task of producing Bose–Einstein condensates [4] and
are essential in the realization of optical lattices [5,6] and the observation of collective
quantum effects with several self-organized structures [7,8].

When the ratio between the intensities of the incident lasers and their saturation values
is sufficiently small, a trapped atomic cloud in an MOT shares similarities with single-
component trapped plasmas [9] and astrophysical models for pulsating stars [10]. The
fluid modeling of MOTs has been applied [11–15], with hydrodynamic equations subject to
harmonic, dissipative and collective forces. The harmonic and dissipative forces originate,
respectively, from the Zeeman and Doppler shifts. The collective force is a self-consistent
interaction provided by two effects, arising from the imbalance in the absorption of light
when the backward and forward laser intensities are locally different and the radiation
pressure of scattered photons on nearby atoms [3,16–18]. Furthermore, thermal effects are
also included.

Attempts to solve the dynamical equations for MOTs rely on linear approxima-
tions [11–13], specific analytic methods [14,15] and numerical simulations [19–21]. Some
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of these previous results employ radial symmetry assumptions [11–14]. However, anti-
Helmholtz coils create an axially symmetric magnetic field, and this must be reflected in
the shape of the atomic cloud [22]. The comparison between axial (anisotropic) and radial
(isotropic) symmetry motivates our present analysis of trapped atomic samples.

For this purpose, the minimization of the pertinent action functional is applied, and a
Gaussian Ansatz is adopted. This procedure reduces the problem to a set of coupled ordi-
nary differential equations, which can be adapted to axially and radially symmetric MOTs.
The analysis of nonlinear systems using variational methods is traditional and simplifies
the dynamical equations, as in quantum electron gases [23–25] and Bose–Einstein conden-
sates [26–32]. Due to the Doppler cooling, the lower temperature reached is delimited by
the Doppler cooling limit, and the proposed Lagrangian density has a time-dependent
exponential factor and is linearly dependent on the velocity potential. The present review
is mainly based on [11–15]. The present numerical simulations have slightly different nu-
merical parameters in comparison to [14,15], but they are still compatible with present-day
experiments [33–35].

It is of much interest to compare the results from hydrodynamic and kinetic approaches.
From the very beginning, the kinetic modeling requires a more detailed knowledge of the
microscopic state of the atoms, including the distribution of velocities, as well as the macro-
scopic averages of number density and velocity in a given spatial position, among other
moments, as in fluid theory. In this respect, the kinetic approach for MOTs as proposed
in [36] is certainly more complete. At the same time, the fluid approach is less demanding
from the computational, analytical and experimental points of view. The importance of
anisotropic configurations should be noted from the kinetic modeling of [36], in agreement
with the fluid modeling. It should be also remarked that the Lagrangian approach in the
next section requires the potential flow (see before Equation (5)). Therefore, vorticity is
precluded, with implications for the development of possible turbulent or unstable states
(see also [37,38]).

This paper is organized as follows. Section 2 contains the starting fluid model and
proposes an adequate Lagrangian formalism for the model. Setting reasonable variational
functions within the Lagrangian density, a set of ordinary differential equations is derived,
describing the damped Kohn oscillations of the center of mass of the atomic cloud, together
with the nonlinear oscillations of the width parameters of the atomic cloud. Section 3
discusses the axial and spherical symmetry approximations in terms of the nonlinear
dynamical system obtained from the variational method. Section 4 is the concluding section.

