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Abstract

The global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising
energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic
greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced
in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated
with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact
by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation.
Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C,
i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of
up to 500 °C, compared to gasification, which operates at 800-1300 °C. We focus on 1) the drawbacks and advantages
of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating
these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass
to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass
conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical
routes is promising for the circular economy.
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In recent decades, urbanisation, modernisation and indus-
trialisation linked to energy production and utilisation have
been a fundamental loop in various economic, scientific and
social sectors (Ahmad Ansari et al. 2020; Shrivastava et al.
2019). The depletion of non-renewable fuel sources, accom-
panied with greenhouse gas emissions, has become a critical
issue (Fawzy et al. 2020; Osman et al. 2021). Therefore, the
necessary shift for exploring alternative options to overcome
the world-scale looming energy crisis, considering the envi-
ronmental concerns and its mitigation, while confronting
the spiralling energy demand has become an urgent need
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of the hour.

Biomass, unlike other sustainable energy sources such
as wind, solar, geothermal, marine and hydropower, can
directly produce fuel along with chemicals (Quereshi et al.
2021; Farrell et al. 2019; Farrell et al. 2020). Thus, it is
not feasible to substitute fossil-based fuels with the afore-
mentioned sustainable energy sources; hence, biomass
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utilisation to produce fuel and chemicals is required (Bharti
et al. 2021). Biomass is classified as non-lignocellulosic or
lignocellulosic in nature and exists in various forms such as
woody, herbaceous, aquatic debris, farming manure and by-
products and other forms (Osman et al. 2019; Kaloudas et al.
2021). Various technologies are used to convert biomass into
fuel or chemicals, such as gasification, combustion, pyroly-
sis, enzymatic hydrolysis routes and the fermentation pro-
cesses (Abou Rjeily et al. 2021; Peng et al. 2020).

A recent review discussed integrating hydrothermal and
biochemical routes in biomass utilisation from a circular bio-
economy approach (Song et al. 2021). The thermochemical
methods usually involve a high energy intake along with sol-
vent or catalyst addition. Meanwhile, the biochemical route
has a lengthy cycle period and is less efficient in breaking
down recalcitrant biomass materials. Thus, combining those
two routes can be promising by incorporating the benefits of
both methods in biofuel processing. They proposed a sche-
matic route where hydrothermal routes are being used in the
pretreatment stage to prepare the appropriate biomass feed-
stock for the following biological routes to improve the over-
all process efficiency and final product yields and vice versa,

as shown in Fig. 1. There are unprecedented challenges with
the integration of thermochemical and biochemical routes.
For instance, the catalysts or solvent utilisation of the ther-
mal routes may result in poisoning or kill the microorganism
or generate various inhibitors that can affect the biological
progress routes. Furthermore, this integration may lead to
additional costs.

Identifying sources of biofuels such as biodiesel and
biochar can potentially reduce the environmental impacts
of fossil fuels (Balajii and Niju 2019; Gunarathne et al.
2019). Biofuels can also counter the increasing use of fossil
resources and prevent pressure on non-renewable sources
(Peng et al. 2020; Hassan et al. 2020). However, it is impor-
tant to use practical, scientific and robust tools to evaluate
the real benefits of using biofuels over conventional energy
sources (Chamkalani et al. 2020; Kargbo et al. 2021). Life
cycle assessment (LCA) has been identified as a compre-
hensive evaluation approach (Astrup et al. 2015) to measure
environmental impacts over the entire production chain of
biofuels (Collotta et al. 2019).

Therefore, this review aims to critically evaluate exist-
ing biomass to biofuel pathways and associated studies
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Fig. 1 Integration of hydrothermal and biochemical routes in biomass
utilisation from a circular economy approach. Firstly, the biomass is
pretreated using a biochemical process for the following thermochem-
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lowing biochemical route and eventually producing biofuel or chemi-
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which evaluated environmental impacts for the entire life
cycle. The main objectives were to: (1) critically review
recent advances in biofuel production processes, (2) ana-
lyse existing LCA studies and highlight key methodological
approaches and present critical findings.

Bibliometric analysis

Bibliometric research methodology: TOPIC: ‘biomass
pyrolysis’ OR TOPIC: ‘biomass gasification’ OR TOPIC:
‘biomass combustion” OR TOPIC: ‘biomass hydrothermal
liquefaction” OR TOPIC: ‘biomass torrefaction’ OR TOPIC:
‘biomass fermentation’ OR TOPIC: ‘anaerobic digestion’
AND TOPIC: ‘biomass into fuels’ AND TOPIC: (‘thermo-
chemical’ OR ‘thermo-chemical’) AND TOPIC: ‘biochemi-
cal’. The document type selected in the bibliographic search
was articles, the timespan: All years.

It is a complex process to assess the sustainability of bio-
fuels. This is because the use of energy crops can cause
the transformation of natural and agricultural land for the
cultivation of these crops. Moreover, various technical path-
ways range from biological to thermochemical conversion
processes, all involving range of products and co-products.
Therefore, it is imperative to conduct the LCA of the biofuel
production chain. This study provides an overview of LCA
approaches by recent studies. Keywords: ‘biomass’, ‘bio-
fuel’, ‘life cycle assessment’, ‘environmental impact assess-
ment’, were used for literature search in the Web of Sci-
ence database. Forty most complete studies published from
2019-2021 were selected for analysis in the present study.

Biomass conversion technologies

Harnessing various renewable energy resources is consid-
ered affordable, reliable and sustainable solutions for their
excessive availability, such as agriculture wastes, domestic
wastes, forest residues, industrial wastes and human excreta.
Among them, biomass is the most significant contributor
with 9% (~ 51 EJ) of the global overall primary energy sup-
ply, out of which about 55% is traditionally used in daily
living activities such as heating and cooking, especially in
developing countries (Chan et al. 2019). Slade et al. (2014)
revealed the possibility of biomass, wastes and energy crops
for sharing up to~ 100 EJ in the world energy supply (Slade
et al. 2014).

Economically, biomass combustion is not the best strat-
egy to utilise biomass because of causing severe environ-
mental damage as well as not recovery of the total energy
stored in the substrates (Ullah et al. 2015). In this context,
biomass conversion into solid, liquid and gaseous forms is
deemed an efficient and green energy supplier for various

sectors comprising heat, power and transport fuel (Kargbo
et al. 2021; Wang et al. 2020a). For this purpose, two
grouped distinct routes, namely thermochemical and bio-
chemical, are currently used. Thermochemical methods use
the whole biomass in the presence of a heat source and con-
trollable oxygen atmosphere to modify it to different energy
forms.

In contrast, biochemical methods employ enzymes, bac-
teria or other engineered organisms to transform it to liquid
fuels such as drop-in-biofuels (Shen and Yoshikawa 2013;
Singh et al. 2016). During the past decades, the biomass-
derived fuel synthesis process has upgraded from the first-
generation biofuel to fourth-generation biofuel, passing by
second and third generations. Food crops, inedible biomass,
macro/microalgal biomass and genetically bioengineered
algal and microbial systems-based biofuels are examples for
the first, second, third and fourth generations, respectively
(Martin 2010; Adelabu et al. 2019; Aro, 2016; Ben-Iwo
et al. 2016). Innumerable biomass-based fuels, chemicals
and organic compounds such as methane, ethane, propane,
butane, ethylene, methanol, ethanol, butanol, dimethyl
ether, ammonia, acetic acid, formaldehyde, gasoline, diesel,
wax, paraffin, bio-jet fuels and others have been produced
throughout different biomass to liquid routes and presently
available in the markets throughout the world (Demirbas and
Demirbas, 2010).

Thermochemical conversion methods

Thermochemically, diverse technologies including direct
combustion, torrefaction, hydrothermal liquefaction, pyroly-
sis and gasification have been implemented to produce liquid
fuels from biomass, as shown in Fig. 2. Practically, the bio-
mass is decomposed in controllable operational conditions to
produce solid, liquid and gas (syngas), which need a supple-
mentary catalytic promotion process to produce liquid fuels
called drop-in biofuel. One of its most important features is
its capabilities to utilise any biomass type as a biomaterial
feedstock, unlike biochemical conversion methods (Raheem
et al. 2015).

The thermal-based processes are also classified into low-
temperature, which typically operate at <300 °C, such as
torrefaction, hydrothermal carbonisation and high-temper-
ature that operate at > 300 °C, such as gasification, combus-
tion and pyrolysis biomass conversion methods (Quereshi
et al. 2021). The direct combustion (flaming or smoulder-
ing) of biomass to produce energy usually operates in the
temperature range of 1000-2000 °C in the presence of air.
However, there are emissions associated with such processes
as NOux and pollutants (Osman 2020). Hence, gasification
which typically operates at 800—1300 °C is seen as a poten-
tial substitute to produce energy and chemicals as well. The
synthesis gas produced from the gasification process can
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Fig.2 Thermochemical conversion of biomass, including hydro-
thermal liquefaction, pyrolysis, torrefaction, gasification and direct
combustion processes. Different types of biomass are treated in pro-

be used for electricity production, as well as the conversion
into liquid fuel via the Fischer—Tropsch route. Interestingly,
pyrolysis is considered a promising route requiring a lower
temperature of up to 500 °C compared to the gasification
process.

Direct combustion

Biomass utilisation as fuel was closely linked with the
beginning of human civilisation. Moreover, it is the high-
est contributor source of clean energy globally (Mladenovi¢
et al. 2018). Biomass combustion is described as a group
of chemical reactions involving carbon dioxide and water
formation resulting from the transformation of carbon and
hydrogen, respectively, by oxidation reactions. Improper
oxygen quality can result in incomplete combustion associ-
ated with release of atmospheric polluters (i.e. CO, NOy,
SO, and particulate matter) (Yang et al. 2020). Nowadays,
the usage of effective fabricated combustion systems such
as combustion control systems that simultaneously use con-
ventional and alternative biomass resources has become a
predominant feature industrially.

