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Geometrical interpretation of the argument of Bargmann invariants and weak values
in N-level quantum systems applying the Majorana symmetric representation

Lorena B Ferraz1, Dominique L Lambert2 and Yves Caudano1

1Research Unit Lasers and Spectroscopies (UR-LLS), naXys & NISM,
University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium∗ and

2 ESPHIN & naXys, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium

In this paper, we study the argument of weak values of general observables, succeeding to give
a geometric description to this argument on the Bloch sphere. We apply the Majorana symmetric
representation to reach this goal. The weak value of a general observable is proportional to the
weak value of an effective projector: it arises from the normalized application of the observable
over the initial state, with a constant of proportionality that is real. The argument of the weak
value of a projector on a pure state of an N -level system corresponds to a symplectic area in
the complex projective space (CPN−1), which can be represented geometrically with a sum of
N − 1 solid angles on the Bloch sphere using the Majorana stellar representation. Here, we show
that the argument of the weak value of a general observable can be described, using Majorana
representation, as the sum of N − 1 solid angles on the Bloch sphere, merging both studies. These
two approaches provide two geometrical descriptions, a first one in CPN−1 and a second one on
the Bloch sphere, after mapping the problem from the original space (CPN−1) by making use of
the Majorana representation. These results can also be applied to the argument of the third-order
Bargmann invariant, the most fundamental order as the argument of any higher order invariant can
be expressed as a sum of the argument of third-order Bargmann invariants. Finally, we focus on the
argument of the weak value of a general spin-1 operator when its modulus diverges towards infinity.
This divergence amplifies signals with great usefulness in experiments.

INTRODUCTION

Weak values have a great potential, and several ap-
plications in different areas of quantum physics rely on
them due to both their fundamental and experimental
properties[1–3].
Weak values arise notably when performing weakly a
measurement of an observable through a unitary oper-
ator, followed by post-selection (executing a projective
measurement and filtering the final state). Aharanov
defined this quantity in the context of the von Neumann
scheme [4, 5]. In this protocol, the global system is
composed by the measuring device (or ancilla) and the
system of interest. The system and the ancilla interact

through a unitary operator, Û = exp
{
−igÂ⊗ P̂

}
,

where Â, belonging to the system space, is the operator
to be measured and P̂ , representing the momentum
operator, belongs to the measuring device space. After
this interaction, the wave function of the probe becomes
a linear combination of wave functions that are shifted
by quantities proportional to each of the eigenvalues of
the observable [6, 7]. When the interaction strength,
g, is small, the measurement is weak, and the average
shift in the ancilla’s wave function is proportional to
the expectation value of the observable Â. Nonetheless,
when post-selection is executed on the system after the
measurement, all shifted wave functions are projected
on a common state and thus interfere. As a result, the
measuring device’s wave function is typically shifted in
position by a quantity proportional to the real part of

the weak value Aw =
〈ψf |Â|ψi〉
〈ψf |ψi〉 , where |ψi〉 and |ψf 〉 are

the pre- and post-selected states. The ancilla’s wave
function is simultaneously shifted in momentum by a
quantity that is proportional to the imaginary part of
the weak value [6, 7].
Several schemes extended the weak measurement proto-
col beyond the specific configuration in which they were
defined [5]. The pointer can be any observable in con-
tinuous or discrete space. Furthermore, any observable
can play the role of the probe, but the resulting shift
is a linear combination of the real and imaginary parts
[6]. Additionally, weak values can arise in more general
schemes than weak measurements, for example, without
a probe [8, 9] or in strong measurements [10].
Applications of weak measurements abound in different
areas. Weak values are unbounded numbers; they
enhance tiny signals [11–13] and hence are a useful
tool for sensing [14–16]. As complex numbers, they
can be used in tomography [17–21], for measuring wave
functions [21] and for measuring the expectation value
of non-Hermitian operators [22]. They also present a
great potential in quantum computing [23].
Scientists usually study weak values in terms of their
real and imaginary parts [7]. Nonetheless, to provide a
geometrical interpretation of these quantities, which has
taken much attention over the last few years [24–30], it is
essential to investigate the argument. Anomalous weak
values (complex values or values outside of the range
of the possible expectation values of the observable)
are proofs of contextuality, essential property for the
supremacy of quantum computing [2, 31]. The argument
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of the weak value can thus help us to understand the
controversial meaning of weak values. From a practical
point of view, the argument provides the direction in
which the coherent state of a Gaussian meter is shifted in
phase space after post-selection in a weak measurement.
Moreover, the real part of weak values is linked to the
optimal conditional estimate of the observable, while
the imaginary part is related to the inaccuracy of the
estimate [32–35]. In consequence, the argument appears
connected to a ratio of the estimate and its contribution
to the error. In general, studying the geometric phase
arising from weak values can benefit the study of
interferometric phenomena with post-selection.
The argument of the weak value of two-level projectors
is associated to a geometric phase that is proportional
to the solid angle on the Bloch sphere of the spherical
triangle spanned by the pre-selected state, the projector
state and the post-selected state [36]. Recently, it has
been shown that for N -level systems, the argument of
the weak value of a projector represents a geometric
phase associated to the symplectic area of the geodesic
triangle spanned by the pre-selected state, the projector
state, and the post-selected state in CPN−1 [37]. As
the argument of the weak value of any observable is
equivalent to the argument of the weak value of an
effective projector (an extra phase is involved, with 0 or
π as sole possible values), we can apply the geometric
description previously developed for projectors to weak
values of general observables.
Cormann et al showed that the argument of the weak
value of N -level projectors can be expressed as the
sum of N − 1 solid angles on the Bloch sphere. For
this, they applied Majorana representation to the three
states (initial state, projector state, and post-selected
state)[26]. Majorana introduced in the 1930s a math-
ematical procedure to represent systems larger than
qubits on the Bloch sphere. N − 1 stars on the Bloch
sphere represent an N -level system [38]. The Majorana
representation is a powerful tool to get a geometrical
insight and to perform calculations [39–41]. Several
studies, from purely theoretical to quantum computing,
made use of this representation [42–44].
Visualizing a symplectic area in CPN−1 is not an
intuitive task, as it is not the usual Riemannian area.
To tackle this problem, in this paper, we show that, by
applying the Majorana representation to the three states
involved in the weak value of any N -level observable
(pre-selected state, effective projector state [37], and
post-selected state), the geometry of the full system is
brought to the Bloch sphere. The argument of the weak
value is the sum of N−1 solid angles on the Bloch sphere.
The argument of the projector weak value is equivalent
to the argument of the Bargmann invariant associated to
the three states (invariant under gauge transformation
and re-parametrization). The geometric interpretation
is thus also appropriate in this context. Bargmann