2. Model and Time-Dependent Variational Method

The hydrodynamic equations for cold trapped atoms in an MOT are

∂n
∂t

+∇ · (nv) = 0 , (1)

∂v
∂t

+ (v · ∇)v = −νv− 1
mn
∇p− 1

m
∇Vh +

1
m
∇Vc , (2)

∇2Vc = Qn . (3)

Equations (1)–(3) are, respectively, the continuity, momentum and Poisson equations.
These equations describe cold atoms (atomic mass m), with a number density n = n(r, t)
and a fluid velocity field v = v(r, t), where Vh = m(ω2

xx2 + ω2
yy2 + ω2

z z2)/2 is a confining
potential provided by the Zeeman shift. The self-consistent scalar potential Vc is the
contribution of two independent effects that tend to expand and compress the atomic
cloud. The compression arises from the imbalance of the absorption of light, since the
backward and forward laser intensities are locally different. The expansion arises from
the repulsive interactions of the rescattering photons of neighboring atoms [2,33]. These
contributions can be formally expressed as the Poisson equation with the effective charge of
the atoms given by Q =

√
ε =

√
ε0(σR − σL)σL I0/c, where ε0 is the vacuum permittivity,
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c is the speed of light and I0 is the total intensity of the six laser beams, while σL and
σR represent the absorption and reabsorption cross sections, respectively [17]. In typical
experiments [33–35], the repulsion dominates over the attractive force, so that Q > 0.
For the sake of generality, a polytropic equation of state p = n0kBT(n/n0)

γ is assumed,
where γ is a generic polytropic index, n0 is a reference number density and kBT is a reference
thermal energy, with kB denoting the Boltzmann constant. For definiteness, the results are
restricted to γ ≥ 1.

In the low-saturation regime, the angular frequency and the damping coefficient can
be written in terms of the atomic transitions and confinement parameters,

ωz =
√

2ω⊥ = (2νµ/kL)
1
2 , ν = −

8h̄k2
Lsinc∆

mΓ(1 + 4∆2/Γ2)2 , (4)

where kL is the amplitude of the laser wave vector, h̄ is the reduced Planck constant, ∆ is the
detuning frequency between the laser frequency and the atomic transition frequency and Γ is
the natural line width of the transition used in the cooling process. In addition, µ = µBB0/h̄,
where µB is the Bohr magneton and B0 is the intensity of the gradient field. The numerical
factor

√
2 in the axial frequency comes from the configuration of the magnetic field created by

a pair of anti-Helmholtz coils, namely B = B0(xêx + yêy − 2zêz) [39], so that ωx = ωy = ω⊥.
For the other forms of magnetic traps, it is necessary to derive appropriate expressions of the
confinement force. In MOTs, the red detuning (∆ < 0) provides ν > 0.

The set of equations given as Equations (1)–(3) for potential flows (v = ∇θ), where θ =
θ(r, t) is the velocity potential, can be obtained by the minimization of the action functional
S =

∫
dt d3rL specified by the Lagrangian density

L = eνt
{

mn
[

1
2
|∇θ|2 + ∂θ

∂t
+ νθ

]
+ n(Vh −Vc)−

(∇Vc)2

2Q
+ γkBT

∫
dn
∫ nγ−2

nγ−1
0

dn
}

, (5)

where the independent fields are θ(r, t), n(r, t) and Vc(r, t). Indeed, the use of the Euler–
Lagrange equations with respect to the fields θ, n and Vc, respectively, yields the continuity,
momentum and Poisson equations.

A normalized Gaussian Ansatz is adopted,

n(r, t) =
A

αxαyαz
e−

ρ2
2 , (6)

where A = N/(2π)
3
2 , N is the number of confined atoms and

ρ(r, t) =

√
(x− dx(t))2

α2
x(t)

+
(y− dy(t))2

α2
y(t)

+
(z− dz(t))2

α2
z(t)

. (7)

The Gaussian Ansatz reflects the localized atomic cloud and is more amenable to an
analytic treatment [23,24]. The time-dependent coordinates di(t) and αi(t), with i = x, y, z,
respectively, give the position of the center of mass and the width of the atomic cloud in
the different directions. Moreover, the number density is defined as n0 = N/(αx0αy0αz0),
where αi0 = αi(0). At equilibrium, an MOT with a large number of atoms N > 108 is
expected to have a uniform rather than a Gaussian density [1]. However, the Gaussian
Ansatz is much more amenable to analytical calculations, especially in anisotropic cases.
For similar simplicity reasons, flat-top uniform densities in MOTs have been fitted by
Gaussians [37].

