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Geometric Analysis of the Doppler Frequency for
General Non-Stationary 3D Mobile-to-Mobile

Channels Based on Prolate Spheroidal Coordinates
Michael Walter , Senior Member, IEEE, Dmitriy Shutin , Senior Member, IEEE,

Martin Schmidhammer , Member, IEEE, David W. Matolak , Senior Member, IEEE,
and Alenka Zajic , Senior Member, IEEE

Abstract—Mobile-to-mobile channels often exhibit time-variant
Doppler frequency shifts due to the movement of transmitter and
receiver. An accurate description of the Doppler frequency turns
out to be very difficult in Cartesian coordinates and any subsequent
algebraic analysis of the Doppler frequency is intractable. In con-
trast to other approaches, we base our investigation on a geometric
description of the Doppler frequency with the following three math-
ematical pillars: prolate spheroidal coordinate system, algebraic
curve theory, and differential forms. The prolate spheroidal coor-
dinate system is more appropriate to algebraically investigate the
problem. After the transformation into the new coordinate system,
the theory of algebraic curves is needed to resolve the ambiguities.
Finally, the differential forms are required to derive the joint delay
Doppler probability density function. This function is normalized
by the equivalent ellipsoidal area of the scattering plane bounded
by the delay ellipsoid. The results generalize in a natural way our
previous model to a complete 3D description. Our solutions enable
insight into the geometry of the Doppler frequency and we were able
to derive a Doppler frequency that is dependent on the delay and
the scattering plane. The presented theory allows describing any
time-variant, single-bounce, mobile-to-mobile scattering channel.

Index Terms—Doppler frequency, mobile-to-mobile
communication, geometry-based stochastic channel model,
algebraic curve, prolate spheroidal coordinate system, differential
forms.

I. INTRODUCTION

MOBILE-TO-MOBILE communication becomes more
important by the day. Devices should be able to com-

municate with each other anywhere and anytime as the internet
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of things becomes more prevalent. Especially important are
mobile devices which are not fixed at a certain location. The
non-stationarity of the communication channel between mobile
devices makes understanding of such wireless channels both
challenging and interesting for research. A fundamental differ-
ence exists, however, in modeling the Doppler frequency for
fixed-to-mobile or mobile-to-mobile channels.

In the past, when narrowband systems were deployed, purely
stochastic models were often used to characterize the propaga-
tion channel [1]. Those stochastic models are based on the wide-
sense stationary uncorrelated scattering (WSSUS) assumption
that was introduced in the seminal paper of Bello [2]. The
correlation function, which describes the power spectral density
of delay and Doppler, is called scattering function. Power spectal
densities can usually be recorded by measurement equipment.
The joint delay Doppler probability density function (pdf) in
this paper is based on the proof of proportionality between pdf
and scattering function in [3]. The Bello model is valid for
narrowband channels, so all diffuse components are essentially
combined in the same tap due to the limited bandwidth. This
WSSUS assumption is justified for narrowband fixed-to-mobile
channels for some limited spatial extent or temporal duration.

For scatterers uniformly distributed in azimuth, Clarke de-
rived in [1] the so called Jakes Doppler power spectrum [4].
A WSSUS model for the mobile-to-mobile (M2M) channel
was introduced in [5]. M2M model extensions were derived
in [6]–[9] for various 2D and 3D scenarios as well as for multiple
input multiple output (MIMO) scenarios in [10]–[14].

For M2M channels, however, the WSSUS assumption is
mostly violated due to the simultaneous movement of trans-
mitter and receiver. This has been observed for example in
vehicle-to-vehicle (V2V) channels according to [15] and [16].
This observation is also true for other M2M channels, e.g., the
air-to-air (A2A) channel in [17].

To address statistical non-stationarity, Matz extended Bello’s
model in [18] to include a non-WSSUS description. The re-
sulting model is represented by four-dimensional channel cor-
relation functions, which are difficult to handle in practice.
Following [19], which suggested to model the Doppler spectrum
as a time-variant function, we proposed in [20] a simpler solution
by considering time-variant, delay-dependent Doppler pdfs for
V2V channels. Later we showed in [21] that the time-variant
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scattering function remains proportional to the time-variant joint
delay Doppler pdf. The result thus relates the local scattering
function of Matz with the time-variant joint delay Doppler
pdf. Such a time-variant description has nowadays become
more common in the mobile radio communication literature,
see e.g. [22]. In [23] the proposed model was then extended
to A2A scenarios. The theoretical models were verified using
measurement data for both V2V channels in [24] and [25] and
A2A channels in [26] and [27]; these results, however, retained
the uncorrelated scattering (US) assumption. A validation of
our model with V2V measurement data from TU Ilmenau was
shown in [28].

Our proposed model enabled us to describe the time-variant
channel accurately, but the underlying Cartesian coordinates
have prevented both a thorough mathematical analysis of the
Doppler frequency and an efficient implementation to simulate
the channel. Because both transmitter (TX) and receiver (RX) are
in the foci of the delay ellipsoid, a delay-dependent description
better expresses the so called two-center problem. A fixed delay
defines an ellipse for a 2D scenario and an ellipsoid for a 3D sce-
nario, since this particular geometric shape defines the locations
where the delay between TX and RX via a scatterer is constant.
Typically, such two-center problems are advantageously repre-
sented in prolate spheroidal coordinates (PSCs). Thus, in [29]
we transformed the time-variant, delay-dependent Doppler pdf
description for V2V channels, which are a symmetric version
of the general M2M channel, into PSCs. We derived the simpler
delay-dependent Doppler pdf by assuming that the joint pdf can
be factorized according to Bayes rule. Based on the transformed
description, we obtained analytic expressions of the Doppler
pdfs for time-variant V2V scenarios in [21].

Since the limiting frequencies of the Doppler frequency are
important parameters for future M2M communication systems,
we conducted an algebraic analysis to calculate the delay-
dependent limiting Doppler frequencies of the pdfs in [30].
Thereby, the derivative of the Doppler frequency represented in
PSCs was converted into a polynomial to conduct the analysis.
These results have been extended to A2A channels by exploiting
the symmetry of the scattering plane in [17], i.e., the scattering
plane is halved by the y-z-plane. The results are thus only
valid for certain scattering planes in an M2M scenario and the
extension is not yet applicable to the general case. The algebraic
curves and the sixth order polynomial have less parameters due
to the exploited symmetry.

In this paper, we present the mathematical methods to calcu-
late both the delay-dependent Doppler pdf and the joint delay
Doppler pdf for general M2M channels. By applying the al-
gebraic curve theory, we derive a closed-form equation of the
delay-dependent Doppler frequency for an arbitrarily oriented
scattering plane. This particularly parameterized Doppler fre-
quency allows a bijective mapping from spatial coordinates to
the delay Doppler coordinates. Thus, we are able to transform
a spatial distribution of scatterers to both the delay-dependent
Doppler pdf and the joint delay Doppler pdf. Motivated by [31]
and [32], where differential forms are already successfully ap-
plied to electromagnetic field theory, we use differential forms
to derive analytical expressions for the joint delay Doppler pdf

based on the physically motivated bistatic path loss. Thus, the
scattering power is accounted for in the joint delay Doppler pdf
for the first time. The application of differential forms [33] is
necessary to derive the differential areas and to carry out the
two-dimensional integration in the prolate spheroidal coordi-
nate system (PSCS). Eventually, our generalized M2M channel
model is capable of describing any time-variant, single-bounce
M2M scenario with arbitrarily oriented scattering planes, e.g.,
V2V, A2A, drone-to-drone, or drone-to-vehicle scenarios. Nu-
merical results show the validity of the presented equations for
an exemplary drone-to-drone scenario.

The remainder of the paper is structured as follows. In
Section II, we describe the general approach to derive the
delay-dependent and the joint delay Doppler probability density
function and introduce the three main mathematical concepts. In
Section III, we derive delay-dependent Doppler functions, i.e.,
the delay-dependent Doppler probability density function and
the limiting frequencies of the probability density function of
the mobile-to-mobile channel. Similar to the delay-dependent
Doppler probability density function, the joint delay Doppler
probability function is derived in Section IV. The application of
the presented mathematical derivations with regard to channel
modeling and channel simulation are shown in Section V. The
paper concludes with Section VI.

II. THE THREE THEORETICAL PILLARS

We introduce the three main mathematical concepts and the
general modeling approach that will be used to geometrically
investigate the Doppler frequency. We motivate why these con-
cepts are needed and explain the relationship between them.
Then, we apply the presented concepts to compute both the
delay-dependent Doppler pdf and the joint delay Doppler pdf.

