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Abstract. We introduce some families of generalizedBlack–Scholes equationswhich involve theRiemann–
Liouville and Weyl space-fractional derivatives. We prove that these generalized Black–Scholes equations
are well-posed in (L1 − L∞)-interpolation spaces. More precisely, we show that the elliptic-type operators
involved in these equations generate holomorphic semigroups. Then, we give explicit integral expressions
for the associated solutions. In the way to obtain well-posedness, we prove a new connection between
bisectorial-like operators and sectorial operators in an abstract setting. Such a connection extends the
scaling property of sectorial operators to a wider family of both operators and the functions involved.

1. Introduction

Bisectorial operators play a central role in the theory of abstract inhomogeneous
first-order differential equations on the whole real line, like

u′(t) = Au(t) + f (t), t ∈ R, (1.1)

where A is a bisectorial operator on a Banach space X . The theory has been an active
topic of research during the past years. We refer to [4,24] and their references for a
complete overview, the importance, and applications of such operators.
It is well-known that sectorial operators are related to the theory of abstract first-

order homogeneous differential equations on the positive real axis with initial condi-
tions. Namely, equations of the form

v′(t) = Av(t), t > 0, v(0) = g. (1.2)
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We refer to the monographs [1,12] and their references for a precise description of
this fact.
Both families of operators are closely related. Indeed, an operator A is bisectorial

if and only if both A and −A are sectorial operator. As one may expect, both families
share multiple properties and, in particular, one can define similar functional calculus
for the two families of operators. Indeed, in thiswork,wemake use of themeromorphic
functional calculus from sectorial operators completely developed in the excellent
monograph [18], and we adapt it carefully to the theory of bisectorial operators, which
extends the functional calculi considered in [22] and references therein.
Another connection between these two families lies in the fact that A2 is sectorial

whenever A is a bisectorial operator, see e.g., [4, Proposition 5.1]. In the particular
case that A generates a bounded group, then A2 generates a bounded holomorphic
semigroup (see for instance [3, Theorem 1.15] or [12, Corollary 4.9]). An application
of this result is to study differential equations on the positive real line like Equation
(1.2) in terms of a possibly simpler equation on the real line Equation (1.1). One may
find a concrete example of this fact in [2], where the authors obtained properties of
the classical Black–Scholes equation

ut = x2uxx + xux , t, x > 0, (BS)

through the simpler and elegant partial differential equation

ut = −xux , t, x > 0.

It seems natural to think that an extension of the generation result mentioned above
for A2 would be of interest, since it would be a suitable tool to study a broader family
of differential equations. For instance, it resembles the scaling property of sectorial
operators, i.e., Aα is a sectorial operator if A is sectorial and α > 0 is small enough,
see [19, Theorem 2]. As a particular case, such an extension result could lead to the
study of a generalized version of the Black–Scholes equation (BS). This equation is
of particular importance since the seminal work [9] and has been an active topic of
research in mathematical finance due to its importance in the modeling of pricing
options contracts, see for instance [14] and references therein.
Here, we define bisectorial-like operators, a family that generalizes the one of bisec-

torial operators, see Definition 2.2. This generalization is of importance, since every
generator of an exponentially bounded group is a bisectorial-like operator. The main
contribution of this paper is to give a result for such bisectorial-like operators, namely
Theorem 3.10, which extends the scaling property and which will be key to study
fractional differential equations which extend the classical equation (BS). Specifi-
cally, four new families of generalized Black–Scholes equations arise in a natural way
as an application of Theorem 3.10. At this point, we wish to observe that part of our
contribution is to show how the relations between bisectorial-like operators and sec-
torial operators that we develop here can be used successfully to solve several of those
equations extending (BS). We are not dealing with mathematical finance in this paper,
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but on the other hand, we are confident that our new generalized Black–Scholes par-
tial differential equations could be used to understand the disturbing and anomalous
behavior of the financial market.
Let us explain the method we follow to extend (BS) to a fractional differential

equation, and we will explain later on this Introduction how the extension of the
scaling property given in Theorem 3.10 is related to these differential equations. As
statedbefore, the classicalBlack–Scholes equation is studiedbymeansof the following
degenerate differential operator:

(J f )(x) := −x f ′(x), x > 0, (1.3)

on (L1 − L∞) interpolation spaces that we shall explain in Sect. 5. In [2], the authors
used the connection between the operator J and the classical Cesàro operator C given
by

(C f )(x) = 1

x

∫ x

0
f (y) dy, x > 0,

and its adjoint Cesàro operator C∗. This connection had been first pointed out in [11]
to study the Cesàro operator C on the half-plane. In addition, the differential operator
J was also related in [21] to the generalized fractional version of the Cesàro operator
Cα on L p-spaces, for real numbers α > 0, given by

(Cα f )(x) = α

xα

∫ z

0
(x − y)α−1 f (y)dy = �(α + 1)

xα
(D−α f )(x), x > 0, (1.4)

and the associated adjoint Cesàro operator C∗
α given by

(C∗
α f )(x) = α

∫ ∞

x

(y − x)α−1

yα
f (y) dy = �(α + 1)(W−α(y−α f ))(x), x > 0,

(1.5)

where D−α and W−α denote the Riemann–Liouville and Weyl fractional integrals of
orderα, respectively, seeSect. 2 formore details.Wenotice that D−α is usually denoted
by I−α in most of the literature on fractional calculus. The connection between J and
Cα , C∗

α is given in terms of the exponentially bounded group (G(s))s∈R generated by
J , with expression (G(s) f )(x) = f (e−s x). More precisely, we have that

(Cα f )(x) = α

∫ ∞

0
e−s(1 − e−s)α−1(G(s) f )(x) ds, x > 0,

(C∗
α f )(x) = α

∫ 0

−∞
(1 − es)α−1(G(s) f )(x) ds, x > 0.

(1.6)

Furthermore, (1.6) yields a representation in functional calculus of the type Cα =
fα(J ), C∗

α = f ∗
α (J ) for some suitable holomorphic functions fα, f ∗

α which have some
fractional-powers like behavior that we shall specify later in the paper. Therefore, as
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in the same way, one can write (BS) in terms of the operators C, C∗, it seems natural
to construct some families of generalized Black–Scholes equations which can be
written in terms of Cα, C∗

α , operators which, respectively, involve fractional Riemann–
Liouville derivatives of order α, Dα , and fractional Weyl derivatives of order α, Wα .
This method will give rise to generalized fractional Black–Scholes equations of the
following three forms for x , t > 0:

ut = 1

�(α + 1)2
Dα(xαDα(xαu)) − 2

�(α + 1)
Dα(xαu) + u,

ut = 1

�(α + 1)2
xαWα(xαWαu),

ut = − 1

�(α + 1)2
Dα(x2αWαu) + 1

�(α + 1)
xαWαu,

(1.7)

for suitable values of α, see Sect. 5 for more details, and for a fourth family of
generalized Black–Scholes equations. Then, a natural tool will be the representa-
tion of the differential operators above by the means of the functional calculus of
the bisectorial-like operator J , connecting the differential equations (1.7) with the
theory of bisectorial-like operators developed here. This connection will yield the
well-posedness and explicit integral expressions of solutions of these fractional ver-
sions of the Black–Scholes equation, of course by incorporating initial and boundary
conditions. Also, at the limiting case α = 1, we recover all the classical known results.

In order to obtain these results, Theorem 3.10 will be of particular importance,
since its statement summarizes as follows: if A is a bisectorial-like operator and g is
a suitable function whose range is contained in a sector, and which has a fractional-
power like behavior at the singularity points of the spectra of A and g(A), then g(A) is
a sectorial operator. As one may expect, the setting for sectorial operators serves again
as an inspiration for this result, and in particular, it can be regarded as an extension of
the scaling property for sectorial operators. In addition, we give supplementary results
of special importance when g(A) generates a semigroup, such as the characterization
of the closure of its domain D(g(A)) or an integral expression for the semigroup it
generates in terms of the functional calculus of A.

Interestingly, as a consequence of our results one obtains that, if A is bisectorial-like
of angle π

2 and half-width a ≥ 0 (in particular, if it generates an exponentially bounded
group), then either (A + a)α or −(A + a)α generate a holomorphic semigroup for all
α > 0 with α �= 1, 3, 5, . . . This is a remarkable discovery that generalizes the already
known results in this directions for the case α = 2, see for example [3, Theorem 1.15]
and [4, Proposition 5.1], or in the case A generates a bounded group, see [7, Theorem
4.6].

As a final remark,wemention that fractional versions of theBlack–Scholes equation
havebeenproposed and analyzed in a number of papers, see for instance [13,20,25,27].
In most of these references, authors only deal with time-fractional derivatives, that is,
replacing the time derivative ut in (BS) with a Riemann–Liouville or a Caputo-type
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time fractional derivative. Of course in this setting, the authors cannot get some gener-
ation of semigroups results due to the limitation of time-fractional derivatives. Spatial-
fractional derivatives are indeedmore difficult to dealwith, since spatial terms aremore
complex than the time ones in the equation (BS). A spatial fractional Black–Scholes
model can be found in [10] without given further details. The fractional Black–Scholes
equation we propose here also contains fractional powers acting as multiplication,
yielding to equations which are definitely difficult to solve by more classical methods
such as the Laplace transform or the Fourier transform. Therefore, we observe that the
fractional versions of (BS) proposed in the present paper, which are solved through the
theory we developed here, seem to be notably difficult to be solved with the classical
methods.

In short, the contributions of the present paper can be regarded as centered around
two facts:

(1) The introduction of new (generalized) fractional Black–Scholes equations aris-
ing from fractional Cesàro operators in a natural manner. As we have already
observed, such equations are difficult—maybe not possible—to solve by classi-
cal methods.

(2) In order to overcome the quoted failure of usual methods, we establish a new
connection, in an abstract setting, between bisectorial-like operators and secto-
rial operators. Such a connection extends notably previous results in the field.
Actually, our approach is based on the proof of the scaling property given in
[5, Proposition 5.2], but it requires quite more general functions to operate in
functional calculi defined on the basis of more intricate integration paths, as well
as nontrivial, more involved, approximation tools.

The rest of the paper is organized as follows. In Sect. 2.1, we fix some notations
and introduce some definitions. In Sect. 2.2, we develop the functional calculus of
bisectorial-like operators and its extensions. Section 3 is devoted to the passage from
bisectorial-like to sectorial operators, wherewe also give a note regarding holomorphic
functional calculus for sectorial operators. In Sect. 4, we give some generation of
bounded holomorphic semigroups results by the general sectorial operators we have
constructed in Sect. 3. The complete theory and applications of the generalized Black–
Scholes equation are contained in Sect. 5. We conclude the paper with Appendix A
where some useful results have been proven.

2. Notations and preliminary results

In this section, we fix some notations, give some definitions and introduce some
well-known results as they are used throughout the remainder of the paper. We start
with some notations and definitions.
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2.1. Notations and definitions

Given any ϕ ∈ (0, π), we denote the sector

Sϕ :=
{
z ∈ C : |arg(z)| < ϕ

}
, (2.1)

and set S0 := (0,∞). If λ ∈ C, we shall let �λ denote the real part of λ.
Let A with domain D(A) be a closed linear operator in a Banach space X . We

shall denote by σ(A) the spectrum of A, σp(A) the point spectrum of A, and by
ρ(A) := C \ σ(A), the resolvent set of A. We also let σ̃ (A) := σ(A) if D(A) = X
and σ̃ (A) := σ(A)∪{∞} otherwise. Forλ ∈ ρ(A)we shall let R(λ, A) := (λI−A)−1

be the resolvent operator of A. Then, R(λ, A) is a bounded linear operator from X
into X . ByR(A), we shall mean the range space of A andN (A) shall denote the null
set (or the kernel) of the operator A.

We shall denote by L(X) the space of all bounded linear operators from a Banach
space X into X . If B ∈ L(X), we shall let ‖B‖L(X) be the operator norm of B.
Finally, we use throughout the notation h � g to denote h ≤ Mg, for some con-

stant M , when the dependence of the constant M on some physical parameters is not
relevant, and so it is suppressed.

Definition 2.1. A closed linear operator A with domain D(A) in a Banach space X
is said to be a sectorial operator if there exists ϕ ∈ [0, π) such that σ(A) ⊂ Sϕ and,
for every ϕ′ ∈ (ϕ, π), there exists a constant Mϕ′ > 0 such that

‖λR(λ, A)‖L(X) ≤ Mϕ′ for all λ ∈ C \ Sϕ′ .

Next, for any ω ∈ (0, π/2] and a ≥ 0 a real number, we set

BSω,a :=

⎧⎪⎪⎨
⎪⎪⎩

(−a + Sπ−ω) ∩ (a − Sπ−ω) if ω ∈ (0, π/2) and a ≥ 0,

iR if ω = π/2 and a = 0.