invariants are directly linked to the Kirkwood-Dirac
pseudo-probability that defines a non-classical state by
taking negative or complex values [45]. Third-order

Bargmann invariants, Tr
(

Π̂1Π̂2Π̂3

)
, are especially

interesting, as the argument of any N -order Bargmann,

Tr
(

Π̂1Π̂2 . . . Π̂N

)
can be expressed as the sum of N − 2

arguments of third-order Bargmann invariants [46]. The
weak value is equal to a third-order Bargmann invariant
divided by the projection probability of the pre- and
post-selected states.
This paper is structured as follows. In the first section,
we present the geometric interpretation of weak values of
N -level general observables, by applying the Majorana
representation. In section II, these calculations are
applied to the specific case of 3-level systems. After
this, we present the relevant example of spin-1 systems:
we study the argument of the weak value of a spin-1
operator when the modulus of the weak value presents
a divergence, a typical situation of an amplification
effect appearing in a weak measurement with nearly
orthogonal pre- and post-selected states.

WEAK VALUES OF N-LEVEL OBSERVABLES IN
TERMS OF MAJORANA STARS

The initial state, the observable and the post-selected
state constitute the required components of a weak value.
Varying any of these parts can completely modify the
quantity. In this section, we provide the theoretical
framework to apply the Majorana representation to the
different components of the weak value of an N -level ob-
servable.
The weak value of any discrete observable is proportional
to the weak value of a very specific projector with a con-
stant of proportionality that is real [37],

Aw =
〈ψf | Â |ψi〉
〈ψf |ψi〉

=
〈ψi| Â2 |ψi〉
〈ψi| Â |ψi〉

〈ψf | Π̂i′ |ψi〉
〈ψf |ψi〉

, (1)

where Π̂i′ = |ψi′〉 〈ψi′ |, with,

|ψi′〉 =
1√

〈ψi| Â2 |ψi〉
Â |ψi〉 , (2)

Eq.(1) does not present any issue of definition. When
〈Â2〉ψi = 0, the weak value Aw is equal to 0. If the

expectation value of Â in the initial states is equal
to 0, then the weak value of the effective projector is
calculated through a limit, using a small parameter ε
that tends to 0 (for more detail, see [37]).
As the weak value is invariant under unitary trans-
formations, two unitary operators are applied to take
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two states to separable states in the Majorana repre-
sentation. It is always possible to map two states to
separable states (degenerate stars, i.e. a coherent state)
in the Majorana representation [47]. The pre-selected
state is mapped to |ψi〉 → |Ψ′i〉 = |0〉 ... |0〉︸ ︷︷ ︸

N−1

via applying

an appropriate unitary operator Û (1). The general
form of the unitary operator to take a state |ψ1〉 to

another state |ψ2〉 is Û = e−iarg〈ψ2|ψ1〉
(
Î − 2 |∆〉 〈∆|

)
,

where |∆〉 = e−iarg〈ψ2|ψ1〉|ψ1〉−|ψ2〉√
2(1−|〈ψ2|ψ1〉|)

. The other compo-

nents are also affected by the unitary transformation,

Â → Û (1)ÂÛ (1)† = Â′, and Û (1) |ψf 〉 =
∣∣∣ψ′f〉. A

second unitary operator Û (2) that leaves the pre-selected
state invariant, |ψ′′i 〉 = Û (2) |ψ′i〉 = |ψ′i〉, is applied
to map the state |ψi′〉 to a second separable state,
|ψ′i′〉 → |Ψ′′i′〉 = |φi′〉 ... |φi′〉︸ ︷︷ ︸

N−1

. This unitary operator

should also be applied to the post-selected state,

Û (2)
∣∣∣ψ′f〉 =

∣∣∣ψ′′f〉.