@ Springer
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cessing plants into liquid biofuels for energy purposes or for the pro-
duction of value-added chemicals

In waste-to-energy facilities, biomass can be separately
burned or combined in co-firing with coal to produce steam,
used later in electricity generation. The net electricity effi-
cacy generated from coal/biomass in co-firing power plant
system varied from 36 up to 44% based on as-used strategy
and biomass specifications (quantity and quality). Despite
the present feasibility of 20% of co-firing as energy basis
in addition to a theoretical achievability of 50%, only less
than 5% and sometimes surpasses to 10% of biomass con-
tribution continuously. It has been estimated that only 10%
of biomass usage in co-firing systems in power plants can
decline the release of CO, to the atmosphere from 45 to 450
million tonnes/year by 2035 (Sahu et al. 2014). Considering
the physicochemical properties of fuel and its required vol-
ume to air for avoiding any troubles in the fuel-to-air ratio,
excessive air can be forwarded to the reaction to control
the temperature of the burning system and ensure complete
combustion (Vicente and Alves, 2018). Majorly, combus-
tion physicochemical features of biomass can be catego-
rised into macroscopic and microscopic. Comprehensively,
macroscopic features are provided by macroscopic analyses
such as proximate analysis such as moisture tenor, sulphur,
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particle magnitude, calorific value, bulk density, fixed car-
bon and ash fusion. This is coupled with ultimate analysis
such as C, H, N, O and S %, whereas microscopic analyses
include chemical, thermal and mineral data (Khodaei et al.
2015).

Main combustion reactions are as follows: (1) drying
out of biomass, (2) pyrolysis, (3) pre-combustion reaction,
(4) primary combustion, (5) secondary combustion and (6)
effluent stack gas. Parameters that influence the combus-
tion process include biomass magnitude, specific gravity,
moisture tenor, ash percentage, elemental composition and
anatomical structure as lignin, cellulose and hemicellulose.
Different researchers highlighted that about 95-97% of the
global bioenergy production is based on direct biomass com-
bustion (Fouilland et al. 2010; Zhang et al. 2010). Given the
massive quantity of ash produced from coal burning (~780
million tonnes), a less quantity of biomass ash (~ 480 mil-
lion tonnes/year) was assumed to be generated coincided
with the burning of 7 billion tonnes of biomass (Vassilev
et al. 2013; Izquierdo and Querol, 2012). Retrofitting invest-
ment cost characterised to various power plants was USD
430-500/kW, USD 760-900/kW and USD 3000-4000/kW
for co-feed plants and separate feed plants indirect co-fir-
ing, respectively. These investigated costs were totally more
minuscule than the specified outlays of 100% biomass power
generations facilities (Sahu et al. 2014). Table 1 presents
the energy content in MJ/kg for several kinds of biomass,
whereas Table 2 displays the differences in the physicochem-
ical characteristics of biomass and coal-based fuels.

Table 1 Energy contents of biomass sources, in MJ/kg

Table 2 Physicochemical characteristics of biomass and coal-based
fuels (Demirbas, 2004)

Property Biomass Coal
Particle size (mm) 3 100
Fuel density 500 1300
Carbon content™ 43-54 65-85
Oxygen content* 35-45 2-15
Sulphur content* Max 0.5 0.5-7.5
AL,O; content* 2495 15-25
SiO, content* 23-49 40-60
K,O content* 4-48 2-6
Fe,O; content* 1.5-8.5 8-18
Ignition temperature 418-426 490-595
Heating value 14-21 23-28

*(wet % of dry fuel)

As a solid fuel, fossil-based fuels are still dominating this
sector for power generation and heat. However, biomass uti-
lisation in the co-combustion along with fossil-based fuel
is seen as a cost-effective and interesting option (Variny
et al. 2021). Co-combustion of those two feedstocks offers
higher power generation than biomass alone, and biomass
ash is acting as a sulphur capture and mitigates the sulphur
oxide emissions. On the other hand, some challenges arise
when mixing fossil-based coal with biomass, leading to
higher corrosion, slagging and fouling due to the high alkali
contents within the biomass. In fact, the projected gradual

Biomass type Energy content Biomass type

Energy content Biomass type Energy content

(MlJ/kg) MJ/kg) (MJ/kg)
Greenwood 8 Sour cherry stalk 17.59 Coconut shell 20.00
Manure 8.650 Tobacco leaf 17.97 Oven dry plant matter 20
Sewage 10.510 Corncob 17.99 Wood bark 20.3
Mustard stalk 10.73 Soybean cake 18.30 Hazelnut shell 20.47
Corn stover 10.730 Peanut shell 18.46 Spruce wood 20.5
Rice husk 13.524 Cereals 18.61 Wood bark 20.57
Peat 15.30 Ailanthus wood 18.93 Peach stones 20.657
Cotton gin 15.500 Tobacco stalk 19.02 Olive cake 21.57
Olive refuse 15.77 Hazelnut seed coat 19.2 Olive husk 21.8
Fuelwood 16.10 Eucalyptus (Grandis) 19.35 Oak bark 22
Peach bagasse 16.24 Poplar 19.38 Olive pits 22
Potatoes 17.00 Colza seed 19.38 Apricot stones 22.082
Potato peel 17.18 Spruce wood 19.45 Tuncbilek lignite 23.212
Corncob 17.3 Coir pith 19.50 Rape seed 27.80
Sugar beet 17.40 Black locust 19.71 Tyres 36.800
Cotton cake 17.50 Groundnut shell 19.80 Methane gas 55

Data sourced from: Sami et al. 2001; Demirbas 2001; Demirbas 2005; Atimtay 2010; Haykiri-Acma 2003; Borjesson 1996; Raveendran and

Ganesh 1996; Erol et al. 2010; Friedl et al. 2005

@ Springer
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shutdown of fossil-based power plants will limit this co-
combustion approach. Technologies such as gasification and
pyrolysis should be the main focus, to be competitive and
fully available in the near future.

Torrefaction

Torrefaction is an endothermic pretreatment pathway that
mainly proceeded at temperatures ranging from 200 to
300 °C and a non-accelerated heating rate of less than 50 °C/
min in an oxygen-free atmosphere. This process is used for
upgrading the solid biomass to produce a torrefied prod-
uct used later as a suitable alternate to coal (Cahyanti et al.
2020). Three transformational reactions, including: vola-
tilisation, polymerisation and carbonisation, occur during
the torrefaction process. The process efficacy is influenced
by temperature, reaction time, particle magnitude, carrier
gas type and flow, catalyst and performance index (Chen
et al. 2021). This strategy significantly improves the phys-
icochemical properties of utilised biomass such as hydro-
phobicity, grindability, mass/energy density, ignitability,
moisture expelling and homogeneity (Chen and Kuo 2011).

Commonly, the torrefied product is termed bio-coal or
green coal and biochar when used as fuel and soil amend-
ment. Based on the mode of operation, the torrefaction pro-
cess can be practically classified into dry, wet and steam
modes (Barskov et al. 2019). In dry torrefaction, biomaterial
feedstock can be torrefied in non-oxidative; for example,
nitrogen and carbon dioxide are carrier gases or oxidative
mediums such as air, flue gases and other streams with vari-
ous oxygen concentrations at working temperatures ranging
from 200 to 300 °C. Attributing to oxygen presence, the
oxidative scenario has a better reaction rate than the other
non-oxidative scenario and minimises the reaction time
(Thanapal et al. 2014; Lynam et al. 2011).

Contrarily, in the wet torrefaction, the biomass is torre-
fied in a wet environment, typically water and dilute acids
at 180-260 °C and 5-240 min for surrounding temperature
and holding time, respectively, and the produced solid is
termed as hydrochar. Under these subcritical conditions,
physicochemical properties of water such as density, dif-
fusivity, dielectric constant and viscosity alter and improve
the biomass degradation process, which further upgrades
the torrefaction process (Bach and Skreiberg 2016; Balat
et al. 2008).

Besides the two mentioned routes, steam torrefaction
by introducing steam with elevated temperature and pres-
sure is conducted to torrefy the biomass at 200-260 °C and
5-10 min for environmental temperature and contact period,
respectively. The subsequently accelerated venting of the
pressure will allow steam to bulge the biomass and split it
with minor loss in the feedstock.

@ Springer

Commercially, the torrefaction process is a potential
scenario to be applied in various applications. Salapa et al.
revealed the high adsorption capacity of torrefied barley
straw of 11.65 mg/g at operating parameters of 220 °C and
20 min (Salapa et al. 2018). Other researchers evaluated the
torrefaction process’s impacts at different contact periods
(i.e. 20, 40 and 60 min) and temperature (160-260 °C) on
ethanol generation based on rice straw. They found out that
the best yield of 351 mg/g was obtained at operating param-
eters of 220 °C and 40 min.

Additionally, they confirmed that the torrefied biomass
enhanced the yield of ethanol production at a value of
50.67% compared with the untreated one (Chiaramonti et al.
2011; Sheikh et al. 2013). An enhancement in the ethanol
production yield is based on torrefied sugarcane bagasse and
waste jute caddies by 19.34 and 20.28%, respectively, com-
pared with the untreated biomass (Chaluvadi et al. 2019).

Igalavithana et al. demonstrated that torrefied product
could be positively utilised in soil improvement because it
increases air space, water retention efficiency, plant pros-
perity, microbial community and enzymes activity (Igala-
vithana et al. 2017). Ogura et al. observed an increase in
the growth of the J. curcas when it was exposed to varied
ratios of 250 °C torrefied biomass of 1, 3 and 5% (Ogura
et al. 2016). The feasibility of using torrefaction condensate
in plant safeguarding pathways (pest repellent, insecticide
and herbicide) was confirmed considering its minimum
amounts of polycyclic aromatic hydrocarbons and phenolic
compounds. Comparing the as-generated condensate result-
ing from different biomass feedstocks such as pine bark,
forest residue, wheat straw and willow biomass, the con-
densate based on willow had the best pesticide performance
(Hagner et al. 2020). Table 3 presents more details about the
physicochemical properties of numerous biomass after the
torrefaction process.