A. Doppler Frequency and Probability Density Functions in
Prolate Spheroidal Coordinates

It is known that for two-center problems PSCs are a more
suitable representation than classical Cartesian coordinates.
Moreover, the PSCS allows that the description of the Doppler
frequency becomes free of trigonometric functions for arbitrarily
oriented scattering planes, which simplifies a subsequent alge-
braic analysis. To derive the PSC description we first consider
TX and RX moving with respect to a fixed east, north, up
(ENU) Cartesian coordinate system (CCS) (e, n, u) as shown
in Fig. 1, where the e-n-plane is selected to coincide with
the ground plane. Assuming typical communication distances
for M2M links and typical scattering power decay rates, a flat
scattering plane assumption is well justified in practice. Thus,
the origin of the ENU coordinate system should be placed in
the vicinity of TX and RX. If both move too far away, the
location of the ENU coordinate system should be changed. To
model the channel between TX and RX it is more convenient
to consider a local, TX-RX centered CCS (x, y, z). Therefore,
we use a local right-handed coordinate system with the z-axis
running from TX to RX, the y-axis pointing towards the ground
in the ENU coordinate frame, and the origin located in the
middle between TX and RX, see Fig. 1. The advantage of
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Fig. 1. A local prolate spheroidal coordinate system with the surfaces of
constant ξ (ellipsoid), η (hyperboloid), and ϑ (half-plane). The TX and RX
are in the foci of the ellipsoids and hyperboloids. A fixed, ground-based ENU
coordinate system is shown to relate the fixed and the moving coordinate system.

the TX-RX-centric description is an analytical tractability of
the resulting models. However, the price for this tractability is
a general time dependency of the local coordinate frame for
objects that are stationary in the global coordinate system. Due
to the movement of TX and RX in the non-moving ENU frame,
the orientation and the origin of the local coordinate system
change with respect to the fixed ENU coordinate system. In the
following, we keep this time dependency of the local coordinate
system implicit to simplify the notation.

We define the location of TX and RX to be the foci of the
PSCS. The transformation between local Cartesian coordinates
(x, y, z) and PSCs (ξ, η, ϑ) can be computed using the relation-
ships in [34]

x = l
√
(ξ2 − 1) (1 − η2) cosϑ ,

y = l
√
(ξ2 − 1) (1 − η2) sinϑ ,

z = lξη , (1)

where ξ ∈ [1,∞), η ∈ [−1, 1], ϑ ∈ [0, 2π) are shown in Fig. 1
and l in (1) is the focus distance of both TX and RX to the origin
of the coordinate system. The coordinate ξ plays a special role in
the PSC description, since ξ defines a set of points – an ellipsoid
– that has a constant propagation delay τ between TX, scatterers,
and RX. Thus, this coordinate has a direct physical interpretation
as normalized propagation delay ξ = τ/τlos, where τlos is the
line-of-sight (LOS) propagation delay. Obviously, scattering can
only take place if ξ > 1, since ξ = 1 corresponds to the LOS
path.

Let dt(t, ξ, η) be the distance from TX to an arbitrary scatterer
at location (ξ, η, ϑ) and at time t in the local PSCS, and let
dr(t, ξ, η) be the corresponding distance from this scatterer to
the RX. In PSCs, we obtain

dt(t, ξ, η) = (ξ + η) l, and dr(t, ξ, η) = (ξ − η) l , (2)

where the total distance dsc(t, ξ) from TX via scatterer to RX in
PSC is calculated as dsc(t, ξ) = dt(t, ξ, η) + dr(t, ξ, η) = 2ξl.

Thus, the total distance dsc(t, ξ) – or total scattering delay τsc =
dsc(t, ξ)/c, with c being the speed of light – from TX to RX of a
scattered signal only depends on the ξ-coordinate in the PSCS.

Due to the movement of the TX and RX and the geometric
orientation of the scattering plane, the Doppler frequency of the
received signal in general varies in time. The time-variant or
instantaneous Doppler frequency is calculated according to [21]
as

fd(t, ξ, η, ϑ) =
fc
c

(
ξη + 1
ξ + η

vtz +
ξη − 1
ξ − η

vrz

+

√
(ξ2 − 1) (1 − η2)

ξ + η
(vtx cosϑ+ vty sinϑ)

+

√
(ξ2−1) (1−η2)

ξ−η
(vrx cosϑ+vry sinϑ)

)

(3)

where vt = [vtx, vty, vtz]
T and vr = [vrx, vry, vrz]

T are the ve-
locity vectors of TX and RX in the local CCS, respectively. The
delay-dependent - also known as isorange in the radar literature
- Doppler frequency is obtained by fixing the coordinate ξ to an
arbitrary value ξ = ξ∗.

The expression in (3) is the key for deriving both the delay-
dependent Doppler and the joint delay Doppler pdfs. We proceed
by postulating a random distribution of scatterers. The corre-
sponding Doppler distribution is then obtained by a probability
density transformation through the nonlinear function in (3).
Subsequently, we show how these computations are carried out
for both the delay-dependent Doppler pdf and the joint delay
Doppler pdf.

In order to make the derivation of the pdfs tractable, we
introduce some constraints. In the following, we assume that
scatterers lie on a fixed plane – the scattering plane – which is
arbitrarily oriented in space. Constraining the analysis to this
scattering plane is, on the one hand, physically motivated, since
in some V2V or A2A scenarios all scatterers are located on
the ground. On the other hand, such an approach simplifies
the derivation and consequent analysis of the resulting pdf
expressions for general M2M scenarios.

In the local CCS the scattering plane is defined as

Ax+By + Cz = lD , (4)

where the four parameters {A,B,C,D} ∈ R determine its ori-
entation in space. For our purposes we cast the scattering plane
in (4) in PSCs, which results in

Al
√

(ξ2 − 1)(1 − η2) cosϑ+Bl
√
(ξ2 − 1)(1 − η2) sinϑ

+ Clξη = lD . (5)

Note that we scaled the distance to the origin of the scattering
plane on the right hand side with the focus distance l in (4) and
(5) to simplify the subsequent derivations and keep the parameter
D of the scattering plane dimensionless.

The scattering plane as any 2D plane embedded in 3D space
can be parameterized by two independent variables in the
selected coordinate system. Our goal is to obtain a parame-
terization that allows for an algebraic analysis of the Doppler
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frequency. Since we need ξ for a delay-dependent description,
we can choose either η or ϑ as second variable. In fact, we
need both the (ξ, η) and (ξ, ϑ) parameterizations to cover all
possible scattering planes in 3D space. Our main parameteri-
zation is, however, the one with the (ξ, η)-coordinates, since
it allows an algebraic analysis of the Doppler frequency with
the help of the algebraic curve theory. The remaining scattering
planes, which cannot be parameterized by (ξ, η), since they are
orthogonal to the z-axis in the local CCS, are described by the
(ξ, ϑ)-coordinates. It complements the (ξ, η) parameterization
and allows an algebraic analysis even without using the algebraic
curve theory. In the following, we refer to these cases as general
case and complementary case, respectively.

In order to derive both the delay-dependent Doppler pdf and
the joint delay Doppler pdf, two very similar strategies are
followed. Subsequently, we outline the approaches on a general
level to give the reader a global perspective on the methodology.

In case of the delay-dependent Doppler pdf, the normalized
delay ξ and thus the delay ellipsoid is fixed. The scatterers
lie on an ellipse created from the intersection of the scattering
plane and the delay ellipsoid. We refer to this intersection ellipse
using the implicit equation qξ(η, ϑ) = 0 for the general descrip-
tion, which simplifies to qξ(η) = 0 if the parameterization is
in (ξ, η)-coordinates or qξ(ϑ) = 0 if the parameterization is in
(ξ, ϑ)-coordinates. Furthermore, we treat all scatterers lying on
qξ(η, ϑ) = 0 as identical and uniformly distributed along the
curve. As such, the density s of scatterers along the intersection
ellipse can be modeled as

p(t, qξ(η, ϑ); s|ξ) = 1
L
, (6)

whereL is the length of the intersection curve. We note the semi-
colon notation in p(·; ·), which is used to separate deterministic
variables to the left of the semicolon from the random variables
to the right of the semicolon. Thus, the notation indicates the
deterministic dependence on time and on the scattering plane of
the obtained pdfs.

The delay-dependent Doppler pdf is obtained by transform-
ing the spatial distribution of scatterers into a delay-dependent
Doppler frequency distribution using (3) and following standard
rules of probability transformation according to [35] as

p (t, qξ(η, ϑ); fd|ξ) = p (t, qξ(η, ϑ); s|ξ)
∣∣J−1

s

∣∣ , (7)

where Js
−1 = ds/dfd is the inverse 1 × 1 Jacobian matrix of

the transformation.
In order to derive the joint delay Doppler pdf we proceed simi-

larly and restrict our analysis to scatterers lying on the scattering
plane. In this case, however, we consider scatterers that lie on the
portion of the scattering plane circumscribed by the intersection
ellipse. This scattering ellipse can be generally described by the
implicit expression q(ξ, η, ϑ) = 0, which simplifies to q(ξ, η) =
0 if the parameterization is in (ξ, η)-coordinates or q(ξ, ϑ) = 0
if the parameterization is in (ξ, ϑ)-coordinates. The resulting
object – effectively the area inside the ellipse where the scatterers
are located – is then used similarly to the intersection ellipse
qξ(η, ϑ) = 0 computed in the delay-dependent Doppler pdf case.
We assume that the scatterers lying within q(ξ, η, ϑ) = 0 are

identical and uniformly distributed. Thus, the two-dimensional
density s of the scatterers is modeled as

p(t, q(ξ, η, ϑ); s) =
1
Y , (8)

where Y is the equivalent area of the ellipse q(ξ, η, ϑ) = 0.
The joint delay Doppler pdf is then obtained by transforming

the distribution of scatterers s into (ξ, fd)-coordinates using (3)
and rules of probability transformation as

p (t, q(ξ, η, ϑ); ξ, fd) = p (t, q(ξ, η, ϑ); s)
∣∣Js

−1
∣∣ , (9)

where Js
−1 is the inverse 2 × 2 Jacobian matrix of the variable

transformation.
For both the delay-dependent Doppler and the joint delay

Doppler pdf, the transformation from the spatial domain to
the Doppler domain, i.e., s �→ fd or s �→ (ξ, fd) introduces
ambiguities in the mapping. These ambiguities, however, can be
resolved by applying the algebraic curve theory to the Doppler
frequency description. Furthermore, the locations of the extrema
and thus the limiting frequencies of the pdfs can be determined.