After both unitary operators, the post-selected

state becomes a general N -level state,
∣∣∣Ψ′′f〉 =

1√
M

∑
P P̂

[∣∣∣φ(1)
f

〉
...
∣∣∣φ(N−1)
f

〉]
, where the sum runs

through all the permutations. After removing the global
phase [48], the state can be written as a symmetric
state in the Majorana representation. Writing the

state as
∣∣∣ψ′′f〉 =

∑N−1
i=0 ci |i〉 and solving the Majorana

polynomial, Eq.(3), one can express the state in the
Majorana symmetric representation [49, 50],

P (z) =

N−1∑
k=0

(−1)
k
√
CkN−1ckz

N−1−k, (3)

where the binomial coefficients CN−1
k = (N−1)!

k!(N−1−k)! and

ck are the coefficients of the state
∣∣∣ψ′′f〉. The polar, θk,

and azimuthal, φk, angles on the Bloch sphere depend
respectively on the modulus and the phase of the roots
zk of the polynomial Eq.(3),

zk = ejφk tan
θk
2
, (4)

where 0 ≤ φk ≤ 2π, and 0 ≤ θk ≤ π.
The weak value is now calculated, following Eq.(1), as,

Aw =

〈
ψ′′f

∣∣∣ Â′′ |ψ′′i 〉〈
ψ′′f

∣∣∣ψ′′i 〉 =
〈ψi| Â2 |ψi〉
〈ψi| Â |ψi〉

Π
(1)
i′,wΠ

(2)
i′,w . . .Π

(N−1)
i′,w ,

(5)

where each two-level system weak value is Π
(j)
i′,w =〈

φ
(j)
f

∣∣∣φi′〉〈φi′ |φi〉〈
φ
(j)
f

∣∣∣φi〉 .

The modulus of the weak value is thus the product of
N − 1 moduli of weak values of qubit projectors,

|Aw| =
〈ψi| Â2 |ψi〉
| 〈ψi| Â |ψi〉 |

|Π(1)
i′,w| · |Π

(2)
i′,w|...|Π

(N−1)
i′,w | (6)

= 〈ψi| Â2 |ψi〉

∣∣∣∣∣∣
〈
φ

(1)
f

∣∣∣φi′〉〈
φ

(1)
f

∣∣∣φi〉
∣∣∣∣∣∣
∣∣∣∣∣∣
〈
φ

(2)
f

∣∣∣φi′〉〈
φ

(2)
f

∣∣∣φi〉
∣∣∣∣∣∣ . . .

∣∣∣∣∣∣
〈
φ

(N−1)
f

∣∣∣φi′〉〈
φ

(N−1)
f

∣∣∣φi〉
∣∣∣∣∣∣

The argument of the weak value of Â is the sum of N −1
arguments of weak values of qubit projectors and the
argument of the expected value of the operator < Â >i,
which is either 0 or π.

argAw = (7)

= argΠ
(1)
i′,w + argΠ

(2)
i′,w + ...+ argΠ

(N−1)
i′,w − arg < Â >i,

= −
Ωii′1f

2
−

Ωii′2f

2
− ...−

Ωii′N−1f

2
− arg < Â >i

=
∑
j

arg
(〈
φi

∣∣∣φ(j)
f

〉〈
φ

(j)
f

∣∣∣φi′〉)− arg < Â >i

Each argument of a qubit projector weak value represents
a geometric phase that is associated with the area of the
solid angle on the Bloch sphere of the spherical trian-
gle spanned by the vectors representing the pre-selected
state, the application of the observable over the initial
state and the post-selected state in the Majorana repre-
sentation.
The argument of the weak value of an observable in N -
level system represents a geometric phase that is asso-
ciated to the symplectic area of the geodesic triangle
spanned by the geodesics linking the three vectors repre-
senting the pre-selected state, the application of the ob-
servable over the pre-selected state and the post-selected
state in CPN−1. This space is a Kähler manifold, which
means that there are three compatible structures: the
complex structure, the symplectic structure and the Rie-
mannian structure. In CP1, the symplectic area and the
Riemannian one coincide. Hence, the argument of the
weak value of an observable in two-level systems can be
described in terms of solid angles. Using Majorana’s de-
scription, we succeed to associate a symplectic area in
CPN−1 with N−1 solid angles on the Bloch sphere. How-
ever, the spherical triangle associated to the solid angles,
Ω, are not geodesic curves of CPN−1 in the Majorana
representation.

MAJORANA REPRESENTATION OF WEAK
VALUES OF OBSERVABLES IN THREE-LEVEL

SYSTEMS

In this section, we focus on general weak values of

three-level general observables, Â = aI Î + aL~α · ~̂λ, where
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~̂
λ are the Gell-Mann matrices (Appendix 1). Three-level
systems are specially relevant. On the one hand, there
are several interesting observables in three-level systems,
such as the spin-1 operators, the 3D Stokes parameter
operators, or three-level projectors like those appearing
in the three-box paradox [51–54]. On the other hand,
as weak values are only dependent on three vectors, the
description of a single weak value is intrinsically a three-
level problem. As weak values are invariant under uni-
tary transformations, it is feasible to apply three uni-
tary operators to transform the three N -level vectors into
three states with only three components different from
zero. In practice, this maps the vectors and their associ-
ated geodesic triangles to a three-dimensional subspace of
CPN−1, equivalent to CP2. By applying this procedure,
any weak value of systems larger than three dimensions
can be converted to a three-level weak value, providing a
representation of its argument of the weak value as two
solid angles on the Bloch sphere. Consequently, we can
always choose to represent the argument with N − 1 or
two solid angles.
Any projector of a pure three-level state can be writ-
ten in terms of the Gell-Mann matrices and the iden-

tity as Π̂a = 1
3

(
Î +
√

3~a · ~̂λ
)