Definition 2.2. Let (ω, a) ∈ (0, π/2] × [0,∞) and let A be a closed linear operator
in a Banach space X . We will say that A is a bisectorial-like operator of angle ω and
half-width a if the following conditions hold:

• σ(A) ⊂ BSω,a .
• For all ω′ ∈ (0, ω), A satisfies the resolvent bound

sup
{
min{|λ − a|, |λ + a|}‖R(λ, A)‖L(X) : λ /∈ BSω′,a

}
< ∞.

Given a Banach space X , we will denote the set of all bisectorial-like operators of
angle ω and half-width a in X by BSect(ω, a). We omit an explicit mention to X for
the sake of simplicity in our notations. Notice that a closed operator A ∈ BSect(ω, a)

if and only if both aI + A and aI − A are sectorial of angle π − ω.
Next, we introduce the notion of bounded holomorphic semigroups in the sense of

[1, Definition 3.7.3].
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Figure 1. Illustration of the spectrum of a sectorial operator (left)
and a bisectorial-like operator (right)

Definition 2.3. Let δ ∈ (0, π/2]. A mapping T : Sδ → L(X) is called a bounded
holomorphic semigroup (of angle δ) if it has the following properties:

(1) The semigroup property: T (z)T (z′) = T (z + z′) for all z, z′ ∈ Sδ .
(2) The mapping T : Sδ → L(X) is holomorphic.
(3) The mapping T satisfies: supw∈Sδ′ ‖T (w)‖L(X) < ∞ for every δ′ ∈ (0, δ).

It is known that every bounded holomorphic semigroup T on a Banach space X is
determined by its generator A, which is a closed linear operator whose resolvent is
given by the Laplace transform of the semigroup, that is

R(λ, A) =
∫ ∞

0
e−λt T (t) dt, �λ > 0. (2.2)

For any δ ∈ (0, π/2], it is well-known that a closed linear operator A is the generator
of a bounded holomorphic semigroup of angle δ if and only if−A is a sectorial operator
of angle π/2 − δ. Even more, one has that

T (w) = exp−w(A), w ∈ Sδ,

where wemake use of the primary functional calculus of sectorial operators and where
exp−w(z) := exp(−wz).

Definition 2.4. For δ ∈ (0, π/2], we say that a mapping T : Sδ → L(X) is an
exponentially bounded holomorphic semigroup if it satisfies the bounded semigroup
property is holomorphic (namely (a) and (b) in Definition 2.3 are satisfied) and it holds
that the set {‖T (w)‖L(X) : w ∈ Sδ′ , |w| ≤ 1} is bounded for every δ′ ∈ (0, δ).
In particular, for each δ′ ∈ (0, δ), one can findMδ′ , ρδ′ ≥ 0 such that ‖T (w)‖L(X) ≤

Mδ′eρδ′�w for all w ∈ Sδ′ . As a consequence, one can define the generator A of an
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exponentially bounded holomorphic semigroup T in the same way as in (2.2) for all
λ with �λ large enough.

It is readily seen that A generates an exponentially bounded holomorphic semigroup
if and only if there is some ρ ∈ R such that A − ρ generates a bounded holomorphic
semigroup (of possibly strictly smaller angle).

Definition 2.5. The space DT of strong continuity of a (holomorphic) semigroup T
of angle δ is defined by

DT :=
{
x ∈ X : lim

Sδ′ �w→0
T (w)x = x for all δ′ ∈ (0, δ)

}
.

It is well-known that the space DT is precisely the closure of the domain of its
generator, that is, DT = D(A). We refer the reader to [18, Section 3.4] and [12,
Section II.4.a] for more details about holomorphic semigroups.
Next, we introduce the notion of (L1 − L∞)-interpolation spaces. Let E be a

Banach space consisting of functions with domain (0,∞), for which the inclusions
(L1(0,∞) ∩ L∞(0,∞)) ⊂ E ⊂ (L1(0,∞) + L∞(0,∞)) hold and are continuous.
We will say that E is a (L1−L∞)-interpolation space if, for every linear operator S :
(L1(0,∞)+L∞(0,∞)) → (L1(0,∞)+L∞(0,∞)) that restricts to bounded opera-
tors S|L1(0,∞) : L1(0,∞) → L1(0,∞), S|L∞(0,∞) : L∞(0,∞) → L∞(0,∞), then
it holds that the restriction to E , S|E : E → E , is well-defined and bounded. This
class includes many of the classical function spaces (e.g., L p-spaces, Orlicz spaces,
Lorenz spaces, Marcinkiewiecz spaces). Also, E is said to have an order contin-
uous norm if ‖ fn‖E → 0 for every sequence of functions fn ∈ E converging to
0 almost everywhere and for which | fn| is non-increasing. For more details about
(L1 − L∞)-interpolation spaces, we refer to the monograph [8].

We conclude this section by recalling the definition of the Riemann–Liouville and
Weyl fractional integrals and derivatives. Let α > 0 be a real number and f a suitable
function defined on (0,∞). The Riemann–Liouville fractional integral of order α of
f , denoted by D−α f , and the Weyl fractional integral of order α of f , denoted by
W−α f , are, respectively, given by

D−α f (x) := 1

�(α)

∫ x

0
(x − y)α−1 f (y) dy, x > 0, (2.3)

and

W−α f (x) := 1

�(α)

∫ ∞

x
(y − x)α−1 f (y) dy, x > 0, (2.4)

where � denotes the usual Euler–Gamma function.
The Riemann–Liouville fractional derivative of order α of f , denoted by Dα f , and

theWeyl fractional derivative of order α of f , denoted byWα f , are respectively given
by

Dα f (x) := dn

dxn
D−(n−α) f (x), x > 0, (2.5)
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and

Wα f (x) := (−1)n
dn

dxn
W−(n−α) f (x), x > 0, (2.6)

wheren is the smallest integer greater thanor equal toα.We refer to themonograph [23]
and the references therein for the class of functions for which the above expressions
(2.3)–(2.6) exist.

2.2. The natural functional calculus (NFC) for bisectorial-like operators

Next, we proceed to develop a functional calculus for bisectorial-like operators
which is analogous to the functional calculus for sectorial operators presented in [18].
This functional calculus for bisectorial-like operators will extend the ones considered
in [22,24] and the references therein.
For any (ϕ, a) ∈ (0, π/2] × [0,∞), we have the algebra of holomorphic functions

E0(BSϕ,a) :=
{
f ∈ H∞(BSϕ,a) :

∫
∂(BSω′,a)

| f (z)|
min{|z − a|, |z + a|} |dz| < ∞,

for all ϕ < ω′ ≤ π/2 and lim
z→−a,a,∞ f (z) = 0

}
,

where H∞(�) denotes the algebra of bounded holomorphic functions in an open
subset � ⊂ C. It is readily seen that E0(BSϕ,a) is an ideal of H∞(BSϕ,a).

Given a bisectorial-like operator A ∈ BSect(ω, a) for some ω > ϕ, we define the
algebraic homomorphism 
 : E0(BSϕ,a) → L(X) given by


( f ) := f (A) := 1

2π i

∫
�

f (z)R(z, A) dz,

where � is the positively oriented boundary of the bisector-like set BSω′,a for any
ω′ ∈ (ϕ, ω) (see Fig. 1). It is readily seen that f (A) is well-defined and does not
depend on the choice of ω′. Moreover, one obtains the following result.

Lemma 2.6. The mapping
 : E0(BSϕ,a) → L(X) satisfies the following properties:

(1) 
 is a homomorphism of algebras.
(2) If T ∈ L(X) commutes with the resolvent operator R(λ, A) of A, then it also

commutes with each operator 
( f ), where f ∈ E0(BSϕ,a).
(3) For λ /∈ BSϕ,a and f ∈ E0(BSϕ,a), one has

R(λ, A)
( f ) = 
( f )R(λ, A) =
(

f (z)

λ − z

)
(A).

(4) If

f (z) = z

(λ − z)(μ − z)
for λ,μ /∈ BSϕ,a,

then f ∈ E0(BSϕ,a) and

f (A) = AR(λ, A)R(μ, A) for λ,μ /∈ BSϕ,a .
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Proof. The lemma is an immediate consequence of straightforward applications of
Cauchy’s theorem and the resolvent identity. See [16, Proposition 2.2] for an analogous
result about sectorial operators. �
Next, we add some functions so our functional calculus contains certain class of

resolvents. Set

E(BSϕ,a) := E0(BSϕ,a) ⊕ C
1

b + z
⊕ C

1

b − z
for any b ∈ C\BSϕ,a .

It is easy to see that the definition of E(BSϕ,a) is independent on the particular choice
of b.
Then, one can extend 
 from E0(BSϕ,a) to E(BSϕ,a) by defining




(
1

b + z

)
= −R(−b, A) and 


(
1

b − z

)
= R(b, A),

so that 
 : E(BSϕ,a) → L(X) is an algebraic homomorphism. Moreover,
(E(BSϕ,a),M(BSϕ,a),
) is an abstract functional calculus (see e.g., [16]), where
M(�) denoted the algebra ofmeromorphic functionswith domain an open set� ⊂ C.

Definition 2.7. Let (ϕ, a) ∈ (0, π/2] × [0,∞). We introduce the following notions.

(1) A function f ∈ M(BSϕ,a) is said to be regularizable by E(BSϕ,a) if there exists
e ∈ E(BSϕ,a) such that e(A) is injective and e f ∈ E(BSϕ,a).

(2) For any regularizable f ∈ M(BSϕ,a) we set

f (A) := e(A)−1(e f )(A).

By [16, Lemma 3.2], one has that this definition is independent of the regularizer
e, and that f (A) is a well-defined closed operator.
Finally, we set

M(BSϕ,a)A := { f ∈ M(BSϕ,a) : f is regularizable by E(BSϕ,a)},
and

H(A) := { f ∈ M(BSϕ,a)A : f (A) ∈ L(X)}.
This meromorphic functional calculus satisfies the following properties.

Lemma 2.8. Let (ϕ, a) ∈ (0, π/2] × [0,∞) and let also f ∈ M(BSϕ,a)A with
A ∈ BSect(ω, a). Then, the following assertions hold.

(1) If S ∈ L(X) commutes with A, that is, SA ⊂ AS, then S also commutes with
f (A), i.e., S f (A) ⊂ f (A)S.

(2) 1(A) = I and z(A) = A.
(3) Let g ∈ M(BSϕ,a)A. Then

f (A) + g(A) ⊂ ( f + g)(A), and f (A)g(A) ⊂ ( f g)(A). (2.7)

Furthermore, D( f (A)g(A)) = D(( f g)(A)) ∩ D(g(A)), and one has equality
in (2.7) if g(A) ∈ L(X).
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(4) 
 : H(A) → L(X) is a homomorphism of unital algebras.
(5) Let g ∈ H(A) such that g(A) is bounded and injective. Then, f (A) =

g(A)−1 f (A)g(A).
(6) Let λ ∈ C. Then,

1

λ − f (z)
∈ M(BSϕ,a)A ⇐⇒ λ − f (A) is injective.

If this is the case, (λ − f (z))−1(A) = (λ − f (A))−1. In particular, λ ∈ ρ(A) if
and only if (λ − f (z))−1 ∈ H(A).

Proof. The lemma is a direct consequence of the results contained in [16, Section 3].
�

Since the inclusions E(BSϕ,a) ⊂ E(BSϕ′,a), M(BSϕ,a) ⊂ M(BSϕ′,a) hold for
any ϕ < ϕ′ < ω, we can form the inductive limits

E[BSω,a] :=
⋃

0<ϕ<ω

E(BSϕ,a), M[BSω,a] :=
⋃

0<ϕ<ω

M(BSϕ,a),

M[BSω,a]A :=
⋃

0<ϕ<ω

M(BSϕ,a)A.

If f ∈ M[BSω,a]A, that is, if f is regularizable by E[BSω,a], then we say that “ f (A)

is defined by the natural functional calculus (NFC) for bisectorial-like operators”.