B. Doppler Frequency as Algebraic Curve

A plane algebraic curve defines a set of points that are the zeros
of a polynomial in two variables (see e.g., [36] or [37]), i.e., an
algebraic curve is a one-dimensional algebraic variety. Since we
only need the algebraic curve description in (ξ, η)-coordinates,
we provide the definitions in these coordinates. In our case, given
a fixed delay ξ = ξ∗, we can interpret the intricate relationship
between the Doppler frequency fd and η as an algebraic curve
defined by

CJI := V (F ) = {(η, fd) ∈ [−1, 1]× R|F (η, fd) = 0} ,
(10)

with the algebraic variety V (F ) and F (η, fd) being a polyno-
mial in two variables with the maximum degree of n = J + I =
max{j + i|aji �= 0} defined as

F (η, fd) =
∑

j+i≤n

ajiη
jf i

d , (11)

with aji ∈ R being the coefficients of the polynomial and n
being the degree of the curve according to [38]. In order to obtain
a unique mapping from s �→ fd or s �→ (ξ, fd), the polynomial
can be solved for fd.

For the determination of the limiting frequencies, i.e., max-
imum and minimum frequency of the pdfs, the representation
as an algebraic curve helps to seperate extrema from singular
points. An algebraic curve possesses singular points at locations
where [∂F/∂η, ∂F/∂fd] = 0, see also [17]. According to [36],
for an arbitrary curve CJI the singular points are defined as

SING(CJI) :=
{
(η, fd) ∈ [−1, 1]× R|F (η, fd) = 0 ,

∂F (η, fd)

∂η
=

∂F (η, fd)

∂fd
= 0

}
. (12)
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In other words, SING(CJI) = CJI ∩ Cη
JI ∩ Cfd

JI , where we de-
fine Cη

JI := V (∂F/∂η) and Cfd
JI := V (∂F/∂fd). Note that this

set is finite for an algebraic curve [37].

C. Length and Area Calculation With Differential Forms

Finally, we need to compute lengths and areas of surfaces in
curvilinear coordinates in order to normalize the pdfs. Therefore,
we use differential forms, which are introduced subsequently.

According to [33] a differential form can be simply seen as
an integrand. With differential forms the concepts of gradient,
divergence, and rotation are extended to higher dimensions. In
the PSCS, we use differential forms to obtain the integrands,
i.e., the differential length or area in PSCs [39] that are needed
to normalize the pdfs in (6) and (8). For the calculation of the
normalization constant for the delay-dependent Doppler pdf,
we use differential 1-forms, whereas for the joint delay Doppler
normalization constant, we use differential 2-forms.

Following the general approach, we first need to calculate the
length of the scattering ellipse as normalization constant for the
delay-dependent pdf. To this end, consider the differential length
or 1-form of an ellipse segment in PSCs. The nonlinear 1-form
ds is generally calculated as

ds =
√
dx2 + dy2 + dz2 =

√
h2
ξ dξ

2 + h2
ηdη

2 + h2
ϑ dϑ

2 ,

(13)
with the scale factors [40]

hξ = l

√
ξ2 − η2

ξ2 − 1
, hη = l

√
ξ2 − η2

1 − η2
,

hϑ = l
√
(ξ2 − 1)(1 − η2) . (14)

Note that the differential length of an ellipse segment depends
in general on the three differentials dξ, dη and dϑ, but can be
reduced to one variable along which we can integrate. In order to
compute the total length of the intersection ellipse a path integral
in PSCs must be evaluated. Although this is challenging in
general, this computation can be simplified in our case. Despite
the fact that the scattering plane is oriented in 3D space, the
intersection ellipse is actually a 2D object, i.e., it only depends on
two coordinates. Moreover, for a fixed ξ = ξ∗, the corresponding
dependency becomes one-dimensional. As mentioned before,
depending on the orientation of the scattering plane we can
distinguish two parameterizations, where the spatial distribution
of the scatterers either depends only on (ξ, η) or on (ξ, ϑ),
respectively.

Thus, the normalization constant for the delay-dependent
Doppler pdf in (6) becomes

L =

∮
qξ(η,ϑ)=0

ds , (15)

where qξ(η, ϑ) is the parameterization-independent definition of
the ellipse, which means the integral is either integrated over η
or ϑ.

In order to calculate the area in PSCs, we need to transform
the differentials of the coordinates from the local CCS to the
PSCS. The differentials transform with the help of the Jacobian

matrix J according to [41] as

[dx, dy,dz]T = J[dξ, dη, dϑ]T ,⎛
⎜⎝dx

dy

dz

⎞
⎟⎠ =

⎛
⎜⎝

∂x
∂ξ

∂x
∂η

∂x
∂ϑ

∂y
∂ξ

∂y
∂η

∂y
∂ϑ

∂z
∂ξ

∂z
∂η

∂z
∂ϑ

⎞
⎟⎠
⎛
⎜⎝dξ

dη

dϑ

⎞
⎟⎠ . (16)

The differential area dS of an arbitrarily oriented plane, which
is a nonlinear 2-form, is calculated according to [33] as

dS =

√
(dx ∧ dy)2 + (dy ∧ dz)2 + (dz ∧ dx)2 , (17)

where ∧ is the wedge product defined as

λ ∧ μ = (−1)kpμ ∧ λ , (18)

with λ being a k-form and μ an p-form. The wedge product
is by construction alternating, i.e., dx ∧ dy = −dy ∧ dx and
dx ∧ dx = 0 for two differential 1-forms. The total area of a
surface is calculated as [33]

S =

∫
R

g(x, y, z)

√
(dx ∧ dy)2 + (dy ∧ dz)2 + (dz ∧ dx)2 ,

(19)
where the integral over g(x, y, z) calculates the surface area
of a graph over the region R := q(ξ, η, ϑ) = 0. The region is
bounded by ξ = ξmax, which corresponds to the maximum delay
that we are interested in.

For the scattering plane q(ξ, η, ϑ), the area calculation in (19)
can be computed using three different equations as

S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
R

√(
∂g1
∂x

)2
+
(

∂g1
∂y

)2
+ 1 |dx ∧ dy| ifC �= 0 ,

∫
R

√(
∂g2
∂y

)2
+
(

∂g2
∂z

)2
+ 1 |dy ∧ dz| ifA �= 0 ,

∫
R

√(
∂g3
∂z

)2
+
(

∂g3
∂x

)2
+ 1 |dz ∧ dx| ifB �= 0 ,

(20)
depending on the representation of the scattering plane in (4).
The plane can be implicitly represented with z = g1(x, y), x =
g2(y, z) or y = g3(z, x). In the following, the three square roots
are referred as to ri and the differential areas dSi are special
cases of (17). Finally, to determine the joint delay Doppler pdf
in (8), we compute the weighted area Y of the intersection as

Y =

∫
R

wri dSi , (21)

where ri, i ∈ {1, 2, 3}, is the square root term in (20) selected ac-
cording to one of the chosen parameterizations of the scattering
plane gi. The differential area dSi either consists of |dx ∧ dy|
or |dy ∧ dz| or |dz ∧ dx| depending on the scattering plane
parameterization. The path loss inspired weighting function is
given by w.

III. DELAY-DEPENDENT DOPPLER FUNCTIONS

In the following, we derive the delay-dependent Doppler
pdf for both the general case and the complementary case of
the scattering plane. Furthermore, the delay-dependent limiting
Doppler frequency is calculated.
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A. General Delay-Dependent Doppler PDF

We begin by considering all orientations of the scattering
plane except the complementary case when the scattering plane
is orthogonal to the z-axis. It follows that for the general case the
parameters of the scattering plane are such thatA �= 0 orB �= 0.
As we have shown in [17], the differential length of an ellipse
segment according to (13) on the scattering plane simplifies for
the (ξ, η) parameterization to

ds = l

√
ξ2 − η2

1 − η2
+ (ξ2 − 1) (1 − η2)

(
∂ϑ

∂η

)2

dη

= l
√

(ξ2−1)((A2+B2)(ξ2−η2)−(D2−ξ2 C2))−(D−Cξη)2

(ξ2−1)(1−η2)(A2+B2)−(D−Cξη)2 dη . (22)

The variable ϑ for the scattering plane is expressed as a function
of the other two coordinates as ϑ(ξ, η). To this end, we rearrange
(5) and solve it for ϑ as

ϑk = ± arccos (α± β) , (23)

where α and β are calculated according to (24), shown at the
bottom of this page. There are four possible solutions: ϑ1 =
arccos(α+ β), ϑ2 = arccos(α− β), ϑ3 = − arccos(α+ β),
and ϑ4 = − arccos(α− β). This ambiguity arises due to the
presence of the trigonometric functions in the expression of the
scattering plane in PSCs.