. The weak value of Â is

Aw =
〈ψf |Â|ψi〉
〈ψf |ψi〉 =

Tr[Π̂f ÂΠ̂i]
Tr[Π̂f Π̂i]

, which is proportional to

the weak value of the projector Π̂i′ , where |ψi′〉 is de-
fined in Eq.(2). Owing to this property, the weak values
of general observables are directly linked to Bargmann
invariants. The argument of the weak value is equal to
the argument of a Bargmann invariant up to a phase of
either 0 or π.
Having a description of weak values of general observ-
ables in terms of projectors, the Majorana representa-
tion can be applied to all three states. In that case, the
system is mapped from CP2 to a representation on the
Bloch sphere. The argument of the weak value of a pro-
jector is the sum of the arguments of two weak values in
two-level systems. Each of these arguments is associated
to a solid angle on the Bloch sphere.
Let’s consider a general pre-selected state |ψi〉 in CP2

(removing the global phase),

|ψi〉 =
(
cos θi, e

jχ1i cos εi sin θi, e
jχ2i sin εi sin θi

)T
, (8)

where j is the complex unit. As the weak value is invari-
ant under unitary transformations, we choose to map the
pre-selected state to the state |ψ′i〉 = (1, 0, 0)

T
that is sep-

arable in the Majorana representation, |Ψ′i〉 = |φi〉 |φi〉,
|φi〉 = |0〉, choosing |0〉 = (1, 0)

T
and |1〉 = (0, 1)

T
. The

unitary operator that maps the pre-selected state to the
state |ψ′i〉 is,

Û (1) =

cos θi e−jχ1i cos εi sin θi e−jχ2i sin εi sin θi
sin θi −e−jχ1i cos εi cos θi −e−jχ2i sin εi cos θi

0 −e−jχ1i sin εi e−jχ2i cos εi

(9)

When applying this unitary operator to the system, the
post-selected state and the observable are also mod-

ified, |ψf 〉 →
∣∣∣ψ′f〉 and Â → Â′. After remov-

ing the phase on the first component of the state
[55] arising from the application of the observable
over the initial state, |ψ′i′〉 can be written as |ψ′i′〉 =(
cos θi′ , e

jχ1i′ cos εi′ sin θi′ , e
jχ2i′ sin εi′ sin θi′

)T
. At this

stage, we apply a second unitary operator Û (2) that
leaves |ψ′i〉 invariant and takes the state |ψ′i′〉 to a sepa-
rable state,

Û (2) =

1 0 0
0 e−jχ1i′ cosα −e−jχ2i′ sinα
0 e−jχ1i′ sinα e−jχ2i′ cosα

 , (10)

where α = −εi′ + arcsin
(

tan θi′
2

)
. This uni-

tary transformation maps |ψ′i′〉 to |ψ′′i′〉 =(
cos θi′ ,

√
2 cos θi′ (1− cos θi′), 1− cos θi′

)T
which,

in terms of qubits, is |Ψ′′i′〉 = |φi′〉 |φi′〉, with

|φi′〉 =
(√

cos θi′ ,
√

1− cos θi′
)T

.

After applying both unitary transformations (Û (1) and

Û (2)), the post-selected state
∣∣∣ψ′′f〉 has the general form,∣∣∣ψ′′f〉 = c0 |0〉 + c1 |1〉 + c2 |2〉. To obtain the Majorana

symmetrized state, one should solve the following
polynomial [47],

c2 −
√

2c1z + c0z
2 = 0 (11)

The polar, θk, and azimuthal, φk, angles on the Bloch
sphere can be calculated from the roots zk of the poly-
nomial, Eq.(11).
Once all the transformations are applied, the three states
are easily mapped to the Bloch sphere,

|ψi〉 → |Ψi〉 = |0〉 |0〉 (12)

|ψi′〉 → |Ψi′〉 = |φi′〉 |φi′〉

|ψf 〉 → |Ψf 〉 =
1√
M

(∣∣∣φ(1)
f

〉 ∣∣∣φ(2)
f

〉
+
∣∣∣φ(2)
f

〉 ∣∣∣φ(1)
f

〉)
,

with M = 2
(

1 + |
〈
φ

(1)
f

∣∣∣φ(2)
f

〉
|2
)

. The weak value writ-

ten in terms of the new states is,

Aw =
〈ψi| Â2 |ψi〉
〈ψi| Â |ψi〉

〈
φ

(1)
f

∣∣∣φi′〉〈φ(2)
f

∣∣∣φi′〉 〈φi′ |φi〉2〈
φ

(1)
f

∣∣∣φi〉〈φ(2)
f

∣∣∣φi〉 (13)

=
〈ψi| Â2 |ψi〉
〈ψi| Â |ψi〉

Π
(1)
i′,wΠ

(2)
i′,w,

where Π
(n)
i′,w =

〈φnf |φi′〉〈φi′ |φi〉
〈φnf |φi〉

. The quantity 〈ψi| Â2 |ψi〉

is real and positive and 〈ψi| Â |ψi〉 is real, therefore, the
argument of the weak value is the sum of the arguments
of both weak values and an extra phase that is either 0
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or π,

argAw = argΠ
(1)
i′,w + argΠ

(2)
i′,w − arg < Â >i, (14)

The argument of the weak value of any three-level ob-
servable is the sum of two arguments of weak values of
projectors of qubits. Each of these arguments is associ-
ated to the solid angle on the Bloch sphere of the triangle
spanned by the vectors representing the states |φi〉, |φi′〉
and

