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The valley-Hall effect provides topological protection to a broad class of defects in valley-Hall photonic
topological metamaterials. Unveiling precisely how such protection is achieved and its implications in practical
implementations is paramount to move from fundamental science to applications. To this end, we investigate
a honeycomb valley-Hall topological metamaterial and monitor the evolution of the topological valley-Hall
edge states and higher-order corner states under different perturbation δR. The evolutions of the edge states
of the armchair and zigzag interfaces are demonstrated, respectively. By adjusting the geometric parameters
and introducing disturbances to break the inversion symmetry, we achieve the edge states with different modes
including the conventional crossed edge state and the specific gapped edge state. It is found that the edge states
of topological valley kinking will gradually separate with the increase of δR, and finally a complete gap between
the edge states appears. The gap has rarely been reported previously in topological materials fabricated by
printed circuit board technology. In addition, the higher-order topological corner states can also be observed
in the proposed topological metamaterial. The higher-order topological phase is theoretically characterized by
nontrivial bulk polarization and the Wannier centers. Our results show that the corner state localization becomes
stronger with the increase of δR. It is expected that our results will provide a platform for the realization of
optical topological insulators.

DOI: 10.1103/PhysRevB.107.035431

I. INTRODUCTION

Topological insulators (TIs) opened up an avenue for the
study of matter phases and have become an important branch
in condensed matter physics [1–4]. The boundary mode of
TIs can show the characteristics of lossless and robust trans-
mission, which has been experimentally verified in physical
systems such as photonics [5–8], microwaves [9–11], electric
circuits [12,13], mechanics [14], and acoustics [14–17]. With
the discovery of lower-dimensional topological corner states
and hinge states, higher-order TIs have been proposed, which
breaks the traditional bulk-boundary correspondence. Higher-
order TIs correlate with the overall properties of materials
and topological bulk polarization, bringing a new method to
realize topological phases in higher dimensions [10,18–25].

Valley-Hall TIs have been intensively explored as a
convenient research platform for implementing topological
materials in recent years [25–32]. “Valley” refers to the quan-
tum states with the energy extremum in the reciprocal space.
A pair of degenerate but not equivalent energy extremes in the
momentum space, called a valley, is one of the two high sym-
metry points (K and K ′) in the first Brillouin zone (FBZ). It is
demonstrated that topological valley kink edge states emerge
at the interface between opposite valley-Chern number (VCN)

*Corresponding author: yhliu@nwpu.edu.cn

regions. It is shown that the topological valley kinks exist at
the interfaces including zigzag, armchair, and any combina-
tions of the zigzag and armchair interfaces. The edge states
are characterized by the different VCN of the interfaces. In
two-dimensional systems, introducing geometric perturbation
to break inversion symmetry of the crystal structure can lead
to the appearance of opposite Berry curvature (BC) in the
K/K ′ valley of the band structure, where the two valleys are
called “pseudospin” degrees of freedom. Thus, the crystal
structure with opposite VCN is constructed, and edge states
can be observed [33,34].

Recently, topological edge states from honeycomb pho-
tonic crystals to triangular-lattice photonic crystals by chang-
ing the radius of the air hole have been explored. It is shown
that valley edge states can exist even if BC vanishes [35]. A
fully gapped regime has been reported in valley-Hall topolog-
ical edge states by varying the refractive index in evanescently
coupled waveguide arrays [36]. This specific gapped edge
state is interesting and different from the conventional crossed
edge state. However, the physical mechanism to achiev-
ing a gapped edge state needs to be demonstrated clearly.
Valley-selective topological corner states have also been ex-
perimentally realized in two-dimensional sonic crystals [37].
The topological corner states can be selectively switched,
which provides a fundamental understanding of the interac-
tion between higher-order topology and the valley degrees of
freedom. In our previous work, we have also achieved an edge
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state with a gapped region in mechanically reconfigurable
valley-Hall topological metamaterials [38]. Although great
achievements have been made in topological edge states and
corner states, it is still a challenge to achieve the evolvement
rule of the different edge states from the conventional crossed
edge state to the fully gapped edge state. It will provide a
new mechanism for the realization of time-reversal-invariant
photonic TIs. In addition, it is unclear whether the energy
local intensity of the higher-order corner states can be tuned
by geometric perturbations in honeycomb lattice photonic TIs.