We proceed by inserting (23) into (3), which for a fixed
ξ = ξ∗ results in an expression for the Doppler frequency for
scatterers lying on the intersection ellipse. By inspecting the
result, we can conclude that there are four expressions for the
Doppler frequency that depend on the coordinate η, see also
Fig. 2. These expressions essentially define four separate, yet,
connected segments or branches of a closed curve in (η, fd)-
coordinates. The obtained solutions, however, are ambiguous
due to the presence of square root and double square root
expressions in the Doppler frequency. This ambiguity can be
resolved by interpreting the Doppler frequency as an algebraic
curve, as discussed subsequently.

Before being able to compute the length of the scattering
ellipse, we need to determine the domain of the mappingη �→ fd,
i.e., the range of values for the η-coordinate that results when
an arbitrarily oriented scattering plane with A �= 0 or B �= 0
intersects the delay ellipsoid. We do this by considering (23)
and (24). Specifically, we set β = 0 in (24) and solve it for the
variable η. Using the fact that the solution describes an ellipse,
the range of possible values for η can be computed in closed
form. The result is given by the range [ηmin(ξ), ηmax(ξ)] in (25),
shown at the bottom of this page.

As we see from (25) the resulting expression is a function of
ξ. For an arbitrarily oriented scattering plane there is a minimum

Fig. 2. Ambiguous delay-dependent Doppler algebraic curve C84 = C′42 ∪ C′′42
due to the ambiguity for A = −1, B = 2, C = 3, D = 1/2, ξ = 2, fc =

5.2 GHz, vt = [70,−30, 60]T km/h and vr = [−90, 100,−80]T km/h.
The crunode at ηs = 0.3158 for the correct curve C�42 is shown.

delay ξsr which results in the specular reflection off the plane.
The value of ξsr is computed by finding the delay ξ for which
ηmin = ηmax = ηsr. This is equivalent to setting the square root
in (25) to zero. It can be shown that

ξsr= max

(√
A2 +B2 +D2

A2 +B2 + C2
, 1

)
. (26)

Let us study the result in (26) in more detail. Note that when
D2 < C2 the scattering plane intersects the LOS and thus blocks
the signal path. When ξsr = 1, i.e., |D| = |C|, the scattering
plane includes either TX or RX and |ηsr| = 1; for these two
cases the specular reflection (SR) component coincides with the
LOS component. Thus, the span of possible delay values for
scattering is given by ξ > ξsr.

If A = 0, we obtain a special symmetrical case, which occurs
for A2A channels with two communicating aircraft. In this case,
the intersection ellipse is cut into two symmetrical parts by
the y-z-plane containing the aircraft. This scenario has been
investigated in [17] and the results we obtain here generalize
those in [17]. If we consider the case A = C = D = 0 and
B = 1, the scattering plane coincides with the x-z-plane. This
alignment simplifies the equations even further. This particular
case is equivalent to the 2D V2V channel model discussed
in [30], which is again covered by the general equations that
we obtain in this paper.

The analysis of the Doppler frequency in (3) after inserting
(23) for the general case leads to expressions that contain poly-
nomials and square roots. The computation of the Doppler pdf is

α =
A (D − Cξη)√

(ξ2 − 1) (1 − η2) (A2 +B2)
, β =

B
√
(ξ2 − 1) (1 − η2) (A2 +B2)− (D − Cξη)2√

(ξ2 − 1) (1 − η2) (A2 +B2)
(24)

ηmin,max(ξ) =
DCξ ±√D2 C2ξ2−(A2ξ2 +B2ξ2 + C2ξ2 −A2 −B2)(A2 +B2 +D2 −A2ξ2 −B2ξ2)

A2ξ2 +B2ξ2 + C2ξ2−A2−B2
(25)
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Algorithm 1: Computation of Algebraic Curve C�
42.

1: Insert (23) into (3) and choose one arbitrary branch
fd,k with k ∈ {1, 2, 3, 4}

2: Compute a common denominator and multiply each
side with it

3: Isolate the double roots and square the resulting
equation

4: Isolate the remaining roots and square the expression
again, which results in the algebraic curve C84

5: Factorize the curve to C84 = C′
42 ∪ C′′

42
6: Select C�

42 and determine unambiguous Doppler
frequency f�

d,i with i ∈ {1, 2} shown in (27) and by
solving (27) for η the solutions η�j with j ∈ {1, 2, 3, 4}

not possible due to the ambiguous mapping η �→ fd. Although
trigonometric functions were replaced by rational expressions,
the resulting expression is still ambiguous as it contains mul-
tiple square root quantities. Nonetheless, the corresponding
ambiguities can be resolved by applying the algebraic curve
theory.

Indeed, the algebraic curve as defined in (10) can be
derived from (3) after inserting (23) and (24), appropriate
re-arrangement, and two squaring operations. The steps for
computing the unique algebraic curve are summarized in
Algorithm 1.

Following the steps 1–4 of the algorithm, we obtain a 12th
degree curve C84 with the highest monomial η8f 4

d. Thus, the
resulting degree of the curve is twice as high as the one obtained
in [17] for A2A scenarios. This is due to the above mentioned
ambiguity of the Doppler curves; thus, it can be shown that
this increase of the degree is caused merely by the ambiguity
when replacing the trigonometric functions (steps 3 and 4 of
Algorithm 1). Nonetheless, the algebraic curve C84 can be fac-
tored as C84 = C′

42 ∪ C′′
42 (step 5 of Algorithm 1) according to

Theorem 1.13 in [37]. One of the two curves corresponds to the
actual Doppler frequency caused by the correct scattering plane
given by (5); the other one corresponds to the Doppler frequency
caused by the scattering plane with the sign of the coefficient B
flipped to −B, or equivalently to flipping of the signs of A, C
andD to−A,−C,−D, respectively. The sign of the coefficients
vanishes in (23) due to squaring or multiplication. As such,
only one of the curves C′

42 or C′′
42 describes the correct η-fd

relationship induced by the scattering plane; the other one can
simply be disregarded.

To find the correct curve, we need to check if the points on
the curve satisfy the scattering plane equation in (5). In order to
check this, we proceed as follows. We pick an arbitrary point on
the curve C′

42 and make sure that this point is not an intersection
point with the other curve. Otherwise we won’t be able to identify
the correct curve. Then, we insert the corresponding values in
(5). If the expression is satisfied, the curve C′

42 corresponds to
the scattering plane; otherwise, C′′

42 is the correct solution. In the
following, the selected curve is denoted as C�

42. The expression
of the correctly selected Doppler frequency is shown in (27) at
the bottom of this page. It is important to stress that once C�

42 is
found, i.e., the curve is derived as a function of A, B, C and D,
it remains valid for arbitrarily oriented planes and thus always
specifies the correct relationship between η and fd in the general
case. Due to the resolution of the ambiguity, it becomes possible
to compute the unique Doppler pdf.

To better illustrate the ambiguous curves and the effect of the
factorization, we consider an example of a mobile TX and RX,
which are neither in the scattering plane like in the V2V case nor
that the scattering plane is orthogonal to the y-z-plane like in the
A2A case, but in a more general setting. For this scenario, the
ambiguous η-fd algebraic curves C′

42 and C′′
42 are shown in Fig. 2.

Each of the curves has four segments that belong to four branches
of the Doppler frequency curve k ∈ {1, 2, 3, 4} corresponding
to (23). One can clearly see that a branch of a certain style on
one curve always connects to a branch of the same style on the
other curve – a result of the ambiguities in the original Doppler
frequency expression.

After the factorization of the curve and determining C�
42, we

can state the following.
Theorem 1: For a fixed Doppler frequency fd, there are up to

4 values of η that belong to C�
42 and for a fixed variable η, there

are up to 2 values of fd that belong to C�
42.

Proof: The proof follows directly from Bézout’s theorem,
see [38]. Indeed, the intersection of a straight line (vertical for a
fixed η or horizontal for a fixed fd) with the algebraic curve C�

42
results in a quadratic polynomial equation in fd or a fourth-order
polynomial equation in η, respectively. Therefore, the number of
intersections is given by the exponent of the respective variable,
i.e., four for the intersection with the horizontal line and two for
the intersection with the vertical line. �

Since we need to compute the inverse mapping η �→ fd, the
above theorem states that the inverse mapping has to consider
at most four possible values of η for each fd. For the classical
fixed-to-mobile channel the number of possible Doppler fre-
quencies for a fixed delay thus reduces to two as known from the

f�
d,i(t, ξ, η) =

1
(A2 +B2) (ξ2 − η2)

(
(D − Cξη) (A (vrx (ξ + η) + vtx (ξ − η)) +B (vry (ξ + η) + vty (ξ − η)))

±
√(

(ξ2 − 1) (1 − η2) (A2 +B2)− (D − Cξη)2
)
(B (vrx (ξ + η) + vtx (ξ − η))−A (vry (ξ + η) + vty (ξ − η)))2

+
(
A2 +B2

)
(vrz (ξη − 1) (ξ + η) + vtz (ξη + 1) (ξ − η))

)
fc
c

(27)
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literature [42]. Indeed, from (3) we can see that if the transmitter
is stationary, i.e., vt = 0, the two corresponding trigonometric
functions disappear, reducing the total number of ambiguities to
two.

Now we have all the necessary prerequisites to calculate the
Doppler pdf. Following Theorem 1, for each η we obtain two
possible values of fd: f�

d,1(η) and f�
d,2(η), which are both func-

tions of η. These two Doppler functions describe the unambigu-
ous relationship between f�

d,i and η, i ∈ {1, 2}, for each half of
the intersection ellipse. Furthermore, we obtain four functions of
η: η�1 (fd), η

�
2 (fd), η

�
3 (fd), andη�4 (fd), which are functions of fd.