2.3. Extensions of the natural functional calculus (NFC)

Let d ∈ {−a, a} with a > 0 and consider an operator A ∈ BSect(ω, a) for which
d I − A is invertible, that is, d /∈ σ(A). Fix 0 < ϕ < ω. Then, there is an ε ∈ (0, a)

such that the ball Bε(d) ⊂ ρ(A), where Bε(d) := {z ∈ C : |z − d| < ε}. Consider
the algebra

E0(BSϕ,a,d,ε) :=
{
f ∈ H∞(BSϕ,a\Bε(d)) : lim

z→−d,∞ f (z) = 0 and

∫
∂(BSω′,a\Bε(d))

| f (z)|
|d − z| |dz| < ∞ for all ϕ < ω′ ≤ π

2

}
,

and set E(BSϕ,a,d,ε) := E0(BSϕ,a,d,ε)⊕C(1/(b− z)) for any b > a. One can extend
our elementary functional calculus 
 from E(BSϕ,a) to the algebra E(BSϕ,a,d,ε) by
integrating on a positively oriented parametrization of the boundary ∂(BSω′,a\Bε(d))

for any ϕ < ω′ ≤ π
2 , where we avoid integration near the point d and therefore the

functions in this new algebra do not need to satisfy any regularity conditions near d.
This yields a new abstract functional calculus (E(BSϕ,a,d,ε),M(BSϕ,a),
) which is
an extension of the former.
Since the new algebra E(BSϕ,a,d,ε) is larger than E(BSϕ,a), more functions f ∈

M(BSϕ,a) become regularizable. If f is regularizable by E(BSϕ,a,d,ε), we say that
f (A) is defined by the NFC for d−invertible bisectorial-like operators.
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A similar extension is possible when A ∈ BSect(ω, a) is bounded. Again, let
0 < ϕ < ω and let R > max{a, r(A)}, where r(A) denotes the spectral radius of A.
Then, one considers the algebra

{
f ∈ H∞(BSϕ,a ∩ BR(0)) : lim

z→−a
f (z) = lim

z→a
f (z) = 0 and

∫
∂BSω′,a ,|z|<R/2

| f (z)|
min{|z − a|, |z + a|} |dz| < ∞ for all ϕ < ω′ ≤ π

2

}
,

and adds the spaces C(1/(b − z)) and C(1/(b + z)) for any b > a. The elementary
calculus of this algebra is constructed along the lines of the former elementary calculus.
If a function f is regularizable by this algebra, we say that f (A) is defined by the
NFC for bounded bisectorial operators.

Similar remarks apply when A ∈ BSect(ω, a) satisfies any combination of the
above properties, avoiding integration near the appropriate selection of the points in
{−a, a,∞}. A minor difference appears if a = 0 and A is invertible: in that case the
two top and bottom branches merge without further consequences. Clearly, Lemma
2.8 remains valid when it is adapted appropriately to any of this NFC.

Definition 2.9. Let A ∈ BSect(ω, a) and set MA := {−a, a,∞} ∩ σ̃ (A). From now
on, we will denote byM[�A] the class of meromorphic functions defined on an open
set related to the larger primary functional calculus of A. Moreover, MA will denote
the class of regularizable functions EA of the larger natural functional calculus of A.
For instance, if MA = {−a,∞}, then M[�A] and MA will refer to the calculus
of a−invertible bisectorial-like operators; if MA = {−a}, then they will refer to the
calculus of a−invertible and bounded bisectorial-like operators, and so on.

Finally, if f ∈ MA, that is, if f is regularizable by EA for the appropriate primary
functional calculus of A, then we say that f (A) is defined by the natural functional
calculus (NFC) of A.

Next, our goal is to give a sufficient condition for a meromorphic function f ∈
M(BSϕ,a) to be defined by the NFC of A. We will ask f to satisfy a regularity
property near the singular points MA := {−a, a,∞} ∩ σ̃ (A).

Definition 2.10. Let A ∈ BSect(ω, a), f ∈ M[�A] and d ∈ MA ∩ {−a, a}.
(1) We say that f is regular at d if limz→d f (z) =: cd ∈ C exists and, for small

enough ε > 0 and some ϕ < ω,
∫

∂(BSω′,a∩Bε(d))

∣∣∣∣ f (z) − cd
z − d

∣∣∣∣ |dz| < ∞, for all ω′ ∈
(
ϕ,

π

2

)
.

(2) Similarly, if∞ ∈ MA, we say that f is regular at∞ if limz→∞ f (z) =: c∞ ∈ C

exists and, for large enough R > 0, and some ϕ < ω,
∫

∂BSω′,a ,|z|>R

∣∣∣∣ f (z) − c

z

∣∣∣∣ |dz| < ∞, for all ω′ ∈
(
ϕ,

π

2

)
.
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(3) We say that f is quasi-regular at d ∈ MA if f or 1/ f is regular at d.
(4) Finally, we say that f is (quasi)-regular at MA if f is (quasi)-regular at each

point of MA.

Remark 2.11. Note that if f is regular at MA with every limit being not equal to 0,
then 1/ f is also regular at MA. If f is quasi-regular at MA, then μ − f and 1/ f are
also quasi-regular at MA for each μ ∈ C. A function f which is quasi-regular at MA

has well-defined limits in C∞ as z tends to each point of MA.

Lemma 2.12. Let A ∈ BSect(ω, a) and f ∈ M[�A]. Assume that f is regular at
MA and that all the poles of f are contained in C\σp(A). Then, f (A) is defined by
the NFC of A, that is, f ∈ MA. More precisely, the following assertions hold true.

(1) If MA = {−a, a,∞}, then f (A) is defined by the NFC for bisectorial-like
operators.

(2) If MA = {−a,∞}, then f (A) is defined by the NFC for a-invertible bisectorial-
like operators. Analogous statement is true if MA = {a,∞}.

(3) If MA = {−a, a}, then f (A) is defined by the NFC for bounded bisectorial-like
operators.

(4) If MA = {∞}, then f (A) is definedby theNFC for a-invertible and−a-invertible
bisectorial-like operators.

(5) If MA = {−a}, then f (A) is defined by the NFC for a-invertible and bounded
bisectorial-like operators. Analogous statement is true if MA = {a}.

(6) If MA = ∅, then f (A) is defined by the NFC for bounded, a-invertible and
−a-invertible bisectorial-like operators.

Moreover, if the poles of f are contained in ρ(A), then f (A) ∈ L(X).

Proof. The proof is analogous to the corresponding result for sectorial operators, see
[17, Lemma 6.2]. We omit the details for the sake of brevity. �

We conclude this section by giving a spectral inclusion result for bisectorial-like
operators.

Proposition 2.13. Let A ∈ BSect(ω, a), and take f ∈ MA to be quasi-regular at
MA. Then,

σ̃ ( f (A)) ⊂ f (̃σ (A)).

Proof. The proof follows as the case of sectorial operators, see [17, Proposition 6.3].
We omit the details for the sake of brevity. �

3. From bisectorial-like to sectorial operators and the NFC for sectorial
operators

We start with relationship between bisectorial-like and sectorial operators.
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3.1. From bisectorial-like to sectorial operators

In this section, we present a connection between bisectorial-like operators and sec-
torial operators, namely Theorem 3.10. The method to prove this connection is based
on the proof of the scaling property for sectorial operators given in [5, Proposition
5.2], but its proof requires longer and more sophisticated techniques because of the
more intricate setting.
We start with a new definition referring to the limit behavior of a function at the

singular points {−a, a,∞}. By | f (z)| ∼ |g(z)| as z → d ∈ C∞, we mean that there
is some neighborhood � of d such that |g(z)| � | f (z)| � |g(z)| for all z ∈ �.

Definition 3.1. Let A ∈ BSect(ω, a), f ∈ M[�A], d ∈ D( f ), and c ∈ C.

(1) We say that f (z) → c exactly polynomially as z → d if there is α > 0 such
that | f (z) − c| ∼ |z − d|α as z → d if d ∈ C, or such that | f (z) − c| ∼ |z|−α

as z → ∞ if d = ∞.
(2) We say that f (z) → ∞ exactly polynomially as z → d if (1/ f )(z) → 0 exactly

polynomially as z → d.

Now, we fix some notations for the rest of this section. From now on, A will be a
bisectorial-like operator on a Banach space X of angle ω ∈ (0, π/2] and half-width
a ≥ 0, i.e., A ∈ BSect(ω, a), and recall that MA = {a,−a,∞} ∩ σ̃ (A). For any
λ ∈ C, f ∈ M[�A], we let Rλ

f ∈ M[�A] be given by

Rλ
f (z) := λ

λ − f (z)
, z ∈ D( f ). (3.1)

Moreover, we will also consider γ ∈ [0, π) and a function g̃ ∈ MA satisfying the
following conditions:

(1) R(g̃) ⊂ Sγ ∪ {∞}.
(2) g̃ is quasi-regular at MA. In particular, it has limits in MA, which we denote by

cd ∈ C∞ for d ∈ MA.
(3) g̃ has exactly polynomial limits at MA ∩ g̃−1({0,∞}).

Remark 3.2. By the open mapping theorem, Property (a) implies that g̃ does not have
any zeros (unless g̃ = 0) or poles inD(g̃). In particular, if g̃ �= 0, then both g̃ and g̃−1

are holomorphic.

Next, we present a family of functions which will be crucial to prove our main result
of this section. Recall that a meromorphic function f belongs to H(A) ⊂ MA if and
only if f (A) is a bounded operator.

Definition 3.3. Assume that we have a family of functions ( f λ)λ/∈Sγ
⊂ H(A). We

say that ( f λ)λ/∈Sγ
makes (Rλ

g̃)λ/∈Sγ
ε−uniformly bounded at d ∈ MA with respect to

the NFC of A if, for any ε ∈ (0, π − γ ), it satisfies the following properties:

(1) | f λ(z)| is uniformly bounded for all z ∈ D( f λ) and λ /∈ Sγ+ε.
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(2) ‖ f λ(A)‖L(X) is uniformly bounded for all λ /∈ Sγ+ε.
(3) Let � be an integration path for the NFC of A (see Sect. 2.3). Then, there exists

a neighborhood �d ′ containing each d ′ ∈ MA\{d} for which
sup

λ/∈Sγ+ε

∫
�∩�d′

| f λ(z)|‖R(z, A)‖L(X) |dz| < ∞ for each d ′ ∈ M\{d}.

(4) Let � be as above. Then, there exists a neighborhood �d containing d for which

sup
λ/∈Sγ+ε

∫
�∩�d

|Rλ
g̃(z) − f λ(z)|‖R(z, A)‖L(X) |dz| < ∞.

The following lemmas will be useful in finding the family of functions that makes
(Rλ

g̃)λ/∈Sγ
ε−uniformly bounded. Let d(z,�) denote the distance between a point

z ∈ C and a set � ⊂ C.

Lemma 3.4. Let ε > 0. We have that d(z,C\Sγ+ε) � |z| for all z ∈ Sγ and that
d(w, Sγ ) � |w| for all w /∈ Sγ+ε. As a consequence, |w/(w − z)| and |z/(w − z)|
are uniformly bounded for all z ∈ Sγ and w /∈ Sγ+ε.

Proof. The first two inequalities follow from the fact that d(z,C\Sγ+ε) = |z| sin(γ +
ε − | arg(z)|) ≥ |z| sin ε and d(w, Sγ ) = |w| sin(| argw| − γ ) ≥ |w| sin ε. The
other inequalities follow from what we have already proven, and that |z − w| ≥
max{d(z,C\Sγ+ε), d(w, Sγ )} for all z ∈ Sγ and w /∈ Sγ+ε. �
Lemma 3.4 will be used very frequently throughout the paper. We will not make no

further reference to it for the sake of brevity. In particular, as an immediate application,
we have the following result.

Lemma 3.5. Let c ∈ Sγ \{0}, ε ∈ (0, π − γ ) and f ∈ M[�A] such that R( f ) ⊂
Sγ ∪ {∞}. Then, ∣∣∣∣Rλ

f (z) − λ

λ − c

∣∣∣∣ � min{1, | f (z) − c|},
∣∣∣Rλ

f (z)
∣∣∣ � min{1, |λ|| f (z)|−1},∣∣∣Rλ

f (z) − 1
∣∣∣ � min{1, |λ|−1| f (z)|},

where all inequalities hold for all z ∈ D( f ) and λ /∈ Sγ+ε.

Proof. It follows from Lemma 3.4 that all the above functions are uniformly bounded.
Now, let c ∈ Sγ /0. Applying Lemma 3.4, one gets that∣∣∣∣Rλ

f (z) − λ

λ − c

∣∣∣∣ =
∣∣∣∣ λ

λ − f (z)

f (z) − c

λ − c

∣∣∣∣ �
∣∣∣∣ f (z) − c

λ − c

∣∣∣∣ � | f (z) − c|,

for all z ∈ D( f ), λ /∈ Sγ+ε. Likewise, one obtains that

|Rλ
f (z)| =

∣∣∣∣ λ

λ − f (z)

∣∣∣∣ � |λ|| f (z)|−1, |Rλ
f (z) − 1| =

∣∣∣∣ f (z)

λ − f (z)

∣∣∣∣ � |λ|−1| f (z)|,

for all z ∈ D( f ), λ /∈ Sγ+ε. The proof is finished. �
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The following lemma gives an integral bound which will be very useful to prove
Proposition 3.7.