From the continuity equation, the velocity field is given by

vi =
α̇i
αi
(ri − di) + ḋi (8)
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where vi is the i-component of the fluid velocity field. Hence the velocity potential in the
Lagrangian density can be written as

θ = ∑
i

(
α̇i

2αi
(ri − di)

2 + ḋi(ri − di)

)
, (9)

where an extra, purely time-dependent additive contribution was ignored since it does not
contribute anything.

In addition, the Poisson equation admits an approximate solution given by

Vc = −
√

π

2
QA

(∏j αj)
1
3

Erf
(

ρ√
2

)
ρ

, (10)

where Erf(s) = (2/
√

π)
∫ s

0 e−s′2 ds′ denotes the error function of a generic argument s. This
approximation is more accurate in the case where αx ' αy ' αz, i.e., in the spherical
approximation. This condition was discussed in [15].

In order to obtain the equation of motion of the new coordinates, the Lagrangian is
obtained after substitution of Equations (6), (9) and (10) into Equation (5), yielding

L[di, ḋi, αi, α̇i] ≡ −
1

mN

∫
Ld3r = eνt

[
∑

i

1
2

(
(ḋi

2
+ α̇i

2)− ναiα̇i

)
−Ud −Uα

]
, (11)

where

Ud = ∑
i

ω2
i

2
d2

i (12)

Uα = ∑
i

(
ω2

i
2

α2
i + b

(∏j αj)
1
3

α2
i

)
+

aγ

(∏j αj)γ−1 . (13)

with

b =
NQ

8π
3
2 m

, aγ =
kBTα

3(γ−1)
0

(2π)
3
2 (γ−1)γ

3
2 (γ− 1)m

. (14)

where Ud and Uα are the pseudopotentials corresponding to the dipole and oscillating
width modes. Notice that the isothermal case (γ = 1) deserves a separate treatment.
The introduced constants b and aγ are related, respectively, to the self-consistent interaction
and the thermal effects. The value of aγ depends on the polytropic index. These equations
are valid for γ > 1.

Given the Lagrangian, the equations of motion can be derived by means of the Euler–
Lagrange equations. The dynamics of the center of mass is given by

d̈i + νḋi + ω2
i di = 0 , (15)

which, as can directly be seen, is decoupled from the width equations showing damped
oscillations around the origin (damped Kohn oscillations). Furthermore, this motion is
linear and independent of the number of atoms.

The equations of motion for the oscillating widths are

α̈x + να̇x +

(
ω2

x −
ν2

2

)
αx =

(γ− 1)aγ

α
γ
x (αyαz)γ−1

+
b
3

(
5α1/3

y α1/3
z

α8/3
x

−
α1/3

y

α2/3
x α5/3

z
− α1/3

z

α2/3
x α5/3

y

)
, (16)

α̈y + να̇y +

(
ω2

y −
ν2

2

)
αy =

(γ− 1)aγ

α
γ
y (αxαz)γ−1

+
b
3

(
5α1/3

x α1/3
z

α8/3
y

− α1/3
x

α2/3
y α5/3

z
− α1/3

z

α5/3
x α2/3

y

)
, (17)
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and

α̈z + να̇z +

(
ω2

z −
ν2

2

)
αz =

(γ− 1)aγ

α
γ
z (αxαy)γ−1

+
b
3

(
5α1/3

x α1/3
y

α8/3
z

− α1/3
x

α5/3
y α2/3

z
−

α1/3
y

α5/3
x α2/3

z

)
. (18)

As can be seen from Equations (16)–(18), the oscillating widths are described by
coupled nonlinear damped oscillator equations. The nonlinearity, which appears on the
right-hand side of the equations, arises from the repulsive interaction terms due to the
polytropic pressure (∼aγ) and the collective force described by the self-consistent inter-
action (∼b). These repulsive effects are counterbalanced by the effective harmonic force
∼(ω2

i − ν2/2). The system (16)–(18) generalizes the results obtained previously in [15].
In the following, we restrict ourselves to ωi > ν/

√
2 (periodic oscillations), which can be

satisfied by standard MOT parameters, and we also take γ = 5/3 for the sake of illustration,
which corresponds to the usual tridimensional adiabatic coefficient.