∣∣∣φnf〉,

argAw = −Ωii′f1
2
− Ωii′f2

2
− arg < Â >i (15)

The argument of general observable weak values in 3-
level systems has two geometric descriptions, one in CP2

and a second one on the Bloch sphere. The argument of
the weak value of any 3-level observable is a geometric
phase associated to the symplectic area in CP2 of the tri-
angle spanned by the geodesics connecting the three vec-
tors representing the pre-selected state, the application of
the observable over the initial state and the post-selected
state. Additionally, this symplectic area can be mapped
to a Riemannian area on the Bloch sphere thanks to the
Majorana description. In this case, the argument of the
weak value is the sum of two arguments that are associ-
ated to solid angles on the Bloch sphere.
Any weak value can be described using a three-level sys-
tem, only three vectors are involved in the calculations.
In consequence, the results presented in this section are
pertinent for the weak value of any N -level observable.
The argument of the weak value of any N -level observ-
able is the sum of the argument of the weak value of two
qubit projectors (up to a phase of 0 or π). Consequently,
in this section we have linked the symplectic area of a tri-
angle in CPN−1 to two solid angles on the Bloch sphere.
In Fig. 1, we depict the solid angles linked to the ar-
gument of the weak value of the controlled NOT gate,
essential to produce entangled states in quantum com-
puting,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (16)

In Fig. 1a), we represent the three solid angles on the
Bloch sphere in the Majorana representation and the
three states involved in the weak value. Nevertheless,
one can always reduce the size of the system to a three-
level system (independently on the initial vector space
size). In Fig. 1b), we depict the two solid angles induced
by the argument of the weak value after having reduced
the size of the space from 4 levels (requiring 3 states) to 3
levels (involving only 2 states). In Fig. 1c), the geodesic

triangle between the three involved vectors is represented
in CP2. To do so, we use the spherical octant projection.
Each point of the octant is associated to a torus formed
by the two phase components of the Hilbert space, χ1 and

χ2, |ψ〉 =
(
|ψ0|, ejχ1 |ψ1|, ejχ2 |ψ2|

)T
[56]. The state |ψ〉

is projected to the real point ~q = (|ψ1|, |ψ2|, |ψ0|). We
also depicted the geodesics between each pair of states
in three dimensions. The symplectic area is a contour
integral along these geodesics, but it cannot be directly
represented. The geodesics in CP2 do not correspond to
great circles on the sphere S7. Moreover, after apply-
ing the Majorana representation to the geodesic, it does
not correspond to great circles on the Bloch sphere. Be-
tween separable states, geodesics correspond to circular
segments on the Bloch sphere [57]. However, they can
have very complicated shapes when it comes to not sep-
arable states.

WEAK VALUES OF THREE-LEVEL SYSTEMS:
SPIN-1

The spin, describing the intrinsic angular momentum
of particles, has a central role in quantum physics. The
spin operator depends on the type of particle. The Pauli
matrices, the chosen generators of SU (2), describe the
spin-1/2 [58]. In the case of spin-1, the operators can
be described in terms of generators of SU (3). The spin
operators along the three different axes are detailed in

terms of the Gell-Mann matrices as, Ŝx = 1√
2

(
λ̂1 + λ̂6

)
,

Ŝy = 1√
2

(
λ̂2 + λ̂7

)
, Ŝz = 1

2

(
λ̂3 +

√
3λ̂8

)
[59], where the

Gell-Mann matrices are defined in Appendix 1 and ~ = 1.
In several experiments, the weak value of the spin oper-
ators has a central role [5, 60]. The real and imaginary
parts of the weak values of spin-1/2 operators have been
theoretically studied, along with their modulus and ar-
gument [5, 36, 61, 62]. As the spin direction can be rep-
resented directly on the Bloch sphere, the situation is
easy to visualize. However, the weak values of the spin-1
operators were much less studied, specially from a geo-
metrical point of view. One possible method is its study
in terms of vectors in CP2, with a generalization of the
Bloch sphere [37]. Here, we focus on the description of
weak value of the spin-1 operator on the Bloch sphere us-
ing the Majorana formalism introduced in the previous
sections.
Let’s consider the weak value of a linear combination

of the three components of the spin,
~̂
S = nxŜx +

nyŜy + nzŜz. Without loss of generality, by setting
an appropriate reference point, we rotate the direction
~n = (nx, ny, nz)

T
into ~n = (0, 0, 1). In consequence, we

focus on the study of the weak value of Ŝz, Szw. The
general pre- and post-selected states have 4 independent
parameters each. To simplify the studied case, the pre-
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FIG. 1. Representation of the argument of the weak value of the CNOT gate. The pre-selected state is |ψi〉 = 1√
4

(1,−j, 1,−j)T

and the post-selected state is |ψf 〉 = 1√
5

(1, 0,−2, 0)T . a) Representation of the three solid angles involved in arg (CNOTw)

on the Bloch sphere. b) Representation of two solid angles concerning the argument of the weak value of the CNOT gate in
the reduced approach (three-level system). c) Depiction of the geodesic triangle in the complex projective space CP2 between
the initial state, the application of the CNOT gate over the initial state and the post-selected state, using the spherical octant
projection.

selected state is chosen to be |ψi〉 = 1√
6

(2, 1, j)
T

, where

we set the parameters in Eq.(8) to εi = π
4 , χ1i = 0,

χ2i = 3π
2 , and θ = arccos

√
2
3 , a simple state, but not

a trivial one. In the case of the post-selected state,
only two parameters are fixed, εf = π