Lemma 3.6. Let I ⊂ R
+ be a measurable subset and let ( fν)ν : I → C be a family

of complex-valued functions. Let F1, F2 : I → R
+ be some positive functions which

are integrable with respect to the measure dx/x, and let rν > 0 for all indices ν, and
sn, tm > 0 for n = 1, . . . , N, m = 1, . . . , M for some N , M ∈ N. Assume that

| fν(x)| � min

⎧⎨
⎩F1(x) +

∑
n≤N

(rνx)
sn , F2(x) +

∑
m≤M

(rνx)
−tm

⎫⎬
⎭ , (3.2)

for all x ∈ I and all indices ν. Then,

sup
ν

∫
I
| fν(x)|dx

x
< ∞.

Proof. By adding terms of the type (rνx)tm to the first expression inside the minimum
in (3.2), and terms of the type (rνx)−sn , one can assume that N = M and sn = tn for
all n = 1, . . . , N . It follows that

∫
I
| fν(x)|dx

x
�
∫
I

(
F1(x) + F2(x)

)dx
x

+
∫
I
min

⎧⎨
⎩
∑
n≤N

(rνx)
sn ,
∑
n≤N

(rνx)
−sn

⎫⎬
⎭

dx

x
.

By the integrability condition on F1, F2, it suffices to bound the second term for all
indices ν. By bounding the integral on I by the integral on (0,∞), and a simple change
of variable, one gets that

∫
I
min

⎧⎨
⎩
∑
n≤N

(rνx)
sn ,
∑
n≤N

(rνx)
−sn

⎫⎬
⎭

dx

x
=
∫ ∞

0
min

⎧⎨
⎩
∑
n≤N

xsn ,
∑
n≤N

x−sn

⎫⎬
⎭

dx

x

=
∑
n≤N

(∫ 1

0
xsn−1 dx +

∫ ∞

1
x−sn−1 dx

)
< ∞.

The proof is concluded. �

In order to prove the main result of this section, some integrals related to resolvent
operators need to be bounded. The techniques to bound them vary from one case to
another, as shows the proposition below.

Proposition 3.7. For each point d ∈ M, there exists a family of functions ( f λ)λ/∈Sγ

that makes (Rλ
g̃)λ/∈Sγ

ε−uniformly bounded at d with respect to the NFC of A.

Proof. We will proceed by examining all the possible cases. Throughout the proof ε

is any appropriate number in (0, π − γ ) whenever it appears. Also, b > a for the rest
of the proof. We proceed in several steps.
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Step 1: Let d = a and ca ∈ Sγ \{0,∞}. We claim that the family of functions given
by

f λ
a,ca (z) := λ

λ − ca

b2 − a2

2a

a + z

b2 − z2
, z ∈ D(g̃),

makes (Rλ
g̃)λ/∈Sγ

ε−uniformly bounded at a. Indeed, it follows from Lemma 3.4 that

| f λ
a,ca (z)| is uniformly bounded for all z ∈ D( f λ

a,ca ) = D(g̃) and λ /∈ Sγ+ε. Moreover,
f λ
a,ca ∈ H(A) with

f λ
a,ca (A) = λ

λ − ca

b2 − a2

2a
(A + aI )R(b2, A2),

so ‖ f λ
a,ca (A)‖L(X) is also uniformly bounded for all λ /∈ Sγ+ε (recall that σ(A2) =

σ(A)2). It is clear that the integrability property (c) in Definition 3.3 holds, since
again λ/(λ − ca) is bounded and (z + a)/(b2 − z2) is integrable with respect to
‖R(z, A)‖L(X)|dz| at the neighborhoods of −a and ∞. Finally, we have that

∣∣∣Rλ
g̃(z) − f λ

a,ca (z)
∣∣∣ ≤

∣∣∣∣Rλ
g̃(z) − λ

λ − ca

∣∣∣∣+
∣∣∣∣ λ

λ − ca

∣∣∣∣
∣∣∣∣b

2 − a2

2a

z + a

b2 − z2
− 1

∣∣∣∣
� |̃g(z) − ca | + |z − a|,

where the first estimate is obtained by an application of Lemma 3.5, and the second
one by using Lemma 3.4 and Taylor’s expansion of order 1. Since g̃ is regular at a
with limit ca , it follows that |Rλ

g̃(z) − f λ
a,ca (z)| satisfies the integrability property (d)

in Definition 3.3 and the claim is proven.

Step 2: Next, let d = a and ca = 0. Since a ∈ MA∩ g̃−1({0,∞}), it follows that in a
neighborhood�a containing a and a real numberα > 0, we have that |̃g(z)| ∼ |z−a|α
for all z ∈ �a ∩ D(g̃). We consider the family of functions given by

f λ
a,0(z) := |λ|1/α

|λ|1/α + a − z

b2 − a2

2a

a + z

b2 − z2
, z ∈ D(g̃).

Let us show that ( f λ
a,0)λ/∈Sγ+ε

satisfies the desired properties. First of all, it is clear that

| f λ
a,0(z)| is uniformly bounded for all z ∈ D( f λ

a,0) = D(g̃) and λ /∈ Sγ+ε. Moreover,

f λ
a,0 ∈ H(A) with

f λ
a,0(A) = b2 − a2

2a
(A + aI )R(b2, A2)|λ|1/αR(|λ|1/α, A − aI ).

Thus, it follows from the definition of bisectorial-like operators that ‖ f λ
a,0(A)‖L(X) is

uniformly bounded for all λ /∈ Sγ+ε. It is readily seen that it satisfies Property (c) in
Definition 3.3, since |λ|1/α/(|λ|1/α + a − z) is uniformly bounded.
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Next, we consider |Rλ
g̃(z)− f λ

ca ,0
(z)| in�a ∩D(g̃). On the one hand, by the triangle

inequality and various applications of Lemmas 3.4 and 3.5, we get

|Rλ
g̃(z) − f λ

a,0(z)| ≤
∣∣∣Rλ

g̃(z)
∣∣∣+ b2 − a2

2a

∣∣∣∣ a + z

b2 − z2

∣∣∣∣
∣∣∣∣ |λ|1/α
|λ|1/α + a − z

∣∣∣∣
� |λ||̃g(z)|−1 + |λ|1/α|z − a|−1 � |λ−1/α(z − a)|−α

+ |λ−1/α(z − a)|−1,

for all z ∈ �a ∩ D(g̃) and λ /∈ Sγ+ε. On the other hand, it follows that

|Rλ
g̃(z) − f λ

a,0(z)| ≤ |Rλ
g̃(z) − 1| + | f λ

a,0(z) − 1|.
Another application of Lemma 3.5 yields that |Rλ

g̃(z) − 1| � |λ|−1 |̃g(z)| � |λ−1/α

(z − a)|α for all z ∈ �a ∩ D(g̃) and λ /∈ Sγ+ε. Moreover, one gets that

| f λ
a,0(z) − 1| ≤

∣∣∣∣ f λ
a,0(z) − b2 − a2

2a

a + z

b2 − z2

∣∣∣∣+
∣∣∣∣b

2 − a2

2a

a + z

b2 − z2
− 1

∣∣∣∣
�
∣∣∣∣ a − z

|λ|1/α + a − z

∣∣∣∣+ |z − a| � |λ−1/α(z − a)| + |z − a|,

for all z ∈ �a ∩ D(g̃) and λ /∈ Sγ+ε. Summarizing, if we set Uλ(z) := |λ|1/α|z − a|,
then we obtain that

|Rλ
g̃(z) − f λ

a,0(z)| � min

⎧⎨
⎩
∑

j∈{1,α}
Uλ(z)

− j , |z − a| +
∑

j∈{1,α}
Uλ(z)

j

⎫⎬
⎭ ,

for all z ∈ �a ∩ D(g̃) and λ /∈ Sγ+ε. An application of Lemma 3.6 together with
the bound of the resolvent of a bisectorial-like operator yields that ( f λ

a,0)λ/∈Sγ
satisfies

Property (d) in Definition 3.3, so in fact ( f λ
a,0)λ/∈Sγ

makes (Rλ
g̃)λ/∈Sγ

ε−uniformly
bounded at a with respect to the NFC of A.

Step 3: Next, let d = a and ca = ∞. By hypothesis, in a neighborhood �a

containing a, and a real number α > 0, we have that |̃g(z)| ∼ |z − a|−α for all
z ∈ �a ∩ D(g̃). Set

f λ
a,∞(z) := a − z

|λ|−1/α + a − z

b2 − a2

2a

a + z

b2 − z2
, z ∈ D(g̃).

Similar reasoning as in the above cases together with the observation that

(aI − A)R(|λ|−1/α, A − aI ) = I − |λ|−1/αR(|λ|−1/α, A − aI ),

leads to the fact that the family ( f λ
a,∞)λ/∈Sγ

satisfies Properties (a), (b) and (c) in Defi-

nition 3.3. By Lemma 3.4, it easily follows that | f λ
a,∞(z)| � |λ|1/α|z − a|. Therefore,

the triangle inequality and an application of Lemma 3.5 yield

|Rλ
g̃(z) − f λ

a,∞(z)| ≤ |λ1/α(z − a)|α + |λ1/α(z − a)|,
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for all z ∈ �a ∩ D(g̃) and λ /∈ Sγ+ε. This implies that

|Rλ
g̃(z) − f λ

a,∞(z)| ≤
∣∣∣∣Rλ

g̃(z) − a − z

|λ|−1/α + a − z

∣∣∣∣
+
∣∣∣∣ a − z

|λ|−1/α + a − z

∣∣∣∣
∣∣∣∣b

2 − a2

2a

a + z

b2 − z2
− 1

∣∣∣∣
�
∣∣∣∣Rλ

g̃(z) − a − z

|λ|−1/α + a − z

∣∣∣∣+ |z − a|,

where we have used again the Taylor expansion of order 1 and the fact that |(a −
z)/(|λ|−1/α + a − z)| is uniformly bounded. In addition, it follows that

∣∣∣∣Rλ
g̃(z) − a − z

|λ|−1/α + a − z

∣∣∣∣ =
∣∣∣∣ λ|λ|−1/α + g̃(z)(a − z)

(λ − g̃(z))(|λ|−1/α + a − z)

∣∣∣∣
≤
∣∣∣∣ λ|λ|−1/α

(λ − g̃(z))(|λ|−1/α + a − z)

∣∣∣∣
+
∣∣∣∣ g̃(z)(a − z)

(λ − g̃(z))(|λ|−1/α + a − z)

∣∣∣∣
� |λ1/α(z − a)|−1 + |λ1/α(z − a)|−α,

for all z ∈ �a ∩ D(g̃) and λ /∈ Sγ+ε, where we have used various applications of
Lemmas 3.4 and 3.5 in the last step. Finally, reasoning as in the case before with
Lemma 3.6, one obtains that ( f λ

a,∞)λ/∈Sγ
satisfies also Property (d) in Definition 3.3.

Step 4: Similar reasoning as in Step 1 shows that if either −a,∞ ∈ MA with
c−a, c∞ ∈ Sγ \{0,∞}, the families of functions given by

f λ−a,c−a
(z) := λ

λ − c−a

b2 − a2

2a

a − z

b2 − z2
, z ∈ D(g̃)

f λ∞,c∞(z) := λ

λ − c∞
a2 − z2

b2 − z2
, z ∈ D(g̃),

make (Rλ
g̃)λ/∈Sγ

ε−uniformly bounded at −a and ∞, respectively, with respect to the
NFC of A.

Step 5: Let either −a,∞ ∈ MA with polynomial limits ca, c∞ = 0 of exactly
order α > 0, that is, |̃g(z)| ∼ |z + a|α near z = −a and |̃g(z)| ∼ |z|−α near z = ∞,
respectively. Proceeding as in Step 2, one has that the families of functions given by

f λ−a,0(z) := |λ|1/α
|λ|1/α + a + z

b2 − a2

2a

a − z

b2 − z2
, z ∈ D(g̃),

f λ∞,0(z) := b − z

|λ|−1/α + b − z

a2 − z2

b2 − z2
, z ∈ D(g̃),

satisfy the desired properties.
Step 6: Finally, assume that either −a,∞ ∈ MA with polynomial limits ca, c∞ =

∞ of exactly order α > 0, i.e., |̃g(z)| ∼ |z + a|−α near z = −a and |̃g(z)| ∼ |z|α
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near z = ∞, respectively. Analogous computations as in Step 3 yields to the fact that
the families of functions given by

f λ−a,∞(z) := a + z

|λ|−1/α + a + z

b2 − a2

2a

a − z

b2 − z2
, z ∈ D(g̃),

f λ∞,∞(z) := |λ|1/α
|λ|1/α + b − z

a2 − z2

b2 − z2
, z ∈ D(g̃),

make (Rλ
g̃)λ/∈Sγ

ε-uniformly bounded at −a and ∞, respectively, with respect to the
NFC of A. The proof is complete. �

Remark 3.8. If MA is a proper subset of {−a, a,∞} one can slightly simplify the
families of functions given in the proof of Proposition 3.7.More precisely, for d ∈ MA,
one can eliminate the terms in f λ

d that make the functions uniformly bounded and
integrable in the rest of the points in MA. For instance, if MA = {a,∞}, then the
behavior of the functions near −a is irrelevant. Thus, if ca /∈ {0,∞}, then the family
of functions given by

λ

λ − ca

b − a

b − z
, z ∈ D(g̃),

also satisfies the desired properties.