Hydrothermal liquefaction

Hydrothermal liquefaction is defined as a thermochemical
pathway at which the lignocellulosic feedstock, whether wet
or dry, is effectively decomposed into renewable liquid fuel
(Guo et al. 2015). Based on the mode of operation, it can
be divided into two main subclasses: (1) indirect liquefac-
tion and (2) solvent liquefaction (Mika et al. 2018). In the
first scenario, biomass or its liquefied products are first con-
verted into syngas followed by a subsequent fuel synthesis
(i.e. alcohols and alkanes). In contrast, in the second, direct
conversion of biomass into liquid fuel occurs by the action of
proton solvents such as water, alcohols, phenols, sulpholane
and ionic liquid. Solvent liquefaction has the priority to be
implemented over the other scenario because of its remark-
able merits, moderate operational conditions and higher
yield of products (Gollakota et al. 2018).
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Table 3 Physicochemical properties of biomass after torrefaction

Biomass Fixed carbon (wt.%) Volatile matter Ash content O/Cratio H/Cratio Higher heating References
(Wt.%) value (MJ/kg)
Cotton stalk 16.48-34.01 53.62-75.44 4.79-9.88 0.25-0.83 0.06-0.14 18.68-25.43  Chen et al. (2014a),
Corn stalk 18.41-41.19 35.30-69.32 9.18-20.52  0.18-0.85 0.06-0.15 18.26-23.61 Chen et al.
(2014b), Chen
et al. (2014c)
Rice straw 17-48 44.5-79.6 6-8 0.24-0.81 0.09-0.16 19.0-28.6 Nam and Capareda
(2015)
Oil palm fibre 5-25 348 6-7 0.22-0.62 0.02-0.10 11.13-23.98  Chen et al. (2013)
Cryptomeria 12-25 5-54 0 0.23-0.63 0.02-0.09 21.94-28.81
Japonica
Coconut fibre 2-27 2-40 0.5-3 0.22-0.55 0.02-0.09 11.86-26.46
Eucalyptus 15-28 10-61 0 0.28-0.64 0.02-0.09 20.59-26.28
Bamboo 25.05-47.03 48.05-70.20 1.43-1.95 0.34-0.63 0.07-0.10 21.02-27.26  Chen et al. (2012a),
Rice husk sugar cane 22.27-41.17 33.33-61.88 13.18-23.11 0.32-0.70 0.06-0.10 17.68-21.48 Chen et al.
bagasse Madagas- (2012b)
car almond
Oil palm 32.58-43.67 39.60-53.76 9.97-13.52  0.29-0.54 0.06-0.08 20.61-23.54
Reed canary grass 13.3-21.3 70.5-80.3 6.4-8.3 0.67-0.74 0.11-0.13 20.0-21.8 Bridgeman et al.
Wheat straw 15.6-38 51.8-77 74-102  0.48-072 0.10-0.12 19.8-22.6 (2008)
Olive tree pruning 20.4 74.5 2.4 0.89 0.16 N/A Martin-Lara et al.
(2017)
Olive trimmings 16.54-32.57 55.96-77.65 3.87-7.87 0.18-0.70 0.08-0.12 19.6-28.4 Martin-Lara et al.
Olive pulp 19.98-50.40 41.99-77.22 1.50-6.67  0.24-0.72 0.08-0.12 20-26.8 (2017), Volpe
Orange peel waste 38.9-62.2 37.8-61.1 3.3-5.6 0.24-0.65 0.06-0.10 21.45-28.74 etal. (2015)
Lemon peel waste 35.7-61.8 38.2-64.3 3.5-6.3 0.22-0.68 0.06-0.10 21.09-28.75
Jatropha seed 13.5-35.5 55.5-79.8 6.25-7.60 0.29-0.49 1.14-1.50 21.8-23.8 Hsu et al. (2018)

residue

The main process parameters that directly influence the
hydrothermal liquefaction process include biomass composi-
tion, particle size, pressure, temperature, heating rate, resi-
dence time, feed/solvent ratio and presence of the catalyst
and reducing gas. Generally, the hydrothermal liquefaction
process operates at mild operational parameters of tempera-
ture in the temperature range of 250-500 °C and pressure of
5-35 MPa and contact periods of 5-60 min. These processes
are conducted in the presence of solvents such as sub/super-
critical water, organic solvents and mixed solvents such as
the combination of water + organic solvent (Yang et al. 2019;
Akalin et al. 2017).

The utilisation of water as a solvent has numerous
advantages over conventional organic solvents due to its
natural occurrence in biomass and eco-friendliness. On
the contrary of water state at ambient conditions, the
compressed water in a liquid state at the following criti-
cal conditions of temperature and pressure of 374 °C and
22.064 MPa, respectively, generates higher ionic products
(i.e. H;0* and OH™) ions. Proximity to the mentioned crit-
ical conditions, the physicochemical properties of water
such as density, viscosity, dielectric constant, polarity and
permittivity change (Arun et al. 2021). Decrease in the

viscosity as well as dielectric constant and weakening of
water hydrogen bonds consequently enhance the solubil-
ity of hydrophobic organic compounds associated with an
improvement in the catalytic activity of acid—base reac-
tions. This results in biomass conversion into four main
fractions: bio-crude fuel (liquid), water-soluble products,
solid residue and gases.

Moreover, hydrothermal liquefaction is regarded as lesser
energy consumption and a higher efficiency strategy than
pyrolysis because of the better physicochemical properties.
The produced bio-crude from the hydrothermal liquefaction
process has an oxygen content of 10-20 wt.% and a heating
value of 30-35 MJ/kg, which is typically higher than those
obtained from the conventional pyrolysis process (Guo et al.
2019). During the hydrothermal liquefaction process, the
oxygen contained in the biomass is partially eliminated by
dehydration, decarboxylation and decarbonylation reactions
associated with producing CO, CO, and H,O. Despite its
higher quality, the higher oxygen content produces a highly
sticky and acidic bio-crude product with a low heating value.
Distinctly, its quality enormously varies depending on the
operational parameters and biomaterial feedstock composi-
tion (Scarsella et al. 2020).
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Hence, the importance of downstream upgrading treat-
ment such as catalytic cracking and hydrotreating for the
obtained bio-crude cannot be ignored for further utilisation
as a transportation drop-in fuel. In situ upgrading using vari-
ous acidic or alkaline homogenous catalysts such as HCI,
H;PO,, K,CO;, Na,CO;, NaOH, KOH and Ca(OH), and
heterogeneous catalysts has been studied in detail (Perkins
et al. 2019). Despite its cost and energy-saving nature, it has
some disadvantages, such as operating at high pressure that
results in the necessity of (1) solid/water slurries reliable
pumping, (2) suitable unit metallurgy to avoid the potentially
corrosive nature of slurries at the operational parameters
of elevated pressures and mild temperatures and (3) usage
of heat exchangers with high surface areas to overcome
the problem of low heat transfer coefficients (Beims et al.
2020). Li et al. (2017) liquefied wheat straw biomass at a
pre-adjusted temperature of 270 °C for 120 min, and the
resulting oil was forwarded for manufacturing of bio-polyols
and polyurethane foams (Li et al. 2017).

Crude oil originated from liquefaction of bark biomass
was directed to produce bio-based phenol—-formaldehyde
formable resole as reported by Li et al. (Li et al. 2016). Spent

coffee grounds of approximately 15 and 17.4% for lipids and
proteins, respectively, were liquefied to output crude bio-oil
under N, atmosphere at (200-300 °C) and (5-25 min). The
highest yield of acetone-recovered bio-crude oil (47.3 wt%)
was obtained at 275 °C and 10 min with an estimated higher
heating value of 31.0 MJ/kg™, better than that of spent cof-
fee grounds of 20.2 MJ/kg (Yang et al. 2016). Xiu et al. per-
formed a study on swine manure composed of < 1%, 17.1%,
22.3% and ~35% for lignin, crude protein, ash content and
saccharide, respectively. They successfully liquefied into
bio-crude oil under N, atmosphere at a temperature range
of 260-340 °C and a contact period of 15 min with a yield
of 24.2 wt.% and higher heating value of 36.05 MJ/kg (Xiu
et al. 2010). Table 4 presents the proximate as well as ulti-
mate investigations of crude bio-oil prepared from several
biomaterials through the hydrothermal liquefaction process.

Pyrolysis
Pyrolysis is counted as one of the most as-used thermo-

chemical scenarios to degrade the carbonaceous biomass,
such as cellulose, hemicellulose and lignin (Aravind et al.