In this paper, we propose a honeycomb valley-Hall topo-
logical metamaterial with multilayer structure fabricated by
printed circuit board technology, which is a perfect platform
for constructing valley-Hall TIs. By varying the geometric
structural parameters and introducing perturbation δR to break
the inversion symmetry and open the Dirac degeneracy point
at the K/K ′ valley, which induce the bulk gap, topological
valley-Hall edge states and higher-order corner states can be
realized. First, we demonstrate the evolution of the valley
edge states at the armchair and the zigzag domain walls with
different perturbation factors δR in honeycomb lattice topo-
logical metamaterial. The edge states with different modes
including the conventional crossed edge state and specific
gapped edge states can be obtained. We achieve the separated
valley edge states as δR increases, showing a fully gapped
regime in the edge states. This unique regime is rarely re-
ported in two-dimensional honeycomb TIs fabricated by using
printed circuit board technology. Second, we characterize the
nontrivial bulk polarization and the Wannier centers in the
proposed structure. The triangular supercells are surrounded
by the valley-Hall topological metamaterials with opposite
VCN implemented. Higher-order corner states with different
modes are obtained. It is shown that the higher-order corner
states without valley selectivity are obtained, and it is notable
that the energy local intensity of the higher-order corner states
can be tuned by the perturbation factors δR. The experimental
results are in good agreement with theoretical analysis. It is
expected that we will provide a mechanism for the realization
of valley-Hall topological TIs.

II. MODEL AND THEORETICAL ANALYSIS

The proposed structure consists of three stacked layers of
dielectric plates as illustrated in Fig. 1(a). The substrate is
a traditional t = 0.508 mm thick high-frequency dielectric
material F4B with a relative permittivity of 4.4 and loss tan-
gent of 0.025. Metallic copper patterns with a thickness of
0.035 mm are deposited on one side of the F4B. The copper
pattern of the bottom layer is honeycomb composed of two
kinds of circular patches with the radii of R1 and R2, respec-
tively. The middle layer is a snowflake shape, composed of six
regular hexagons with side length l connected by a rod with
the width l1 and length l2. The top layer structure is exactly
the same as the bottom layer. There is no air gap between
each layer. The diagram of the proposed unit cell is shown
in Fig. 1(b), where the upper right panel displays the FBZ of
the honeycomb lattice. As R1 = R2 = 1.75 mm, the unit cell
has mirror symmetry along the direction of the high symmetry
points �K , and the structure has C6 symmetry.

FIG. 1. (a) Schematic illustration of the valley lattice structure
consisting of three layers. Metallic patterns are shown (indicated by
yellow) on a dielectric F4B substrate (indicated by dark gray) with a
thickness of t = 0.508 mm. (b) Top view of the unit cell. Geometry
parameters are shown as a = 16 mm, l = 2 mm, l1 = 0.3 mm, and
l2 = 7 mm. The radii of the two kinds of metallic circular patch are
R1 and R2, respectively. The top right corner inset shows the Brillouin
zone. (c) Band diagram of the structure with R1 = R2 = 1.75 mm.
(d) Eigenfrequencies of the K/K ′ point and TE modes as a function
of δR (δR = R1 − R2, R1 + R2 = 3.5 mm). δR < 0 and δR > 0 cor-
respond to structure A and structure B, respectively. The inversion of
frequency indicates a topological phase transition as δR crosses zero.

FIG. 2. (a) Calculated Berry curvature of structure B along the
line kx = ky. (b) A rhombic Brillouin zone in the calculation of
the bulk polarization, which shares the same area with the original
hexagonal Brillouin zone. The green dotted line indicates kx = ky in
the reciprocal space. (c, d) Calculated Berry phase of (c) δR = 1.5
mm and (d) δR = –1.5 mm. Bulk polarization is obtained by the
integration of θα,kβ

over ky. Red dashed lines show the exact values
of 1/3 and −1/3. The corresponding Wannier centers are marked by
the blue dots and green dots, respectively.
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FIG. 3. Schematic diagram of inversion-symmetry-broken honeycomb lattices with (a) zigzag and (c) armchair domain walls. The black
solid line regions indicate the domain walls. Two valley topological structures are marked by A and B. (b, d) Corresponding band structures
of the (b) zigzag and (d) armchair edge domain walls with different δR (δR = 0.5, 1.5, 2.5, and 3.5 mm). Red and green solid lines show the
edge states of AB-type and BA-type domain walls, respectively. The shaded regions represent the projection of the bulk bands.