Remark 3.9. Let ( f λ
d )λ/∈Sγ

be a family of functions that makes (Rλ
g̃)λ/∈Sγ

ε−uniformly
bound at each d ∈ MA with respect to the NFC of A. From the bounds appearing in
the proof of Proposition 3.7, one obtains that in fact (Rλ

g̃ −∑
d∈MA

f λ
d ) ∈ E0 for all

λ /∈ Sγ .

We are now ready to state the main result of this section.

Theorem 3.10. Let (ω, a) ∈ (0, π/2]× [0,∞) and β ∈ [0, π). Let A ∈ BSect(ω, a)

in a Banach space X and g ∈ MA. Assume the following:

(1) For any γ > β, one can find ϕ ∈ (0, ω) such that g(BSϕ,a) ⊂ Sγ ∪ {∞}.
(2) g is quasi-regular at MA.
(3) g has exactly polynomial limits at MA ∩ g−1({0,∞}).

Then, g(A) is a sectorial operator of angle β.

Proof. Our result will follow once we have proven that g(A) is a sectorial operator of
angle γ for all γ > β. Indeed, if that is true, we will have that

β ≥ inf
γ∈[0,π)

{γ : g(A) is sectorial of angle γ },

which implies that g(A) is a sectorial operator of angle β, see the beginning of [18,
Section 2.1].
Indeed, let γ > β and set g̃ := g|BSϕ,a , where ϕ ∈ (0, ω) is chosen such that

R(g̃) ⊂ Sγ ∪ {∞}. Notice that g̃(A) = g(A). Now, the spectral inclusion σ̃ (g̃(A)) ⊂
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Sγ ∪ {∞} holds by Proposition 2.13. It remains to prove the bound for the resolvent.
More precisely, we have to show that for all ε > 0,

sup
λ/∈Sγ+ε

‖λR(λ, g̃(A))‖L(X) < ∞.

By Lemma 2.8, it follows that λR(λ, g̃(A)) = Rλ
g̃(A) for all λ /∈ Sγ . Also, by

Proposition 3.7, we have that for each d ∈ MA, there exist some families of functions
( f λ

d )λ/∈Sγ
which make (Rλ

g̃)λ/∈Sγ
ε-uniformly bounded at d with respect to the NFC of

A. We have that

‖λR(λ, g̃(A))‖L(X) ≤
∥∥∥∥∥∥

⎛
⎝Rλ

g̃ −
∑
d∈MA

f λ
d

⎞
⎠ (A)

∥∥∥∥∥∥L(X)

+
∑
d∈MA

∥∥ f λ
d (A)

∥∥L(X)
.

(3.3)

By Property (c) in Definition 3.3, one has that supλ/∈Sγ+ε
‖ f λ

d (A)‖L(X) < ∞ for each
d ∈ MA. It remains to uniformly bound the first term.
Let� be an integration path for the primary functional calculus of A, and (�d)d∈MA

some appropriate open sets for which d ∈ �d and the uniform integral bounds of
Definition 3.3 hold for each ( f λ

d )λ/∈Sγ
. Since (Rλ

g̃ − ∑
d∈MA

f λ
d ) ∈ E0 (see Remark

3.9), one has that∥∥∥∥∥∥

⎛
⎝Rλ

g̃ −
∑
d∈MA

f λ
d

⎞
⎠ (A)

∥∥∥∥∥∥L(X)

≤
∫

�

∣∣∣∣∣∣R
λ
g̃(z) −

∑
d∈MA

f λ
d (z)

∣∣∣∣∣∣ ‖R(z, A)‖L(X) |dz|.

(3.4)

Next, we split the integral on � to the sum of integrals on � ∩ �d for each d ∈ MA,
and �\ (∪d∈MA�d

)
. Notice that by Property (b) in Definition 3.3 and Lemma 3.5,

| f λ
d (z)| and |Rλ

g̃(z)| are uniformly bounded. Thus,

sup
λ/∈Sγ+ε

∫
�\(∪d∈MA�d

)

∣∣∣∣∣∣R
λ
g̃(z) −

∑
d ′∈MA

f λ
d ′(z)

∣∣∣∣∣∣ ‖R(z, A)‖L(X) |dz|

�
∫

�\(∪d∈M�d )

‖R(z, A)‖L(X) |dz| < ∞.

Finally, for each d ∈ MA, one has that

sup
λ/∈Sγ+ε

∫
�∩�d

∣∣∣∣∣∣R
λ
g̃(z) −

∑
d ′∈MA

f λ
d ′(z)

∣∣∣∣∣∣ ‖R(z, A)‖L(X) |dz|

≤ sup
λ/∈Sγ+ε

∑
d ′∈MA\{d}

∫
�∩�d

| f λ
d ′(z)|‖R(z, A)‖L(X) |dz|

+ sup
λ/∈Sγ+ε

∫
�∩�d

∣∣∣Rλ
g̃(z) − f λ

d (z)
∣∣∣ ‖R(z, A)‖L(X) |dz|.
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But, these two supremums of the integrals are finite by Properties (c) and (d) in
Definition 3.3, respectively. Combining these estimates with (3.3)–(3.4), we get the
resolvent bound, and as a consequence g̃(A) = g(A) is a sectorial operator of angle
γ for all γ > β. The proof is finished. �

The following corollaries are immediate consequences of Theorem 3.10. The first
one has been already stated in [7, Theorem 4.6] for the particular case where −A
generates a bounded group.

Corollary 3.11. Let a ≥ 0, A ∈ BSect(π/2, a), and let α > 0 with α not an odd
number, so α ∈ (2n − 1, 2n + 1) for a unique n ∈ N. Then, for any ε > 0, there exists
ρ ≥ 0 such that ρ I + (−1)n(A+ aI )α is a sectorial operator of angle π

∣∣α
2 − n

∣∣+ ε.
Moreover, if a = 0, then we can take ρ = 0.

Corollary 3.12. Let 0 < ω ≤ π
2 and a ≥ 0. Let A ∈ BSect(ω, a) in a Banach space

X and g ∈ MA. Assume that there are β ∈ [π/2, π) and b ≥ 0 such that the following
hold:

(1) For any γ > β, one can find ϕ ∈ (0, ω) for which g(BSϕ,a) ⊂ BSγ,b.
(2) g is quasi-regular at MA.
(3) g has exactly polynomial limits at MA ∩ g−1({−b, b,∞}).

Then, g(A) is a bisectorial-like operator of angle π − β and half-width b.

3.2. The natural functional calculus for sectorial operators

Most proofs which we have presented in this text are generic, and as a consequence,
the results shown here will hold for functional calculus analogous to that in Sects. 2.2
and 2.3. In particular, it is straightforward to adapt the preceding results to the case of
NFC of sectorial operators that can be found in [17], where the reader can find the def-
initions of the appropriate versions of the function spaces E(Sϕ), E0(Sϕ),M(Sϕ)A,...
For instance, one obtains the following version of Theorem 3.10 adapted to this NFC.

Theorem 3.13. Let 0 ≤ ω < π , β ∈ [0, π), A a sectorial operator of angle ω in
a Banach space X, and g ∈ MA in the sense of the NFC for sectorial operators.
Assume that the following hold:

(1) For any γ > β, one can find ϕ ∈ (ω, π) such that g(Sϕ) ⊂ Sγ ∪ {∞}.
(2) g is quasi-regular at {0,∞} ∩ σ̃ (A).
(3) g has exactly polynomial limits at {0,∞} ∩ σ̃ (A) ∩ g−1({0,∞}).

Then, g(A) is sectorial of angle β.

4. Some generation results of holomorphic semigroups and their properties

As a consequence of the bijection between generators of bounded holomorphic
semigroups and sectorial operators, the results obtained in Sect. 3 encourage us to study
the properties related to the holomorphic semigroup generated by −g(A) whenever A
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is a bisectorial-like operator, and g ameromorphic function satisfying the hypothesis of
Theorem 3.10 with an angle strictly smaller than π

2 .We state explicitly this connection
in the following result.

Corollary 4.1. Let A, β, g be as in Theorem 3.10. In addition, assume that β ∈
[0, π/2). Then, −g(A) generates a bounded holomorphic semigroup Tg of angle
π
2 − β.

Proof. This is an immediate consequence of Theorem3.10 and the fact that an operator
B is sectorial of angle β < π

2 if and only if −B is the generator of a bounded
holomorphic semigroup of angle π

2 − β, see for example [12, Theorem 4.6] or [18,
Proposition 3.4.4]. �

The lemma below will be useful in the proof of our main results within the case
where either aI − A or aI + A is not injective. Its proof is analogous to the related
result for sectorial operators (see e.g., [16, Lemma 4.3]).

Lemma 4.2. Let A ∈ BSect(ω, a), g ∈ MA with quasi-regular limits at MA, and
assume that d ∈ σp(A). Then, g has a finite limit cd at d.

Proof. First, we have that the limit cd of g at d exists in C∞. Indeed, this is clear if
d /∈ MA. And if d ∈ MA, by hypothesis g is quasi-regular at d ∈ MA, and therefore
has a limit cd ∈ C∞.

Second, let e ∈ E be a regularizer for g, so eg ∈ E and e(A) is injective. One can
easily check that e(A)x = e(d)x for all x ∈ N (d I − A). This implies that e(d) �= 0.
Since eg ∈ E , we have that g has a finite limit c := g(a) at a, and the assertion follows.
�

Recall that the space of strong continuity DT of a (holomorphic) semigroup T
generated by A is precisely D(A). The following result characterizes the space DT in
our setting. Let us point out that the result holds even if the angle of sectoriality β of
g(A) is greater or equal than π

2 .

Proposition 4.3. Let A, g be as in Theorem 3.10. If g−1(∞) ∩ MA = ∅, then
D(g(A)) = X. Otherwise,

D(g(A)) =
⋂

d∈g−1(∞)∩MA

R(d I − A),

where R(∞I − A) := D(A).

Proof. First of all, notice that if g−1(∞) ∩ MA = ∅, then g−1(∞) = ∅ (see
Remark 3.2), so by the inclusion of the spectra (Proposition 2.13), g(A) ∈ L(X)

and D(g(A)) = X .
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Let d ∈ MA. Note that if d /∈ g−1(∞), then g is regular at d with g(d) ∈ C. For
any b > a, consider

fd(z) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(a)
b2 − a2

2a

a + z

b2 − z2
, if d = a,

g(−a)
b2 − a2

2a

a − z

b2 − z2
, if d = −a,

g(∞)
a2 − z2

b2 − z2
, if d = ∞.

Then, g − fd is regular at d with limit 0, and the behavior of g − fd at MA\{d}
remains the same as the behavior of g at those points. Moreover, since fd(A) ∈ L(X),
it follows that

D(g(A)) = D(g•(A)) where g•(z) := g(z) −
∑

d /∈g−1(∞)∩MA

fd(z).