These four η-functions describe the unambiguous relationship
between η�j and fd, j ∈ {1, 2, 3, 4}, for each of the four unique
intersection ellipse segments.

Consider the parameter η ∈ [ηmin(ξ), ηmax(ξ)] for each of the
two Doppler frequency branches. Thus, the total length of the
scattering ellipse is calculated as

L = 2l

ηmax(ξ)∫
ηmin(ξ)

√
(ξ2−1)((A2+B2)(ξ2−η2)−(D2−ξ2 C2))−(D−Cξη)2

(ξ2−1)(1−η2)(A2+B2)−(D−Cξη)2 dη ,

(28)
where ηmin(ξ) and ηmax(ξ) are computed using (25). The spatial
pdf for uniformly distributed scatterers along the ellipse is then
calculated as

p(t, qξ(η); s|ξ) = 1
L

=
1

2l
ηmax(ξ)∫
ηmin(ξ)

√
(ξ2−1)((A2+B2)(ξ2−η2)−(D2−ξ2 C2))−(D−Cξη)2

(ξ2−1)(1−η2)(A2+B2)−(D−Cξη)2 dη

.

(29)

By applying the rules of probability transformation to obtain
the delay-dependent Doppler pdf for the general case and using
(22), we compute

p(t, qξ(η); fd|ξ) = p(t, qξ(η); s|ξ)
∣∣∣∣ dsdfd

∣∣∣∣ =
|H|∑
j=1

l

L

×
√

(ξ2−1)((A2+B2)(ξ2−η�2
j )−(D2−ξ2 C2))−(D−Cξη�

j )
2

(ξ2−1)(1−η�2
j )(A2+B2)−(D−Cξη�

j )
2

∣∣∣∣dη�jdfd

∣∣∣∣ ,
(30)

with the η�j (fd)-values lying on the curve C�
42, i.e., H = {η� ∈

C�
42|ηmin(ξ) ≤ η� ≤ ηmax(ξ)}. The η�j (fd)-functions are ob-

tained by solving C�
42 for η and are unique in the corresponding

interval. This functional relationship is shown exemplarily in
Fig. 3. There are at most four valid solutions for a given fd
and thus |H| ≤ 4, since the curve C�

42 is of degree four in η.
Obviously, only real solutions in the interval [ηmin(ξ), ηmax(ξ)]
are of interest.

Note that the focus distance l cancels out in (30) so that
the delay-dependent pdf is independent of the actual distance
between TX and RX. The reason for this is that the distance of
the scattering plane to the origin given by lD is scaled by the
focus distance l. This means that for all cases, where the relation
between focus distance and distance of the scattering plane to

Fig. 3. Segments of the four unique η�j (fd)-functions for the V2V scenario

with vt = [−90, 0, 0]T km/h, vr = [−90, 0, 90]T km/h, scattering plane
[0, 1, 0, 0], and ξ = 1.01 from [30].

Algorithm 2: Computation of Limiting Frequencies.

1: Use f�
d,i from (27) with arbitrary i ∈ {1, 2}

2: Calculate derivative for an arbitrary branch ∂f�
d,i/∂η

3: Calculate common denominator and isolate the roots
4: Square the result and cancel common factors in

numerator and denominator
5: Set the numerator to zero in order to obtain the

polynomial g(η) in (31)
6: Determine real solutions in the interval

ηmin(ξ) ≤ η ≤ ηmax(ξ) for polynomial g(η) = 0
7: Insert solutions η into f�

d,i in (27)
8: Determine correct frequency branch f�

d,i by checking
∂f�

d,i/∂η = 0 if f�
d,1 �= f�

d,2

the origin is the same, the delay-dependent and the joint delay
Doppler pdfs are also the same.

B. Delay-Dependent Limiting Doppler Frequencies

In the following, we turn our attention to the poles of
p(t, qξ(η, ϑ); fd|ξ), which describe the extrema of the Doppler
frequency for arbitrary delays ξ. The poles constitute themselves
as the zeros of ∂f�

d,i(t, ξ, η)/∂η = 0 for the general case or
∂fd(t, ξ, ϑ)/∂ϑ = 0 for the complementary case. The set of
extrema naturally include minimum and maximum Doppler
frequencies, since due to the physical limitation of the latter,
the corresponding pdf p(t, qξ(η, ϑ); fd|ξ) must have a finite
support. The limiting frequencies are calculated similar to [30]
as shown in Algorithm 2 by directly computing the derivative of
the Doppler frequency.

The solution for η leads to a delay-dependent sixth order
polynomial, which determines the horizontal tangents of the
algebraic curve C�

42 as

g(η) = a6(ξ
6, ξ4, ξ2, ξ0)η6 + a5(ξ

7, ξ5, ξ3, ξ1)η5

+ a4(ξ
8, ξ6, ξ4, ξ2, ξ0)η4 + a3(ξ

9, ξ7, ξ5, ξ3, ξ1)η3

+ a2(ξ
10, ξ8, ξ6, ξ4, ξ2)η2 + a1(ξ

9, ξ7, ξ5, ξ3)η1

+ a0(ξ
10, ξ8, ξ6, ξ4)η0 . (31)
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The seven coefficients ai, i = 0, . . . , 6, are themselves depen-
dent on a total of eleven parameters. The coefficients of the
polynomial are too lengthy to be included in the paper; in
fact there are 2632 components. Instead, they are made pub-
licly available as supplementary material and ready for use in
Code Ocean. They comprise six velocity component coefficients
vt = [vtx, vty, vtz]

T and vr = [vrx, vry, vrz]
T, four scattering

plane coefficients [A,B,C,D], and the delay ξ. In general,
roots of (31) need to be determined numerically. However, there
are some special cases when the sextic equation allows for an
analytical solution according to [43].

Note the particular dependency of the polynomial coefficients
in (31) on ξ. First of all, it allows a delay-dependent description
of the limiting frequencies. We see that even coefficients only
possess even exponents of ξ and odd coefficients only odd
exponents of ξ. Furthermore, only half of the coefficients are
independent. Coefficients ai anda6−i are related to each other by
replacing the monomials ξi with ξ10−i. Besides,C andD have to
be swapped and the signs for certain combinations of the velocity
vector components, i.e., vtxvrx, vtxvry , vtxvrz , vtyvrx, vtyvry ,
vtyvrz , vtxvtz , and vtyvtz have to be changed. The coefficient
a3 is symmetric to itself with the above replacements.

The structure of the polynomial, especially the dependency on
ξ reveals that for ξ → ∞ the polynomial becomes a quadratic
symmetric polynomial, since the highest exponent of ξ only
occurs for a2 and a0. Thus, the order of the polynomial reduces
from six to two in this asymptotic regime. These results gener-
alize those in [30] and [17] for both V2V and A2A channels to
the general M2M channel.

Theorem 2: The Doppler algebraic curve C�
42 possesses up to

six horizontal tangents.
Proof: The theorem follows directly from the fundamental

theorem of algebra and the sixth order polynomial in (31). �
This theorem is valid for an arbitrarily oriented scattering

plane in any single-bounce M2M channel. Thus, both the delay-
dependent and the joint delay Doppler frequency probability
density functions possess up to six poles.

In addition to the solution of (31), C�
42 possesses singular

points as defined in (12). In our previous work, singular points
were calculated for scattering planes orthogonal to the y-z-axis.
After analyzing the algebraic curve of the Doppler frequency
and comparing it with the result in [17], we were able to extend
the equation to arbitrary scattering planes.

The singular point for the algebraic Doppler curve of general
M2M channels is found for

ηs =
vts + vrs
vts − vrs

ξ =
Bvtx −Avty +Bvrx −Avry
Bvtx −Avty −Bvrx +Avry

ξ , (32)

with

vts =
vt · (nE × ez)

‖nE × ez‖ =
1√

A2 +B2

⎛
⎜⎝vtx

vty

vtz

⎞
⎟⎠ ·

⎛
⎜⎝ B

−A

0

⎞
⎟⎠ , (33)

vrs =
vr · (nE × ez)

‖nE × ez‖ =
1√

A2 +B2

⎛
⎜⎝vrx

vry

vrz

⎞
⎟⎠ ·

⎛
⎜⎝ B

−A

0

⎞
⎟⎠ , (34)

where nE = [A,B,C]T is the normal vector of the arbitrarily
oriented scattering plane. We calculate the velocity vector com-
ponents vts and vrs that lie inside the scattering plane and are
orthogonal to the z-axis. The result in (32) reduces to equation
(30) in [17] if the scattering plane is orthogonal to the y-z-axis.
We state the following result for general M2M channels.

Theorem 3: If vts and vrs have opposite signs, the Doppler
algebraic curve C�

42 can possess a singular point at ηs.
Proof: Since the magnitude of ηs has to be smaller than 1 due

to−1 ≤ η ≤ 1 by definition of the prolate spheroidal coordinate
system in (1), vts and vrs need to have opposite signs for ξ > ξsr
in order to fulfill (32). �

In our case, we can distinguish three different types of singular
points by following the classification of the singular points used
in [36]. In particular, for the η-fd algebraic curve

(
∂2F

∂η∂fd

)2
⎧⎨
⎩

>
=
<

⎫⎬
⎭ ∂2F

∂η2

∂2F

∂f 2
d

crunode ,
cusp ,
acnode ,

(35)

we obtain a crunode, a cusp, or an acnode, respectively. Exem-
plary singular points for Doppler frequencies in M2M channels
are shown in Fig. 3 of [17].