Table 4 Proximate and ultimate analyses of bio-crude oil prepared from several biomass through hydrothermal liquefaction process. Where,

the higher heating value is abbreviated as HHV

Feedstock Elemental composition of product spe- Physicochemical properties of the prod-  References

cies after Hydrothermal liquefaction ucts

C(%) H(%) N(@&%) O%) S(%) Ash% Moisture % HHV  Yield %
Spirulina algae 689 8.9 6.5 149 086 — - 332 326 Vardon et al. (2011
Anaerobic sludge 66.6 9.2 4.3 189 097 - - 320 94
Cladophora glomerata 26.8 3,53 214 2048 022 365 9.1 10.29 - Plis et al. (2015)
Nannochloropsis gaditana  40.3 597 630 1449 037 283 4.1 18.53 -
Almeriansis 732 93 5.1 0.8 11.7 358 20.0 - 42.6 Lépez Barreiro et al. (2015)
Gaditana 742 9.3 4.0 0.6 11.8 36.2 12.4 - 50.8
Swine manure 71 8.9 4.1 0.21 142 35 - - 61 Toor et al. (2011)
Algae Dunaliella tertiolecta 63.55 7.66 3.71 - 25.8  30.7 - - 25.8
Porphyridium 66-83 5-11 0-12 0-1 8-27 22.8-36.9 - - 5-25
A.esculenta 73.8 8 3.8 14 0.8 - - 338 17.8 Anastasakis and Ross (2015)
L.digitata 70.5 7.8 4.0 17 0.7 - - 32 17.6
L.Saccharina 313 37 2.4 263 0.7 242 9.2 12 -
Fucus vesiculosus 32.88 4.77 253 3563 244 118 - 150 - Ross et al. (2008)
Laminaria hyperborea 3497 5.31 1.12 3509 2.06 11.2 - 16.54 -
Miscanthus 4632 558 056 41.79 0.2 2.1 - 19.08 -
A.azuera 40.82 556 0.63 5299 - 10.61 6.03 5299 - Aysu et al. (2016)
Nannochloropsis Oceana 776 49 34 - 0.3 - - 3770 54.2 Caporgno et al. (2016)
Aspen wood 752 8.2 0.5 158 03 0.48 3.8 343 - Pedersen et al. (2016)
Arthrospira platensis 74.5 10.2 6.8 7.5 1.0 - - 38.65 30 Lavanya et al. (2016)
Tetraselmis 714 95 5.7 123 1.1 - - 3558 29
Nannochloropsis Salina 55.16 6.87 273 3397 1.27 2.48 4.95 2540 - Toor et al. (2013)
Seaweed meal 4399 595 521 36.13 1.02 7.7 7.92 18.35 - Ferrera—Lorenzo et al. (2014)
Laurel algae 4897 638 3.02 4163 - 10.53 9.95 19.77 - Ertas and Alma (2010)
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2020). This results in the generation of solid, liquid and gas
biofuels in an oxygen-free atmosphere via endothermic reac-
tion (Perkins et al. 2018). The yield of the pyrolytic products
is influenced by factors, including feedstock composition
such as structure and complexity. This is also coupled with
pyrolysis impacting factors such as particle size, tempera-
ture, heating rate, residence time, inert gas type, inert gas
flow, catalyst type and others (Azizi et al. 2018).

Complex reactions such as dehydration, decarboxylation,
decarbonylation, hydrogenation, isomerisation, aromatisa-
tion, depolymerisation and charring are involved in the ther-
mal decomposition process of biomass. Typically, pyrolysis
of biomass undergoes the following steps: (1) transfer of
heat from its source to biomass to initiate the reaction, (2)
elevated pyrolysis temperature of primary vapours con-
tributes to volatiles and char formation, (3) because of the
influx of hot vapours to the biomass, heat migration contin-
ues between unpyrolysed fuel and hot volatiles, (4) volatiles
condensation associated with secondary reactions leads to
tar formation and (5) autocatalytic secondary pyrolysis reac-
tions take place in conjugation with primary pyrolytic reac-
tion (Dabros et al. 2018).

The impact of different pyrolysis operational parameters
occurs at different stages such as dehydration, decomposi-
tion and reforming. With elevated heating rate, minimum
vapour contact periods and a surrounding temperature of
500 °C, liquid yields can be maximised (Chintala, 2018).
These conditions directly prohibit (1) thermal or catalytic
cracking of the primary decomposition products due to char
presence to lesser non-condensable gas molecules as well
as (2) their polymerisation to char (Kasmuri et al. 2017).
Table 5 presents different working modes of the pyrolysis
process. Other pyrolysis types such as catalytic and assisted
microwave, carbon dioxide, additives, solar and hydro-pyrol-
ysis can be performed to upgrade the product’s yields.

Slow pyrolysis is a process in which organic materi-
als are slowly heated at a low heating rate between 5 and
50 °C min-1 and the longest residence time above 10 s in the
absence of oxygen, typically producing about 80% of car-
bon as the main product (Antoniou and Zabaniotou, 2013).
Fast pyrolysis is a strategy by which organic materials are
quickly heated at faster heating rates of > 103 °C s~! and
shorter contact periods of up to 3 s without air existence.

The primary product is liquid oil (Bridgwater, 2012a). Ultra-
fast or flash pyrolysis is a highly accelerated pyrolysis at a
high heating rate with major gas and oil products. The oper-
ating conditions are as follows temperature (medium—high
(700 — 1000 °C), shortest residence time and fastest heating
rate. Yields of outputs are: (1) liquid condensate (10 — 20%),
(2) gases (60 — 80%) and (3) char (10 — 15%) (Priharto et al.
2020).

Catalytic pyrolysis is a process in which catalysts such as
natural zeolite, Cu/Al,0;, Co/Mo/Z, Zeolite-3, Fe,O; and
Ni-CaO-C are used to decrease the reaction operating tem-
perature and increase the selectivity towards desired prod-
ucts. This process is used to optimise the biomass conversion
into liquid fuels with improved physicochemical properties
(Cai et al. 2019; Chai et al. 2020). Catalytic co-pyrolysis
of biomass and plastic waste showed promising results in
upgrading the oil quality by removing oxygen from the
biomass and producing more aromatics and olefins (Wang
et al. 2020b). This is due to the high hydrogen and carbon
contents within the plastic waste and consequently acting as
a hydrogen donor in the catalytic co-pyrolysis process and
thus eliminates the oxygenated compounds. This approach
is seen as a sustainable, efficient and economical approach
to upgrading the bio-oil quality, along with extending the
catalyst’s lifetime.

Microwave-assisted pyrolysis is a new thermochemi-
cal process that transforms biomaterial feedstock into lig-
uid oil using microwave input heat energy. In contrast to
the conventional process, microwave-assisted pyrolysis is
a more effective and controllable technique. CO,-assisted
pyrolysis is a process by which CO, is delivered as a reactive
medium instead of inert N, in utilising the pyrolysis process
and enhancing the syngas yield and declines the produced
oil but also decreases the greenhouse gas emissions (Kwon
et al. 2019).

Additive—assisted pyrolysis is a type of pyrolysis at which
metal salts such as sodium, potassium and calcium salts and
inorganic additives (zeolites, biochar) are added and thus
having some advantages over conventional pyrolysis. It has
a great potential to decrease the required operating tempera-
ture, cracking time and solid residue yield, in addition, to
increase the cracking efficacy of wastes and improves the
quality of pyrolysis products (Wang et al. 2019a).

Table 5 Different working

. Mode of action Working tem- Residence time (seconds) Yields (wt. %)

modes of the pyrolysis process perature (°C) —

(Bulushev and Ross, 2011) Char Liquid Gas
Slow 450 Very long (>30) 35 30 (70% water) 35
Medium 500 Moderate (10-30) 25 50 (50% water) 25
Fast 500 Short (<2) 13 70 (30% water) 12
Flash 500 Very short (<0.5) <13 75 <12
Gasification > 800 Long 10 5 85
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Solar pyrolysis is a process in which solar renewable
energy can be introduced as thermal input sources rather
than electrical energy that maximise biofuel production and
reduce CO, emissions. Hydropyrolysis is a particular type of
pyrolysis at which biomaterial feedstock is decomposed with
the assistance of high pressurised hydrogen. Using the men-
tioned technique above, a higher yield of hydrocarbons with
improved structures can be attained (Marcilla et al. 2013).

Pyrolysis products can be categorised as solid, liquid and
gases that can be exploited to generate chemicals, energy,
electricity and transportation fuels. Proximate and ulti-
mate analyses are beneficial to characterise the obtained
products. Char, pyrolytic char or biochar, is the produced
solid, chemically not pure carbon, and contains carbon as
the main constituent, hydrogen, nitrogen, ash and some
volatiles. The highly porous char is used in several appli-
cations as adsorbent and soil amendment for wastewater
treatment and enhancement of crop yields. Bio-oil (tar)
is a dark brown, sticky liquid produced from the thermal
degradation of biomass. Typically, it consists of more than
400 chemical compounds (i.e. aldehydes, alcohols, amines,
acids, esters, ethers, ketones, phenol derivatives, ketones,
guaiacols, furans, oligomers, syringols and sugars) (Hen-
rich et al. 2016). Considering its low carbon, nitrogen and
sulphur content, CO, SOy and NOx emissions are low, hence
preparing bio-oil and conventional fuels.

Table 6 displays a comparison between the properties
of prepared bio-oil (after water removal) and conventional
liquid fuels. Concurrently, Table 7 shows physiochemical
properties of as-formed bio-oil resulting from the pyroly-
sis of several biomaterials feedstocks without applying
any upgrading strategy as well as comparing it with other
conventional fuels, respectively. Both condensable and
non-condensable gases are generated throughout the first

Table 6 Comparison of bio-oil properties with conventional fuels
(Bridgwater, 2012b)

Property Bio-0oil Diesel  Heating oil Gasoline
pH 2.0-3.0 - - -
Viscosity at 40 °C (cP)  40-100 2.4 1.8-3.4 0.37-0.44
Density at 15 °C (kg/m®) 1200  820-950 865 737
Heating value (MJ/kg) 18-20 42 45.5 44

Pour point (°C) -15 -29 -6 -60
Flash point (°C) 48-55 42 38 40
Solids (wt%) 0.2-1.0 - - -

Ash <0.02 <0.01

Carbon 42-47 874 86.4 84.9
Hydrogen 6-8 12.1 12.7 14.76
Oxygen 46-51 - 0.04 -
Nitrogen <0.1 392 ppm 0.006 0.08
Sulphur <0.02 1.39 0.2-0.7 -

@ Springer

decomposition stage and secondary cracking of vapours.
Bio-oil is formed by subjecting the heavier molecules con-
densable gases to subsequent cooling and condensation pro-
cesses, while the lower molecules non-condensable gases
(i.e. CO and CO,) are not condensed during the cooling
stage.