Thus, we can assume that g has regular limits equal to 0 at MA\g−1(∞).
Now, we proceed by showing both inclusions ⊂,⊃ of the statement, starting with

the latter one. For all t > 0 small enough (for which b /∈ σ(t A)), set

ht (z) := (a − z)na (a + z)n−a bn∞

(t + a − z)na (t + a + z)n−a (b + t z)n∞ , z ∈ D(g), (4.1)

with nd = 0 if d /∈ g−1(∞) ∩ MA and the rest nd ∈ N large enough so that ht g ∈ E .
Then, ht g(A) ∈ L(X) with D((ht g)(A)) = X , and note that h−1

t ∈ MA since
σp(A) ∩ g−1(∞) = ∅ (see Lemma 4.2). Therefore, g(A) ⊃ (ht g)(A)h−1

t (A), which
implies that D(g(A)) ⊃ D(h−1

t (A)) = R(ht (A)) for all t > 0 small enough.
In addition, since both aI + A and aI − A are sectorial operators, we have that

lim
t→0

ht (A)x = x, for all x ∈
⋂

d∈g−1(∞)∩MA

R(d I − A),

see [18, Proposition 2.1.1 (c)], which yields that

⋂
d∈g−1(∞)∩MA

R(d I − A) ⊂ R(ht (A)) ⊂ D(g(A)),

and the inclusion ⊃ of the assertion follows.
Let us prove the reverse inclusion ⊂. Assume that ∞ ∈ g−1(∞) ∩ MA. Then,

|g(z)| ∼ |z|α as z → ∞ for some α > 0. It follows that (1 + g(z))−1 regularizes
(z+a)α

′
for anyα′ ∈ (0, α), which implies thatD(g(A)) ⊂ D((A+aI )α

′
). Reasoning

similarly with −a, a, one obtains that for any α′ > 0 small enough,

D(g(A)) ⊂
⋂

d∈g−1(∞)∩MA

R((d I − A)α
′
),
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whereR((∞I − A)α
′
) := D((aI + A)α

′
). Then, our proof will finish if we show that

R((d I − A)α
′
) ⊂ R(d I − A). Assume that d = ∞. It follows from Theorem 3.10

that (aI + A)α
′
is a sectorial operator for a small enough α′ > 0. Moreover, aI + A is

also a sectorial operator, and (aI + A)α
′ = fα′(aI + A) (where f (z) = zα

′
) by using

the NFC of sectorial operators (see [18, Section 2.3]). Then, by the composition rule
for sectorial operators (see e.g., [18, Theorem 2.4.2]), one has that f1/α′((aI+A)α

′
) =

aI + A. Reasoning analogously as in the proof of the inclusion ⊃, one gets that

D(aI + A) = D(( f1/α′)((aI + A)α
′
)) ⊃ D((aI + A)α

′
),

as we wanted to prove. The cases d ∈ {−a, a} are solved in an analogous way, by
using the operators (aI + A)−α′

, (aI − A)−α′
, respectively. The proof is finished. �

Corollary 4.4. If X is reflexive, then D(g(A)) = X.

Proof. By [18, Proposition 2.1.1 (h)], one has that

X = D(A) = N (aI − A) ⊕ R(aI − A) = N (aI + A) ⊕ R(aI + A)

if X is reflexive. Since σp(A) ∩ g−1(∞) = ∅ (see Lemma 4.2), the statement follows
by an application of Proposition 4.3. �

Recall that exp−w(z) := exp(−wz) for all z, w ∈ C. Since Tg(w) = exp−w(g(A)),
it is natural to conjecture that Tg(w) = (exp−w ◦g)(A). The theorem below answers
this question positively. Its proof is inspired by the composition rule for sectorial
operators given in [16], but carefully adapted to cover all our cases. Indeed, one
could easily generalize the result below to a composition rule from bisectorial-like to
sectorial operators, addressing a larger class of functions. However, this would require
to introduce several new definitions and additional cumbersome notations. Thus, in
order for the paper to be accessible for a broad class of mathematicians, we will limit
to our specific cases.

Theorem 4.5. Let β, A, g be as in Corollary 4.1, so that −g(A) generates a holo-
morphic semigroup Tg of angle π

2 − β. Then, for any w ∈ Sπ/2−β , we have that
(exp−w ◦g) ∈ MA and

Tg(w) = (exp−w ◦g)(A). (4.2)

Proof. First of all, the claim is trivial if g = 0, so we will assume that g �= 0. Fix
w ∈ Sπ/2−β . Then, it is straightforward to check that (exp−w ◦g) is regular at MA, so
Lemma 2.12 yields that (exp−w ◦g) ∈ M(A).

Now set fw(z) := exp−w(z)− (1+ z)−1. Then, fw ∈ E0[Sβ ]. As−1 /∈ σ(g(A)) ⊂
Sβ , an application of Lemma 2.8 (f) yields that ( fw ◦ g) ∈ MA and (I + g)−1(A) =
(I + g(A))−1. Therefore, our statement will follow if we prove that ( fw ◦ g)(A) =
fw(g(A)).
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Recall that, for d ∈ C, we denote by cd the limit of g(z) as z → d whenever it
exists. In particular, it exists if d ∈ σp(A), see Lemma 4.2. Let b > a, and for any
λ /∈ Sβ , set

Gλ(z) := 1

λ − g(z)
−

∑
d∈σp(A)∩{−a,a}

1

λ − cd

z + d

b − z

b − d

2d
, z ∈ D(g).

Sinceλ ∈ ρ(A), one has thatGλ ∈ MA.Moreover,Gλ ∈ H∞(D(g))withGλ(d) = 0
for all d ∈ σp(A) ∩ {−a, a}. Furthermore, it is readily seen that one can find a
regularizer e ∈ E independent ofλ, forwhich eGλ ∈ E0. Indeed, to check the regularity
of eGλ at the points d ′ ∈ MA, one can add to e powers of the function (z−d ′)/(z−b)2

if d ′ /∈ σp(A). Otherwise, the regularity is obtained by the bounds in Lemma3.5 (recall
that in this case, cd ′ �= ∞ by Lemma 4.2).
Then, let �′ be an appropriate path for the NFC of the sectorial operator g(A) and

the function fw.
It follows that

fw(g(A)) = e(A)−1e(A) fw(g(A)) = e(A)−1 1

2π i

∫
�′

fw(λ)e(A)g(A) dλ

= e(A)−1 1

2π i

∫
�′

fw(λ)(e(z)Gλ(z))(A) dλ

+
∑

d∈σp(A)∩{−a,a}

b − d

2d
(d I + A)R(b, A)

1

2π i

∫
�′

fw(λ)

λ − cd
dλ.

By Cauchy’s integral theorem, one has that the last term is precisely

∑
d∈σp(A)∩{−a,a}

b − d

2d
f (cd)(d I + A)R(b, A).

Now, let us compute the first term. Let � be an appropriate path of the NFC of the
bisectorial-like operator A. Since eGλ ∈ E0, one has that

e(A)−1 1

2π i

∫
�′

fw(λ)(e(z)Gλ(z))(A) dλ

= e(A)−1 1

(2π i)2

∫
�′

fw(λ)

∫
�

e(z)Gλ(z)R(z, A) dzdλ

= e(A)−1 1

(2π i)2

∫
�

e(z)R(z, A)

∫
�′

fw(λ)Gλ(z) dλdz. (4.3)

Let us go on with the proof before checking the hypothesis for Fubini’s theorem that
we have applied in the last equality in (4.3). By Cauchy’s theorem, it easily follows
that

1

2π i

∫
�′

fw(λ)Gλ(z) dλ = fw(g(z)) −
∑

d∈σp(A)∩{−a,a}
f (cd)

z + d

b − z

b − d

2d
.
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From this, we can conclude that in fact

e(A)−1 1

(2π i)2

∫
�

e(z)R(z, A)

∫
�

fw(λ)Gλ(z) dλdz

= ( fw ◦ g)(A) −
∑

d∈σp(A)∩{−a,a}

b − d

2d
f (cd)(d I + A)R(b, A),

and our assertion follows.
Let us check now that indeed Fubini’s theorem can be applied. For that, we have to

check the integrability of the function

F(λ, z) := fw(λ)

λ
λGλ(z)

e(z)

min{|z − a|, |z + a|} ,

on �′ × �. First, fw(λ)/λ is clearly integrable on �′ and, by Lemma 3.5, λGλ(z) is
uniformly bounded on �′ × �. Now, one can assume that e(z)

min{|z−a|,|z+a|} is integrable
on � if and only if {−a, a} ∩ σp(A) = ∅. Otherwise, one has to check a uniform
bound for the integral of F(λ, z) on the intersection of � with a neighborhood of
d ∈ σp(A) ∩ {−a, a}.

So let d ∈ σp(A) ∩ {−a, a}. Recall that in this case, cd ∈ Sβ with cd �= ∞. If
cd �= 0, then λGλ is of the same type as the function appearing in Step 1 in the proof
of Proposition 3.7, and proceeding as there, one can easily check the integrability
condition.
Thus, we can assume that cd = 0. So, one has that

|λGλ(z)| � |g(z)|
|λ − g(z)| + |z − d|, as z → d,

where the |z − d| term is the result of applying a Taylor expansion of order 1 in a
similar way as in Step 2 in the proof of Proposition 3.7. It is readily seen that the |z−d|
term does not entangle the bound of F(λ, z). Moreover, for any δ ∈ (0, 1), one has
that

∣∣∣∣ fw(λ)

λ

g(z)

λ − g(z)

e(z)

z − d

∣∣∣∣ =
∣∣∣∣ fw(λ)

λ1+δ

∣∣∣∣
∣∣∣∣λ

δg(z)1−δ

λ − g(z)

∣∣∣∣
∣∣∣∣ (eg

δ)(z)

z − d

∣∣∣∣ .

It is easy to see that fw(λ)/λ1+δ is still integrable on �′, and that the middle term
is uniformly bounded. Moreover, since cd = 0, we have by hypothesis that |g(z)| ∼
|z − d|α as z → d for some α > 0. Thus gδ(z) � |z − d|αδ , so the last term is
integrable in �. The proof is finished. �

5. Generalized Black–Scholes equations on interpolation spaces

In this section, we apply the theory developed in the previous sections to introduce
and study generalized Black–Scholes equations on (L1 − L∞)-interpolation spaces.
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Throughout the following, without any mention, E will denote a (L1, L∞)-
interpolation space on (0,∞).
We recall that

(GE (t) f )(x) := f (e−t x), x > 0, t ∈ R, f ∈ E,

defines a group of bounded operators GE = (GE (t))t∈R on E with ‖GE (t)‖L(E) ≤
max{1, et } for t ∈ R, and which is strongly continuous if and only E has order
continuous norm. Then, the lower and upper Boyd indices η

E
, ηE are defined by

η
E

:= − lim
t→∞

log ‖GE (−t)‖L(E)

t
, ηE := lim

t→∞
log ‖GE (t)‖L(E)

t
,

and they satisfy 0 ≤ η
E

≤ ηE ≤ 1.
Let JE be the operator on E given by

⎧⎨
⎩
D(JE ) =

{
f ∈ E : f ∈ ACloc(0,∞) and − x f ′(x) ∈ E

}
,

(JE f )(x) := −x f ′(x), x > 0, f ∈ D(JE ),
(5.1)

with spectrum given by

σ(JE ) = {λ ∈ C : η
E

≤ �λ ≤ ηE },
see [2] formore details about the operator JE and the classical Black–Scholes equation
on exact (L1 − L∞)-interpolation spaces. Note that JE is the generator of the group
GE whenever E has order continuous norm.
However, as the authors indicate in [2], every (L1−L∞)-interpolation space can be

equivalently renormed so that it becomes exact (e.g., [8, Proposition III.1.13]). Thus,
we may apply the results in [2] to arbitrary (L1 − L∞)-interpolation spaces, without
requiring them to be exact.

In particular, one has that, for any ε, ε > 0, both
(
η
E

+ ε
)
I + JE and

(
ηE + ε

)
I −

JE are sectorial operators of angle π
2 (see e.g., [18, Section 2.1.1]). Therefore, JE −

ηE+η
E
+ε−ε

2 I is a bisectorial-like operator of angle π/2 and half-width
ηE−η

E
+ε+ε

2 .
However, to avoid cumbersome notations we will write f (JE ) to refer to fk(JE − k)

for k = ηE+η
E
+ε−ε

2 and fk(z) = f (z + k). Notice that one may take ε = ε = 0 if
η
E

= 0 and ηE = 1, respectively, or if E = L p with 1 ≤ p ≤ ∞.
In [2], the authors make use of the operator JE to study the classical Black–Scholes

partial differential equation in (L1, L∞)-interpolation spaces. Recall that the classical
Black–Scholes equation is the degenerate parabolic equation given by

ut = x2uxx + xux , x, t > 0. (5.2)

In fact, we can rewrite (5.2) as ut = J 2Eu, where JE is the operator defined in (5.1).
Next, we introduce the fractional operators that generalize the Black–Scholes equa-

tion (5.2). On the one hand, we will consider fractional powers of the operator JE .
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If α ∈ (0, n), n ∈ N, it follows that D(JnE ) ⊂ D(Jα
E ) (see [18, Proposition 3.1.1

]). If in addition 0 < α < 1, an application of Fubini’s theorem to the Balakrish-
nan representation of Jα

E f together with the resolvent identity yields that, whenever
η
E

> 0,

(Jα
E f )(x) = −1

�(1 − α)

∫ ∞

x

(
log

s

x

)−α

f ′(s) ds, f ∈ D(JE ), x > 0.

If η
E

= 0, then one cannot apply Fubini’s theorem to obtain the above expression.
However, one can use the fact that (JE + ε I )α f → Jα

E f in E as ε ↓ 0 (see [18,
Proposition 3.1.9]), together with

((JE + ε I )α f )(x) = −1

�(1 − α)

∫ ∞

x

(
log

s

x

)−α ( x
s

)ε

f ′(s) ds, (5.3)

for any f ∈ D(JE ) and x, ε > 0.