4 , and χ2f = 0,

|ψf 〉 =
(

cos θ, 1√
2

sin θejξ, 1√
2

sin θ
)T

. These states pro-

vide a system with two independent parameters, θ and
ξ, to study. The application of the spin operator to the
pre-selected state is |ψi′〉 = 1√

5
(2, 0,−j). Applying the

appropriate unitary operators, the initial state is moved
to |ψ′′i 〉 = (1, 0, 0) → |Ψi〉 = |0〉 |0〉 and the state |ψi′〉

to |ψ′′i′〉 =

(√
3
10 ,

√
− 3

5 +
√

6
5 , 1−

√
3
10

)T
→ |Ψi′〉 =

|φi′〉 |φi′〉, where |φi′〉 =

((
3
10

) 1
4 ,

√
1−

√
3
10

)T
. Making

use of these states and applying the Majorana represen-
tation to the post-selected state (in Eq.(3) one finds the
Majorana polynomial that should be solved), we study
the argument of the weak value of the spin-1 as the sum
of two arguments of two-level projectors that are associ-
ated to two solid angles on the Bloch sphere.

One of the most useful characteristics of weak values
is their ability to amplify minute phenomena thanks to
their unbounded property. Identifying the behavior of
the argument of the weak value when the absolute value
tends to infinity is essential due to both the discontinu-
ities that appear in that range and their usefulness.
We study the weak value of Ŝz, as a function of a fam-
ily of post-selected sates described by the parameters θ

FIG. 2. Representation of the maximum value of the modulus
of the weak value for each value of ξ (blue), of the argument
of the weak value for the value of θmax (ξ) at the maximum
of the modulus in terms of ξ (green) and of the angle between
~f1 and ~f2 at θmax (ξ) as a function of ξ (orange).

and ξ. In Fig.(2), we represent the maximum value of
the modulus of the weak value of Ŝz for each value of ξ.
The maximum of the modulus of the weak values takes
place for a determined θmax (ξ). We use this value to plot
the argument of the weak value at θmax (ξ) in terms of
ξ. We also depict the angle between the two stars on
the Bloch sphere representing the post-selected state, ~f1

and ~f2 at θmax (ξ) as a function of ξ. The angle between
the two vectors on the Bloch sphere represents an en-



7

tanglement measurement of the two-qubit state. If the
angle between the vectors is 0◦, the state is separable and
thus the entropy of entanglement is 0. On the opposite
side, if the angle between the two vectors is 180◦, the
state is a maximally entangled Bell state. The modulus
of the weak value presents a vertical asymptote at ξ = π

2
because the initial and final states are then orthogonal.
At the divergence point, the argument of the weak value
presents a π jump. This behavior is typical of the argu-
ment of the weak value when there is a divergence in the
modulus [26].
The two vectors on the Bloch sphere associated to the
final state, ~f1 and ~f2, are the closest, 29.42◦, where the
maximum value of the modulus tends to infinity. Both
the initial state and the application of the operator over
the initial state present an entropy of entanglement equal
to 0, as the states are separable. Hence, the angle be-
tween ~f1 and ~f2 represents the total entanglement of the
system.
Having a minimum of entropy of entanglement at the
divergence in the modulus of the weak values is counter-
intuitive at first. Anomalous weak values are a proof
of contextuality [2], a characteristic of non-classicality.
Therefore, it could have been expected to find a maxi-
mum in the entanglement, which is also a characteristic
of non-classicality, at the most anomalous weak value (di-
vergence). To clarify if this is an intrinsic characteristic
of the system, we depict the value of the angle between
the vectors ~f1 and ~f2 for all values of θ and ξ in Fig. 3.
We also include the value of θ at the maximum of the
modulus of the weak value, θmax (ξ) (red line). We plot
the same line for the minimum of the weak value θmin (ξ)
(green line). There are two absolute minima of the en-
tropy of entanglement. None of them is at the maximum
of the modulus of the weak value (red line in the plot).
However, the maximum of modulus of the weak value
is always located close to the minimum of the entangle-
ment, as it follows the bottom of the valley of minimal
entanglement on Fig.3 (slightly to the left). A very sim-
ilar correlation links the minimum of the modulus of the
weak value (green line) and the maximum of the entangle-
ment. The trends are very similar, but slightly shifted.
This behavior is very intriguing due to the correlation
of the anomalous weak values and non-classicality. We
think this should be explored further in the future. The
weak value diverges for ξ = π

2 , θ = π
2 , as it can been seen

in Fig. 2. In Fig. 4 and Fig. 5, we depict the evolution
of the argument of the weak value in the Majorana rep-
resentation in terms of ξ (a), the representation on the
Bloch sphere of the solid angles associated to the argu-
ment of the weak value for the maximum of the modulus
of the weak value (b), and the evolution of the angles on
the Bloch sphere as a function of ξ (c). In Fig. 4, we
represent a case with θ smaller than at the divergence
(θ = π

2 − 0.2) and in Fig. 5, a case very near the asymp-
tote, (θ = π

2 − 10−11).

FIG. 3. Color map of of the angle between the vectors rep-

resenting the post-selected state on the Bloch sphere ~f1 and
~f2 as a function of θ and ξ. The red line represents the angle
θ for which the modulus of the weak value is maximum for
fixed values of ξ, θmax (ξ). The green line represents the angle
θ for which the modulus of the weak value is minimum for
fixed values of ξ, θmin (ξ).