3. Results
3.1. Anisotropic MOT

In the anisotropic case with cylindrical symmetry provided by the shape of the mag-
netic field created by a pair of anti-Helmholtz coils, it is valid to take ωx = ωy = ω⊥ and
αx = αy = α⊥. Consequently, with a5/3 = 9

√
3kBTα2

0/(20
√

5πm), the equations of motion
become

α̈⊥ + να̇⊥ +

(
ω2
⊥ −

ν2

2

)
α⊥ =

2a5/3

3α7/3
⊥ α2/3

z
+

b
3

(
4α1/3

z

α7/3
⊥
− 1

α1/3
⊥ α5/3

z

)
(19)

and

α̈z + να̇z +

(
ω2

z −
ν2

2

)
αz =

2a5/3

3α4/3
⊥ α5/3

z
+

b
3

(
5α2/3
⊥

α8/3
z
− 2

α4/3
⊥ α2/3

z

)
, (20)

or
α̈⊥ + να̇⊥ = −1

2
∂U
∂α⊥

, α̈z + να̇z = −
∂U
∂αz

, (21)

where U = U(α⊥, αz) is the pseudopotential defined by

U(α⊥, αz) = (ω2
⊥ − ν2/2)α2

⊥ +
(ω2

z − ν2/2)α2
z

2
+

a5/3

α4/3
⊥ α2/3

z
+ b
(

2α1/3
z

α4/3
⊥

+
α2/3
⊥

α5/3
z

)
, (22)

present in the associated Lagrangian function L = exp(νt)[(1/2)(2α̇2
⊥ + α̇2

z)−U].
Taking typical MOT parameters [1,3,21,33–35,40], Equations (19) and (20) can be

numerically solved. These parameters are: n0 = 1015 m−3, m = 1.41× 10−25 kg (rubidium),
Q ∼ 10−37 Nm2, ω⊥ = 240 rad/s and ν = 65 s−1, for |∆| = 3.0Γ, where Γ = 2π × 4 MHz,
kL ∼ 107 m−1, sinc = 0.05, |∇B| = 10 G/cm, kBTlim = h̄Γ(∆2 + Γ2/4)/(2|∆|Γ) = 4.07×
10−27 J and α0 = 1.0 mm. The resulting damped nonlinear oscillations are shown in Figure 1.
The equilibrium values are found from the conditions

∂U
∂α⊥

=
∂U
∂αz

= 0 , (23)

or (
ω2
⊥ −

ν2

2

)
α⊥eq −

2a5/3

3α7/3
⊥eqα2/3

zeq
− b

3

(
4α1/3

zeq

α7/3
⊥eq

− 1

α1/3
⊥eqα5/3

zeq

)
= 0 (24)

and (
ω2

z −
ν2

2

)
αzeq −

2a5/3

3α4/3
⊥eqα5/3

zeq
− b

3

(5α2/3
⊥eq

α8/3
zeq
− 2

α4/3
⊥eqα2/3

zeq

)
= 0 , (25)
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which can be numerically solved. For the present parameters, a5/3 = 3.20× 10−9 m4/s2

and b = 1.59× 10−8 m3/s2, and the equilibrium values reached due to attenuation are
α⊥eq = 0.47 mm and α⊥eq = 0.33 mm, as shown in Figure 1.

Figure 1. Numerical solution of (19) and (20) normalized to α0. Parameters are indicated in the
text. Blue curve: α⊥; red curve: αz; green line: equilibrium solution α⊥eq/α0 = 0.47; black line:
αzeq/α0 = 0.33. Initial conditions: α⊥0 = αz0 = α0 and α̇⊥0 = α̇z0 = 0.