Next, let α > 0 be a real number and recall that we denote by D−α the Riemann–
Liouville fractional integral of order α, and by W−α the Weyl fractional integral of
order α, see (2.3) and (2.4), respectively.

Similarly, Dα denotes the Riemann-Liouville fractional derivative of order α, and
Wα the Weyl fractional derivative of order α, defined in (2.5) and (2.6), respectively.

Also, if ms is the multiplication operator by xs for any s ∈ R, we have that the
generalized Cesàro operator Cα of order α, and its adjoint C∗

α , are given, respectively,
by

Cα = �(α + 1)m−α I−α and Dα = (D−α)−1, C∗
α = �(α + 1)W−αm−α,

see (1.6) and (1.6). Note that these operators are injective due to the fact the operators
D−α,W−α and m−α are injective. Moreover, by equality (1.6) again, one has that Cα

defines a bounded operator Cα,E when restricted to our (L1−L∞)-interpolation space
E with ηE < 1, since

Cα,E f = αB(I − JE , α) = α

∫ ∞

0
e−s(1 − e−s)α−1GE (s) f ds, f ∈ E,

where the integral above is understood in the pointwise sense, and where we have
applied Proposition A.3, and B denotes the usual Beta function.

Similarly, C∗
α defines a bounded operator C∗

α,E on any (L1−L∞)-interpolation space
E with η

E
> 0, satisfying C∗

α,E = αB(JE , α). As a consequence, one obtains that

Dα
E := (Cα,E )−1 = (αB(I − JE , α))−1 and Wα

E := (C∗
α,E )−1 = (αB(JE , α))−1 ,

are closed operators on E whenever ηE < 1 and η
E

> 0, respectively. The above
identities appear in [21] for a family of Sobolev spaces on (0,∞).
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5.1. Generation results of holomorphic semigroups of fractional powers operators

The identity JE = W1
E = I − D1

E holds whenever the operators are well-defined
on E (see e.g., [2]). In particular, we have that

(JE )2 = (I − D1
E )2 = (W1

E )2 = W1
E (I − D1

E ). (5.4)

This motivates us to study different fractional versions of the Black–Scholes equation
(5.2). In this section, wemake use of the theory we developed in the preceding sections
to obtain that the operators

(JE )2α, (I − Dα
E )2, (Wα

E )2, Wα
E (I − Dα

E ), (5.5)

are indeed generators of exponentially bounded holomorphic semigroups on E for
suitable values of α.

We start with the operator (JE )2α .

Proposition 5.1. Let E be a (L1 − L∞)-interpolation space, n ∈ N and α ∈(
n − 1

2 , n + 1
2

)
. Then, the operator (−1)n+1(JE )2α generates an exponentially

bounded holomorphic semigroup T(−1)n+1(JE )2α of angle π
( 1
2 − |α − n|), which is

given by

(
T(−1)n+1(JE )2α (w) f

)
(x)

= 1

2π

∫ ∞

0

f (s)

s

∫ ∞

−∞

( s
x

)iu
exp((−1)n+1wu2α) duds, x > 0,

for any w ∈ S
π
(
1
2−|α−n|

) and f ∈ E. In addition, D((JE )2α) = D(JE ).

Proof. That the operator (−1)n+1(JE )2α generates an exponentially bounded holo-
morphic semigroup with the given angle follows from Corollary 3.11. The expression
given for T(−1)n+1(JE )2α is an immediate consequence of Theorem 4.5 and Proposition

A.3. The assertion about D((JE )2α) follows from Proposition 4.3. �

Next, we have the following result for the operator (I − Dα
E )2.

Proposition 5.2. Let E be a (L1 − L∞)-interpolation space with ηE < 1, n ∈ N and
α ∈ (n − 1

2 , n + 1
2

)
. Then, the operator (−1)n+1(I−Dα

E )2 generates an exponentially
bounded holomorphic semigroup T(−1)n+1(I−Dα

E )2 of angle π
( 1
2 − |α − n|), which is

given by
(
T(−1)n+1(I−Dα

E )2(w) f
)

(x)

= 1

2π

∫ ∞

0

f (s)

s

∫ ∞

−∞

( s
x

)iu
exp

(
(−1)n+1w

(
1 − 1

αB(1 − iu, α)

)2
)

duds,

for x > 0, w ∈ S
π
(
1
2−|α−n|

) and f ∈ E. In addition, D((I − Dα
E )2) = D(JE ).
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Proof. First, recall that Dα
E = (αB(I − JE , α))−1, so (I − Dα

E )2 = (I − αB(I −
JE , α))−1. It follows that

(
1 − 1

αB(1 − z, α)

)2

=
(
1 − 1

�(α + 1)

�(1 + α − z)

�(1 − z)

)2

,

which is holomorphic in C\{1, 2, 3, . . .}. In addition, for λ, z ∈ C, one has that

�(z + λ)

�(z)
= zλ

(
1 + O(|z|−1)

)
, as |z| → ∞, (5.6)

whenever z �= 0,−1,−2, . . . and z �= −λ,−λ − 1,−λ − 2 . . ., (see e.g., [26] for
more details). As a consequence, one gets that

(
1 − 1

αB(1 − z, α)

)2

= (−z)2α

α

(
1 + O(|z|−1)

)
, as |z| → ∞.

Thus, for any β ∈ (0, π ( 12 − |α − n|)), one can find a ρ > 0 large enough such that

the function ρ + (−1)n+1
(
1 − 1

αB(1−z,α)

)2
satisfies the hypothesis of Corollary 4.1,

i.e., (−1)n+1(I −Dα
E )2 generates an exponentially bounded holomorphic semigroup

of angle π
( 1
2 − |α − n|). The rest of the statement follows by a similar reasoning as

in the proof of Proposition 5.1. �

We have the following generation result for the operator (Wα
E )2.

Proposition 5.3. Let E be a (L1 − L∞)-interpolation space with η
E

> 0, n ∈ N and

α ∈ (
n − 1

2 , n + 1
2

)
. Then, the operator (−1)n+1(Wα

E )2 generates an exponentially
bounded holomorphic semigroup T(−1)n+1(Wα

E )2 of angle π
( 1
2 − |α − n|), which is

given by

(
T(−1)n+1(Wα

E )2(w) f
)

(x)

= 1

2π

∫ ∞

0

f (s)

s

∫ ∞

−∞

( s
x

)iu+δ

exp
(
(−1)n+1w (αB(iu + δ, α))−2

)
duds,

for x > 0, w ∈ S
π
(
1
2−|α−n|

), and f ∈ E, where δ is any number δ > 0. In addition,

D((Wα
E )2) = D(JE ).

Proof. The proof is analogous to the proof of Proposition 5.2, using that Wα
E =

(αB(JE , α))−1. The only difference comes out that one cannot apply Cauchy’s The-
orem and translate the inner integral path in u to make δ = 0 since the Euler–Beta
function B(0, α) has an essential singularity for any non natural number α. �

Finally, we have the following generation result for the operator Wα
E (I − Dα

E ).
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Proposition 5.4. Let E be a (L1−L∞)-interpolation space with η
E

> 0 and ηE < 1,
and let α > 0. Then,Wα

E (I −Dα
E ) generates an exponentially bounded holomorphic

semigroup TWα
E (I−Dα

E ) of angle
π
2 , which is given by

(
TWα

E (I−Dα
E )(w) f

)
(x) = 1

2π

∫ ∞

0

f (s)

s

∫ ∞

−∞

( s
x

)iu+δ

× exp

(
w

αB(δ + iu, α)

(
1 − 1

αB(1 − δ − iu, α)

))
duds,

for x > 0, w ∈ Sπ
2
, and f ∈ E, where δ ∈ (0, 1) is any number. In addition,

D(Wα
E (I − Dα

E )) = D(JE ).

Proof. The proof is analogous to the proof of Propositions 5.2 and 5.3. Here, the
statement is valid for any α > 0 since, by (5.6), we have that

1

αB(z, α)

(
1 − 1

αB(1 − z, α)

)
= zα(−z)α

2α
(1 + O(|z|−1)), as |z| → ∞.

The proof is finished. �

5.2. Generalized Black–Scholes partial differential equations

Let BE be a closed linear operator on a Banach space E , and consider the following
abstract Cauchy problem:

⎧⎪⎪⎨
⎪⎪⎩

u ∈ C1((0,∞); E), u(t) ∈ D(BE ), t > 0,

u′(t) = BEu(t), t > 0,

lim
t↓0 u(t) = f ∈ E .

(ACP0)

We say that the Cauchy problem (ACP0) is well-posed, if for for any f ∈ E , there
exists a unique solution u.

We are ready to state the following result concerning the well-posedness of the frac-
tional Black–Scholes equation. Before that, let us state explicitly how these equations
look like. Let n ∈ N, α > 0, and recall that Dα and Wα denote, respectively, the
Riemann–Liouville and Weyl fractional derivatives of order α acting on the spatial
domain.

(1) In the case BE = (−1)n+1(JE )2α , we have the following situation:
• If η

E
> 0, one can use the Balakrishnan representation, to obtain

(−1)n+1ut (x) = −1

�(1 − α)

∫ ∞

x

(
log

s

x

)−2α+n
U ′
n(s) ds, t, x > 0.

• If η
E

= 0, one has to proceed as in (5.3) to obtain

(−1)n+1ut (x) = lim
ε↓0

−1

�(1 − α)

∫ ∞

x

(
log

s

x

)−2α+n ( x
s

)ε

U ′
n(s) ds, t, x > 0.
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In both cases, n ∈ N is the whole part of 2α and Un := (JE )nU .
(2) If BE = (−1)n+1(I − Dα

E )2, one obtains the equation

(−1)n+1ut = 1

�(α + 1)2
Dα(xαDα(xαu)) − 2

�(α + 1)
Dα(xαu) + u, t, x > 0.

(3) If BE = (−1)n+1(Wα
E )2, one gets the equation

(−1)n+1ut = 1

�(α + 1)2
xαWα(xαWαu), t, x > 0.

(4) The case BE = Wα
E (I − Dα

E ) leads to the equation

ut = 1

�(α + 1)
xαWαu − 1

�(α + 1)2
Dα(x2αWαu), t, x > 0.

We have the following result.

Theorem 5.5. Let E be a (L1−L∞)-interpolation spacewith order continuous norm,
n ∈ N, and α > 0. Then, the following assertions hold.

(1) If α ∈ (n − 1
2 , n + 1

2

)
, then (ACP0) is well-posed with BE = (−1)n+1(JE )2α .

(2) If ηE < 1 and α ∈ (
n − 1

2 , n + 1
2

)
, then (ACP0) is well-posed with BE =

(−1)n+1(I − Dα
E )2.

(3) If η
E

> 0 and α ∈ (
n − 1

2 , n + 1
2

)
, then (ACP0) is well-posed with BE =

(−1)n+1(Wα
E )2.

(4) If ηE < 1 and η
E

> 0, then (ACP0) is well-posed with BE = Wα
E (I − Dα

E ).

In any case, the solution u of (ACP0) is given by u(t) = TBE (t) f for t > 0. In
addition, identifying u(t, x) = u(t)(x), we obtain that u ∈ C∞((0,∞) × (0,∞)).

Proof. In all cases, BE is the generator of a holomorphic semigroup with D(BE ) =
D(JE ) by Propositions 5.1, 5.2, 5.3, and 5.4. Moreover, TBE is strongly continuous
since one has that D(JE ) is dense in E if and only if E has order continuous norm
(see e.g., [2, Remark 4.2]). Then, the assertions follow immediately by the relation
between the well-posedness of a Cauchy problem, and the fact that BE generates a
strongly continuous semigroup (see for example [1, Proposition 3.1.2 and Theorem
3.1.12]).
Regarding the regularity result, one has that u(t) is E-holomorphic in t in (0,∞)

since TBE is a holomorphic semigroup. Even more, it satisfies u(t) = TE (t) f ,
u(k)(t) = (BE )ku(t), and that u(k)(t) ∈ D((BE )n) for all k, n ∈ N and t > 0
(see [1, Chapter 3]). Now, reasoning as in the proof of Proposition 4.3 with any of the
operators BE yields thatD(BE ) ⊂ D((JE )ε) for sufficiently small ε > 0. In addition,
since D(JE ) ⊂ ACloc(0,∞), we have that D((JE ) j+1) ⊂ C j (0,∞). As u(k)(t) ∈
D((BE )n) ⊂ D((JE )nε) for all k, n ∈ N, one obtains that u(k)(t) ∈ C∞(0,∞) for all
k ∈ N and t > 0. The proof is finished. �
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Remark 5.6. As stated in the above proof, TBE is strongly continuous at 0 if and only
if E has order continuous norm. Hence, Theorem 5.5 does not hold for a general
(L1 − L∞)-interpolation space. To address all interpolation spaces, we follow the
ideas given in [2] and consider the Köthe dual E� of E , given by

E� :=
{
g : (0,∞) → C measurable and

∫ ∞

0
| f (x)g(x)| dx < ∞ for all f ∈ E

}
.

