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Abstract: Glaucoma disease is the second leading cause of blindness in the world. This progressive
ocular neuropathy is mainly caused by uncontrolled high intraocular pressure. Although there is still
no cure, early detection and appropriate treatment can stop the disease progression to low vision and
blindness. In the clinical practice, the gold standard used by ophthalmologists for glaucoma diagnosis
is fundus retinal imaging, in particular optic nerve head (ONH) subjective/manual examination. In
this work, we propose an unsupervised superpixel-based method for the optic nerve head (ONH)
segmentation. An automatic algorithm based on linear iterative clustering is used to compute an
ellipse fitting for the automatic detection of the ONH contour. The tool has been tested using a
public retinal fundus images dataset with medical expert ground truths of the ONH contour and
validated with a classified (control vs. glaucoma eyes) database. Results showed that the automatic
segmentation method provides similar results in ellipse fitting of the ONH that those obtained from
the ground truth experts within the statistical range of inter-observation variability. Our method is
a user-friendly available program that provides fast and reliable results for clinicians working on
glaucoma screening using retinal fundus images.
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1. Introduction

Glaucoma is a chronic neurodegenerative disease characterized by the loss of retinal
ganglion cells, resulting in distinctive changes in the optic nerve head (ONH) and the
retinal nerve fiber layer (RNFL). After cataracts, glaucoma is the second leading cause of
blindness in the world. For this reason, early diagnosis is the first step to prevent permanent
structural damage and irreversible vision loss [1]. Intraocular pressure (IOP) and standard
visual fields are the only end-points accepted by the Food and Drug Administration (FDA)
to diagnose glaucoma.

Over the past two decades, objective and quantitative methods such as optical coher-
ence tomography (OCT) [2], scanning laser polarimetry (SLP) [3], and confocal scanning
laser confocal scanning laser ophthalmoscopy (CSLO) [4] have been developed to assess
both nerve fiber loss and ONH changes produced by glaucoma progression. However,
these retinal imaging instruments are often costly and present some drawbacks: CSLO
is operator-dependent and therefore prone to inter-observer variabilities, and SLP only
provides RNFL data. In addition, visual inspection allows a comprehensive evaluation of
the ONH such as optic disc pallor, hemorrhages and vessel tortuosity.

Fundus imaging/photography is the gold standard method used by ophthalmologists
to qualitatively assess and evaluate ONH structural changes and to assist in diagnosis of
glaucoma [5]. The main advantage of this procedure is its simplicity and cost-effectiveness.
However, clinical examination of ONH and RNFL structural changes is subjective and
requires qualified experts to classify subjects as normal or glaucomatous.
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In addition, there is a considerable intra- and inter-observer variability among quali-
fied specialists when assessing the ONH size. To minimize this effect, different advanced
automatic image segmentation techniques have been reported. Glaucoma diagnosis has
been aided by automatic detection and segmentation of the ONH, optic disc and vascular
tree using morphological techniques [6], adaptive deformable models [7], Hough trans-
form [8], edge and active contour detection [9,10], local fitting and probability active shape
models [11,12], deformable model approach [13], K-means clustering [14] and intensity
inhomogeneity analysis [15].

Retinal segmentation results have been noticeably improved with the irruption of
artificial intelligence algorithms providing deep learning analysis through convolutional
neural networks (CNNs) [16]. Those recent computer-vision algorithms provide not only
objects’ detection within fundus images, but accurate segmentation of the optic disc and
glaucoma classification [17–19]. Simple Linear Iterative Clustering (SLIC) has also previ-
ously reported for automated glaucoma screening [20].

The present study presents an automatic method based on superpixel (SP) classification
by extracting structural information from high-quality RGB fundus images, using statistical
pixel level and then classifying the features into a Support Vector Machine supervised
learning model. In comparison to the previous published method, here we develop a
user-friendly unsupervised version of an automatic SP-based tool for fast segmentation of
the optic disc from fundus images.

2. Materials and Methods
2.1. Retinal Fundus Dataset

The DRIONS-DB retinal image public database [21] was employed for the performance
evaluation of the proposed algorithm. The database consists of 110 color digital fundus
retinal images from Caucasian patients presenting chronic glaucoma (23.1%) and eye
hypertension (79.6%). The mean age of the patients was 53 years old (±13 standard
deviation). The DRIONS-DB dataset also includes the ground truth of two experienced
medical experts. The ONH contours were stored as X-Y spatial coordinates corresponding
to 36 sequenced points. In our work, we used the averaged contour of those two experts.