Gasification

Gasification is a process by which carbonaceous materials
are thermochemically converted into valuable gases, com-
monly referred to as synthesis gases in the presence of a
gasifying agent such as air, oxygen, steam, CO, or a combi-
nation of them at a temperature above 700 °C. Primarily, the
produced gas consists of CO, H,, CO, and CH, (Shahabud-
din et al. 2020). Generally, the gasification process com-
prises four main steps: (1) heating or drying (100-200 °C)
to decrease its moisture content, (2) pyrolysis, (3) oxida-
tion or partial combustion and (4) gasification. Firstly, the
moisture content (30-60%) of the biomass is vaporised at
about 200 °C. Then, pyrolysis includes the decomposition
of different biomass, including cellulose, hemicellulose and
lignin, into solid residues and volatiles occurs (Thomson
et al. 2020). Oxidation or partial combustion is the third
stage in which the resultant volatiles and char residues are
oxidised to CO, CO, and H,O with gasifying agent assis-
tance beyond 700 °C (exothermic reaction).

By the action of CO, or steam as gasifying agents, car-
bon and volatile compounds react with them in terms of
reduction reaction to produce syngas at a temperature over
800 °C in an endothermic reaction (Situmorang et al. 2020;
Hanchate et al. 2021). Briefly, simultaneous exothermic
and endothermic reactions are included in the gasification
process, and the first previously mentioned reactions are
considered as heat suppliers for the endothermic one. Main
reactions involved in the gasification include carbon reaction
such as primary or secondary steam reforming, hydrogasi-
fication, oxidation, shift reaction, mechanisation and steam
reaction.

The efficiency of the gasification process is impacted by
different operational parameters such as feedstock composi-
tion, moisture content, ash content, granulometry, pressure,
temperature, gasifier’s type, gasifying agents, equivalence
ratio and steam to biomass ratio (Diaz Gonzalez and Pacheco
Sandoval 2020). Basically, the gasifier’s selection: fixed or
moving bed (dry ash/slagging), fluidised bed (circulating,
bubbling) and entrained flow (upflow, downflow), is con-
trolled by several factors, for instance, feedstock composi-
tion, gasifying agent and product requirements (Mehrpooya
et al. 2018). Syngas chemical composition and its heating
values vary based on the as-used gasification method, as
presented in Table 8.
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Other gasification types such as plasma, supercritical
and microwave have been operated to improve gasification
yields. In plasma gasification, an intense plasma thermal
process is used to catalyse and ionise the organic compounds
in biomass and gas, respectively, into syngas with slag using
a plasma torch powered by an electric arc (over 2500 °C).
Supercritical water gasification is a type of gasification typi-
cally performed in the presence of a vast amount of water
for the generation of H, and CH, (Rodriguez Correa and
Kruse, 2018). The process yield is very high, mainly affected
by different parameters such as temperature, catalyst and
biomass/water ratio.

Microwave gasification is a compelling scenario for trans-
forming biomass. This technique’s benefits over the tradi-
tional methods include uniform distribution of temperature,
efficacy for large particle handling and higher heating values
(Chen et al. 2015). Different technologies such as scrubbers
(i.e. spray, dynamic wet, cyclonic, impactor, venture and
electrostatic) and filters (fabric bag, fibrous ceramic, metallic
foam and granular bed) have been used to clean up the syn-
gas from different contaminants and hence improve its qual-
ity for numerous applications. A list of global biofuel-based
facilities comprising its manufacturer, country, starting-up
year, feedstock composition, downstream products and as-
used technology is shown in Table 9.

Biochemical conversion methods

Biochemical conversion pathways such as anaerobic diges-
tion and fermentation can be employed to generate various
biofuels from waste biomass, as shown in Fig. 3. Biochemi-
cal conversion methods have numerous merits, including
high product selectivity, high product yield and flexibility
to be operated at ambient temperature and pressure condi-
tions (Singh et al. 2016). Ethanol and bio-hydrogen can be
produced from the fermentable biomass via alcoholic fer-
mentation and dark fermentation/photo-biological routes,
respectively, whereas biogas can be produced anaerobic
digestion as follows (Osman et al. 2020).

Fermentation

Fermentation is a process by which biological activities
are utilised conjugated with air existence known as aerobic
fermentation or without air called anaerobic fermentation
(Karimi et al. 2021). Bioconversion of biomass to biofuel
comprises of sequential stages: pretreatment, hydrolysis
(acid/enzymatic) and fermentation (Alvira et al. 2010).
The pretreatment step aims to damage the cell wall as
well as exhibit cellulose and hemicellulose for subsequent
hydrolysis. It can be classified into four main categories,
including: (1) physical, e.g. grinding, (2) physicochemi-
cal, e.g. wet oxidation, (3) chemical, e.g. oxidising agents

and organic solvents, and (4) biological or combination of
them (Haghighi Mood et al. 2013). Secondly, pretreated
biomass is decomposed into monomers by the action of
acid/enzymatic hydrolysis. Lastly, the intermediate mono-
mers are converted into alcohols using yeast/bacteria (Liu
et al. 2015).

Based on the consolidation degree of the mentioned
stages, ethanol production can be configured into four
routes: (1) separate hydrolysis and fermentation, (2)
simultaneous saccharification and fermentation, (3)
simultaneous saccharification and co-fermentation and
(4) consolidated bioprocessing. In separate hydrolysis and
fermentation scenarios, enzyme generation, hydrolysis,
hexose and pentose fermentation are employed in separate
OR individual reactors. Despite execution of hydrolysis
in addition to fermentation at their optimised conditions,
accumulation of cellobiose and glucose enzymes during
hydrolysis process negatively prohibits the efficiencies of
cellulases (Margeot et al. 2009).

In the simultaneous saccharification and fermentation
scenario, cellulose hydrolysis and hexose fermentation
simultaneously run at the same reactor that overcomes
cellulase inhibition because of instant consumption of
sugars by fermenting microorganisms (Hahn-Higerdal
et al. 2007). In the simultaneous saccharification and co-
fermentation scenario, two genetically modified strains
of Saccharomyces cerevisiae and Zymomonas mobilis are
used to co-ferment glucose and xylose in the same reac-
tor. In the consolidated bioprocessing scenario, only one
microorganism is simultaneously utilised for hydrolysis
and fermentation, which decreases the operation cost and
enhances the process efficacy (Lin and Tanaka, 2006).

Different modes of fermentation can be briefly viewed
as follows: photo-fermentation is a fermentative trans-
formation of organic substrate to produce bio-hydrogen
driven by miscellaneous groups of photosynthetic bacteria.
This is occurring throughout a set of biochemical reac-
tions in three steps like anaerobic conversion. The dif-
ference between photo-fermentation and dark fermenta-
tion is its proceeding in the presence and absence of light,
respectively.

Alcoholic fermentation is another type of fermentation
driven by yeast by which sugars are transformed into cel-
lular energy associated with the generation of ethanol and
carbon dioxide. Considering its occurrence in the absence
of oxygen, it can be categorised as an anaerobic integration
process. Heterotrophic algae or yeast can transform sugars
into lipids inwards their cells associated with using suitable
solvents to break down the cells (Lukajtis et al. 2018). The
resultant lipids can be further purified and improved to lig-
uid forms of transport fuels by hydro-treated vegetable oil
diesel scenario, whereas genetically modified bacteria con-
sume sugars and consequently produce short-chain gaseous
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Table 9 (continued)

Country

TRL-scale

As-used Technology

Downstream products

Company/Institute/University ~Starting-Up Year Feedstock composition

name

Canada

Not available TRL 6-7

Ethanol (30,000

t/year)

N.A

2019

Vanerco (Enerkemé&
Greenfield Ethanol)

demonstration

Data were taken from (Molino et al. 2018)

alkenes that can be transformed by oligomerisation and
hydro-treatment into jet/gasoline.

Electro-fermentation is a novel fermentation pathway by
which microorganisms can be induced by using an electric
field that can positively: (1) stabilise and optimise metabo-
lisms of fermentation integration process by regulating
redox and pH imbalances, (2) stimulate whether breakdown
or elongation of carbon chain via different oxidative/reduc-
tion conditions, (3) enhance the synthesis of adenosine
triphosphate and upgrade the yield of microbial biomass, (4)
extract purposed products via selective membranes and (5)
the possibility of directing the fermentation reaction towards
the manufacture of a single and specific product (Schievano
et al. 2016).

Anaerobic digestion

Anaerobic digestion is a biochemical, cost-effective and
environmentally sustainable approach for upcycling biomass
(Al-Wahaibi et al. 2020). It is a recovery process by which
biodegradable organic substrates’ bioconversion into renew-
able biogas occurs by several anaerobic organisms in an
oxygen-free environment (Kainthola et al. 2019). Typically,
the produced biogas comprises 50-75% of CH,, 30-50% of
CO,, (0-3% of N,, ~6% of H,O and 0-1% of O,. The biogas
could also contain other minor impurities such as ammonia,
hydrogen, hydrogen sulphide, nitrogen and water vapours
(Wainaina et al. 2020).

The growth rate of biogas production was 11.2%, with
approximately 58.7 billion Nm? in 2017. It has been inves-
tigated that the production outlay of biogas resulting from
anaerobic digestion plants will be declined by about 38% in
2050 compared with 2015. Collectively, more than 17,240
operating anaerobic digestion facilities in Europe generated
63.3 TWh of electricity based on biogas, which represented
about 14.6 million European households of the global con-
sumption rate per year in 2014. The American Biogas Coun-
cil announced that about 2,000 anaerobic digestion plants
were operated to handle the residues from municipal waste-
water treatment facilities, food waste and animal manure
digestion in 2015 (Shrestha et al. 2017).