The dispersion diagram of the FBZ of the proposed crystal
structure is obtained by using the commercial software Ansys
HFSS as shown in Fig. 1(c). It can be observed that the first
band and second band linearly cross at the K/K ′ valley, form-
ing a Dirac degenerate point. By varying the radius of R1 and
R2, we introduce a perturbation factor δR = R1−R2, resulting
in changing the degeneracy at the K/K ′ valley point, and in
turn yielding a band gap. The reference radius R = R1+R2

2
(R = 1.75 mm) is a constant for comparison. Figure 1(d)
shows the eigenfrequencies dispersion of the K/K ′ valley in
the honeycomb lattice with various δR. δR < 0 and δR > 0
correspond to the crystal structure A and B, respectively.
When δR is nonzero, the K/K ′ valley will become nonde-
generate. The nondegenerate circularly polarized states of the
K/K ′ valley will not mix, because the C3 symmetry of the
crystal structure is unchanged under perturbation. The fre-
quency sequence of the polarization states at the K/K ′ valley
is reversed as δR shifts from a negative value to a positive
value through the zero point, indicating the topological phase
transition. The band gap widens with the increase of δR. A
slight variation of R1 and R2 can cause the honeycomb lattice’s
inversion symmetry to be broken and the band gap to be
opened.

In order to analyze and demonstrate the difference of
the valley-Hall topological phase, we numerically calculate
the BC of the first band with different δR. It is known that the
VCN of band n is defined by [39]

cn = 1

2π i

∫
T 2

d2 k Fμ(k) (1)

where the BC is defined by

Fμ(k) = ∂k × i 〈Ek|∂k Ek〉. (2)

The BC can be calculated directly based on the finite el-
ement method, whereby we choose the rhomboid Brillouin
zone containing the K/K ′ valley. The BC is obtained by
discretizing the integral of the rhomboid Brillouin zone. The
calculated BC curves along the kx = ky line in the recipro-
cal space are shown in Fig. 2(a), where the BC curves with
different disturbance factors δR (δR = 0.5, 1.5, and 3.5 mm)
are represented by the different colors. It can be seen that
the BC value is mainly focused at the K/K ′ valley, and the
absolute values of BC around the K/K ′ decrease with the
increasing of δR. As long as the quantum states are valley

035431-3



LIYUN TAO et al. PHYSICAL REVIEW B 107, 035431 (2023)

FIG. 4. (a) Simulated transmission of the zigzag domain walls with different δR. (b) Top view of the fabricated samples of the AB-type and
BA-type domain wall with δR = 3.5 mm. In order to clearly show the proposed sample, the right panel shows three layers of lattice structure
(top layer, middle layer, and bottom layer). (c) Measured and simulated transmission for the AB-type and BA-type zigzag domain walls.

shaped and BCs are opposite at the K and K ′, the topological
phase will be protected by valley topology invariants. These
results indicate that the proposed structure is a valley-Hall
topological metamaterial as δR is nonzero.

The higher-order topological phase is theoretically char-
acterized by nontrivial bulk polarization and the Wannier
centers. In order to better explore the properties of the
higher-order corner states, the topological invariants of bulk
polarization are calculated. In the two-dimensional system,
the expression of the topological phase of the bulk polariza-
tion is presented as follows [10]:

Pα = − 1

(2π )2

∫
BZ

d2kTr[∧̂α], · · · α = x, y (3)

where [∧̂α] is the Berry connection matrix, which charac-
terizes the relationships between various bands. The matrix
elements are expressed as follows:

(∧̂α )m,n(k) = i 〈um(k)| ∂kα
|un(k)〉, |um (k)〉 (4)

where |um(k)〉 is the periodic part of the Bloch function of the
m band, and m and n run over the bands below the considered
band gap. The bulk polarization is associated with the Wannier
centers, and the bulk polarization can be obtained by solving
the Wilson loop numerically as follows [37,40]:

Pα = − 1

2π

∫
L

d θα,kβ , · · · α = x, y, β = x, y (5)
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where L denotes the projection length of the Brillouin zone
along the kβ direction. θα,kβ

is the Berry phase along the
loop kα for a fixed kβ . By transforming a hexagon Brillouin
zone into a rhombus as shown in Fig. 2(b), when δR < 0, the
bulk polarization can be obtained as (Px, Py) = (1/3, 1/3)
for structure A as shown in Fig. 2(c). As δR > 0, the
bulk polarization can be accordingly obtained as (Px, Py) =
(–1/3, –1/3) for structure B as presented in Fig. 2(d). Bulk
polarization (Px, Py) represents the Wannier center. Since
structure A has the opposite Berry curvature to structure B,
which leads to the topological phase transition and inversion
of the energy band between the two structures of A and B, the
Wyckoff positions of structure A and structure B are opposite.
(Px, Py) reveals that the Wannier centers are located at the
Wyckoff position, as presented by the blue and green dots in
the insets of Figs. 2(c) and 2(d), respectively. This demon-
strates a typical valley-locking property.

III. EVOLUTION OF THE TOPOLOGICAL EDGE STATES

As the inversion symmetry of the lattice is broken, the
degeneracy at the Dirac cone is lifted, and propagation modes
appear at the interface of two crystal structures with different
perturbations, which ensures the existence of topological edge
states. We construct AB-type or BA-type domain walls by
using structure A and structure B, and the two domain walls
will lead to a pair of topological kink edge states around the
K/K ′ valley. Since the variation of VCN on the domain wall
is related to the existence of backpropagation edge states, the
pair of kinking edge states is restricted to different valleys, and
their propagation directions along the interface are completely
opposite, showing “valley-lock” chirality [34–40]. As shown
in Figs. 3(a) and 3(c), the AB-type and BA-type domain walls
of the armchair and zigzag are constructed, respectively. The
topological kink edge states intersect at the middle frequency
of the first gap. Figure 3(b) displays the calculated dispersion
of the two types of domain walls of the zigzag interface with
different δR (δR = 0.5, 1.5, 2.5, and 3.5 mm). The edge states
of the AB-type and BA-type domain walls are marked by red
and green lines, respectively, and the shaded areas represent
the projection of bulk bands. Although the edge states of the
AB-type and BA-type domain walls are both in the first band
gap, they gradually separate with the increase of δR until a
completely edge state gap region appears. As shown in the
bottom right panel of Fig. 3(b), there is no intersection be-
tween the two edge states’ lines as δR = 3.5 mm. The results
show that the inversion symmetry is broken more prominently
with the increase of δR. Figure 3(d) displays the calculated
dispersion of the armchair interface, which shows the edge
states of the armchair AB-type and BA-type domain walls
always have a gap region (without mixing), and the gap region
can gradually widen with the increase of δR. The results
demonstrate that the valley topology kink edge states of the
two different interfaces gradually separate from each other
with the increase of δR.

According to the protection of the topological invariants,
protected topological edge states will be realized as long as
the K/K ′ valley satisfies the opposite BC. The difference
between the armchair and zigzag edge states may be due to
the fact that the AB-type and BA-type domain walls of the

FIG. 5. Simulated electric field distributions of the edge states
for the interfaces of (a) AB-type zigzag domain wall and (b) BA-
type zigzag domain wall for δR = 3.5 mm. The excitation source is
depicted by the white dots. Simulated electric field distributions of
(c) cavity defects and (d) disorder defects.

armchair interface mix the K and K ′ valleys. As a result, a
small perturbation factor δR can cause the valley kinked edge
states to be broken and separated into a band gap. However,
the domain walls of the zigzag interface make the K and K ′
valleys separate from each other in space. Therefore, there
must be a large perturbation for a gap region to appear in the
edge states.