Moreover, 605 retinal fundus images from non-glaucomatous (168 images) and glauco-
matous eyes (482 images) from the ORIGA (-light) retinal fundus image database [22] were
employed to test and validate the capabilities of the proposed algorithm to discriminate
both types of retinas. ORIGA (-light) images were marked by experts from the Singa-
pore Malay Eye Study [22]. No sex differences were found in both databases. Figure 1
shows examples of fundus images from ORIGA database corresponding to a control and a
glaucomatous eye.
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2.2. Algorithm Description and Image Processing

Given an image, the SP segmentation technique [23] groups the pixels with similar
color or grayscale levels and structural (texture) properties. In other words, the algorithm
sorts structurally similar pixels of an image to create meaningful segments or clusters that
are sensitive to low-level properties.

In this work, a custom script has been written in MatlabTM using the main Matlab
function “superpixels” based on a linear iterative clustering algorithm with three input
arguments: number of SP to be detected, number of iterations within the process and
irregularity rate of SPs. The program is based on an automatic 5-step procedure as shown
in Figure 2. Once the set of RGB images are automatically loaded (step #1), the operator
sets the initial parameterization by selecting the maximum number of SPs to be detected,
the regularity shape rate and the iteration number of the process (step #2). Each image
is clustered and the detected SPs numbered (step #3). The program calculates the mean
intensity of each SP and scans the clustered image searching for those SPs showing signifi-
cantly higher pixel intensity than the global average (step #4). From those detected SPs, the
program binarizes the image and calls the “bwboundaries” Matlab function for tracing the
contour boundaries, which returns a coordinates matrix that is employed for ellipse fitting
using the least squares criterion (Step #5).
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If an ellipse cannot be found (but a parabola or hyperbola), then, an empty structure is
returned. If the ellipse can be fitted, then the axes of the ellipse (a), area (A) and eccentricity
(e) are computed as schematized in Figure 3.
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On the other hand, the same procedure used to fit the ONH contour to an ellipse
was also applied to average the X-Y coordinates annotated by the two experts in order to
compare our automatic detection with the ground truth.

2.3. Data Analysis

Statistical analysis and graphic representation were performed in Sigmaplot 14. 0
scietific software (Systat Software Inc., Chicago, IL, USA).

Data shown in Figures 4–6 correspond to the computed output values from the expert
boundaries, the coordinates obtained by the experts compared to the algorithm and the
expert boundaries outputs compared to the algorithm detection, respectively. The analysis
of the data consisted of Spearman’s correlation and linear regression statistical analysis.
The significance of the regressions was indicated by the p-value (significance level, p < 0.05).

Data shown in Figure 7 corresponds to the mean (±standard deviation) values of
the eccentricity computed values for each group (i.e., healthy and glaucomatous groups).
Statistical t-test analysis was employed to compare both groups.

3. Results

Figure 4 compares the inter-observer variability between the two glaucoma experts
for the total area and the major axis of each ellipse contouring the ONH for all retinal
fundus images involved. Although there exist discrepancies, the boundaries traced by
these clinicians are statistically correlated (R2 = 0.77, p = 0.048 and R2 = 0.72, p = 0.040 for
major axis and area, respectively).
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Figure 4. Comparisons of major axis (a) and area (b) values of the ONH ellipse fitting drawn by the
two experts. Significance level: p = 0.05.

As an example, for a randomly chosen fundus image of the dataset, Figure 5 presents
the X-Y coordinates marked by the two ophthalmologists (blue and green symbols) and
the coordinates of the ONH contour detected using the unsupervised algorithm here
developed (red symbols). As expected, the plot shows some inter-observer variability,
as well as differences between the results from the two experts and those obtained using
our automatic detection method. However, a statistical analysis (t-test) revealed neither
significant differences between the two experts, nor between the experts and the automatic
detection.
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Figure 5. X-Y coordinates of the ONH contour detected by our algorithm (red dots) and those traced
by the experts (blue and green dots).