In addition to biogas energy generation, the anaerobic
digestion process contributes to nutrient recovery, mitiga-
tion of greenhouse gas emissions as well as depletion of
dissolved oxygen (Bharti et al. 2021). Several parameters,
including alkalinity, organic loading rate, temperature, pH,
feedstock composition, hydraulic retention time and con-
centration of volatile fatty acids, directly affect the anaero-
bic digestion process and the physiochemical properties of
biogas (i.e. composition and heating value). Considering the
organic substrates, the anaerobic digestion process can be
categorised into wet, semi-dry and dry due to varying % of
total solids (Feng and Lin 2017).
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Biomas

S

Pre-treatment

Fermentation

Enzymatic
hydrolysis

Fermentation

Biochemical conversion processes

Digestion

Liquid biofuel/ chemicals

Fig.3 Biochemical conversion route of biomass utilisation into bio-
fuel, including fermentation and anaerobic digestion processes. Two
types of digestion: aerobic digestion, which produces carbon dioxide
and fertiliser, while anaerobic digestion produces biogas which in

Commonly, an anaerobic digestion scenario comprises
four consecutive steps, including hydrolysis, acidogenesis,
acetogenesis and methanogenesis, catalysed by different
microorganisms, whereas hydrolysis is deemed as the rate-
determining step.

Hydrolysis is the first stage of anaerobic digestion at
which complex biopolymers (i.e. carbohydrates, lipids,
proteins, polysaccharide and nucleic acid) are converted
into simple soluble compounds (i.e. amino acid, fatty acids,
monomers, sugar, purines and pyrimidine) by the action of
enzymes (i.e. amylases, lipases and proteases) produced
from hydrolytic bacteria (Sawatdeenarunat et al. 2015).

Secondly, acidogenesis is the second stage of anaerobic
digestion at which the simplified amino acids, sugar, fatty
acids and monomers are converted into intermediate bio-
molecules (i.e. alcohols, volatile fatty acids, propionic and
butyric acids) by fermentative bacteria.

Acetogenesis is the third step at which the mentioned
acidogenesis products serve as a substrate to produce acetate
by homoacetogens bacteria. Methanogenesis is the last step
at which both acetate and carbon dioxide are directed to

@ Springer

H, gas

turn, along with hydrogen, could be converted into liquid fuel. The
other route is the fermentation process, where the biomass is firstly
pretreated and then followed by enzymatic hydrolysis and fermenta-
tion, and finally, the production of liquid biofuel

produce methane (biogas) by two sets of methanogens: ace-
toclastic and hydrogen utilising organisms (Matheri et al.
2018; Ganesh Saratale et al. 2018). The first group (ace-
toclastic methanogens) convert acetate into methane and
carbon dioxide, while the other ones (hydrogen-utilising
methanogens) generate methane by applying hydrogen and
carbon dioxide as electrons donor and acceptor, respectively.

Several enhancement techniques as pretreatment steps
such as: (1) physical, e.g. milling, (2) chemical, e.g. ionic
liquid and surfactant, thermophysical, e.g. microwave irra-
diation, (3) thermochemical, e.g. supercritical CO,, ammo-
nia fibre explosion and ammonia fibre percolation, and
(4) biological (microbial and enzymatic) can precede to
enhance anaerobic digestion process (Gautam et al. 2020).
To upgrade the quality of biogas (impurities removing),
an additional cleaning step can be added to capture CO,,
H,S and water vapours and avoid mechanical and chemical
appliances throughout its utilisation. Different materials (i.e.
silica gel) can be used to tackle H,S and water vapours.

In contrast, other techniques (i.e. water scrubbing, organic
scrubbing, membrane separation, cryogenic technology and
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pressure swing adsorption) can be delivered to sequester
CO, from the product and subsequently elevate its calorific
value (Nag et al. 2019). The raw biogas can be used for
producing electrical energy, whereas the improved biogas
can be directly inserted into the natural gas grid or utilised
as fuels for vehicles. From the economic point of view,
two substrates can be simultaneously mixed (anaerobic co-
digestion) to overcome the disadvantages of mono-digestion
and enhances its feasibility. Numerous types of reactors,
including submerged packed beds, fluidised beds and other
types, have been employed for the anaerobic digestion treat-
ment process of wastewater with high biochemical oxygen
demand (Paudel et al. 2017).

Production of liquid biofuel such
as methanol and bio-oil from biomass

Historically, more than a hundred years ago, Giacomo Cia-
mician mentioned in his manuscript entitled ‘Photochem-
istry of the Future’ about the urgent need for the sustain-
able transfer from non-renewable to renewable sources
(Sharma et al. 2020; Qasim et al. 2020). In 2017, the global
energy consumption was rated at 13.5 billion tons of oil
(~656 exajoules) by a yearly growth rate of 1.7%. Relat-
edly, an increase in the uncontrolled population has directly
deepened the negative effects of the ascending pressure on
non-renewable resources globally (Pradhan et al. 2018).
Considering the new United Nations reports, it has been
stated that with an introduction of approximately 83 mil-
lion people to our globe per year, the current global popula-
tion of 7.6 billion is anticipated to increase to 8.6, 9.8, and
11.2 billion by 2030, 2050 and 2100, respectively. Based
on the United States Energy Administration (EIA) estima-
tions, the global energy requirement is increasing annually
and projected to rise by almost 28% in 2040 (~739 quadril-
lions Btus) (Sharma et al. 2020). Majorly, high pressure on
energy consumption originates from countries with robust
economic growth. A total enhancement in energy consump-
tion has been investigated by non-OECD (Organisation for
Economic Co-operation and Development) countries (~473
quadrillions Btus) by 2040, compared with its counterpart of
Organisation of the Petroleum Exporting Countries (~266
quadrillions Btus) (Kumar et al. 2020).

The main route of biomass into liquid fuel ‘drop-in’ is
through the gasification process. On a small scale, woody
biomass gasification outperforms combustion and pyroly-
sis in terms of technological and economic impacts, while
pyrolysis has been identified as the best large-scale method
for upgrading woody biomass (Solarte-Toro et al. 2021).
The biomass into liquid fuel such as bio-methanol starts
with biomass gasification under low pressure using down-
draft gasifier owing to its low tar formation along with long

residence time (Li et al. 2021). Where steam and oxygen
(95% vol.) are commonly the gasification agents, the heat
required for the gasification is supplied by biochar com-
bustion. The gasification gas usually has a low content of
light hydrocarbon and high-water content; thus, an in situ
reformer with steam is used to convert them into carbon
monoxide and hydrogen, followed by cooling of the high-
temperature reformer effluent gas before subjecting it to gas
composition adjustment (compression and sulphur removal
steps). This is then followed by the water gas shift reaction
process, where steam is introduced into the unit to increase
the hydrogen to carbon monoxide ratio to 2, and then, car-
bon dioxide is removed before the methanol synthesis stage.
Finally, the compressed synthesis gas is pre-heated before
entering the methanol reactor, where carbon monoxide
hydrogenation produces bio-methanol.

Interestingly, bio-methanol derived from biomass feed-
stocks can be used to produce light olefins of 230 million
tonnes demand worldwide (Li et al. 2021). Ethylene, pro-
pylene and butylene as light olefins are commercially pro-
duced from petroleum-based hydrocarbon via steam crack-
ing, where currently, biomass into olefins route gains interest
through bio-methanol, dimethyl ether or Fischer—Tropsch
process.

Bio-methanol can produce biodiesel via the transesteri-
fication process, where triglycerides/ lipids are transformed
into fatty acid methyl ester using a catalyst and alcohol,
mainly methanol (Al-Mawali et al. 2021; Al-Muhtaseb
et al. 2021; Hazrat et al. 2021). There is also a non-catalytic
route for microalgal biodiesel production via subcritical and
supercritical methanol (Karpagam et al. 2021).

As a type of biomass, algae recently showed some merits
in producing biofuels, such as high lipid productivity, carbon
dioxide capture, high growth rate, limited land requirement
and high production yields (Sekar et al. 2021; Peter et al.
2021). Then again, there are still challenges, such as the
post-processing of algae and the cultivation process. Besides
the biofuels mentioned earlier, microalgae can produce bio-
oil via different processes, most commonly pyrolysis and
others such as gasification and liquefaction as thermochemi-
cal routes. Pyrolysis is preferred herein due to its simplicity,
speed, better yields, along with operating conditions.

Bio-oil is the main pyrolytic product in fast and flash
pyrolysis, along with biochar and gaseous products (Xiao
et al. 2021). However, when applying bio-oil directly in
petroleum (gasoline and diesel), engines will not produce
sufficient heat due to its low calorific value, a high number
of oxygenated compounds (>300) and high water content
(20-40 wt.%), which is negligible in hydrocarbon fuels
(gasoline and diesel) (Gupta et al. 2021). Furthermore, due
to its high viscosity and the presence of acidic compounds,
it will provide a flow barrier when it passes into injectors
and engines, resulting in engine corrosion. Besides, crude
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bio-oil will generate coking complications in the combus-
tion stage due to the presence of a high number of solid
particles. Therefore, upgrading the bio-oil via the integrated
refinery is crucial for its commercialisation and producing
value-added chemicals, char utilisation and gasoline grade
fuel. The bio-oil upgrading process starts with moisture
separation either by distillation (fractional or azeotropic),
using catalysts, additional pyrolysis or biomass pretreatment
techniques (demineralisation and torrefaction). This is fol-
lowed by value-added chemicals extraction from the aqueous
phase (acids, ketones, alcohols, ethers and esters) to improve
the overall economics of the process. Some chemicals could
also be extracted from the organic phase. The final organic
residue of the bio-oil is then upgraded into a transportation
fuel via various techniques such as deoxygenation, emulsifi-
cation, hydrocracking, esterification, catalytic cracking and
heavy fuel blending.

However, there are challenges associated with the upgrad-
ing routes for bio-oil, mentioned above, as they are still not
commercialised due to the high cost of the catalyst, short
catalyst life and complex operating conditions (high-pres-
sure, special reactor requirements). Furthermore, extracting
the chemicals in their low concentration is expensive and
will require more investigation on the low-cost solvent, cata-
lyst and process optimisation, primarily as the physicochem-
ical characteristics of the bio-oil rely on the catalyst used.
The catalyst minimises the heteroatom content of the bio-
oil and increases the hydrogen-to-carbon ratio (H/C). This
consequently lowers the harmful emissions of NOy, SOy
and increases the calorific value of the bio-oil (Nagappan
et al. 2021). Selling the biochar produced during pyrolysis
can also increase the overall economics, which can be used
in the carbon sequestration, adsorption of the contaminants,
soil amendments and catalytic supports in bio-oil upgrading
that enhances the circular bioeconomy of the process (Fawzy
et al. 2021).