In general, the valley-Hall topology edge state is a pair of
crossed valley edge states, which has the property of selec-
tive transmission [30–35]. However, our proposed multilayer
structure can realize the two types of edge states including the
crossed valley edge state and the gapped edge state, which is
difficult to achieve in the previous optical valley-Hall topo-
logical insulators. As compared with the crossed edge state,
the gapped edge state provides a greater possibility for the
appearance of corner states. The diversity of the edge states’
evolution process can provide more degrees of freedom for the
manipulation of electromagnetic waves.

As shown in Fig. 4(a), we investigate the transmission of
zigzag domain walls with different δR, which can well reveal
the evolution process of edge states. The simulated trans-
mission agrees well with the dispersion shown in Fig. 3. In
order to experimentally verify the existence of the topological
edge states gap, we fabricated the samples of AB-type and
BA-type zigzag interface domain walls with δR = 3.5 mm,
as shown in Fig. 4(b). The measured and simulated nor-
malized transmissions are displayed in Fig. 4(c). It is found
that the high transmission is observed at the frequencies of
1.63–1.74 GHz for the AB-type domain wall and 1.84–2.05
GHz for the BA-type domain wall, respectively. There is an
edge gap of 1.74–1.84 GHz between the two high transmis-
sion domain walls, indicating a gapped edge state. The slight
deviation between the simulations and experiments is due to
the tolerance of sample fabrication and the inhomogeneous
dielectric constant. In addition, it is unavoidable to have non-
perfect contact between layers in the fabricated samples. So,
the spacings between multilayer dielectric plates may also
cause the slight deviation.
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FIG. 6. Schematic views of the zigzag edge triangular corner structures with (a) structure A surrounded by structure B and (b) structure B
surrounded by structure A. Wannier centers are illustrated by the green and blue dots. (c) and (d) Eigenfrequencies as functions of the parameter
δR of the structure shown in Figs. 6(a) and 6(b). The light pink shaded regions, the light blue shaded regions, and the red solid lines represent
the bulk states, the edge states, and the corner states, respectively. (e) and (f) Corner state electric field distributions corresponding to the black
dots of Figs. 6(c) and 6(d), respectively. The upper left inset illustration is a schematic of the whole structure.

Figures 5(a) and 5(b) present the simulated electric field
diagrams of the edge states of AB type and BA type with
δR = 3.5 mm, respectively. The results show that the elec-
tromagnetic wave can carry out perfect transmission at the
valley interface domain walls. To characterize the robustness
of edge states, as shown in Figs. 5(c) and 5(d), we introduce
cavity and disorder defects in the AB and BA domain walls and
investigate the transmission. The electric field distributions
show that electromagnetic wave can still transmit along the
interfaces, indicating the robust transmission.

IV. EVOLUTION OF THE TOPOLOGICAL
CORNER STATES

Higher-order corner states break through the unconven-
tional bulk-edge correspondence, and bring a new method to

realize topological states in higher dimensions. It can make
the bulk states and edge states separate from each other and
appear in the gap region between the bulk states and edge
states. To investigate the higher-order corner states in our
proposed valley topological metamaterial, we construct two
types of corner structures with triangular zigzag edge. Struc-
ture A(δR > 0) arranged in a triangular shape is surrounded
by structure B(δR < 0) as shown in Fig. 6(a). Structure A
surrounds structure B as presented in Fig. 6(b). The config-
urations of the Wannier centers are represented by the green
and blue dots, where the Wannier centers in the bulk cells are
hidden for clarification. Setting the perfect electromagnetic
boundary conditions in the vertical direction and the periodic
boundary conditions in the horizontal direction, the calculated
eigenmodes of the two combined structures with different δR
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FIG. 7. Eigenmodes of the structure with (a) δR = 1.5 mm and (b) δR = 3.5 mm of the triangular corner structures in Fig. 6(d). Corner,
edge, and bulk states are represented by red, green, and blue dots, respectively. (c) Electric field distributions of the three degenerate corner
states corresponding to L, M, N , and O points. (d) Top view of the fabricated triangular corner structures with δR = 1.5 mm (left panel) and
δR = 3.5 mm (right panel). White dots indicate the location of the excitation source placed near the corner, edge, and bulk. (e, f) Measured
normalized transmissions of (e) δR = 1.5 mm and (f) δR = 3.5 mm. (g) Comparative normalized transmission spectra of the corner states with
δR = 1.5 and 3.5 mm.