In Fig. 4a), one can perceive that, around θ = π
2 , the

slope of the function is quite big. The closer the θ is from
the divergence case, the larger the slope. In Fig. 5a), we
represent the extreme case, when θ = π

2 . There, the
slope is infinite, as the argument presents a π jump. In
the first case, Fig. 4, the big slope in the argument of

the weak value occurs when argΠ
(2)
i′,w passes by 0, so that

there is no discontinuity. The other projector presents
an argument of the weak value that also has a smooth

variation at that point. However, argΠ
(1)
i′,w passes by 0 at

ξ = 3π
2 . In the second case, Fig. 5, the argument varies

linearly with ξ, except at the point of the maximum of
the modulus of the weak value, where it exhibits a π
jump. This jump is associated to a π jump in the argu-

ment of the weak value of the second projector, argΠ
(2)
i′,w.

This jump is natural, as the vector is passing by the pole
of the Bloch sphere. To observe a smooth movement of
the star on the Bloch sphere (without change of sense of
the movement), a π jump should be present in the func-

tion of azimuthal angle, φ. The argument of Π
(2)
i′,w also

passes by 0 at ξ = 3π
2 . It appears that the non-smooth

behavior of the argument of the weak value induces a
non-smooth behavior in one argument of the weak value
of a projector in the Majorana representation, while the
other argument keeps a smooth behavior.
In figures b) of Fig. 4 and Fig. 5, we represent the
solid angles on the Bloch sphere associated to the ar-
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FIG. 4. a) Argument of the weak value of the spin operator,

Szw, in terms of ξ, argument of the weak value Π
(1)

i′,w and

Π
(2)

i′,w in terms of ξ for θ = π
2
− 0.2. b) Solid angles on the

Bloch sphere Ωii′f1 and Ωii′f2 for θ = π
2
− 0.2 and ξ = 2.09.

c) Argument of the weak value of Ŝz and polar and azimuthal
angles, θ and φ, of the vectors representing the post-selected
state on the Bloch sphere for θ = π

2
− 0.2, in terms of ξ. A

vertical line has been added in a) and c) at the value of ξ for
which the modulus of the weak value is maximum, ξ = 2.09.

FIG. 5. a) Argument of the weak value of of the spin operator,

Szw, in terms of ξ, argument of the weak value Π
(1)

i′,w and Π
(2)

i′,w

in terms ξ with θ = π
2
− 10−11. b) Solid angles on the Bloch

sphere Ωii′f1 and Ωii′f2 for ξ = π
2

and θ = π
2

. c) Argument of

the weak value of Ŝz and polar and azimuthal angles, θ and
φ, of the vectors representing the post-selected state on the
Bloch sphere for θ = π

2
, in terms of ξ. A vertical line has been

added in a) and c) at the value of ξ for which the modulus of
the weak value is maximum, ξ = π

2
.
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gument of the weak value. In each figure, the solid an-
gles correspond to the case in which the modulus of the
weak value is maximum, {θ = π/2 − 0.2, ξ = 2.09} and
{θ = π

2 , ξ = π
2 } respectively. The value of the maximum

is highlighted with a vertical line (pink in Fig. 4 and
green in Fig. 5). Far from the divergence, Fig. 4, there
are clearly two solid angles. However, very close to the
divergence, Fig. 5, all the vectors are nearly on the same
plane on the Bloch sphere. One of the qubit states repre-
senting the post-selected state in the Majorana represen-
tation is orthogonal to the qubit state representing the
initial state, a condition required for the appearance of a
divergence. All vectors on the Bloch sphere are not nec-
essarily on the same plane when a divergence is present.
When the initial and final states are orthogonal, the great
circle between~i and ~f2 is not unique as there are different
paths with the same distance. At θ = π

2 , in Fig. 5, the

vectors ~f1 and ~f2 are the closest and thus the entangle-
ment between them is the minimum.
In Fig. 4c, 5c, we depict both the azimuthal and the polar
angles of the two qubits representing the final state, at
the divergence position, θ = π

2 in Fig. 5 and at a smaller
value of θ, Fig. 4. In Fig. 4c, the polar angle θ1 is approx-
imately constant from ξ = 0 until the maximum of the
modulus of the weak value (vertical line), ξ = 2.09. The
maximum occurs at a value a bit larger than ξ = 2.09.
Then, it decreases, presenting a minimum at ξ = 3π

2 ,
where the azimuthal angle, φ1, passes by 0. After that
point, the polar angle increases until reaching the initial
value. At the jump position, in Fig. 5. The polar angle
of one of the qubits, θ2, representing the post-selected
state has a maximum at the position of the maximum of
the modulus of the weak value (vertical line), where it
is orthogonal to the pre-selected state, 〈f2|i〉 = 0. The
polar angle of the other qubit, θ1, is almost constant in
terms of ξ for θ = π

2 . It exhibits a smooth maximum at
ξ = π

2 . At this point the two polar angles are the closest.
In Fig. 4c, φ2 has a large slope near the maximum of the
modulus, similarly to the argument of the weak value. In
Fig. 5c, φ2 has a π jump at ξ = π

2 , where the divergence
takes place. It also presents a large slope when the ar-
gument of the weak value passes by π, when the weak
value is purely real. It appears that the azimuthal angle
presents a similar behavior as the argument of the weak
value when a non-smooth behavior appears.
Using the Majorana representation, we studied different
aspects of the weak values, such as the entropy of entan-
glement. We noticed that an interesting behavior occurs:
a maximum (minimum) of the entanglement is near a
minimum (maximum) of the modulus of the weak value.
Only the Majorana approach allows this analysis. Sim-
ply visualizing the behavior of the qubits representing
the different states on the Bloch sphere, we can interpret
the evolution of the argument of the weak value.