Note that for all scattering planes with the same parameters
A and B, ηs is the same for a given ξ. Thus, the other two
parameters C and D of the scattering plane determine whether
we observe a crunode, a cusp or an acnode.

Since singular points are not very common in the channel
modeling literature, we explain the meaning of the different
singular points with respect to the Doppler frequency curve
obtained by the intersection of the delay-dependent Doppler
frequency with a scattering plane. A singular point essentially
occurs if the Doppler curve crosses itself in the scattering plane
due to the geometry. The following cases can be observed:
crunode obtained when the crossing point lies within the

scattering plane, i.e, for ηmin(ξ) < ηs < ηmax(ξ),
cusp obtained when the crossing point is at the

border of the scattering plane, i.e, for ηs ∈
{ηmin(ξ), ηmax(ξ)},

acnode obtained when the crossing point is found in a plane
parallel to the scattering plane, i.e., for −1 ≤ ηs <
ηmin(ξ) or ηmax(ξ) < ηs ≤ 1. This means the ac-
node is an orthogonal projection of the crossing
point onto the plane, i.e., it is not a point on the
original Doppler frequency f�

d,i, but only occurs on
the “squared” algebraic curve C�

42.
Note that η� in (30) is already defined as to include crunodes

and cusps, but no acnodes. In degenerate cases, e.g., vtz �= 0
and vrz �= 0 or vts = vrs, the zeros of (31) turn into singular
points. The reason for this is that the algebraic curve becomes
reducible, i.e., the curve C�

42 further factors as C�
42 = C�

21 ∪ C�
21.

We find those points by solving (31), but would fail to classify
them as extreme points, since they are boundary values with
∂f�

d,i/∂η �= 0. Without the algebraic curve theory it could not be
explained why the real solutions obtained from (31) are limiting
frequencies, even though ∂f�

d,i/∂η �= 0. The reason that the
derivative of a Doppler branch is not zero is the following: these
points are singular points or more specifically cusps. For the
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algebraic curve C�
42, however, the corresponding singular points

have a zero derivative. Thus, without the algebraic curve theory,
we would fail to calculate the correct limiting frequencies in
degenerate cases.

C. Complementary Delay-Dependent Doppler PDF

Let us consider the case when the scattering plane is posi-
tioned orthogonal to the z-axis. In this configuration the param-
eters of the scattering plane are A = 0 and B = 0. Thus, both
(4) and (5) reduce to

Cz = lD and Clξη = lD , (36)

respectively, and

η =
D

Cξ
. (37)

The intersection ellipse in this case becomes an intersection
circle. We consider the value range of the parameters C and
D for this case. The relationship between C and D regulates the
position of the scattering plane with respect to the z-axis. From
(37) we see that the minimum delay occurs at

ξsr = max

(∣∣∣∣DC
∣∣∣∣ , 1

)
, (38)

which is merely a special case of (26). It corresponds to the
specular reflection, which is the shortest possible propagation
path between TX and RX via the scattering plane. For ξsr = 1,
the SR coincides with the LOS. When the geometry of the
scattering plane is chosen such that |D/C| < 1 with C �= 0, the
scattering plane would intersect the LOS path and thus block the
signal from TX to RX. For the case |D/C| = 1, the scattering
plane would go directly through TX or RX depending on the
sign of η. Finally, when |D/C| > 1, the scattering plane is clear
of the LOS, TX, and RX. The span of possible delay values ξ
for scattering, which excludes the specular reflection, is given
by the relationship ξ > ξsr due to the definition of ξ in (1), which
is the same as in the general case.

Subsequently, we determine the differential length of the
intersection circle for the complementary case. The general
differential length equation in (13) simplifies to

ds = hϑ dϑ = l
√
(ξ2 − 1)(1 − η2) dϑ

= l

√
(ξ2 − 1)

(
1 −
(

D
Cξ

)2
)
dϑ , (39)

where we used (37) and the fact that dξ = dη = 0. Thus, the
total length of the circle becomes

L =

∮
qξ(ϑ)=0

ds =

∫ 2π

0
l

√
(ξ2 − 1)

(
1 −
(

D
Cξ

)2
)
dϑ .

(40)
The pdf of the variable ϑ for uniformly distributed scatterers on
the intersection circle is calculated as follows

p(t, qξ(ϑ); s|ξ) = 1
L

=
1

2πl

√
(ξ2 − 1)

(
1 −
(

D
Cξ

)2
) . (41)

The time-variant, delay-dependent Doppler pdf is obtained
by a probability transform of (7) between the angle ϑ and the
Doppler frequency fd given by (3) with η defined in (37). To
compute the transformation, we express ϑ as a function of
fd by using the trigonometric identity a sin(ϑ) + b cos(ϑ) =√
a2 + b2 cos(ϑ− arctan(a/b)), and solve (3) for ϑ. Skipping

tedious, but straightforward algebraic manipulations, it can be
shown that there are two possible solutions ϑ1(fd) and ϑ2(fd)
that need to be considered. Using (39) and applying standard
rules of probability transformation according to [35], (7) is
expressed as

p(t, qξ(ϑ); fd|ξ) = p (t, qξ(ϑ); s|ξ)
∣∣∣∣ dsdfd

∣∣∣∣
=

2∑
i=1

1
2π

∣∣∣∣dϑi

dfd

∣∣∣∣ = 1

π |flim|
√

1 −
(

fd−fo
flim

)2
,

(42)

where the offset frequency

fo(t, ξ) =
fc
c

(
D
C + 1

ξ + D
Cξ

vtz +
D
C − 1

ξ − D
Cξ

vrz

)
, (43)

is caused by the movement of TX and RX along the z-axis, and
the limiting frequency described as

flim(t, ξ) = ±fc
c

√
(ξ2 − 1)

(
1 −
(

D
Cξ

)2
)

×

√√√√( vtx

ξ + D
Cξ

+
vrx

ξ − D
Cξ

)2

+

(
vty

ξ + D
Cξ

+
vry

ξ − D
Cξ

)2

,

(44)

which bounds the resulting Doppler pdf. The latter is influenced
by the movement of the transmitter and receiver in directions
orthogonal to the z-axis.

Note that the resulting pdf is independent of the length of the
intersection circle similar to the general case, which means same
distance ratios between scattering plane and TX-RX distance re-
sult in the same pdf. Moreover, we see from (42) that the resulting
delay-dependent Doppler pdf coincides with a (shifted) Jakes
spectrum. This is expected for uniformly distributed scatterers
on a circle. The shift comes from the movement towards or
away from the scattering plane along the z-axis. In contrast, the
width of the spectrum is determined by the velocity components
in x- and y-directions. For large delays, i.e., when ξ → ∞,
limξ→∞ fo(ξ) = 0 Hz and the pdf p(t, qξ(η, ϑ); fd|ξ) becomes
centered at 0 Hz. Thus, in the limit we obtain the classical
“non-shifted” Jakes spectra and only the velocity components
in x- and y-directions impact the width of Doppler pdf.

IV. JOINT DELAY DOPPLER PDF

Our goal in this section is to compute the joint delay Doppler
pdf. The approach is similar to the delay-dependent Doppler
pdf, but now includes the variable ξ, which thus creates a two-
dimensional density. Again, we will consider the general case
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and the complementary case. The former is most easily derived
from the last line in (20), while the latter corresponds to the first
line in (20) with A = B = 0.

After replacing the wedge products of the Cartesian differen-
tials with the differentials in PSCs according to (16), the area of
the scattering ellipse can be expressed in PSCs. For the general
case the differential area of an arbitrary plane is calculated as

ridSi =
l2
√
A2 +B2 + C2

(
ξ2 − η2

)
√

(ξ2 − 1) (1 − η2) (A2 +B2)− (D − Cξη)2
dηdξ

(45)
where i ∈ {1, 2, 3} corresponds to the three integrals in (20). It
determines the differential area needed to compute the total area
of the ellipse defined by the delay ellipsoid and the scattering
plane. Here, the wedge product is replaced by a normal product,
since we made sure that the limits of the integrals together with
the integrand produce a positive area.

For the complementary case the differential area of a scatter-
ing plane orthogonal to the z-axis in PSCs results in

r1dS1 = l2
(
ξ − D2

C2ξ3

)
dϑdξ , (46)

which corresponds to the first line in (20) with A = B = 0
and thus r1 = 1. The integral over the differential area thus
calculates the area of a circle, which is created by intersecting
the scattering plane and the delay ellipsoid, since the scattering
plane is orthogonal to the z-axis.

A. Path Loss Inspired Weighting Function

To introduce the impact of the path loss induced by scatterers
we make use of the classical bistatic radar power equation under
the assumption that the radar cross section of the scatterers is
constant in both space and time. Under this assumption the re-
ceived power P is proportional to P ∝ (d2

td
2
r)

−1 inferred by the
radar equation, where dt and dr are given in (2). This assumption
is only valid for scattered signals with ξ > ξsr [44]–[46]. Thus,
we can make the joint delay Doppler pdf proportional to the
time-variant scattering function.