Every g ∈ E� defines a bounded (order continuous) linear functional ϕg on E ,
given by

〈 f, ϕg〉E,E� :=
∫ ∞

0
f (x)g(x) dx for all f ∈ E .

In this way, we can identify E� with a subspace of the dual E ′ (and under the present
assumptions on E , this subspace is norming for E). It is known that when equipped
with the norm ‖g‖E� = ‖ϕg‖E ′ , then E� is a (L1, L∞)-interpolation space on (0,∞).

Next, we consider the following abstract Cauchy problem:

⎧⎪⎪⎨
⎪⎪⎩

u ∈ C1((0,∞); E), u(t) ∈ D(BE ), t > 0,

u′(t) = BEu(t), t > 0,

lim
t↓0 〈u(t), ϕ〉E,E� = 〈 f, ϕ〉E,E� , f ∈ E and for all ϕ ∈ E�.

(ACP1)

Again, we say that (ACP1) is well-posed if, for any f ∈ E , there exists a unique u
which is a solution of (ACP1).

We have the following result.

Theorem 5.7. Let E be a (L1 − L∞)-interpolation space, n ∈ N, and α > 0. Then,
the following assertions hold.

(1) If α ∈ (n − 1
2 , n + 1

2

)
, then (ACP1) is well-posed with BE = (−1)n+1(JE )2α .

(2) If ηE < 1 and if α ∈ (
n − 1

2 , n + 1
2

)
, then (ACP1) is well-posed with BE =

(−1)n+1(I − Dα
E )2.

(3) If η
E

> 0 and if α ∈ (
n − 1

2 , n + 1
2

)
, then (ACP1) is well-posed with BE =

(−1)n+1(Wα
E )2.

(4) If ηE < 1 and η
E

> 0, then (ACP1) is well-posed with BE = Wα
E (I − Dα

E ).

In any case, the solution u of (ACP1) is given by u(t) = TBE (t) f for t > 0. In
addition, identifying u(t, x) = u(t)(x), we obtain that u ∈ C∞((0,∞) × (0,∞)).

To prove the theorem, we need the following lemma.

Lemma 5.8. Let a ≥ 0 and let A ∈ BSect(π/2, a) on E be such that A generates
an exponentially bounded group (G(t))t∈R for which ‖G(t)‖ � ea|t | for t ∈ R. Let
g ∈ MA satisfy all the hypothesis in Corollary 4.1. Assume furthermore that the
following hold:

(1) g is quasi-regular in {−a, a,∞} with g(a), g(−a) �= ∞.
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(2) The group (G(t))t∈R is σ(E, E�)-continuous, that is, limt→0〈G(t) f, ϕ〉E,E� =
〈 f, ϕ〉E,E� for all f ∈ E and ϕ ∈ E�.

Then, the semigroup (Tg(t))t≥0 generated by the operator −g(A) is also σ(E, E�)-
continuous, i.e.,

lim
t↓0 〈Tg(t) f, ϕ〉E,E� = 〈 f, ϕ〉E,E� for all f ∈ E and ϕ ∈ E�.

Proof. Note that, even thoughGE is not strongly continuous, JE is the generator of the
integrated semigroup t �→ ∫ t

0 GE (s) ds, see [2]. As a consequence, if we ask for the
regularity conditions at {−a, a,∞} instead of justMA, the results given in the appendix
of this paper are true both in the weak Köethe sense and in the pointwise sense. Then,
Proposition A.3 yields 〈Tg(t) f, ϕ〉E,E� = ∫∞

−∞〈G(s) f, ϕ〉E,E�μht (ds) f or f ∈
E, ϕ ∈ E�, where ht (z) := exp(−tg(z)), and μht ∈ Ma(R) is given in Lemma
A.1. By Lemma A.1 again, one obtains that

∫ ∞

−∞
μt (ds) =

∫ ∞

−∞
ei0s μt (ds) = ht (0) = exp(−tg(0)).

Then, for any f ∈ E and ϕ ∈ E�, we have that

〈Tg(t) f, ϕ〉E,E� − 〈 f, ϕ〉E,E� =
∫ ∞

−∞
〈G(s) f − f, ϕ〉E,E�μht (s) ds

+ (e−tg(0) − 1)〈 f, ϕ〉E,E� . (5.7)

We have to prove that the integral term in (5.7) tends to 0 as t ↓ 0. Since by assumption
(G(t))t∈R is σ(E, E�)-continuous, we have that limt↓0〈G(t) f, ϕ〉E,E� = 〈 f, ϕ〉E,E� .
Thus, for any ε > 0, there exists δ > 0 such that |〈G(s) f − eirs f, ϕ〉E,E� | < ε for all
|s| < δ. Hence, for some C > 0 independent of t and ε, we have that

lim sup
t↓0

∣∣∣∣
∫ ∞

−∞
〈G(s) f − f, ϕ〉E,E�μht (s) ds

∣∣∣∣ ≤ Cε

+ lim sup
t↓0

∣∣∣∣
∫

|s|>δ

〈G(s) f − f, ϕ〉E,E�μht (s) ds

∣∣∣∣ .

Let us work with the above integral when s > δ, leaving the case s < −δ, which is
completely analogous.
By Lemma A.1, one gets that
∫
s>δ

〈G(s) f − f, ϕ〉E,E� μht (s) ds

=
∫
s>δ

〈G(s) f − f, ϕ〉E,E�
1

2π i

∫
�+

e−zse−tg(z) dzds

=
∫
s>δ

〈G(s) f − f, ϕ〉E,E�
1

2π i

∫
�+

e−zs
(
e−tg(z) − e−tg(a) b + a

b + z

)
dzds,
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where we have used Cauchy’s theorem in the last equality and the fact that for b > a,
we have that

e−tg(a)

∫
�+

e−zs b + a

b + z
dz = 0, for all s, t > 0.

Now, applying the Lebesgue dominated convergence theorem, we obtain that

lim sup
t↓0

∣∣∣∣
∫
s>δ

〈G(s) f − f, ϕ〉E,E� μht (s) ds

∣∣∣∣
=
∣∣∣∣
∫
s>δ

〈G(s) f − f, ϕ〉E,E�
1

2π i

∫
�+

e−zs z − a

b + z
dzds

∣∣∣∣ = 0,

where we have used again Cauchy’s theorem in the last equality. To check the hypothe-
sis of the dominated convergence theorem, one has to bound the following expression:

Ft (s, z) := e−s(�z−a)

∣∣∣∣e−tg(z) − e−tg(a) b + a

b + z

∣∣∣∣ , s > δ, z ∈ �+,

by an integrable function for all t ∈ (0, ε′), where ε′ is any number ε′ > 0. Since
�g(z) ≥ 0 implies that supt>0,z∈�+ |e−tg(z)| < ∞, an easy bound of the term between
|(·)| leads to

Ft (s, z) � e−s(�z−a) min

{
1,

|z − a| + |g(z) − g(a)|
|b + z|

}
,

which is easily seen to be integrable by integrating first on s and then in z (recall that
the function g is regular at a). The proof is finished. �
Proof of Theorem 5.7. Once we have proven that TBE (t) f is σ(E, E�)-continuous on
t as t ↓ 0 for all f ∈ E , the assertions follow by a similar reasoning as in the proofs
of Theorem 5.5 and [2, Theorem 5.8]. Then, for the operators we are considering,
we only have to check the exponentially bound condition of Lemma 5.8. But, except
for the case η

E
= 0 and BE = (JE )2α , we can always assume that they are satisfied

since the functions gBE , for which BE = gBE (JE ), are holomorphic in strictly wider
bisectorial-like sets than the ones with singular points in η

E
, ηE . If this is the case,

given any ε > 0, we have that ‖GE (t)‖L(E) � max{e(η
E
−ε)t

, e(ηE+ε)t } for all t ∈ R.
And regarding the case η

E
= 0, one still has that ‖GE (t)‖L(E) � 1 for t ≤ 0 (see e.g.,

[2]). Then, we can apply Lemma 5.8 to obtain that TBE (t) f is σ(E, E�)-continuous.
The proof is finished. �
It is easy to check that when α = 1, all the different generalized Black–Scholes

equations presented above yield the classical Black–Scholes equation given by (BS).
In this case, the above results retrieve the ones obtained in [2, Section 5]. In particular,
one gets the formula for the semigroup TBE , given by

(
TBE (w) f

)
(x) = 1

2π

∫ ∞

0

f (s)

s

∫ ∞

−∞

( s
x

)iu
exp

(
−wu2

)
duds

= 1√
4πw

∫ ∞

0
exp

(
− (log x − log s)2

4w

)
f (s)

s
ds, x > 0,�w > 0,
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where in the last equality we have made use of the integral identity [15, Formula
3.233(2)].

Remark 5.9. The above results do not cover (in general) the case α = 1/2, 3/2,
5/2, . . .. This is closely related to the odd powers of a generator of a group (see
Corollary 3.11 and [7, Theorem 4.6]). Indeed, one can prove that when α =
1/2, 3/2, 5/2, . . ., the considered operators for BE , except the last oneWα

E (I −Dα
E ),

are bisectorial-like operators of angle π
2 . Unfortunately, this is a necessary but not

sufficient condition to determine that they generate semigroups.
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Appendix A. Functional calculus of generators of exponentially bounded groups

In this appendix, we give some auxiliary results in the case where A is the gener-
ator of an exponentially bounded group (G(t))t∈R on a Banach space X satisfying
‖G(t)‖L(X) � exp(a|t |) for all t ∈ R and some a ≥ 0. It is well-known that in
this case, A ∈ BSect(π/2, a), see for example [18, Section 2.1.1]. The following
results are completely analogous to the ones given in [6, Theorem 5.2] for the primary
functional calculus of strip operators or in [18, Section 3.3] for the NFC of sectorial
operators.
It should be mentioned that through this appendix, we will only work with the NFC

for bisectorial-like operators, not including the different NFCs presented in Sect. 2.3.
The reason for this is that in order to successfully apply some identities, we will need
that the integration paths of the NFC leave the spectrum of A completely on one side.
This is enough to cover all the results that use the appendix.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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First, recall the integral representation for the resolvent of the generator A of an
exponentially bounded group (G(t))t∈R given by

R(z, A) =
∫ ∞

0
e−ztG(t) dt, if �z > a,

R(z, A) = −
∫ 0

−∞
e−ztG(t) dt, if �z < −a.

(A.1)

Next, for any a ≥ 0, letMa(R) be the set of Borel measuresμ onR for which ea|t | is
μ-integrable. It is readily seen that Ma(R) is closed under translation and convolution.
Moreover, for any μ ∈ Ma(R), one can define its Fourier transform F given by

(Fμ)(z) =
∫ ∞

−∞
e−zt μ(dt), for all z ∈ BSπ/2,a .

Lemma A.1. Let a ≥ 0 and f ∈ E[BSπ/2,a] ⊕ C1. Then, there exists a (unique)
measureμ f ∈ Ma(R) such that f (z) = Fμ f (−z) for all z ∈ BSπ/2,a, which is given
by μ f (dt) = ψ f (t)dt + cδ0(dt), where c = f (∞) and

ψ f (t) :=

⎧⎪⎪⎨
⎪⎪⎩

−1

2π i

∫
�−

e−zt f (z) dz, t < 0,

1

2π i

∫
�+

e−zt f (z) dz, t > 0,
(A.2)

and where � is any path of integration for the NFC of bisectorial-like operators,
�− := � ∩ �z < −a and �+ := � ∩ �z > a.

Proof. The proof is the same as in the case of sectorial operators (see [18, Lemma
3.3.1]). We omit the details for the sake of brevity. �

Remark A.2. Let f be as above, and assume furthermore that | f (z)| � |z|−(1+ε) as
z → ∞ for some ε > 0. An easy application of Cauchy’s theorem to (A.2) yields that

ψ f (t) = 1

2π

∫ ∞

−∞
e−i tu f (iu) du, t ∈ R.

Proposition A.3. Let A be thegenerator of an exponentially boundedgroup (G(t))t∈R
on X satisfying ‖G(t)‖L(X) � ea|t | for some a ≥ 0, so that A ∈ BSect(π/2, a). Let
μ ∈ Ma(R) be such that f (z) := Fμ(−z) ∈ M[BSπ/2,a]A. Then,

f (A) =
∫ ∞

−∞
G(t) μ(dt).

Proof. The proof follows as in the case of sectorial operators (see [18, Proposition
3.3.2]). We omit the details for the sake of brevity. �
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