3.2. Isotropic MOT

For the radial symmetry approximation, one has ω⊥ = ωz = ωr. Then, it is possible
to assume α⊥ = αz = αr. This approximation leads to the following equation of motion:

α̈r + να̇r +

(
ω2

r −
ν2

2

)
αr =

2a5/3

3α3
r

+
b
α2

r
(26)

or
α̈r + να̇r = −

1
3

∂U
∂αr

, (27)

where U = U(αr) is the pseudopotential defined by

U(αr) =
3(ω2

r − ν2/2)α2
r

2
+

a5/3

α2
r

+
3b
αr

, (28)

present in the associated Lagrangian function L = exp(νt)[3α̇2
r /2−U].

Figure 2 shows the simulation results for Equation (26) for the same parameters as in
the previous section. Solving

∂U
∂αr

= 0 (29)

or (
ω2

r −
ν2

2

)
αreq −

2a5/3

3α3
req
− b

α2
req

= 0 (30)

for the given parameters yields the equilibrium at αreq = 0.44 mm, as shown in Figure 2.
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Figure 2. Numerical solution of (26) normalized to α0 with ωr = 240 rad/s and ν = 65 s−1. Blue
curve: αr; orange line: equilibrium solution αreq/α0 = 0.44. Initial conditions: αr0 = α0 and α̇r0 = 0,
using the same parameters as in Figure 1.

For a better comparison between the anisotropic and isotropic MOTs, it is useful to
consider a dimensionless function measuring the anisotropy,

χ =
α⊥
αz

, (31)

where χ = 1 for the spherical approximation. This is shown in Figure 3, using the same
parameters as in Figure 1. It can be seen that the anisotropy can be quite strong from the
beginning of the oscillations, reaching an equilibrium value χ = 1.42 far from isotropy, con-
trary to the spherical symmetry assumption. This value is consistent with α⊥eq = 0.47 mm
and αzeq = 0.33 mm, as previously found from the stationary states. Furthermore, the use
of this approximation forces the magnitude of the magnetic field to be equal in all directions,
which contradicts Gauss’s law for magnetism.

Figure 3. Numerical simulation of the anisotropy parameter χ given by Equation (31) using the
simulations of Equations (19) and (20) . Blue curve: numerical simulation for χ. The horizontal line
shows the equilibrium state χeq = α⊥eq/αzeq = 1.42, using the same parameters as in Figure 1.

4. Conclusions

In this work, the nonlinear dynamics of trapped atomic clouds in anisotropic and
spherical MOTs was briefly reviewed. Our treatment was restricted to quadrupole fields
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created by a pair of anti-Helmholtz coils, producing an azimuthal symmetric confinement
harmonic force. The set of partial differential equations for the fluid modeling of the system
was converted into a set of Newtonian-like ordinary differential equations for the atomic
cloud, using a variational method. The basic equations for the axially and spherically
symmetric three-dimensional variational descriptions were derived, when thermal and
multiple scattering effects were both relevant. For this purpose, the starting point was
a set of hydrodynamic equations with a polytropic equation reinterpreted in terms of
the minimization of an action functional, adopting a Gaussian Ansatz. The results were
applied to typical experiments, and damped coupled nonlinear oscillations were observed
for the model with axial symmetry. For typical experimental conditions using a pair of
anti-Helmholtz coils, one can obtain very anisotropic atomic clouds. In the present work,
the scattering force was assumed to be always stronger than the shadow force, implying a
repulsive collective force. Future studies considering the opposite case are desirable, since
instabilities in a (balanced) MOT have their mechanism enhanced for a larger shadow force
in comparison with the rescattering [36]. Further possibilities involve the determination of
the normal modes and instabilities of dynamical systems such as Equations (19) and (20).
In the case of very weak attenuation, another avenue could be the search for additional
constants of motion besides the Hamiltonian in these conservative systems.
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