Life cycle assessment of biomass to biofuel
conversion processes

Life cycle assessment is recognised as an effective frame-
work for assessing impacts on natural environment, humans
and natural resources for processes, products and systems.
It provides evidence-based data to policymakers to make
long-term strategic decisions and improve environmental
sustainability. The four main stages defined by ISO 14,040
and IS0 14,044 for conducting LCA are: (1) goal and scope
definition, (2) life cycle inventory analysis, (3) environ-
mental impacts assessment and (4) life cycle interpretation
(Lewandowski et al. 2000).

Herein, we analysed 40 LCA studies published from 2019
to 2021 on biofuels (Table 10). These studies covered a wide

@ Springer

range of biomass feedstocks, geographical span, biofuels
produced, life cycle tools and inventories used. Even if the
geographical span or biomass feedstock considered was sim-
ilar, no two studies were identified as identical to each other.
This demonstrates that LCA practitioners and decision-mak-
ers would need to identify the routes towards environmental
sustainability and energy efficiency while paying heed to the
specific processes modelled in the studies.

Goal and scope definition

Goal and scope definition includes defining specific pur-
pose, aim and objectives for conducting LCA. This stage is
imperative to understand overall results and LCA findings. It
incorporates defining functional unit and respective system
boundaries. Functional units are quantified description of
the performance requirements that the product system fulfils
and are linked with functions of the product rather than with
physical products. It was observed that about 32% of the
reviewed studies used ‘units of bioenergy in J or kWh’ as
the functional unit, while about 22% recorded LCA results
for ‘amount of biofuels produced’ such as in kg (Fig. 4).

The system boundaries included in the LCA studies
control what processes will be considered for computing
environmental impacts. Figure 5 shows the generalised three
crucial phases for biofuel production: (1) Phase 1 includes
biomass cultivation, fertiliser application, impacts of ferti-
liser on soil, carbon emissions from land use, use of mar-
ginal and/or forest land, transportation of produced biomass
to the production system, (2) Phase 2 incorporates chemical,
thermal, biochemical, thermochemical processes for con-
version of biomass to biofuels and related environmental
impacts due to chemicals, electricity and energy procure-
ment, upgradation of biofuels for final purpose, and (3)
Phase 3 involves environmental impacts due to co-products
management and emissions due to biofuel use.

The system boundaries included in the LCA studies var-
ied for processes and systems considered. It was observed
that about 90% of the reviewed studies considered Phase
1, Phase 2, while only 25% of the studies included Phase 3
(Fig. 6). This highlights a paucity of research in the biofuel
LCA field containing a holistic approach and includes all the
phases of the biofuel production chain. Even where the stud-
ies focused on Phase 3, they primarily dealt with anaerobic
digestion. Most of the studies focused on specific processes
of the biofuel production chain, focusing on critical areas
of concern rather than evaluating the overall impacts of the
entire production chain. Interestingly, use of biofuels has
increasingly been recognised as a measure to reduce green-
house gas emissions; however, very few studies addressed
the use phase of biofuels and compared them to conventional
sources.
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Life cycle inventory analysis

Inventory analysis involves quantifying all the inputs and
outputs for the processes considered in the system bound-
ary of the LCA. This includes raw material requirements,
energy input, emissions to air, wastewater production, solid
waste generation, emissions to land and others. It should be
noted that more the systems involved in the system bound-
ary, greater would be the need for data for inventory analy-
sis, which also is explained in Fig. 6 with only some studies
considering all the phases of biofuel production.

Table 10 shows databases for conducting inventory analy-
sis, used in the reviewed studies such as SimaPro LCA data-
bases, Ecoinvent, GREET (Greenhouse Gases, Regulated
Emissions, and Energy Use in Transportation). Some LCA
studies also used agricultural models for considering the
impacts of land use on overall environmental sustainability,
such as GLOBIOM, DNDC and STAMINA (Di Fulvio et al.
2019; Dupuis et al. 2019; Nilsson et al. 2020).

Environmental impacts assessment
Mid-point indicators

In this stage of LCA, key environmental impacts are quan-
tified and distributed in various environmental categories
depending upon the functional unit, system boundary, mod-
elled systems and need of the decision-makers. Some studies
computed net energy ratio to evaluate the usability of biofu-
els as energy sources (Al-Mawali et al. 2021; Al-Muhtaseb
et al. 2021; Dasan et al. 2019; Im-Orb and Arpornwichanop
2020; Reafo 2020; Saranya and Ramachandra 2020), which
is defined as the ratio of output energy to input energy for the
overall process (Pleanjai and Gheewala 2009).

Mid-point categories used for expressing life cycle
environmental impacts were: global warming potential
(100 years), which includes greenhouse emissions is gen-
erally expressed as kg CO, equivalent for a time horizon
of 100 years. Some studies also considered greenhouse gas
emissions for a temporal scale of 20 years, in accordance
with the life span of infrastructure (Aberilla et al. 2019;
Cusenza et al. 2021). Abiotic depletion reported as kg Sb
equivalent corresponds to the depletion of fossil fuels, min-
erals, clay and peat. Abiotic depletion (fossil fuels, recorded
as MJ) is linked to the depletion of fossil deposits. Ozone
layer depletion (kg trichlorofluoromethane equivalent) is
typically accounted for a time scale of 40 years.

Ecotoxicity potential evaluated in kg 1,4 dichlorobenzene
equivalent or cumulative toxic units is calculated in three
separate categories, which examine damage to terrestrial,
freshwater and marine sources for the entire production pro-
cess. Photochemical oxidation recorded in kg non-methane
volatile organic compounds equivalent refers to emissions

@ Springer

of reactive substances injurious to human health and ecosys-
tems. Acidification measured in kg SO, equivalent is caused
by the emission of acidifying substances. Land use calcu-
lated in m? is categorised as the transformation of urban
land, agricultural land and natural land such as forests. Water
depletion (m?) is the use of water for the entire production
chain of biofuels. Particulate matter formation expressed
as PM2.5 equivalent and/or PM10 equivalent relates to the
emission of PM 2.5 (particulate matter with <2.5 ym in
diameter) and/or PM10 (particulate matter with <10 pm in
diameter). Eutrophication consists of the effect of releas-
ing an excessive amount of nutrients reported as kg PO,
equivalent. Ionising radiation (kg U235 equivalent) transfers
energy into the body tissue and may thereby interfere with
the structure of molecules (Table 11).

Finally, human toxicity is recorded as kg 1,4 dichloroben-
zene equivalent or cumulative toxic units. Human toxicity
(carcinogens) is an index that corresponds to potential harm
of a unit of cancer-causing chemical released into the envi-
ronment and is based on both the inherent toxicity of a com-
pound and its potential dose. Human toxicity (non-carcino-
gens) index is associated with non-carcinogenic chemicals
release, doses and exposure.

Endpoint indicators

The mid-point categories are aggregated to present results
as endpoint categories. It is argued that the environmental
impacts should be presented as mid-point categories to pre-
vent oversimplification or misinterpretation of environmen-
tal impacts (Kalbar et al. 2017). Nevertheless, some studies
did not present detailed mid-point indicator impacts but only
endpoint indicators (Amezcua-Allieri et al. 2019; Martillo
Aseffe et al. 2021; Bora et al. 2020).

The endpoint categories used in reviewed studies were:
(1) human health (disability-adjusted life year) is related
to the impacts of environmental degradation that results in
an increase in and duration of loss of life years due to ill
health, disability or early death, and (2) ecosystem quality
(species X year) is linked to the impact of global warming
potential, ozone layer depletion, acidification, ecotoxicity,
eutrophication and indicates biodiversity loss. It is recorded
as local species loss integrated over time, and (3) resources
are related to the depletion of raw materials and energy
sources expressed generally in US dollars ($), representing
the extra costs involved for future mineral and fossil resource
extraction (Al-Muhtaseb et al. 2021).

Uncertainty, scenario and sensitivity analysis
Life cycle assessment (LCA) studies are models which

are simplified versions of the real-world system and thus
are inherently uncertain (Wang and Shen 2013). These
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Table 11 (continued)

The study conducted LCA to analyse the transformation of waste date seed

Findings

Environmental impacts considered

Net energy ratio and

Al-Muhtaseb et al. (2021)

Reference

@ Springer

oil to biodiesel via esterification. It concluded that it is environmentally

feasible to produce biodiesel from waste-derived feedstocks

223

Global warming (100 years), ozone layer depletion, abiotic depletion (fossil Net energy ratio

fuels), abiotic depletion, human toxicity, freshwater ecotoxicity, marine

ecotoxicity

Global warming potential =1.13 kg CO, eq/kg of biodiesel produced

terrestrial ecotoxicity, photochemical oxidant formation, acidification, and

eutrophication potentials

Abiotic depletion potential =3 x 107° kg Sb eq/kg of biodiesel produced

Abiotic depletion (fossil fuels) potential =26 MJ/kg of biodiesel produced

CFC-11: Trichlorofluoromethane; DB: dichlorobenzene; EU-27: The European Union; eq: Equivalent; FU: Functional unit; HFO: Heavy fuel oil; LCA: Life cycle assessment; NER: Net energy

ratio; PEI: Potential environmental impact; PM2.5: Particulate matter with <2.5 um in diameter; PM10: Particulate matter with < 10 pm in diameter

uncertainties arise due to statistical variation, subjective
judgement, linguistic imprecision, variability in space
and time, inherent randomness, expert disagreement and
model approximations. These uncertainties can be propa-
gated through the model using Monte Carlo simulations for
parameter uncertainties or by considering different scenarios
for biofuel production. Though it was noted that about 60%
of the reviewed studies considered scenario analysis, only
10% of the studies did uncertainty analysis by accounting
for parameter uncertainties (Fig. 7).