By inserting (2) intoP ∝ (d2
td

2
r)

−1 and simplifying the result,
we compute the weighting function as

w(ξ, η) =
1

(ξ2 − η2)2 . (47)

Note that the weighting function in our case is only a function
of ξ and η. Contours of constant w(ξ, η) are known from the
radar literature as Cassini ovals [47]. These are locations where
the product d2

td
2
r is constant. An important consequence of

this is that the Cassini ovals generally do not coincide with
the intersection ellipses, since their product of distances rather
than the sum is constant. This implies that scatterers lying on
intersection ellipses are in general weighted differently, which
has a direct impact for the calculation of the joint pdf as we show
subsequently.

A special case occurs for the complementary case, i.e., when
the scattering plane is orthogonal to the major axis of the
ellipsoid. For this particular orientation of the scattering plane
the intersection area is a circle. Thus, the weighting function

w(ξ, η) only depends on the ξ-coordinate, since the intersection
is characterized by a constant η-coordinate. The Cassini oval of
constant path loss is also a circle when the oval is intersected
orthogonally by the scattering plane. It coincides with the in-
tersection circle created by the delay ellipsoid. This permits a
factorization of the joint delay Doppler pdf into the product of
the marginals, i.e., the delay-dependent Doppler pdf computed
earlier and the path loss pdf. For a general orientation of the
scattering plane such a factorization is only possible with simple
factors for ξ → ∞.

B. Calculating the Normalization Coefficient

By building upon the results for the delay-dependent Doppler
pdf, we derive the joint delay Doppler pdf.

For the general case the situation is a bit more involved.
We first compute the weighted area Y1 of the intersection
q(ξ, η) = 0. Note that in this case the density of the scatterers
s is described by the (ξ, η)-coordinates. Using ridSi from (45)
and the weighting function in (47), we obtain

Y1 =

ξmax∫
ξmin

2

ηmax(ξ)∫
ηmin(ξ)

× w (ξ, η) l2
√
A2 +B2 + C2

(
ξ2 − η2

)
dηdξ√

(ξ2 − 1) (1 − η2) (A2 +B2)− (D − Cξη)2
, (48)

where the factor of two is needed to account for both of the
half ellipses. The Jacobian for the mapping (ξ, η) �→ (ξ, fd) is
computed as

Js =

(
∂ξ
∂ξ

∂ξ
∂η

∂fd
∂ξ

∂fd
∂η

)
,

∣∣Js
−1
∣∣ = ∂η

∂fd
. (49)

The challenge in computing the joint pdf is in recognizing that
for the mapping η �→ fd we need to use the algebraic curve
C�

42, which results in up to |H| ≤ 4 solutions for η�j �→ fd, j =
1, . . . , |H|. Each solution is only valid in a certain interval. Then,
the joint pdf is computed as

p(t, q(ξ, η); ξ, fd) =

|H|∑
j=1

1
Y1

×
l2
√
A2 +B2 + C2

(
ξ2 − (η�j )2

)−1

√
(ξ2 − 1)

(
1−(η�j )2

)
(A2 +B2)− (D − Cξη�j

)2

∣∣∣∣∂η�j∂fd

∣∣∣∣ .
(50)

By analyzing (50) in more detail, we see that the joint delay
Doppler pdf does not factor into p(t, qξ(η); fd|ξ) given by (30)
and a delay pdf p(t, q(ξ, η); ξ). The reason for this is the fact
that for generally oriented scattering planes the scatterers lying
along the intersection ellipses do not correspond to the Cassini
ovals of constant path loss as explained above.

The joint delay Doppler pdf for the complementary case is
calculated as follows. Consider the intersection q(ξ, ϑ) = 0 with
the weighted area Y2 of the plane intersection ellipse. With the
differential area r1dS1 from (46) and the weighting function
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w(ξ, η) in (47) as

Y2 =

∫∫
q(ξ,η,ϑ)=0

w

(
ξ,

D

Cξ

)
dS1

=

ξmax∫
ξmin

2π∫
0

l2
(
ξ − D2

C2ξ3

)
(
ξ2 −

(
D
Cξ

)2
)2 dϑdξ, (51)

with ξmax > ξmin > ξsr. The joint delay Doppler pdf for the
complementary case is computed using the transformation in
(9) and the Jacobian

Js =

(
∂ξ
∂ξ

∂ξ
∂ϑ

∂fd
∂ξ

∂fd
∂ϑ

)
,

∣∣Js
−1
∣∣ = ∂ϑ

∂fd
. (52)

By following the same steps as for the delay-dependent Doppler
pdf in (42), we obtain

p(t, q(ξ, ϑ); ξ, fd)

=
2l2
(
ξ − D2

C2ξ3

)
Y2

(
ξ2 −

(
D
Cξ

)2
)2

|flim|
√

1 −
(

fd−fo
flim

)2
. (53)

Let us stress that the mapping fd �→ ϑ is ambiguous due to
the arccos function, as explained in Section II. Thus, similar
to the delay-dependent Doppler pdf, we need to account for
this ambiguity with a factor of two, which eventually leads to
(53). By carefully studying (53) we recognize that in the com-
plimentary case the joint pdf factors into the delay-dependent
Doppler pdf p(t, qξ(ϑ); fd|ξ) given by (42) and a delay pdf
p(t, q(ξ, ϑ); ξ) – a model of the classical power delay profile.
Thus, in the complementary case the joint pdf can be expressed
by p(t, q(ξ, ϑ); ξ, fd) = p(t, qξ(ϑ); fd|ξ)p(t, q(ξ, ϑ); ξ).

V. RESULTS

In the following, we present generalizations of the closed form
solutions for three special components discussed in [17]: the
LOS component, the SR component, and the diffuse scattering
components for infinite delays. According to Bello [48], the
surface scatter channel can be modeled by

h(t) = hlos(t) + hsr(t) + hsc(t) + n(t) . (54)

This can be seen as combination of the LOS channel, the SR
channel, the scattering channel, and an additive noise term n(t).
Based on this model, we can place our results in the same context.
For any time instance t, the non-stationary joint delay Doppler
pdf represents the contribution of the scattering component
hsc(t) of the M2M channel. The other two components hlos(t)
and hsr(t) are typically modeled as deterministic components.
For LOS and SR signals, a free-space path loss model should be
used. For the specular reflection signal the reflection coefficient
as additional attenuation has to be taken into account. In the
following, we show that the equations derived here generalize
results for the above mentioned special cases known from the
literature. To this end, we use the delay-dependent Doppler

pdfs and its inverse Fourier transform, the delay-dependent
characteristic function, to model the LOS component, the SR
component, and the scattering components of the time-variant
channel h(t), since the joint pdf would be zero due to the path
loss attenuation for ξ → ∞.

A. LOS Component

The results for the LOS component can be obtained for ξ = 1,
yet care has to be taken in deriving the delay-dependent pdf.
Specifically, for ξ = 1 the scattering plane should not intersect
the LOS, because it would block the signal path in this case, as we
have mentioned earlier. Thus, for ξ = 1 the Doppler frequency
in (27) becomes independent of the scattering plane parame-
ters and the spatial coordinates. As such, the LOS component
consists of a single frequency and the Doppler pdf becomes a
Dirac distribution centered at this frequency. The characteristic
function Φ, its corresponding delay-dependent Doppler pdf p,
the mean Doppler μ, and the Doppler spread σ are expressed as

Φ(t, qξ(η, ϑ);u|ξ) = exp (j2πuflos(t)) ,

p(t, qξ(η, ϑ); fd|ξ) = δ(fd − flos(t)) ,

μ(t, qξ(η, ϑ)) =
vtz − vrz

c
fc = flos(t) ,

σ(t, qξ(η, ϑ)) = 0 . (55)

B. SR Component

The specular reflection from the scattering plane occurs if
ξ = ξsr. The results for the specular component can be obtained
as a limiting case of the general expressions that were derived in
this paper. Specifically, evaluating (30) and (42) for ξ → ξsr, we
obtain for the delay-dependent Doppler pdf p. For the charac-
teristic function Φ, the mean Doppler μ and the Doppler spread
σ, it follows

Φ(t, qξ(η, ϑ);u|ξ) = exp (j2πufsr(t)) ,

p(t, qξ(η, ϑ); fd|ξ) = δ(fd − fsr(t)) ,

μ(t, qξ(η, ϑ)) = fsr(t) , σ(t, qξ(η, ϑ)) = 0 , (56)

with

ξsr = max

(√
A2 +B2 +D2

A2 +B2 + C2
, 1

)
,

ηsr =
DCξsr

A2ξ2
sr +B2ξ2

sr + C2ξ2
sr −A2 −B2

,

fsr(t) =

{
f�
d,i(t, ξsr, ηsr) general case ,
fo(t, ξsr) complementary case .