CONCLUSIONS

We applied the Majorana symmetric representation
to study the geometry of the argument of weak values
of N -level general observables on the Bloch sphere.
The weak value of any observable is proportional to
the weak value of an effective projector that is defined
as the normalized application of the observable over
the pre-selected state. The constant of proportionality
is real. Hence, the argument of the weak value of
any observable is the argument of the weak value of a
projector modulo π.
The modulus of the weak value of a general observable is
the product of N −1 moduli of weak values of projectors
in CP1 and constants that are independent on the
post-selected state. The argument of the weak value of
any observable is the sum of N − 1 arguments of 2-level
systems, plus a phase that is either 0 or π. Each of these
arguments represents a solid angle on the Bloch sphere.
Any weak value depends only on three states. Thus,
applying different unitary operators, it is possible to
map these states to a three-level system, giving a special
importance to the qutrit case. Doing so, we map a
symplectic area in CPN−1 to a sum of two solid angles,
instead of N − 1, on the Bloch sphere (up to a constant
that is either 0 or π). The solid angles on the Bloch
sphere are determined by the great circles between the
four qubit vectors (the two degenerate states associated
to the initial state, the two degenerate states linked to
the observable, and the two entangled states describing
the final state). However, these great circles are not
geodesics between the states in CPN−1.
We applied these results to the spin-1 operator for
anomalous weak values in the region of weak value
amplification. Using a specific case, we studied the
argument of the weak value when the modulus tends
to infinite (asymptotic behavior). We found that when
the weak value diverges, the angle between the two
vectors representing the post-selected state on the Bloch
sphere presents a constrained minimum. The angle
between the two qubits representing the post-selected
state on the Bloch sphere gives a measure of the total
entanglement of the system. The maximum value of
the modulus is for any value of the angle ξ near the
minimum of entanglement. The non-smooth behavior of
the argument of the weak value seems to be associated
to the evolution of the azimuthal angle of the qubits
on the Bloch sphere. The azimuthal angle controls the
phase of the qubit state components. Ultimately, it is
thus responsible for any phase appearing in the qubit
weak value.
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APPENDIX 1

The order of the Gell-Mann matrices used in this
paper is,

λ̂1 =

0 1 0
1 0 0
0 0 0

 λ̂2 =

0 −i 0
i 0 0
0 0 0

 (17)

λ̂3 =

1 0 0
0 −1 0
0 0 0

 λ̂4 =

0 0 1
0 0 0
1 0 0


λ̂5 =

0 0 −i
0 0 0
i 0 0

 λ̂6 =

0 0 0
0 0 1
0 1 0


λ̂7 =

0 0 0
0 0 −i
0 i 0

 λ̂8 =
1√
3

1 0 0
0 1 0
0 0 −2



APPENDIX 2

In this paper, we used the symmetric Majorana repre-
sentation of CPN , which should not be confused with the
Majorana representation of spinors. The representation
maps N -level quantum states to N−1 stars on the Bloch
sphere. To do so, it associates the basis of N -level sys-
tems with the symmetric tensorial products of two-level
states [50].
Let’s consider a four-level system. The basis is formed by
the states |0〉, |1〉, |2〉, |3〉. The Majorana representation
associates the states as follows,

|0〉 → |Ψ〉 = |0〉 |0〉 |0〉 (18)

|1〉 → |Ψ〉 =
1√
3

(|1〉 |0〉 |0〉+ |0〉 |1〉 |0〉+ |0〉 |0〉 |1〉)

|2〉 → |Ψ〉 =
1√
3

(|1〉 |1〉 |0〉+ |1〉 |0〉 |1〉+ |0〉 |1〉 |1〉)

|3〉 → |Ψ〉 = |1〉 |1〉 |1〉

where the order of the basis can be chosen. This associa-
tion is straightforwardly generalized to N -level systems,

|0〉 → |Ψ〉 = |0〉 |0〉 .... |0〉︸ ︷︷ ︸
N−1

(19)

|1〉 → |Ψ〉 =
1√
N − 1

∑
P

|1〉 |0〉 |0〉 ... |0〉︸ ︷︷ ︸
N−2

...

|N − 2〉 → |Ψ〉 =
1√
N − 1

∑
P

|0〉 |1〉 |1〉 ... |1〉︸ ︷︷ ︸
N−2

,

|N − 1〉 → |Ψ〉 = |1〉 |1〉 ... |1〉︸ ︷︷ ︸
N−1

,

where P runs through all the permutations of the states
|0〉 and |1〉. In general, it is possible to calculate the
Majorana stars of any general N -level state using the
polynomial of Eq.(3).
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[59] S. Binicioǧlu, M. A. Can, A. A. Klyachko, and A. S.

Shumovsky, Found. Phys. 37, 1253 (2007).
[60] A. Romito, Y. Gefen, and Y. M. Blanter, Phys. Rev. Lett.

100, 056801 (2008).
[61] I. Duck, P. M. Stevenson, and E. Sudarshan, Phys. Rev.

D 40, 2112 (1989).
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