Figure 6 depicts the comparison of the two parameters of the ellipse used here (area
and major axis length) between the automatic detection and the averaged values from the
two experts. Spearman’s correlation revealed similar discrepancies between automatic
detection and the average of the two experts. Correlation values for major axis and area
of the ellipse were 0.70 (p = 0.033) and 0.62 (p = 0.026), respectively. According to the
correlation values presented in Figure 4, our finding proves that the values obtained with
our algorithm are consistent with the inter-observer variability observed between the two
experienced clinicians.
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Finally, since the ONH segmentation procedure is an algorithm working under an
unsupervised modality (i.e., no training process needed), it requires validation in terms
of glaucoma screening. For this aim, the ORIGA [22] database above mentioned was
employed to compute the eccentricity of ellipse fitted from the superpixel segmentation
of the ONH in both healthy (N = 168 patients) and glaucomatous eyes (N = 482 patients).
Figure 7 compares the results obtained. The statistical analysis (t-test analysis) revealed
significant differences between the two groups (p = 0.014).
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4. Discussion and Conclusions

Machine Learning algorithms have provided valuable support in Ophthalmology. Ad-
vanced retinal segmentation tools have been used in retinal fundus photography, scanning
confocal microscopy imaging and OCT [24,25]. However, obtaining the required data vol-
ume, preprocessing for feature extraction and computational costs for the training step may
become critical in those cases when the timeline plays against the need of a fast diagnosis.
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In this work, we present an automatic method based on superpixel (SP) classification
by extracting structural information from high-quality RGB fundus images. To evaluate the
proposed method, we use two public databases: DRIONS-DB [21] and ORIGA(-light) [22].
DRIONS-DB retinal image public data were employed for the performance evaluation of
the proposed algorithm, the quantitative evaluation was carried out by measurement of
the total area and the major axis of each ellipse contouring the ONH for all retinal fundus
images. ORIGA(-light) [22] retinal image public data were employed to test and validate
the capabilities of the proposed algorithm to discriminate between non-glaucomatous
and glaucomatous eyes. For that, we compute the eccentricity of ellipse fitted from the
superpixel segmentation of the ONH in both groups.

Previously to our work, some automatic retinal fundus image segmentation methods
have been published, including active shape models [26] or region of interest classification
methods [27,28].

In particular, SP segmentation methodology has aroused great interest in the devel-
opment of deep learning algorithms for its application in large image databases [29]. SP
segmentation methodology has been previously reported for optic cup segmentation for
glaucoma screening. Xu et al. [30] developed a classification learning framework for au-
tomatic localization of the optic cup based on the SP segmentation concept. This method
was later improved by an unsupervised SP segmentation approach based on an adaptive
low-rank representation [31].

The study by Cheng et al. [32] employed the ORIGA [22] dataset to extract features
from optic disc and cup to classify between healthy and glaucomatous eyes using the
support vector machines library. This database has also been employed to validate the
methods proposed herein.

In this sense, this work goes a step further and deals with an automatic unsupervised
machine learning method that uses a fast digital SP ONH segmentation for glaucoma
screening. This is an easy-to-use tool, where the operator does not require any program-
ming skills (only to set the segmentation sensitivity once the image is loaded). From the
segmentation process, different parameters of the best ONH fitting ellipse were used, such
as the major axis, the area and the eccentricity. The DRIONS-DB retinal fundus images
database was used to test the method and measurements obtained through this segmenta-
tion and were compared to those provided by two different ophthalmologists. Currently,
there is clinical evidence suggesting that structural changes (e.g., optic nerve measured
using imaging technologies) were detected earlier than functional changes (e.g., visual
field abnormalities) in glaucoma assessment [33]. Our work focused on structural analysis
of retinal fundus images and the results showed that the proposed algorithm provided
similar ONH objective parameters (major axis and area) to those obtained from experienced
medical experts (see Figures 4–6). The experimental error of the proposed method also
correlates with that obtained from the inter-observer variability.

In the early 1970s, Weisman et al. [33] reported vertical elongation of the ONH as a
consequence of glaucoma progression; since then some studies on morphometric analysis
of ONH imaging have revealed vertical elongation of the optic cup [34] and Bruch´s mem-
brane deformation [35] as a consequence of glaucoma damage. In that sense, our findings
on computed eccentricity were in agreement with those previous findings, corroborating
that ONH elongation is associated with glaucoma damage, that is, glaucoma eyes showed
a significantly higher eccentricity value than healthy eyes (Figure 7).

In conclusion, our proposed method proves that unsupervised segmentation may
constitute a complementary clinical powerful tool for an objective glaucoma screening
and to classify between healthy and glaucomatous eyes. The procedure will be of great
interest when high computational costs, large datasets and training processing are not
available. Future work will include the incorporation of new capabilities of the algorithm
for sub-classification of glaucomatous eyes.
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