(57)

Note that if ξsr = 1, we obtain the LOS component with the
scattering plane placed at the location of the TX or the RX; LOS
and SR component coincide in this case. For ξsr > 1 the SR
component and LOS are distinct.
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C. Scattering Components

In the limit for ξ → ∞ and using (30) and (42) for the
delay-dependent Doppler pdf, we obtain the following stochastic
functions for the scattering components

lim
ξ→∞

Φ(t, qξ(η, ϑ);u|ξ) = J0

(
2πu

‖vt‖E + vr‖E‖
c

fc

)
,

lim
ξ→∞

p(t, qξ(η, ϑ); fd|ξ) = 1

π |f1,2(t)|
√

1 −
(

fd
f1,2(t)

)2
,

lim
ξ→∞

μ(t, qξ(η, ϑ)) = 0 ,

lim
ξ→∞

σ(t, qξ(η, ϑ)) =
‖vt‖E + vr‖E‖√

2c
fc =

f1,2(t)√
2

, (58)

with parallel velocity vectors and limiting frequencies

vt‖E =
nE × (vt × nE)

‖nE‖2
= vt − (vt · nE)nE

‖nE‖2
, (59)

vr‖E =
nE × (vr × nE)

‖nE‖2
= vr − (vr · nE)nE

‖nE‖2
,

lim
ξ→∞

f1,2(t) = ±‖vt‖E + vr‖E‖
c

fc . (60)

Here, the velocity vectors vt‖E = [vtx‖E, vty‖E, vtz‖E]T and
vr‖E = [vrx‖E, vry‖E, vrz‖E]T are parallel to the scattering plane.
The limiting frequencies f1,2(t) are given by the solution η1,2 =
±(vtz‖E + vrz‖E)/(‖vt‖E + vr‖E‖) of the polynomial in (31).
This result matches the classical Jakes result. The width of
the spectrum, however, is determined by the velocity vector
components of TX and RX, which are parallel to the scatter-
ing plane. The reason for this is that for large ξ the ellipsoid
becomes a sphere. The intersection with the scattering plane
results in a scattering circle on which the scatterers are uniformly
distributed.

D. Numerical Results

In this section, we evaluate the presented model for an exem-
plary scenario. In order to take current technology into account
and to show the full 3D capability of the model, we selected
a time-variant drone-to-drone scenario. More examples on the
capability of our model to represent time-variant scenarios can
be found in [49]. The carrier frequency for the scenario is fc =
2.4 GHz [50], which is a typical frequency for drone-to-drone
communication. We evaluate the scenario for t0 = 0 s, t1 = 1 s,
and t2 = 2 s. The initial distance between the flying TX and RX
is 2l0 = 100 m. The scattering plane is below the drones and
inclined. It is given for t0 = 0 s by A0x+B0y + C0z = l0D0,
with A0 = 1, B0 = 0.8, C0 = 0.5 and D0 = 2. The velocity
vectors are mainly parallel to the scattering plane and given by
vt0 = [25,−35, 20]T km/h andvr0 = [−30, 25,−15]T km/h.
This means the drones are in a fly-by scenario as shown in Fig. 4.
The parameters for the other two time steps t1 and t2 are obtained
by rotating the local Cartesian coordinate system along the x-
and y-axis according to the x- and y-components of the velocity

Fig. 4. Drone-to drone scenario with A0 = 1, B0 = 0.8, C0 = 0.5, D0 = 2,
and l0 = 50 m with velocity vectors vt0 = [25,−35, 20]T km/h and vr0 =

[−30, 25,−15]T km/h. The TX and RX location is marked by the drones.
The origins of the moving local Cartesian coordinate system, which is located
between the drones, and the fixed ENU coordinate system, which is located in
the scattering plane, are shown.

vectors of TX and RX. The velocity vectors in z-direction only
cause a stretching of the z-axis, but no rotation.

The joint delay Doppler pdfs for t0 = 0 s are shown in Fig. 5.
As expected the probability decreases with increasing delay,
since we included the path loss in our model. Furthermore,
the four poles of the joint pdf can be recognized. The poles
are calculated by (31) and are shown as black lines in Fig. 5.
The joint pdf matches perfectly with the limiting frequencies,
which shows the validity of the sixth order polynomial. The
specular reflection occurs according to (57) at ξsr = 1.7275 with
a Doppler frequency of fsr(t0) = 22.39 Hz in Fig. 5(a), which
is indicated by the gap of the black lines. The delay-dependent
Doppler pdfs for ξ = 1000 are shown in the upper part of
Fig. 6 for the three time instances. Since this approximates the
scattering components for ξ → ∞, we obtain a Jakes Doppler
spectrum with the same limiting frequencies for all three cases.
The comparison between the limits of the delay-dependent pdfs
in Fig. 6 and the closed-form solution f1,2(t) = ±21.3 Hz from
(60) shows perfect agreement. In the lower part of Fig. 6, the
real part of the time-variant characteristic functions is shown.
We obtain a zeroth-order Bessel function of the first kind,
which is the inverse Fourier transform of the Doppler spec-
trum in the upper part, for all three time instances. The first
zero crossing of the characteristic functions in Fig. 6 occurs at
u = 2.405/(2πf1,2(t)) = ±0.018 s with f1,2(t) = ±21.3 Hz,
which perfectly matches the theory.

The fly-by scenario causes the joint delay Doppler pdf in
Fig. 5(a), 5(b), and Fig. 5(c) to become time-variant. At the
beginning the drones are flying towards each other, which
can be seen by the positive Doppler frequencies in Fig. 5(a).
The Doppler frequencies are almost centered around 0 Hz in
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Fig. 5. Time-variant joint delay Doppler pdf p(t, q(ξ, η); ξ, fd) according to (50) and limiting frequencies (black lines) according to (31). (a) For t0 = 0 s with
parameters A0 = 1, B0 = 0.8, C0 = 0.5, D0 = 2, l0 = 50 m, vt0 = [25,−35, 20]T km/h and vr0 = [−30, 25,−15]T km/h. (b) For t1 = 1 s with parameters
A1 = 1, B1 = 0.64, C1 = 0.43, D1 = 2.00, l1 = 46.53 m, vt1 = [26.85,−38.05, 9.03]T km/h and vr1 = [−31.27, 27.31,−5.15]T km/h. (c) For t2 = 2 s

with parameters A2 = 1, B2 = 0.46, C2 = 0.33, D2 = 1.86, l2 = 46.19 m, vt2 = [25.28,−39.99,−3.46]T km/h and vr2 = [−29.73, 28.84, 5.86]T km/h.

Fig. 6. Delay-dependent Doppler pdf p(t, qξ(η); fd|ξ = 1000) according to (30) and real part of the delay-dependent characteristic function

�{Φ(t, qξ(η, ϑ);u|ξ = 1000)}. (a) For t0 = 0 s with velocity vectors vt0‖E = [21.30,−37.96, 18.15]T km/h and vr0‖E = [−20.74, 32.41,−10.37]T km/h.
The limiting frequency according to (60) becomes f1,2(t0) = ±21.28 Hz and the first zero crossing of the Bessel function according to (58) is at u =

2.405/(2πf1,2(t0) = ±0.018 s. (b) For t1 = 1 s with velocity vectors vt1‖E = [22.81,−40.63, 7.31]T km/h and vr1‖E = [−21.17, 33.75,−0.85]T km/h.
The limiting frequency according to (60) becomes f1,2(t1) = ±21.28 Hz and the first zero crossing of the Bessel function according to (58) is at u =

2.405/(2πf1,2(t1) = ±0.018 s. (c) For t2 = 2 s with velocity vectors vt2‖E = [20.84,−42.02,−4.92]T km/h and vr2‖E = [−18.64, 33.91, 9.51]T km/h.
The limiting frequency according to (60) becomes f1,2(t2) = ±21.28 Hz and the first zero crossing of the Bessel function according to (58) is at u =
2.405/(2πf1,2(t2) = ±0.018 s.

Fig. 5(b) and then turn negative in Fig. 5(c), since now they
fly away from each other. The change of the scattering plane
parameters and the velocity vectors of TX and RX is shown
in the captions of Figs. 5(a), 5(b), and 5(c). Note that the
scattering plane parameters and velocity vectors remain constant
in the ENU coordinate system. This is the reason, why for large
delays ξ the geometric relationship between velocity vectors and
scattering plane does not change. The delay-dependent Doppler
pdf for large delays would only change if the velocity vectors
in the ENU coordinate system become time-variant. Therefore,
the delay-dependent Doppler pdfs in Figs. 6(a), 6(b), and 6(c)
remain constant, although the parameters and parallel velocity
vectors in the local coordinate system change. The change of
parameter values is shown in the captions of Figs. 6(a), 6(b),
and 6(c).

VI. CONCLUSION

In this paper, we derived a general, time-variant, three-
dimensional, single-bounce scattering model for mobile-to-
mobile channels. It is based on prolate spheroidal coordinates,
the theory of algebraic curves, and differential forms. The prolate
spheroidal coordinate system allows a more natural description

of the mobile-to-mobile channel and thus enabled us to carry
out a geometric algebraic analysis of the Doppler frequency. The
theory of algebraic curves was introduced during the calculation
of the Doppler probability density function in order to remove
the ambiguity in the description. Thus, we could determine the
functional relationship between the spatial variables and the
delay and Doppler frequency variables, which is the prerequisite
to derive the delay-dependent and the joint delay Doppler prob-
ability density functions. Finally, differential forms were needed
to normalize the obtained probability density functions on the
basis of the length or equivalent area.

The introduced theoretical framework enabled us to derive the
delay-dependent Doppler pdf and the joint delay Doppler pdf
for general time-variant, mobile-to-mobile channels. Hereby,
the joint delay Doppler pdf was calculated using a bistatic
radar inspired path loss model. Additionally, we determined
the limiting frequencies of the mentioned probability density
functions as horizontal tangents of the Doppler algebraic curve.
The theoretical results fully agree with our previous models and
measurement data. Thus, the theory can be applied to arbitrary
mobile-to-mobile channels in order to describe and simulate
them both realistically and efficiently.
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