are shown in Figs. 6(c) and 6(d), respectively. Bulk states,
edge states, and corner states are marked as light pink shaded
regions, light blue shaded regions, and red solid lines, re-
spectively. As δR is small, the opened band gap is narrow
and corner states cannot be separated from bulk states and

edge states. However, the topological phase transition occurs
between the two structures of A and B as δR is changed from
a positive value to a negative value or from a negative value to
a positive value. As long as the sign of δR does not change,
the Wannier center position remains unchanged. Therefore,

035431-7
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as δR is a small value, the edge states are gapless and the
higher-order corner states cannot appear in the bulk band gap.
There only exist edge states in the structure with small δR.
As the value of δR increases, there exist higher-order corner
states in the edge band gap, and the dispersions present the
bulk-corner-edge-corner-bulk states. The higher-order corner
states appear in the band gap between the edge states and the
upper and lower bulk states, including three degenerate corner
states at the approximate frequency.

In order to clearly show the corner state characteristics of
the two structures, we simulated the electric field distributions
of the different triangular structures as shown in Figs. 6(e)
and 6(f), respectively. Figure 6(e) is the electric field pattern
of δR = 2.5 mm at 1.81 GHz corresponding to the black dot
in Fig. 6(c). Figure 6(f) presents the electric field pattern of
δR = 2.5 mm at 2.11 GHz corresponding to the black dot in
Fig. 6(d). It is shown that the electric field distributions of the
corner states are well localized at the Wannier centers of the
corner of the domain walls. However, the corner states of two
types of corner structures can be clearly distinguished, and
they are consistent with the theoretical calculation.

Figures 7(a) and 7(b) present the eigenmodes of the
structures (A surrounding B) with δR = 1.5 and 3.5 mm, re-
spectively. Figure 7(c) displays the simulated electric field
distributions of the degenerate corner states, clearly showing
that the electric field distributions are perfectly confined to the
corners of the topological interface. It is shown that the elec-
tric field pattern of the corner states becomes more localized
with the increase of δR. To analyze the corner states experi-
mentally, we fabricated the samples with δR = 1.5 mm (left
panel) and δR = 3.5 mm (right panel) as shown in Fig. 7(d).
The measured transmission spectra of the two structures are
presented in Figs. 7(e) and 7(f), respectively. The measured
results are in full agreement with the simulations. By verify-
ing the energy value of the corner states with different δR,
Fig. 7(g) displays the comparative transmission spectra of

the corner states with δR = 1.5 and 3.5 mm. It shows that
there are two corner states corresponding to the normalized
transmissions of 0.48 and 0.42 at the frequencies of 1.69 and
2.09 GHz for the triangular structure of δR = 1.5 mm. For
the triangular structure of δR = 3.5 mm, two corner states
are observed at the frequencies of 1.58 and 2.14 GHz corre-
sponding to the normalized transmissions of 0. 82 and 0.98.
The transmission amplitude of δR = 3.5 mm is twice that
of δR = 1.5 mm. The result indicates that the larger δR the
larger the transmission. This measured result agrees with the
simulated electric field patterns shown in Fig. 7(c).

V. CONCLUSIONS

We have theoretically and experimentally implemented
a two-dimensional valley-Hall topological metamaterial. It
is demonstrated that rich one-dimensional edge states and
higher-order corner states are obtained by varying δR. We
separate the valley kink edge states to realize a complete gap
between the edge states. In addition, the higher-order corner
states can be achieved, and the energy localization of the
corner states becomes more concentrated by adjusting geo-
metrical parameters. The evolution of the topological states
enriches the research mechanism of valley-Hall TIs. The pro-
posed mechanism can also be extended to optical frequency
bands by micromachining. It is expected that our results will
provide a platform for the study of low-dimensional topolog-
ical phases, lossless photonic integrated circuits, and energy
concentrators.
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