Sensitivity analysis identifies which process of the bio-
diesel production life cycle contributes directly to the bur-
densome environmental footprints. Relatedly, if impacts in
environmental categories are to be minimised, these will
be the processes where future research and development
should focus on (Al-Muhtaseb et al. 2021). 50% of the stud-
ies reviewed here conducted sensitivity analysis.

Therefore, for reliable and robust decision-making, it is
necessary to analyse sensitivity and uncertainty for various
scenarios. There were about ten studies identified with no
analysis on sensitivity or uncertainty (due to parameters and
scenarios). Moreover, the presence of only four studies with
scenario, sensitivity and uncertainty analyses poses ques-
tions on the applicability of findings presented in the LCA
studies. There was no study identified that included all three
phases of the life cycle of biofuel production system bound-
ary (described in Fig. 5) and uncertainty, scenario and sen-
sitivity analyses in the 40 reviewed studies. This presents
a considerable knowledge gap when it comes to the use of
LCA studies for strategic decision-making.

Interpretation of results

This stage of the assessment includes making interpreta-
tions, drawing conclusions, identifying the phases or pro-
cesses that can be improved in the life cycle of a biofuel
production chain to improve the environmental feasibility
of the environmental system. This stage could also involve
presenting and communicating results to stakeholders.

Key points observed in life cycle assessment studies

We conducted an intensive critical review of 40 LCA stud-
ies, including methods and findings. In this section, we pre-
sent key points observed in these studies.

There was no study identified that included all the three
phases of biofuel production along with uncertainty, sensi-
tivity and scenario analyses.

Moreover, most of the studies that computed net energy
ratio (Al-Mawali et al. 2021; Al-Muhtaseb et al. 2021; Dasan
et al. 2019; Im-Orb and Arpornwichanop 2020; Reafio 2020;
Saranya and Ramachandra 2020), which is defined as the
ratio of output energy/input energy for the overall process
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Fig.7 Details of the scenario,
sensitivity and uncertainty 70+
analyses conducted in the
reviewed studies (N =40)

60 +
50 +
404
30 ¢4

20 +

% of studies reviewed

10 4

Scenario, sensitivity and uncertainty analyses conducted in

the reviewed studies

lal.aanl

Scenario

(Pleanjai and Gheewala 2009), recorded net energy ratio> 1,
showing the importance of biofuels as energy sources.

Generally recognised contentious issue to produce bio-
fuels was land use which could occur due to natural land,
agricultural and urban land transformation. This was high-
lighted by the fact that 7% of the studies used land use as
a functional unit (Fig. 5); furthermore, about 15% of the
reviewed studies analysed impacts on land use (Aberilla
et al. 2019; Chung et al. 2019; Ubando et al. 2020; Aris-
tizabal-Marulanda et al. 2021; Brassard et al. 2021; Schon-
hoff et al. 2021). It was also noted that the use of perennial
energy crops is an interesting approach towards mitigation of
greenhouse gas emissions; however, it could result in loss of
biodiversity for the European Union and UK (EU-27 + UK)
(Di Fulvio et al. 2019) (Table 11).

Other studies focused on water depletion and concluded
that while producing biofuels can mitigate greenhouse gas
emissions, it is also necessary to compute water depletion
during crop production and biomass processing (Aberilla
et al. 2019; Quispe et al. 2019; Ubando et al. 2020; Aris-
tizdbal-Marulanda et al. 2021; Schonhoff et al. 2021). In
fact, Zhu et al. (2019) concluded that water depletion for
biofuel production from cotton straws was lower than bio-
oil power generation, however, much greater than observed
for other renewable sources of energy (such as geothermal,
solar photovoltaic and wind power). Most of the water use
occurred due to biomass agricultural production, accounting
for 84.6% of the total water use.

The impacts on land use and water depletion due to energy
crop production show that waste-derived feedstocks could
provide more sustainable energy sources. Waste-to-energy
applications for biomass could mitigate the use of land, fer-
tilisers and water for agriculture of energy crops. This is also
in accordance with zero-waste hierarchy for management of
waste biomass (Refuse/ redesign > Reduce > Reuse > Recy-
cle > Material and chemicals recovery > Residuals man-
agement> Unacceptable, e.g. landfilling of non-stabilised
waste/energy recovery) (Simon, 2019). In fact, there was

Sensitivity Uncertainty Scenario + Scenario + Sensitivity + All

None
Sensitivity Uncertainty Uncertainty

only one study identified that highlighted that for spent cof-
fee grounds, incineration is a better route compared to bio-
fuel production (Schmidt Rivera et al. 2020).

Finally, focusing on the comparison of biological and
thermochemical pathways, in general, it was observed in the
comparative studies that thermochemical processes showed
lesser environmental impacts compared to biological pro-
cesses for the same biomass and geographical and temporal
span (Ardolino and Arena 2019; Derose et al. 2019). Even in
Aberilla et al. (2019), which showed higher environmental
impacts in the thermochemical process, the greenhouse gas
emissions for gasification were lower than that of anaerobic
digestion for rice and coconut residues.

Bibliometric analysis

Figure 8a, b depicts the bibliometric analysis mapping origi-
nated from the Web of Science core collection for the net-
work visualisation and density visualisation, respectively.
Firstly, the data were exported 500 entries at a time of 9947
results and then were fed into the VOSviewer software that
plotted the data. The type of analysis used herein was co-
occurrence, and all keywords were included, as well as
the fractional counting method. We observed direct clus-
ters connecting identifiable keywords to broad topics such
as thermochemical, biochemical and processes associated
with those two routes (gasification, pyrolysis, hydrothermal
liquefaction, combustion, torrefaction, anaerobic digestion
and fermentation). This enabled the visualisation of most
of the significant keywords in publications in the period of
1970-2021 that were associated with the thermochemical
and biochemical conversion routes of biomass.

It is evident from Fig. 8a, b that keywords that have seen
a significant increase in popularity and, as a result, progress
in keyword research such as biomass gasification, pyrolysis
and combustion as they part of the thermochemical route in
biomass conversion. In addition, other correlated keywords

@ Springer
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«Fig. 8 Bibliometric mapping of biomass conversion processes into
biofuels a network visualisation and b density visualisation maps.
The bibliometric mapping was performed between 1970 and 2021

have shown in the bibliometric mapping, such as hydrogen
production, catalysts and fuel performance. This signifies
that the process of thermochemical conversion is at a very
mature stage in terms of research and development, as dem-
onstrated by the prominence of publication keywords over
the last 51 years. Because of its higher productivity, eco-
nomic viability and existing infrastructure compatibility
resources, it is ultimately readily available and easily scaled
up for the industrial sector.

Although gasification appears to be most researched in
the thermochemical route, this could be down to the fact
that gasification technology has existed longer than coun-
terpart technologies, apart from combustion. This also does
not indicate that it is the most efficient thermochemical
technology in process efficiency and product quality. For
example, when using gasification, there is a need to remove
the hydrogen sulphide and clean the synthesis gas produced
and other requirements.

On the other hand, the biochemical conversion route is
less favourable since it suffers from certain limitations, such
as its time-consuming process and low product yield and
product inhabitation. Biochemical conversion keywords are
shown in Fig. 8a, b, such as ethanol production, bio-hydro-
gen and others.

Conclusion

Biomass as an affordable, reliable and sustainable energy
source contributes 9% (~51 EJ) of the global overall primary
energy supply. Thermochemical and biochemical technolo-
gies are the two main routes employed to convert biomass
into biofuels. The former route includes hydrothermal lique-
faction, pyrolysis, torrefaction, gasification and combustion
processes, while the latter route consists of fermentation and
anaerobic digestion processes.

Herein, we critically reviewed each individual route along
with the integration between hydrothermal and biochemi-
cal routes of biomass utilisation from a bioeconomy per-
spective. Both routes have drawbacks: the former method
usually involves a high energy intake along with solvent or
catalyst addition. In contrast, the latter route has a lengthy
cycle period and is less efficient in breaking down recalci-
trant biomass materials. Thus, combining those two routes
can be promising by incorporating the benefits of both meth-
ods in biofuel processing. However, there are outstanding
challenges associated with integration between those two
routes. For instance, the catalysts or solvent utilisation of the
thermochemical route can result in poisoning or killing the

microorganism or generate various inhibitors that can affect
the biological progress routes. Furthermore, this integration
may lead to additional costs.

Moreover, to understand the recent advances in evaluat-
ing environmental impacts due to biofuel production, we
conducted an intensive critical review of 40 life cycle assess-
ment (LCA) studies published from the years 2019-2021,
including methods and findings. The important methods and
key findings observed were:

1. Only eight studies included all three phases of biofuel
production (which includes biomass cultivation, biofuel
production process and biofuel use and end-of-life man-
agement phase).

2. Waste-derived feedstocks could provide more sustain-
able energy sources by mitigating impacts on land use
and water depletion incurred during the production of
energy crops.

3. Focusing on thermochemical and biological processes
for the same biomass feedstock and geographical and
temporal span, thermochemical processes caused lesser
greenhouse gas emissions compared to biological path-
ways.

This review has suggested interesting new avenues for
evaluation of environmental impacts of the biofuel produc-
tion chain and key outcomes from a range of biofuel produc-
tion processes. Based on the bibliometric mapping (network
and density visualisation maps) from the Web of Science
core collection, we have identified that the thermochemical
conversion route of biomass is more researched and far out-
weighed and understood than the biochemical counterpart
route of research outputs. This indicates that the biochemical
route suffers from specific gaps in the research, as shown
from the lack of impact in the bibliometric mapping analy-
sis, thus opening doors for a scope for further research in
this area.
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